2,737 research outputs found

    Development and performance of pulse-width-modulated static inverter and converter modules

    Get PDF
    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Study and evaluation of distributed power electronic converters in photovoltaic generation applications

    Get PDF
    This research project has proposed a new modulation technique called “Local Carrier Pulse Width Modulation” (LC-PWM) for MMCs with different cell voltages, taking into account the measured cell voltages to generate switching sequences with more accurate timing. It also adapts the modulator sampling period to improve the transitions from level to level, an important issue to reduce noise at the internal circulating currents. As a result, the new modulation LC-PWM technique reduces the output distortion in a wider range of voltage situations. Furthermore, it effectively eliminates unnecessary AC components of circulating currents, resulting in lower power losses and higher MMC efficiency.Departamento de Tecnología ElectrónicaDoctorado en Ingeniería Industria

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Grid Converters for Stationary Battery Energy Storage Systems

    Get PDF

    Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    Get PDF
    Renewable energy technologies have been growing in their installed capacity rapidly over the past few years. This growth in solar, wind and other technologies is fueled by state incentives, renewable energy mandates, increased fossil fuel prices and environmental consciousness. Utility scale systems form a substantial portion of electricity capacity addition in modern times. This sets the stage for research activity to explore new efficient, compact and alternative power electronic topologies to integrate sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms. This dissertation proposes a cascaded multilevel converter with medium frequency AC link which reduces the size of DC bus capacitor and also eliminates power imbalance between the three phases. A control strategy which modulates the output voltage magnitude and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been proposed. Renewable technologies such as PV and wind suffer from varying degrees of intermittency, depending on the geographical location. With increased installation of these sources, management of intermittency is critical to the stability of the grid. The proposed battery system is rated at 10% of the plant it is designed to support. Energy is stored and extracted by means of a bidirectional DC-DC converter connected to the PV DC bus. Different battery chemistries available for this application are also discussed. In this dissertation, the analyses of common mode voltages and currents in various PV topologies are detailed. The grid integration of PV power employs a combination of pulse width modulation (PWM) DC-DC converters and inverters. Due to their fast switching nature a common mode voltage is generated with respect to the ground, inducing a circulating current through the ground capacitance. Common mode voltages lead to increased voltage stress, electromagnetic interference and malfunctioning of ground fault protection systems. Common mode voltages and currents present in high and low power PV systems are analyzed and mitigation strategies such as common mode filter and transformer shielding are proposed to minimize them

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters
    corecore