1,298 research outputs found

    DDR5 ํด๋ฝ ๋ฒ„ํผ๋ฅผ ์œ„ํ•œ LC PLL์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .This thesis describes a wide-range, fast-locking LC PLL for DDR5 clock buffer application. To operate LC PLL at wide range of input frequency, proposed PLL uses LC VCO with 28GHz center frequency and calculates appropriate division ratio of programmable divider for certain input frequen-cy at transient state. Calculating division ratio is achieved by using integer counter and fractional counter, detecting frequency of input clock at transient state. After calculating division ratio, proposed PLL operates as 3rd order charge pump PLL with optimum current value to lock fast. Proposed PLL is described with Systemverilog and simulation results shows that proposed LC PLL operates at 1 ~ 4.2GHz input frequency, while successfully acquires to lock at under 1ฮผs. Also, LC-VCO is designed in a 40nm CMOS and simulation results shows that tuning range of VCO is ยฑ9.25% with respect to center frequency of 28.2GHz, and VCO dissipates 26.4mW and phase noise is โ€“104.86dBc/Hz at 1MHz offset, operating at center fre-quency with 1.1V supply voltage.๋ณธ ๋…ผ๋ฌธ์€ DDR5 Clock Buffer๋ฅผ ์œ„ํ•œ, ๋„“์€ ๋ฒ”์œ„์—์„œ ๋น ๋ฅด๊ฒŒ ๋ฝ์„ ํ•˜๋Š” LC PLL์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค. ๋„“์€ ๋ฒ”์œ„์˜ ์ž…๋ ฅ ์ฃผํŒŒ์ˆ˜์—์„œ LC PLL์„ ๋™์ž‘ํ•˜๊ธฐ ์œ„ํ•ด, ์ œ์•ˆํ•œ PLL์€ 28GHz๊ฐ€ ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜์ธ LC VCO์„ ์‚ฌ์šฉํ•˜์—ฌ, ๊ณผ๋„ ์ƒํƒœ์—์„œ ํŠน์ • ์ž…๋ ฅ ์ฃผํŒŒ์ˆ˜์— ์•Œ๋งž๋Š” ํ”„๋กœ๊ทธ๋žจ ๊ฐ€๋Šฅํ•œdivider์˜ ์ œ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ์ œ์ˆ˜์˜ ๊ณ„์‚ฐ์€ ๊ณผ๋„ ์ƒํƒœ์—์„œ ์ž…๋ ฅ ํด๋ฝ์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ์ •์ˆ˜ ์นด์šดํ„ฐ์™€ ์†Œ์ˆ˜ ์นด์šดํ„ฐ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค. ์ œ์ˆ˜์˜ ๊ณ„์‚ฐ ์ดํ›„, ์ œ์•ˆํ•œ PLL์€ ๋น ๋ฅด๊ฒŒ ๋ฝ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ์˜ ์ „๋ฅ˜ ๊ฐ’์œผ๋กœ 3์ฐจ์˜ Charge pump PLL๋กœ ๋™์ž‘ํ•œ๋‹ค. ์ œ์•ˆํ•œ PLL์€ systemverilog๋กœ ๊ธฐ์ˆ ๋˜์—ˆ๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ LC PLL์€ 1 ~ 4.2GHz์˜ ์ž…๋ ฅ์ฃผํŒŒ์ˆ˜์—์„œ ๋™์ž‘ํ•˜๋ฉฐ, 1us ์ด๋‚ด์—์„œ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฝ์„ ํ•œ๋‹ค. ๋˜ํ•œ, LC-VCO๊ฐ€ 40nm CMOS ๊ณต์ •์—์„œ ์„ค๊ณ„๋˜์—ˆ๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ VCO์˜ ํŠœ๋‹ ๋ฒ”์œ„๊ฐ€ ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜ 28.2GHz์„ ๊ธฐ์ค€์œผ๋กœ ยฑ9.25%์ด๊ณ , ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜์™€ 1.1V ๊ณต๊ธ‰ ์ „์••์—์„œ 26.4mW์˜ ์ „๋ ฅ์„ ์†Œ๋ชจํ•˜๊ณ , phase noise๊ฐ€ 1MHz ์˜คํ”„์…‹์—์„œ -104.86dBc/Hz์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUND ON LC PLL 4 2.1 BASIS OF PLL 4 2.2 FREQUENCY RANGE AND LOCK TIME OF PLL 11 2.2.1 FREQUENCY RANGE 11 2.2.2 LOCK TIME 13 2.3 BASIS OF LC VCO 15 CHAPTER 3 DESIGN OF LC PLL FOR DDR5 CLOCK BUFFER 18 3.1 DESIGN CONSIDERATION 18 3.2 OVERALL ARCHITECTURE 20 3.3 OPERATION PRINCIPLE 24 3.4 IMPLEMENTATION OF LC VCO 33 3.5 ALTERNATIVE DESIGN CHOICE OF LC PLL FOR DDR5 CLOCK BUFFER 35 CHAPTER 4 SIMULATION RESULT 37 4.1 PLL 37 4.2 LC VCO 42 CHAPTER 5 CONCLUSION 46 BIBLIOGRAPHY 47 ์ดˆ ๋ก 49์„

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitterโ€™s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-ฮผm CMOS

    Get PDF
    This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal feedback loop. A frequency detector guarantees PLL locking without degenerating jitter performance. The clock multiplier is implemented in a standard 0.18-ฮผm CMOS process and achieves a jitter generation of 0.22 ps while consuming 100 mW power from a 1.8-V supply

    Delay Flip-Flop (DFF) Metastability Impact on Clock and Data Recovery (CDR) and Phase-Locked Loop (PLL) Circuits

    Get PDF
    Modeling delay flip-flops for binary (e.g., Alexander) phase detectors requires paying close attention to three important timing parameters: setup time, hold time, and clock edge-to-output (or briefly C2Q time). These parameters have a critical role in determining the status of the system on the circuit level. This study provided a guideline for designing an optimum DFF for an Alexander phase detector in a clock and data recovery circuit. Furthermore, it indicated DFF timing requirements for a high-speed phase detector in a clock and data recovery circuit. The CDR was also modeled by Verilog-A, and the results were compared with Simulink model achievements. Eventually designed in 45 nm CMOS technology, for 10 Gbps random sequence, the recovered clock contained 0.136 UI and 0.15 UI peak-to-peak jitter on the falling and rising edges respectively, and the lock time was 125 ns. The overall power dissipation was 21 mW from a 1 V supply voltage. Future work includes layout design and manufacturing of the proposed design

    A high speed serializer/deserializer design

    Get PDF
    A Serializer/Deserializer (SerDes) is a circuit that converts parallel data into a serial stream and vice versa. It helps solve clock/data skew problems, simplifies data transmission, lowers the power consumption and reduces the chip cost. The goal of this project was to solve the challenges in high speed SerDes design, which included the low jitter design, wide bandwidth design and low power design. A quarter-rate multiplexer/demultiplexer (MUX/DEMUX) was implemented. This quarter-rate structure decreases the required clock frequency from one half to one quarter of the data rate. It is shown that this significantly relaxes the design of the VCO at high speed and achieves lower power consumption. A novel multi-phase LC-ring oscillator was developed to supply a low noise clock to the SerDes. This proposed VCO combined an LC-tank with a ring structure to achieve both wide tuning range (11%) and low phase noise (-110dBc/Hz at 1MHz offset). With this structure, a data rate of 36 Gb/s was realized with a measured peak-to-peak jitter of 10ps using 0.18microm SiGe BiCMOS technology. The power consumption is 3.6W with 3.4V power supply voltage. At a 60 Gb/s data rate the simulated peak-to-peak jitter was 4.8ps using 65nm CMOS technology. The power consumption is 92mW with 2V power supply voltage. A time-to-digital (TDC) calibration circuit was designed to compensate for the phase mismatches among the multiple phases of the PLL clock using a three dimensional fully depleted silicon on insulator (3D FDSOI) CMOS process. The 3D process separated the analog PLL portion from the digital calibration portion into different tiers. This eliminated the noise coupling through the common substrate in the 2D process. Mismatches caused by the vertical tier-to-tier interconnections and the temperature influence in the 3D process were attenuated by the proposed calibration circuit. The design strategy and circuits developed from this dissertation provide significant benefit to both wired and wireless applications

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • โ€ฆ
    corecore