1,060 research outputs found

    Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

    Get PDF
    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Network Plasticity as Bayesian Inference

    Full text link
    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling.Comment: 33 pages, 5 figures, the supplement is available on the author's web page http://www.igi.tugraz.at/kappe

    Counting to Ten with Two Fingers: Compressed Counting with Spiking Neurons

    Get PDF
    We consider the task of measuring time with probabilistic threshold gates implemented by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuro-science. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds. We first consider a deterministic implementation of a neural timer and show that Theta(log t) (deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1-delta, and should stop firing after at most 2t rounds with probability 1-delta for some input parameter delta in (0,1). Our key result is a construction of a neural timer with O(log log 1/delta) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Omega(min{log log 1/delta, log t}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks. Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS\u2790], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time

    Learning First-to-Spike Policies for Neuromorphic Control Using Policy Gradients

    Full text link
    Artificial Neural Networks (ANNs) are currently being used as function approximators in many state-of-the-art Reinforcement Learning (RL) algorithms. Spiking Neural Networks (SNNs) have been shown to drastically reduce the energy consumption of ANNs by encoding information in sparse temporal binary spike streams, hence emulating the communication mechanism of biological neurons. Due to their low energy consumption, SNNs are considered to be important candidates as co-processors to be implemented in mobile devices. In this work, the use of SNNs as stochastic policies is explored under an energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is determined by the occurrence of the first spike among the output neurons. A policy gradient-based algorithm is derived considering a Generalized Linear Model (GLM) for spiking neurons. Experimental results demonstrate the capability of online trained SNNs as stochastic policies to gracefully trade energy consumption, as measured by the number of spikes, and control performance. Significant gains are shown as compared to the standard approach of converting an offline trained ANN into an SNN.Comment: Submitted for conference publicatio

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Spiking neurons with short-term synaptic plasticity form superior generative networks

    Get PDF
    Spiking networks that perform probabilistic inference have been proposed both as models of cortical computation and as candidates for solving problems in machine learning. However, the evidence for spike-based computation being in any way superior to non-spiking alternatives remains scarce. We propose that short-term plasticity can provide spiking networks with distinct computational advantages compared to their classical counterparts. In this work, we use networks of leaky integrate-and-fire neurons that are trained to perform both discriminative and generative tasks in their forward and backward information processing paths, respectively. During training, the energy landscape associated with their dynamics becomes highly diverse, with deep attractor basins separated by high barriers. Classical algorithms solve this problem by employing various tempering techniques, which are both computationally demanding and require global state updates. We demonstrate how similar results can be achieved in spiking networks endowed with local short-term synaptic plasticity. Additionally, we discuss how these networks can even outperform tempering-based approaches when the training data is imbalanced. We thereby show how biologically inspired, local, spike-triggered synaptic dynamics based simply on a limited pool of synaptic resources can allow spiking networks to outperform their non-spiking relatives.Comment: corrected typo in abstrac
    • …
    corecore