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Abstract: By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian

and single set of transformation rules, but with fields valued respectively in R,C,H,O, it

was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-

Tits magic square of D = 3 supergravities. This was subsequently tied in with the more

familiar R,C,H,O description of spacetime to give a unified division-algebraic description

of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought

together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3

is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square

in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The

corresponding U-duality groups are given by a new algebraic structure, the magic pyramid

formula, which may be regarded as being defined over three division algebras, one for

spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal

magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in

D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3)× Sp(1).
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1 Introduction

In recent years gauge and gravitational scattering amplitudes have undergone something of

a renaissance [1], resulting not only in dramatic computational advances but also important

conceptual insights. One such development, straddling both the technical and conceptual,

is the colour-kinematic duality of gauge amplitudes introduced by Bern, Carrasco and Jo-

hansson [2]. Exploiting this duality it has been shown that gravitational amplitudes may be

reconstructed using a double-copy of gauge amplitudes suggesting a possible interpretation

of perturbative gravity as “the square of Yang-Mills” [3, 4]. This perspective has proven it-

self remarkably effective, rendering possible previously intractable gravitational scattering

amplitude calculations [5]; it is both conceptually suggestive and technically advantageous.

Yet, the idea of gravity as the square of Yang-Mills is not specific to amplitudes, having ap-

peared previously in a number of different, but sometimes related, contexts [6–10]. While it

would seem there is now a growing web of relations connecting gravity to “gauge × gauge”,

it is as yet not clear to what extent gravity may be regarded as the square of Yang-Mills.

Here, we ask how the non-compact global symmetries of supergravity [11], or in an M-

theory context the so-called U-dualities [12, 13], might be related to the “square” of those

in super Yang-Mills (SYM), namely R-symmetries. Surprisingly, in the course of addressing

this question the division algebras A = R,C,H,O and their associated symmetries reveal

themselves as playing an intriguing role. Tensoring, as in [14], NL and NR super Yang-Mills
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AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)

C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)

H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)

O F4(−20) E6(−14) E7(−5) E8(8)

Table 1. The magic square.

multiplets in D = 3, 4, 6, 10 dimensions yields supergravities with U-dualities given by a

magic pyramid formula parametrized by a triple of division algebras (An,AnNL
,AnNR

),

one for spacetime and two for the left/right Yang-Mills multiplets.

In previous work [15] we built a symmetric 4×4 array of three-dimensional supergravity

multiplets, with N = NL + NR, by tensoring a left NL = 1, 2, 4, 8 SYM multiplet with

a right NR = 1, 2, 4, 8 SYM multiplet. Remarkably, the corresponding U-dualities filled

out the Freudenthal-Rosenfeld-Tits magic square [16–21]; a symmetric 4 × 4 array of Lie

algebras defined by a single formula taking as its argument a pair of division algebras,

L3(ANL
,ANR

) := tri(ANL
)⊕ tri(ANR

) + 3(ANL
⊗ANR

), (1.1)

where the subscripts denote the dimension of the algebras. See table 1. Here, tri(A)

denotes the triality Lie algebra of A, a generalisation of the algebra of derivations which

contains as a sub-algebra the R-symmetry of super Yang-Mills. See section 2.

The Freudenthal-Rosenfeld-Tits magic square1 historically originated from efforts to

understand the exceptional Lie groups in terms of octonionic geometries and, accordingly,

the scalar fields of the corresponding supergravities parametrize division algebraic projec-

tive spaces [15]. The connection to the division algebras in fact goes deeper; the appearance

of the magic square can be explained using the observation that the D = 3, N = 1, 2, 4, 8

Yang-Mills theories can be formulated with a single Lagrangian and a single set of transfor-

mation rules, using fields valued in R,C,H and O, respectively. Tensoring an ANL
-valued

super Yang-Mills multiplet with an ANL
-valued super Yang-Mills multiplet yields a super-

gravity mulitplet with fields valued in ANL
⊗ANL

, making a magic square of U-dualities

appear rather natural.

Of course, the connection between supersymmetry and division algebras is not new. In

particular, Kugo and Townsend [26] related the existence of minimal N = 1 super Yang-

Mills multiplets in only three, four, six and ten dimensions directly to the existence of only

four division algebras R,C,H and O, an observation which has been subsequently developed

1There are a number of equivalent forms/constructions of the magic square formula (1.1) due to, amongst

others, Tits [20], Vinberg [21], Kantor [22] and Barton-Sudbery [23]. The ternary algebra approach of [22]

was generalised by Bars-Günaydin [24] to include super Lie algebras. The form given in (1.1) is due to

Barton-Sudbery. We adopt this construction, modified as a Lie algebra to produce the required real forms

presented in table 1, as will be explained in section 2. This specific square of real forms was first derived

in [25] using Tits’ formula defined over a Lorentzian Jordan algebra. By, for example, altering the signature

of the algebras a variety of real forms can be accommodated. See [25] for a comprehensive account in the

context of supergravity.
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in a variety of directions. See, for example, [27–41] and the references therein. From this

point of view the division algebras are related to the spacetime symmetries, rather than

the internal R-symmetries, via the Lie algebra isomorphism (in the sense of [27])

sl(2,An) ∼= so(1, n+ 2). (1.2)

Indeed, the unique D = 10, N = 1 super Yang-Mills theory can be formulated using

octonionic spacetime fields [39]. By dimensionally reducing this octonionic theory, which

corresponds to Cayley-Dickson halving, one recovers the octonionic formulation of D = 3,

N = 8 Yang-Mills presented in [15], tying together the division algebraic descriptions of

spacetime and supersymmetry. This approach gives a unified division algebraic description

of (D = 3, N = 1, 2, 4, 8), (D = 4, N = 1, 2, 4), (D = 6, N = 1, 2) and (D = 10,

N = 1) Yang-Mills theories. A given (D = n+ 2, N ) theory (the field content, Lagrangian

and transformation rules) is completely specified by selecting an ordered pair An ⊆ AnN ,

where again the subscripts denote the dimension of the algebras [41]. This unity is neatly

expressed through the fact that the (modified) triality algebras appearing in (1.1) are the

direct sum of the spacetime little group and the internal R-symmetry algebras [41].

In the present work we bring together the various roles of the division algebras discussed

above to construct a pyramid of supergravities by tensoring left/right AnNL
/AnNR

-valued

Yang-Mills multiplets in D = n+ 2. The base of the pyramid in D = 3 is the 4× 4 magic

square of supergravities, with a 3× 3 square in D = 4, a 2× 2 square in D = 6 and Type

II supergravity at the apex in D = 10. The totality defines a new algebraic structure: the

magic pyramid. The U-dualities are given by the magic pyramid formula,

Pyr(An,AnNL
,AnNR

) :=
{
u ∈ L3(AnNL

,AnNR
)− so(An)ST

∣∣∣[u, so(An)ST] = 0
}
, (1.3)

where so(An)ST ⊂ L3(AnNL
,AnNR

) is the subalgebra of on-shell spacetime transformations

(the spacetime little group2 in D = n+ 2 dimensions is SO(n) ∼= SO(An), as described in

section 2). This is the natural generalisation of the magic square formula given in (1.1); the

largest subalgebra of L3(AnNL
,AnNR

) that respects spacetime transformations generates

the U-duality. See figure 1 for the magic pyramid of U-duality groups described by (1.3),

and figure 2 for the ranks of the corresponding cosets, which we include to highlight the

the curious pattern they follow.

The pyramid formula may also be understood geometrically. As observed in [42] for the

exceptional cases, the D = 3 Freudenthal magic square can be regarded as the isometries

of the division algebraic projective spaces (ANL
⊗ ANR

)P2. Here we are being rather

heuristic — for more detailed and elegant treatments of magic square projective geometry

see [34, 43–45] and the references therein. In essence the pyramid algebra describes the

isometries of special submanifolds of these projective spaces. On tensoring SYM multiplets

in D > 3, we must identify a diagonal An subalgebra to be associated with spacetime. This

2We neglect the translation generators of ISO(D−2) since they annihilate physical states. Note, through-

out we do not distinguish the special orthogonal group from its double cover (SO vs. Spin) for typographical

clarity. Of course, this is an important distinction and we hope that this rather non-trivial abuse of notation

will not cause confusion given the context.
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Figure 1. A magic pyramid of supergravities. The vertical axis labels the spacetime division algebra

An, while the horizontal axes label the algebras associated with the number of supersymmetries

AnNL
and AnNR

.

can be thought of as introducing an An-structure on the SO(NL +NR) that acts (in the

spinor representation) on the tangent space (ANL
⊗ANR

)2 at each point on the projective

plane. This splits the projective space into two pieces, one internal and one spacetime.

The isometries of the internal component yield the magic pyramid, while the remaining

symmetries generate the spacetime little group.

Rather than SYM one might also consider “squaring” the D = 3, 4, 6 conformal multi-

plets: super Chern-Simons-matter (CSm), SYM and tensor, respectively [14]. This yields

another magic pyramid, as described in section 4, which we will refer to as the conformal

pyramid. See figure 3. It has the remarkable property that its faces are also given by the

known D = 3 magic square. For example, trading the maximal super Yang-Mills in D = 6

for the (2, 0) tensor mulitplet swaps the resulting maximal supergravity with SO(5, 5)

U-duality for the non-gravitational (4, 0) self-dual-Weyl multiplet with E6(6) U-duality

considered in [14, 46, 47]. Given the recent progress in understanding three-dimensional

supergravity amplitudes as double copies of Bagger-Lambert-Gustavsson theories [48], one

might anticipate applications to this line of enquiry. More speculatively, the conformal

pyramid in D = 3, 4, 6 suggests an exotic D = 10 theory with global symmetry F4(4),

although it would have to be highly non-conventional (even heretical) from the standard

perspective on the classification of supermultiplets. For earlier appearances of F4 in 10 and

11 dimensions see [49–53].
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Figure 2. The ranks of the scalar cosets G/H, where G is the U-duality and H is its maximal

compact subgroup (the entries here apply to the original magic pyramid obtained by squaring SYM

rather that from squaring conformal theories).

Note, in the present paper the complete Freudenthal-Rosenfeld-Tits magic square de-

scribes the U-dualities of conventional D = 3 supergravities. Its role here is not to be

confused with its appearance in the important, and aptly named, “magic supergravities”

of Günaydin-Sierre-Townsend [54, 55]. In this context the C,H, and O rows of the magic

square (with a different set of real forms) describe the U-dualities of the magic supergravi-

ties in D = 5, 4 and 3 respectively. The magic square also appeared previously in a further,

distinct, supersymmetric setting in [56].

In section 2 we review division algebras and the square construction, giving the de-

tails of our formulation of table 1, which were omitted from [15]. In section 3 we briefly

recall the division algebraic description of SYM and then construct the magic pyramid of

supergravitites. In section 4 we introduce the conformal pyramid.

2 The magic square

An algebra A defined over R with identity element e0, is said to be composition if it has a

non-degenerate quadratic form3 n : A→ R such that,

n(ab) = n(a)n(b), ∀ a, b ∈ A, (2.1)

where we denote the multiplicative product of the algebra by juxtaposition.

3A quadratic norm on a vector space V over a field R is a map n : V → R such that: (1) n(λa) =

λ2n(a), λ ∈ R, a ∈ V and (2) 〈a, b〉 := n(a+ b)− n(a)− n(b) is bilinear.

– 5 –
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Figure 3. The conformal magic pyramid. Note, the exterior faces, up to real forms, are given by

the magic square (i.e. the 4× 4 base) cut across its diagonal.

A composition algebra A is said to be division if it contains no zero divisors,

ab = 0 ⇒ a = 0 or b = 0,

in which case n is positive semi-definite and A is referred to as a normed division al-

gebra. Hurwitz’s celebrated theorem states that there are exactly four normed division

algebras [57]: the reals, complexes, quaternions and octonions, denoted respectively by

R,C,H and O.

Regarding R ⊂ A as the scalar multiples of the identity Re0 we may decompose A into

its “real” and “imaginary” parts A = R ⊕A′, where A′ ⊂ A is the subspace orthogonal

to R. An arbitrary element a ∈ A may be written a = Re(a) + Im(a). Here Re(a) ∈ Re0,

Im(a) ∈ A′ and

Re(a) =
1

2
(a+ a), Im(a) =

1

2
(a− a), (2.2)

where we have defined conjugation using the bilinear form,

a := 〈a, e0〉e0 − a, 〈a, b〉 := n(a+ b)− n(a)− n(b). (2.3)

An element a ∈ O may be written a = aaea, where a = 0, . . . , 7, aa ∈ R and {ea}
is a basis with one real e0 and seven ei, i = 1, . . . , 7, imaginary elements. The octonionic

multiplication rule is,

eaeb = (δa0δbc + δ0bδac − δabδ0c + Cabc) ec, (2.4)

– 6 –
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Figure 4. The Fano plane. The structure constants are determined by the Fano plane, Cijk = 1 if

ijk lies on a line and is ordered according as its orientation. Each oriented line follows the rules of

quaternionic multiplication. For example, e2e3 = e5 and cyclic permutations; odd permutations go

against the direction of the arrows on the Fano plane and we pick up a minus sign, e.g. e3e2 = −e5.

where Cabc is totally antisymmetric and C0bc = 0. The non-zero Cijk are given by the Fano

plane. See figure 4.

The norm preserving algebra is defined as,

so(A) := {A ∈ HomR(A)|〈Aa, b〉+ 〈a,Ab〉 = 0, ∀a, b ∈ A}. (2.5)

The triality algebra of A is defined as,

tri(A) := {(A,B,C) ∈ so(A)⊕ so(A)⊕ so(A)|A(ab) = B(a)b+ aC(b), ∀a, b ∈ A}. (2.6)

Explicitly,

tri(R) ∼= ∅,
tri(C) ∼= so(2)⊕ so(2),

tri(H) ∼= so(3)⊕ so(3)⊕ so(3),

tri(O) ∼= so(8).

(2.7)

For an element A ∈ so(A) define Ã ∈ so(A) by

Ã(a) := A(a), a ∈ A. (2.8)

We can then define an order three Lie algebra automorphism

θ : tri(A)→ tri(A) : (A,B,C) 7→ (B̃, C, Ã), (2.9)

which for A = O interchanges the three inequivalent 8-dimensional representations of

so(O).

Given two normed division algebras AL and AR we can define on

L3(AL,AR) := [tri(AL)⊕ tri(AR)]00 + (AL⊗AR)01 + (AL⊗AR)10 + (AL⊗AR)11 (2.10)

– 7 –
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a Z2×Z2 graded Lie algebra structure following, with a slight modification to accommodate

the required real forms, Barton and Sudbery [23]. First, tri(AL) and tri(AR) are Lie

subalgebras. For elements TL = (AL, B̃L, C̃L) in tri(AL) and (a⊗ b, 0, 0), (0, a⊗ b, 0), and

(0, 0, a⊗ b) in 3(AL ⊗AR), the commutators are given by the natural action of tri(AL),

[TL, (a⊗ b, 0, 0)] = (AL(a)⊗ b, 0, 0),

[TL, (0, a⊗ b, 0)] = (0, BL(a)⊗ b, 0),

[TL, (0, 0, a⊗ b)] = (0, 0, CL(a)⊗ b).
(2.11)

Similarly for TR = (AR, B̃R, C̃R) in tri(AR),

[TR, (a⊗ b, 0, 0)] = (a⊗AR(b), 0, 0),

[TR, (0, a⊗ b, 0)] = (0, a⊗BR(b), 0),

[TR, (0, 0, a⊗ b)] = (0, 0, a⊗ CR(b)).

(2.12)

For two elements belonging to the same summand (AL ⊗AR)ij in (2.10) the commutator

is defined using the natural map

∧2 (AL ⊗AR)i → ∧2AL ⊕ ∧2AR → tri(AL)⊕ tri(AR), (2.13)

where the first arrow uses the norm on AL and AR. Explicitly,

[(a⊗ b, 0, 0), (a′ ⊗ b′, 0, 0)] = 〈a, a′〉 TRb,b′ + 〈b, b′〉TLa,a′ ,
[(0, a⊗ b, 0), (0, a′ ⊗ b′, 0)] = −〈a, a′〉 θTRb,b′ − 〈b, b′〉θTLa,a′ ,
[(0, 0, a⊗ b), (0, 0, a′ ⊗ b′)] = −〈a, a′〉θ2TRb,b′ − 〈b, b′〉θ2TLa,a′ .

(2.14)

Here T : ∧2A→ tri(A) : (a, a′) 7→ Ta,a′ is defined by

Ta,a′ := (Sa,a′ , Ra′Ra −RaRa′ , La′La − LaLa′), (2.15)

where

Sa,a′(b) = 〈a, b〉a′ − 〈a′, b〉a, La(b) = ab, Ra(b) = ba. (2.16)

Finally, we have

[(a⊗ b, 0, 0), (0, a′ ⊗ b′, 0)] = (0, 0, aa′ ⊗ bb′),
[(0, 0, a⊗ b), (a′ ⊗ b′, 0, 0)] = (0, aa′ ⊗ bb′, 0),

[(0, a⊗ b, 0), (0, 0, a′ ⊗ b′)] = −(aa′ ⊗ bb′, 0, 0).

(2.17)

With these commutators the magic square formula (2.10) describes the Lie algebras

of the groups presented in table 1. The simplest way to check that these definitions yield

the correct non-compact real forms is by comparison to the conventions of Barton and

Sudbery [23], which are known to give the magic square of compact real forms. Recall, a

non-compact real form gnc of a complex semi-simple Lie algebra gC admits a symmetric

decomposition gnc = h + p,

[h, h] ⊆ h, [h, p] ⊆ p, [p, p] ⊆ h, (2.18)

– 8 –
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AL\AR R C H O

R SO(2) SO(3)×SO(2) SO(5)×SO(3) SO(9)

C SO(3)×SO(2) [SO(3)×SO(2)]2 SO(6)×SO(3)×SO(2) SO(10)×SO(2)

H SO(5)×SO(3) SO(6)×SO(3)×SO(2) SO(8)×SO(4) SO(12)×SO(3)

O SO(9) SO(10)×SO(2) SO(12)×SO(3) SO(16)

Table 2. Magic square of maximal compact subgroups.

where h is the maximal compact subalgebra. If a compact real form gc shares with some

non-compact real form gnc a common subalgebra, gnc = h + p and gc = h + p′, and

the brackets in [h, p] are the same as those in [h, p′], but equivalent brackets in [p, p] and

[p′, p′] differ by a sign, then h is the maximal compact subalgebra of gnc. This observation is

sufficient to confirm that our construction yields the real forms in table 1 and we can identify

L1(AL,AR) := [tri(AL)⊕ tri(AR)]00 + (AL ⊗AR)01 (2.19)

as the maximal compact subalgebra. The corresponding compact subgroups are presented

in table 2.

3 The magic pyramid

3.1 Super Yang-Mills over R,C,H,O

The key to constructing the magic pyramid is to write the appropriate Yang-Mills the-

ories over R,C,H,O and then consider the symmetries of the “squared” theories. The

Lagrangian for (n + 2)-dimensional N = 1 SYM with gauge group G over the division

algebra An is given [39, 41] by

L(An) = −1

4
FAµνF

Aµν − Re(iλ†Aσ̄µDµλ
A), λ ∈ A2

n, (3.1)

where the covariant derivative and field strength are given by the usual expressions

Dµλ
A = ∂µλ

A + gfBC
AABµ λ

C ,

FAµν = ∂µA
A
ν − ∂νAAµ + gfBC

AABµA
C
ν ,

(3.2)

with A = 0, . . . ,dim[G]. The {σµ} are a basis for An-valued Hermitian matrices - the

straightforward generalisation of the usual complex Pauli matrices [32, 41, 58] to all four

normed division algebras, satisfying the usual Clifford algebra relations. We can use these

to write the supersymmetry transformations:

δAAµ = Re(iλ†Aσ̄µε), δλA =
1

4
FAµνσ

µ(σ̄νε). (3.3)

Note, since the components λAa are anti-commuting we are dealing with the algebra of

octonions defined over the Grassmanns.

By dimensionally reducing these theories using the Dixon-halving techniques of [41], we

arrive at a master Lagrangian for SYM in D = n+2 with N supersymmetries written over

– 9 –



J
H
E
P
0
4
(
2
0
1
4
)
1
7
8

the division algebra AnN . The division algebra associated with spacetime An is viewed as

a subalgebra of AnN . The resulting Lagrangian is:

L (An,AnN ) =−1

4
FAµνF

Aµν− 1

2
Dµφ

A∗DµφA− Re(iλ†Aσ̄µDµλ
A)− gfBCARe

(
iλ†AεφBλC

)
− 1

16
g2fBC

AfDE
A(φB∗φD + φD∗φB)(φC∗φE + φE∗φC), (3.4)

where λ ∈ A2
nN (so we have N spacetime spinors, each valued in A2

n) and φ is a scalar field

taking values in φ ∈ A{
n, the subspace of AnN orthogonal to the An subalgebra. The {σ̄µ}

are still a basis for An-valued Hermitian matrices, again, with An viewed as a division

subalgebra of AnN .

The supersymmetry transformations in this language are

δAAµ = Re(iλ†Aσ̄µε),

δφA = − i
2

tr
(
ε(λAε† − ελ†A)A{

n

)
,

δλA =
1

4
FAµνσ

µ(σ̄νε) +
1

2
σµε(Dµφ

Aε) +
1

4
fBC

AφC(φBε),

(3.5)

where the subscript A{
n refers to the projection onto this subspace and

ε :=

(
0 − 1

1 0

)
. (3.6)

The important result is that we can write N = 1 SYM in D = n + 2 over the division

algebra An, and that if we wish to double the amount of supersymmetry we Dickson-double

the division algebra. For example, if we start with N = 1 SYM in D = 4 over C, then

N = 2 will be written over H and N = 4 will be written over O.

It is also useful to consider the little group representations of the fields in the divi-

sion algebraic Yang-Mills theories. The little group in D = n + 2 dimensions is SO(n).

When N = 1, SYM contains a single vector and its fermionic partner, which may each be

represented as an element of An, with the little group transforming them via the natural

action of SO(An). For example, in D = 10 we have an octonion representing the vec-

tor, transforming as the 8v of SO(8), while the spinor is represented by another octonion,

transforming as the 8s. As noted in [41], the overall (little group plus internal) symmetry

of the N = 1 theory in D = n+ 2 dimensions is tri(An). If we dimensionally reduce these

theories we obtain SYM with N supersymmetries whose overall symmetries are given by

sym(An,AnN ) :=
{

(A,B,C) ∈ tri(AnN )| [A, so(An)ST] = 0 ∀A /∈ so(An)ST
}

(3.7)

where so(An)ST is the subalgbra of so(AnN ) that acts as orthogonal transformations on

An ⊂ AnN . The division algebras used in each dimension and the corresponding sym

algebras are summarised in table 3. The on-shell content of each SYM theory can then be

summarised as:

• an AnN element of bosons: a vector in An and scalars in A{
n, giving An⊕A{

n = AnN

• an AnN element of fermions: N spacetime fermions each valued in An.
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An\AnN O H C R

O so(8)ST
H so(4)ST ⊕ sp(1)⊕ sp(1) so(4)ST ⊕ sp(1)

C so(2)ST ⊕ su(4) so(2)ST ⊕ sp(1)⊕ so(2) so(2)ST ⊕ so(2)

R so(8) so(4)⊕ sp(1) so(2)⊕ so(2) ∅

Table 3. A table of algebras: sym(An,AnN ). This lets us read off the spacetime and internal

symmetries in each Yang-Mills theory. For example, one can see the familiar R-symmetries in

D = 4: U(1), U(2) and SU(4) for N = 1, 2, 4, respectively. Note that the symmetries in D = 3

are entirely internal and that they include the R-symmetry as a subgroup (these are actually the

symmetries of the theories after dualising the vector to a scalar, to be discussed in the following

section).

3.2 The D = 3 magic square of supergravities

In D = 3 the spacetime algebra is A1 = R, so the SYM master Lagrangian (3.4) describes

N real two-component Majorana spinors λαa , α = 1, 2, written as a single AN -valued

object λα, as well as an R-valued vector and an ImAN -valued scalar field. Tensoring the

multiplets of left (L) and right (R) Yang-Mills theories, as in [15], we obtain the off-shell

field content:

gµν ∈ R, Ψα
µ ∈

(
ANL

ANR

)
, ϕ ∈

(
ANL

⊗ANR

ANL
⊗ANR

)
, χα ∈

(
ANL

⊗ANR

ANL
⊗ANR

)
. (3.8)

In three dimensions the R-valued graviton and ANL
⊕ ANR

-valued gravitino carry no

degrees of freedom, but indicate that we have found the field content of a supergravity

theory with N = NL + NR supersymmetries. On-shell the (ANL
⊗ ANR

)2-valued scalar

and Majorana spinor each have 2(NL ×NR) degrees of freedom.

The maximal compact subgroups H of the magic square of U-dualities G are those

given in the reduced magic square presented in table 2. These are the largest linearly-

realised global symmetries under which Ψµ, ϕ and χ transform as a vector, spinor and

conjugate spinor; ANL
⊕ANR

and (ANL
⊗ANR

)2 are precisely the representation spaces

of the vector and (conjugate) spinor. For example, in the maximal case of ANL
,ANR

= O,

the U-duality is G = E8(8) and we have the 16,128 and 128′ of its maximal compact

subgroup H = SO(16).

We can better understand the origin of the magic D = 3 U-dualities if we consider the

symmetries of their parent Yang-Mills theories. If we set the coupling constant g in (3.4)

to zero then we may dualise the vector to a scalar and write the Lagrangian as:

L(AN ) = −1

2
∂µφ

A∗∂µφA − iλ†Aσ̄µ∂µλA, (3.9)

where φ and λα each take values in AN (note that in D = 3 we do not need to take the

real part of the fermion kinetic term since the sigma matrices are real and symmetric).

The supersymmetry transformations become:

δφA = −iε†ελA, δλA =
1

2
σµε∂µφ

Aε. (3.10)
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Equation (3.9) and (3.10) enjoy a symmetry whose Lie algebra is sym(R,AN ) ∼= tri(AN ).

Looking at the theory it is clear why this is the case, since transformations preserving (3.10)

coincide with the definition of tri(AN ); that is to say, we might initially try to transform the

three AN -valued objects φ, λ and ε by three independent SO(AN ) rotations, but the su-

persymmetry transformations constrain these three rotations to satisfy the definition (2.6).

Tensoring the on-shell field content, φL/R, λL/R, of the dualised Yang-Mills theories we

obtain an (ANL
⊗ANR

)2-valued scalar and spinor,

ϕ ∈

(
φL ⊗ φR
λL ⊗ λR

)
, χ ∈

(
φL ⊗ λR
λL ⊗ φR

)
. (3.11)

The tri(ANL
) and tri(ANR

) symmetries of the two Yang-Mills theories act on these doublets

as the (operator valued) 2× 2 matrices:(
tri(ANL

)⊗ 1 0

0 tri(ANL
)⊗ 1

)
,

(
1⊗ tri(ANR

) 0

0 1⊗ tri(ANR
)

)
. (3.12)

Since we have arranged the fields of the squared theory into doublets we might also consider

the off-diagonal rotations (
0 e∗a ⊗ e∗a′

−ea ⊗ ea′ 0

)
. (3.13)

The total algebra of linear transformations is then given by

L1(AL,AR) := tri(ANL
)⊕ tri(ANR

) + ANL
⊗ANR

, (3.14)

which is precisely that of the reduced magic square. It is interesting to note that the off-

diagonal transformations of (3.13) take Yang-Mills fermions into Yang-Mills bosons, and

vice versa, but are bosonic generators in the supergravity theory. It is tempting to identify

these generators with QL ⊗ QR, where QL/R are the supercharges of the left and right

Yang-Mills theories, as this correctly reproduces basic structure of transformations (3.13).

However, the derivative in the supersymmetry transformations appears to spoil this corre-

spondence.

The full non-linear U-duality groups G are fixed by the field content and H symmetries,

as described in [42]. The groups we find are, of course, those of the magic square in table 1.

We summarise the theories of the D = 3 magic square in table 4.

3.3 Generalisation to D = 4, 6, 10

To generalise the results above to D = 4, 6, 10 we first consider the simplest example in

D = 4: tensoring two N = 1 SYM multiplets (Aµ, λ) to obtain N = 2 supergravity.

Counting the degrees of freedom (4×4 = 16) tells us that we must have a gravity multiplet

coupled to one hypermultiplet, so the field content we expect is: (gµν , 2Ψµ, Aµ, 2χ, 4φ).

We will square on-shell, so the Yang-Mills fields are represented by the complex numbers

(helicity states):

AL/R, λL/R ∈ CL/R. (3.15)
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ANL
\ANR

R C H O

N =2, f=4 N =3, f=8 N =5, f=16 N =9, f=32

R G=SL(2,R) G=SU(2, 1) G=USp(4, 2) G=F4(−20)

H=SO(2) H=SO(3)× SO(2) H=SO(5)× SO(3) H=SO(9)

N =3, f=8 N =4, f=16 N =6, f=32 N =10, f=64

C G=SU(2, 1) G=SU(2, 1)2 G=SU(4, 2) G=E6(−14)

H=SO(3)× SO(2) H=SO(3)2 × SO(2)2 H=SO(6)× SO(3)× SO(2) H=SO(10)× SO(2)

N =5, f=16 N =6, f=32 N =8, f=64 N =12, f=128

H G=USp(4, 2) G=SU(4, 2) G=SO(8, 4) G=E7(−5)

H=SO(5)× SO(3) H=SO(6)× SO(3)× SO(2) H=SO(8)× SO(3)× SO(3) H=SO(12)× SO(3)

N =9, f=32 N =10, f=64 N =12, f=128 N =16, f=256

O G=F4(−20) G=E6(−14) G=E7(−5) G=E8(8)

H=SO(9) H=SO(10)× SO(2) H=SO(12)× SO(3) H=SO(16)

Table 4. Pyramid base (D = 3 supergravity). The first row of each entry indicates the amount of

supersymmetry N and the total number of degrees of freedom f . The second (third) row indicates

the U-duality group G (the maximal compact subgroup H ⊂ G) and its dimension. The scalar

fields in each case parametrise the coset G/H, where dimR(G/H) = f/2.

Squaring and arranging into doublets of bosons and fermions then gives us the (C ⊗ C)2

valued objects:

B =

(
AL ⊗AR
λL ⊗ λR

)
and F =

(
AL ⊗ λR
λL ⊗AR

)
. (3.16)

Consider acting on these with L1(CL,CR) := tri(CL) ⊕ tri(CR) + CL ⊗ CR. A basis for

tri(CL) ∼= so(2)⊕ so(2) is given by the matrices(
i⊗ 1 0

0 i⊗ 1

)
,

(
i⊗ 1 0

0 −i⊗ 1

)
, (3.17)

while tri(CR) has (
1⊗ i 0

0 1⊗ i

)
,

(
1⊗ i 0

0 −1⊗ i

)
, (3.18)

and the CL ⊗ CR part consists of the four anti-Hermitian matrices(
0 1⊗ 1

−1⊗ 1 0

)
,

(
0 −i⊗ 1

−i⊗ 1 0

)
,

(
0 −1⊗ i

−1⊗ i 0

)
,

(
0 i⊗ i

−i⊗ i 0

)
. (3.19)

When working with C⊗ C it is convenient to define the quantities

1± :=
1

2
(1⊗ 1∓ i⊗ i), i± :=

1

2
(i⊗ 1± 1⊗ i), (3.20)

which each seperately behave like the basis of C:

i2± = −1±, 1±i± = i±, 12± = 1±, (3.21)
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but annihilate one another:4

1±1∓ = 0, 1±i∓ = 0, i±i∓ = 0. (3.22)

Rewriting the 8 matrices above in terms of this basis we obtain the following set:

i+1, i+σ
1, 1+ε, i+σ

3,

i−1, i−σ
1, 1−ε, i−σ

3,
(3.23)

where the sigmas and epsilon refer to the usual Pauli matrices (as opposed to the generalised

Pauli matrices defined previously):

σ1 =

(
0 1

1 0

)
, ε =

(
0 −1

1 0

)
, σ3 =

(
1 0

0 −1

)
. (3.24)

This set of matrices evidently generates SU(2)× SU(2)×U(1)×U(1) ∼= SO(4)× SO(2)×
SO(2), as stated in the magic square in table 2.

However, the original Yang-Mills theories have a symmetry under the transformations

δAL/R = iθSTAL/R, δψL/R =
1

2
iθSTψL/R + iθ

L/R
I ψL/R, (3.25)

where θST is the spacetime U(1)ST little group parameter and θ
L/R
I are those of the Yang-

Mills R-symmetries. Note that these correspond to tri(CL/R) ∼= so(2)⊕so(2). The variation

of the fermionic doublet under U(1)ST and the R-symmetries is thus

δF =

[
θST

(
i⊗ 1 0

0 1
2 i⊗ 1

)
+θST

(
1
21⊗ i 0

0 1⊗ i

)
+θLI

(
0 0

0 i⊗ 1

)
+θRI

(
1⊗ i 0

0 0

)]
F. (3.26)

Written in terms of the i± basis we find

δF =

[
θST

(
3

2
i+1 +

1

2
i−σ

3

)
+

1

2
θLI (1− σ3)(i+ + i−) +

1

2
θRI (1 + σ3)(i+ − i−)

]
F. (3.27)

What has emerged are the U(1)ST transformations for the gravitinos and spin-12 fermions

and two internal U(1) pieces. Since C⊗C is not a division algebra, it contains zero divisors;

it is interesting to note their role here in ensuring that the spin-32 and spin-12 fields each

receive their appropriate little group transformations. Now the largest symmetry that acts

on this doublet must be the subalgebra of L1(CL,CR) that commutes with these spacetime

generators. All the matrices commute with i+1, but i−σ
1 and 1−ε do not commute with

i−σ
3, so we are forced to discard these generators. The remaining matrices generate:

U(1)ST × (U(1)×U(1)× SU(2))U , (3.28)

where the subscript U denotes the maximal compact subgroup of the U-duality. This is

the entry found in the pyramid. Again, note how the gravitino transforms as a doublet

4The objects 1± act as projection operators dividing C⊗C into two 2-dimensional subspaces, on which

i± act as complex structures, so that C⊗C ∼= C⊕C.
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under the SU(2) but, because of the i+, the spin-12 fields are singlets, as required in the

supergravity theory. The Yang-Mills R-symmetries have been absorbed into the U-duality

group. A similar analysis for the bosonic fields in the theory shows that we do indeed

obtain a graviton, a vector and two scalars, which transform as a singlet, a singlet and

doublet under the SU(2), just as one would hope.

In the general case for D = n+ 2, we begin with a pair of Yang-Mills theories with NL
and NR supersymmetries written over the division algebras AnNL

and AnNR
, respectively.

Taking the little group fields we may then write all the bosons of the left (right) theory

as a single element BL ∈ AnNL
(BR ∈ AnNR

), and similarly for the fermions FL ∈ AnNL

(FR ∈ AnNR
). After tensoring we arrange the resulting supergravity fields into a bosonic

doublet and a fermionic doublet,

B =

(
BL ⊗BR
FL ⊗ FR

)
, F =

(
BL ⊗ FR
FL ⊗BR

)
, (3.29)

just as we did in D = 3. The largest algebra that can act on these doublets is

L1(AnNL
,AnNR

), but an so(An)ST subalgebra of this corresponds to spacetime trans-

formations, so we must restrict L1(AnNL
,AnNR

) to the subalgebra that commutes with

so(An)ST.

Similarly, for the full non-compact groups G it is, of course, a necessary condition

that the required subalgebra of L3(AnNL
,AnNR

) commutes with so(An)ST. Imposing this

condition actually turns out to be sufficient to find all the correct U-dualities. The Lie

algebra u of the U-duality group of a D = n+ 2 supergravity theory obtained by tensoring

Yang-Mills theories with NL and NR supersymmetries is thus given by:

u ∼= Pyr(An,AnNL
,AnNR

) :=
{
u ∈ L3(AnNL

,AnNR
)−so(An)ST

∣∣∣[u, so(An)ST]=0
}
. (3.30)

To evaluate this formula for different values of NL, NR and n, we require only to decom-

pose the adjoint representations of groups given by L3(AnNL
,AnNR

) under the SO(An)ST
subgroup and discard all pieces that transform non-trivially under SO(An)ST.

Locating the spacetime subgroup in the supergravity just amounts to tracking it back

to the Yang-Mills theories by decomposing tri(AnNL/R
) into sym(An,AnNL/R

). The sys-

tematic process for finding the U-dualities can then be summarised by the following recipe:

• Decompose tri(AnNL
)⊕ tri(AnNR

) into sym(An,AnNL
)⊕ sym(An,AnNR

),

• Identify SO(An)ST as the diagonal subgroup in SO(An)STL
× SO(An)STR

,

• Discard all generators that transform non-trivially under SO(An)ST.

For the maximal compact subgroups H, we just follow the same recipe with

L1(AnNL
,AnNR

). To extract the spacetime representations contained in the doublets B,F

we decompose the spinor and conjugate spinor representations of L1(AnNL
,AnNR

) with

respect to H × SO(An)ST. In the following we summarise each layer, demonstrating the

calculation of the U-duality and tabulating the resulting supergravities.
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D = 4 layer. As the archetypal example, consider squaring D = 4, N = 4 Yang-Mills

to obtain N = 8 supergravity, which we know should have E7(7) as its U-duality, with a

maximal compact subgroup of SU(8). Following the recipe above we decompose

E8(8) ⊃ SO(8)× SO(8) ⊃ SU(4)×U(1)× SU(4)×U(1)

248→
[
(15,1)00 + (1,1)00 + (1,15)00 + (1,1)00

+ (6,1)20 + (1,6)02 + (1,6)0−2 + (6,1)−20

+ (4,4)11 + (4,4)1−1 + (4,4)−11 + (4,4)−1−1
][

+ (4,4)11 + (4,4)1−1 + (4,4)−11 + (4,4)−1−1

+ (1,1)22 + (1,1)2−2 + (1,1)−22 + (1,1)−2−2

+ (1,6)20 + (6,1)02 + (6,1)0−2 + (1,6)−20 + (6,6)00
]
,

(3.31)

where we have split the compact and non-compact generators with the square brackets.

Adding and subtracting the U(1) charges, the first is the charge under U(1)ST, while the

second is an internal charge:

E8(8) ⊃ SO(8)× SO(8) ⊃ SU(4)×U(1)× SU(4)×U(1)

248→
[
(15,1)00 + (1,1)00 + (1,15)00 + (1,1)00

+ (6,1)22 + (1,6)2−2 + (1,6)−22 + (6,1)−2−2

+ (4,4)20 + (4,4)02 + (4,4)0−2 + (4,4)−20
][

+ (4,4)20 + (4,4)02 + (4,4)0−2 + (4,4)−20

+ (1,1)40 + (1,1)04 + (1,1)0−4 + (1,1)−40

+ (1,6)22 + (6,1)2−2 + (6,1)−22 + (1,6)−2−2 + (6,6)00
]
,

(3.32)

Discarding those generators carrying non-trivial U(1)ST charge along with U(1)ST itself,

we recognise the decomposition of E7(7) into SU(4)× SU(4)×U(1):

133→
[
(1,1)0 + (15,1)0 + (1,15)0 + (4,4)2 + (4,4)−2

]
+
[
(4,4)−2 + (4,4)2 + (1,1)4 + (1,1)−4 + (6,6)0

]
,

(3.33)

where we have suppressed the U(1)ST spacetime charges, which are all zero. The compact

pieces form the maximal compact subgroup SU(8):

SU(8) ⊃ SU(4)× SU(4)×U(1)

63→ (1,1)0 + (15,1)0 + (1,15)0 + (4,4)2 + (4,4)−2.
(3.34)

To extract the field content we simply decompose the 128 (B) and 128′ (F ) of SO(16)

with respect to SU(8)×U(1)ST:

128 → 14 + 1−4 + 282 + 28−2 + 700

128′ → 83 + 8−3 + 561 + 56−1,
(3.35)

which yields the expected supermultiplet:5 (gµν , 8Ψµ, 28Aµ, 56χ, 70φ). Repeating this pro-

cess for the other theories in D = 4 gives table 5. These theories were previously obtained

5Further branching the SU(8) representations above with respect to SU(4) × SU(4) we can see their

Yang-Mills origins more clearly.
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A2NL\A2NR C H O

N = 2, f = 16 N = 3, f = 32 N = 5, f = 64

C G = U(1, 2) G = U(1, 3) G = SU(1, 5)

H = U(1)×U(2) H = U(1)×U(3) H = U(5)

N = 3, f = 32 N = 4, f = 64 N = 6, f = 128

H G = U(1, 3) G = SL(2,R)× SO(6, 2) G = SO?(12)

H = U(1)×U(3) H = U(1)×U(4) H = U(6)

N = 5, f = 64 N = 6, f = 128 N = 8, f = 256

O G = SU(1, 5) G = SO?(12) G = E7(7)

H = U(5) H = U(6) H = SU(8)

Table 5. First floor of pyramid (D = 4 supergravity). The first row of each entry indicates the

amount of supersymmetry N and the total number of degrees of freedom f . The second (third)

row indicates the U-duality group G (the maximal compact subgroup H ⊂ G) and its dimension.

The scalar fields in each case parametrise the coset G/H.

in [10] by consistently truncating to the untwisted sector of the low-energy effective field

theory of type II superstrings on factorised orbifolds, revealing their double-copy struc-

ture. The magic D = 4, N = 2 supergravities were also discussed in this context. In

particular, the quarternionic theory originates from a non-factorisable Z2-orbifold com-

pactification [10].

D = 6 layer. In D = 6 the spacetime little group is SO(4)ST ∼= Sp(1)+ST × Sp(1)−ST,

and the Yang-Mills multiplets available are (N+,N−) = (1, 0), (0, 1), (1, 1), written over

H,H,O, respectively. Here we summarise the tensoring of these multiplets. For

[(N+,N−)LSYM]× [(N+,N−)RSYM] (3.36)

we have:

[(1, 1)LSYM]× [(1, 1)RSYM] = [(2, 2)sugra]

[(1, 1)LSYM]× [(0, 1)RSYM] = [(1, 2)sugra]

[(1, 0)LSYM]× [(1, 0)RSYM] = [(2, 0)sugra + (2, 0)tensor]

(3.37)

The details of the above tensorings are given in section A. See also [14]. The chiral

(1, 2)sugra is anomalous and adding the required compensating matter extends the the-

ory to (2, 2)sugra [59]. Similarly, the [(2, 0)sugra + (2, 0)tensor] theory is anomalous since the

unique anomaly free N = (2, 0) theory consists of one (2, 0)sugra multiplet coupled to 21

(2, 0)tensor multiplets as obtained by compactifying D = 10 Type IIB supergravity on a K3.

The additional 20 (2, 0)tensor multiplets required to cancel the anomaly can be included by

considering an alternative tensoring with NL = (2, 0) and NR = (0, 0),

[(2, 0)Ltensor]× [B−Rµν + 21φR] = [(2, 0)sugra + 21(2, 0)tensor], (3.38)

where B−Rµν is anti-selfdual and transforms as a (1,3) under the space-time little group.
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Note, we could have also chosen the left/right N = 1 multiplets to have opposite

chiralities yielding,

[(1, 0)LSYM]× [(0, 1)RSYM] = [(1, 1)sugra]. (3.39)

To demonstrate the calculation of the U-duality groups, consider the maximal case,

[(1, 1)LSYM]× [(1, 1)RSYM] = [(2, 2)sugra]. Following the recipe gives

E8(8) ⊃SO(8)×SO(8)⊃Sp(1)+STL
×Sp(1)−STL

×Sp(1)×Sp(1)×Sp(1)+STR
×Sp(1)−STR

×Sp(1)×Sp(1)

248→
[
(3,1,1,1,1,1,1,1)+(1,3,1,1,1,1,1,1)+(1,1,3,1,1,1,1,1)+(1,1,1,3,1,1,1,1)

+(1,1,1,1,3,1,1,1)+(1,1,1,1,1,3,1,1)+(1,1,1,1,1,1,3,1)+(1,1,1,1,1,1,1,3)

+(1,2,2,1,1,2,2,1)+(1,2,2,1,2,1,1,2)+(2,1,1,2,1,2,2,1)+(2,1,1,2,2,1,1,2)

+(2,2,2,2,1,1,1,1)+(1,1,1,1,2,2,2,2)
]

+
[
(2,2,1,1,2,2,1,1)+(2,2,1,1,1,1,2,2)+(1,1,2,2,2,2,1,1)+(1,1,2,2,1,1,2,2)

+(2,1,2,1,2,1,2,1)+(2,1,2,1,1,2,1,2)+(1,2,1,2,2,1,2,1)+(1,2,1,2,1,2,1,2)
]
,

(3.40)

where, as before, the square brackets partition the generators into those that live in the

maximal compact subgroup and those that do not. Once again, it appears that we have

two copies of the spacetime little group; we must take the diagonal subgroup: Sp(1)+STL
×

Sp(1)−STL
× Sp(1)+STR

× Sp(1)−STR
→ Sp(1)+ST× Sp(1)−ST. This means we tensor product the

representations appearing in the corresponding slots (that is, we identify the first slot with

the fifth and identify the second with the sixth), leading to:

E8(8) ⊃ Sp(1)+ST × Sp(1)−ST × Sp(1)× Sp(1)× Sp(1)× Sp(1)

248→
[
(3,1,1,1,1,1)+(3,1,1,1,1,1) + (1,3,1,1,1,1) + (1,3,1,1,1,1)

+ (1,1,3,1,1,1)+(1,1,1,3,1,1) + (1,1,1,1,3,1) + (1,1,1,1,1,3)

+ (1,3,2,1,2,1)+(1,1,2,1,2,1) + (2,2,2,1,1,2) + (2,2,1,2,2,1)

+ (3,1,1,2,1,2)+(1,1,1,2,1,2) + (2,2,2,2,1,1) + (2,2,1,1,2,2)
]

+
[
(3,3,1,1,1,1)+(1,3,1,1,1,1) + (3,1,1,1,1,1) + (1,1,1,1,1,1)

+ (2,2,1,1,2,2)+(2,2,2,2,1,1) + (1,1,2,2,2,2)

+ (3,1,2,1,2,1)+(1,1,2,1,2,1) + (2,2,2,1,1,2)

+ (2,2,1,2,2,1)+(1,3,1,2,1,2) + (1,1,1,2,1,2)
]
,

(3.41)

where the first and second slots label Sp(1)+ST × Sp(1)−ST. Truncating all pieces that are

not spacetime singlets we find the remaining generators are those of the following decom-

position:

SO(5, 5) ⊃SO(5)× SO(5) ⊃ Sp(1)× Sp(1)× Sp(1)× Sp(1)

45→
[
(3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,1,2,1) + (1,2,1,2)

]
+
[
(2,2,2,2) + (2,1,2,1) + (1,2,1,2) + (1,1,1,1)

]
. (3.42)

Note that the generators in the first pair of square brackets belong to the maximal compact

subgroup SO(5)×SO(5), and those in the second pair are all non-compact, so we do indeed
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A4NL\A4NR H O

N = (1, 1), f = 64 N = (1, 2), f = 128

H G = Sp(1)× Sp(1)×O(1, 1) G = SU?(4)× Sp(1)

H = Sp(1)× Sp(1) H = Sp(1)× Sp(2)

N = (2, 1), f = 128 N = (2, 2), f = 256

O G = SU?(4)× Sp(1) G = SO(5, 5)

H = Sp(2)× Sp(1) H = Sp(2)× Sp(2)

Table 6. Second floor of pyramid (D = 6 supergravity). The first row of each entry indicates the

amount of supersymmetry N and the total number of degrees of freedom f . The second (third)

row indicates the U-duality group G (the maximal compact subgroup H ⊂ G) and its dimension.

The scalar fields in each case parametrise the coset G/H.

find the maximally non-compact real form SO(5, 5), familiar from the dimensional reduction

of Type II supergravity on T 4.

Applying this procedure to the other two slots in D = 6 we recover table 6, where we

have chosen to tensor SYM mutiplets of opposite chiralities in the H⊗H case, resulting in

pure N = (1, 1) supergravity with G/H given by Sp(1) × Sp(1) × O(1, 1)/ Sp(1) × Sp(1).

On the other hand, for matching chiralities we obtain N = (2, 0) supergravity coupled to

a single tensor multiplet with G/H given by Sp(2)×O(1, 1)/Sp(2).

Although we do not consider them directly here, it should be noted that the magic

D = 6, N = (1, 0) supergravities (which come coupled to 2, 3, 5, 9 tensor multiplets and

2, 4, 8, 16 vector multiplets, respectively, as well as hypers) are closely related to the magic

square and constitute the parent theories of the magic D = 5, 4, 3 supergavities. See [60]

and the references therein.

D = 10 layer. In D = 10 we just have N = 1 SYM over O, whose on-shell field content

is a pair of octonions: a vector 8v and spinor 8s or 8c of SO(8)ST. When each Yang-Mills

theory contains an 8s we apply the recipe as above:

E8(8) ⊃SO(8)STL
× SO(8)STR

248→
[
(28,1) + (1,28) + (8c,8c)

]
+
[
(8s,8s) + (8v,8v)

]
,

(3.43)

where, once again, we use square brackets to divide the generators into those that belong

to the maximal compact subgroup SO(16) and those that do not. We should again take the

diagonal subgroup in SO(8)STL
× SO(8)STR

, taking tensor products of the representations

appearing in the two slots:

E8(8) ⊃SO(8)ST

248→
[
28 + 28 + 1 + 28c + 35c

]
+
[
1 + 28s + 35s + 1 + 28v + 35v

]
.

(3.44)

Discarding all but the spacetime singlets leaves us with a copy of SL(2,R) decomposed

into the trivial group,

3→
[
1] + [1 + 1

]
, (3.45)

so we recover the familiar SL(2,R) U-duality of Type IIB supergravity.
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A8NL\A8NR O

N = 2 (IIA), f = 256

O G = O(1, 1)

H = 1

A8NL\A8NR O

N = 2 (IIB), f = 256

O G = SL(2,R)

H = SO(2)

Table 7. Magic square of D = 10 supergravity theories. The left-hand (right-hand) table is

obtained by tensoring SYM of opposing (matching) chiralities, which is equivalent to applying a

triality to the magic pyramid formula. Of course, there is no room for matter couplings in D = 10.

To obtain Type IIA we just exchange 8s ↔ 8c in the right-hand slots of eq. (3.43):

E8(8) ⊃SO(8)STL
× S̃O(8)STR

248→
[
(28,1) + (1,28) + (8c,8s)

]
+
[
(8s,8c) + (8v,8v)

]
,

(3.46)

which becomes

E8(8) ⊃SO(8)ST

248→
[
28 + 28 + 8v + 56v

]
+
[
8v + 56v + 1 + 28v + 35v

]
,

(3.47)

leaving a single non-compact 1 to generate O(1, 1). This is the correct U-duality, since

there is only a single scalar in Type IIA, which lives on the scalar manifold R ∼= O(1, 1)/1.

See table 7.

3.4 Complex and quaternionic structures

It is interesting to look at the magic pyramid of maximal compact subgroups, shown in

figure 5. The striking feature is that the D = 3 square is built from orthogonal groups, the

D = 4 square from unitary groups and the D = 6 square from symplectic groups. This

is no mere coincidence: SO(N) is the group of rotations in a real N -dimensional space,

U(N) is the group of rotations in a complex N -dimensional space and Sp(N) is the group

of rotations in a quaternionic N -dimensional space [34, 61],

so(N) = {X ∈ R[N ] | X† = −X},
u(N) = {X ∈ C[N ] | X† = −X},
sp(N) = {X ∈ H[N ] | X† = −X},

(3.48)

where A[N ] denotes the set of N×N matrices with entries6 in A. Note that (up to factors of

SO(3) and SO(2)) as we climb the dotted lines of the pyramid, corresponding to dimensional

oxidation, the maximal compact subgroups go as SO(ND=3) = SO(2ND=4) → SU(ND=4)

when ascending from D = 3 to D = 4. These groups are of course the supergravity R-

symmetries: SO(N ) in D = 3 and SU(N ) in D = 4. The R-symmetry groups are the

automorphisms of the supersymmetry algebra, with the supercharges Q transforming in

the defining representation. Restricting the D = 3 symmetries by demanding that they

6Incidentally, this explains our insistence on referring to SU(2) as Sp(1), the group generated by 1 × 1

anti-Hermitian quaternionic matrices.
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Figure 5. Magic pyramid of maximal compact subgroups.

commute with the single generator J of u(1)ST amounts to demanding that the generators

of SO(2ND=4) commute with a complex structure, as J satisfies J2Q = −1Q. From this

point of view it is clear why we find SO(2ND=4)→ SU(ND=4), since in general

u(N) ∼=
{
u ∈ so(2N)

∣∣∣[u, J ] = 0, J2 = −1, J ∈ so(2N)
}
, (3.49)

where the U(1) factor of U(N) ∼= SU(N) × U(1) is generated by the complex structure

J itself. In our case the complex structure is the generator of the spacetime little group

U(1)ST.

To understand the different R-symmetry groups as we ascend from D = 3 to D = 6

we require the notion of a quaternionic structure. This is a triple of 4N × 4N matrices J1,

J2 and J3 := J1J2 satisfying the quaternion algebra:

JiJj = −δij1 + εijkJk, i = 1, 2, 3, (3.50)

which we find belong to the Lie algebra so(4N). Just as U(N) may be seen as the subgroup

of SO(2N) that commutes with a complex structure, symplectic groups are the subgroups

of SO(4N) that commute with the Ji:

sp(N) ∼=
{
u∈so(4N)

∣∣∣[u, J1]=[u, J2]=0, J2
1 =J2

2 =−1, , J1J2=−J2J1, J1, J2 ∈ so(4N)
}

(3.51)

(note that the conditions on J1,2 in the curly brackets are enough to ensure that (3.50) is sat-

isfied). Just as the complex structure J generates u(1), the quaternionic structure matrices
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Ji themselves generate a copy of sp(1), on account of (3.50), which by construction com-

mutes with the sp(N). In D = 6 the spacetime little group is SO(4)ST ∼= Sp(1)+ST×Sp(1)−ST,

and we can understand each of these Sp(1) factors as being generated by a quaternionic

structure. For example, in the maximal (N+,N−) = (2, 2) supergravity we have 16 super-

charges, divided equally between the two chiralities, splitting the possible SO(16) group

of transformations into SO(8)× SO(8). Putting a quaternionic structure on each of these

SO(8) factors leaves us with an overall symmetry Sp(2)× Sp(2)× Sp(1)+ST × Sp(1)−ST.

3.5 S-duality of N = 4 SYM and supergravity

When the tensor product involves at least one N = 4 SYM multiplet, it is tempting to

speculate that the exact SL(2,Z) S-duality of N = 4 SYM contributes to the S-duality of

the resulting supergravity. See for example [62]. How this might actually work remains

unclear, especially given the exchange of the gauge group for its GNO (Goddard, Nuyts,

and Olive) dual7 [63]. However, a minimal consistency requirement can be checked. The

SL(2,Z)S S-duality of supergravity acts nontrivially on the NS-NS sector gauge potentials

and their duals, which together transform as doublets. The RR sector potentials and

their duals are, on the other hand, singlets. The NS-NS potentials are identified as those

originating from φL ⊗ ARν and ALµ ⊗ φR products, while the RR sector potentials come

from spinor-spinor products λL⊗λR (consistent with the familiar type II story in D = 10).

This yields the following counting of NS-NS and RR potentials and dual potentials,

[N = 4]R [N = 2]R [N = 1]R [N = 0]R

[N = 4]L 2×12 + 2×16 2×8 + 2×8 2×6 + 2×4 2×6 + 0

[N = 2]L 2×4 + 2×4 2×2 + 2×2 2×2 + 0

[N = 1]L 0 + 2×1 0 + 0

[N = 0]L 0 + 0

(3.52)

Decomposing the U-duality representations carried by the gauge potentials and their

duals under the product of S and T dualities we have,

[N = 4]R [N = 2]R [N = 1]R [N = 0]R

[N = 4]L

E7(7) ⊃
SL(2)× SO(6, 6)

56→
(2,12) + (1,32)

SO?(12) ⊃
SL(2)× SO(3)× SO(2, 6)

32→
(2,1,8s) + (1,2,8c)

SU(1, 5) ⊃
SL(2)× SO(2)× SO(6)

20→
(2,6)0 + (1,4)3 + (1, 4̄)−3

SL(2)× SO(6) ⊃
SL(2)× SO(6)

(2,6)→
(2,6)

[N = 2]L

SL(2)× SO(6, 2) ⊃
SL(2)S × SL(2)2 × SU(2)2

(2,8)→
(2,2,2,1,1) + (1,2,1,2,2)

U(1, 3) ⊃
SL(2)×U(1)×U(2)

4→
(2,1)1 + (1,2)−1

SL(2)× SO(2) ⊃
SL(2)× SO(2)

21 + 2−1 →
21 + 2−1

[N = 1]L

U(1, 2) ⊃
SL(2)×U(1)

11 + 1−1 →
11 + 1−1

SL(2) ⊃
SL(2)

−

[N = 0]L

SL(2) ⊃
SL(2)

−

(3.53)

7One possibility is that the left/right gauge groups must be GNO duals. We thank Neil Lambert for

sharing this suggestion.
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demonstrating a splitting of the potentials into their NS-NS and RR sectors consistent with

their tensor origin.

Note, the SL(2,R) factor appearing in the U-duality of [N = 2]L ⊗ [N = 2]R, which

yields N = 4 supergravity coupled to two vector multiplets, is not, as one might naturally

assume, the S-duality group since it mixes NS-NS and RR, as can be checked by regarding

it as a consistent truncation of N = 8 supergravity. However, the SL(2,R) S-duality inside

E7(7) is retained inside the SO(6, 2) factor of the N = 4 theory since SL(2,R) × SO(6, 2)

is not a subgroup of SO(6, 6). Of course, the strong-weak dualities of N = 2 SYM theories

are not exact8 and, as such, their role in this context is even less clear.

4 The conformal magic pyramid

Rather than uniformly tensoring SYM in each dimension we may consider instead the

conformal theories: CSm in D = 3, SYM in D = 4 and tensor multiplets in D = 6. It is

not clear what the appropriate theory should be in D = 10 and we leave this question for

future work.

The tensorings of CSm and SYM in D = 3 yield the same results so it is only the

tensor multiplets in D = 6 that we need to treat here. As for left/right SYM, composing

tensor multiplets with opposing chiralities we obtain pure supergravity,

[(2, 0)Ltensor]× [(0, 2)Rtensor] = [(2, 2)sugra],

[(2, 0)Ltensor]× [(0, 1)Rtensor] = [(2, 1)sugra],

[(1, 0)Ltensor]× [(0, 1)Rtensor] = [(1, 1)sugra],

(4.1)

reproducing table 6.

On the other hand, for left/right tensor multiplets with matching chiralities we ob-

tain the exotic non-gravitational SD-Weyl (self-dual-Weyl) multiplets coupled to tensor

multipets,

[(2, 0)Ltensor]× [(2, 0)Rtensor] = [(4, 0)SD-Weyl]

[(2, 0)Ltensor]× [(1, 0)Rtensor] = [(3, 0)SD-Weyl]

[(1, 0)Ltensor]× [(1, 0)Rtensor] = [(2, 0)SD-Weyl] + [(2, 0)tensor].

(4.2)

The [(2, 0)Ltensor]× [(2, 0)Rtensor] = [(4, 0)SD-Weyl] squaring is given explicitly in table 12. This

theory is developed in some detail in [46, 47]. It is non-gravitational with highest spin field

transforming as the (5,1) of the little group Sp(1)+ST × Sp(1)−ST. The terminology “SD-

Weyl” derives from the fact that the (5,1) representation has the symmetry properties of

a four-dimensional Euclidean self-dual Weyl tensor when written with SO(4) indices, as

described in [46].

8Unless they come coupled to extra matter multiplets. For example, the SU(2) N = 2 SYM coupled to

four hypermultiplets transforming in the fundamental is believed to be exact [64].
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The scalars of the SD-Weyl multiplets appearing in (4.2) parameterise the following

cosets

[(4, 0)SD-Weyl]
E6(6)

Sp(4)
,

[(3, 0)SD-Weyl]
SU?(6)

Sp(3)
,

[(2, 0)SD-Weyl] + [(2, 0)tensor]
O(5, 1)

Sp(2)
.

(4.3)

Hence, by exchanging SYM multiplets with tensor multiplets the D = 6 level of the pyramid

is adjusted,

SO(5, 5)

Sp(2)× Sp(2)
−→

E6(6)

Sp(4)

SU?(4)× Sp(1)

Sp(2)× Sp(1)
−→ SU?(6)

Sp(3)

Sp(1)2 ×O(1, 1)

Sp(1)2 ×Z2
−→ O(5, 1)

Sp(2)

(4.4)

while the remaining levels are left unchanged. Interestingly, this has the consequence that

the exterior faces of the pyramid, as presented in figure 3, are given by the original magic

square cut across its diagonal.

An intriguing property of the tensor multiplets and SD-Weyl multiplets above is that

every field is a scalar under Sp(1)−ST, so the spacetime symmetry is essentially just Sp(1)+ST
as long as we multiply tensor multiplets of a single chirality.9 Mathematically the conformal

pyramid is perhaps the most natural, since we can understand:

• the D = 4 square as the Freudenthal-Rosenfeld-Tits magic square restricted to the

subgroups that commute with a complex structure

• the D = 6 square as the Freudenthal-Rosenfeld-Tits magic square restricted to the

subgroups that commute with a single quaternionic structure (as opposed to the pair

of quaternionic structures we found for the SYM-squared pyramid).

See figure 6. From this perspective a method for obtaining the (1, 0) tensor multiplet

B+ ∈ Im H ∼ (3,1), φ ∈ Re H ∼ (1,1), λ ∈ H ∼ (2,2) of Sp(1)+ST × Sp(1) (4.5)

from the (1, 0) Yang-Mills multiplet

A ∈ H ∼ (2,2,1), λ ∈ H ∼ (2,1,2) of Sp(1)+ST × Sp(1)−ST × Sp(1) (4.6)

9Up until this point we have not mentioned D = 5, but we note an interesting point about it here.

Since the non-trivial little group in the D = 6 chiral theories is Sp(1)+ST, it becomes clear why the maximal

[(4, 0)SD-Weyl ] theory in D = 6 and the maximal supergravity in D = 5 both have have E6(6) as their U-

duality groups: both may be obtained by restricting E8(8) to the subgroup that commutes with SO(3)ST ∼=
Sp(1)+ST.
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would be to identify Sp(1)+ST ∼ Sp(1)−ST and tensor product: 2 × 2 = 3 + 1. So when

A4N = H the tensor multiplet is just that of Yang-Mills with positive and negative chiral-

ities identified. The group Sp(1)+ just acts as orthogonal transformations on Im H. For

the (2, 0) tensor multiplet, A4N = O, we have an Sp(1)+ST×Sp(2) overall symmetry (which

simply comes from restricting SO(8) to the subgroup commuting with a quaternionic struc-

ture). This motivates the following definition of s̃ym, our notation for the overall symmetry

algebras of the conformal theories in D = 3, 4, 6:

s̃ym(An,AnN ) :=
{

(A,B,C) ∈ tri(AnN )| [A, gST] = 0 ∀A /∈ gST
}
, (4.7)

where a, b ∈ AnN and gST is the subalgbra of so(AnN ) that acts as orthogonal trans-

formations on An ⊂ AnN when n 6= 4 and acts as othogonal transformations on

Im An = Im H ⊂ A4N when n = 4. The fact that this definition is not democratic

in the division algebras might seem unnatural, but the special treatment for H just rep-

resents the additional requirement that the D = 6 theories be completely chiral; the

resulting algebras agree with sym in D = 3, 4 but s̃ym(H,H) ∼= sp(1)ST ⊕ sp(1) and

s̃ym(H,O) ∼= sp(1)ST ⊕ sp(2).

The U-dualities u of the conformal pyramid are then given by

u ∼= ConfPyr(An,AnNL
,AnNR

) :=
{
u ∈ L3(AnNL

,AnNR
)− gST

∣∣∣[u, gST] = 0
}
. (4.8)

In practice we find the groups of the conformal pyramid (in D = 3, 4, 6) using the following

method:

• Decompose tri(AnNL
)⊕ tri(AnNR

) into s̃ym(An,AnNL
)⊕ s̃ym(An,AnNR

),

• Identify gST as the diagonal subalgebra of gSTL
⊕ gSTR

,

• Discard all generators that transform non-trivially under the spacetime symme-

tries gST.

Once again, to find the maximal compact subgroups we just replace L3(AnNL
,AnNR

) with

L1(AnNL
,AnNR

) in the above. While this method does not tell us how to obtain the U-

duality in D = 10, we venture some speculations on this matter as part of our closing

remarks in section 5.

4.1 Barton-Sudbery-style formula

For the compact subgroups h it is instructive to look at which generators in each of the

three terms of L1(AnNL
,AnNR

) := tri(AnNL
)⊕ tri(AnNR

)+(AnNL
⊗AnNR

) commute with

gST. For the first two terms,

[tri(AnNL
)⊕ tri(AnNR

), gST] = 0 (4.9)

is solved by

int(AnNL
)⊕ δ2nu(1)STL

⊕ int(AnNR
)⊕ δ2nu(1)STR

, (4.10)
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Figure 6. Conformal magic pyramid of maximal compact subgroups.

where

int(An,AnNL/R
) = s̃ym(An,AnNL/R

)	 gSTL/R
. (4.11)

The δ2nu(1)STL/R
terms come from the fact that when n = 2, gST ∼= u(1) and so commutes

with itself. The group we identify as spacetime in the supergravity theory is the diagonal

subgroup of the left and right spacetime groups; subtracting this we are left with

int(AnNL
)⊕ int(AnNR

)⊕ δ2nu(1). (4.12)

Finally we denote the solution to

[AnNL
⊗AnNR

, gST] = 0 (4.13)

(slightly schematically) by

An(ANL
⊗ANR

) (4.14)

since its dimension is nNLNR, and this notation captures its essence; we have made AnNL/R

look like ∼ AnANL/R
, and then brought the left and right pieces together, identifying a

diagonal An algebra. Putting all of this together we arrive at a Barton-Sudbery-style

formula for the compact subgroups of the conformal pyramid

h = int(An,AnNL
)⊕ int(An,AnNR

) + An(ANL
⊗ANR

) + δ2nu(1), (4.15)

which allows one to build up the symmetries of the squared theories from those of the

left/right conformal theories.
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5 Conclusions

We began with the observation developed in [41] that N = 2m-extended SYM theories

in D = n + 2 spacetime dimensions may be formulated with a single Lagrangian and

single set of transformation rules, but with spacetime fields valued in AnN . This per-

spective reveals a role for the triality algebras; once the fields are regarded as division

algebras consistency with supersymmetry constrains the possible space of transformations

to sym(An,AnN ) ⊆ tri(AnN ).

Tensoring left/right SYM multiplets valued in AnNL/R
then naturally leads us to NL+

NR supergravity multiplets with spacetime fields valued in AnNL
⊗AnNR

. For D = 1 + 2

this yields a set of supergravities with U-duality groups given by the magic square of

Freudenthal-Rosenfeld-Tits. For n = 2, 4, 8, identifying a common spacetime subalgebra

An truncates the magic square to a 3×3, 2×2, and 1×1 array of subalgebras, corresponding

precisely to the U-dualities obtained by tensoring SYM in D = 4, 6 and 10, respectively.

Together the four ascending squares constitute a magic pyramid of algebras defined by

the magic pyramid formula (3.30). The exceptional octonionic row and column of each

level is constrained by supersymmetry to give the unique supergravity multiplet. On the

other hand, the interior 3 × 3, 2 × 2, 1 × 1 and 0 × 0 squares can and do admit matter

couplings. These additional matter multiplets are just as required to give the U-dualities

predicted by the pyramid formula. Interestingly, in these cases the degrees of freedom are

split evenly between the graviton multiplet and the matter multiplets, the number of which

is determined by the rule10 k = min(NL,NR).

The magic pyramid supergravity theories are rather non-generic. Not only are they,

in a sense, defined by the magic pyramid formula, they are also generated by tensoring the

division algebraic SYM multiplets. It would therefore be interesting to explore whether

they collectively possess other special properties, particularly as quantum theories, which

can be traced back to their magic square origins. For example, in the maximal [NL =

4 SYM] × [NR = 4 SYM] case it has been shown that N = 8 supergravity is four-loop

finite [5], a result which cannot be attributed to supersymmetry alone. While N = 8 is

expected to have the best possible UV behaviour, as suggested by its connection to N = 4

SYM, it could still be that the remaining magic square supergravities share some structural

features due to their common gauge × gauge origin and closely related global symmetries.

Conversely, one might also seek extensions of the magic pyramid construction which

could account for more generic supergravities. The magic supergravities of Gunaydin,

Sierre and Townsend [54, 55], for example, admit at least one obvious generalisation using

the family of spin-factor Jordan algebras, suggesting a possible extension of the present

construction by incorporating matter multiplets.

Let us return to the present treatment, now in the conformal case. In section 4 we saw

that tensoring the conformal theories inD = 3, 4, 6 resulted in a pyramid with the intriguing

feature that its exterior faces are given by the Freudenthal-Rosenfeld-Tits square cut across

its diagonal. In particular, ascending up the maximal spine one encounters the famous

10We thank Andrew Thomson for pointing out this rule. Note the subtlety in D = 6 that one must treat

N+ and N− separately. Hence, for example, [(1, 0)]× [(0, 1)] has k = 0.
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exceptional sequence E8(8), E7(7), E6(6), but where E6(6) belongs to the exotic (4, 0) theory

in D = 6. This pattern suggests the existence of some highly exotic D = 10 theory with

F4(4) U-duality group.11 We would naturally require it to dimensionally reduce to the (4, 0)

theory in D = 6 on some non-trivial manifold (orbifold), consistent with scalars living in

E6(6)/ Sp(4) and F4(4)/ Sp(3)×Sp(1) inD = 6 and 10, respectively. TheD = 6 supercharges

transform as the 8 of Sp(4), which breaks to the (6,1) + (1,2) of Sp(3) × Sp(1), leaving

N = 2, 6, 8 as possibilities in D = 10. Naively at least, N = 2 is ruled out by the

standard classification of supermultiplets [65, 66] due to the assumption that it may be

dimensionally reduced to D = 6, N = (4, 0), since this would imply fields of helicity greater

than 2 when dimensionally reducing on a 6-torus. If, however, the F4(4) theory had some

exotic dynamics which broke the usual spacetime little group to some subgroup this logic

may not hold. Taking into account the desired F4(4), this line of reasoning suggests a G2

little group as one possibility. These avenues will be explored elsewhere.

There is, however, an obvious alternative interpretation of the conformal pyramid

including its F4(4) tip. The (4, 0) theory in D = 6 with E6(6) U-duality reduces on a circle

to D = 5, N = 8 supergravity, again with E6(6) U-duality. The same result holds for

the remaining three slots of the D = 6 square; they each reduce to a D = 5 supergravity

theory with very same U-duality group. This is a consequence of the fact that the D = 6

fields are singlets under the second factor of the little group Sp(1)×Sp(1), which therefore

effectively reduces to the D = 5 little group Sp(1). Each of the resulting D = 5 theories

may be obtained by squaring. Hence, figure 3 may be regarded as a squashed pyramid of

U-dualities for theories in D = 3, 4, 5, 6. The apex is now given by the D = 6,N = (3, 1)

theory, obtained from [(2, 0)Ltensor]×[(1, 1)Rvector], with G/H given by F4(4)/ Sp(3)×Sp(1), as

expected. Note, however, this multiplet contains gravitini but no graviton and is therefore

not expected to define a consistent interacting theory.

We conclude with some brief remarks on the geometrical interpretation of the magic

pyramid. When we made the observation that the U-dualities of the magic pyramid could

be regarded as the isometries of the Lorentzian projective planes (ANL
⊗ ANR

)P2 (or

submanifolds thereof), this was meant rather loosely in the cases of H⊗O and O⊗O, as

they do not obey the axioms of projective geometry. Unlike R⊗O, H⊗O and O⊗O are

not division preventing a direct projective construction and (unlike C⊗O) Hermitian 3×3

matrices over H⊗O or O⊗O do not form a simple Jordan algebra, so the usual identification

of points (lines) with trace 1 (2) projection operators cannot be made [34]. Nonetheless,

they are in fact geometric spaces, generalising projective spaces, known as “buildings”, on

which the U-dualities act as isometries. Buildings where originally introduced by Jacques

Tits to provide a geometric approach to simple Lie groups, in particular the exceptional

cases, but have since had far reaching implications. See, for example, [67, 68] and the

references therein. Of course, it has long been known that increasing supersymmetry

restricts the spaces on which the scalar fields may live, as comprehensively demonstrated

11Note, F4(4)/ Sp(3) × Sp(1) also appears in three dimensions as the scalar coset of the N = 4 magic

supergravity coupled to six vector multiplets. It corresponds to dimensional reduction of the D = 4,N = 2

magic supergravity based on the Jordan algebra of 3× 3 real Hermitian matrices [55]. We thank one of the

referees for bringing this observation to our attention.
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for D = 3 in [42]. Here we see that these restrictions lead us to the concept of buildings.

It may be of interest to examine whether this relationship between supersymmetry and

buildings has some useful implications.
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A D = 6 tensoring tables

In tables 8, 9 and 11 we perform the D = 6 SYM squaring on-shell to arrive at the

supergravity and matter content. In each table the fields are shown together with their little

group SO(4) ∼= Sp(1)+× Sp(1)− representations. Note, we restrict to the semi-simple part

of the full little group for massless states. The [(2, 0)Ltensor] × [(2, 0)Rtensor] = [(4, 0)SD-Weyl]

tensoring is given as an example in table 12. The little group representations appearing in

the left-handed SD-Weyl multiplets are given by (n,1), where n = 1,2, . . .5. These irreps

are carried by totally symmetric rank n− 1 tensors of Sp(1)+:

(3,1) B+
(A1A2)

; (4,1) C+
(A1A2A3)

; (5,1) D+
(A1A2A3A4)

. (A.1)

The multiplicities are given by the dimension of the R-symmetry representation of the fields.

Consulting table 12 we see that there are 27 self-dual two-form field strengths trans-

forming as the fundamental 27 of E6(6). There are 42 scalars parametrising E6(6)/Sp(4).

The fermonic fields, C+ and λ+, transform as the 8 and 48 of Sp(4) respectively.

Aµ
(2,2)

2λ+

2(2,1)

2λ−

2(1,2)

4φ

4(1,1)

Aµ
(2,2)

gµν + B+
µν +B−µν + ϕ

(3,3) + (3,1) + (1,3) + (1,1)

2[Ψ−µ + χ−]

2[(3,2) + (1,2)]

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

4Aµ
4(2,2)

2λ+

2(2,1)

2[Ψ−µ + χ−]

2[(3,2) + (1,2)]

4[ϕ + B+
µν ]

4[(1,1) + (3,1)]

4Aµ
4(2,2)

8χ+

8(2,1)

2λ−

2(1,2)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

4Aµ
4(2,2)

4[ϕ + B−µν ]

4[(1,1) + (1,3)]

8χ−

8(1,2)

4φ

4(1,1)

4Aµ
4(2,2)

8χ+

8(2,1)

8χ−

8(1,2)

16ϕ

16(1,1)

Table 8. D = 6, [(1, 1)LSYM]× [(1, 1)RSYM] = [(2, 2)sugra].
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Aµ
(2,2)

2λ−

2(1,2)

Aµ
(2,2)

gµν + B+
µν +B−µν + ϕ

(3,3) + (3,1) + (1,3) + (1,1)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

2λ+

2(2,1)

2[Ψ−µ + χ−]

2[(3,2) + (1,2)]

4Aµ
4(2,2)

2λ−

2(1,2)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

4[ϕ + B−µν ]

4[(1,1) + (1,3)]

4φ

4(1,1)

4Aµ
4(2,2)

8χ−

8(1,2)

Table 9. D = 6, [(1, 1)LSYM]× [(1, 0)RSYM] = [(2, 1)sugra].

Aµ
(2,2)

2λ−

2(1,2)

Aµ
(2,2)

gµν + B+
µν +B−µν + ϕ

(3,3) + (3,1) + (1,3) + (1,1)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

2λ−

2(1,2)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

4[ϕ + B−µν ]

4[(1,1) + (1,3)]

Table 10. D = 6, [(1, 0)LSYM]× [(1, 0)RSYM] = [(2, 0)sugra] + [(2, 0)tensor].

Aµ
(2,2)

2λ+

2(2,1)

Aµ
(2,2)

gµν + B+
µν +B−µν + ϕ

(3,3) + (3,1) + (1,3) + (1,1)

2[Ψ−µ + χ−]

2[(3,2) + (1,2)]

2λ−

2(1,2)

2[Ψ+
µ + χ+]

2[(2,3) + (2,1)]

4[Aµ]

4[(2,2)]

Table 11. D = 6, [(1, 0)LSYM]× [(0, 1)RSYM] = [(1, 1)sugra].

B+

(3,1)

4λ+

4(2,1)

5φ

(1,1)

B+

(3,1)

D+ + B+ + ϕ

(5,1) + (3,1) + (1,1)

4[C+ + χ+]

4[(4,1) + (2,1)]

5B+

5(3,1)

4λ+

4(2,1)

4[C+ + χ+]

4[(4,1) + (2,1)]

16[B+ + ϕ]

16[(3,1) + (1,1)]

20χ+

20(2,1)

5φ

5(1,1)

5B+

5(3,1)

20χ+

20(2,1)

25ϕ

(1,1)

Table 12. D = 6, [(2, 0)Ltensor]× [(2, 0)Rtensor] = [(4, 0)SD-Weyl].
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