
GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 171

from	previous	experience	and	from	research	 in	software	
engineering.	Wasted	effort	and	poor	interoperability	can	
therefore	ensue,	raising	the	costs	of	DLs	and	jeopardizing	
the	fluidity	of	information	assets	in	the	future.

In	addition,	there	is	a	need	for	modeling	services	and	
data	 structures	 as	 highlighted	 in	 the	 “Digital	 Library	
Reference	 Model”	 proposed	 by	 the	 DELOS	 EU	 network	
of	 excellence	 (also	 called	 the	 “DELOS	 Manifesto”);2	 in	
fact,	the	distribution	of	DL	services	over	digital	networks,	
typically	 accessed	 through	 Web	 browsers	 or	 dedicated	
clients,	 makes	 the	 whole	 theme	 of	 interaction	 between	
users	 important,	 for	 both	 individual	 usage	 and	 remote	
collaboration.	Designing	and	modeling	such	interactions	
call	for	considerations	pertaining	to	the	fields	of	human–
computer	 interaction	 (HCI)	 and	 computer-supported	
cooperative	 work	 (CSCW).	 As	 an	 example,	 scenario-
based	or	activity-based	approaches	developed	in	the	HCI	
area	can	be	exploited	in	DL	design.	

To	 meet	 these	 needs	 we	 developed	 CRADLE	
(Cooperative-Relational	 Approach	 to	 Digital	 Library	
Environments),3	 a	 metamodel-based	 Digital	 Library	
Management	 System	 (DLMS)	 supporting	 collaboration	
in	 the	 design,	 development,	 and	 use	 of	 DLs,	 exploiting	
patterns	emerging	from	previous	projects.	The	entities	of	
the	 CRADLE	 metamodel	 allow	 the	 specification	 of	 col-
lections,	 structures,	 services,	 and	 communities	 of	 users	
(called	 “societies”	 in	 CRADLE)	 and	 partially	 reflect	 the	
DELOS	Manifesto.	The	metamodel	entities	are	based	on	
existing	 DL	 taxonomies,	 such	 as	 those	 proposed	 by	 Fox	
and	 Marchionini,4	 Gonçalves	 et	 al.,5	 or	 in	 the	 DELOS	
Manifesto,	 so	 as	 to	 leverage	 available	 tools	 and	 knowl-
edge.	 Designers	 of	 DLs	 can	 exploit	 the	 domain-specific	
visual	 language	 (DVSL)	 available	 in	 the	 CRADLE	 envi-
ronment—where	 familiar	 entities	 extracted	 from	 the	
referred	 taxonomies	 are	 represented	 graphically—to	
model	 data	 structures,	 interfaces	 and	 services	 offered	
to	 the	 final	 users.	 The	 visual	 model	 is	 then	 processed	
and	 transformed,	 exploiting	 suitable	 templates,	 toward	
a	 set	 of	 specific	 languages	 for	 describing	 interfaces	 and	
services.	The	results	are	finally	transformed	into	platform-
independent	(Java)	code	for	specific	DL	applications.	

CRADLE	 supports	 the	 basic	 functionalities	 of	 a	 DL	
through	 interfaces	 and	 service	 templates	 for	 managing,	
browsing,	searching,	and	updating.	These	can	be	further	
specialized	to	deploy	advanced	functionalities	as	defined	
by	designers	through	the	entities	of	 the	proposed	visual	

The design and development of a digital library involves
different stakeholders, such as: information architects,
librarians, and domain experts, who need to agree on
a common language to describe, discuss, and negoti-
ate the services the library has to offer. To this end,
high-level, language-neutral models have to be devised.
Metamodeling techniques favor the definition of domain-
specific visual languages through which stakeholders can
share their views and directly manipulate representations
of the domain entities. This paper describes CRADLE
(Cooperative-Relational Approach to Digital Library
Environments), a metamodel-based framework and visual
language for the definition of notions and services related
to the development of digital libraries. A collection of
tools allows the automatic generation of several services,
defined with the CRADLE visual language, and of the
graphical user interfaces providing access to them for the
final user. The effectiveness of the approach is illustrated
by presenting digital libraries generated with CRADLE,
while the CRADLE environment has been evaluated by
using the cognitive dimensions framework.

D igital	 libraries	 (DLs)	 are	 rapidly	 becoming	 a	 pre-
ferred	source	for	information	and	documentation.	
Both	 at	 research	 and	 industry	 levels,	 DLs	 are	 the	

most	 referenced	 sources,	 as	 testified	 by	 the	 popularity	
of	 Google	 Books,	 Google	 Video,	 IEEE	 Explore,	 and	 the	
ACM	 Portal.	 Nevertheless,	 no	 general	 model	 is	 uni-
formly	accepted	for	such	systems.	Only	few	examples	of	
modeling	 languages	 for	 developing	 DLs	 are	 available,1	
and	there	is	a	general	 lack	of	systems	for	designing	and	
developing	DLs.	This	 is	 even	more	unfortunate	because	
different	 stakeholders	 are	 interested	 in	 the	 design	 and	
development	of	 a	DL,	 such	as	 information	architects,	 to	
librarians,	 to	 software	 engineers,	 to	 experts	 of	 the	 spe-
cific	 domain	 served	 by	 the	 DL.	 These	 categories	 may	
have	 contrasting	 objectives	 and	 views	 when	 deploying	
a	 DL:	 librarians	 are	 able	 to	 deal	 with	 faceted	 categories	
of	 documents,	 taxonomies,	 and	 document	 classification;	
software	 engineers	 usually	 concentrate	 on	 services	 and	
code	development;	information	architects	favor	effective-
ness	 of	 retrieval;	 and	 domain	 experts	 are	 interested	 in	
directly	referring	to	the	content	of	interest	without	going	
through	technical	jargon.	Designers	of	DLs	are	most	often	
library	 technical	staff	with	 little	 to	no	 formal	 training	 in	
software	 engineering,	 or	 computer	 scientists	 with	 little	
background	 in	 the	 research	 findings	 of	 hypertext	 infor-
mation	retrieval.	Thus	DL	systems	are	usually	built	from	
scratch	using	specialized	architectures	that	do	not	benefit	

Alessio Malizia (alessio.malizia@uc3m.es) is associate Profes-
sor, universidad carlos iii, Department of informatics, Madrid,
Spain; Paolo Bottoni (bottoni@di.uniroma1.it) is associate Pro-
fessor and s. levialdi (levialdi@di.uniroma1.it) is Professor, “Sa-
pienza” university of rome, Department of computer Science,
rome, italy.

Alessio Malizia, Paolo Bottoni,
and S. Levialdi

Generating Collaborative
Systems for Digital Libraries:
a Model-Driven Approach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/20443821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

172 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

a	formal	foundation	for	digital	libraries,	called	5S,	based	
on	 the	 concepts	 of	 streams,	 (data)	 structures,	 (resource)	
spaces,	 scenarios,	 and	 societies.	 While	 being	 evidence	 of	 a	
good	modeling	endeavor,	the	approach	does	not	specify	
formally	 how	 to	 derive	 a	 system	 implementation	 from	
the	model.

The	new	generation	of	DL	systems	will	be	highly	dis-
tributed,	providing	adaptive	and	interoperable	behaviour	
by	adjusting	their	structure	dynamically,	in	order	to	act	in	
dynamic	environments	(e.g.,	interfacing	with	the	physical	
world).13	To	manage	 such	 large	and	complex	 systems,	a	
systematic	 engineering	 approach	 is	 required,	 typically	
one	that	includes	modeling	as	an	essential	design	activity	
where	the	availability	of	such	domain-specific	concepts	as	
first-class	 elements	 in	 DL	 models	 will	 make	 application	
specification	easier.14

While	 most	 of	 the	 disciplines	 related	 to	 DLs—e.g.,	
databases,15	 information	 retrieval,16	 and	 hypertext	 and	
multimedia17—have	underlying	formal	models	that	have	
properly	steered	them,	little	is	available	to	formalize	DLs	
per	se.	Wang	described	the	structure	of	a	DL	system	as	a	
domain-specific	 database	 together	 with	 a	 user	 interface	
for	querying	the	records	stored	in	the	database.18	Castelli	
et	 al.	 present	 an	 approach	 involving	 multidimensional	
query	languages	for	searching	information	in	DL	systems	
that	 is	 based	 on	 first-order	 logic.19	 These	 works	 model	
metadata	specifications	and	 thus	are	 the	main	examples	
of	 system	 formalization	 in	 DL	 environments.	 Cognitive	
models	for	information	retrieval,	as	used	for	example	by	
Oddy	et	al.,20	focus	on	users’	information-seeking	behav-
ior	 (i.e.,	 formation,	 nature,	 and	 properties	 of	 a	 users’	
information	need)	and	on	how	information	retrieval	sys-
tems	are	used	in	operational	environments.

Other	approaches	based	on	models	and	languages	for	
describing	 the	 entities	 involved	 in	 a	 DL	 are	 the	 Digital	
Library	Definition	Language,21	 the	DSpace	data	model22	
(with	the	definitions	of	communities	and	workflow	mod-
els),	 the	 Metis	 Workflow	 framework,23	 and	 the	 Fedora	
structoid	 approach.24	 E/R	 approaches	 are	 frequently	
used	for	modeling	database	management	system	(DBMS)	
applications,25	but	as	E/R	diagrams	only	model	the	static	
structure	 of	 a	 DBMS,	 they	 generally	 do	 not	 deal	 deeply	
with	dynamic	aspects.	Temporal	extensions	add	dynamic	
aspects	 to	 the	 E/R	 approach,	 but	 most	 of	 them	 are	 not	
object-oriented.26	 The	 advent	 of	 object-oriented	 technol-
ogy	calls	for	approaches	and	tools	to	information	system	
design	resulting	in	object-oriented	systems.	These	consid-
erations	drove	 research	 toward	modeling	approaches	as	
supported	by	UML.27

However,	since	the	UML	metamodel	is	not	yet	wide-
spread	 in	 the	 DL	 community,	 we	 adopted	 the	 E/R	
formalism	and	complemented	it	with	the	specification	of	
the	dynamics	made	available	through	the	user	interface,	
as	 described	 by	 Malizia	 et	 al.28	 Using	 the	 metamodel,	
we	 have	 defined	 a	 DSVL,	 including	 basic	 entities	 and	

language.	 CRADLE	 is	 based	 on	 the	 entity-relationship	
(E/R)	formalism,	which	is	powerful	and	general	enough	
to	describe	DL	models	and	is	supported	by	many	tools	as	
a	 metamodeling	 language.	 Moreover,	 we	 observed	 that	
users	 and	 designers	 involved	 in	 the	 DL	 environment,	
but	not	coming	from	a	software	engineering	background,	
may	not	be	familiar	with	advanced	formalism	like	unified	
modeling	 language	 (UML),	 but	 they	 usually	 have	 basic	
notions	on	database	management	systems,	where	E/R	is	
largely	employed.

■■ Literature Review

DLs	are	complex	information	systems	involving	technolo-
gies	and	features	from	different	areas,	such	as	library	and	
information	systems,	information	retrieval,	and	HCI.	This	
interdisciplinary	 nature	 is	 well	 reflected	 in	 the	 various	
definitions	of	DLs	present	in	the	literature.	As	far	back	as	
1965,	 Licklider	 envisaged	 collections	 of	 digital	 versions	
of	scanned	documents	accessible	via	interconnected	com-
puters.6	More	recently,	Levy	and	Marshall	described	DLs	
as	sets	of	collections	of	documents,	together	with	digital	
resources,	accessible	by	users	in	a	distributed	context.7	To	
manage	the	amount	of	information	stored	in	such	systems,	
they	proposed	some	sort	of	user-assisting	software	agent.	
Other	 definitions	 include	 not	 only	 printed	 documents,	
but	 multimedia	 resources	 in	 general.8	 However	 differ-
ent	the	definitions	may	be,	they	all	 include	the	presence	
of	 collections	 of	 resources,	 their	 organization	 in	 struc-
tured	 repositories,	 and	 their	availability	 to	 remote	users	
through	 networks	 (as	 discussed	 by	 Morgan).9	 Recent	
efforts	toward	standardization	have	been	taken	by	public	
and	 private	 organizations.	 For	 example,	 a	 Delphi	 study	
identified	four	main	ingredients:	an	organized	collection	
of	 resources,	mechanisms	 for	browsing	and	searching,	a	
distributed	 networked	 environment,	 and	 a	 set	 of	 objec-
tified	services.10	The	President’s	Information	Technology	
Advisory	Committee	 (PITAC)	Panel	on	Digital	Libraries	
sees	DLs	as	the	networked	collections	of	digital	text,	doc-
uments,	images,	sounds,	scientific	data,	and	software	that	
make	up	the	core	of	 today’s	 Internet	and	of	 tomorrow’s	
universally	 accessible	 digital	 repositories	 of	 all	 human	
knowledge.11

When	 considering	 DLs	 in	 the	 context	 of	 distributed	
DL	environments,	only	few	papers	have	been	produced,	
contrasting	 with	 the	 huge	 bibliography	 on	 DLs	 in	 gen-
eral.	 The	 DL	 Group	 at	 the	 Universidad	 de	 las	Américas	
Puebla	in	Mexico	introduced	the	concept	of	personal	and	
group	 spaces,	 relevant	 to	 the	 CSCW	 domain,	 in	 the	 DL	
system	 context.12	 Users	 can	 share	 information	 stored	 in	
their	personal	spaces	or	share	agents,	thus	allowing	other	
users	to	perform	the	same	search	on	the	document	collec-
tions	 in	 the	DL.	The	cited	 text	by	Gonçalves	et	al.	gives	

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 173

education	 as	 discussed	 by	 Wattenberg	 or	 Zia.33	 In	 the	
NSDL	 program,	 a	 new	 generation	 of	 services	 has	 been	
developed	that	 includes	support	 for	 teaching	and	 learn-
ing;	 this	 means	 also	 considering	 users’	 activities	 or	
scenarios	 and	 not	 only	 information	 access.	 Services	 for	
implementing	personal	 content	delivery	and	sharing,	or	
managing	 digital	 resources	 and	 modeling	 collaboration,	
are	examples	of	tools	introduced	during	this	program.

The	 virtual	 reference	 desk	 (VRD)	 is	 emerging	 as	 an	
interactive	 service	 based	 on	 DLs.	 With	 VRD,	 users	 can	
take	advantage	of	domain	experts’	knowledge	and	librar-
ians’	 experience	 to	 locate	 information.	 For	 example,	 the	
U.S.	Library	of	Congress	Ask	a	Librarian	service	acts	as	
a	VRD	for	users	who	want	help	in	searching	information	
categories	 or	 to	 interact	 with	 expert	 librarians	 to	 search	
for	a	specific	topic.34

The	interactive	and	collaborative	aspects	of	activities	
taking	 place	 within	 DLs	 facilitate	 the	 development	 of	
user	communities.	Social	networking,	work	practices,	and	
content	sharing	are	all	features	that	influence	the	technol-
ogy	 and	 its	 use.	 Following	 Borgmann,35	 Lynch	 sees	 the	
future	of	DLs	not	in	broad	services	but	in	supporting	and	
facilitating	 “customization	 by	 community,”	 i.e.,	 services	
tailored	for	domain-specific	work	practices.36	

We	 also	 examined	 the	 research	 agenda	 on	 system-
oriented	 issues	 in	 DLs	 and	 the	 DELOS	 manifesto.37	 The	
agenda	abstracts	 the	DL	 life	cycle,	 identifying	 five	main	
areas,	and	proposes	key	research	problems.	In	particular	
we	tackle	activities	such	as	formal	modeling	of	DLs	and	
their	communities	and	developing	frameworks	coherent	
with	such	models.

At	 the	 architectural	 level,	 one	 point	 of	 interest	 is	 to	
support	 heterogeneous	 and	 distributed	 systems,	 in	 par-
ticular	networked	DLs	and	services.38	For	interoperability,	
one	of	the	issues	is	how	to	support	and	interoperate	with	
different	metadata	models	and	standards	to	allow	distrib-
uted	 cataloguing	 and	 indexing,	 as	 in	 the	 Open	Archive	
Initiative	(OAI).39

Finally,	 we	 are	 interested	 in	 the	 service	 level	 of	 the	
research	 agenda	 and	 more	 precisely	 in	 Web	 services	
and	 workflow	 management	 as	 crucial	 features	 when	
including	 communities	 and	 designing	 DLs	 for	 use	 over	
networks	and	for	sharing	content.

As	a	result	of	 this	analysis,	 the	CRADLE	framework	
features	the	following:	

■■ a	visual	language	to	help	users	and	designers	when	
visual	modeling	their	specific	DL	(without	knowing	
any	technical	detail	apart	from	learning	how	to	use	a	
visual	 environment	 providing	 diagrams	 representa-
tions	of	domain	specific	elements)

■■ an	environment	integrating	visual	modeling	and	code	
generation	instead	of	simply	providing	an	integrated	
architecture	that	does	not	hide	technical	details

■■ interface	generation	 for	dealing	with	different	users	

relationships	 for	 modeling	 DL-related	 scenarios	 and	
activities.	 The	 need	 for	 the	 integration	 of	 multiple	 lan-
guages	 has	 also	 been	 indicated	 as	 a	 key	 aspect	 of	 the	
DSVL	approach.29	In	fact,	complex	domains	like	DLs	typi-
cally	consist	of	multiple	subdomains,	each	of	which	may	
require	its	own	particular	language.

In	the	current	implementation,	the	definition	of	DSVLs	
exploits	 the	metamodeling	facilities	of	AToM3,	based	on	
graph-grammars.30	 AToM3	 has	 been	 typically	 used	 for	
simulation	 and	 model	 transformation,	 but	 we	 adopt	 it	
here	as	a	tool	for	system	generation.

■■ Requirements for Modeling
Digital Libraries

We	 follow	 the	 DELOS	 Manifesto	 by	 considering	 a	 DL	
as	an	organization	 (possibly	virtual	 and	distributed)	 for	
managing	 collections	 of	 digital	 documents	 (digital	 con-
tents	in	general)	and	preserving	their	images	on	storage.	
A	DL	offers	contextual	services	to	communities	of	users,	a	
certain	quality	of	service,	and	the	ability	to	apply	specific	
policies.	In	CRADLE	we	leave	the	definition	of	quality	of	
service	to	the	service-oriented	architecture	standards	we	
employ	and	partially	model	the	applicable	policy,	but	we	
focus	here	on	crucial	interactivity	aspects	needed	to	make	
DLs	usable	by	different	communities	of	users.

In	 particular,	 we	 model	 interactive	 activities	 and	
services	 based	 on	 librarians’	 experiences	 in	 face-to-face	
communication	 with	 users,	 or	 designing	 exchange	 and	
integration	procedures	for	communicating	between	insti-
tutions	and	managing	shared	resources.	

While	 librarians	 are	 usually	 interested	 in	 modeling	
metadata	 across	 DLs,	 software	 engineers	 aim	 at	 provid-
ing	 multiple	 tools	 for	 implementing	 services,31	 such	 as	
indexing,	 querying,	 semantics,32	 etc.	 Therefore	 we	 pro-
vide	a	visual	model	useful	for	librarians	and	information	
architects	 to	 mimic	 the	 design	 phases	 they	 usually	 per-
form.	 Moreover,	 by	 supporting	 component	 services,	 we	
help	 software	 engineers	 to	 specify	 and	 add	 services	 on	
demand	to	DL	environments.	To	this	end,	we	use	a	service	
component	model.	By	sharing	a	common	language,	users	
from	different	categories	can	communicate	to	design	a	DL	
system	 while	 concentrating	 on	 their	 own	 tasks	 (services	
development	 and	 design	 for	 software	 engineers	 and	 DL	
design	for	librarians	and	information	architects).	Users	are	
modeled	according	to	the	Delos	Manifesto	as	DL	End-users	
(subdivided	into	content	creators,	content	consumers,	and	
librarians),	DL	Designers	(librarians	and	information	archi-
tects),	DL	System	Administrators	(typically	librarians),	and	
DL	Application	Developers	(software	engineers).

Several	 activities	 have	 been	 started	 on	 modeling	
domain	 specific	 DLs.	 As	 an	 example,	 the	 U.S.	 National	
Science	 Digital	 Library	 (NSDL)	 program	 promotes	 edu-
cational	DLs	and	services	for	basic	and	advanced	science	

174 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

■■ how	 that	 information	 is	 structured	 and	 organized	
(Structural	Model)

■■ the	behavior	of	the	DL	(Service	Model)	and	the	differ-
ent	societies	of	actors

■■ groups	of	services	acting	together	to	carry	out	the	DL	
behavior	(Societal	Model)

Figure	 1	 depicts	 the	 design	 approach	 supported	 by	
CRADLE	 architecture,	 namely,	 modeling	 the	 society	 of	
actors	 and	 services	 interacting	 in	 the	 domain-specific	
scenarios	 and	 describing	 the	 documents	 and	 metadata	
structure	 included	 with	 the	 library	 by	 defining	 a	 visual	
model	 for	 all	 these	 entities.	 The	 DL	 is	 built	 using	 a	 col-
lection	of	 stock	parts	 and	configurable	 components	 that	
provide	the	infrastructure	for	the	new	DL.	This	infrastruc-
ture	includes	the	classes	of	objects	and	relationships	that	
make	up	the	DL,	and	processing	tools	to	create	and	load	
the	actual	library	collection	from	raw	documents,	as	well	
as	services	for	searching,	browsing,	and	collection	main-
tenance.	 Finally,	 the	 code	 generation	 module	 generates	
tailored	DL	services	code	stubs	by	composing	and	special-
izing	components	from	the	component	pool.

Initially,	a	DL	designer	is	responsible	for	formalizing	
(starting	 from	 an	 analysis	 of	 the	 DL	 requirements	 and	
characteristics)	a	conceptual	description	of	 the	DL	using	
metamodel	 concepts.	 Model	 specifications	 are	 then	 fed	
into	 a	 DL	 generator	 (written	 in	 Python	 for	 AToM3),	 to	
produce	a	DL	tailored	suitable	for	specific	platforms	and	
requirements.	After	these	design	phases,	CRADLE	gener-
ates	the	code	for	the	user	interface	and	the	parts	of	code	
corresponding	 to	 services	 and	 actors	 interacting	 in	 the	
described	society.	A	set	of	templates	for	code	generation	

and	designers
■■ flexible	metadata	definitions
■■ a	set	of	interactive	integrated	tools	for	
user	activities	with	the	generated	DL	
system	

To	sum	up,	CRADLE	is	a	DLMS	aimed	
at	 supporting	 all	 the	 users	 involved	 in	
the	 development	 of	 a	 DL	 system	 and	
providing	 interfaces,	 data	 modeling,	 and	
services	for	user-driven	generation	of	spe-
cific	 DLs.	 Although	 CRADLE	 does	 not	
yet	 satisfy	 all	 requirements	 for	 a	 generic	
DL	 system,	 it	 addresses	 issues	 focused	
on	 developing	 interactive	 DL	 systems,	
stressing	 interfaces	 and	 communication	
between	users.	Nevertheless,	we	employed	
standards	 when	 possible	 to	 leave	 it	 open	
for	 further	 specification	 or	 enhancements	
from	 the	 DL	 user	 community.	 Extensive	
use	of	XML-based	 languages	allows	us	 to	
change	 document	 information	 depending	
on	implemented	recognition	algorithms	so	
that	expert	users	can	easily	model	their	DL	by	selecting	the	
best	recognition	and	indexing	algorithms.

CRADLE	evolves	from	the	JDAN	(Java-based	environ-
ment	for	Document	Applications	on	Networks)	platform,	
which	managed	both	document	images	and	forms	on	the	
basis	 of	 a	 component	 architecture.40	 JDAN	 was	 based	 on	
XML	technologies,	and	its	modularity	allowed	its	integra-
tion	in	service-based	and	grid-based	scenarios.	It	supported	
template	code	generation	and	modeling,	but	it	required	the	
designer	to	write	XML	specifications	and	edit	XML	schema	
files	in	order	to	model	the	DL	document	types	and	services,	
thus	requiring	technical	knowledge	that	should	be	avoided	
to	let	users	concentrate	on	their	specific	domains.

■■ Modeling Digital Library Systems

The	 CRADLE	 framework	 shows	 a	 unique	 combination	
of	features:	it	is	based	on	a	formal	model,	exploits	a	set	of	
domain-specific	 languages,	 and	 provides	 automatic	 code	
generation.	Moreover,	fundamental	roles	are	played	by	the	
concepts	of	society	and	collaboration.41	CRADLE	generates	
code	from	tools	built	after	modeling	a	DL	(according	to	the	
rules	defined	by	 the	proposed	metamodel)	and	performs	
automatic	 transformation	 and	 mapping	 from	 model	 to	
code	to	generate	software	tools	for	a	given	DL	model.

The	 specification	 of	 a	 DL	 in	 CRADLE	 encompasses	
four	complementary	dimensions:

■■ multimedia	 information	 supported	 by	 the	 DL	
(Collection	Model)

Figure 1. CRADLE architecture

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 175

socioeconomic,	 and	 environment	 dimen-
sions.	We	now	show	in	detail	the	entities	
and	relations	in	the	derived	metamodel,	
shown	in	figure	2.

Actor entities

Actors	are	the	users	of	DLs.	Actors	interact	
with	the	DL	through	services	(interfaces)	
that	 are	 (or	 can	 be)	 affected	 by	 the	
actors	preferences	and	messages	 (raised	
events).	 In	 the	 CRADLE	 metamodel,	
an	 actor	 is	 an	 entity	 with	 a	 behavior	
that	 may	 concurrently	 generate	 events.	
Communications	 with	 other	 actors	 may	
occur	synchronously	or	asynchronously.	
Actors	 can	 relate	 through	 services	 to	
shape	a	digital	community,	i.e.,	the	basis	
of	 a	 DL	 society.	 In	 fact,	 communities	 of	
students,	 readers,	 or	 librarians	 interact	
with	and	through	DLs,	generally	follow-
ing	predefined	scenarios.	As	an	example,	
societies	 can	 behave	 as	 query	 generator	
services	 (from	 the	 point	 of	 view	 of	 the	

library)	 and	 as	 teaching,	 learning,	 and	 working	 services	
(from	 the	 point	 of	 view	 of	 other	 humans	 and	 organiza-
tions).	 Communication	 between	 actors	 within	 the	 same	
or	different	societies	occur	through	message	exchange.	To	
operate,	societies	need	shared	data	structures	and	message	
protocols,	 enacted	 by	 sending	 structured	 sequences	 of	
queries	and	retrieving	collections	of	results.

The	actor	entity	includes	three	attributes:	

1.	 Role	 identifies	 which	 role	 is	 played	 by	 the	 actor	
within	 the	 DL	 society.	 Examples	 of	 specific	 human	
roles	 include	 authors,	 publishers,	 editors,	 maintain-
ers,	 developers,	 and	 the	 library	 staff.	 Examples	 of	
nonhuman	 actors	 include	 computers,	 printers,	 tele-
communication	devices,	software	agents,	and	digital	
resources	in	general.

2.	 Status	 is	an	enumeration	of	possible	statuses	for	 the	
actor:

I.	 None	(default	value)
II.	 Active	(present	in	the	model	and	actively	generat-

ing	events)
III.	 Inactive	(present	in	the	model	but	not	generating	

events)
IV.	 Sleeping	(present	in	the	model	and	awaiting	for	a	

response	to	a	raised	event)	
3.	 Events	describes	a	list	of	events	that	can	be	raised	by	

the	 actor	 or	 received	 as	 a	 response	 message	 from	 a	
service.	Examples	of	events	are	borrow,	reserve,	return,	
etc.	 Events	 triggered	 from	 digital	 resources	 include	
store,	trash,	and	transfer.	Examples	of	response	events	
are	found,	not found,	updated,	etc.

have	been	built	for	typical	services	of	a	DL	environment.	
To	 improve	 acceptability	 and	 interoperability,	

CRADLE	adopts	standard	specification	sublanguages	for	
representing	 DL	 concepts.	 Most	 of	 the	 CRADLE	 model	
primitives	are	defined	as	XML	elements,	possibly	enclos-
ing	 other	 sublanguages	 to	 help	 define	 DL	 concepts.	 In	
more	detail,	MIME	 types	 constitute	 the	basis	 for	encod-
ing	 elements	 of	 a	 collection.	 The	 XML	 User	 Interface	
Language	 (XUL)42	 is	 used	 to	 represent	 appearance	 and	
visual	interfaces,	and	XDoclet	is	used	in	the	LibGen	code	
generation	module,	as	shown	in	figure	1.43

■■ The Cradle Metamodel

In	 the	 CRADLE	 formalism,	 the	 specification	 of	 a	 DL	
includes	 a	 Collection	 Model	 describing	 the	 maintained	
multimedia	 documents,	 a	 Structural	 Model	 of	 informa-
tion	 organization,	 a	 Service	 Model	 for	 the	 DL	 behavior,	
and	 a	 Societal	 Model	 describing	 the	 societies	 of	 actors	
and	groups	of	services	acting	together	to	carry	out	the	DL	
behavior.	

A	society	is	an	instance	of	the	CRADLE	model	defined	
according	to	a	specific	collaboration	framework	in	the	DL	
domain.	A	society	is	the	highest-level	component	of	a	DL	
and	exists	to	serve	the	information	needs	of	its	actors	and	to	
describe	its	context	of	usage.	Hence	a	DL	collects,	preserves,	
and	shares	information	artefacts	for	society	members.

The	 basic	 entities	 in	 CRADLE	 are	 derived	 from	
the	 categorization	 along	 the	 actors,	 activities,	 components,	

Figure 2. The CRADLE metamodel with the E/R formalism

176 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

a	 text	 document,	 including	 scientific	 articles	 and	 books,	
becomes	a	sequence	of	strings.

the struct entity

A	 Struct	 is	 a	 structural	 element	 specifying	 a	 part	 of	 a	
whole.	 In	 DLs,	 structures	 represent	 hypertexts,	 taxono-
mies,	 relationships	 between	 elements,	 or	 containment.	
For	example,	books	can	be	structured	logically	into	chap-
ters,	sections,	subsections,	and	paragraphs,	or	physically	
into	 cover,	 pages,	 line	 groups	 (paragraphs),	 and	 lines.	
Structures	are	represented	as	graphs,	and	the	struct	entity	
(a	vertex)	contains	four	attributes:

1.	 Document	 is	 a	 pointer	 to	 the	 document	 entity	 the	
structure	refers	to.

2.	 Id	is	a	unique	identifier	for	a	structure	element.
3.	 Type	takes	three	possible	values:

I.	 Metadata	denotes	a	content	descriptor,	for	instance	
title,	author,	etc.

II.	 Layout	denotes	the	associated	layout,	e.g.,	left	
frame,	columns,	etc.

III.	 Item	indicates	a	generic	structure	element	used	for	
extending	the	model.

4.	 Values	 is	a	 list	of	values	describing	the	element	con-
tent,	e.g.,	title,	author,	etc.

Actors	 interact	 with	 services	 in	 an	 event-driven	 way.	
Services	are	 connected	via	messages	 (send	 and	 reply)	 and	
can	be	sequential,	concurrent,	or	task-related	(when	a	ser-
vice	acts	as	a	subtask	of	a	macroservice).	Services	perform	
operations	(e.g.,	get,	add,	and	del)	on	collections,	producing	
collections	 of	 documents	 as	 results.	 Struct	 elements	 are	
connected	to	each	other	as	nodes	of	a	graph	representing	
metadata	structures	associated	with	documents.

The	 metamodel	 has	 been	 translated	 to	 a	 DSVL,	 asso-
ciating	symbols	and	icons	with	entities	and	relations	(see	
“CRADLE	 Language	 and	 Tools”	 below).	 With	 respect	 to	
the	 six	 core	 concepts	 of	 the	 DELOS	 Manifesto	 (content,	
user,	 functionality,	 quality,	 policy,	 and	 architecture), con-
tent	can	be	modeled	in	CRADLE	as	collections	and	structs,	
user	as	actor,	and	functionality	as	service.	The	quality	con-
cept	is	not	directly	modeled	in	CRADLE,	but	for	quality	of	
service	we	support	 standard	service	architecture.	Policies	
can	be	partially	modeled	by	services	managing	interaction	
between	actors	and	collections,	making	it	possible	to	apply	
standard	 access	 policies.	 From	 the	 architectural	 point	 of	
view,	we	follow	the	reference	architecture	of	figure	1.

■■ CRADLE Language and Tools

In	this	section	we	describe	the	selection	of	languages	and	
tools	of	the	CRADLE	platform.	To	improve	interoperability	

service entities

Services	 describe	 scenarios,	 activities,	 operations,	 and	
tasks	 that	 ultimately	 specify	 the	 functionalities	 of	 a	 DL,	
such	 as	 collecting,	 creating,	 disseminating,	 evaluating,	
organizing,	 personalizing,	 preserving,	 requesting,	 and	
selecting	 documents	 and	 providing	 services	 to	 humans	
concerned	 with	 fact-finding,	 learning,	 gathering,	 and	
exploring	the	content	of	a	DL.	All	these	activities	can	be	
described	and	 implemented	using	scenarios	and	appear	
in	the	DL	setting	as	a	result	of	actors	using	services	(thus	
societies).	Furthermore,	these	activities	realize	and	shape	
relationships	within	and	between	societies,	services,	and	
structures.	In	the	CRADLE	metamodel,	the	service	entity	
models	 what	 the	 system	 is	 required	 to	 do,	 in	 terms	 of	
actions	and	processes,	 to	achieve	a	 task.	A	detailed	 task	
analysis	 helps	 understand	 the	 current	 system	 and	 the	
information	flow	within	it	in	order	to	design	and	allocate	
tasks	appropriately.	The	service	entity	has	four	attributes:

1.	 Name	is	a	string	representing	a	textual	description	of	
the	service.

2.	 Sync	 states	 whether	 communication	 is	 synchronous	
or	asynchronous,	modeled	by	values	wait	and	nowait,	
respectively.

3.	 Events	 is	 a	 list	 of	 messages	 that	 can	 trigger	 actions	
among	services	(tasks);	for	example,	valid	or	notValid	
in	case	of	a	parsing	service.

4.	 Responses	contain	a	list	of	response	messages	that	can	
reply	to	raised	events;	they	are	used	as	a	communica-
tion	mechanism	by	actors	and	services.

the collection entity

Collections	are	sets	of	documents	of	arbitrary	type	(e.g.,	bits,	
characters,	 images,	 etc.)	 used	 to	 model	 static	 or	 dynamic	
content.	 In	 the	 static	 interpretation,	 a	 collection	 defines	
information	content	interpreted	as	a	set	of	basic	elements,	
often	 of	 the	 same	 type,	 such	 as	 plain	 text.	 Examples	 of	
dynamic	content	include	video	delivered	to	a	viewer,	ani-
mated	presentations,	and	so	on.	The	attributes	of	collection	
are	name	and	documents.	Name	is	a	string,	while	documents	
is	a	list	of	pairs	(DocumentName,	DocumentLabel),	the	latter	
being	a	pointer	to	the	document	entity.

the Document entity

Documents	are	the	basic	elements	in	a	DL	and	are	modeled	
with	attributes	label	and	structure.

Label	defines	a	textual	string	used	by	a	collection	entity	
to	refer	to	the	document.	We	can	consider	it	as	a	document	
identifier,	specifying	a	class	or	a	type	of	document.

Structure	 defines	 the	 semantics	 and	 area	 of	 appli-
cation	 of	 the	 document.	 For	 example,	 any	 textual	
representation	can	be	seen	as	a	string	of	characters,	so	that	

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 177

graphs.	 Model	 manipulation	 can	 then	 be	 expressed	
via	graph	grammars	also	specified	in	AToM3.

The	 general	 process	 of	 automatic	 creation	 of	 coop-
erative	 DL	 environments	 for	 an	 application	 is	 shown	
in	 figure	 3.	 Initially,	 a	 designer	 formalizes	 a	 conceptual	
description	 of	 the	 DL	 using	 the	 CRADLE	 metamodel	
concepts.	 This	 phase	 is	 usually	 preceded	 by	 an	 analysis	
of	requirements	and	interaction	scenarios,	as	seen	previ-
ously.	 Model	 specifications	 are	 then	 provided	 to	 a	 DL	
code	generator	(written	in	Python	within	AToM3)	to	pro-
duce	DLs	tailored	to	specific	platforms	and	requirements.	
These	are	built	on	a	collection	of	templates	of	services	and	
configurable	components	providing	infrastructure	for	the	
new	DL.

The	 sketched	 infrastructure	 includes	 classes	 for	
objects	 (tasks),	 relationships	 making	 up	 the	 DL,	 and	
processing	 tools	 to	 upload	 the	 actual	 library	 collection	
from	 raw	 documents,	 as	 well	 as	 services	 for	 searching	
and	browsing	and	for	document	collections	maintenance.	
The	CRADLE	generator	automatically	generates	different	
kinds	of	output	for	the	CRADLE	model	of	the	cooperative	
DL	environment,	such	as	service	and	collection	managers.

Collection	 managers	 define	 the	 logical	 schemata	 of	
the	DL,	which	in	CRADLE	correspond	to	a	set	of	MIME	
types,	 XUL	 and	 XDoclet	 specifications,	 representing	
digital	objects,	 their	component	parts,	and	linking	infor-
mation.	Collection	managers	also	store	instances	of	their	

and	 collaboration,	 CRADLE	 makes	
extensive	use	of	existing	standard	spec-
ification	 languages.	 Most	 CRADLE	
outputs	 are	 defined	 with	 XML-based	
formats,	 able	 to	 enclose	 other	 specific	
languages.	 The	 basic	 languages	 and	
corresponding	 tools	used	 in	CRADLE	
are	the	following:

■■ MIME type.	Multipurpose	Internet	
Mail	Extensions	(MIME)	constitute	
the	basis	 for	encoding	documents	
in	 CRADLE,	 supporting	 several	
file	 formats	 and	 types	 of	 charac-
ter	 encoding.	 MIME	 was	 chosen	
because	 of	 wide	 availability	 of	
MIME	 types,	 and	 standardisation	
of	 the	 approach.	 This	 makes	 it	 a	
natural	 choice	 for	 DLs	 where	 dif-
ferent	 types	 of	 documents	 need	
to	be	managed	(PDF,	HTML,	Doc,	
etc.).	 Moreover,	 MIME	 standards	
for	 character	 encoding	 descrip-
tions	 help	 keeping	 the	 CRADLE	
framework	 open	 and	 compliant	
with	standards.

■■ XUL.	 The	 XML	 User	 Interface	
Language	(XUL)	is	an	XML-based	markup	language	
used	 to	 represent	 appearance	 and	 visual	 interfaces.	
XUL	 is	 not	 a	 public	 standard	 yet,	 but	 it	 uses	 many	
existing	standards	and	 technologies,	 including	DTD	
and	 RDF,44	 which	 makes	 it	 easily	 readable	 for	 peo-
ple	 with	 a	 background	 in	 Web	 programming	 and	
design.	The	main	benefit	of	XUL	is	that	it	provides	a	
simple	definition	of	common	user	interface	elements	
(widgets).	This	drastically	reduces	the	software	devel-
opment	effort	required	for	visual	interfaces.

■■ XDoclet.	 XDoclet	 is	 used	 for	 generating	 services	
from	 tagged-code	 fragments.	 It	 is	 an	 open-source	
code	 generation	 library	 which	 enables	 attribute-ori-
ented	programming	 for	 Java	via	 insertion	of	special	
tags.45	It	includes	a	library	of	predefined	tags,	which	
simplify	 coding	 for	 various	 technologies,	 e.g.,	 Web	
services.	 The	 motivation	 for	 using	 XDoclet	 in	 the	
CRADLE	 framework	 is	 related	 to	 its	 approach	 for	
template	 code	 generation.	 Designers	 can	 describe	
templates	for	each	service	(browse,	query,	and	index)	
and	the	XDoclet	generated	code	can	be	automatically	
transformed	 into	 the	 Java	 code	 for	 managing	 the	
specified	service.	

■■ AToM3.	AToM3	 is	 a	metamodeling	 system	 to	model	
graphical	 formalisms.	 Starting	 from	 a	 metaspecifi-
cation	 (in	 E/R),	 AToM3	 generates	 a	 tool	 to	 process	
models	 described	 in	 the	 chosen	 formalism.	 Models	
are	 internally	 represented	 using	 abstract	 syntax	

Figure 3. Cooperative DL generation process with CRADLE framework

178 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

and	(3)	the	metadata	operations	box.
The	 right	 column	 manages	 visualization	 and	 mul-

timedia	 information	 obtained	 from	 documents.	 The	
basic	 features	provided	with	 the	UI	 templates	are	docu-
ment	 loading,	 visualization,	 metadata	 organization,	 and	
management.

The	layout	template,	in	the	collection	box,	manages	the	
visualization	of	the	documents	contained	in	a	collection,	
while	 the	visualization	 template	works	according	 to	 the	
data	 (MIME)	 type	 specified	 by	 the	 document.	 Actually,	
by	 selecting	 a	 document	 included	 in	 the	 collection,	 the	
corresponding	 data	 file	 is	 automatically	 uploaded	 and	
visualized	in	the	UI.

The	metadata	visualization	in	the	code	template	reflects	
the	 metadata	 structure	 (a	 tree)	 represented	 by	 a	 struct,	
specifying	 the	 relationship	 between	 parent	 and	 child	
nodes.	Thus	the	XUL	template	includes	an	area	(the	meta-
data	box)	for	managing	tree	structures	as	described	in	the	
visual	model	of	 the	DL.	Although	 the	 tree-like	visualiza-
tion	has	potential	drawbacks	 if	 there	are	many	metadata	
items,	there	should	be	no	real	concern	with	medium	loads.

The	UI	template	also	includes	a	box	to	perform	opera-
tions	on	metadata,	such	as	insert,	delete,	and	edit.	Users	
can	 select	 a	 value	 in	 the	 metadata	 box	 and	 manipulate	
the	presented	values.	Figure	4	shows	an	example	of	a	UI	
generated	from	a	basic	template.

service templates

To	achieve	automated	code	generation,	we	use	XDoclet	to	
specify	parameters	and	service	code	generation	according	
to	such	parameters.	CRADLE	can	automatically	annotate	
Java	 files	 with	 name–value	 pairs,	 and	 XDoclet	 provides	
a	 syntax	 for	parameter	 specification.	Code	generation	 is	

classes	 and	 function	 as	 search	 engines	 for	 the	 system.	
Services	classes	also	are	generated	and	are	represented	as	
attribute-oriented	classes	involving	parts	and	features	of	
entities.

■■ CRADLE platform

The	 CRADLE	 platform	 is	 based	 on	 a	 model-driven	
approach	for	the	design	and	automatic	generation	of	code	
for	 DLs.	 In	 particular,	 the	 DSVL	 for	 CRADLE	 has	 four	
diagram	types	(collection,	structure,	service,	and	actor)	to	
describe	the	different	aspects	of	a	DL.

In	 this	 section	 we	 describe	 the	 user	 interface	 (UI)	
and	 service	 templates	 used	 for	 generating	 the	 DL	 tools.	
In	 particular,	 the	 UI	 layout	 is	 mainly	 generated	 from	
the	 structured	 information	 provided	 by	 the	 document,	
struct,	and	collection	entities.	The	UI	events	are	managed	
by	 invoking	 the	 appropriate	 services	 according	 to	 the	
imported	XUL	templates.	At	the	service	and	communica-
tion	 levels,	 the	XDoclet	code	 is	generated	by	 the	service	
and	actor	entities,	exploiting	their	relationships.	We	also	
show	 how	 code	 generation	 works	 and	 the	 advanced	
platform	features,	such	as	automatic	service	discovery.	At	
the	end	of	the	section	a	running	example	is	shown,	rep-
resenting	 all	 the	 phases	 involved	 in	 using	 the	 CRADLE	
framework	 for	 generating	 the	 DL	 tools	 for	 a	 typical	
library	scenario.

user interface templates

The	 generation	 of	 the	 UI	 is	 driven	 by	 the	 visual	 model	
designed	 by	 the	 CRADLE	 user.	 Specifically,	 the	 model	
entities	involved	in	this	process	are	document,	struct	and	
collection	(see	figure	2)	for	the	basic	components	and	lay-
out	of	the	interfaces,	while	linked	services	are	described	
in	the	appropriate	templates.

The	 code	 generation	 process	 takes	 place	 through	
transformations	 implemented	 as	 actions	 in	 the	 AToM3	
metamodel	 specification,	 where	 graph-grammar	 rules	
may	have	a	condition	that	must	be	satisfied	for	 the	rule	
to	 be	 applied	 (preconditions),	 as	 well	 as	 actions	 to	 be	
performed	when	the	rule	is	executed	(postconditions).	A	
transformation	 is	 described	 during	 the	 visual	 modeling	
phase	 in	 terms	 of	 conditions	 and	 corresponding	 actions	
(inserting	 XUL	 language	 statements	 for	 the	 interface	 in	
the	appropriate	code	 template	placeholders).	The	gener-
ated	user	interface	is	built	on	a	set	of	XUL	template	files	
that	 are	 automatically	 specialized	 on	 the	 basis	 of	 the	
attributes	and	relationships	designed	in	the	visual	mod-
eling	phase.

The	 layout	 template	 for	 the	user	 interface	 is	divided	
into	two	columns	(see	figure	4).	The	left	column	is	made	
of	three	boxes:	(1)	the	collection	box	(2)	the	metadata	box,	

Figure 4. An example of an automatically generated user inter-
face. (A) document area; (B) collection box; (C) metadata box; (D)
metadata operations box.

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 179

"msg arguments.argname">
{ "<XDtField : fieldName/>" ,
"<XDtField : fieldTagValue tagName=

"msg arguments.argname"
paramName="name"/>"
"<XDtField : fieldTagValue tagName=

"msg arguments.argname"
paramName=" desc "/>"
} ,
</XDtField : ifHasFieldTag>
</XDtField : forAllFields> };

The	first	two	lines	declare	a	class	with	a	name	class	
nameImpl	 that	 extends	 the	 class	 name.	 The	 XDoclet	
template	 tag	 XDtClass:className	 denotes	 the	 name	 of	
the	class	in	the	annotated	Java	file.	All	standard	XDoclet	
template	tags	have	a	namespace	starting	with	“XDt.”	

The	 rest	 of	 the	 template	 uses	 XDtField : forAllField
to	 iterate	 through	 the	 fields.	 For	 each	 field	 with	 a	 tag	
named	msg arguments.argname	(checked	using	XDtField
: ifHasFieldTag),	it	creates	a	subarray	of	strings	using	the	
values	obtained	from	the	 field	 tag	parameters.	XDtField
: fieldName	 gives	 the	 name	 of	 the	 field,	 while	 XDtField
: fieldTagValue	 retrieves	 the	 value	 of	 a	 given	 field	 tag	
parameter.	Characters	that	are	not	part	of	some	XDoclet	
template	 tags	 are	 directly	 copied	 into	 the	 generated	
code.	 The	 following	 code	 segment	 was	 generated	 by	
XDoclet	using	 the	annotated	 fields	and	 the	above	 tem-
plate	segment:

public class MSGArgumentsImpl extends
MSGArguments {

public static String[][] argumentNames = new
String[][]{ {

"eventMsg" ,
" event " ,
" eventstring "
} ,
{
" responseMsg " ,
" response " ,
" responsestring "
} ,
};
}
Similarly, we generate the getter and setter

methods for each field:
<XDtField : forAllFields > <XDtField : ifHasFieldTag
tagName="msg arguments.argname">
public <XDtField : fieldType/> get <XDtField :

fieldName />() {
return <XDtField : fieldName />;
}
public void set <XDtField : fieldName />

(String value) {

based	 on	 code	 templates.	 Hence	 service	 templates	 are	
XDoclet	 templates	 for	 transforming	 XDoclet	 code	 frag-
ments	obtained	from	the	modeled	service	entities.

The	 basic	 XDoclet	 template	 manages	 messages	
between	 services,	 according	 to	 the	 event	 and	 response	
attributes	 described	 in	 “CRADLE	 Language	 and	 Tools”	
above.	 In	 fact,	 CRADLE	 generates	 a	 Java	 application	
(a	 service)	 that	 needs	 to	 receive	 messages	 (event)	 and	
reply	 to	 them	 (response)	 as	 parameters	 for	 the	 service	
application.	In	XDoclet,	these	can	be	attached	to	the	cor-
responding	 field	 by	 means	 of	 annotation	 tags,	 as	 in	 the	
following	code	segments:

public class MSGArguments {
.
/*
* @msg arguments.argname name="event "

desc="event_string "
*/ protected String eventMsg = null;
/*
* @msg arguments.argname name="response"
* desc="response_string "
*/ protected String responseMsg = null;
}

Each	msg arguments.argname related	to	a	field	is	called	
a	field	tag.	Each	field	tag	can	have	multiple	parameters,	
listed	after	the	field	tag.	In	the	tag	name	msg arguments
.argname,	the	prefix	serves	as	the	namespace	of	all	tags	for	
this	particular	XDoclet	application,	thus	avoiding	naming	
conflicts	with	other	standard	or	customized	XDoclet	tags.	
Not	only	 fields	can	be	annotated,	but	also	other	entities	
such	as	class	and	functions	can	have	tags	too.

XDoclet	 enables	 powerful	 code	 generation	 requir-
ing	 little	or	no	customization	 (depending	on	how	much	
is	 provided	 by	 the	 template).	 The	 type	 of	 code	 to	 be	
generated	 using	 the	 parameters	 is	 defined	 by	 the	 corre-
sponding	XDoclet	template.

We	 have	 created	 template	 files	 composed	 of	 Java	
codes	 and	 special	 XDoclet	 instructions	 in	 the	 form	 of	
XML	tags.	These	XDoclet	instructions	allow	conditionals	
(if)	 and	 loops	 (for),	 thus	 providing	 us	 with	 expressive	
power	close	to	a	programming	language.	In	the	following	
example,	 we	 first	 create	 an	 array	 containing	 labels	 and	
other	information	for	each	argument:

public class <XDtClass : classOf>
<XDtClass : className/>Impl</XDtClass :

classOf> extends
<XDtClass : classOf><XDtClass : className/>

</XDtClass : classOf> {
public static String[][] argumentNames = new

String[][] {
<XDtField : forAllFields>
<XDtField : ifHasFieldTag tagName=

180 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

because	different	design	choices	in	the	template	can	lead	
to	vastly	different	code.	We	have	included	an	incremental	
mechanism	by	which	users	can	modify	the	visual	model	
of	a	DL	and	regenerate	(XUL	interface)	code	only	for	the	
modifications.	 By	 employing	 this	 solution,	 librarians	
and	DL	designers	 can	work	as	 they	would	on	paper	by	
designing	 the	 visual	 scheme	 and	 collaboratively	 updat-
ing	 and	 changing	 it.	 They	 can	 generate	 the	 code,	 verify	
the	implementation,	and,	if	something	has	to	be	changed,	
go	 back	 to	 the	 visual	 model,	 apply	 modification,	 and	
generate	code	in	a	new	iteration	of	the	process.	Once	the	
visual	 model	 has	 been	 modified,	 the	 system	 incremen-
tally	 updates	 the	 code	 by	 examining	 only	 those	 model	
parts	affected	by	the	edit	and	modifying	the	correspond-
ing	parts	of	the	generated	code.

The	 same	 approach	 could	 be	 used	 for	 services	 but	
with	a	different	 technique.	 In	 fact,	predefined	 templates	
exist	for	basic	services,	e.g.,	indexing,	uploading,	and	que-
rying.	To	allow	service	providers	to	add	new	code	to	the	
rest	of	the	service	component	list,	we	have	implemented	
a	registry	listing	the	available	service	templates.	When	the	
user	runs	the	code	generation	process,	a	routine	verifies	
if	 the	service	 templates	 included	 in	 the	model	are	avail-
able	in	the	registry	and	loads	it	into	memory	for	the	code	
generation	process.	

We	 are	 planning	 to	 support	 a	 standard	 mechanism	
based	 on	 the	 Universal	 Description,	 Discovery,	 and	
Integration	 registry.47	 Moreover,	 we	 have	 developed	 an	
advanced	interface	template	that	embeds	validation	code	
into	 the	XUL	 templates	 for	 the	 interfaces	 to	 look	up	 the	
list	of	services	made	available	by	the	interface	at	run-time.	
If	 there	 are	 services	 embedded	 in	 the	 interface	 but	 not	
available,	 the	 interface	 is	 modified	 to	 prevent	 access	 to	
them.	For	instance,	suppose	that	an	interface	is	specified	
with	buttons	to	access	 to	 the	document	upload	and	edit	
services.	 If,	at	run-time,	the	check	does	not	find	the	edit	
service	available,	 the	interface	will	present	only	the	but-
ton	for	the	upload	service.

■■ Generating a Digital Library
Environment

As	 a	 first	 step	 in	 designing	 the	 digital	 library	 environ-
ment	 in	 the	 CRADLE	 framework,	 designers	 model	 the	
society	 involved	 in	 the	 specific	 scenario.	 We	 define	 a	
running	 example,	 called	 Library,	 to	 show	 the	 process,	
starting	from	the	basic	entities	of	the	model.	We	consider	
modeling	a	simple	DL	environment.	The	involved	actors	
are	students	and	librarians.	The	DL	Collection	consists	of	
Digital	 Paper	 Documents	 with	 publication,	 author,	 and	
title	metadata	information	(struct	entities).	In	figure	5,	the	
CRADLE	environment	(a	society)	is	shown	together	with	
the	defined	entities.	Circles	represent	actors	in	the	model,	
rectangles	 render	 services,	 multiple	 rectangles	 represent	

setValue ("<XDtField : fieldName/>" , value) ;
}<
/XDtField : ifHasFieldTag>
</XDtField : forAllFields >
This translates into the following generated code:
public java.lang.String get eventMsg () {
return eventMsg ;
}
public void set eventMsg (String value) {
setValue ("eventMsg" , value) ;
}
public java.lang.String getresponseMsg () {
return getresponseMsg ;
}
public void setresponseMsg (String value) {
setValue (" responseMsg " , value) ;
}

The	same	template	is	used	for	managing	the	name	and	
sync	attributes	of	service	entities.

code Generation, service Discovery,
and Advanced Features

A	 service	 or	 interface	 template	 only	 describes	 the	 solu-
tion	 to	 a	 particular	 design	 problem—it	 is	 not	 code.	
Consequently,	users	will	find	it	difficult	to	make	the	leap	
from	the	 template	description	to	a	particular	 implemen-
tation	 even	 though	 the	 template	 might	 include	 sample	
code.	 Others,	 like	 software	 engineers,	 might	 have	 no	
trouble	 translating	 the	 template	 into	 code,	 but	 they	 still	
may	 find	 it	 a	 chore,	 especially	 when	 they	 have	 to	 do	 it	
repeatedly.	 The	 CRADLE	 visual	 design	 environment	
(based	 on	AToM3)	 helps	 alleviate	 these	 problems.	 From	
just	a	few	pieces	of	information	(the	visual	model),	typi-
cally	 application-specific	 names	 for	 actors	 and	 services	
in	a	DL	society	along	with	choices	 for	 the	design	 trade-
offs,	the	tool	can	create	class	declarations	and	definitions	
implementing	 the	 template.	 The	 ultimate	 goal	 of	 the	
modeling	 effort	 remains,	 however,	 the	 production	 of	
reliable	 and	 efficiently	 executable	 code.	 Hence	 a	 code	
generation	transformation	produces	interface	(XUL)	and	
service	(Java	code	from	XDoclet	templates)	code	from	the	
DL	model.

We	 have	 manually	 coded	 XUL	 templates	 specifying	
the	static	setup	of	the	GUI,	the	various	widgets	and	their	
layout.	 This	 must	 be	 complemented	 with	 code	 gener-
ated	 from	 a	 DL	 model	 of	 the	 systems	 dynamics	 coded	
into	 services.	 While	 other	 approaches	 are	 possible,46	 we	
employed	 the	 solution	 implemented	 within	 the	 AToM3	
environment	 according	 to	 its	 graph	 grammar	 modeling	
approach	to	code	generation.	

CRADLE	 supports	 a	 flexible	 iterative	 process	 for	
visual	 design	 and	 code	 generation.	 In	 fact,	 a	 design	
change	 might	 require	 substantial	 reimplementation	

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 181

selecting	 one,	 the	 UI	 activates	 the	 metadata	 operations	
box—figure	 6(D).	 The	 selected	 metadata	 node	 will	 then	
be	 presented	 in	 the	 lower	 (metadata	 operations)	 box,	
labeled	 “set	 MetaData	 Values,”	 replacing	 the	 default	
“None”	 value	 as	 shown	 in	 figure	 6.	After	 the	 metadata	
item	is	presented,	the	user	can	edit	its	value	and	save	it	by	
clicking	on	the	“set	value”	button.	The	associated	action	
saves	the	metadata	information	and	causes	its	display	in	
the	 intermediate	 box	 (tree-like	 structure),	 changing	 the	
visualization	according	to	the	new	values.

The	 code	 generation	 process	 for	 the	 Do_Search	 and	
Front	 Desk	 services	 is	 based	 on	 XDoclet	 templates.	 In	
particular,	a	message	listener	template	is	used	to	generate	
the	Java	code	for	the	Front	Desk	service.	In	fact,	the	Front	
Desk	service	 is	asynchronous	and	manages	communica-
tions	 between	 actors.	 The	 actors	 classes	 are	 generated	
also	 by	 using	 the	 services	 templates	 since	 they	 have	
attributes,	 events,	 and	 messages,	 just	 like	 the	 services.	
The	Do_Search	service	code	is	based	on	the	producer	and	
consumer	 templates,	 since	 it	 is	 synchronous	 by	 defini-
tion	 in	 the	modeled	scenario.	A	get	method	retrieving	a	
collection	 of	 documents	 is	 implemented	 from	 the	 getter	
template.	

The	routine	invoked	by	the	transformation	action	for	
struct	entities	performs	a	breadth-first	exploration	of	the	
metadata	 tree	 in	 the	 visual	 model	 and	 attaches	 the	 cor-
responding	 XUL	 code	 for	 displaying	 the	 struct	 node	 in	
the	correct	position	within	the	graph	structure	of	the	UI.

collections,	 while	 a	 single	 rectangle	
connected	to	a	collection	represents	
a	document	entity;	the	circles	linked	
to	 the	 document	 entity	 are	 the	
struct	 (metadata)	 entities.	Metadata	
entities	are	 linked	 to	 the	node	 rela-
tionships	 (organized	 as	 a	 tree)	 and	
linked	 to	 the	 document	 entity	 by	 a	
metadata	LinkType	relationship.

The	 search	 service	 is	 synchro-
nous	 (sync	 attribute	 set	 to	 “wait”).	
It	 queries	 the	 document	 collec-
tion	 (get	 operation)	 looking	 for	 the	
requested	 document	 (using	 meta-
data	 information	 provided	 by	 the	
borrow	 request),	 and	 waits	 for	 the	
result	 of	 get	 (a	 collection	 of	 docu-
ments).	 Based	 on	 this	 result,	 the	
service	 returns	 a	 Boolean	 message	
“Is_Available,”	which	is	then	propa-
gated	as	a	 response	 to	 the	 librarian	
and	 eventually	 to	 the	 student,	 as	
shown	in	figure	5.

When	 the	 library	 designer	 has	
built	 the	 model,	 the	 transformation	
process	 can	 be	 run,	 executing	 the	
code	 generation	 actions	 associated	
with	 the	 entities	 and	 services	 represented	 in	 the	 model.	
The	 code	 generation	 process	 is	 based	 on	 template	 code	
snippets	 generated	 from	 the	AToM3	 environment	 graph	
transformation	engine,	 following	 the	generative	 rules	of	
the	metamodel.	We	also	use	pre–	and	postconditions	on	
application	of	transformation	rules	to	have	code	genera-
tion	depend	on	verification	of	some	property.

The	generated	UI	is	presented	in	figure	6.	On	the	right	
side,	the	document	area	is	presented	according	to	the	XUL	
template.	 Documents	 are	 managed	 according	 to	 their	
MIME	type:	the	PDF	file	of	the	example	is	loaded	with	the	
appropriate	Adobe	Acrobat	Reader	plug-in.

On	the	left	column	of	the	UI	are	three	boxes,	according	
to	 the	 XUL	 template.	 The	 collection	 box—figure	 6(B)—
presents	the	list	of	documents	contained	in	the	collection	
specified	by	the	documents	attribute	of	the	library	collec-
tion	entity,	and	allows	users	to	interact	with	documents.	
After	 selecting	 a	 document	 by	 clicking	 on	 the	 list,	 it	 is	
presented	 in	 the	 document	 area—figure	 6(A)—where	 it	
can	be	managed	(edit,	print,	save,	etc.).

In	 the	 metadata	 box—figure	 6(C)—the	 tree	 structure	
of	 the	metadata	 is	depicted	according	 to	 the	 categoriza-
tion	modeled	by	the	designer.	The	XUL	template	contains	
all	 the	 basic	 layout	 and	 action	 features	 for	 managing	 a	
tree	 structure.	 The	 generated	 box	 contains	 the	 parent	
and	 child	 nodes	 according	 to	 the	 attributes	 specified	 in	
the	corresponding	struct	elements.	The	user	can	click	on	
the	 root	 for	 compacting	or	exploding	 the	 tree	nodes;	by	

Figure 5. The Library model, alias the model of the Library society

182 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

workflow	 system.	 The	 Release	 collection	 maintains	 the	
image	files	in	a	permanent	storage,	while	data	is	written	
to	 the	 target	 database	 or	 content	 management	 software,	
together	with	XML	metadata	snippets	 (e.g.,	 to	be	stored	
in	XML	native	DBMS).

A	 typical	 configuration	 would	 have	 the	 Recognition	
service	 running	 on	 a	 server	 cluster,	 with	 many	 Data-
Entry	services	running	on	different	clients	(Web	browsers	
directly	support	XUL	interfaces).	Whereas	current	docu-
ment	 capture	 environments	 are	 proprietary	 and	 closed,	
the	definition	of	an	XML-based	interchange	format	allows	
the	suitable	assembly	of	different	component-based	tech-
nologies	in	order	to	define	a	complex	framework.

The	 realization	 of	 the	 JDAN	 DL	 system	 within	 the	
CRADLE	framework	can	be	considered	as	a	preliminary	
step	in	the	direction	of	a	standard	multimedia	document	
managing	 platform	 with	 region	 segmentation	 and	 clas-
sification,	thus	aiming	at	automatic	recognition	of	image	
database	 and	 batch	 acquisition	 of	 multiple	 multimedia	
documents	types	and	formats.	

Personal and collaborative spaces

A	personal	space	 is	a	virtual	area	(within	the	DL	society)	
that	 is	 modeled	 as	 being	 owned	 and	 maintained	 by	 a	
user	 including	 resources	 (document	 collections,	 services,	
etc.),	 or	 references	 to	 resources,	 which	 are	 relevant	 to	 a	
task,	or	set	of	tasks,	the	user	needs	to	carry	out	in	the	DL.	
Personal	 spaces	 may	 thus	 contain	 digital	 documents	 in	
multiple	 media,	 personal	 schedules,	 visualization	 tools,	
and	user	agents	(shaped	as	services)	entitled	with	various	
tasks.	 Resources	 within	 personal	 spaces	 can	 be	 allocated	

■■ Designing and Generating Advanced
Collaborative DL Systems

In	this	section	we	show	the	use	of	CRADLE	as	an	analyti-
cal	tool	helpful	in	comprehending	specific	DL	phenomena,	
to	 present	 the	 complex	 interplays	 that	 occur	 between	
CRADLE	components	and	DL	concepts	in	a	real	DL	appli-
cation,	 and	 to	 illustrate	 the	 possibility	 of	 using	 CRADLE	
as	 a	 tool	 to	 design	 and	 generate	 advanced	 tools	 for	 DL	
development.

Modeling Document images collections

With	CRADLE,	the	designer	can	provide	the	visual	model	
of	the	DL	Society	involved	in	document	management	and	
the	 remaining	 phases	 are	 automatically	 carried	 out	 by	
CRADLE	modules	and	templates.	We	have	provided	the	
user	 with	 basic	 code	 templates	 for	 the	 recognition	 and	
indexing	 services,	 the	 data-entry	 plug-in,	 and	 archive	
release.	 The	 designer	 can	 thus	 simply	 translate	 the	 par-
ticular	 DL	 society	 into	 the	 corresponding	 visual	 model	
within	the	CRADLE	visual	modeling	editor.

As	a	proof	of	concept,	figure	7	models	the	JDAN	archi-
tecture,	introduced	in	“Requirements	for	Modeling	Digital	
Libraries,”	 exploiting	 the	 CRADLE	 visual	 language.	 The	
Recognition	Service	performs	the	automatic	document	rec-
ognition	and	stores	 the	 corresponding	document	 images,	
together	 with	 the	 extracted	 metadata	 in	 the	Archive	 col-
lection.	 It	 interacts	with	 the	Scanner	actor,	 representing	a	
machine	or	a	human	operator	that	scans	paper	documents.	
Designers	 can	 choose	 their	 own	 segmentation	 method	
or	 algorithm;	 what	 is	 required	 to	 be	 compliant	 with	 the	
framework	 is	 to	 produce	 an	 XDoclet	 template.	 It	 stores	
the	document	images	into	the	Archive	collection,	with	its	
different	regions	layout	information	according	to	the	XML	
metadata	 schema	 provided	 by	 the	 designer.	 If	 there	 is	 at	
least	 one	 region	 marked	 as	 “not	 interpreted,”	 the	 Data-
Entry	service	is	invoked	on	the	“not	interpreted”	regions.

The	Data-Entry	 service	allows	Operators	 to	evaluate	
the	 automatic	 classification	 performed	 by	 the	 system	
and	 edit	 the	 segmentation	 for	 indexing.	 Operators	 can	
also	 edit	 the	 recognized	 regions	 with	 the	 classification	
engine	 (included	 in	 the	 Recognition	 service)	 and	 adjust	
their	values	and	sizes.	The	output	of	this	phase	is	an	XML	
description	that	will	be	imported	in	the	Indexing	service	
for	indexing	(and	eventually	querying).	

The	Archive	collection	stores	all	of	the	basic	informa-
tion	kept	in	JDAN,	such	as	text	labels,	while	the	Indexing	
service,	 based	 on	 a	 multitier	 architecture,	 exploiting	
JBoss	3.0,	has	access	 to	 them.	This	service	 is	 responsible	
for	 turning	 the	 data	 fragments	 in	 the	Archive	 collection	
into	useful	forms	to	be	presented	to	the	final	users,	e.g.,	a	
report	or	a	query	result.

The	 final	 stage	 in	 the	 recognition	 process	 could	 be	
to	 release	 each	 document	 to	 a	 content	 management	 or	

Figure 6. The UI generated by CRADLE transforming the Library
model in XUL and XDocLet code

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 183

and	 metadata,	 but	 also	 can	 share	
information	 with	 the	 various	 com-
mittees	collaborating	for	certain	tasks.

■■ Evaluation

In	 this	 section	 we	 evaluate	 the	 pre-
sented	 approach	 from	 three	 different	
perspectives:	usability	of	the	CRADLE	
notation,	 its	 expressiveness,	 and	
usability	of	the	generated	DLs.

usability of crADle Notation

We	 have	 tested	 it	 by	 using	 the	
well	 known	 Cognitive	 Dimensions	
framework	 for	 notations	 and	 visual	
language	 design.48	 The	 dimensions	
are	 usually	 employed	 to	 evaluate	
the	 usability	 of	 a	 visual	 language	
or	 notation,	 or	 as	 heuristics	 to	 drive	
the	 design	 of	 innovative	 visual	 lan-
guages.	The	 significant	 results	 are	as	
follows.

Abstraction Gradient
An	abstraction	is	a	grouping	of	elements	to	be	treated	as	
one	entity.	In	this	sense,	CRADLE	is	abstraction-tolerant.	
It	 provides	 entities	 for	 high-level	 abstractions	 of	 com-
munication	 processes	 and	 services.	 These	 abstractions	
are	 intuitive	 as	 they	 are	 visualized	 as	 the	 process	 they	
represent	 (services	with	events	and	responses)	and	easy	
to	 learn	 as	 their	 configuration	 implies	 few	 simple	 attri-
butes.	Although	CRADLE	does	not	allow	users	 to	build	
new	abstractions,	the	E/R	formalism	is	powerful	enough	
to	provide	basic	abstraction	levels.

closeness of Mapping
CRADLE	elements	have	been	assigned	icons	to	resemble	
their	 real-world	 counterparts	 (e.g.,	 a	 collection	 is	 repre-
sented	as	a	set	of	paper	sheets).	The	elements	that	do	not	
have	a	correspondence	with	a	physical	object	 in	the	real	
world	 have	 icons	 borrowed	 from	 well-known	 notations	
(e.g.,	structs	represented	as	graph	nodes).

consistency
A	 notation	 is	 consistent	 if	 a	 user	 knowing	 some	 of	 its	
structure	 can	 infer	 most	 of	 the	 rest.	 In	 CRADLE,	 when	
two	elements	 represent	 the	same	entity	but	can	be	used	
either	 as	 input	 or	 as	 output,	 then	 their	 shape	 is	 equal	
but	incorporates	an	incoming	or	an	outgoing	message	in	
order	to	differentiate	them.	See,	for	example,	the	icons	for	
services	 or	 those	 for	 graph	 nodes	 representing	 either	 a	

according	 to	 the	 user’s	 role.	 For	 example,	 a	 conference	
chair	 would	 have	 access	 to	 conference-specific	 materi-
als,	 visualization	 tools	 and	 interfaces	 to	 upload	 papers	
for	 review	by	a	 committee.	 Similarly,	we	denote	a	group	
space	 as	 a	 virtual	 area	 in	 which	 library	 users	 (the	 entire	
DL	 society)	 can	 meet	 to	 conduct	 collaborative	 activities	
synchronously	 or	 asynchronously.	 Explicit	 group	 spaces	
are	 created	 dynamically	 by	 a	 designer	 or	 facilitator	 who	
becomes	(or	appoints)	the	owner	of	the	space	and	defines	
who	the	participants	will	be.	In	addition	to	direct	user-to-
user	communication,	users	should	be	able	to	access	library	
materials	 and	make	annotations	on	 them	 for	 every	other	
group	to	see.	Ideally,	users	should	be	able	to	act	(and	carry	
DL	 materials	 with	 them)	 between	 personal	 and	 group	
spaces	or	among	group	spaces	to	which	they	belong.

It	may	also	be	the	case,	however,	that	a	given	resource	
is	 referenced	 in	 several	 personal	 or	 group	 spaces.	 Basic	
functionality	required	for	personal	spaces	includes	capa-
bilities	 for	 viewing,	 launching,	 and	 monitoring	 library	
services,	 agents,	 and	 applications.	 Like	 group	 spaces,	
personal	spaces	should	provide	users	with	the	means	to	
easily	 become	 aware	 of	 other	 users	 and	 resources	 that	
are	present	in	a	given	group	space	at	any	time,	as	well	as	
mechanisms	to	communicate	with	other	users	and	make	
annotations	on	library	resources.

We	employed	this	personal	and	group	space	paradigm	
in	modeling	a	collaborative	environment	in	the	Academic	
Conferences	domain,	where	a	Conference	Chair	can	have	
a	 personal	 view	 of	 the	 document	 collections	 (resources)	

Figure 7. The CRADLE model for the JDAN framwork

184 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

of	 “Sapienza”	 University	 of	 Rome	 (undergraduate	 stu-
dents),	shown	in	figure	5,	and	(2)	an	application	employed	
with	 a	 project	 of	 Records	 Management	 in	 a	 collabora-
tion	 between	 the	 Computer	 Science	 and	 the	 Computer	
Engineering	 Department	 of	 “Sapienza”	 University,	 as	
shown	in	figure	7.

usability of the Generated tools

Environments	 for	 single-view	 languages	generated	with	
AToM3	 have	 been	 extensively	 used,	 mostly	 in	 an	 aca-
demic	 setting,	 in	 different	 areas	 like	 software	 and	 Web	
engineering,	modeling,	and	simulation;	urban	planning;	
etc.	 However,	 depending	 on	 the	 kind	 of	 the	 domain,	
generating	the	results	may	take	some	time.	For	instance,	
the	 state	 reachability	 analysis	 in	 the	 DL	 example	 takes	
a	 few	minutes;	we	are	currently	employing	a	version	of	
AToM3	that	includes	Petri-nets	formalism	where	we	can	
test	 the	 services	 states	 reachability.49	 In	 general,	 from	
application	 experience,	 we	 note	 the	 general	 agreement	
that	 automated	 syntactical	 consistency	 support	 greatly	
simplifies	 the	 design	 of	 complex	 systems.	 Finally,	 some	
users	 pointed	 out	 some	 technical	 limitations	 of	 the	 cur-
rent	implementation,	such	as	the	fact	that	it	is	not	possible	
to	open	several	views	at	a	time.

Altogether,	we	believe	this	work	contributes	to	make	
more	 efficient	 and	 less	 tedious	 the	 definition	and	 main-
tenance	 of	 environments	 for	 DLS.	 Our	 model-based	
approach	 must	 be	 contrasted	 with	 the	 programming-
centric	approach	of	most	CASE	tools,	where	the	language	
and	 the	 code	 generation	 tools	 are	 hard-coded	 so	 that	
whenever	a	modification	has	to	be	done	(whether	on	the	
language	or	on	the	semantic	domain)	developers	have	to	
dive	into	the	code.

■■ Conclusions and Future Work

DLs	 are	 complex	 information	 systems	 that	 integrate	
findings	from	disciplines	such	as	hypertext,	 information	
retrieval,	 multimedia,	 databases,	 and	 HCI.	 DL	 design	 is	
often	 a	 multidisciplinary	 effort,	 including	 library	 staff	
and	 computer	 scientists.	 Wasted	 effort	 and	 poor	 inter-
operability	 can	 therefore	 ensue.	 Examining	 the	 related	
bibliography,	 we	 noted	 that	 there	 is	 a	 lack	 of	 tools	 or	
automatic	systems	for	designing	and	developing	coopera-
tive	DL	systems.	Moreover,	there	is	a	need	for	modeling	
interactions	between	DLs	and	users,	such	as	scenario	or	
activity-based	approaches.

The	CRADLE	framework	fulfills	this	gap	by	providing	
a	model-driven	approach	for	generating	visual	interaction	
tools	for	DLs,	supporting	design	and	automatic	generation	
of	code	for	DLs.	In	particular,	we	use	a	metamodel	made	of	
different	diagram	types	(collection,	structures,	service,	and	

struct	or	an	actor,	with	different	colors.

Diffuseness/terseness
A	notation	is	diffuse	when	many	elements	are	needed	to	
express	 one	 concept.	 CRADLE	 is	 terse	 and	 not	 diffuse	
because	each	entity	expresses	a	meaning	on	its	own.

error-Proneness
Data	 flow	 visualization	 reduces	 the	 chance	 of	 errors	
at	 a	 first	 level	 of	 the	 specification.	 On	 the	 other	 hand,	
some	mistakes	can	be	introduced	when	specifying	visual	
entities,	 since	 it	 is	 possible	 to	 express	 relations	 between	
source	and	target	models	which	cannot	generate	semanti-
cally	 correct	 code.	 However,	 these	 mistakes	 should	 be	
considered	 “programming	 errors	 more	 than	 slips,”	 and	
may	be	detected	through	progressive	evaluation.

Hidden Dependencies
A	hidden	dependency	is	a	relation	between	two	elements	
that	is	not	visible.	In	CRADLE,	relevant	dependencies	are	
represented	as	data	flows	via	directed	links.

Progressive evaluation
Each	 DL	 model	 can	 be	 tested	 as	 soon	 as	 it	 is	 defined,	
without	having	to	wait	until	the	whole	model	is	finished.	
The	visual	interface	for	the	DL	can	be	generated	with	just	
one	click,	and	services	can	be	subsequently	added	to	test	
their	functionalities.

viscosity
CRADLE	 has	 a	 low	 viscosity	 because	 making	 small	
changes	 in	 a	 part	 of	 a	 specification	 does	 not	 imply	 lots	
of	 readjustments	 in	 the	 rest	of	 it.	One	can	change	prop-
erties,	 events	 or	 responses	 and	 these	 changes	 will	 have	
only	local	effect.	The	only	local	changes	that	could	imply	
performing	further	changes	by	hand	are	deleting	entities	
or	changing	names;	however,	this	would	imply	minimal	
changes	 (just	 removing	 or	 updating	 references	 to	 them)	
and	would	only	affect	a	small	set	of	subsequent	elements	
in	the	same	data	flow.

visibility
A	DL	specification	consists	of	a	single	set	of	diagrams	fit-
ting	 in	one	window.	Empirically,	we	have	observed	that	
this	model	usually	involves	no	more	than	fifteen	entities.	
Different,	independent	CRADLE	models	can	be	simulta-
neously	shown	in	different	windows.

expressiveness of crADle

The	paper	has	illustrated	the	expressiveness	of	CRADLE	
by	defining	different	entities	end	relationships	for	differ-
ent	DL	requisites.	To	this	end,	two	different	applications	
have	 been	 considered:	 (1)	 a	 basic	 example	 elaborated	
with	the	collaboration	of	the	Information	Science	School	

GeNerAtiNG cOllABOrAtive sYsteMs FOr DiGitAl liBrAries | MAliziA, BOttONi, AND leviAlDi 185

Retrieval	(Reading,	Mass.:	Addison-Wesley,	1999).
17. D.	 Lucarella	 and	A.	 Zanzi,	 “A	 Visual	 Retrieval	 Environ-

ment	for	Hypermedia	Information	Systems,”	ACM Transactions
on Information Systems 14	(1996):	3–29.

18. B.	 Wang,	 “A	 Hybrid	 System	 Approach	 for	 Supporting	
Digital	Libraries,”	International Journal on Digital Libraries	2	(1999):	
91–110,.

19. D.	 Castelli,	 C.	 Meghini,	 and	 P.	 Pagano,	 “Foundations	 of	
a	 Multidimensional	 Query	 Language	 for	 Digital	 Libraries,”	 in	
Proc. ECDL ’02,	LNCS	2458	(Berlin:	Springer,	2002):	251–65.

20. R.	 N.	 Oddy	 et	 al.,	 eds.,	 Proc. Joint ACM/BCS Symposium
in Information Storage & Retrieval	(Oxford:	Butterworths,	1981).

21. K.	Maly,	M.	Zubair	et	al.,	“Scalable	Digital	Libraries	Based	
on	 NCSTRL/DIENST,”	 in	 Proc. ECDL ’00	 (London:	 Springer,	
2000):	168–79.

22. R.	 Tansley,	 M.	 Bass	 and	 M.	 Smith,	 “DSpace	 as	 an	 Open	
Archival	Information	System:	Current	Status	and	Future	Direc-
tions,”	 Proc. ECDL ’03,	 LNCS	 2769	 (Berlin:	 Springer,	 2003):	
446–60.

23. K.	M.	Anderson	et	al.,	“Metis:	Lightweight,	Flexible,	and	
Web-Based	 Workflow	 Services	 for	 Digital	 Libraries,”	 Proc. 3rd
ACM/IEEE-CS JCDL ’03	 (Los	 Alamitos,	 Calif.: IEEE	 Computer	
Society,	2003):	98–109.

24. N.	Dushay,	“Localizing	Experience	of	Digital	Content	via	
Structural	Metadata,”	In	Proc. 2nd ACM/IEEE-CS JCDL ’02	(New	
York:	ACM,	2002):	244–52.

25. M.	Gogolla	et	al.,	“Integrating	the	ER	Approach	in	an	OO	
Environment,”	Proc. ER, ’93	(Berlin:	Springer,	1993):	376–89.

26. Heidi	 Gregersen	 and	 Christian	 S.	 Jensen,	 “Temporal	
Entity-Relationship	 Models—A	 Survey,”	 IEEE Transactions on
Knowledge & Data Engineering	11	(1999):	464–97.

27. B.	 Berkem,	 “Aligning	 IT	 with	 the	 Changes	 using	 the	
Goal-Driven	Development	for	UML	and	MDA,”	Journal of Object
Technology	4	(2005):	49–65.

28. A.	 Malizia,	 E.	 Guerra,	 and	 J.	 de	 Lara,	 “Model-Driven	
Development	of	Digital	Libraries:	Generating	the	User	Interface,”	
Proc. MDDAUI ’06,	 http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-214/	(accessed	Oct	18,	2010).

29. D.	L.	Atkins	et	al.,	“MAWL:	A	Domain-Specific	Language	
for	Form-Based	Services,”	IEEE Transactions on Software Engineer-
ing	25	(1999):	334–46.

30. J.	 de	 Lara	 and	 H.	 Vangheluwe,	 “AToM3:	 A	 Tool	 for	
Multi-Formalism	 and	 Meta-Modelling,”	 Proc. FASE ’02	 (Berlin:	
Springer,	2002):	174–88.

31. J.	 M.	 Morales-Del-Castillo	 et	 al.,	 “A	 Semantic	 Model	 of	
Selective	 Dissemination	 of	 Information	 for	 Digital	 Libraries,”	
Journal of Information Technology & Libraries	28	(2009):	21–30.

32. N.	 Santos,	 F.	 C.	A.	 Campos,	 and	 R.	 M.	 M.	 Braga,	 “Dig-
ital	 Libraries	 and	 Ontology,”	 in	 Handbook of Research on Digital
Libraries: Design, Development, and Impact,	 ed.	Y.-L.	Theng	et	al.
(Hershey,	Pa.:	Idea	Group,	2008):	1:19.

33. F.	 Wattenberg,	 “A	 National	 Digital	 Library	 for	 Science,	
Mathematics,	 Engineering,	 and	 Technology	 Education,”	 D-Lib
Magazine	3	no.	10	(1998),	http://www.dlib.org/dlib/october98/
wattenberg/10wattenberg.html	 (accessed	 Oct	 18,	 2010);	 L.	 L.	
Zia,	 “The	 NSF	 National	 Science,	 Technology,	 Engineering,	 and	
Mathematics	Education	Digital	Library	 (NSDL)	Program:	New	
Projects	 and	 a	 Progress	 Report,”	 D-lib Magazine,	 7,	 no.	 11	
(2002),	 http://www.dlib.org/dlib/november01/zia/11zia.html	
(accessed	Oct	18,	2010).

34. U.S.	Library	of	Congress,	Ask	a	Librarian,	http://www.loc	

society),	which	describe	the	different	aspects	of	a	DL.	We	
have	built	a	code	generator	able	to	produce	XUL	code	from	
the	 design	 models	 for	 the	 DL	 user	 interface.	 Moreover,	
we	 use	 template	 code	 generation	 integrating	 predefined	
components	 for	 the	 different	 services	 (XDoclet	 language)	
according	to	the	model	specification.	

Extensions	of	CRADLE	with	behavioral	diagrams	and	
the	 addition	 of	 analysis	 and	 simulation	 capabilities	 are	
under	study.	These	will	exploit	the	new	AToM3	capabili-
ties	for	describing	multiview	DSVLs,	to	which	this	work	
directly	contributed.

References

1. A.	M.	Gonçalves,	E.	A	Fox,	“5SL:	a	language	for	declara-
tive	specification	and	generation	of	digital	libraries,”	Proc.	JCDL
’02	(New	York:	ACM,	2002):	263–72.

2. L.	 Candela	 et	 al.,	 “Setting	 the	 Foundations	 of	 Digital	
Libraries:	 The	 DELOS	 Manifesto,”	 D-Lib Magazine 13	 (2007),	
http://www.dlib.org/dlib/march07/castelli/03castelli.html	
(accessed	Oct	18,	2010).

3. A.	Malizia	et	al.,	“A	Cooperative-Relational	Approach	to	
Digital	Libraries,”	Proc. ECDL 2007,	LNCS	4675	(Berlin:	Springer,	
2007):	75–86.

4. E.	A.	Fox	and	G.	Marchionini,	“Toward	a	Worldwide	Dig-
ital	Library,”	Communications of the ACM 41	(1998):	29–32.

5. M.	 A.	 Gonçalves	 et	 al.,	 “Streams,	 Structures,	 Spaces,	
Scenarios,	Societies	(5s):	A	Formal	Model	for	Digital	Libraries,”	
ACM Transactions on Information Systems 22	(2004):	270–312.

6. J.	C.	R.	Licklider,	Libraries of the Future	(Cambridge,	Mass.:	
MIT	Pr.,	1965).

7. D.	M.	Levy	and	C.	C.	Marshall,	“Going	Digital:	A	Look	at	
Assumptions	 Underlying	 Digital	 Libraries,”	 Communications of
the ACM	38	(1995):	77–84.

8. R.	 Reddy	 and	 I.	 Wladawsky-Berger,	 “Digital	 Librar-
ies:	 Universal	 Access	 to	 Human	 Knowledge—A	 Report	 to	 the	
President,”	2001,	www.itrd.gov/pubs/pitac/pitac-dl-9feb01.pdf	
(accessed	Mar.	16,	2010).

9. E.	L.	Morgan,	“MyLibrary:	A	Digital	Library	Framework	
and	 Toolkit,”	 Journal of Information Technology & Libraries	 27	
(2008):	12–24.

10. T.	R.	Kochtanek	and	K.	K.	Hein,	“Delphi	Study	of	Digital	
Libraries,”	Information Processing Management	35	(1999):	245–54.

11. S.	E.	Howe	et	al.,	“The	President’s	Information	Technology	
Advisory	Committee’s	February	2001	Digital	Library	Report	and	
Its	Impact,”	In	Proc.	JCDL ’01	(New	York:	ACM,	2001):	223–25.

12. N.	Reyes-Farfan	and	J.	A.	Sanchez,	“Personal	Spaces	in	the	
Context	of	OA,”	Proc. JCDL ’03	 (IEEE	Computer	Society,	2003):	
182–83.

13. M.	 Wirsing,	 Report on the EU/NSF Strategic Workshop on
Engineering Software-Intensive Systems,	2004,	http://www.ercim.
eu/EU-NSF/sis.pdf	(accessed	Oct	18,	2010)

14. S.	 Kelly	 and	 J.-P.	 Tolvanen,	 Domain-Specific Modeling:
Enabling Full Code Generation	(Hoboken,	N.J.:	Wiley,	2008).

15. H.	R.	Turtle	and	W.	Bruce	Croft,	“Evaluation	of	an	Infer-
ence	 Network-Based	 Retrieval	 Model,”	 ACM Transactions on
Information Systems	9	(1991):	187–222.

16. R.	A.	Baeza-Yates,	B.	A.	Ribeiro-Neto,	Modern Information

186 iNFOrMAtiON tecHNOlOGY AND liBrAries | DeceMBer 2010

.mozilla.org/En/XUL	(accessed	Mar.	16,	2010).
43. XDoclet,	 Welcome!	 What	 is	 XDoclet?	 http://xdoclet	

.sourceforge.net/xdoclet/index.html	(accessed	Mar.	16,	2010).
44. W3C,	 Extensible	 Markup	 Language	 (XML)	 1.0	 (Fifth	

Edition),	 http://www.w3.org/TR/2008/REC-xml-20081126/	
(accessed	Mar.	16,	2010);	W3C,	Resource	Description	Framework	
(RDF),	http://www.w3.org/RDF/	(accessed	Mar.	16,	2010).

45. H.	 Wada	 and	 J.	 Suzuki,	 “Modeling	 Turnpike	 Frontend	
System:	A	Model-Driven	Development	Framework	Leveraging	
UML	 Metamodeling	 and	 Attribute-Oriented	 Programming,”	
Proc. MoDELS ’05,	LNCS	3713	(Berlin:	Springer,	2005):	584–600.

46. I.	Horrocks,	Constructing the User Interface with Statecharts	
(Boston:	Addison-Wesley,	1999).

47. Universal	 Discover,	 Description,	 and	 Integration	 OASIS	
Standard,	 Welcome	 to	 UDDI	 XML.org,	 http://uddi.xml.org/	
(accessed	Mar.	16,	2010).

48. T.	R.	G.	Green	and	M.	Petre,	“Usability	Analysis	of	Visual	
Programming	 Environments:	 A	 ‘Cognitive	 Dimensions	 Frame-
work,’”	Journal of Visual Languages & Computing	7	(1996):	131–74.

49. J.	 de	 Lara,	 E.	 Guerra,	 and	 A.	 Malizia,	 “Model	 Driven	
Development	of	Digital	Libraries—Validation,	Analysis	and	For-
mal	 Code	 Generation,”	 Proc. 3rd WEBIST ’07	 (Berlin:	 Springer,	
2008).

.gov/rr/askalib/	(accessed	on	Mar.	16,	2010).
35. C.	L.	Borgmann,	“What	are	Digital	Libraries?	Competing	

Visions,”	Information Processing & Management	25	(1999):227–43.
36. C.	 Lynch,	 “Coding	 with	 the	 Real	 World:	 Heresies	 and	

Unexplored	 Questions	 about	 Audience,	 Economics,	 and	 Con-
trol	of	Digital	Libraries,”	In	Digital Library Use: Social Practice in
Design and Evaluation,	ed.	A.	P.	Bishop,	N.	A.	Van	House,	and	B.	
Buttenfield	(Cambridge,	Mass.:	MIT	Pr.,	2003):	191–216.

37. Y.	 Ioannidis	 et	 al.,	 “Digital	 Library	 Information-Technol-
ogy	 Infrastructure,”	 International Journal of Digital Libraries	 5	
(2005):	266–74.

38. E.	A.	Fox	et	al.,	“The	Networked	Digital	Library	of	Theses	
and	Dissertations:	Changes	in	the	University	Community,” Jour-
nal of Computing Higher Education	13	(2002):	3–24.

39. H.	Van	de	Sompel	and	C.	Lagoze,	“Notes	 from	the	 Inter-
operability	 Front:	A	 Progress	 Report	 on	 the	 Open	Archives	 Ini-
tiative,”	Proc. 6th ECDL, 2002,	LNCS	2458	(Berlin:	Springer	2002):	
144–57.

40. F.	De	Rosa	et	al.,	“JDAN:	A	Component	Architecture	 for	
Digital	Libraries,”	DELOS Workshop: Digital Library Architectures,	
(Padua,	Italy:	Edizioni	Libreria	Peogetto,	2004):	151–62.

41. Defined	as	a	set	of	actors	(users)	playing	roles	and	inter-
acting	with	services.

42. Mozilla	 Developer	 Center,	 XUL,	 https://developer	

