9,620 research outputs found

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Towards rule-based visual programming of generic visual systems

    Full text link
    This paper illustrates how the diagram programming language DiaPlan can be used to program visual systems. DiaPlan is a visual rule-based language that is founded on the computational model of graph transformation. The language supports object-oriented programming since its graphs are hierarchically structured. Typing allows the shape of these graphs to be specified recursively in order to increase program security. Thanks to its genericity, DiaPlan allows to implement systems that represent and manipulate data in arbitrary diagram notations. The environment for the language exploits the diagram editor generator DiaGen for providing genericity, and for implementing its user interface and type checker.Comment: 15 pages, 16 figures contribution to the First International Workshop on Rule-Based Programming (RULE'2000), September 19, 2000, Montreal, Canad

    On a Graph-Based Semantics for UML Class and Object Diagrams

    Get PDF
    In this paper we propose a formal extension of type graphs with notions that are commonplace in the UML and have long proven their worth in that context: namely, inheritance, multiplicity, containment and the like. We believe the absence of a comprehensive and commonly agreed upon formalisation of these notions to be an important and, unfortunately, often ignored omission. Since our eventual aim (shared by many researchers) is to give unambiguous, formal semantics to the UML using the theory of graphs and graph transformation, in this paper we propose a set of definitions to repair this omission. With respect to previous work in this direction, our aim is to arrive at more comprehensive and at the same time simpler definitions.\u

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized

    Engineering Object-Oriented Semantics Using Graph Transformations

    Get PDF
    In this paper we describe the application of the theory of graph transformations to the practise of language design. We have defined the semantics of a small but realistic object-oriented language (called TAAL) by mapping the language constructs to graphs and their operational semantics to graph transformation rules. In the process we establish a mapping between UML models and graphs. TAAL was developed for the purpose of this paper, as an extensive case study in engineering object-oriented language semantics using graph transformation. It incorporates the basic aspects of many commonly used object-oriented programming languages: apart from essential imperative programming constructs, it includes inheritance, object creation and method overriding. The language specification is based on a number of meta-models written in UML. Both the static and dynamic semantics are defined using graph rewriting rules. In the course of the case study, we have built an Eclipse plug-in that automatically transforms arbitrary TAAL programs into graphs, in a graph format readable by another tool. This second tool is called Groove, and it is able to execute graph transformations. By combining both tools we are able to visually simulate the execution of any TAAL program

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework
    corecore