6,429 research outputs found

    Approaches to integrated strategic/tactical forest planning

    Get PDF
    Traditionally forest planning is divided into a hierarchy of planning phases. Strategic planning is conducted to make decisions about sustainable harvest levels while taking into account legislation and policy issues. Within the frame of the strategic plan, the purpose of tactical planning is to schedule harvest operations to specific areas in the immediate few years and on a finer time scale than in the strategic plan. The operative phase focuses on scheduling harvest crews on a monthly or weekly basis, truck scheduling and choosing bucking instructions. Decisions at each level are to a varying degree supported by computerized tools. A problem that may arise when planning is divided into levels and that is noted in the literature focusing on decision support tools is that solutions at one level may be inconsistent with the results of another level. When moving from the strategic plan to the tactical plan, three sources of inconsistencies are often present; spatial discrepancies, temporal discrepancies and discrepancies due to different levels of constraint. The models used in the papers presented in this thesis approaches two of these discrepancies. To address the spatial discrepancies, the same spatial resolution has been used at both levels, i.e., stands. Temporal discrepancies are addressed by modelling the tactical and strategic issues simultaneously. Integrated approaches can yield large models. One way of circumventing this is to aggregate time and/or space. The first paper addresses the consequences of temporal aggregation in the strategic part of a mixed integer programming integrated strategic/tactical model. For reference, linear programming based strategic models are also used. The results of the first paper provide information on what temporal resolutions could be used and indicate that outputs from strategic and integrated plans are not particularly affected by the number of equal length strategic periods when more than five periods, i.e. about 20 year period length, are used. The approach used in the first paper could produce models that are very large, and the second paper provides a two-stage procedure that can reduce the number of variables and preserve the allocation of stands to the first 10 years provided by a linear programming based strategic plan, while concentrating tactical harvest activities using a penalty concept in a mixed integer programming formulation. Results show that it is possible to use the approach to concentrate harvest activities at the tactical level in a full scale forest management scenario. In the case study, the effects of concentration on strategic outputs were small, and the number of harvest tracts declined towards a minimum level. Furthermore, the discrepancies between the two planning levels were small

    Design and operation of mesh-restorable WDM networks

    Get PDF
    The explosive growth of Web-related services over the Internet is bringing millions of new users online, thus creating a growing demand for bandwidth. Wavelength Division Multiplexed (WDM) networks, employing wavelength routing has emerged as the dominant technology to satisfy this growing demand for bandwidth. As the amount of traffic carried is larger, any single failure can be catastrophic. Survivability becomes indispensable in such networks. Therefore, it is imperative to design networks that can quickly and efficiently recover from failures.;In this dissertation, we explore the design and operation of survivable optical networks. We study several survivability paradigms for surviving single link failures. A restoration model is developed based on a combination of these paradigms. We propose an optimal design and upgrade scheme for WDM backbone networks. We formulate an integer programming-based design problem to minimize the total facility cost. This framework provides a cost effective way of upgrading the network by identifying how much resources to budget at each stage of network evolution. This results in significant cost reductions for the network service provider.;As part of network operation, we capture multiple operational phases in survivable network operation as a single integer programming formulation. This common framework incorporates service disruption and includes a service differentiation model based on lightpath protection. However, the complexity of the optimization problem makes the formulation applicable only for network provisioning and o2ine reconfiguration. The direct use of such methods for online reconfiguration remains limited to small networks with few tens of wavelengths. We develop a heuristic algorithm based on LP relaxation technique for fast, near optimal, online reconfiguration. Since the ILP variables are relaxed, we provide a way to derive a feasible solution from the relaxed problem. Most of the current approaches assume centralized information. They do not scale well as they rely on per-flow information. This motivates the need for developing dynamic algorithms based on partial information. The partial information we use can be easily obtained from traffic engineering extensions to routing protocols. Finally, the performance of partial information routing algorithms is compared through simulation studies

    Optimization of Free Space Optical Wireless Network for Cellular Backhauling

    Full text link
    With densification of nodes in cellular networks, free space optic (FSO) connections are becoming an appealing low cost and high rate alternative to copper and fiber as the backhaul solution for wireless communication systems. To ensure a reliable cellular backhaul, provisions for redundant, disjoint paths between the nodes must be made in the design phase. This paper aims at finding a cost-effective solution to upgrade the cellular backhaul with pre-deployed optical fibers using FSO links and mirror components. Since the quality of the FSO links depends on several factors, such as transmission distance, power, and weather conditions, we adopt an elaborate formulation to calculate link reliability. We present a novel integer linear programming model to approach optimal FSO backhaul design, guaranteeing KK-disjoint paths connecting each node pair. Next, we derive a column generation method to a path-oriented mathematical formulation. Applying the method in a sequential manner enables high computational scalability. We use realistic scenarios to demonstrate our approaches efficiently provide optimal or near-optimal solutions, and thereby allow for accurately dealing with the trade-off between cost and reliability

    On the flexibility of an eco-industrial park (EIP) for managing industrial water

    Get PDF
    In a recent paper, a generic model, based on a multiobjective optimization procedure, for water supply system for a single company and for an eco-industrial park was proposed and illustrated by a park involving three companies A, B and C. The best configuration was identified by simultaneously minimizing the fresh water flow rate, the regenerated water flow rate and the number of connections in the eco-industrial park. The question is now to know what the maximal increase/decrease in pollutant flow rates is, so that the eco-industrial park remains feasible, economically profitable and environmentally friendly. A preliminary study shows that the park can accept an increase of pollutant flow rates of 29% in company A, 12% in company B and only 1% in company C; beyond these limits the industrial symbiosis becomes not feasible. The proposed configuration is not flexible with a very limited number of connections. Indeed, the solution implemented for conferring some flexibility to this network is to increase the number of connections within the park. However, connections have a cost, so the increase of their number needs to remain moderate. The number of connections is augmented until the symbiosis becomes unfeasible, or until the gain for each company to participate to the park becomes lower than a given threshold. Several cases are studied by increasing the pollutant flow rates under two different scenarios: 1) in only one company, 2) in two or three companies simultaneously

    Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution

    Full text link
    With the increasing share of renewable and distributed generation in electrical distribution systems, Active Network Management (ANM) becomes a valuable option for a distribution system operator to operate his system in a secure and cost-effective way without relying solely on network reinforcement. ANM strategies are short-term policies that control the power injected by generators and/or taken off by loads in order to avoid congestion or voltage issues. Advanced ANM strategies imply that the system operator has to solve large-scale optimal sequential decision-making problems under uncertainty. For example, decisions taken at a given moment constrain the future decisions that can be taken and uncertainty must be explicitly accounted for because neither demand nor generation can be accurately forecasted. We first formulate the ANM problem, which in addition to be sequential and uncertain, has a nonlinear nature stemming from the power flow equations and a discrete nature arising from the activation of power modulation signals. This ANM problem is then cast as a stochastic mixed-integer nonlinear program, as well as second-order cone and linear counterparts, for which we provide quantitative results using state of the art solvers and perform a sensitivity analysis over the size of the system, the amount of available flexibility, and the number of scenarios considered in the deterministic equivalent of the stochastic program. To foster further research on this problem, we make available at http://www.montefiore.ulg.ac.be/~anm/ three test beds based on distribution networks of 5, 33, and 77 buses. These test beds contain a simulator of the distribution system, with stochastic models for the generation and consumption devices, and callbacks to implement and test various ANM strategies
    corecore