
Counting to Ten with Two Fingers: Compressed
Counting with Spiking Neurons
Yael Hitron
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel
yael.hitron@weizmann.ac.il

Merav Parter
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel
merav.parter@weizmann.ac.il

Abstract
We consider the task of measuring time with probabilistic threshold gates implemented by bio-
inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds,
where in each round, neurons fire in pulses in response to a sufficiently high membrane potential.
This potential is induced by spikes from neighboring neurons that fired in the previous round, which
can have either an excitatory or inhibitory effect.

Discovering the underlying mechanisms by which the brain perceives the duration of time is one of
the largest open enigma in computational neuro-science. To gain a better algorithmic understanding
onto these processes, we introduce the neural timer problem. In this problem, one is given a time
parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum
sized neural network (measured by the number of auxiliary neurons) in which every spike from x in
a given round i, makes the output y fire for the subsequent t consecutive rounds.

We first consider a deterministic implementation of a neural timer and show that Θ(log t)
(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether
randomness can be leveraged to reduce the number of neurons. We answer this question in the
affirmative by considering neural timers with spiking neurons where the neuron y is required to
fire for t consecutive rounds with probability at least 1− δ, and should stop firing after at most 2t
rounds with probability 1− δ for some input parameter δ ∈ (0, 1). Our key result is a construction
of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one
spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement
this construction with a matching lower bound of Ω(min{log log 1/δ, log t}) neurons. This provides
the first separation between deterministic and randomized constructions in the setting of spiking
neural networks.

Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural
networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we provide a general
transformation (or simulation) that can take any synchronized network solution and simulate it in
an asynchronous setting (where edges have arbitrary response latencies) while incurring a small
overhead w.r.t the number of neurons and computation time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases stochastic neural networks, approximate counting, synchronizer

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.57

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.10369.

Funding Merav Parter : Supported in part by BSF-NSF grants.

Acknowledgements We are grateful to Cameron Musco, Renan Gross and Eylon Yogev for various
useful discussions.

© Yael Hitron and Merav Parter;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 57; pp. 57:1–57:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/228086859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yael.hitron@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2019.57
https://arxiv.org/abs/1902.10369
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Compressed Counting with Spiking Neurons

1 Introduction

Understanding the mechanisms by which brain experiences time is one of the major research
objectives in neuroscience [26, 2, 9]. Humans measure time using a global clock based on
standardized units of minutes, days and years. In contrast, the brain perceives time using
specialized neural clocks that define their own time units. Living organisms have various
other implementations of biological clocks, a notable example is the circadian clock that gets
synchronized with the rhythms of a day.

In this paper we consider the algorithmic aspects of measuring time in a simple yet
biologically plausible model of stochastic spiking neural networks (SNN) [23, 24], in which
neurons fire in discrete pulses, in response to a sufficiently high membrane potential. This
model is believed to capture the spiking behavior observed in real neural networks, and has
recently received quite a lot of attention in the algorithmic community [18, 19, 20, 17, 15, 28, 6].
In contrast to the common approach in computational neuroscience and machine learning,
the focus here is not on general computation ability or broad learning tasks, but rather on
specific algorithmic implementation and analysis.

The SNN network is represented by a directed weighted graph G = (V,A,W), with a
special set of neurons X ⊂ V called inputs that have no incoming edges, and a subset of
output neurons1 Y ⊂ V . The neurons in the network can be either deterministic threshold
gates or probabilistic threshold gates. As observed in biological networks, and departing
from many artificial network models, neurons are either strictly inhibitory (all outgoing edge
weights are negative) or excitatory (all outgoing edge weights are positive). The network
evolves in discrete, synchronous rounds as a Markov chain, where the firing probability of
every neuron in round τ depends on the firing status of its neighbors in the preceding round
τ − 1. For probabilistic threshold gates this firing is modeled using a standard sigmoid
function. Observe that an SNN network is in fact, a distributed network, every neuron
responds to the firing spikes of its neighbors, while having no global information on the
entire network.

Remark. In the setting of SNN, unlike classical distributed algorithms (e.g., LOCAL or
CONGEST), the algorithm is fully specified by the structure of the network. That is, for a
given network, its dynamic is fully determined by the model. Hence, the key complexity
measure here is the size of the network measured by the number of auxiliary neurons2. For
certain problems, we also care for the tradeoff between the size and the computation time.

1.1 Measuring Time with Spiking Neural Networks
We consider the algorithmic challenges of measuring time using networks of threshold gates
and probabilistic threshold gates. We introduce the neural timer problem defined as follows:

Given an input neuron x, an output neuron y, and a time parameter t, it is required to
design a small neural network such that any firing of x in a given round invokes the
firing of y for exactly the next t rounds.

In other words, it is required to design a succinct timer, activated by the firing of its input
neuron, that alerts when exactly t rounds have passed.

1 In contrast to the definition of circuits, we do allow output neurons to have outgoing edges and self loops.
The requirement will be that the value of the output neurons converges over time to the desired solution.

2 I.e., neurons that are not the input or the output neurons.

Y. Hitron and M. Parter 57:3

A trivial solution with t auxiliary neurons can be obtained by taking a directed chain of
length t (Fig. 1): the head of the chain has an incoming edge from the input x, the output y
has incoming edges from the input x, and all the other t neurons on the chain. All these
neurons are simple OR-gates, they fire in round τ if at least one of their incoming neighbors
fired in round τ − 1. Starting with the firing of x in round 0, in each round i, exactly one
neuron, namely the ith neuron on the chain fires, which makes y keep on firing for exactly t
rounds until the chain fades out. In this basic solution, the network spends one neuron that
counts +1 and dies. It is noteworthy that the neurons in our model are very simple, they do
not have any memory, and thus cannot keep track of the firing history. They can only base
their firing decisions on the firing of their neighbors in the previous round.

With such a minimal model of computation, it is therefore intriguing to ask how to
beat this linear dependency (of network size) in the time parameter t. Can we count to
ten using only two (memory-less) neurons? We answer this question in the affirmative, and
show that even with just simple deterministic threshold gates, we can measure time up to
t rounds using only O(log t) neurons. It is easy to see that this bound is tight when using
deterministic neurons (even when allowing some approximation). The reason is that o(log t)
neurons encode strictly less than t distinct configurations, thus in a sequence of t rounds,
there must be a configuration that re-occurs, hence locking the system into a state in which
y fires forever.

I Theorem 1 (Deterministic Timers). For every input time parameter t ∈ N>0, (1) there
exists a deterministic neural timer network N with O(log t) deterministic threshold gates,
(2) any deterministic neural timer requires Ω(log t) neurons.

This timer can be easily adapted to the related problem of counting, where the network
should output the number of spikes (by the input x) within a time window of t rounds.

Does Randomness Help in Time Estimation? Neural computation in general, and neural
spike responses in particular, are inherently stochastic [16]. One of our broader scope agenda
is to understand the power and limitations of randomness in neural networks. Does neural
computation become easier or harder due to the stochastic behavior of the neurons?

We define a randomized version of the neural timer problem that allows some slackness
both in the approximation of the time, as well as allowing a small error probability. For a
given error probability δ ∈ (0, 1), the output y should fire for at least t rounds, and must
stop firing after at most 2t rounds3 with probability at least 1− δ. It turns out that this
randomized variant leads to a considerably improved solution for δ = 2−O(t):

I Theorem 2 (Upper Bound for Randomized Timers). For every time parameter t ∈ N>0,
and error probability δ ∈ (0, 1), there exists a probabilistic neural timer network N with
O(min{log log 1/δ, log t}) deterministic threshold gates plus additional random spiking neuron.

Our starting point is a simple network with O(log 1/δ) neurons, each firing independently
with probability 1−1/t. The key observation for improving the size bound into O(log log 1/δ)
is to use the time axis: we will use a single neuron to generate random samples over time,
rather than having many random neurons generating these samples in a single round. The
deterministic neural counter network with time parameter of O(log 1/δ) is used as a building
block in order to gather the firing statistics of a single spiking neuron. In light of the Ω(log t)

3 Taking 2t is arbitrary here, and any other constant would work as well.

ESA 2019

57:4 Compressed Counting with Spiking Neurons

lower bound for deterministic networks, we get the first separation between deterministic
and randomized solutions for error probability δ = ω(1/2t). This shows that randomness
can help, but up to a limit: Once the allowed error probability is exponentially small in
t, the deterministic solution is the best possible. Perhaps surprisingly, we show that this
behavior is tight:

I Theorem 3 (Lower Bound for Randomized Timers). Any SNN network for the neural
timer problem with time parameter t, and error δ ∈ (0, 1) must use Ω(min{log log 1/δ, log t})
neurons.

Neural Counters. Spiking neurons are believed to encode information via their firing rates.
This underlies the rate coding scheme [1, 30, 11] in which the spike-count of the neuron in a
given span of time is interpreted as a letter in a larger alphabet. In a network of memory-less
spiking neurons, it is not so clear how to implement this rate dependent behavior. How can
a neuron convey a complicated message over time if its neighboring neurons remember only
its recent spike? This challenge is formalized by the following neural counter problem: Given
an input neuron x, a time parameter t, and Θ(log t) output neurons represented by a vector
ȳ, it is required to design a neural network such that the output vector ȳ holds the binary
representation of the number of times that x fired in a sequence of t rounds. As we already
mentioned this problem is very much related to the neural timer problem and can be solved
using O(log t) neurons. Can we do better?

The problem of maintaining a counter using a small amount of space has received a lot
of attention in the dynamic streaming community. The well-known Morris algorithm [27, 10]
maintains an approximate counter for t counts using only log log t bits. The high-level idea
of this algorithm is to increase the counter with probability of 1/2C′ where C ′ is the current
read of the counter. The counter then holds the exponent of the number of counts. By
following ideas of [10], carefully adapted to the neural setting, we show:

I Theorem 4 (Approximate Counting). For every time parameter t, and δ ∈ (0, 1), there
exists a randomized construction of approximate counting network using O(log log t+log(1/δ))
deterministic threshold gates plus an additional single random spiking neuron, that computes
an O(1) (multiplicative) approximation for the number of input spikes in t rounds with
probability 1− δ.

We note that unlike the deterministic construction of timers that could be easily adopted to
the problem of neural counting, our optimized randomized timers with O(log log 1/δ) neurons
cannot be adopted into an approximate counter network. We therefore solve the latter by
adopting Morris algorithm to the neural setting.

Broader Scope: Lessons From Dynamic Streaming Algorithms. We believe that approx-
imate counting problem provides just one indication for the potential relation between
succinct neural networks and dynamic streaming algorithms. In both settings, the goal is
to gather statistics (e.g., over time) using a small amount of space. In the setting of neural
network there are additional difficulties that do not show up in the streaming setting. E.g., it
is also required to obtain fast update time, as illustrated in our solution to the approximate
counting problem.

1.2 Neural Synchronizers
The standard model of spiking neural networks assumes that all edges (synapses) in the
network have a uniform response latency. That is, the electrical signal is passed from the
presynaptic neuron to the postsynaptic neuron within a fixed time unit which we call a

Y. Hitron and M. Parter 57:5

round. However, in real biological networks, the response latency of synapses can vary
considerably depending on the biological properties of the synapse, as well as on the distance
between the neighboring neurons. This results in an asynchronous setting in which different
edges have distinct response time. We formalize a simple model of spiking neurons in the
asynchronous setting, in which the given neural network also specifies a response latency
function ` : A → R≥1 that determines the number of rounds it takes for the signal to
propagate over the edge. Inspired by the synchronizers of Awerbuch and Peleg [4], and using
the above mentioned compressed timer and counter modules, we present a general simulation
methodology (a.k.a synchronizers) that takes a network Nsync that solves the problem in the
synchronized setting, and transform it into an “analogous” network Nasync that solves the
same problem in the asynchronous setting.

The basic building blocks of this transformation is the neural time component adapted
to the asynchronous setting. The cost of the transformation is measured by the overhead
in the number of neurons and in the computation time. Using our neural timers leads to a
small overhead in the number of neurons.

I Theorem 5 (Synchronizer, Informal). There exists a synchronizer that given a network
Nsync with n neurons and maximum response latency4 L, constructs a network Nasync that has
an “analogous” execution in the asynchronous setting with a total number of O(n+ L logL)
neurons and a time overhead of O(L3).

We note that although the construction is inspired by the work of Awerbuch and Peleg [4], due
to the large differences between these models, the precise formulation and implementation of
our synchronizers are quite different. The most notable difference between the distributed
and neural setting is the issue of memory: in the distributed setting, nodes can aggregate the
incoming messages and respond when all required messages have arrived. In strike contrast,
our neurons can only respond (by either firing or not firing) to signals arrived in the previous
round, and all signals from previous rounds cannot be locally stored. For this reason and
unlike [4], we must assume a bound on the largest edge latency. In particular, in the full
version we show that the size overhead of the transformed network Nasync must depend, at
least logarithmically, on the value of the largest latency L.

I Observation 1. The size overhead of any synchronization scheme is Ω(logL).

This provably illustrates the difference in the overhead of synchronization between general
distributed networks and neural networks. We leave the problem of tightening this lower
bound (or upper bound) as an interesting open problem.

Additional Related Work. To the best of our knowledge, there are two main previous
theoretical work on asynchronous neural networks. Maass [22] considered a quite elaborated
model for deterministic neural networks with arbitrary response functions for the edges,
along with latencies that can be chosen by the network designer. Within this generalized
framework, he presented a coarse description of a synchronization scheme that consists of
various time modules (e.g., initiation and delay modules). Our work complements the scheme
of [22] in the simplified SNN model by providing a rigorous implementation and analysis
for size and time overhead. Khun et al. [14] analyzed the synchronous and asynchronous
behavior under the stochastic neural network model of DeVille and Peskin [7]. Their model
and framework is quite different from ours, and does not aim at building synchronizers.

4 I.e., L correspond to the length of the longest round.

ESA 2019

57:6 Compressed Counting with Spiking Neurons

Turning to the setting of logical circuits, there is a long line of work on the asynchronous
setting under various model assumptions [3, 12, 29, 5, 25] that do not quite fit the memory-less
setting of spiking neurons.

Comparison with Concurrent Work [31]. Independently to our work, Wang and Lynch
proposed a similar construction for the neural counter problem. Their work restricts attention
to deterministic threshold gates and do not consider the neural timer problem and synchron-
izers which constitute the main contribution of our paper. We note that our approximate
counter solution with O(log log t+ log(1/δ)) neurons resolves the open problem stated in [31].

1.3 Preliminaries
We start by defining our model along with useful notation.

A Neuron. A deterministic neuron u is modeled by a deterministic threshold gate. Letting
b(u) to be the threshold value of u. Then it outputs 1 if the weighted sum of its incoming
neighbors exceeds b(u). A spiking neuron is modeled by a probabilistic threshold gate that
fires with a sigmoidal probability p(x) = 1

1+e−x where x is the difference between the weighted
incoming sum of u and its threshold b(u).

Neural Network Definition. A Neural Network (NN) N = 〈X,Z, Y,w, b〉 consists of n input
neurons X = {x1, . . . , xn}, m output neurons Y = {y1, . . . , ym}, and ` auxiliary neurons
Z = {z1, ..., z`}. In a deterministic neural network (DNN) all neurons are deterministic
threshold gates. In spiking neural network (SNN), the neurons can be either deterministic
threshold gates or probabilistic threshold gates. The directed weighted synaptic connections
between V = X ∪ Z ∪ Y are described by the weight function w : V × V → R. A weight
w(u, v) = 0 indicates that a connection is not present between neurons u and v. Finally,
for any neuron v, b(v) ∈ R≥0 is the threshold value (activation bias). The weight function
defining the synapses is restricted in two ways. The in-degree of every input neuron xi is
zero, i.e., w(u, x) = 0 for all u ∈ V and x ∈ X. Additionally, each neuron is either inhibitory
or excitatory: if v is inhibitory, then w(v, u) ≤ 0 for every u, and if v is excitatory, then
w(v, u) ≥ 0 for every u.

Network Dynamics. The network evolves in discrete, synchronous rounds as a Markov
chain. The firing probability of every neuron in round τ depends on the firing status of its
neighbors in round τ − 1, via a standard sigmoid function, with details given below. For
each neuron u, and each round τ ≥ 0, let uτ = 1 if u fires (i.e., generates a spike) in round τ .
Let u0 denote the initial firing state of the neuron. The firing state of each input neuron xj
in each round is the input to the network. For each non-input neuron u and every round
τ ≥ 1, let pot(u, τ) denote the membrane potential at round τ and p(u, τ) denote the firing
probability (Pr[uτ = 1]), calculated as:

pot(u, τ) =
∑
v∈V

wv,u · vτ−1 − b(u) and p(u, τ) = 1
1 + e−

pot(u,τ)
λ

(1)

where λ > 0 is a temperature parameter which determines the steepness of the sigmoid.
Clearly, λ does not affect the computational power of the network (due to scaling of edge
weights and thresholds), thus we set λ = 1. In deterministic neural networks (DNN), each
neuron u is a deterministic threshold gate that fires in round τ iff pot(u, τ) ≥ 0.

Y. Hitron and M. Parter 57:7

𝑨𝟏

𝑨𝟐

𝑨log ො𝒕

x

y

𝒂𝟏,𝟏 𝒂𝟏,𝟐

1

𝒂𝟐,𝟐
𝒂𝟐,𝟏

𝒂𝒊,𝟐

…

𝒅𝟐

𝒂𝒊,𝟏

𝒂log ො𝒕,𝟐

𝒂log ො𝒕,𝟏

DetTimerTrivial-Timer

x

y Det-Timer*

Det-
Counter

Global
Phase Timer

Det-
Timer

Phase Counter𝑥

𝑦
Internal Phase Timer

RandImprovedTimer

Figure 1 Illustration of timer networks with time parameter t. Left: The naïve timer with
Θ(t) neurons. Mid: deterministic timer with Θ(log t) neurons. Right: randomized timer with
O(log log 1/δ)) neurons, using the DetTimer modules with parameter t′ = log 1/δ.

Network States (Configurations). Given a network N (either a DNN or SNN) with N

neurons, the configuration (or state) of the network in time τ denoted as sτ can be described
as an N -length binary vector indicating which neuron fired in round τ .

The Memoryless Property. The neural networks have a memoryless property, in the sense
that each state depends only on the state of the previous round. In a DNN network,
the state sτ−1 fully determines sτ . In an SNN network, for every fixed state s∗ it holds
Pr[sτ = s∗ | s1, ...sτ−1] = Pr[sτ = s∗ | sτ−1]. Moreover for any τ, τ ′, r > 0, it holds that
Pr[sτ+r = s∗ | sτ] = Pr[sτ ′+r = s∗ | sτ ′].

Hard-Wired Inputs. We consider neural networks that solve a given parametrized problem
(e.g., neural timer with time parameter t). The parameter to the problem can be either
hard-wired in the network or alternatively be given as part of the input layer to the network.
In most of our constructions, the time parameter is hard-wired. In some cases, we also show
constructions with soft-wiring.

2 Deterministic Constructions of Neural Timer Networks

As a warm-up, we start by considering deterministic neural timers.

I Definition 6 (Det. Neural Timer Network). Given time parameter t, a deterministic neural
timer network DT is a network of threshold gates, with an input neuron x, an output neuron
y, and additional auxiliary neurons. The network satisfies that in every round τ , yτ = 1 iff
there exists a round τ > τ ′ ≥ τ − t such that xτ ′ = 1.

Lower Bound (Pf. of Thm. 1(2)). For a given neural timer network N with N auxiliary
neurons, recall that the state of the network in round τ is described by an N -length vector
indicating the firing neurons in that round. Assume towards contradiction that there exists
a neural timer with N ≤ log t− 1 auxiliary neurons. Since there are at most 2N different
states, by the pigeonhole principle, there must be at least two rounds τ, τ ′ ≤ t− 1 in which
the state of the network is identical, i.e., where sτ = sτ ′ = s∗ for some s∗ ∈ {0, 1}N . By the
correctness of the network, the output neuron y fires in all rounds τ ′′ ∈ [τ + 1, τ ′ + 1]. By
the memoryless property, we get that sτ ′′ = s∗ for τ ′′ = τ + i · (τ ′ − τ) for every i ∈ N≥0.

ESA 2019

57:8 Compressed Counting with Spiking Neurons

Thus y continues firing forever, in contradiction that it stops firing after t rounds. Note that
this lower bound holds even if y is allowed to stop firing in any finite time window.

A Matching Upper Bound (Pf. Thm. 1(1)). For ease of explanation, we will sketch
here the description of the network assuming that it is applied only once (i.e., the input
x fires once within a window of t rounds). Taking care of the general case requires slight
adaptations5, see the full version for complete details.

At the high-level, the network consists of k = Θ(log t) layers A1, . . . , Ak each containing
two excitatory neurons ai,1, ai,2 denoted as counting neurons, and one inhibitory neuron di.
Each layer Ai gets its input from layer Ai−1 for every i ≥ 2, and A1 gets its input from x.
The role of each layer Ai is to count two firing events of the neuron ai−1,2 ∈ Ai−1. Thus the
neuron alog t,2 counts 2log t rounds.

Because our network has an update time of log t rounds (i.e., number of rounds to update
the timer), for a given time parameter t, the construction is based on the parameter t̂ where
t̂ + log t̂ = t. We assume that t̂ is a power of 2, the general case can also be solved with
O(log t) neurons, the analysis is deferred to the full version.

The first layer A1 consists of two neurons a1,1, a1,2. The first neuron a1,1 has positive
incoming edges from x and a1,2 with weights w(x, a1,1) = 3 , w(a1,2, a1,1) = 1, and
threshold b(a1,1) = 1. The second neuron a1,2 has an incoming edge from a1,1 with weight
w(a1,1, a1,2) = 1 and threshold b(a1,2) = 1. Because we have a loop going from a1,1 to
a1,2 and back, once x fired a1,2 will fire every two rounds.
For every i = 2 . . . log t̂, the ith layer Ai contains 3 neurons, two counting neurons ai,1, ai,2
and a reset neuron di. The first neuron ai,1 has positive incoming edges from ai−1,2, and
a self loop with weight w(ai−1,2, ai,1) = w(ai,1, ai,1) = 1, a negative incoming edge from
di with weight w(di, ai,1) = −1, and threshold b(ai,1) = 1. The second counting neuron
ai,2 has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, ai,2) = w(ai,1, ai,2) = 1,
and threshold b(ai,2) = 2. The reset neuron di is an inhibitor copy of ai−1,2 and therefore
also has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, di) = w(ai,1, di) = 1
and threshold b(di) = 2. As a result, ai,1 starts firing after ai−1,2 fires once, and ai,2fires
after ai−1,2 fires twice. Then the neuron di inhibits ai,1 and the layer is ready for a new
count.
The output neuron y has a positive incoming edge from x as well as a self-loop with
weights w(x, y) = 2, w(y, y) = 1. In addition, it has a negative incoming edge from the
last counting neuron alog t̂,2 with weight w(alog t̂,2, y) = −1 and threshold b(y) = 1. Hence,
after x fires the output y continues to fire as long as alog t̂,2 did not fire.
The last counting neuron alog t̂,2 also have negative outgoing edges to all counting neurons
(neurons of the form ai,j) with weight w(alog t̂,2, ai,j) = −2. As a result, after the timer
counts t rounds it is reset.

Timer with Time Parameter. In the full version we show a slight modified variant of neural
timer denoted by DetTimer∗ which also receives as input an additional set of log t neurons
that encode the desired duration of the timer. This modified variant is used in our improved
randomized constructions.

5 I.e., whenever x fires again in a window of t rounds, one should reset the timer and start counting t
rounds from that point on.

Y. Hitron and M. Parter 57:9

Neural Counters. We also show a modification of the timer into a counter network
DetCounter that instead of counting the number of rounds, counts the number of input
spikes in a time interval of t rounds. For complete details we defer the reader to the
full version.

I Lemma 7. Given time parameter t, there exists a deterministic neural counter network
which has an input neuron x, a collection of log t output neurons represented by a vector ȳ,
and O(log t) additional auxiliary neurons. In a time window of t rounds, for every round τ ,
if x fired rτ times in the last τ rounds, the output ȳ encodes rτ by round τ + log rτ + 1.

This extra-additive factor of log rτ is due to the update time of the counter. In addition, in
the full version we revisit the neural counter problem and provide an approximate randomized
solution with O(log log t + log(1/δ)) many neurons where δ is the error parameter. This
construction is based on the well-known Morris algorithm (using the analysis of [10]) for
approximate counting in the streaming model.

3 Randomized Constructions of Neural Timer Networks

We now turn to consider randomized implementations. The input to the construction is a
time parameter t and an error probability δ ∈ (0, 1), that are hard-wired into the network.

I Definition 8 (Rand. Neural Timer Network). A randomized neural timer RT for parameters
t ∈ N>0 and δ ∈ (0, 1), satisfies the following for a time window of poly(t) rounds.

For every fixed firing event of x in round τ , with probability 1− δ, y fires in each of the
following t rounds.
yτ
′ = 0 for every round τ ′ such that τ ′ − Last(τ ′) ≥ 2t with probability 1 − δ, where

Last(τ ′) = max{i ≤ τ ′ | xi = 1} is the last round τ in which x fired up to round τ ′.

Note that in our definition, we have a success guarantee of 1− δ for any fixed firing event
of x, on the event that y fires for t many rounds after this firing. In contrast, with probability
of 1− δ over the entire span of poly(t) rounds, y does not fire in cases where the last firing of
x was 2t rounds apart. We start by showing a simple construction with O(log 1/δ) neurons.

3.1 Warm Up: Randomized Timer with O(log 1/δ) Neurons
The network BasicRandTimer(t, δ) contains a collection of ` = Θ(log 1/δ) spiking neurons
A = {a1, . . . , a`} that can be viewed as a time-estimator population. Each of these neurons
have a positive self loop, a positive incoming edge from the input neuron x, and a positive
outgoing edge to the output neuron y. See Figure 2 for an illustration. Whereas these ai
neurons are probabilistic spiking neurons6, the output y is simply a threshold gate. We
next explain the underlying intuition. Assume that the input x fired in round 0. It is then
required for the output neuron y to fire for at least t rounds 1, . . . , t, and stop firing after
at most 2t rounds with probability 1− δ. By having every neuron ai firing (independently)
w.p (1− 1/t) in each round given that it fired in the previous round7, we get that ai fires
for t consecutive rounds with probability (1− 1/t)t = 1/e. On the other hand, it fires for
2t consecutive rounds with probability (1− 1/t)2t = 1/e2. Since we have Θ(log 1/δ) many
neurons, by a simple application of Chernoff bound, the output neuron y (which simply
counts the number of firing neurons in A) can distinguish between round t and round 2t with
probability 1− δ, see the full version for the complete proof.

6 A neuron that fires with a probability specified in Eq. (1)
7 A neuron ai that stops firing in a given round, drops out and would not fire again with good probability.

ESA 2019

57:10 Compressed Counting with Spiking Neurons

x

y

…
𝑎1 𝑎2 𝑎

log(
1
𝛿
)

Figure 2 Illustration of the BasicRandTimer(t, δ) network. Each neuron ai fires with probability
1− 1/t in round τ given that it fired in the previous round τ − 1, and therefore fires for t consecutive
rounds with constant probability. The output y fires if at least 1/(2e) fraction of the ai neurons
fired in the previous round.

3.2 Improved Construction with O(log log 1/δ) Neurons
We next describe an optimal randomized timer RandImprovedTimer with an exponentially
improved number of auxiliary neurons. This construction also enjoys the fact that it requires a
single spiking neuron, while the remaining neurons can be deterministic threshold gates. Due
to the tightness of Chernoff bound, one cannot really hope to estimate time with probability
1− δ using o(log(1/δ)) samples. Our key idea here is to generate the same number of samples
by re-sampling one particular neuron over several rounds. Intuitively, we are going to show
that for our purposes having ` = log(1/δ) neurons a1, . . . , a` firing with probability 1− 1/t
in a given round is equivalent to having a single neuron a∗ firing with probability 1− 1/t
(independently) in a sequence of ` rounds.

Specifically, observe that the distinction between round t and 2t in the BasicRandTimer
network is based only on the number of spiking neurons in a given round. In addition,
the distribution on the number of times a∗ fires in a span of ` rounds is equivalent to the
distribution on the number of firing neurons a1, . . . , a` in a given round. For this reason,
every phase of RandImprovedTimer simulates a single round of BasicRandTimer. To count
the number of firing events in ` rounds, we use the deterministic neural counter module with
log ` = O(log log 1/δ) neurons.

We now further formalize this intuition. The network RandImprovedTimer simulates
each round of BasicRandTimer using a phase of `′ = Θ(log 1/δ) rounds 8, but with only
O(log log 1/δ) neurons. In the BasicRandTimer network each of the neurons ai fires (inde-
pendently) in each round w.p 1− 1/t. Once it stops firing in a given round, it basically drops
out and would not fire again with good probability. Formally, consider an execution of the
BasicRandTimer and let ni be the number of neurons in A that fired in round i. In round
i+ 1 of this execution, we have ni many neurons each firing w.p 1− 1/t (while the remaining
neurons in A fire with a very small probability). In the corresponding i + 1 phase of the
network RandImprovedTimer, the chief neuron a∗ fires w.p 1− 1/t′ where t′ = t

`′ for n
′
i ≤ `

consecutive rounds9 where n′i is the number of rounds in which a∗ fired in phase i.
The dynamics of the network RandImprovedTimer is based on discrete phases. Each phase

has a fixed number of `′ = O(`) rounds, but has a possibly different number of active rounds,
namely, rounds in which a∗ attempts firing. Specifically, a phase i has an active part of n′i
rounds where n′i is the number of rounds in which a∗ fired in phase i− 1. In the remaining
`′ − n′i rounds of that phase, a∗ is idle. To implement this behavior, the network should keep

8 Due to tactical reasons each phase consists of `′ = `+ log ` rounds instead of `.
9 Note that because each phase takes `′ = Θ(log 1/δ) rounds, we will need to count t′ = t

`′ many phases.
Thus a∗ fires with probability 1− 1/t′ rather then w.p 1− 1/t.

Y. Hitron and M. Parter 57:11

track of the number of rounds in which a∗ fires in each phase, and supply it as an input
to the next phase (as it determines the length of the active part of that phase). For that
purpose we will use the deterministic modules of neural timers and counters. The module
DetCounter with time parameter Θ(log 1/δ) is responsible for counting the number of rounds
that a∗ fires in a given phase i. The output of this module at the end of the phase is the
input to a DetTimer∗ module10 in the beginning of phase i+ 1. In addition, we also need
a phase timer module DetTimer with time parameter Θ(log 1/δ) that “announces” the end
of a phase and the beginning of a new one. Similarly to the network BasicRandTimer, the
output neuron y fires as long as a∗ fires for at least (1/2e) fraction of the rounds in each
phase (in an analogous manner as in the BasicRandTimer construction). See Fig. 1 for an
illustration of the network. Note that since we only use deterministic modules with time
parameter Θ(log 1/δ), the total number of neurons (which are all threshold gates) will be
bounded by O(log log 1/δ). See the full version for the complete proof of Thm. 2.

Remark. We note that the fact that one can get a randomized upper bound of O(log log 1/δ)
neurons has to do with the fact that our spiking neurons can be set to fire with probability
1− 1/t. Therefore the value of t is hard-wired in the network. We also note that in a more
restrictive setting where neurons are simple fair coins that fire with probability half in each
round, the size complexity might be dependent in t.

3.3 A Matching Lower Bound
We now turn to provide a proof sketch for Thm. 2. The full proof can be found in the full
version. Assume towards contradiction that there exists a randomized neural timer N for
a given time parameter t with N = o(log log 1/δ) neurons that succeeds with probability
at least 1− δ. This implies that there exists some constant c ≥ 2 such that y stops firing
after (c− 1) · t rounds w.p 1− δ. Since we have N many neurons, the number of distinct
states (or configurations) is bounded by S = 2N = o(log 1/δ). In particular, we will adjust
the constant in the number of neurons N such that S ≤ log 1/δ

log log 1/δ . Since t > log(1/δ) 11, in
every execution of N for at least t rounds, there must be a state that occurs at least twice
during the execution. Moreover, the sequence of t rounds consists of at least 2S disjoint
intervals each of length t/3S. We therefore get that in every execution of the network, there
must be a state that occurs at least twice for some rounds t′, t′′ such that t′′ − t′ > t/3S.
In other words, we have the guarantee that there is always some state that reoccurs after a
sufficiently large number of rounds. Since there are at most S configurations, we conclude
that there must be one particular configuration s∗ for which the probability to reoccur (after
at least t/(3S) rounds) is at least 1/S = Ω(1/ log(1/δ)).

Let Π be the family of all (c · t)-length executions of N . We now restrict attention to all
those executions in which s∗ reoccurs within the first t rounds, with spacing of Ω(t/ log(1/δ))
rounds between its appearances12. We call the subset Π∗ ⊆ Π of those executions special. In
addition, an execution in Π is good if y fires in each of the first t rounds, otherwise it is bad.

We next claim that the probability of an execution to be both special and good is at least
p∗ = Ω(1/ log(1/δ)− δ). First, by the definition of Π∗, the probability of an execution to be
special is at least 1/S = Ω(1/ log(1/δ)). In addition, by the success guarantee of N , y fires in
the first t rounds w.p. at least 1− δ. Thus by the union bound, we get that the probability
of a special and good execution is 1/S− δ. This allows us to also conclude that given that s∗

10Here we use the variant of DetTimer in which the time is encoded in the input layer of the network.
11The lower bound is meaningful only when δ = 2−O(t).
12We do allow s∗ to appear several times within this interval.

ESA 2019

57:12 Compressed Counting with Spiking Neurons

appears in some round t′ < t− t/3S, with probability of at least p∗ the following happens:
(1) s∗ reoccurs in some round t′′ such that t′′ − t ∈ [t/3S, t] and (2) y fires during the entire
interval [t′, t′′]. We now use this argument to conclude that w.p. at least δ, the output y fires
for at least c · t rounds, which will lead to a contradiction. To see this claim, note that w.p.
at least 1/S there is a round t′ < t− t/3S in which s∗ appears. With probability at least p∗
there is a round t′′ > t+ t/3S in which s∗ appears again and y fires in each of the rounds in
[t′, t′′]. A time window of c · t rounds contains at most 3c · S intervals of length t/3S. Thus
by the memory-less property, we get that the probability s∗ reoccurs every [t/3S, t] rounds
and that y fires after ct rounds is at least 1/S · (p∗)3c·S > δ, contradiction as y fires after c · t
rounds w.p at most δ.

4 Applications to Synchronizers

The Asynchronous Setting. In this setting, the neural network N = 〈X,Z, Y,w, b〉 also
specifies a response latency function ` : A → N>0. For ease of notation, we normalize all
latency values such that mine∈A `(e) = 1 and denote the maximum response latency by
L = maxe∈A `(e). Supported by biological evidence [13], we assume that self-loop edges
(a.k.a. autapses) have the minimal latency in the network, that `((u, u)) = 1 for self-edges
(u, u). This assumption is crucial in our design13. Indeed the exceptional short latency of
self-loop edges has been shown to play a critical role in biological network synchronization
[21, 8]. The dynamics proceeds in synchronous rounds and phases. The length of a round
corresponds to the minimum edge latency, this is why we normalize the latency values so
that mine∈A `(e) = 1. If neuron u fires in round τ , its endpoint v receives u’s signal in round
τ + `(e). Formally, a neuron u fires in round τ with probability p(u, τ):

pot(u, τ) =
∑

v∈X∪Z∪Y
wv,u · vτ−`(u,v) − b(u) and p(u, τ) = 1

1 + e−
pot(u,τ)

λ

(2)

Synchronizer. A synchronizer ν is an algorithm that gets as input a network Nsync and
outputs a network Nasync = ν(Nsync) such that V (Nsync) ⊆ V (Nasync) where V (N) denotes the
neurons of a network N . The network Nasync works in the asynchronous setting and should
have similar execution to Nsync in the sense that for every neuron v ∈ V (Nsync), the firing
pattern of v in the asynchronous network should be similar to the one in the synchronous
network. The output network Nasync simulates each round of the network Nsync as a phase.

I Definition 9 (Pulse Generator and Phases). A pulse generator is a module that fires to
declare the end of each phase. Denote by t(v, p) the (global) round in which neuron v receives
the pth spike from the pulse generator. We say that v is in phase p during all rounds
τ ∈ [t(v, p− 1), t(v, p)].

IDefinition 10 (Similar Execution (Deterministic Networks)). The synchronous execution Πsync
of a deterministic network Nsync is specified by a list of states Πsync = {σ1, . . . , } where each
σi is a binary vector describing the firing status of the neurons in round i. The asynchronous
execution of network Nasync denoted by Πasync is defined analogously only when applying the
asynchronous dynamics (of Eq. (2)). The execution Πasync is divided into phases of fixed
length. The networks Nsync and Nasync have a similar execution if V (Nsync) ⊆ V (Nasync), and
in addition, a neuron v ∈ V (Nsync) fires in round p in the execution Πsync iff v fires during
phase p in Πasync.

13 In a follow-up work, we actually show that this assumption is necessary for the existence of syncrnoizers
even when L = 2.

Y. Hitron and M. Parter 57:13

For simplicity of explanation, we assume that the network Nsync is deterministic. However,
our scheme can easily capture randomized networks as well (i.e., by fixing the random
bits in the synchronized simulation and feeding it to the async. one). See the full version
for more details.

The Challenge. Consider a network of a threshold gate z with two incoming inputs: an
excitatory neuron x, and an inhibitory neuron y. The weights are set such that z computes
X ∧ Ȳ thus it fires in round τ if x fired in round τ − 1 and y did not fire. Implementing an
X ∧ Ȳ gate in the asynchronous setting is quite tricky. In the case where both x and y fire
in round τ , in the synchronous network, z should not fire in round τ + 1. However, in the
asynchronous setting, if `(x, z) < `(y, z), then z will mistakenly fire in round τ + `(x, z). This
illustrates the need of enforcing a delay in the asynchronous simulation: the neurons should
attempt firing only after receiving all their inputs from the previous phase. We handle this
by introducing a pulse-generator module, that announces when it is safe to attempt firing.

To illustrate another source of challenge, consider the asynchronous implementation of
an AND-gate X ∧ Y . If both x and y fire in round τ , then z fires in round τ + 1 in the
synchronous setting. However, if the latencies of the edges `(x, z) and `(y, z) are distinct, z
receives the spike from x and y in different rounds, thus preventing the firing of z. Recall,
that z has no memory, and thus its firing decision is based only on the potential level in
the previous round. To overcome this hurdle, in the transformed network, each neuron in
the original synchronous network is augmented with 3 copy-neurons, some of which have
self-loops. Since self-loops have latency 1, once a neuron with a self-loop fires, it fires in the
next round as well. This will make sure that the firing states of x and y are kept on being
presented to z for sufficiently many rounds, which guarantees the existence of a round where
both spikes arrive.

While solving one problem, introducing self-loops into the system brings along other
troubles. Clearly, we would not want the neurons to fire forever, and at some point, those
neurons should get inhibition to allow the beginning of a new phase. This calls for a delicate
reset mechanism that cleans up the old firing states at the end of each phase, only after
their values have already being used. Our final solution consists of global synchronization
modules (e.g., pulse-generator, reset modules) that are inter-connected to a modified version
of the synchronous network. Before explaining those constructions, we start by providing a
modified neural timer DetTimerasync adapted to asynchronous setting. This timer will be the
basic building block in our global synchronization infrastructures.

Asynchronous Analog of DetTimer. A basic building block in our construction is a variant
of DetTimer to the asynchronous setting. Observe that the DetTimer implementation of
Sec. 2 might fail miserably in the asynchronous setting, e.g., when the edges (ai−1,2, ai,2)
have latency 2 for every i ≥ 2, and the remaining edges have latency 1, the timer will stop
counting after Θ(log t) rounds, rather than after t rounds. In the full version we show:

I Lemma 11. [Neural Timer in the Asynchronous Setting] For a given time parameter t,
there exists a deterministic network DetTimerasync with O(L · log t) neurons, satisfying that
in the asynchronous setting with maximum latency L, the output neuron fires at least Θ(t)
rounds, and at most Θ(L · t) rounds after each firing of the input neuron.

ESA 2019

57:14 Compressed Counting with Spiking Neurons

Description of the Syncronizer. The construction has two parts: a global infrastructure,
that can be used to synchronize many networks14, and an adaptation of the given network
Nsync into a network Nasync. The global infrastructures consists of the following modules:

A pulse generator PG implemented by DetTimerasync with time parameter Θ(L3).
A reset module R1 implemented by a directed chain of Θ(L) neurons 15 with input from
the output neuron of the PG module.
A delay module D implemented by DetTimerasync with time parameter Θ(L2) and input
from the output of of the PG module.
Another reset module R2 implemented by a chain of Θ(L) neurons with input from D.

The heart of the construction is the pulse-generator that fires once within a fixed number
of ` ∈ [Θ(L3),Θ(L4)] rounds, and invokes a cascade of activities at the end of each phase.
When its output neuron g fires, it activates the reset and the delay modules, R1 and D. The
second reset module R2 will be activated by the delay module D. Both reset modules R1
and R2 are implemented by chains of length L, with the last neuron on these chains being an
inhibitor neuron. The role of the reset modules is to erase the firing states of some neurons
(in Nasync) from the previous phase, hence their output neuron is an inhibitor. The timing
of this clean-up is very delicate, and therefore the reset modules are separated by a delay
module that prevents a premature operation. The total number of neurons in these global
modules is O(L · logL). We next consider the specific modifications to the synchronous
network Nsync (see Fig. 3).

Modifications to the Network Nsync. The input layer and output layer in Nasync are exactly
as in Nsync. We will now focus on the set of auxiliary neurons V in Nsync. In the network
Nasync, each v ∈ V is augmented by three additional neurons vin, vdelay and vout. The incoming
(resp., outgoing) neighbors to vin (resp., vout) are the out-copies (resp., in-copies) of all
incoming (resp., outgoing) neighboring neurons of v. The neurons vin, v, vdelay and vout are
connected by a directed chain (in this order). Both vdelay and vout have self-loops.

In case where the original network Nsync contains spiking neurons, the neuron vin will
be given the exact same firing function as v in Πsync. That is, in phase p, vin will be given
the random coins16 used by v in round p in Πsync. The other neurons v, vdelay and vout are
deterministic threshold gates. The role of the out-copy vout is to keep on presenting the firing
status of v from the previous phase p− 1 throughout the rounds of phase p. This is achieved
through their self-loops. The role of the in-copy vin is to simulate the firing behavior of v in
phase p. We will make sure that vin fires in phase p only if v fires in round p in Πsync. For
this reason, we set the incoming edge weights of vin as well as its bias to be exactly the same
as that of v in Nsync. The neuron v is an AND gate of its in-copy vin and the PG output g.
Thus, we will make sure that v fires at the end of phase p only if vin fires in this phase as well.
The role of the delay copy vdelay is to delay the update of vout to the up-to-date firing state of
v (in phase p). Since both neurons vdelay and vout have self-loops, at the end of each phase, we
need to carefully reset their values (through inhibition). This is the role of the reset modules
R1 and R2. Specifically, the reset module R1 operated by the pulse-generator inhibits vout.
The second reset module R2 inhibits the delay neuron vdelay only after we can be certain
that its value has already being “copied” to vout. Finally, we describe the connections of
the neuron vout. The neuron vout has an incoming edge from the reset module R1 with a

14 It is indeed believed that the neural brain has centers of synchronization.
15Each neuron in the chain has an incoming edge from its preceding neuron with weight 1 and threshold 1.
16 I.e., the random coins that are used to simulate the firing decision of v.

Y. Hitron and M. Parter 57:15

𝑣𝑖𝑛

𝑣

𝑣𝑑𝑒𝑙𝑎𝑦

𝑣𝑜𝑢𝑡

Pulse- Gen.

Reset-I

Delay

Reset-II

𝐿3

𝐿

𝐿2

𝐿

Figure 3 Illustration of the syncronizer modules. Left: global modules implemented by neural
timers. Right: a neuron v ∈ Nsync augmented by three additional neurons that interact with the
global modules.

super-large weight. This makes sure that when the reset module is activated, vout will be
inhibited shortly after. In addition, it has a self-loop also of large weight (yet smaller than
the inhibition edge) that makes sure that if vout fires in a given round, and the reset module
R1 is not active, vout also fires in the next round. Lastly, if vout did not fire in the previous
round, then it fires when receiving the spikes from both the delay module and from the delay
copy vdelay. This will make sure that the firing state of vdelay will be copied to vout only after
the output of the delay module D fires. The complete analysis is given in the full version.

5 Open Problems

In this paper we introduce the problems of neural timer and neural counter in order to shed
light into the way that neurons measure time in real biological neural networks. We believe
that these timer and counting modules should be useful for many other computational tasks.
The key application considered in this paper is for asynchronous computation. For that
purpose we introduce a simplified asynchronous model. It would be interesting to delve
into this setting and tighten the overhead in the number of neurons and computation time.
Finally, exploring the connections between succinct neural networks and dynamic streaming
algorithms is yet another promising research direction. The approximate counting problem
already provides a positive indication for a potential relation between these models.

References
1 Edgar D Adrian. The impulses produced by sensory nerve endings. The Journal of physiology,

61(1):49–72, 1926.
2 Melissa J Allman, Sundeep Teki, Timothy D Griffiths, and Warren H Meck. Properties of

the internal clock: first-and second-order principles of subjective time. Annual review of
psychology, 65:743–771, 2014.

3 Douglas B Armstrong, Arthur D Friedman, and Premachandran R Menon. Design of asynchron-
ous circuits assuming unbounded gate delays. IEEE Transactions on Computers, 100(12):1110–
1120, 1969.

4 Baruch Awerbuch and David Peleg. Network Synchronization with Polylogarithmic Overhead.
In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,
October 22-24, 1990, Volume II, pages 514–522, 1990.

5 Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of network-
on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

ESA 2019

57:16 Compressed Counting with Spiking Neurons

6 Chi-Ning Chou, Kai-Min Chung, and Chi-Jen Lu. On the Algorithmic Power of Spiking
Neural Networks. In 10th Innovations in Theoretical Computer Science Conference, ITCS
2019, January 10-12, 2019, San Diego, California, USA, pages 26:1–26:20, 2019.

7 RE Lee DeVille and Charles S Peskin. Synchrony and asynchrony in a fully stochastic neural
network. Bulletin of mathematical biology, 70(6):1608–1633, 2008.

8 Huawei Fan, Yafeng Wang, Hengtong Wang, Ying-Cheng Lai, and Xingang Wang. Autapses
promote synchronization in neuronal networks. Scientific reports, 8(1):580, 2018.

9 Gerald T Finnerty, Michael N Shadlen, Mehrdad Jazayeri, Anna C Nobre, and Dean V
Buonomano. Time in cortical circuits. Journal of Neuroscience, 35(41):13912–13916, 2015.

10 Philippe Flajolet. Approximate Counting: A Detailed Analysis. BIT, 25(1):113–134, 1985.
11 Wulfram Gerstner, Andreas K Kreiter, Henry Markram, and Andreas VM Herz. Neural codes:

firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24):12740–12741,
1997.

12 Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, 1995.

13 Kaori Ikeda and John M Bekkers. Autapses. Current Biology, 16(9):R308, 2006.
14 Fabian Kuhn, Joel Spencer, Konstantinos Panagiotou, and Angelika Steger. Synchrony

and asynchrony in neural networks. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete algorithms, pages 949–964. SIAM, 2010.

15 Robert A. Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh Srinivas
Vempala. Long Term Memory and the Densest K-Subgraph Problem. In 9th Innovations in
Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, pages 57:1–57:15, 2018.

16 Benjamin Lindner. Some unsolved problems relating to noise in biological systems. Journal of
Statistical Mechanics: Theory and Experiment, 2009(01):P01008, 2009.

17 Nancy Lynch and Cameron Musco. A Basic Compositional Model for Spiking Neural Networks.
arXiv preprint, 2018. arXiv:1808.03884.

18 Nancy Lynch, Cameron Musco, and Merav Parter. Computational Tradeoffs in Biological
Neural Networks: Self-Stabilizing Winner-Take-All Networks. In Proceedings of the 8th
Conference on Innovations in Theoretical Computer Science (ITCS), 2017.

19 Nancy Lynch, Cameron Musco, and Merav Parter. Spiking Neural Networks: An Algorithmic
Perspective. In 5th Workshop on Biological Distributed Algorithms (BDA 2017), July 2017.

20 Nancy A. Lynch, Cameron Musco, and Merav Parter. Neuro-RAM Unit with Applications
to Similarity Testing and Compression in Spiking Neural Networks. In 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
pages 33:1–33:16, 2017.

21 Jun Ma, Xinlin Song, Wuyin Jin, and Chuni Wang. Autapse-induced synchronization in a
coupled neuronal network. Chaos, Solitons & Fractals, 80:31–38, 2015.

22 Wolfgang Maass. Lower Bounds for the Computational Power of Networks of Spiking Neurons.
Electronic Colloquium on Computational Complexity (ECCC), 1(19), 1994. URL: http:
//eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html.

23 Wolfgang Maass. On the computational power of noisy spiking neurons. In Advances in Neural
Information Processing Systems 8 (NIPS), 1996.

24 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

25 Rajit Manohar and Yoram Moses. The eventual C-element theorem for delay-insensitive
asynchronous circuits. In 2017 23rd IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 102–109. IEEE, 2017.

26 Hugo Merchant, Deborah L Harrington, and Warren H Meck. Neural basis of the perception
and estimation of time. Annual review of neuroscience, 36:313–336, 2013.

27 Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

http://arxiv.org/abs/1808.03884
http://eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html
http://eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html

Y. Hitron and M. Parter 57:17

28 Christos H Papadimitriou and Santosh S Vempala. Random projection in the brain and
computation with assemblies of neurons. In 10th Innovations in Theoretical Computer Science
Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

29 Jens Sparsø. Asynchronous circuit design-a tutorial. In Chapters 1-8 in “Principles of
asynchronous circuit design-A systems Perspective”. Kluwer Academic Publishers, 2001.

30 Misha V Tsodyks and Henry Markram. The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability. Proceedings of the national academy
of sciences, 94(2):719–723, 1997.

31 Barbeeba Wang and Nancy Lynch. Integrating Temporal Information to Spatial Information
in a Neural Circuit. arXiv preprint, 2019. arXiv:1903.01217.

ESA 2019

http://arxiv.org/abs/1903.01217

	Introduction
	Measuring Time with Spiking Neural Networks
	Neural Synchronizers
	Preliminaries

	Deterministic Constructions of Neural Timer Networks
	Randomized Constructions of Neural Timer Networks
	Warm Up: Randomized Timer with O(log 1/delta) Neurons
	Improved Construction with O(log log 1/delta) Neurons
	A Matching Lower Bound

	Applications to Synchronizers
	Open Problems

