105 research outputs found

    Event Monitoring Based On Web Services for Heterogeneous Event Sources

    Get PDF
    This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA

    Component-based control system development for agile manufacturing machine systems

    Get PDF
    It is now a common sense that manufactures including machine suppliers and system integrators of the 21 st century will need to compete on global marketplaces, which are frequently shifting and fragmenting, with new technologies continuously emerging. Future production machines and manufacturing systems need to offer the "agility" required in providing responsiveness to product changes and the ability to reconfigure. The primary aim for this research is to advance studies in machine control system design, in the context of the European project VIR-ENG - "Integrated Design, Simulation and Distributed Control of Agile Modular Machinery"

    Acta Cybernetica : Volume 15. Number 4.

    Get PDF

    A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic

    Get PDF
    International audienceComponent Based Software Engineering has now emerged as a discipline for system development. After years of battle between component platforms, the need for means to abstract away from specific implementation details is now recognized. This paves the way for model driven approaches (such as MDE) but also for the more older Architectural Description Language (ADL) paradigm. In this paper we present KADL, an ADL based on the Korrigan formal language which supports the following features: integration of fully formal behaviours and data types, expressive component composition mechanisms through the use of modal logic, specification readability through graphical notations, and dedicated architectural analysis techniques. Key Words: Architectural Description Language, Component Based Software Engineering, Mixed Formal Specifications, Symbolic Transition Systems, Abstract Data Types, Modal Logic Glue, Graphical Notations, Verification

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Integrating modern business applications with objectified legacy systems

    Get PDF

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Distributed Real-time Systems - Deterministic Protocols for Wireless Networks and Model-Driven Development with SDL

    Get PDF
    In a networked system, the communication system is indispensable but often the weakest link w.r.t. performance and reliability. This, particularly, holds for wireless communication systems, where the error- and interference-prone medium and the character of network topologies implicate special challenges. However, there are many scenarios of wireless networks, in which a certain quality-of-service has to be provided despite these conditions. In this regard, distributed real-time systems, whose realization by wireless multi-hop networks becomes increasingly popular, are a particular challenge. For such systems, it is of crucial importance that communication protocols are deterministic and come with the required amount of efficiency and predictability, while additionally considering scarce hardware resources that are a major limiting factor of wireless sensor nodes. This, in turn, does not only place demands on the behavior of a protocol but also on its implementation, which has to comply with timing and resource constraints. The first part of this thesis presents a deterministic protocol for wireless multi-hop networks with time-critical behavior. The protocol is referred to as Arbitrating and Cooperative Transfer Protocol (ACTP), and is an instance of a binary countdown protocol. It enables the reliable transfer of bit sequences of adjustable length and deterministically resolves contest among nodes based on a flexible priority assignment, with constant delays, and within configurable arbitration radii. The protocol's key requirement is the collision-resistant encoding of bits, which is achieved by the incorporation of black bursts. Besides revisiting black bursts and proposing measures to optimize their detection, robustness, and implementation on wireless sensor nodes, the first part of this thesis presents the mode of operation and time behavior of ACTP. In addition, possible applications of ACTP are illustrated, presenting solutions to well-known problems of distributed systems like leader election and data dissemination. Furthermore, results of experimental evaluations with customary wireless transceivers are outlined to provide evidence of the protocol's implementability and benefits. In the second part of this thesis, the focus is shifted from concrete deterministic protocols to their model-driven development with the Specification and Description Language (SDL). Though SDL is well-established in the domain of telecommunication and distributed systems, the predictability of its implementations is often insufficient as previous projects have shown. To increase this predictability and to improve SDL's applicability to time-critical systems, real-time tasks, an approved concept in the design of real-time systems, are transferred to SDL and extended to cover node-spanning system tasks. In this regard, a priority-based execution and suspension model is introduced in SDL, which enables task-specific priority assignments in the SDL specification that are orthogonal to the static structure of SDL systems and control transition execution orders on design as well as on implementation level. Both the formal incorporation of real-time tasks into SDL and their implementation in a novel scheduling strategy are discussed in this context. By means of evaluations on wireless sensor nodes, evidence is provided that these extensions reduce worst-case execution times substantially, and improve the predictability of SDL implementations and the language's applicability to real-time systems

    An integrated approach to testing complex systems

    Get PDF
    Die steigende Komplexität heutiger Testszenarien für komplexe Systeme erfordert einen ganzheitlichen und offenen Ansatz zur Verwaltung des gesamten Testprozesses. Eine Anwendung klassischer modellbasierter Testansätze, in denen eine präzise und vollständige formale Spezifikation des Systems als Referenz zur automatischen Testfallgenerierung dient, ist in der Praxis nicht möglich.Gründe dafür liegen zum einen im Fehlen einer adäquaten formalen Spezifikation. Komplexe Systeme sind aus verschiedenen Komponenten zusammengesetzt, teils Hardware teils Software und oft auch aus Fremdkomponenten. Dadurch ist es inhärent unrealistisch anzunehmen, dass eine solche formale Spezifikation a priori existiert. Andererseits muss eine ausgereifte Testumgebung die Ausführung von verteilten Testfällen unterstützen, denn die Test-Stimuli und -Beobachtungen können an verschiedenen Teilkomponenten des Systems stattfinden.Diese Arbeit präsentiert einen neuartigen Ansatz für das ganzheitliche Testen komplexer Systeme. Der Ansatz stellt eine 'grobgranulare' Testumgebung zur Verfügung, die mittels einer komponentenbasierten Testfallbeschreibung realisiert ist. Die Basis dafür bildet eine Bibliothek von elementaren, aber intuitiv verständlichen Testfallfragmenten. Die Beziehungen zwischen den Testfallfragmenten sind orthogonal. Dies ermöglicht eine Testbeschreibung und -ausführung, die durch formale Verifikationsmethoden ergänzt wird. Hierdurch können die Testfallbeschreibungsaspekte von Experten des Systems und der verwendeten Testwerkzeuge zu Experten der Systemlogik verschoben werden. Der Ansatz wird durch verschiedene, industrielle Fallstudien in zwei verschiedenen Bereichen illustriert: Computer Telephony Integrations Lösungen und Webbasierte Applikationen. Als Erweiterung des ganzheitlichen Testansatzes wird ein Algorithmus zur a posteriori Generierung approximativer Modelle für komplexe Systeme vorgestellt. Dafür wurde ein bekannter Algorithmus aus dem Maschinellen Lernen an applikationsbedingte Charakteristika angepasst, wie Präfix-Abgeschlossenheit,Input-Determinismus, sowie Unabhängigkeit und Symmetrien zwischen Aktionen. Die resultierenden Modelle können zwar nie exakt sein, in dem Sinne, dass sie das vollständige und korrekte Systemverhalten abbilden. Dennoch können sie von hohem praktischen Nutzen sein, da sie das gesammelte Wissen über das System in einer konsistenten Beschreibungsform repräsentieren.The increasing complexity of today's testing scenarios for complex systems demands an integrated, open, and flexible approach to support the managementof the overall test process. ``Classical'' model-based testing approaches, where a complete and precise formal specification serves as a reference for automatic test generation, are often impractical. Reasons are, on the one hand, the absence of a suitable formal specification. As complex systems are composed of several components, either hardware or software, often pre-built and third party, it is unrealistic to assume that a formal specification exists a priori. On the other hand, a sophisticated test execution environment is needed that can handle distributed test cases. This is because the test actions and observations can take place on different subsystems of the overall system. This thesis presents a novel approach to the integrated testing of complex systems. Our approach offers a coarse grained test environment, realized in terms of a component-based test design on top of a library of elementary but intuitively understandable test case fragments. The relations between the fragments are treated orthogonally, delivering a test design and execution environment enhanced by means of light-weight formal verification methods. In this way we are able to shift the test design issues from total experts of the system and the used test tools to experts of the system's logic only. We illustrate the practical usability of our approach by means of industrial case studies in two different application domains: Computer Telephony Integrated solutions and Web-based applications. As an enhancement of our integrated test approach we provide an algorithm for generating approximate models for complex systems a posteriori. This is done by optimizing a standard machine learning algorithm according to domain-specific structural properties, i.e. properties like prefix-closeness, input-determinism, as well as independency and symmetries of events. The resulting models can never be exact, i.e. reflect the complete and correct behaviour of the considered system. Nevertheless they can be useful in practice, to represent the cumulative knowledge of the system in a consistent description
    • …
    corecore