80 research outputs found

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Efficient Human Activity Recognition in Large Image and Video Databases

    Get PDF
    Vision-based human action recognition has attracted considerable interest in recent research for its applications to video surveillance, content-based search, healthcare, and interactive games. Most existing research deals with building informative feature descriptors, designing efficient and robust algorithms, proposing versatile and challenging datasets, and fusing multiple modalities. Often, these approaches build on certain conventions such as the use of motion cues to determine video descriptors, application of off-the-shelf classifiers, and single-factor classification of videos. In this thesis, we deal with important but overlooked issues such as efficiency, simplicity, and scalability of human activity recognition in different application scenarios: controlled video environment (e.g.~indoor surveillance), unconstrained videos (e.g.~YouTube), depth or skeletal data (e.g.~captured by Kinect), and person images (e.g.~Flicker). In particular, we are interested in answering questions like (a) is it possible to efficiently recognize human actions in controlled videos without temporal cues? (b) given that the large-scale unconstrained video data are often of high dimension low sample size (HDLSS) nature, how to efficiently recognize human actions in such data? (c) considering the rich 3D motion information available from depth or motion capture sensors, is it possible to recognize both the actions and the actors using only the motion dynamics of underlying activities? and (d) can motion information from monocular videos be used for automatically determining saliency regions for recognizing actions in still images

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary

    A picture is worth a thousand words : content-based image retrieval techniques

    Get PDF
    In my dissertation I investigate techniques for improving the state of the art in content-based image retrieval. To place my work into context, I highlight the current trends and challenges in my field by analyzing over 200 recent articles. Next, I propose a novel paradigm called __artificial imagination__, which gives the retrieval system the power to imagine and think along with the user in terms of what she is looking for. I then introduce a new user interface for visualizing and exploring image collections, empowering the user to navigate large collections based on her own needs and preferences, while simultaneously providing her with an accurate sense of what the database has to offer. In the later chapters I present work dealing with millions of images and focus in particular on high-performance techniques that minimize memory and computational use for both near-duplicate image detection and web search. Finally, I show early work on a scene completion-based image retrieval engine, which synthesizes realistic imagery that matches what the user has in mind.LEI Universiteit LeidenNWOImagin

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Dataset shift in land-use classification for optical remote sensing

    Get PDF
    Multimodal dataset shifts consisting of both concept and covariate shifts are addressed in this study to improve texture-based land-use classification accuracy for optical panchromatic and multispectral remote sensing. Multitemporal and multisensor variances between train and test data are caused by atmospheric, phenological, sensor, illumination and viewing geometry differences, which cause supervised classification inaccuracies. The first dataset shift reduction strategy involves input modification through shadow removal before feature extraction with gray-level co-occurrence matrix and local binary pattern features. Components of a Rayleigh quotient-based manifold alignment framework is investigated to reduce multimodal dataset shift at the input level of the classifier through unsupervised classification, followed by manifold matching to transfer classification labels by finding across-domain cluster correspondences. The ability of weighted hierarchical agglomerative clustering to partition poorly separated feature spaces is explored and weight-generalized internal validation is used for unsupervised cardinality determination. Manifold matching solves the Hungarian algorithm with a cost matrix featuring geometric similarity measurements that assume the preservation of intrinsic structure across the dataset shift. Local neighborhood geometric co-occurrence frequency information is recovered and a novel integration thereof is shown to improve matching accuracy. A final strategy for addressing multimodal dataset shift is multiscale feature learning, which is used within a convolutional neural network to obtain optimal hierarchical feature representations instead of engineered texture features that may be sub-optimal. Feature learning is shown to produce features that are robust against multimodal acquisition differences in a benchmark land-use classification dataset. A novel multiscale input strategy is proposed for an optimized convolutional neural network that improves classification accuracy to a competitive level for the UC Merced benchmark dataset and outperforms single-scale input methods. All the proposed strategies for addressing multimodal dataset shift in land-use image classification have resulted in significant accuracy improvements for various multitemporal and multimodal datasets.Thesis (PhD)--University of Pretoria, 2016.National Research Foundation (NRF)University of Pretoria (UP)Electrical, Electronic and Computer EngineeringPhDUnrestricte

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF
    • …
    corecore