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ABSTRACT 

There has been a dramatic increase in wireless awareness among the user community in 

the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being 

used for a diverse range of applications due to the following reasons. It is the only 

unlicensed band approved worldwide and it offers more bandwidth and supports higher 

data rates compared to the 915-MHz ISM band.  The power consumption of devices 

utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band.  Protocols 

like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely 

popular.  

 

Bluetooth is an economic wireless solution for short range connectivity between PC, cell 

phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was 

developed as an open global standard to address the unique needs of low-cost, low-

power, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, 

especially after the recent terrorist activities. Sensors are employed in strategic locations 

for real-time environmental monitoring, where they collect and transmit data frequently 

to a nearby terminal. The devices operating in this band are usually compact and battery 

powered. To enhance battery life and avoid the cumbersome task of battery replacement, 

the devices used should consume extremely low power. Also, to meet the growing 

demands cost and sized has to be kept low which mandates fully monolithic 

implementation using low cost process. 
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CMOS process is extremely attractive for such applications because of its low cost and 

the possibility to integrate baseband and high frequency circuits on the same chip. A fully 

integrated solution is attractive for low power consumption as it avoids the need for 

power hungry drivers for driving off-chip components. The transceiver is often the most 

power hungry block in a wireless communication system. The frequency divider 

(prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer 

are among the major sources of power consumption. There have been a number of 

publications in the past few decades on low-power high-performance VCOs. Therefore 

this work focuses on prescalers. 

 

A class of analog frequency dividers called as Injection-Locked Frequency Dividers 

(ILFD) was introduced in the recent past as low power frequency division.  ILFDs can 

consume an order of magnitude lower power when compared to conventional flip-flop 

based dividers. However the range of operation frequency also knows as the locking 

range is limited. ILFDs can be classified as LC based and Ring based. Though LC based 

are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz 

ISM band because of the large size of on-chip inductors at these frequencies.  This causes 

a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low 

power solution but are extremely sensitive to process and temperature variations. Process 

and temperature variation can cause ring based ILFD to loose lock in the desired 

operating band. 
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The goal of this work is to make the ring based ILFDs useful for practical applications. 

Techniques to extend the locking range of the ILFDs are discussed. A novel and simple 

compensation technique is devised to compensate the ILFD and keep the locking range 

tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz 

frequency synthesizer that is optimized for fractional-N synthesis. Measurement results 

supporting the theory are provided.  
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CHAPTER 1 
 

INTRODUCTION  
 
 

1.1 2.4-GHz ISM BAND  
 
The past five years have seen a dramatic increase in the level of radio awareness among 

the consumer community, brought about largely through the prevalence of the use of 

mobile and cordless phones [1]. The 2400-2483.5 MHz band also known as the 2.4-GHz 

band, is being used for an increasingly diverse range of wireless applications; it is the 

only unlicensed band approved worldwide. The 2.4-GHz band offers more bandwidth 

than the 915 MHz ISM band. Thus, wider channel spacing, supporting higher data rates is 

possible. Wireless applications utilizing this band include Wireless Local Area 

Networking (WLAN), Bluetooth, Home Networking and ZigBee. Reference [1] gives a 

detailed description and requirements of each standard. A gist of the above standards will 

be outlined here using the information provided in [1].   

 

1.1.1 Wireless Local Area Networks (WLANs) 

WLANs standard provides a cordless solution to office connectivity and are used widely 

for internal networking of PCs and peripherals. They can be used in two ways; as an 

indoor substitute or complement to conventional wired LANs and as outdoor system for 

point-to-point data transfer. WLANs have revolutionized the office environment by 

providing more flexibility to the user. For example, the users may be require a wide range 

of information in a conference or meeting room where they are present for a fairly brief 
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period of time. In outdoor applications, WLANs can be seen as an alternative to the 

costly hire of leased lines, installation of licensed point-to-point microwave links, or the 

capital-intensive installation of cable. WLANs can also be useful for point to multipoint 

applications, for example local authorities operating on multiple sites; university and 

school campuses, and increasingly dispersed company campuses.  

 

IEEE 802.11 and 802.11b are the key international standards influencing the WLANs 

development. These standards, widely accepted around the world, have led to a 

significant increase in the user confidence; this has been boosted by the introduction of 

the “WiFi” brand, allowing immediate recognition of interoperable products. These 

define the specifications for Frequency Hopping Spread Spectrum (FHSS), operating at a 

maximum of 3 Mbps and Direct Sequence Spread Spectrum (DSSS), offering 11 Mbps 

products. IEEE 802.11 defines operations of WLAN systems at frequencies between 

2400 and 2483.5 MHz. FHSS WLAN systems utilize 79 hopping channels between 2402 

and 2480 MHz with channel spacing of 1 MHz. DSSS WLAN systems utilize 9 (IEEE 

802.11) or 11 (IEEE 802.11b) frequency channels with channel spacings of 22 MHz. The 

development of the technical standards is ongoing. FCC intends to increase the channel 

bandwidth of FHSS systems to 3 MHz and 5 MHz to enable them to operate at 11 Mbps. 

The transmitted power is in the order of 100 mW (20 dBm). The demands for WLAN- 

ready equipped PC have increased almost by 5 orders of magnitude in the past five years. 

The annual unit sales in the year 2000 was 39,000 and the sales in 2005 was 3,800,000.   
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1.1.2 Bluetooth     

“Bluetooth” is a global wireless connectivity standard that has been developed by a 

consortium of IT and telecommunications companies. It is intended to replace proprietary 

cable links which connect IT and telecommunication devices to one another and replace 

them with a single universal short range radio link. It is intended to provide very short 

range (10 m or less) connectivity, unlike WLANs that provides connectivity up to a few 

kilometers, and can be used for individual cables linking mobile phones, PCs, modems, 

printers etc. The range of applications that can be addressed by Bluetooth is extensive [1].  

 

Bluetooth uses FHSS, 1000 hops/s technology to ensure robust performance in a noisy 

radio environment, supporting both voice and data, up to a data rate of 1 Mbps.  The 

Bluetooth standard uses the same 2402-2480 MHz spectrum as the IEEE 802.11 

standards but the transmitted power is significantly lesser (1 mW or 0 dBm). The demand 

for Bluetooth-equipped units has also increased considerably since the year 2000. The 

total installed units have grown from 96,000 in year 2000 to 20,000,000 units in 2004.  

 

1.1.3 Home Networking 

The concept of home networking extends the benefits of WLANs to home and small 

office environments. In the United States the drive towards home networking is being led 

by the HomeRF consortium. The HomeRF vision sees a wide range of electronic home 

equipment being wirelessly networked within the home and made accessible remotely via 

public telecommunication or data networks. In common with Bluetooth, an open, non-

proprietary standard for home networking has been developed for home networking. The 
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HomeRF open standard is titled SWAP (Shared Wireless Access Protocol). All of them 

currently use FHSS technology. HomeRF products can support data rate up to 10 Mbps.It 

uses FHSS, 50 hops/s modulation. The transmitted power is in the order of 100 mW. 

 

1.1.4 Zigbee 

The ZigBee protocol is intended for use in embedded applications requiring low data 

rates and low power consumption. ZigBee's current focus is to define a general-purpose, 

inexpensive, self-organizing, mesh network that can be used for industrial control, 

embedded sensing, medical data collection, smoke and intruder warning, building 

automation, home automation, etc. The resulting network will use very small amounts of 

power, so individual devices might run for a year or two using the originally installed 

battery. 

 

Zigbee devices are required to conform to the IEEE 802.15.4-2003 low-rate Wireless 

Personal Area Network (WPAN) standard. This standard specifies operation in the 

unlicensed 2.4-GHz band. There are 16 ZigBee channels, with each channel requiring 3 

MHz of bandwidth. The center frequency for each channel can be calculated as, FC = 

2400 + 5(k) MHz, where k = 1, 2... 16. The radios use direct-sequence spread spectrum 

coding, which is managed by the digital stream into the modulator. Orthogonal QPSK 

that transmits two bits per symbol is used in the 2.4-GHz band. The maximum output 

power of the radios is generally 1 mW. 
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1.2 Research Motivation 

Power consumption, size and cost have to be kept low in order to meet the growing 

demands of mobile wireless communications. To meet these requirements it is desirable 

to implement the transceivers monolithically using low-cost integrated circuit technology.  

CMOS offers an attractive solution when compared to BiCMOS and GaAs chips because 

of its low cost. Further, it has the potential to integrate baseband digital modules and the 

RF modules in the same chip leading to the concept of a compact system-on-chip (SOC) 

solution. Due to the extensive scaling down of CMOS technology and increasing 

operating speed, it is has become possible to implement high-performance Radio 

Frequency circuits and systems using CMOS processes that were possible only with Si 

based BiCMOS or GaAs processes [2]. CMOS-based circuits operating at 60 GHz have 

already been reported [3].        

 

Most devices used in wireless communications are hand-held and battery operated, 

demanding very low power consumption. This is true especially for devices used in 

wireless sensor networks that are becoming ubiquitous, especially after the recent 

terrorist activities. Sensors are employed in strategic locations for real-time 

environmental monitoring, where they collect and transmit data frequently to a nearby 

terminal. Low power consumption enhances battery life and reduces the cumbersome 

process of replacing the batteries in these devices. Wireless communication protocols 

also place very stringent frequency specifications and have restrictive phase noise 

requirements to reduce the effects of large blocking signals. Meeting these requirements 

with very low power consumption is a huge challenge for CMOS-based frequency 
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synthesizers, due to the high-frequency parasitic effects, high noise and low-quality 

passive elements available in standard CMOS processes. The frequency synthesizer, 

which provides the local oscillator signals for the transmitter and receiver section, 

consumes a significant portion of the transceiver power. Most of the frequency 

synthesizers used in wireless communications is PLL-based. The voltage controlled 

oscillator (VCO) and the prescaler are the two blocks in a synthesizer that work at RF 

frequencies and consume about eighty percent of the power.  Low-power and high-

performance VCOs have been a major topic of research over the last decade.  The field 

has been well explored, with numerous publications appearing over the past few years. 

Therefore, this work focuses on prescaler. 

 

A class of analog prescalers (frequency dividers) known as Injection-Locked Frequency 

Dividers (ILFD) has gained tremendous popularity in the recent years as low power 

dividers.  There have been a number of publications on ILFDs [4-9] as candidates for 

low-power frequency dividers. The ILFDs have shown potential to consume up to an 

order of magnitude lower power when operating at gigahertz frequencies compared to 

conventional frequency dividers employing flip-flops [4]. The main drawback of the 

ILFDs is their limited locking range which is also sensitive to process and temperature 

variations. ILFDs can be both ring oscillator-based and LC tank-based. LC tank-based 

ILFDs, although more stable with temperature and process variations, are not very 

attractive for the 2.4 GHz regime due to the size of the on-chip inductors at these 

frequencies. The locking range of the LC-based ILFDs is also much less than that of ring 

oscillator-based ILFDs [7]. Ring oscillator-based ILFDs are compact and consume low-
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power while operating in the 2.4-GHz band, but are extremely sensitive to process and 

temperature variations. Their locking ranges could be adversely affected by process and 

temperature variations that can sometimes throw them out of the desired locking range.  

This can be true even for ring based wideband ILFDs, as reported in [6,10].   

   

Prior work on ILFDs [4,5,7-10] lacks a treatment on the impact of process and 

temperature on the locking range of ILFDs, although the references provide a thorough 

treatment on the ILFD theory. A temperature and process-stabilized 2.4 GHz ILFD 

proposed in [6] and the low power ILFDs of [7,8] use a ring-oscillator delay element 

configuration that is prone to power supply noise and substrate noise [11]; this is not 

desirable in a fully integrated environment. Also, [6] lacks measurement results and 

mathematical treatment. Few frequency synthesizers employing ring oscillator based 

ILFDs are found in literature. The frequency synthesizer proposed in [12] uses a process 

and temperature compensated ILFD prescaler of [6] that has the above mentioned 

drawback. Also, the work lacks measurement results. The locking range of the ILFD used 

in [6] is limited and this prevents it from being used for multi-band applications [13].  

 

Most of the applications mentioned in section 1.1 use FHSS techniques that require agile 

frequency synthesizers to switch rapidly from one frequency to another [13]. This 

requires fast-settling frequency synthesizers. The use of ILFD based prescalers, for 

reducing power consumption, achieves a fixed frequency division ratio ahead of the 

programmable divider as shown in Figure 1. Therefore, the reference frequency to the 

PLL has to be reduced to achieve tight channel spacing. A lower reference frequency 
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corresponds to a lower loop-bandwidth and hence a slower settling time if an integer-N 

PLL architecture is used [14]. A fractional-N PLL [15-17] decouples the relation between 

channel bandwidth and settling time and is therefore attractive for fast-settling FHSS 

systems. This is useful especially when ILFD based prescalers are used and tight channel 

spacing is required. The block diagram of the fractional-N frequency synthesizer is 

shown in Figure 1. It is capable of achieving a fractional division ratio by using a delta-

sigma modulator that controls the division ratio of a multi-modulus divider every clock 

cycle such that the average division ratio is a fractional number. There are various types 

of delta-sigma modulators, each with different noise properties. Also, achieving a fixed 

division ratio ahead of the programmable divider that the delta-sigma modulator drives, 

 

 

Figure 1.1.  Fractional-N PLL based frequency synthesizer 
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may lead to a increased in-band noise. This work models these effects and studies the 

appropriate kind of delta-sigma modulator suitable for noise reduction.  

1.3 Research Goals 

Although ring-based ILFDs have existed for the past few years, their use in practical 

applications becomes limited or even impossible if their sensitivity to temperature and 

process is not addressed.  The aim of this research is therefore to:  

1. Devise a simple and effective scheme for compensating a wideband, low-power 

divide-by-4 ILFD over process variations and a temperature range of -20°C to 

100°C to achieve lock over a wide frequency range.  

2.  Impart multiband operation capability over the specified process and temperature 

range using special on-chip calibration/tuning circuitry.  

3. Provide a detailed analysis on wideband ILFDs and provide insights for obtaining 

a wide locking range for division modulus of 2 or higher. Highlight the common 

phenomena underlying most of the existing wideband ring-based ILFDs and 

extend it to an architecture that is convenient to compensate over process and 

temperature variations. 

4. Design a frequency synthesizer that has fractional-N capability built into it and is 

capable of operation in the 2.4-GHz ISM band using the proposed ILFD. Study 

the effects on the phase noise due to the fixed division imposed in the prescaler.  
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1.4 Dissertation Overview 

The dissertation is organized as follows.  In Chapter 2, the theory of operation of ring- 

based (wideband) ILFDs is described. This is followed by a discussion of the prior art in 

ring-based ILFDs.  Chapter 3 introduces the proposed wideband ILFD and the process 

and temperature compensation scheme for the ILFD. Simulation results supporting the 

proposed theory are also provided. Chapter 4 gives a brief description on PLL-based 

frequency synthesizers and discusses the architecture of the other important blocks of the 

PLL-based frequency synthesizer that include the phase frequency detector, charge pump, 

VCO, and the programmable divider. Fractional-N synthesis techniques based on the 

sigma-delta modulator is introduced next. The influence of the choice of ILFD divide 

ratio on the noise of the synthesizer is analyzed using MATLAB.  This is followed by a 

noise analysis of the entire Fractional-N PLL. Chapter 5 provides the chip 

implementation details and the 4-layer printed circuit board (PCB) design.  Wafer 

probing techniques for characterizing the ILFD are described next. Measurement results 

supporting the theory are provided in the latter part of Chapter 5. Finally, Chapter 6 

provides future directions and conclusions.  
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CHAPTER 2 
 

INJECTION-LOCKED FREQUENCY DIVIDER THEORY AND 
PRIOR ART 

 
 

Injection-locked frequency dividers (ILFD) can be described as free-running oscillators 

that lock to a sub-harmonic of an injected input signal.  The injection-locking 

phenomenon has been known to exist for a long time. Miller proposed a regenerative 

frequency-locking circuit based on this principle [19]. Miller used a frequency multiplier 

in the feedback loop to achieve division ratios greater than 2. The free-running aspect 

differentiates ILFDs from regenerative dividers that require an input signal to produce an 

output. Adler [20] studied the injection-locking phenomena for various types of 

oscillators and showed that it is a fundamental property of oscillators. It was observed in 

a wide variety of oscillators with the same qualitative behavior observed in each case. 

Divide-by-2 prescalers operating beyond 5 GHz have been reported in various 

technologies like GaAs, SiGe, Si-BJT and CMOS. However, in this work only CMOS- 

based ILFDs are considered. 

 

As mentioned in the previous chapter, ILFDs can be LC tank-based or ring-based. In this 

work only the later type of ILFDs, particularly implemented using CMOS processes, will 

be considered, as they are more area and power efficient when operating in the lower 

GHz regime. However, it should be noted that as the operating frequencies increase 

beyond 10 GHz, LC based ILFDs consume much lower power when compared to their 

ring counterparts.  
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Ring-based ILFDs can be classified based on their architecture or locking range as: 

• Single ended and differential ILFDs (based on architecture), and 

• Wideband and narrowband ILFDs (based on locking range)  

This chapter briefly describes the various ring oscillator-based ILFDs existing in the 

literature and also explains the theory behind their operation. Publications on CMOS ring 

based ILFDs started to appear frequently from 2001. The work by the authors of [4] laid 

the foundation for future work on this topic. The ILFD proposed in [4] was a differential 

and narrowband ILFD for low-power divider applications to be used in wireless 

telemetry. The major contribution of this paper was to provide a model for ILFDs and 

derive an analytical expression for the locking range of the ILFD. The ILFD circuit 

design could be optimized based on the analytical expressions. Figure 2.1 shows the 

model of the ILFD and Figure 2.2 shows the transistor-level schematic of the ILFD.  The 

delay cells consisted of symmetric delay elements (“Maneatis load”, after its inventor) 

with replica feedback biasing [21]. The Maneatis loads were chosen for their high 

dynamic substrate and supply noise rejection, which becomes important to reduce jitter in 

a fully integrated environment. A brief explanation of the ILFD theory based on [4] will 

be presented next. This will help the reader understand the circuit’s general operation as 

well as that of other types of ILFDs to follow.   

 

The input signal with a frequency fIN is injected into the tail transistor of the first stage of 

the multi-stage ring oscillator that has a natural frequency of oscillation (with no signal 

injection) of f0. In the absence of the injected signal, the Barkhausen criteria for stable 

oscillation are satisfied at f0. Each stage of the n-stage ring oscillator causes a total phase   
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Figure 2.1. Model for the ILFD 

 

 

 

Figure 2.2. Schematic of the ILFD 
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shift of π/n, where n is the number of stages, which added to the 180° phase shift due to 

the inverted connection between the last and the first stage, causes a 360° phase shift 

around the loop at f0. Also, the loop gain must be greater than unity at the oscillation 

frequency.  The injected signal at fIN causes a phase shift in the first stage of the ring 

oscillator that changes the frequency of oscillation to a frequency fOSC that is different 

from f0. The ring now oscillates at a frequency fOSC, at which the loop compensates the 

phase shift due to the first stage to provide an overall phase shift of 360°. The frequency 

fOSC can be expressed as f0 + ∆f. 

  

The first stage of the ring oscillator can be modeled as a single-balanced mixer with the 

input frequency fIN injected to the RF port and the frequency fOSC applied to the input 

pairs. Due to the odd symmetry of the input differential pairs (which is true when the 

inputs switch fast), odd harmonics of the input frequencies, fOSC, 3fOSC, 5fOSC etc are 

created by the differential pair. The harmonics are mixed with the input signal that is 

injected into the tail transistors. If the amplitude of the incoming RF signal is high 

enough to “hard-switch” the tail transistor, all harmonics of the tail current source are 

created. The subsequent stages of the ring oscillator can be modeled as low-pass filters 

that filter out frequencies higher than f0SC. Thus, if the frequency of the incoming signal 

fIN=N.f0, where N is an integer, the output frequency is given by fIN-(N-1)fOSC. The 

output frequency fOSC tracks fIN/N as long as the other stages of the ring oscillator are 

able to provide sufficient magnitude and a  total phase shift of 360° at the frequency fOSC 

=f0+ ∆f. For the ring oscillator-type ILFDs, the amplitude criteria is easily satisfied and 

the phase criteria determines the locking range [4]. Thus, if the incoming frequency 
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departs sufficiently from the natural frequency of oscillation, the loop fails to lock to the 

incoming frequency. It is therefore necessary to keep the natural frequency of oscillation 

essentially fixed over process and temperature. 

 

The locking range of the divider was derived in [4] when the amplitude of injection is 

weak. It was later extended for strong injection amplitudes and verified using 

simulations. For an n-stage ring oscillator using Maneatis loads, the locking range is 

given by, 
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Equation (2.1) gives the double-sided locking range for weak input signals. It can be seen 

that the locking range is a function of the injection efficiency ηi and the magnitude of the 

Fourier coefficients CN-1 and CN+1 . Also, ki
2 is a small number and for small values of 

injected signals, k0 is small. Therefore, the locking range increases linearly with injected 

signal strength. Also, the assumption that the mixer’s switching function is a square wave 

is accurate if the ratio of the output swing to the overdrive voltage of the differential pair 

transistors is much greater that one. This is true for the case of the ring oscillator which 

employs Maneatis loads. If this assumption fails, the Fourier coefficients are drastically 

reduced, thus degrading the locking range.   

 

The following  non-idealities affect the injection efficiency and lead to a 

reduced/compressed locking range:  

1) Transconductance drop due to velocity saturation, device non-linearity and drain 

junction parasitics.  

2) Large input amplitude, causing the tail transistor to operate in the non-linear 

region. This causes a decrease in the injection efficiency due to the increase in IDC 

due to even order non-linearities. This phenomenon leads to a compression of the 

locking range.  

3) The parasitic capacitances within the mixer reduce the magnitude of the RF 

current which feeds the switching differential pair. Specifically, the drain 

capacitance of the tail device provides a shunt path for the RF current, reducing 

the injection efficiency.  
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To summarize the above discussion, as the amplitude of injection increases from weak 

(ηi<<1) to strong (ηi>1), the locking range increases linearly for weak injection and then 

begins to saturate for strong injection as given in reference [4].  

 

Measurement results on the ILFD fabricated in a 0.24 µm CMOS process showed the 

potential to divide by various even division ratios. However, the locking range was very 

narrow, which degraded further for higher-order division. For a 3-stage ILFD the locking 

range for divide by 2 and 4 stages were 125 MHz and 56 MHz, respectively. For a 5-

stage ILFD Division by 2, 4, 6 and 8 had locking ranges of 12.7 MHz, 32 MHz, 17 MHz 

and 20 MHz respectively. In all the above cases, an input signal of -3dBm was injected. 

The worst-case power consumption from the divider sore was 993 µW.  

 

Reference [5] provides a unified model for various types of ILFDs. A generalized 

procedure for accurately simulating the locking ranges of ILFDs is outlined. However, 

the most important contribution of this work is on the transient response and phase noise 

of ILFDs.   It is important to understand the transient response of the ILFDs because it 

reveals much about its phase-noise filtering properties. The following paragraph gives a 

brief summary [5] that will be useful for understanding the transient response and phase 

noise of the ILFD.  

 

Let the input signal to the ILFD be denoted as vI = VDC +VIcos(Nω0t+α) and the output 

signal as v0 = V0cos(ω0t+φ), where phase is considered for both input and output. The 

output phase of the ILFD can be perturbed by two sources, the phase noise of the input 
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signal and the internal phase noise of the ILFD. There is a fixed phase relationship 

between the input and output signals in the steady state. If α remains fixed, and φ deviates 

due to the internal phase noise, the IFLD would eventually return to its original steady-

state value. If α steps suddenly to a different value, then φ would stabilize to a new 

steady-state value in the absence of noise. The transient response of the ILFD was shown 

to be exponential for weak injected signals and small frequency or phase perturbations 

around the natural frequency of oscillation [5]. The output phase returns with a time 

constant given by,: 
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where S, is the slope of the phase response of the filter linearized around the natural 

frequency of oscillation and k1 and k0 are defined by (2.2) and (2.3). It can be seen that 

the parameters that increase the phase-limited locking range also reduce the time constant 

leading to a faster settling time.  

 

The phase-limited locking range of an ILFD is approximately 1/N times the 3-dB 

bandwidth of the first-order system response. A detailed analysis of the phase noise of the 

ILFD is given in [5] and will not be repeated here. The results of the analysis indicate that 

the ILFD behaves basically like a first-order PLL. The internal free-running phase noise 

of the ILFD is filtered with a high-pass filter, while the noise from the external source is 

filtered with a low-pass filter.   The total phase noise of the ILFD is given by the 

expression, 
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Where, Lφ,free(∆ω) is the free-running phase noise of the ring oscillator and Lα,ext(∆ω) is 

the phase noise of the input source, which is usually the VCO of the PLL. It can be seen 

from equation (2.7) and Figure 2.3 that the internal phase noise of the free-running ring 

oscillator is low-pass filtered. Thus, the close-in phase noise (1/f3) caused due to up-

converted flicker noise in the ring oscillator is filtered. The extent of filtering also 

depends on the pole frequency, ωp, which is analogous to the loop-bandwidth of the first 

order PLL. However, the difference is that ωp can be increased by increasing the strength 

of the injection signal. Also, the output tracks the input phase noise with a scale factor 

1/N2. 

 

 

 

Figure 2.3. Phase noise spectrum of an ILFD [5] 
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The work by the authors of [10] presents an ILFD that is obtained by a simple 

modification of a static divider. Figure 2.4 shows a static frequency divider which 

employs two D-latches in a master-slave configuration with negative feedback. Each 

stage has two transistors for sensing (M3 and M4), two cross-coupled transistor pairs for 

latching (M5 and M6), and two clock transistors (M1 and M2). The clock is inverted 

before applying to the slave (bottom stage).  When the clock signal is in the “high” state 

the master (top stage) is in the sense mode and the slave is in the latch mode. When the 

clock is “low” the roles are exchanged. To enable operation at higher frequencies, the 

topology removes the clock transistors beneath the cross coupled pair when compared to 

the conventional topologies [22]. This leads to an increased gate-source voltage and thus 

the transconductance of the latch transistors. The width of the latch transistors can  

 

 Figure 2.4. Schematic of a static frequency divider 
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therefore be reduced leading to decreased parasitics and enabling higher frequency 

operation. Authors of reference [22] have shown that increasing the gm of the latches 

leads to better divider performance by using the sensitivity curve of the divider. The 

sensitivity cure of the divider gives the minimum amplitude of the input signal for which 

the divider functions properly. It has also been shown in reference [22] that as the gm of 

the latches were increased the minimum signal amplitude reduces.  

 

Static dividers like the ones presented in Figure 2.4 have a very wide bandwidth. They 

can also operate down to arbitrarily low frequencies. The delay through the D- flip flops 

determines the maximum frequency of operation of the static dividers. For achieving 

higher division ratios more static stages have to be cascaded which leads to an increased 

power consumption. The static divider can be converted to an ILFD using a simple 

modification as shown in Figure 2.5 [10]. The input clock is applied to the master stage 

and only a DC biasing signal is applied to the clock transistors of the slave stage. The 

transistor pairs M1, M3 and M2, M4 acts like mixers while the other stages acts like low 

pass filters. When compared to the static dividers, ILFDs use the non-linearities inherent 

in mixing to realize division. Therefore, they do not require extra stages for division by 

ratios higher than 2. The presence of strong latches in the circuit topology can give an 

important advantage in obtaining wide locking range even for frequency division ratios 

greater than 2. Measurement results show that the divider proposed in [10] has a locking 

range of 1.6 GHz for division by 4 and 1.1 GHz for division by 6 and consumes 7 mW 

from a 1.8-V power supply.  The maximum input signal frequency applied was 11.3 GHz 

and 7.6 GHz for divide by 6 and 4 circuits, respectively.   
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  Figure 2.5. ILFD based on a simple modification to a static divider 

 

The work presented next is an ILFD that achieves the lowest power consumption 

reported to date in the literature. It is an example of a wideband single-ended ILFD. 

Figure 2.6 shows the proposed divider architecture, along with a conventional three-stage 

inverter-based ILFD. In a conventional divider a transistor is connected in series with an 

inverter stage to modulate the oscillations. This makes it difficult to scale the supply 

voltage down. It also decreases the open loop gain of the oscillator and narrows the 

locking range as the series transistor source-degenerates the input transistor. The design 

proposed in [7] solves the above problem by directly modulating the output of the ring  
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Figure 2.6. Schematic of the conventional ILFD and the proposed QDL 

 

 

 



 

 24

oscillator by using a switch inserted between two inverter outputs. This new divider 

topology was termed quasi-differential locking divider (QDL). The QDL has low-voltage 

operation capability due to the absence of the series connected transistor.  

 

The conceptual diagram of the QDL is shown in Figure 2.7. Nodes OUT+ and OUT-

compose the quasi-differential outputs. Three states A, B and C can be considered for the 

QDL and they iterate in a cycle given by A-B-C-B. In states A and C, the input becomes 

high and the switch equalizes the voltage between nodes OUT+ and OUT-. The direction 

of the current flow is opposite in both the cases. In state A current flows from OUT+ to 

OUT- and in state B it is reversed. In state B the input is low and the oscillator in the 

QDL operates at its resonant frequency. Since the input has two cycles and the 

differential outputs have one cycle per iteration, the QDL operates as a divide-by-two 

prescaler. If the input frequency is greater than twice the self-resonant frequency, the 

phase of the input voltage of the switch precedes the phase of the differential voltage 

between the two nodes of the switch. If the input frequency is less than twice the self-

resonant frequency the phase of the input voltage of the switch lags the phase of the 

differential voltage between the two nodes of the switch. In both cases, the phase of the 

differential outputs is locked to the input.  

 

To improve the performance of the QDL, the transistor sizes were optimized to increase 

the DC differential voltage between OUT+ and OUT-. This increases the peak current 

flowing through the input transistor and leads to an enhanced locking range. The QDL 

has a measured locking range of 2.3 GHz and was capable of divide-by-two operation up 
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Figure 2.7.  Conceptual diagram of the QDL 

 

to 4.3 GHz when the power supply voltage was 0.7 V. The power consumption in this 

case was 44 µW. For 1.8 V operation the divider could reach a maximum operating 

frequency of 16 GHz with a power consumption of 1.6 mW.    

 

The ILFDs presented thus far were only capable of achieving division by even moduli. 

Also, their locking range degrades with an increasing division modulus. In reference [8], 

a novel single-ended wideband ILFD for various modulus applications is presented. 

Figure 2.8 shows the proposed divider. For modulo-N operation, the divider consists of N 

delay stages and the incident signal is applied to all the delay cells. When the loop is 

locked, the input node of the injector VX should be synchronized with the incident signal 

VRF at the incident frequency ωi and the Barkhausen criteria for oscillation should be  
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Figure 2.8. Schematic of n-stage modulus-N divider 
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satisfied. Assume Vj = A sin [ω0t + (2πj/n) and source voltage Vkj  of transistor Mj is a 

non-linear function of Vj when the RF signal is not injected. Vkj can be expressed as,  

                     Vkj = a0 + a1 Vj
1 + a2 Vj

2 + a3 Vj
3 +….                                             (8) 

If Vkj is summed up using a wired-or connection, it can be shown that,  

                    VX = b0 + γ1 an An sin [nω0t ] + γ2 a2n A2n sin[nω0t ] + …  ,                          (9)  

where γj would  be greater than one. It turns out that the lowest operating frequency that 

can be sustained at VX is the N- order harmonic of Vj, and all the lower-order harmonic 

tones are suppressed. Therefore, when an excitation signal in the vicinity of Nω0 is 

incident, the power spectral density at the input of the injector VX would be concentrated 

at the vicinity of the nωi rather than spreading over all the harmonic tones of nω0 . This 

implies a more effective injection scheme. Since the coefficient of the Nth-order harmonic 

is increased to γ1 an , the locking ranges can be increased. In summary, an N-stage 

oscillator-based ILFD is feasible for a modulo-N operation. The achievable locking 

frequency would be N times higher than the free running frequency of the ring oscillator, 

provided the incident signal is effectively injected.  

 

Figure 2.9 and 2.10 [8] show the prototype modulo-3 and modulo-5 dividers 

implemented in a standard 0.25 µm CMOS process using the above technique. The 

signals are summed at the common source of the ring delay elements. The capacitance 

introduced by the output buffers limits the operating speed of the dividers. This can be 

improved by using inductive loads to tune out the buffer capacitance as shown in Figure 

2.9 (b). The measured locking range was close to 900 MHz. The divider consumes 1.75 

mW and operates up to 7.1 GHz for modulo-3 operation; for modulo-5 operation, the 
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Figure 2.9. Modulo -3 divider 

 

 

Figure 2.10. Modulo-5 divider 
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power consumption and operating frequency are 3.75 mW and 18 GHz respectively.     

 

All the above mentioned work is based on measurement results. Although, Reference [6] 

is based on simulation results, it is still useful since as it addresses process and 

temperature compensation of ILFDs. The architecture is similar to the one presented in 

[10], except that the resistor loads are replaced by PMOS devices in saturation. The bias 

to the PMOS load is adjusted to keep the resonant frequency of the oscillator constant 

with process and temperature. Figure 2.11 shows the schematic of the bias control 

circuitry for the divider.   

 

For a constant bias current I0, the gate voltage of the transistor M1, Vg, tracks the changes 

in process and temperature. This is compared with a bandgap voltage and the difference 

is amplified by a differential amplifier to produce a current Iax . This current adjusts the 

total bias current to compensate the changes in process and temperature variations. An 

auxiliary circuit as shown in [6] is used for tracking the changes in input frequency. The 

auxiliary circuit uses the control voltage to the VCO, when the divider is integrated in a 

PLL, to adjust the divider resonant frequency to track the VCO frequency.  The ILFD 

was capable of achieving a locking range of 2.2 GHz – 2.4 GHz over process variations 

and a temperature range of   -20 ° C – 100 ° C while consuming only 2 mW from 2.5 V 

power supply.  

 

Some of the popular work on LC-based ILFDs can be found in references [23-26].  

Readers interested in LC-based ILFDs can find more details in these papers.  
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  Figure 2.11. Schematic of the bias control circuitry for the divider 
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CHAPTER 3 
 

WIDEBAND RING ILFD BASED ON NOVEL PROCESS AND 
TEMPERATURE COMPENSATION 

 
 

It is clear from the previous chapters that ring-based ILFDs are highly attractive for low-

power prescaler applications in the multi GHz regime. However, to make the ring-based 

ILFDs suitable for practical applications, they should possess the following 

characteristics: 

1. Capability to function correctly over a wide range of frequencies, i.e., wideband 

operation capability. 

2.  Ability to maintain the desired locking range over process and temperature 

variations.  

Ring oscillators are extremely sensitive to process and temperature variations. Therefore 

their natural frequency of oscillation f0, i.e., the frequency at which Barkhausen criteria is 

satisfied, can change with process and temperature variations. As shown in the previous 

chapter, the ILFDs can function as a divider only around a range of frequencies, fo ±  ∆f , 

known as the locking range. Alternatively, a divide-by-N ILFD can track input 

frequencies only in the range N*(f0+ ∆f/2).  Although wideband ILFDs were reported in  

the literature, their sensitivity to process and temperature was not examined. The only 

work that addresses this issue is reference [6]. However, the delay stages used are 

extremely sensitive to power supply and substrate noise. Power supply can directly 

modulate the current flowing in the delay stages leading to an increased jitter. Also, the 

delay elements are non-linear which can lead to noise-folding and a hence a worse phase-
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noise performance. Although the above can be tolerated for divider applications, it cannot 

be when the injection-locked ring oscillator is used as a secondary oscillator [27]. In 

applications where spectral purity is a primary concern and additional power dissipation 

can be tolerated, a primary oscillator (either LC-tank based or ring based) running at 2X 

frequency is more efficiently used to drive an ILFD configured as a divide-by-2 that 

filters the phase noise of the primary oscillator.  

 

3.1 Modified Symmetric Delay Cell based Wideband ILFD 

To alleviate the sensitivity of the oscillator to supply and substrate noise, a Maneatis load 

(symmetric load) with replica feedback biasing is used in this work [21]. The delay cell, 

shown in Figure 3.1, is similar to the one used in [4]. In [4], the main purpose of the latch 

was to make the zero crossing faster and hence reduce flicker noise up conversion [28]. 

However, in this work, the latches in the delay cells are made stronger to increase the 

locking range and also to achieve a division ratio greater than 2 [10]. The use of strong 

latches improves higher order non-linearities and enables division by higher order 

modulus [4,10]. The modified symmetrical delay cell is biased using a replica feedback 

circuit as shown in Figure 3.1 [21]. The replica feedback circuitry adjusts the bias on the 

tail transistors to achieve a swing between VDD and VCntrl. Thus, the voltage swing is 

independent of the power supply which leads to static power supply noise rejection.    

The latch uses a PMOS- transistor to maintain the swing between VDD and VCntrl.  The 

sources of the latches were tied to VDD to increase the gm of the latches similar to that in  

[10].   
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Figure 3.1. Schematic of the ILFD based on symmetric load ring oscillator 
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The use of strong latches changes the expression of the frequency of oscillation, which is 

derived next. Reference [11] derives an expression for a ring oscillator with delay cells 

using latches and incorporating hysteresis.  The same methodology is adapted to our 

design. The principal difference between [11] and the work presented here is in the delay 

cell architecture. The delay stages encounter rail-to-rail swings in [11], whereas, in this 

work, the output voltage swing is between the control voltage (Vcntrl) and VDD due to the 

replica feedback biasing. Also, the delay cell used here has weak hysteresis because of 

the relatively lower overdrive on the PMOS.  Therefore, a three-stage ring oscillator is 

used to guarantee startup of oscillations.  

 

The N-stage ring oscillator employing resistive loads and latches can be modeled as 

shown in Figure 3.2. Resistance R and C model the output impedance and the input 

parasitic capacitance of the delay elements. The delay elements can be modeled as shown 

in Figure 3.3. The operation of the circuit can be explained as follows. When the input 

signal VINP makes a transition from low to high, the outputs start charging/discharging 

with an RC time constant until a threshold voltage level (Vth) is reached, where the 

latches become active and initiate a positive feedback. Until this point the latch behaves 

like a capacitive load that is taken in into account by CTOTAL. The delay cell can be 

viewed much like the delay cell in [11] with a resistively loaded inverter and a PMOS-

only latch. At the threshold voltage (for a low-to-high transition of VINP), the differential 

pair transistor is in saturation and the latch transistor in triode, therefore the expression 

for the threshold point can be derived by equating the currents through the transistors and 

is given by, 
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Figure 3.2. Model for a ring oscillator with latches 

 

 

Figure 3.3. Model for the delay cells 
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The threshold voltage can also be found using DC simulations. The threshold voltage can 

be changed by changing the aspect ratio of the input transistor M1 and the latch transistor 

M3 of Figure 3.3.  

 

The time delay of the oscillator is calculated by assuming that the initial voltage for each 

rising edge at node 1 is V1 and the initial voltage for each falling edge is V2 as shown in 

Figure 3.2. V2(t) is given by, 
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With periodic boundary conditions V1(T/2) = V2 and V2(t) =V1, equation (3.2) can be 

rewritten as equation (3.3) and (3.4), 
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Solving the above equation for V1and V2 we have, 
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At t=T/2N after V2(t) starts rising from V1, it must cross over Vth to trigger the next stage  

Therefore,    

                              
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
−=⎟

⎠
⎞

⎜
⎝
⎛=

−

−

)
2

(

2

2

1
1

2
RC
T

NRC
T

DDth

e

eV
N

TVV                                                (3.7)  

The time delay can be obtained by solving equation (3.7). For N>2 the above equation 

becomes tedious to solve. The general solution to the above equation is of the form 

                                  ))(ln( , thDD VVfNCRT ⋅⋅⋅=                                                          (3.8) 

For N=2, equation (3.7) gives,  
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From equations (3.8) and (3.9) it can be seen that the delay of the oscillator gets modified 

by a correction term that is given by ln[f(VDD,Vth)] and the frequency gets modified by 

the inverse of the correction term.  

 

Table 3.1 shows the aspect ratios of the transistors in the delay stages.  The oscillator is 

configured as shown in Figure 3.1. For the given sizes and a control voltage of 0.9 V 

(chosen arbitrarily) the ring oscillates at a frequency f0 of 620 MHz. The input signal to 

be divided was injected into the tail transistor of the first stage; the strength of the 

injected signal was -3 dBm. The locking range for divide-by-4 was determined using 

transient simulations in SpectreRF. The design was implemented using the IBM 7RF 180  
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 Table 3.1. Delay cell transistor sizes 

Load Transistors (M1,M2) 4µm/0.55µm 
Latch Transistor (M3,M4) 3.6µm/0.20µm 

Input Transistors 2.2µm/0.20 µm 
Tail Current Transistors 5µm/0.3 µm 

 

Table 3.2. Locking ranges for different latch transistor sizes 

Size of Latch Transistor Locking Range (GHz) 
3.6µm/0.6µm 0.5 
3.6µm/0.4µm 0.8 
3.6µm/0.2µm 1.15 

 

nm standard CMOS process. The locking range is shown in Table 3.2; it increases as the 

latch size increases. However, the natural frequency of oscillation decreases with an 

increasing latch size.  

 

It can be observed that the first stage of the oscillator acts like a mixer while the others 

act like a low-pass filters. Since the non-linearities generated in the first stage are more 

important since it determines the maximum possible phase shift, the ILFD still achieves a 

wide locking range even if the latches are removed from the second and third stages. This 

decreases the load on the delay stages and helps achieve a higher frequency of oscillation 

for a given power dissipation, which translates to better power efficiency for the divider. 

The delay stages, however, see different loads, which might lead to higher flicker noise 

upconversion. By removing the latches from the second and third stages, the frequency of 

oscillation was increased to 1.1 GHz and the divider was capable of dividing frequencies 

between 4 GHz and 4.9 GHz down by four. In both cases, the core power dissipation was 

1.2 mW from a 1.8 V power supply.   
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3.2 Process and Temperature Stabilized (PATS) Ring Oscillator Design 

Following the previous section, the frequency of oscillation of the modified symmetric 

delay element based ring oscillator can be expressed as,  
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where R represents the load resistance, C the total capacitance, N the number of stages 

and Vth the switching threshold of the latches. The replica feedback biasing sets the lower 

limit of the output swing to the control voltage (VCntrl) and upper limit to VDD,  so  f0 is 

given by [29], 
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where, Id is the total current through the load element. Drain currents for channel lengths 

of small dimensions follow short-channel equations. For a fairly large gate-source voltage 

(Vgs) the electric field in the channel is much greater that the saturation electric field (Esat) 

and the drain current loses its dependence on the channel length [30]. Under such 

conditions, the magnitude of the drain current of the PMOS devices can be expressed as,  

                                          satpthgspd EVVWKI |)|('
2
1|| ,−=                                           (3.12) 

The Vgs of the PMOS load devices can be expresses as, 

                                                   cntrlDDgs VVV −=                                                         (3.13) 

The replica-bias circuitry sets the lower swing of the ring oscillator to Vcntrl and the upper 

limit is VDD. Using (3.13) and (3.12) in (3.11), we have, 
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Equation (3.14) shows the dependence of f on process and temperature due to Vthp, Kp’, 

Esat and W.  The trend in variation of these parameters with process and temperature is 

given in [31]. Our goal is to generate Vcntrl in such a way that the variation of f over 

process and temperature changes is minimized.  

 

The device sizes and the Vcntrl required for achieving a natural frequency of oscillation 

with minimal variations around 625 MHz over the temperature range of -20°C to 100°C 

and the nominal process corner was initially determined using simulations. Power 

dissipation plays a major role in the choice of device sizes and Vcntrl. Simulation shows 

that the threshold voltage Vth is a weak function of process and temperature, therefore the 

term containing it can be neglected. f0 can now be expressed as a product of two terms (1 

and 2) given by [24], each of which are dependent on process and temperature,. 
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Assuming a constant Vcntrl with temperature, f depends on the products of term 1 that has 

a negative slope with temperature and term 2 that has a positive slope with temperature. 

Term 2 of equation (3.15) depends on Kp’ which varies with temperature primarily due to 

the change of mobility with temperature [31], 
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Vthp’s dependence on temperature can be expressed as, 

                                           TmVV VTothpthp ⋅−= ,                                                          (3.17)                         
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where Vthp,o and Kpo’ are the threshold voltage and Kp’ at absolute zero, respectively. Vthp 

decreases with temperature with negative slope mVT. Thus, term 2 in (3.15) increases with 

increases in temperature (assuming VDD and Vcntrl stay constant with temperature). There 

exists a bias point (Vcntrl) and a device size for which the variations in terms 1 and 2 

cancel out as predicted in [32]. Further, both terms 1 and 2 depend on the process. Thus, 

their temperature dependence varies across process corners. For the ring oscillator, it was 

determined that a Vcntrl of 0.86V, for a load device aspect ratio of 4 µm/0.55 µm, was the 

bias point required to cancel the variation of the bias current (and hence the frequency) 

with temperature due to the change in mobility and threshold voltages.   

 

After selecting the bias point required for canceling temperature variations for the 

nominal process corner, the next step is to compensate the ring oscillator over process 

variations. Term 1 of (3.15) varies with process due to changes in threshold voltage 

whereas term 2 varies due to changes in Kp’.  For typical CMOS processes, changes in 

Kp’ due to process (mainly due to the variations in tox) are well controlled compared to 

the variation in threshold voltage [30]. Therefore, the variation in frequency due to the 

first term is much larger than the variation due to the second term. The Vcntrl generation 

circuitry to compensate for process and temperature is shown in Figure 3.4. The transistor 

M1 provides a reference voltage (VTREF) to the part of the circuit that generates the Vcntrl 

for the ring oscillator boosted up by the non-inverting gain stage. M1 is biased using a 

temperature-insensitive current reference that can be generated as in [25]. The voltage 

VTREF tracks the change in threshold voltage due to process variations. Thus, Vcntrl 

changes with process to track the changes in Vthp with process.  
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Figure 3.4. Process and temperature compensation circuitry 

 

As a first step we will address the effect on f due to the first term of (3.15), as the change 

due to the Vthp dominates the changes in f due to Kp’. If the changes in Vcntrl were to 

exactly compensate for the changes in Vthp over process, the numerator of the first term 

would be independent of process.  The denominator, however, is still sensitive to process 

variations, due to changing Vcntrl. We therefore derive a condition, which when satisfied, 

cancels out the variation of the first term with process corners at least to a first order. The 

first term can be expressed as in [27] and [28] for the nominal case and any process 

corner in the set {FF, SS, FS, SF}, 
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For all process corners the change in Vcntrl is in the opposite direction to that of the 

change in the threshold voltage of the PMOS transistor, Vthp.  Vcntrl is chosen to be 0.86V 

for the reasons stated above. 

To cancell the frequency variation due to the first term in (3.15),  

                                                   processnom ff =                                                             (3.20)                         

After performing some simple math we arrive at the following condition, 
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The change in Vthp, ∆Vth,process from its nominal value Vthp,nom is found for all the process 

corners through DC simulations in HSPICE using foundry-provided BSIM3 V3.2 

transistor models. This information is used to set ∆Vcntrl,process such that (3.21) is satisfied 

for all the process corners. The aspect ratio of transistors M1, M2 and resistors R1, R2 

were used to achieve the required values of ∆Vcntrl, over all process corners.  

 

At this point we have achieved our first goal, so we now turn our attention towards our 

second goal, compensating the second term in (3.16) for process variations. The second 

term is expressed as (3.22) after some minor modifications to (3.25), 
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where Kp’ is expressed as the product of mobility (µ) and oxide capacitance (cox).The gate 

capacitance term dominates the total capacitance equation and is proportional to cox and 

width of the device (W). Therefore, these terms are expected to have a proportional 

change with process. An exact expression for the change in the above parameters with 
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process that accounts for all short-channel effects [33] becomes quite complicated and 

mathematical optimization becomes tedious. It is much easier to solve the above problem 

through simulations using accurate foundry provided models in HSPICE that implements 

the BSIM3 V3.2 equations. The changes in frequency of the ring oscillator around the 

nominal value after achieving the first goal quantify the changes in frequency due to the 

second term in equation (3.15).  

 

At this point it was found that the oscillator had already attained a value close to the 

required stability to implement an ILFD that locks over a wide frequency range over 

process corners. This indicates that second term in equation (3.15) does not have a 

significant impact on the natural frequency of the oscillator. The stability characteristics 

over process are further enhanced by noticing that terms 1 and 2 of (3.15) have opposite 

dynamics for the majority of process corners and hence (3.21) can be further adjusted to 

compensate small variations due to (3.22). The circuit used to compensate process 

variations (figure 3.4) imparts temperature dependence on Vcntrl. For the size and bias of 

M2 required for process compensation, it was found that Vcntrl had a positive slope with 

temperature. This can be compensated using the negative slope of VBE of a BJT. Also, the 

slope of Vcntrl with temperature changes with process. This can be addressed by adjusting 

RT and the aspect ratio of M2 such that the frequency deviation around the nominal 

process corner at room temperature is minimized. 
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3.3 Tracking and Calibration Circuitry 

Modern radios, used in the third and fourth generation wireless standards, are required to 

support multistandard and multiband operation for backward compatibility between 

various generations of standards and increased capacity [13]. This requires divider 

operation in a wide range of frequency bands and channel bandwidths for fully integrated 

PLL frequency synthesizers to work properly under process variation and operating 

conditions. Increasing the strength of the latch to achieve a wide locking range reduces 

the free running frequency of the oscillator [10]. The tail current shown in Figure 3.1. 

needs to be increased to counter this problem. Thus, dividing multi-GHz frequencies and 

achieving a wide locking range by using oversized latches is a power-hungry solution. 

The tracking/calibration circuit is used to extend the locking range of the ILFD without 

over-sizing the latches and hence reduces power dissipation.  

 

The tracking/calibration circuitry adjusts the natural frequency of oscillation thereby 

shifting the locking range up or down. It can do so by either sensing the control voltage to 

the VCO or using a digital control word at power-up. In the former case it is referred to 

as the tracking circuitry and in the latter case as calibration circuitry. For covering a wide 

band of frequencies over process and temperature variations in modern day low-voltage 

CMOS processes, the VCO is implemented with very high gain. This is detrimental in 

terms of phase noise [34]. Therefore, VCOs with wide tuning range are often 

implemented as a combination of digital and analog tuning circuits to reduce the VCO 

gain [13]. The digital tuning scheme thus divides a wideband tuning range into smaller 

bands. The continuous tuning control is the control line for the PLL. A PLL calibration 
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circuit is used to assign the proper subband for a given channel frequency so that the PLL 

can lock with in the tuning range.  The same calibration circuit that assigns a digital word 

at power up to control the VCO tuning range can also generate a digital control word to 

control the locking range of the ILFD. This is possible only if the ILFD is itself capable 

of maintaining lock over a certain band of frequency with process and temperature 

variation.  

 

3.3.1 Tracking Circuitry   

The Vcntrl generated by the process and temperature compensation circuitry is converted 

to a current in the tracking circuitry. The tracking circuitry shown in Figure 3.5 takes the 

control voltage to the VCO, when integrated into a PLL based frequency synthesizer, as 

an input and produces logic signals UP, UPB, DOWN and DOWNB that control the 

switches of charge-pump like circuitry. The logic level of these signals depends on  

voltage levels “V1” and “V2” that can be programmed externally. If the VCO control 

voltage is between the range 0-“V1”, an additional current of 2µA is pumped in to the 

resistor in addition to the current Vcntrl/R1(usually >> 2µA). This increases the control 

voltage to the ILFD to a level that is approximately 50 mV above Vcntrl. Thus, the natural 

frequency of oscillation of the ring oscillator is reduced. When the VCO control voltage 

is between “V1” and “V2” the switches S1 and S2 are both “off” and the control voltage 

to the ILFD is maintained at Vcntrl.  When the control voltage to the VCO is greater than 

“V2”, a current of 2µA is pumped out of the resistor R2 and the control voltage to the 

ILFD reduces by 50mV. The accuracy of the control voltage to the ILFD can be made 

high by employing techniques used in [17] for current mirror and charge pump matching.  
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Figure 3.5.  Tracking circuitry 
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The Schmitt trigger is used to avoid stability problems when the control voltages to the 

VCO equal “V1” or “V2”.  

 

3.3.2 Calibration Circuitry 

The calibration circuitry functions similarly to the tracking circuitry. The only difference 

is that the digital words U(0:1), D(0:1) and their complements control the voltage to the 

ILFD. Finer tuning capacity is added to the circuitry of Figure 3.6 so that the natural 

frequency of oscillation lies close to the middle of the band. This assists faster settling as 

discussed in Chapter 2. Through simulations across process and temperature, the digital 

word to achieve locking in a desired band is determined. The word can be used at power- 

up from basedband. The same concept could also be extended to do automatic 

calibration, as proposed in [13]. 

 

Figure 3.6. Calibration circuitry 
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3.4 Post-Layout Simulation Results  

The ILFD is implemented using the IBM 7RF standard 0.18 µm CMOS process. 

Simulation is performed using SpectreRFTM using foundry (IBM)-provided models. 

Figure 3.7 shows the frequency variation of the PATS 3-stage ring oscillator with process  

and temperature variation.  The worst-case frequency change around the nominal process 

corner and room temperature is 26% without compensation. The compensation circuitry 

reduces the worst-case frequency deviation around the nominal corner to 4.5%. Table 3.3 

provides the change in control frequency required and the change in control frequency 

achieved using the compensation methodology. Table 3.4 and 3.5 show the variation of  

predicted by theory the threshold voltage shows minimal variations with process and 

temperature variations. The locking range of the ILFD is determined through transient 

response using SpctreRFTM. Transient simulations using BSIM3 V3.2 transistors models 

accounts for the non-linearities of the circuit. Hence, the locking range can be predicted 

with good accuracy although it is a time-consuming process. Harmonic balance 

simulations can reduce simulation time and increase accuracy [27].  

 

Table 3.3. Achieved and required change in Vcntrl for process compensation 

Process Vth (V) ∆Vth (V) Required ∆Vcntrl 
(V)  Using (3.21) 

   Achieved 
∆Vcntrl  (V) 

TT 0.420 - - - 
FF 0.390 - 0.029 - 0.0595 - 0.0610 
SS 0.448 + 0.028 + 0.0574 + 0.0620 
SF 0.409 - 0.011 - 0.0232 - 0.0230 
FS 0.431 + 0.010 + 0.0216 + 0.0215 

 

 



 

 50

610

620

630

640

650

660

670

680

-20 0 20 40 60 80 100

Temperature (Degree C)

Fr
eq

ue
nc

y 
(M

Hz
)

tt ff ss sf fs

 

Figure 3.7. fo variation with process and temperature 

 

Table 3.4. Threshold voltage simulation of the delay cell across process corners 

Process Threshold Voltage (V) 
TT 1.32381 
FF 1.32778 
SS 1.32049 
SF 1.32754 
FS 1.31979 

 

 

Table 3.5. Threshold voltage simulation of the delay cell across temperature for nominal 

process corner 

Temperature (° C) Threshold Voltage (V) 
-20 1.32302 
10 1.32355 
40 1.32408 
70 1.32459 
100 1.32518 
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For the locking range simulations we have taken into account the variation of the current 

produced by the current reference of Figure 3.4. A 10% change in current with process 

was used. An ideal current source of 10 µA, 9 uA and 11 uA was used for nominal, SS 

and FF process corners respectively. Table 3.6 provides the locking range of the 

temperature and process compensated ILFD for divide-by-4 across all process corners 

and a temperature range of -20°C to 100°C. A comparison of the locking range with and 

without the compensation circuitry for various process corners is shown in Table 3.7.   

 

Table 3.8 shows the locking range for divide-by-6 with and without the compensation 

circuitry. A drastic improvement is seen due to the addition of the compensation 

circuitry. The worst-case power consumption of the ILFD is shown in Table 3.9. Buffers 

are added to drive external loads and they consume 33% of the total power. The 

compensation circuitry consumes 26% of the total power and the divider core consumes 

only 20% of the total power. Table 3.10 shows a comparison of previously published 

ILFDs.  This table however reports only the core power consumption.  
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Table 3.6. Locking Range simulation for various control words 

D(0:1) UP(0:1) Locking Range (GHz) 

00 00 2.90-3.25 

00 01 2.75-3.15 

00 10 2.65-3.05 

00 11 2.50-2.95 

11 00 2.40-2.80 

11 01 2.25-2.60 

11 01 2.00.-2.40 

11 01 1.80-2.25 

 

 

 

Table 3.7. Comparison of locking range for divide-by-4 across process 

corners with and without compensation 

Process Corner Locking Range No 
Comp (MHz) 

Locking Range With 
Comp (MHz) 

TT 1800-2950 1800-2950 
FF 2300-3500 1900-3100 
SS 1300-2200 1750-2750 
SF 2300-3400 1900-3050 
FS 1400-2400 1800-3000 
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Table 3.8. Comparison of locking range for divide-by-6 across process 

corners with and without compensation 

 

 

 

 

 

 

Table 3.9. Worst-case power consumption of the ILFD, VDD=1.8V 

Divider Core 330µA 594 µW 
Replica-Bias 310 µA 558 µW 

Buffers 546 µA 982 µW 
Compensation Circuitry 430 µA 774 µW 

 

 

Table 3.10.  Comparison with previously published ILFDs 

Reference [4] [8] [23] [9] [6] [10] This 
Work 

Locking Range 0.06 0.01 0.2 1 0.4 1.6 1.4 
Max Input Frequency (GHz) 2.8 18.2 1.8 10.0 2.6 7.6 3.5 

Power Dissipation (mW) .99 1.75 1.75 12.60 ~1 6.84 0.6 
Input Power (dBm) -5 5 7 - 0 0 0 

Division 4 5 2 8 4 4 4 
Tracking/Calibration no no yes no yes no Yes 

Sensitivity of delay elements to 
noise 

Low High Low Low High High Low 

Temp., Process Sensitivity High High High High Low High Low 
CMOS (µm) 0.24 0.25 0.5 0.18 0.25 0.18 0.18 

 

Process Corner Locking Range No 
Comp (MHz) 

Locking Range With 
Comp (MHz) 

TT 3300-3900 3300-3900 
FF 3700-4400 3450-4100 
SS 2900-3500 3200-3800 
SF 3600-4250 3400-4000 
FS 3000-3550 3200-3800 
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CHAPTER 4 
 

2.4-GHZ FREQUENCY SYNTHESIZER BASED ON PROCESS AND 
TEMPERATURE COMPENSATED RING ILFD 

 

This chapter starts with an introduction to PLL based frequency synthesizers. Key 

implementation issues related to the implementation of the voltage controlled oscillator 

(VCO), phase frequency detector (PFD), charge pump, loop filter, multi-modulus divider 

and the digital sigma-delta modulator are discussed. Simulation results of the key blocks 

of the PLL are presented.  This is followed by the simulation of the noise performance of 

the entire fractional-N frequency synthesizer using MATLAB. 

4.1 PLL Based Frequency Synthesis 

The PLL-based frequency synthesizer is the most popular type of frequency synthesizer 

for wireless communication applications, especially for multi-GHz applications [14]. 

Figure 4.1 shows the general block diagram of a charge-pump PLL based frequency 

synthesizer. The variable of interest in the case of a PLL is the phase of the signal.  The 

block diagram shows the transfer function of each block in a PLL. The difference 

between a generic PLL and a frequency synthesizer is that the divider in a frequency 

synthesizer can be programmed to achieve various division ratios. The PLL-based 

frequency synthesizer is basically a feedback system that produces various frequencies by 

locking to a clean reference source, which is usually a crystal oscillator. The output 

frequency that is synthesized is given by,  

                                           FOUT = FREF * M                                                                  (4.1) 
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Figure 4.1. PLL based frequency synthesizers 

When in lock, the signal FDIV tracks FREF in both frequency and phase. The dynamics of 

the PLL and its noise filtering property depends on the order of the loop filter. Depending 

on the order of the loop filter the PLL can be classified in to various categories. The 

open-loop transfer function of the PLL is given by, 
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As seen in equation 4.2, the PLL is of order 1 even if the loop filter is a simple scalar 

function.  The closed loop function is given by, 
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As stated earlier, charge pump based PLLs are used in a number of applications. This is 

because the PFD in a charge pump based PLL helps increase the lock range and speed up 
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the capture process. Theoretically, the locking range of such PLLs is limited by the range 

of frequencies the VCO can synthesize. The steady-state phase error for a charge pump 

based PLL is zero because the charge pump combined with the loop filter forms an 

integrator with infinite DC gain.  

 

The parameter KPFD of the charge pump based PLL is simply given by [11], 

                                              
π2
CP

PFD
I

K =                                                                       (4.3)  

The PFD converts the phase difference between the divided-down signal FDIV and the 

reference signal FREF into a current that is converted into a voltage in the loop filter.  The 

loop filter can be simply a capacitor, which leads to two poles at zero in the open loop 

transfer function and can lead to stability problems. Therefore, a resistor is always used in 

series with the capacitor. We begin our analysis with this simple loop filter configuration. 

The transfer function KLPF with a resistor R1 and capacitor C1 in series is given by, 
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The open loop and the closed loop transfer function of the PLL are now given by,  
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The denominator of equation 4.6 can be compared to a generalized second-order system,  

the damping factor of which is given by, 



 

 57

                                                     1
2
1 CK

M
KR

VCO
PD=ς                                                (4.7) 

As seen by the above equation the damping factor is increased by adding the resistor R1. 

If R1 is not present, the damping factor would become zero, causing the loop to become 

unstable.  

 

In a charge pump-based PLL the output of the charge pump is often noisy due to the 

mismatches between the “UP” and “DOWN” currents. The short pulses caused due to 

this can produce reference spurs at the output of the PLL by modulating the VCO. 

Therefore a capacitor C2 is added in parallel to reduce the voltage ripple at the VCO 

control line. Adding the capacitor introduces a pole to both the open-loop and closed-loop 

transfer function (make it a 3rd-order PLL) and filters high-frequency noise and spurs. 

This technique of adding a pole and zero to stabilize the transfer function is usually called 

lead-lag compensation.  

 

Figure 4.2 shows the pole-zero plot of the open-loop transfer function of the PLL. The 

frequency at which the magnitude of the open loop response reaches unity is called the 

unity-gain frequency (ωU) or the loop-bandwidth.  It has a zero at, 
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Figure 4.2. Open-loop pole-zero plot of the 3rd order PLL 

 

The open loop transfer function now becomes,  
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where τZ  and τp are given by equations 4.8 and 4.9 respectively and KPFD = ICP/2π.  The 

closed-loop function can be expressed as,  
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The crossover frequency ωu can be approximated by,  
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To achieve a good phase margin, the zero is placed a factor α below the loop-bandwidth 

(ωu) and the pole is placed a factor β above the loop-bandwidth. The factors α and β are 
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usually chosen to be roughly 4. The size of the loop filter components can be expressed 

in terms of the other loop parameters as shown in reference [14] as, 
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We now find the transfer function for noise injected in various parts of the loop to the 

output of the PLL. This gives an understanding how noise from various blocks of the 

PLL are filtered at the output. Figure 4.3 shows the model of the PLL with noise injected 

at various parts of the loop. The second-order loop filter will be used for the analysis. The 

noise transfer function from each noise source to the output of the PLL is given by the 

expressions (4.12) – (4.16).   The current noise from the charge pump is converted into a 

voltage in the loop filter and modulates the VCO. The resistor R1 is usually the most 

significant noise contributor from the loop filter. The thermal noise from the loop filter 

resistor after getting transformed by the term given by the second expression of (4.20) 

modulates the VCO.   

 

As seen in the expressions the noise from the reference, charge pump and feedback 

divider are low-pass filtered while the noise from the VCO is high-pass filtered. The 

noise from the resistor R1 is band-pass filtered. Therefore, the choice of the loop-  
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Figure 4.3. PLL model with noise injected from various blocks 
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bandwidth depends on which source is a significant noise contributor. Usually, the 

reference source has a very low phase noise in a frequency synthesizer. The VCOs noise 

is the significant noise source beyond the loop-bandwidth and hence the source of out-of- 

band phase noise in a wireless frequency synthesizer [14]. Therefore, the loop-bandwidth 

is chosen wide enough to attenuate the noise from the VCO. A wide loop-bandwidth 

however,  can be detrimental in terms of reference feed-through that can be caused due to 

the mismatches in the charge pump [35]. The noise from the charge pump can contribute 

significantly to the overall phase noise even at high offset frequencies, if the loop 

parameters are not correctly chosen. This is illustrated with an example. 

 

The noise at the output of the PLL due to the charge pump current noise can be expressed 

as (4.17). For large offset frequencies, i.e., larger than ωp, the loop filter impedance can 

be approximated by 
1.

1
Cs

 . The equation (4.13) can now be expressed as,  
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The current noise from the charge pump is converted into voltage noise by the loop filter 

impedance. The voltage noise modulates the VCO to produce noise sidebands at the 

output of the PLL. The single-sided spectral noise density can be calculated using 

narrowband FM approximation [14] and is given by,  
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Where αCP is the fraction of time that the charge pump is “on” when the PLL is locked. If 

the following parameters are chosen: 

charge pump current = 10µA ,αCP = 0.1, VGS-VT = 0.5V, β=4, and M = 64, 

the singe-side phase noise at an offset of 600 KHz with a loop-bandwidth of 100 KHz can 

be calculated using (4.18) to be -119 dBc/Hz. This value is higher than the typical phase 

noise contribution from a well designed VCO. To lower the charge pump noise 

contribution, the “on” time of the charge pump could be lowered or the VGS-VT of the 

charge pump can be increased. The first action increases the spurs at the output of the 

VCO and the second action can reduce the output voltage range that is necessary to cover 

the frequency range of interest. For the purpose of integrating the loop filter on-chip, the 

value of resistor R1 is usually made high to reduce the value of the capacitors C1 and C2.  

This can also lead to a significant noise contribution at the output of the PLL. The phase 

noise at the output of the PLL can be approximated by, 
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Using the above value of loop parameters in (4.23), the value of the resistor R1 and the 

capacitors C1 and C2 can be calculated using (4.13)-(4.15) to be 10 kΩ , 640 pF and 64 

pF respectively. The SSB phase noise at an offset frequency of 600 KHz due to R1 is 

calculated to be 108 dBc/Hz.  This number can be brought down by either increasing ICP 

or by reducing the loop-bandwidth, which directly translates into increasing the capacitor 

C1 as given by (4.14). To reduce the noise by 12dB it was found that the size of the 

capacitor should be increases approximately. 6 times increasing its size to 4 nF. Such 

large sizes make it hard or even impossible to be integrated onto a chip. 



 

 63

A solution that reduces the output phase noise of the charge pump and the filter 

impedance at large offsets is to add another pole in the filter transfer function at the same 

frequency or at a little span from the frequency ωp. With the addition of the extra pole, 

the loop transfer function falls at 60 dB /dec for frequencies beyond the frequency ωp. 

This suppresses the phase noise at higher offset frequencies and allows the sizing of the 

loop parameters to be relaxed. The schematic of the loop filter with the additional pole 

added to its transfer function is shown in Figure 4.4. An extra pole is now placed on top 

of ωp by making R2*C3 = τP. The noise contribution due to the charge pump and the 

resistor R1 are now given by, 
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Equations (4.24) and (4.25) show that phase noise improves by a factor of (βωu/∆ω)2 with 

the addition of an extra pole. The resistor R2 now contributes to the phase noise and its 

contribution to the phase noise at higher offset frequencies is more than that due to R1 

[14]. The phase noise at the output of the PLL due to R2 is given by, 
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 To reduce the phase noise, the size of R2 is made smaller than R1 by a factor γ and the 

size of C3 is made larger that C2 by the same amount.  This can lead to a larger chip area.  
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Figure 4.4 . Schematic of a 3th order loop filter  

 

To improve the phase margin of the overall loop, the factor β is now made larger due to 

the presence of two poles at  ωp.  

 

4.2 Voltage Controlled Oscillator (VCO) Design 

4.2.1 VCO Architecture  

The VCO in a frequency synthesizer operates at radio frequencies and consumes about 

60% of the total PLL subsystem power. The phase noise of the VCO is high-pass filtered 

in a PLL and therefore the noise contribution to the synthesizer’s phase noise at high 

offset frequencies (and hence the out-of-band interference) is dominated by the VCO 

phase noise. Due to the spectral purity demanded by radio applications an, LC or tank 

VCO is the most popular choice [28]. It uses the current-reuse topology consisting of 

both PMOS and NMOS devices, as shown in Figure 4.5.  The cross-coupled pair gives 

the necessary negative resistance required to cancel the losses in the tank. The negative 

resistance is contributed by both NMOS and PMOS devices and is given by, 
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Figure 4.5. LC VCO based on current-reuse topology and band switching    
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Hence, this architecture is leads to reduced power consumption. Increasing the current 

leads to an increased voltage swing across the tank (current-limited mode) until a point is 

reached (voltage-limited mode) where increasing the current does not improve the 

voltage swing anymore. The phase noise of the VCO improves in the current-limited 

mode and saturates (and might even become worse) in the voltage-limited mode [15]. 

Therefore, the VCO should be operated in the region between these limits for best phase 

noise performance for a given power dissipation [28]. The PMOS and NMOS devices are 

sized to have an equal gm to achieve symmetry and minimize flicker noise up-conversion. 

The current-reuse architecture causes the voltage swing to be limited by the power supply 
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rails. If phase noise is the primary concern and power can be sacrificed, the PMOS-only 

or NMOS-only architecture is attractive [15], where swings with magnitude beyond VDD 

could be achieved. The current mirrors used for biasing the VCO are sized 1:1 to 

minimize flicker noise up-conversion [11]. The reader is referred to [15, 28] for a detailed 

treatment on LC VCOs and their phase noise.  

 

In modern-day CMOS processes, with low supply voltages, the gain of the VCO (KVCO) 

needs to be very high to generate the wide range of frequencies to cover the frequency 

band of interest under process and temperature variations. An increased KVCO renders the 

VCO very sensitive to flicker noise up-conversion and also to power supply and substrate 

noise [11, 34]. Supply and substrate noise can reach extremely high levels in a fully-

integrated  environment and can cause the VCO to jitter in the time domain and causes  

spurious sidebands in the frequency domain [35, 36, and 37]. The spurs in the frequency 

domain leads to increased RMS phase errors [35].  The magnitude of the spurs generated 

by the VCO is directly proportional to KVCO. The impact of supply and substrate noise on 

the performance of the PLL is dealt in [36, 37].   Also, the reference noise caused due to 

the charge pump is a direct function of the VCO gain [35]. The VCO will therefore be 

implemented using the popular band-switching topology, which uses both discrete and 

continuous control as shown in Figure 4.6 [13]. The band-switching topology uses a 

digital word (coarse tuning) to shift the frequency range of operation and a fine tuning to 

tune (or lock) to a particular frequency. The sizes of the switches and capacitors scale in  
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Figure 4.6. Discrete and continuous tuning of the VCO [18] 

 

powers of two (binary weighted). Resistors are connected as shown in Figure 4.4 to 

prevent a drop in Q when the switches are turned “off” as explained in [13].  The resistors 

can be implemented using MOS devices operating in the triode region. 

 

The phase noise of the VCO is inversely proportional to the square of the overall Q of the 

tank and the average power dissipated in the resistive part of the tank. The higher the 

voltage swing across the tank, the better the phase noise [14, 17]. The voltage swing 

across the tank can be maximized by either (1) increasing the L/C ratio or (2) increasing 

the Q of the inductors [17]. The LC tank is modeled as shown in Figure 4.7, where the 

expression for the equivalent parallel resistance of the tank is shown.  In CMOS 

processes the Q of the inductors are often in the order of 8-10 due to the lossy substrate 

[38, 39]. Therefore, the overall Q of the tank is dominated by the inductor’s Q. 

Differential octagonal inductors are used in the design since they have higher Q 



 

 68

compared to single ended inductors [38]. The IBM 7RF 0.18 µm design kit used here 

supports such inductors with a Q of approximately 8. Accumulation-mode MOS 

varactors [40, 41] are used for their wider tuning ranges. 

 

Therefore, based on the above discussion the following steps were followed for the VCO 

design.  

1.  Choose the maximum L/C ratio to get the desired tuning range. The goal is to 

maximize the inductance. Once the Inductor value is obtained, implement it using 

the structure that gives the optimal inductance for a given area.  

 

 

Figure 4.7. Model of the LC tank with integrated inductors 
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2.  For the desired frequency, calculate the effective parallel resistance of the tank 

[14, 17].  

3.  Choose the bias current and the sizes of the PMOS and NMOS transistors to 

obtain a negative resistance that is 2-3 times the value required to cancel the 

resistance of the tank. This ensures enough gain to start up oscillations over 

process changes. This also leads to fast startup of oscillations.  

4.  Choose equal transconductance for PMOS and NMOS transistors to reduce flicker 

noise up conversion. 

5.  The bias current should also be chosen such that the VCO operates in the region 

between current and voltage-limited regimes. 

 

4.2.1 VCO Simulation Results 

This section provides the post-layout simulation results for the LC VCO. It was simulated 

using SpectreRFTM.  Figure 4.8 shows the tuning curves of the VCO for various control 

words.  The KVCO was found to be 190 MHz/V for the nominal corner at room 

temperature. The KVCO varies between 210 MHz/V to 180 MHz/V across process and 

temperature. Figure 4.9 shows the SSB phase noise of the VCO for nominal process 

corners.  The phase noise is -118 dBC/Hz at an offset frequency of 1 MHz drops to -

130dBc/Hz at an offset frequency of 3 MHz.  
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Figure 4.8. Simulated tuning range of the VCO 

 

 

Figure 4.9. VCO worst-case phase noise 
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4.3 Multi-Modulus Divider Design 

4.3.1 Divider Architecture  

The architecture of the multi-modulus divider is shown in Figure 4.10 [35]. It consists of 

a chain of 2/3 divider cells connected in a ripple-counter fashion. The divider is capable 

of achieving a division ration of 8 to 15, depending on the digital control word P(0:2). 

This topology offers the following advantages: 

a) lower power dissipation as the clock lines are fed to the adjacent divider cells 

only; and 

b) highly modular design, resulting in the same circuit for adjacent divider cells. 

This enables layout reuse. 

The block diagram of the 2/3 divider is shown in Figure 4.11. If the signal “P” is high the 

divider divides its input by 3, otherwise it divides by 2. To minimize the noise due to 

jitter accumulation in the asynchronous divider, the signal mod0 is used to clock the PFD 

input.  The signal mod4 is chosen to be logic “High”. The multi-modulus divider is 

implemented using true single phase clocking (TSPC) [15] flip-flops to minimize power 

consumption and to provide a larger swing compared to SCL logic.  The larger swing 

also minimizes the phase noise of the divider. The phase noise due to the multi-modulus 

divider is neglected because the division ratio is moderate and the use of CMOS logic 

that employs a relatively high voltage swing [15]. The division ratios are given by, 
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Figure 4.10. Schematic of the multi-modulus divider 

 

 

 

Figure 4.11. Schematic of the 2/3 divider used in the multi-modulus divider 
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4.3.2 Divider Simulation Results 

The last cell in the chain generates the mod2 signal which propagates “up” the chain, 

being reclocked by each cell along the way. An active mod signal enables division by 3, 

once in a division cycle provided the p input is “1”. If the programming input is “0”, the 

cell keeps dividing by 2.   Despite the state of the p input, the mod signal is reclocked and 

output towards the higher frequency cells. The multi-modulus divider was simulated 

across process corners to verify correct functionality. The divider is capable of dividing 

between 8 for P0P1P2 = “000” to 15 for P0P1P2 = “111”. Figure 4.12 shows the modn 

signals. The signal mod0 has the lowest duty cycle and is used to drive the PFD.  As 

shown in the figure the mod2 signal has the widest duty cycle. 

 

 

Figure 4.12. Multi-modulus divider simulation results 
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4.4 Charge Pump and Phase Frequency Detector 

Unlike the charge pump (CP) and PFD of an integer-N PLL, additional constraints are 

placed on the PFD and CP of a fractional-N PLL. The sigma-delta modulator’s noise is 

affected due to the following non-idealities present in the PFD/CP: 

a.  gain mismatch in Up and Down currents of the CP; 

b. dynamic mismatch in Up and Down currents of the CP; 

c.  reset Delay mismatch in the PFD; and 

d. propagation delay mismatch in the PFD; 

A thorough treatment of how the above affects the sigma-delta modulator phase noise is 

given in [17]. The PFD/CP should be designed to minimize these effects in addition to 

reference spur suppression, which is caused at switching instances. The PFD/CP design 

of [15] is used in this work. The schematic of the CP is shown in Figure 4.13.  The charge 

pump is controlled by the timing circuitry of Figure 4.14 to obtain fast switching and high 

spurious suppression. 

 

To minimize reference spurs the following precautions are taken. The current sources are 

never switched off to prevent current switching effects on the drains of the current 

sources. When the charge pump is in the off-state, current is re-directed in to a dummy 

branch. Since the current sources are always “on”, no start-up delay occurs and the 

charge pump responds immediately to changing control signals. Spurs are also caused 

due to charge injection from the switches as they turn on and off [42]. Using NMOS and 

PMOS switches in parallel and controlling them with signals that change sufficiently fast 

serves to minimize the spurs. 
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Figure 4.13. Schematic of the charge pump  

 

 

Figure 4.14. Timing circuitry for the charge pump 
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Latches are placed in the output of the timing control circuitry to achieve this task. To 

realize the control signals for the NMOS and PMOS switches, a customized control 

circuitry was implemented. The control signals are named in a systematic way. The first 

letter of the suffix u or d denotes up or down and the second letter denotes the type of 

switch. A suffix d is added in the end for the dummy branch. The outputs from the PFD, 

UPB and DOWNB, are used to generate the control signal for the charge pump. The 

generation of the control signals for the “up” branch is shown in Figure. Initially two 

signals with 180 degrees phase shift are created from UPB. To provide the same delay to 

both the signals, the top and bottom inverter strings are sized differently so that both have 

the same global delay. Latches are provided at the end of the inverter string to increase 

the switching speed. Both the current branches can be “off” simultaneously for a short 

period of time due to finite switching time. To prevent this, the dummy branch is 

controlled in such a way that it closes after the main branch closes and it opens before the 

main branch opens. This is accomplished with a group of inverters whose threshold 

voltages are made high or low as described in [15].  

 

The CP gain mismatch is caused due to the current mismatch in the up and down 

branches. The output voltage level of the charge pump changes with time and this can 

further affect the current matching between the NMOS and PMOS current sources. One 

way to prevent this is to use cascode current sources. The mismatch in the current mirrors 

is primarily due to threshold voltage, Vt, mismatch and beta (β) mismatch.  Assuming a 

device square-law relationship and assuming that the mismatch in threshold voltage and 

beta are uncorrelated, the mismatch in current can be formulated as,  
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In current mirrors if,  
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then the mismatch due to threshold voltage dominates over beta mismatch. Using the 

values of AVT=5mV/µm and Aβ =1.04%/µm for a typical 0 .18 µm CMOS process [17], 

equation (4.32) gives,  
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Equation (4.29) reduces to, 
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The above equation was used to ensure good matching by sizing the devices with a Vgs-

Vt of 300 mV, using transistor lengths greater than minimum and using multiple-finger 

devices. Choosing a higher value of Vgs-Vt results in a reduced output voltage swing at 

the output of the charge pump and hence a lower voltage range available to the VCO 

when passive loop filters are used. Active loop filters can prevent this, but they add noise. 

Therefore, there is a trade-off involved between the mismatch and output voltage swing. 
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The CP implemented in this work has a voltage swing of 0.5-1.1 V. Dynamic mismatch 

occurs due to the finite time involved in switching the NMOS and PMOS switch 

transistors “on” and “off”.  Decreasing the switching time using minimum size transistors 

for the switches and using latches in the control circuitry largely prevents this.  

 

The PFD is implemented as shown in Figure 4.15 [15]. The classical PFD circuit is not 

very attractive for use in a sigma-delta fractional-N frequency synthesizer. The phase 

error generated by the sigma-delta modulators can vary up to 5 % (or larger dependent on 

the reference frequency). In conventional PFDs with lesser reset delay time, up to 5% of 

the available phase error range is highly non-linear.  Therefore, the phase error-to-current 

transfer characteristic is highly non-linear, causing noise leakage and spurious tones. To 

combat this problem, a delay circuit consisting of inverters and capacitors as shown in the 

figure is introduced. This enhances the PFD sensitivity for small phase errors. A total 

delay of 3 ns was implemented. If the propagation delay through the NAND gate and the 

delay circuit is dependent on whether the up or down signal changes first, the net “on” 

time of the charge pump changes. This causes PFD reset delay mismatch and an 

increased noise level at the output of the sigma-delta modulator. Methods suggested in 

[17] to reduce the PFD reset mismatch errors are: 

1) Prescalar output pulse width less than the minimum on-time of the CP; 

2) Prescalar output pulse width larger than the maximum difference between 

reference and feedback edges plus reset delay; 

3) DFF with reset propagation delay independent of the clock level; or 

4)  DFF clock level periodically alternates when the reset pulse occurs. 
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Figure 4.15. Phase frequency detector for minimizing the dead zone of the PLL 

 

4.5 Digital Sigma-Delta Modulator (SDM) 

 The basic idea behind fractional-N synthesis is division by fractional ratios, instead 

of only integer ratios. To accomplish fractional division, the same frequency divider as in 

integer-N frequency synthesizer is used, but the division is controlled using a digital 

sigma-delta modulator (SDM) [15]. The input to the SDM is a K-bit word. The SDM is 

clocked using the reference clock to the PLL. The sigma-delta modulator maps the K-bit 

input word to an n-bit output word that controls the division modulus of the multi-

modulus divider. For every reference clock cycle the divider divides by a different ratio 

such that the effective divide ratio is a fractional number that depends on the input K 

given by, 

                                             nFRAC
KNN

2
+=                                                          (4.35) 
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 where, n length of the accumulator of the sigma-delta modulator. By increasing the 

length of the accumulator of the sigma-delta modulator, a finer division ratio and hence 

finer channel resolution can be obtained. Since the division modulus changes every clock 

cycle the fractional-N PLL is never is locked; instead, it is said to be in quasi-lock. The 

average charge flowing in to the loop-filter is zero during lock [17] 

 

The sigma-delta modulator is usually of an order greater than 2 to exhibit better 

randomizing properties and decrease in-band noise [15]. Lower-order sigma delta 

modulators with DC inputs leads to the existence of patterned noise that pose a serious 

problem [15]. Higher order sigma-delta modulators can be either multi-stage noise 

shaping (MASH) or multi-bit single-loop (MBSL) types. The sigma-delta modulator acts 

as a noise shaper, pushing the quantization noise to higher frequencies. The high 

frequency noise is rejected due to the low-pass transfer function from the output of the 

SDM to the output of the PLL.  Employing higher-order SDMs to achieve lower in-band 

noise leads increases the high frequency noise that increases out-of-band noise. To reduce 

the effect of high frequency noise, the PLL should use loop filters whose order should be 

equal to or greater than that of the SDM. Thus usually 3rd-order SDMs are used.  The 

MBSL-I architecture is used in this work because of its lower high-frequency noise [15, 

17] compared to the MASH-111 SDM. The variation of the division modulus to 

implement the same division ration is lesser for the MBSL SDMs when compared to 

MASH SDM. This reduces the effect of the CP and PFD non-idealities.  The MBSL-I 

modulator to be used for this work is given in Figure 4.16.  It consists of a single, 3rd-

order discrete time filter with feedforward and feedback coefficients, which influence the 
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noise transfer function (NTF). The value of the coefficients is derived from a 3rd order, 

high-pass Butterworth filter implementation. The implemented filter has a cut-off 

frequency sufficiently less than half the reference frequency. The implemented SDM has 

a cut-off frequency of 0.167fref, leading to a transfer function given by [15], 

                                   321
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For ease of implementation in a standard CMOS process, the NTF is modified such that 

the coefficients are approximated to powers of two. The modified NTF that preserves 

stability and causality is given by, 
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Figure 4.16.  3rd order MBSL-I sigma-delta modulator 
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Although the MBSL I is more complex when compared to the MASH converter, it has 

the following advantages (1) better flexibility in terms of noise shaping (2) lower pass 

band gain, which means lower high frequency quantization noise and (3) less intensive 

divider modulus switching in the time domain, which leads to reduced noise due to 

CP/PFD non idealities as discussed earlier [15, 17].  

 

4.6 Frequency Synthesizer Implementation and Simulation 

Among the applications using the 2.4-GHz ISM band, Bluetooth has the most stringent 

channel spacing. The specifications of a frequency synthesizer adhering to the Bluetooth 

standard are given below in Table 4.1. The goal is to design a frequency synthesizer to 

satisfy or out-perform the above specifications using injection locked prescalers to 

minimize power consumption. The total phase noise at the output of the fractional-N PLL 

using a  

      

   

Table 4.1.  Bluetooth specifications 

Bandwidth 2402-2483 MHz 

Channel Spacing 1 MHz 

Switching Time 220µS 

Out of Band Spurs -47 - -30 dBm 

Phase Noise @ 2 MHz -121 dBc/Hz 
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digital sigma-delta modulator is given by, 

                     PFDCPFILTERSDMDividerVCOTOTAL SSSSSSS ,,,,,,, φφφφφφφ +++++=  ,             (4.38) 

where, Sφ,X denotes the phase noise contributed due to the individual blocks of the PLL. 

The outputs of the CP/PFD, loop filter, divider and the SDM are low pass filtered at the 

output of the PLL, whereas the output of the output of the VCO is high pass filtered. 

Therefore, the phase noise at large offset frequencies is dominated by the VCO. The 

noise at the output of the PLL due to the sigma-delta modulator is given by,  
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where, H(fm) denotes the loop transfer function from the output of the SDM to the output 

of the PLL and FS is the sampling frequency (Fref). The SDM has a significant amount of 

high-frequency noise due to its noise-shaping property. Therefore, the loop-bandwidth 

has to be chosen such that their phase noise at large offset frequency is significantly less 

than that of the VCO.  The loop-bandwidth also determines the settling time, phase noise 

and the spur attenuation [15, 17, and 8]. A reduction in loop-bandwidth is advantageous 

for reducing the phase noise due to the SDM, CP/PFD, loop filter and the divider. 

However, reduced loop-bandwidth leads to a slower settling time and also reduced data 

rate if in-loop modulation techniques need to be employed [43]. Therefore, an optimal 

loop-bandwidth needs to be determined.  

 

The SDM plays a key role in determining the loop-bandwidth since the noise contribution 

due to other blocks can be alleviated by careful design. The expression for phase noise 
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due to the SDM given by (4.39) does not account for the non-linearities due to the non-

ideal effects in the PFD/CP and prescaler [17]. References [17, 15] give a fast non-linear 

simulation technique for modeling these effects. The loop-bandwidth to reduce the SDM 

noise well below the VCO noise was found using a custom MATLAB code that models 

the above mentioned non-idealities. The parameters used to model the non-idealities were 

determined using simulation as outlined in reference [17].   It is found out that a 3rd -order 

loop filter is required to minimize the effects of the MBSL-I SDM. The loop filter was 

designed using the method given in [23]. The phase margin of the loop was set to be 56° 

and the settling time was found to be 36 µs. 

 

The custom MATLAB code was also used to determine the phase noise due to the 

MBSL-I SDM, phase noise at the output of the PLL due to the MBSL-I SDM and the 

over all phase noise at the output of the PLL (contributed by CP, VCO, reference and the 

divider). The above noise performance was plotted for various cases: 

(a) No ILFD (division step =1); 

(b) ILFD that achieves a fixed division of 4 ahead of the multi-modulus divider 

(division step=4); and 

(c) ILFD that achieves a fixed division of 8 ahead of the multi-modulus divider 

(division step=8). 

Figures 4.17 – 4.19 show the phase noise of the MBSL-I SDM for several steps due to 

division by various factors achieved by the ILFD. Simulation results show that as the 

division step size increases, the noise of the SDM increases. The noise increases by  
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Figure 4.17.  Phase noise at the output of the MBSL-I SDM with a division step=1 
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Figure 4.18.  Phase noise at the output of the MBSL-I SDM with a division step=4 
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Figure 4.19.  Phase noise at the output of the MBSL-I SDM with a division step=8 
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approximately 12 dB when the divider step increases from 1 to 8. The transfer function of 

the SDM to the output of the PLL is a low pass function. Therefore, the low-frequency  

noise appears at the output of the PLL boosted by the closed-loop transfer function. The 

high frequency noise (i.e noise beyond the loop-bandwidth) is attenuated. The loop-

bandwidth and the order of the filter are chosen such that the noise is sufficiently 

attenuated at the offset frequency of interest, which in the case of the Bluetooth 

application is 2 MHz. The phase noise at the output of the PLL due to the SDM for the 

above mentioned cases is shown in Figures 4.20-4.22. The noise at the output of the PLL 

due to the charge pump is shown in Figure 4.23. The VCO phase noise and the noise at 

the output of the PLL due to the VCO are shown in Figures 4.24 and 4.25 respectively. 

The noise due to the charge pump and the VCO are low-pass and high-pass filtered 

respectively as shown in section 4.1. The loop parameters are designed such that the 

charge pump noise dominates the in-band noise and the VCO noise dominates the out-of- 

band noise, as seen from Figures 4.26- 4.28. Thus, the desired phase noise of -121 

dBc/Hz at an offset frequency of 2 MHz from the carrier is met, even when the divider 

step is 8.  Table 4.2 summarizes the PLL parameters required to achieve the required 

phase noise specifications.  
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Figure 4.20.  Phase noise at the output of the PLL due to MBSL-I SDM with a division 

step=1 
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Figure 4.21.  Phase noise at the output of the PLL due to MBSL-I SDM with a division 

step=4 

 

 

 

 



 

 91

 

 

 

 

 

Figure 4.22.  Phase noise at the output of the PLL due to MBSL-I SDM with a division 

step=8 
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Figure 4.23. Phase noise at the output of the PLL due to the charge pump noise  
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Figure 4.24. Phase noise of the VCO  
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Figure 4.25. Phase noise at the output of the PLL due to the VCO 
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Figure 4.26.  Overall phase noise at the output of the PLL due to MBSL-I SDM with a 

division step=1 
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Figure 4.27.  Overall phase noise at the output of the PLL due to MBSL-I SDM with a 

division step=4 
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Figure 4.28.  Overall phase noise at the output of the PLL due to MBSL-I SDM with a 

division step=8 
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Table 4.2.  PLL parameters 

Loop-bandwidth 60 KHz 

ICP 80E-6 

C1 7nF 
C2 353pF 
C3 353pF 
R2 1.4K 
R3 1.4K 

KVCO 200 MHz/V 
Phase Margin 56° 

Fref 50 MHz 
Division Modulus 8-15 
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CHAPTER 5 
 

CHIP IMPLEMENTATION, TEST SETUP AND MEASUREMENT 
RESULTS 

  

5.1 Chip Implementation 

This chapter discusses the test and characterization of the process-and-temperature 

compensated ILFD and the implementation of the prototype 2.4-GHz frequency 

synthesizer using the wideband ILFD.  Fractional-N capability is provided to the 

frequency synthesizer even though the complete Fractional–N synthesizer was not 

implemented. On-wafer probing was used to characterize the ILFD. This enables multiple 

chips to be characterized rapidly. This technique will be discussed following the chip 

implementation details and the chip-testing prototype printed circuit board (PCB) design.  

 

Figure 5.1 shows the chip microphotograph. The sensitive analog blocks are well 

separated from the digital blocks. The supply and the ground pins of each block are 

placed close to each other to avoid long loops and hence noise pickup. The bond wires 

that connect the digital power supply to the package are placed orthogonally to the bond 

wire that connect to the sensitive analog blocks. This reduces coupling of noise on the 

power supply line of the switching digital blocks into the power supply of the analog 

blocks. Thick metal wires implemented using the top metal layers are used for the power 

lines. It is also a good practice to use multiple pads for supply and substrate connection to 

reduce the inductance and hence the ground and power supply bounce. The last feature 

was not used here due to pin number limitations.      
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Figure 5.1. Chip microphotograph 
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Figure 5.2 shows the implementation details of the prototype frequency synthesizer. The 

dotted lines indicate the chip boundary and denote the components of the synthesizer that 

are on-chip. As shown in the figure, all the blocks of the PLL except the loop filter are 

implemented on-chip. The loop-filter was implemented off-chip due to the area 

limitations on the chip. Its should be noted that using the dual-path loop filter and 

capacitor multiplication techniques [15,16] could lead to a significant area reduction. 

However, these techniques were not implemented in the prototype design.  Most of the 

bias currents were provided off-chip using P-JFET and N-JFET based current sources. 

The power supply to the JFETs (VDD_High and VSS_low) was +3 V and -3 V 

respectively to ensure enough voltage headroom for the JFET current sources. The output 

of the VCO was buffered using the setup shown in Fig. 5.2. The transistors P1_B and 

P2_B and the 50 Ω loads were implemented on the chip and the PCB respectively. 

Similarly, the PMOS transistor (P3_B) buffering the output of the ILFD and the bias-tee 

structure are implemented on chip and PCB respectively. The reference signal was 

provided using a 50 MHz crystal oscillator. 

 

 The power supply scheme is shown in Figure 5.3 and is similar to the one implemented 

in [17]. The supply and ground pins to all the sensitive analog blocks that include the 

charge-pump, the VCO, and ILFD prescaler are provided separately. The digital blocks 

that include the PFD, calibration circuitry, and all other digital circuitry were run on a 

separate power and ground bus. This was done to isolate the power supply noise on the 

power and ground buses to avoid disturbances to the high-performance analog blocks. 

The power supplies to the analog blocks were separately filtered using three-terminal  
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Figure 5.2. Implementation details of the 2.4-GHz frequency synthesizer 
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Figure 5.3. Power supply scheme 
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capacitors[17] and tied to the common power supply on the PCB.      

 

A 4-Layer FR-4 PCB was fabricated to house the test structures and the chip. Figure 5.4 

show the photograph of the impedance-controlled PCB. 50-Ω transmission lines were 

fabricated on the top layer to match the impedance all the way from the output of the 

VCO to the SMA connector on the board that connects to the spectrum analyzer. The 

dimensions of the transmission lines were calculated using the board parameters provided 

by the vendor. The “Linecalc” program available in Agilent’s Advanced Design System 

(ADS) package was used for this purpose. The transmission lines were grounded co-

planar waveguides type fabricated using the top and the 2nd layer on the PCB. The top 

layer also houses all the power buses. The power buses were made thick to avoid resistive 

 

 

Figure 5.4.  4-Layer printed circuit board for circuit characterization 
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drops. The entire second layer on the PCB acts as a ground plane. The third layer on the 

PCB was made the power plane; the last layer housed the traces for bias lines. A plethora 

of vias were used to connect the power and ground planes on the top and bottom layers to 

the power and ground plane respectively. This was done to reduce the inductance 

contributed by the vias and avoid bounces on the supply and ground lines.  

 

5.2 Process and Temperature Compensated ILFD Characterization  

 Wafer-probing technique was used for measuring the ILFD. As mentioned previously, 

this technique allows fast characterization of multiple chips. The test structure for 

measurement using this technique is shown in Figure 5.5. It consists of two sets of G-S-G 

pads, one connecting to the input and another to the output of the ILFD. G-S-G (which 

means Ground-Signal-Ground) structures are always used for high frequency 

measurements and characterization. The special probe used for this purpose is called a G-

S-G probe. The ground pads on each sides of the signal provide a low-impedance path to 

ground and hence minimize signal coupling to adjacent lines.  Power supply and bias 

currents were provided using DC probes. First, the ring oscillator was characterized to 

determine how its natural frequency of oscillation varied with process and temperature 

and hence the effectiveness of the compensation scheme. The output of the ring oscillator 

(ILFD) was buffered using a PMOS transistor. The bias to the transistor was provided 

using a bias-tee. The “RF+DC”, “DC” and “RF” terminal of the bias-tee were connected 

to the “Signal” pad of the G-S-G structure, 1.8V  and the spectrum analyzer respectively.  

The oscillation frequency of the ring oscillator on 6 different chips was measured at room 

temperature. The chips were chosen from various corners from the set of 40 die provided. 



 

 106

 

 

 

 

  

 

Figure 5.5. ILFD with GSG pads for on-wafer characterization 
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 Table 5.1 shows the results of the measurement. The dimensions of each chip were 3mm 

x 3mm and therefore the chips selected from the corners will be subject to maximal 

process variations.  The results show just a worst case deviation of 3.5 % variation with 

process from the mean value of 625 MHz. Simulation results show a frequency of 

oscillation of 650 MHz using the TT corner at room temperature and a variation of 3% 

across process corners.  The measurement results were found to be in good agreement 

with the simulation results. The inaccuracy in the simulated frequency is attributed to 

modeling of the extracted parasitics.  The worst-case power consumption was approx 2.2 

mW from a 1.8 V power supply. The ring oscillator (chip 5) was injection-locked to act 

as a fixed divide-by-4 circuit by applying an input signal using a RF signal generator. The 

power of the signal applied was 0 dBm. The measured locking range was found to be 

0.95 GHz. The locking range could be extended by slightly modifying the control 

voltage.  It should be noted, however, that changing this voltage too much will affect the 

temperature compensation as discussed in Chapter 3. Therefore this voltage is changed 

only 50 mV above and below 

 

Table 5.1. Measured natural frequency of oscillation of the ring oscillator on 6 different chips 

Chip Number Frequency of 
Oscillation (fO) (MHz) 

1 630 
2 619 
3 647 
4 637 
5 624 
6 627 
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its nominal value. Using the provision to measure the control voltage on the chip, it was 

found to be 860 mV. This value was close to the desired range of values that were set in 

Chapter 3 for process and temperature compensation.  By varying the control voltage 50 

mV above and below the nominal value, the highest frequency for which a lock is 

achieved was extended to 3.4 GHz and the lowest frequency was 1.6 GHz. The control 

voltage was optimized by manually adjusting the control voltage and applying it through 

the DC probes directly on to the wafer.  

 

The calibration circuitry was not implemented on the chip because it required many 

digital signals as inputs, while the number of DC test probes was limited to four. Figures 

5.6, 5.7 and 5.8 show the spectrum of the output signal from the divider for an input 

signal of 1.8 GHz, 2.4 GHz and 2.9 GHz respectively.  Figure 5.9 shows the spectrum of 

the ILFD when it looses lock. Simulation results show a locking range of 1.15 GHz for 

the latch size of 2.6µm/0.2µm that was implemented on the chip. The disagreement can 

again be attributed to the capacitances seen by the drain of the tail transistors that are not 

modeled in schematic simulations. The same ILFD circuitry has a locking range of 0.55 

GHz (3.3 GHz to 3.85 GHz) while functioning as a divide-by-6 circuit. This again is in 

good agreement with simulation results that shows a locking range of 0.7 MHz.  The 

discrepancy can again be attributed to the same reason as above.  The combination of the 

LC tank VCO and the ILFD were next tested to determine if the ILFD was capable of 

achieving a lock (divide-by-4) over the entire range of frequencies generated by the LC 

VCO. The 4-layer PCB was used for this purpose. 
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Figure 5.6. Output spectrum of the ILFD for an input signal frequency = 1.8 GHz 
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Figure 5.7. Output spectrum of the ILFD for an input signal frequency = 2.4 GHz 
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Figure 5.8. Output spectrum of the ILFD for an input signal frequency = 2.9 GHz 
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Figure 5.9.  Output spectrum of the ILFD when out of locking range 
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Figure 5.10 shows the measured tuning curve of the ILFD. The tuning curve was 

determined for each capacitor control bit as shown in Figure 5.10. The measurement 

results were found to be in good agreement with the simulation results given in chapter 4. 

The measured VCO gain (KVCO) was found to be 200 MHz/V. The ILFD was tested to 

determine if it could achieve lock over the extreme frequencies generated by the VCO. 

The minimum and maximum frequencies generated by the VCO were 2.057 GHz and 

2.652 GHz for a control word of  “11” (0V) and “00”(1.8V) respectively. The figure 

inside the brackets gives the value of the analog control voltage.  Figures 5.11 and 5.12 

shows the spectrum of the maximum and minimum frequencies generated by the LC tank 

oscillator. Figures 5.13 and 5.14 shows the spectrum of the ILFD output. As seen from 

the Figures 5.13 and 5.14, the ILFD is capable of locking to the entire range of 

frequencies generated by the LC VCO.   
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Figure 5.10. Measured tuning range of the LC VCO 
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Figure 5.11. Maximum frequency generated by the LC VCO 
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Figure 5.12.  Minimum frequency generated by the LC VCO 
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Figure 5.13. Locked spectrum at the output of the of the ILFD for an input of 2.652 GHz 
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Figure 5.14. Locked spectrum at the output of the of the ILFD for an input of 2.057 GHz 
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The output frequency of the divide-by-4 ILFD when dividing an input frequency of 2.057 

GHz is shown as 510 MHz instead of 514 MHz. This is due to inaccuracy of the markers 

on the spectrum analyzer when a large range of frequencies are being measured. When 

the frequency is zoomed in, it shows the correct value of 514 MHz.  

 

Figures 5.15 and 5.16 show the phase noise of the LC oscillator when oscillating at a 

frequency of 2.428 GHz. The control word in this case was V (00). Since 2.428 GHz is in 

the middle of the tuning curve, the phase noise is expected to be the worst. The phase 

noises at offset frequencies of 600 KHz and 1 MHz were found to be -109 dBC/Hz and -

114.62 dBc/Hz, respectively. This also includes the phase noise added due to the buffers. 

The natural frequency of oscillation (free running frequency) of the ring oscillator in the 

ILFD was found to be 637 MHz. Figures 5.17 and 5.18 show the phase noise of the free- 

running ring VCO. The phase noises at offset frequencies of 600 KHz and 1 MHz were 

found to be -67 dBC/Hz and -74 dBc/Hz respectively.  The phase noise of the locked 

oscillator (divide-by-4 ILFD) is shown in Figure 5.19 and 5.20.  The output of the divider 

in this case was 607 MHz and the phase noise at offset frequencies of 600 KHz and 1 

MHz was found to be -119 dBC/Hz and -123 dBc/Hz respectively.  As predicted by the 

theory, the phase noise at the output of the ILFD is filtered out to the loop-bandwidth. For 

a wideband ILFD the loop-bandwidth is high, and therefore the phase noise filtering is 

better. The phase noise was measured using the E4407B series spectrum analyzer, with 

phase noise measurement capabilities manufactured by Agilent Technologies. 
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Figure 5.15. Phase noise of the LC VCO at an offset frequency of 600 KHz 
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Figure 5.16. Phase noise of the LC VCO at an offset frequency of 1 MHz 
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Figure 5.17. Phase noise of the free running oscillator at an offset frequency of 600 KHz 
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Figure 5.18. Phase noise of the free running oscillator at an offset frequency of 1MHz  
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Figure 5.19. Phase noise of the injection locked oscillator at an offset frequency of 600 

KHz 
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Figure 5.20. Phase noise of the injection locked oscillator at an offset frequency of 1 

MHz 
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Due to the non-availability of the on-wafer temperature characterization facility, the 

temperature characterization of the ILFD was accomplished by using the FR-4 board in 

an oven. The oscillation frequency was measured directly using a spectrum analyzer. The  

temperature of the oven was set to 80 °C and the FR4 board was placed inside the oven. 

The board was kept in the oven for 15 minutes before the oscillation frequency was 

measured. The temperature was lowered in steps of 20°C and the oscillation frequency 

for each case was recorded. A time interval of 15-20 minutes was set between each 

measurement.  Figure 5.21 shows the result of the temperature characterization. The 

oscillation frequency varied from a room temperature value of 632 MHz by only 4.2% at 

80 °C.  Since the board contains JFET current sources, a part of the variation in frequency 

is also due to the variation of the JFET bias currents with temperature.  
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Figure 5.21. Variation of the oscillation frequency of the ring oscillator with temperature 
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For the above test the bias currents to the LC VCO was disconnected. The ring VCO now 

oscillates at its resonant frequency due to the absence of input signal. To measure the 

locking range with temperature, the bias to the LC VCO was connected and the tuning 

range was measured for a control word of “00” and “11”. These control words determine 

the settings for the extreme frequency variation of the LC VCO. For both the settings the 

tuning range was measured at 0°C and 80°C.  It was found that the ring VCO locks to the 

entire range of frequencies generated by the LC VCO.  Thus the locking range of the 

ILFD is well controlled with temperature variation. The ILFD has a tuning range of at 

least 700 MHz over a temperature variation of 0°C to 80°C.  

 

5.3 Prototype Frequency Synthesizer Testing 

The prototype frequency synthesizer was characterized using the 4-layer PCB. A 50-MHz 

crystal oscillator manufactured by ECS, Inc. was used as the reference source. Only an 

integer-N synthesizer was implemented in this work using the process and temperature 

compensated ILFD. Although, the original intention was to implement a fractional–N 

synthesizer. As shown in Chapter 4 the loop parameters were optimized to achieve 

fractional-N operation, thus making the current architecture suitable for fractional-N 

operation. A digital sigma-delta modulator can be designed on an FPGA [17] and 

interfaced with the multi-modulus divider to implement a fractional-N synthesizer.  

 

To synchronize the arrival of the control bits to the divider when the sigma-delta 

modulator is implemented on the board using FPGAs, the circuit used in Figure 5.22 is  
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Figure 5.22. Interface circuitry between sigma-delta modulator and the multi-modulus 

divider 
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used to interface the sigma-delta modulator to the multi-modulus divider.  The different 

delays of the bits from the output of the sigma-delta modulator into the multi-modulus 

divider can cause the noise of the synthesizer to increase significantly. This was observed 

in the work by [17]; the interface circuit was used to prevent this. This circuit was also 

used by the author of reference [17], but was not mentioned in that paper. 

 

The synchronization circuitry uses two levels of flip-flops. Either the mod2 signal or the 

reference signal can be used as a clock to the sigma-delta modulator on the FPGA. The 

first-level of negative-edge triggered flip-flops are clocked by the mod 2 signal. This is 

the signal with the largest duty cycle. The inputs to the first level of flip-flops are the 

divider control bits from the sigma-delta modulator. The control bits get propagated to 

the second level of flip-flops when the mod2 signal falls to zero. The second levels of 

flip-flops are clocked by the mod0 signal. This is the signal with the smallest duty cycle 

and it goes low a certain time delay after mod2. This ensures that all the control signals to 

the multi-modulus reach the divider at the same time.  Since the loop parameters were 

optimized for fractional-N operation, all frequencies that correspond to the 2.4 GHz 

Bluetooth applications could not be synthesized. To demonstrate the feasibility of using 

the proposed ILFD for a frequency synthesizer, the specific frequencies of 2.2 GHz, 2.4 -

GHz and 2.6 GHz were synthesized. This corresponds to a divider setting of 11, 12 and 

13 respectively with a fixed divide-by-4 in by the ILFD.  Figures 5.23- 5.26 show the 

spectrum of the output of the frequency synthesizer while generating 2.4-GHz, 2.2 GHz 

and 2.6 GHz respectively. The reference spurs in each case are found to be well below  
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Figure 5.23. Output spectrum of the PLL base frequency synthesizer while synthesizing 

2.4 GHz 
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Figure 5.24. Output spectrum of the PLL base frequency synthesizer while synthesizing 

2.4 GHz showing reference spurs 
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Figure 5.25. Output spectrum of the PLL base frequency synthesizer while synthesizing 

2.2 GHz showing reference spurs 
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Figure 5.26. Output spectrum of the PLL base frequency synthesizer while synthesizing 

2.6 GHz  
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the carrier. While generating 2.4 GHz and 2.6 GHz, the control bits to the VCO were set 

to “00”, and while generating the control voltage was changed to “11”.  Figures 5.27-5.29 

show the measured phase noise of the frequency synthesizer while generating 2.4 GHz, 

2.2 GHz and 2.6 GHz, respectively. The measured phase noise at 2 MHz offset was 

found to be approx -121 dBc/Hz, satisfying the phase noise requirement for Bluetooth 

application.  The bias current to the VCO was adjusted until oscillations ceased.   The 

minimum value of the bias current for which the oscillator started up was found to be 

about 1 mA; this was the value of current used while measuring the phase noise.  
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Figure 5.27.  Measured phase noise while synthesizing 2.4 GHz at offset frequencies of 1 

MHz and 2 MHz. 
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Figure 5.28.  Measured phase noise while synthesizing 2.2 GHz  

 

 

Figure 5.29.  Measured phase noise while synthesizing 2.6 GHz  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Anticipated Original Contribution  

• A Process and Temperature Stabilized (PATS) ring oscillator based on modified 

symmetrical delay cells 

•  A methodology for design of the PATS ring oscillator based on the velocity 

saturated drain current equation of short-channel MOSFET 

• Expression for the frequency of oscillation of the ring oscillator using the modified 

delay cells 

•  Tracking/calibration circuitry that extends the locking ranges without consuming 

excessive power. This enables  the prescalar to be used for multi-band operation 

•  Injection locked prescalar that has a locking range of wide-locking range (1.4 GHz) 

over all the process corners and a temperature range of  0°C to 100°C based on 

PATS ring oscillator 

• Analysis of the effect of the fixed divide-by-4 prescaler on the over all noise of the 

PLL 

• Design of a 2.4-GHz Frequency Synthesizer based on the proposed ILFD 

 

6.2 Future Directions   

• Comprehensive characterization of the ILFD with temperature. This Could not be 

done at this point due to the non-availability of the equipments at ORNL (Re-

location and Construction) 
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•  Design of Sigma-Delta Modulator on a FPGA/Chip  

• Integrating the loop filter and bias currents on-chip 

• Add features for in-loop GMSK modulation 
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