11,220 research outputs found

    Chiral Observables and Modular Invariants

    Full text link
    Various definitions of chiral observables in a given Moebius covariant two-dimensional theory are shown to be equivalent. Their representation theory in the vacuum Hilbert space of the 2D theory is studied. It shares the general characteristics of modular invariant partition functions, although SL(2,Z) transformation properties are not assumed. First steps towards classification are made.Comment: 28 pages, 1 figur

    Some Nearly Quantum Theories

    Full text link
    We consider possible non-signaling composites of probabilistic models based on euclidean Jordan algebras. Subject to some reasonable constraints, we show that no such composite exists having the exceptional Jordan algebra as a direct summand. We then construct several dagger compact categories of such Jordan-algebraic models. One of these neatly unifies real, complex and quaternionic mixed-state quantum mechanics, with the exception of the quaternionic "bit". Another is similar, except in that (i) it excludes the quaternionic bit, and (ii) the composite of two complex quantum systems comes with an extra classical bit. In both of these categories, states are morphisms from systems to the tensor unit, which helps give the categorical structure a clear operational interpretation. A no-go result shows that the first of these categories, at least, cannot be extended to include spin factors other than the (real, complex, and quaternionic) quantum bits, while preserving the representation of states as morphisms. The same is true for attempts to extend the second category to even-dimensional spin-factors. Interesting phenomena exhibited by some composites in these categories include failure of local tomography, supermultiplicativity of the maximal number of mutually distinguishable states, and mixed states whose marginals are pure.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Exploring the Vacuum Geometry of N=1 Gauge Theories

    Get PDF
    Using techniques of algorithmic algebraic geometry, we present a new and efficient method for explicitly computing the vacuum space of N=1 gauge theories. We emphasize the importance of finding special geometric properties of these spaces in connecting phenomenology to guiding principles descending from high-energy physics. We exemplify the method by addressing various subsectors of the MSSM. In particular the geometry of the vacuum space of electroweak theory is described in detail, with and without right-handed neutrinos. We discuss the impact of our method on the search for evidence of underlying physics at a higher energy. Finally we describe how our results can be used to rule out certain top-down constructions of electroweak physics.Comment: 35 pages, 2 figures, LaTe

    Mass Degeneracies In Self-Dual Models

    Full text link
    An algebraic restriction of the nonabelian self-dual Chern-Simons-Higgs systems leads to coupled abelian models with interesting mass spectra. The vacua are characterized by embeddings of SU(2)SU(2) into the gauge algebra, and in the broken phases the gauge and real scalar masses coincide, reflecting the relation of these self-dual models to N=2N=2 SUSY. The masses themselves are related to the exponents of the gauge algebra, and the self-duality equation is a deformation of the classical Toda equations.Comment: 10 pages LaTeX (previous copy truncated

    Schwinger-Keldysh formalism II: Thermal equivariant cohomology

    Get PDF
    Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our companion paper arXiv:1610.01940. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a basic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general principles, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.Comment: 72 pages; v2: fixed typos. v3: minor clarifications and improvements to non-equilbirum work relations discussion. v4: typos fixed. published versio

    Classical backgrounds and scattering for affine Toda theory on a half-line

    Get PDF
    We find classical solutions to the simply-laced affine Toda equations which satisfy integrable boundary conditions using solitons which are analytically continued from imaginary coupling theories. Both static `vacuum' configurations and the time-dependent perturbations about them which correspond to classical vacua and particle scattering solutions respectively are considered. A large class of classical scattering matrices are calculated and found to satisfy the reflection bootstrap equation.Comment: Latex document, 28 pages, 3 figures include

    A magic pyramid of supergravities

    Get PDF
    By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3) x Sp(1).Comment: 30 pages, 6 figures. Updated to match published version. References and comments adde

    Summing the Instantons: Quantum Cohomology and Mirror Symmetry in Toric Varieties

    Full text link
    We use the gauged linear sigma model introduced by Witten to calculate instanton expansions for correlation functions in topological sigma models with target space a toric variety VV or a Calabi--Yau hypersurface M⊂VM \subset V. In the linear model the instanton moduli spaces are relatively simple objects and the correlators are explicitly computable; moreover, the instantons can be summed, leading to explicit solutions for both kinds of models. In the case of smooth VV, our results reproduce and clarify an algebraic solution of the VV model due to Batyrev. In addition, we find an algebraic relation determining the solution for MM in terms of that for VV. Finally, we propose a modification of the linear model which computes instanton expansions about any limiting point in the moduli space. In the smooth case this leads to a (second) algebraic solution of the MM model. We use this description to prove some conjectures about mirror symmetry, including the previously conjectured ``monomial-divisor mirror map'' of Aspinwall, Greene, and Morrison.Comment: 91 pages and 3 figures, harvmac with epsf (Changes in this version: one minor correction, one clarification, one new reference
    • …
    corecore