3 research outputs found

    Integrated Control of Microfluidics – Application in Fluid Routing, Sensor Synchronization, and Real-Time Feedback Control

    Get PDF
    Microfluidic applications range from combinatorial chemical synthesis to high-throughput screening, with platforms integrating analog perfusion components, digitally controlled microvalves, and a range of sensors that demand a variety of communication protocols. A comprehensive solution for microfluidic control has to support an arbitrary combination of microfluidic components and to meet the demand for easy-to-operate system as it arises from the growing community of unspecialized microfluidics users. It should also be an easy to modify and extendable platform, which offer an adequate computational resources, preferably without a need for a local computer terminal for increased mobility. Here we will describe several implementation of microfluidics control technologies and propose a microprocessor-based unit that unifies them. Integrated control can streamline the generation process of complex perfusion sequences required for sensor-integrated microfluidic platforms that demand iterative operation procedures such as calibration, sensing, data acquisition, and decision making. It also enables the implementation of intricate optimization protocols, which often require significant computational resources. System integration is an imperative developmental milestone for the field of microfluidics, both in terms of the scalability of increasingly complex platforms that still lack standardization, and the incorporation and adoption of emerging technologies in biomedical research. Here we describe a modular integration and synchronization of a complex multicomponent microfluidic platform

    Enriching mobile interaction with garment-based wearable computing devices

    Get PDF
    Wearable computing is on the brink of moving from research to mainstream. The first simple products, such as fitness wristbands and smart watches, hit the mass market and achieved considerable market penetration. However, the number and versatility of research prototypes in the field of wearable computing is far beyond the available devices on the market. Particularly, smart garments as a specific type of wearable computer, have high potential to change the way we interact with computing systems. Due to the proximity to the user`s body, smart garments allow to unobtrusively sense implicit and explicit user input. Smart garments are capable of sensing physiological information, detecting touch input, and recognizing the movement of the user. In this thesis, we explore how smart garments can enrich mobile interaction. Employing a user-centered design process, we demonstrate how different input and output modalities can enrich interaction capabilities of mobile devices such as mobile phones or smart watches. To understand the context of use, we chart the design space for mobile interaction through wearable devices. We focus on the device placement on the body as well as interaction modality. We use a probe-based research approach to systematically investigate the possible inputs and outputs for garment based wearable computing devices. We develop six different research probes showing how mobile interaction benefits from wearable computing devices and what requirements these devices pose for mobile operating systems. On the input side, we look at explicit input using touch and mid-air gestures as well as implicit input using physiological signals. Although touch input is well known from mobile devices, the limited screen real estate as well as the occlusion of the display by the input finger are challenges that can be overcome with touch-enabled garments. Additionally, mid-air gestures provide a more sophisticated and abstract form of input. We present a gesture elicitation study to address the special requirements of mobile interaction and present the resulting gesture set. As garments are worn, they allow different physiological signals to be sensed. We explore how we can leverage these physiological signals for implicit input. We conduct a study assessing physiological information by focusing on the workload of drivers in an automotive setting. We show that we can infer the driver´s workload using these physiological signals. Beside the input capabilities of garments, we explore how garments can be used as output. We present research probes covering the most important output modalities, namely visual, auditory, and haptic. We explore how low resolution displays can serve as a context display and how and where content should be placed on such a display. For auditory output, we investigate a novel authentication mechanism utilizing the closeness of wearable devices to the body. We show that by probing audio cues through the head of the user and re-recording them, user authentication is feasible. Last, we investigate EMS as a haptic feedback method. We show that by actuating the user`s body, an embodied form of haptic feedback can be achieved. From the aforementioned research probes, we distilled a set of design recommendations. These recommendations are grouped into interaction-based and technology-based recommendations and serve as a basis for designing novel ways of mobile interaction. We implement a system based on these recommendations. The system supports developers in integrating wearable sensors and actuators by providing an easy to use API for accessing these devices. In conclusion, this thesis broadens the understanding of how garment-based wearable computing devices can enrich mobile interaction. It outlines challenges and opportunities on an interaction and technological level. The unique characteristics of smart garments make them a promising technology for making the next step in mobile interaction

    Cognition-aware systems to support information intake and learning

    Get PDF
    Knowledge is created at an ever-increasing pace putting us under constant pressure to consume and acquire new information. Information gain and learning, however, require time and mental resources. While the proliferation of ubiquitous computing devices, such as smartphones, enables us to consume information anytime and anywhere, technologies are often disruptive rather than sensitive to the current user context. While people exhibit different levels of concentration and cognitive capacity throughout the day, applications rarely take these performance variations into account and often overburden their users with information or fail to stimulate. This work investigates how technology can be used to help people effectively deal with information intake and learning tasks through cognitive context-awareness. By harvesting sensor and usage data from mobile devices, we obtain people's levels of attentiveness, receptiveness, and cognitive performance. We subsequently use this cognition-awareness in applications to help users process information more effectively. Through a series of lab studies, online surveys, and field experiments we follow six research questions to investigate how to build cognition-aware systems. Awareness of user's variations in levels of attention, receptiveness, and cognitive performance allows systems to trigger appropriate content suggestions, manage user interruptions, and adapt User Interfaces in real-time to match tasks to the user's cognitive capacities. The tools, insights, and concepts described in this book allow researchers and application designers to build systems with an awareness of momentary user states and general circadian rhythms of alertness and cognitive performance
    corecore