
Institute of Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 3118-0008

Exploration of Programming by
Demonstration Approaches for

Smart Environments

Ragavendra Lingamaneni

Course of Study: INFOTECH

Examiner: Prof. Dr. Albrecht Schmidt

Supervisor: Thomas Kubitza

M.Sc

Commenced: 2015-09-07

Completed: 2016-03-02

CR-Classification: H.5.2, I.2.7

Acknowledgements
I would like to gratefully acknowledge the guidance, help and motivation of my supervisor
Thomas Kubitza and with immense gratitude that I would like to thank Prof. Dr. Albrecht
Schmidt for giving me an opportunity to do my thesis at the HCI department.

Special thanks to my friends Sujata Roy Chowdhury and Sujith Gowda for all their support
and motivation. I am really thankful to them for creating an enjoyable work environment
throughout the entire duration of this thesis.

i

Abstract
The number of smart electronic devices like smartphones, tablet computers and embedded
sensors/actuators in our domestic and work environment is constantly growing. Some of
them work as a stand along devices while others already collaborate with each other. It is
apparent that once a common layer for device intercommunication between major consumer
device manufactures has been agreed upon, a new class of networked smart applications will
rise. These applications will dynamically utilise required sensors and actuators of a smart
environment to optimally achieve tasks for us human users. Inhabitants of such environments
are already interacting with dozens of computers per day. A lot of research has addressed
many issues in hardware and software for the future smart environments But few have focused
on the users. An important research topic lies in finding simple, intuitive yet powerful enough
approaches to allow end-users to create and modify the behaviour of smart environments in
which they live and work according to their needs. I believe that for the ubiquitous computing
environments to reach its full potential, enabling end-user programming is one of the important
criteria.

This thesis describes the exploration of various approaches for "Do It Yourself" philosophy
in smart environment applications by providing inhabitants with the appropriate tools which
empower them to build their environments in accordance to their needs and with enough room
for personal creativity. To this end, I choose speech as the main input by the end users along
with demonstration of certain parts of over all approach in building applications for smart
environments. The resulting application is built on top of the meSchup platform developed
during meSchup FP7 EU project at the VIS institute in Stuttgart which provides a middle-
ware for seamlessly interconnecting heterogeneous devices. The resulting web application is
called "Speechweaver" which combines speech, programming by demonstration and automatic
code generation into usable and intuitive approach for creating and modifying the rule based
behaviour of smart environments in place.

iii

Contents
Abstract iii

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Problem Statement . 2
1.4 Thesis Outline . 2

2 Background and Related Work 5
2.1 Ubiquitous Computing . 5
2.2 End-User Programming . 6
2.3 End-User Programming for Ubiquitous Computing 6

2.3.1 Visual Programming . 7
2.3.2 Form based Programming . 8
2.3.3 Programming by Example . 8
2.3.4 Tangible Programming . 9
2.3.5 Programming with Simplified Natural Language 10

2.4 Human-Computer Interaction through Speech Interfaces 11

3 System Concept 13
3.1 Interaction Goals . 13
3.2 Interaction Evolution . 14
3.3 Interaction Technique . 14

3.3.1 Multimodal Systems . 14
3.3.2 Mobile vs Desktop vs non GUI Applications 15
3.3.3 Web application vs Native application 15

3.4 End-user Application Development Analogies 16
3.5 Choosing Abstractions . 17

3.5.1 Ready Made Templates . 17
3.5.2 User Defined Templates . 18

3.6 Collecting Ingredients (Device Referencing) . 18
3.6.1 Searching among all Connected Devices List 18
3.6.2 Device Referencing by Location . 19
3.6.3 Device Referencing by Physical Proximity 19
3.6.4 Device Referencing by Direct Physical Manipulation 21

3.7 Content Elements . 21
3.8 Live Value Element . 21
3.9 User Interface Design . 22

v

Contents

3.9.1 Behaviour editor design . 23
3.9.2 Cooking Panel (Speech Area) Design . 24
3.9.3 Component element design . 24

3.10 Speechweaver Spoken Sentence Structures . 25
3.11 Application Development in Speechweaver . 26

4 Implementation 29
4.1 System Overview . 29
4.2 meSchup Middleware . 30

4.2.1 Rule Engine . 30
4.2.2 Device Ontologies . 31
4.2.3 REST API . 31

4.3 Technologies used for Application Development 31
4.3.1 Web Components . 31
4.3.2 Polymer.js . 32

4.4 Speechweaver Application Architecture . 32
4.4.1 Important Application Elements . 33

4.5 How does Speechweaver work? . 35
4.5.1 Connecting to meSchup Server . 35
4.5.2 Initializing the Application . 36
4.5.3 Recipe and Behaviour Creation . 36

5 Evaluation 39
5.1 Evaluation Objectives . 39
5.2 Evaluation Methodology . 39
5.3 Smart Environment Test Setup . 40
5.4 Participant Tasks . 42
5.5 Results . 43
5.6 Discussion . 47

6 Conclusion and Future Work 51
6.1 Summary . 51
6.2 Discussion . 51
6.3 Future Work . 53

A User Study 55
A.1 Pre-Study Questionnaire . 56
A.2 Questionnaire for Tasks . 59
A.3 Post Study Questionnaire . 62
A.4 System Usability Study Questionnaire . 65

Bibliography 67

vi

List of Figures
2.1 Visual programming examples . 7
2.2 A Sample IFTTT Recipe . 8
2.3 The ToonTalk programming environment . 9
2.4 Tangible programming examples . 10
2.5 CAMP interface . 11
2.6 Amazon Echo . 11

3.1 A ready made template ingredient . 18
3.2 All the connected device list in a test smart environemnt 19
3.3 A list of all the locations to which devices are tagged 19
3.4 Approaches for referencing devices by proximity 20
3.5 Different content elements . 21
3.6 Live Value Token . 22
3.7 Live value token in manual edit mode . 22
3.8 Behaviour Editor Screen . 23
3.9 Speech area . 24
3.10 Sensor component ingredient design . 24
3.11 A module representation along with it capabilities 25
3.12 Sample Recipe list view . 26
3.13 Sample Behaviour list view . 27

4.1 System Overview . 29
4.2 meSchup Platform . 30
4.3 Speechweaver Application Architecture . 32
4.4 Visual feedback of annotated spoken behaviour 33
4.5 Application settings panel . 36

5.1 Test Smart Environment . 41
5.2 Task 1 Smart Objects . 42
5.3 Task 2 Smart Objects . 43
5.4 Participants rating for the statement "System had understood me well" after T1 43
5.5 Participants rating for the statement "System had understood me well" after T2 44
5.6 Participants rating for the statement "System had understood me well" after T3 45
5.7 Participants SUS score . 45
5.8 Participants rating for the statement "I found it helpful that the system works

on a mobile device" . 46
5.9 Participants rating for the statement "I find the “ingredients” concept easy to

understand" . 46

vii

List of Figures

5.10 Participants rating for the statement "I found adding devices by manipulation
helpful" . 47

5.11 Participants rating for the statement "I found the visual feedback while speaking
helpful" . 47

viii

Chapter 1

Introduction
1.1 Overview

Smart environments are already fundamentally changing the way we live and interact with
the environment. With the envisioned smart homes, smart workplaces, smart class rooms no
human space will be left “dumb”. A common example of the future of smart environments
is the smart home. In a smart home, sensors are embedded in the walls, ceilings, floors, and
appliances inside a private residence. These sensors monitor a diverse set of properties from
the environment and readings are then used to draw high level conclusions about the state
of the home. Based on these conclusions and some set of configured behaviors, a smart home
can engage actuators to affect changes in the environment. Typical smart home behaviors are
designed to make the home’s occupants more comfortable and more productive.

As the trend towards technology-enriched smart environments increases, the need to enable
end users to create applications according to their needs arise. There are several recent re-
search projects which are focusing on lowering application creation barriers by using simplified
programming languages and input mechanisms. However, very few have explored the combi-
nation of speech and demonstration for interacting with the devices around them and program
them according to their needs.

This thesis introduce Speechweaver, a multimodal browser based web application with an
interaction approach that shows a way for end-users to configure their smart environments.
Speechweaver discovers available ubiquitous components and presents these components as live
widgets which are used when describing behaviour by speech and in some parts by demon-
stration. It is built on top of an a existing infrastructure in the form of middleware called
meSchup developed to support writing scripts for recombination of devices and their services.
This thesis also present the system evaluation and challenges inherent in such a system.

1.2 Motivation

The technology necessary to create smart environments like sensors, actuators, computers,
wireless communication networks, etc are already available. However, what is missing is how
to build unique applications specific to each smart environment. Completely general purpose

1

1 Introduction

solutions are infeasible due to wide range of devices and their services that are available that
makes every smart environment unique.

The motivation behind Speechweaver was the belief that for ubiquitous computing to reach
its full potential, providing end-user programming is the most important criteria. Computing
power is already everywhere around us, in cars, refrigerators, TVs, mobile phones, tablets and
many more devices. Missing is the software to glue these devices and make them work for
us.

The author of this thesis believe that end-user programming capabilities are an essential part
of any flexible ubiquitous computing environments. In such an environment users wish to
configure, connect and program in such a way that no application developer has foreseen. But
we can expect users to have knowledge about the devices they encounter in their environments.
It is the user who understands what what he can do with a particular service provided by a
device. This enables users to benefit fully from the possibilities ubiquitous computing offers.

There is also a possibility that users will come up with previously unknown relations between
the sensor triggers like, door opening is detected by pressure sensor. This will enable playful-
ness with the objects around where ideas are generated from exploration and observation.

1.3 Problem Statement

The goal of the thesis is to let end-users create own applications for their smart environments
according to their needs without relying on technicians or other programmers. While there is
a significant research related to end-user programming, user interacting with physical things
need to have new interaction techniques. This requires us to come up with a user interaction
concept that empowers the inhabitants of a smart environment to program cross-device be-
haviour especially without the need to have expertise in programming languages or a technical
background.

The work presented in this thesis combines the idea of ubiquitous computing with the pos-
sibilities of programming by speech and in some parts by demonstration. The goal is not to
allow the user to use completely unconstrained natural language for any possible automation
task. Speech input will be structured with templates (eg. if-this-than-that) but still feels
natural for the users to speak. However, the system can be extended to accommodate other
templates by adding extra information. Users must be able to wire together the available
device capabilities into applications that meet their needs.

1.4 Thesis Outline

The remainder of this thesis is organised as follows.

• Chapter 2 : This chapter looks into the background and investigates related work in
the area of end-user programming of smart environments.

2

1.4 Thesis Outline

• Chapter 3 : This chapter details the evolution of interaction concept of the Speech-
weaver application.

• Chapter 3 : This chapter provides the implementation details of the system.

• Chapter 4 : This chapter discusses about evaluation and its results.

• Chapter 5 : The final chapter provides a summary of this work, limitations and
discusses directions for future work.

3

Chapter 2

Background and Related Work
This chapter will discuss about general background in ubiquitous computing and smart en-
vironments as well as end-user programming in ubiquitous computing environments and its
related world.

2.1 Ubiquitous Computing

Ubiquitous computing [23] or pervasive computing is a paradigm where computing disappear
into the background of everyday life and is unobtrusive. It is a vision where computers will be
integrated seamlessly into the environment like in couches, walls, cars, clothing etc to support
everyday interaction with these objects.

Implementation of ubiquitous computing relies on the convergence of wireless technologies,
advanced electronics and the Internet. Sensors play a major role in ubiquitous computing as
timely and accurate picture of the surrounding environment in which activity is occurring is
very important for such a system.

Ubiquitous computing allows the user to focus on the information required to make smart
decisions rather than dealing with the technology itself. Hence representation of information
obtained from ubiquitous devices is more important. Ubiquitous computing also brings in
problems like how to find or identify all these embedded computing devices and sensors to
access their services.

Smart Environments

Smart environments are envisioned as the byproduct of ubiquitous computing and the avail-
ability of cheap computing power that enables the development of smart devices which are
continuously working to make inhabitant’s lives more comfortable and productive.

Mark Weiser [23] described “smart environment” as “a physical world that is richly and in-
visibly interwoven with sensors, actuators, displays, and computational elements, embedded
seamlessly in the everyday objects of our lives, and connected through a continuous net-
work”.

The authors view of smart environments can be summarized as listed below :

5

2 Background and Related Work

• A physical world interwoven with invisible sensors, actuators, displays, and computa-
tional elements.

• The smartness of this environment is a product of interaction of different devices and
computing systems.

• An ecosystem of interacting objects, e.g. sensors, devices, appliances and embedded
systems in general, that have the capability to provide rich end-user services.

2.2 End-User Programming

End-user programming(EUP) or end-user development (EUD) refers to approaches that helps
to make programming more accessible to a large group of people which includes people with
no previous programming skills.

While only a few computer users actually know how to program in usual programming lan-
guages, almost all users want to modify existing applications by adding additional features
or specifying their behavior, and even inventing new ones becomes important when looking
at technology-enriched environments like smart homes, offices etc. There would be a greater
benefit of the added technology when users were able to decide how their devices should work
and react instead of just using pre-defined actions [10]

End-user programming systems try to make the abstract and high-level concepts that are
required to program computers understandable for non-expert users. These systems lower
the entry barrier for users (low threshold), but also try to provide powerful and flexible
functionality (high ceiling) to create new envisioned applications.

These end-user programming environments typically fall into two large groups [12]: Systems
that teach people how to program and systems that empower people to build things that are
tailored towards their needs, which are of particular interest to us.

2.3 End-User Programming for Ubiquitous Computing

Weiser claimed that the whole point of ubiquitous computing was to create compelling appli-
cations that would drive the development of devices and infrastructure. Machine learning can
eliminate the need for humans in the loop by automatically learning an inhabitants routine.
However, users will lose control and the ability to extend their environment.

As ubiquitous computing matures, and becomes a part of everyday life, the way in which users
control it will become increasingly important. While direct or implicit control may suffice for
many applications, the sheer diversity of situations in which ubiquitous technology may be
used means that users will, at some point, want to tailor the technology to their own specific
needs.

6

2.3 End-User Programming for Ubiquitous Computing

The system must allow users to access devices and their services are available in their envi-
ronment . This implies that devices and services must be able to provide enough information
about themselves in human readable form, so that users can make informed decisions about
wiring them together.

Some of the various approaches taken for end-user programming for ubiquitous computing
along with their related work is discussed in the following sections.

2.3.1 Visual Programming

On widespread approach in visual programming is to wire abstract concepts by linking inputs
and outputs of specific widgets in a graphical user interface.

These systems provide graphical visualizations of the program functionality. Usually these
are visualizations of fundamental building blocks that can be connected by the end-user to
construct the desired program behavior. These visualizations can become very complex and
confusing for more sophisticated programs.

(a) ClickScript Editor (b) Reality Editor

Figure 2.1: Visual programming examples

ClickScript

Clickscript [6] is a web mashup editor and a Firefox plug-in that allows visual creation of Web
mashups by connecting building blocks of resources (websites) and operations (greater than,
if/then, loops, etc.). The visual languages are used in combination with property dialogs
for the parameterization of mashup elements. Data sources are primarily accessed through
mashup elements in those notations. Dialog-based wiring of widgets provides an alternative
to visual data-flow languages which saves screen space, but depends on visual widgets. On
an intermediate level of abstraction, there is often a distinction between design and run-time
mode, although the mashup development environment try to reduce this distinction, e.g., by
using previews.

7

2 Background and Related Work

Reality Editor

Reality Editor [7] is a system that supports editing the behavior and interfaces of smart objects
using augmented reality technology. Reality Editor augments graphical elements directly on
top of the tangible interfaces found on physical objects such as push buttons or knobs which
are tagged with markers. It allows reprogramming of the interfaces and behavior of the
objects as well as defining relationships between smarter objects in order to easily create new
functionalities.

2.3.2 Form based Programming

In form based end user programming, users are required to fill forms or predefined templates
by choosing relevant options provided to fulfil their tasks.

IFTTT

IFTTT is a web tool that allows users to create simple programs with "triggers" and "actions".
For example, one can program their Phillips Hue light bulbs to flash red and blue when the
Cubs hit a home run. A GUI allows users to construct these recipes based on a set of
information “channels". These channels represent many types of information. Weather, news,
and financial services have provided constant updates through web services. Home automation
sensors and controllers such as motion detectors, thermostats, location sensors, garage door
openers, etc. are also available. Users can create their own recipe and then describe the
recipes they have constructed in natural language and publish them.

Figure 2.2: A Sample IFTTT Recipe

2.3.3 Programming by Example

In programming by example approach, the user records desired automation by manually per-
forming the task to be automated and turns it into a program by using a direct manipulation
interface. With this approach, users can directly demonstrate parts of the program behavior
and the end-user programming system build the necessary application. Macro recorder is one

8

2.3 End-User Programming for Ubiquitous Computing

of the most straight forward programming by example approach where user simply recorded
a sequence of actions and repeat them later at some point in time by giving appropriate
commands.

Figure 2.3: The ToonTalk programming environment

Another example in this approach is ToonTalk [11] which is aimed at school going children,
in which the source code is animated and the programming environment is a video game.
Since the target audience are children every abstract computational aspect is mapped into a
concrete metaphor. For example, a computation is a city, an active object or agent is a house,
birds carry messages between houses, a method or clause is a robot trained by the user and
so on. The programmer trains a ‘programmer persona’ a robot that can learn by watching
user actions. To train the robot, user performs the intended actions on some input. When the
robot subsequently sees the same input, it will perform the same actions that the user did.

2.3.4 Tangible Programming

In tangible programming approach, programming structures take physical forms. For example,
a "method" or a "if" statement in a program will be a physical object which can be passed
around in a room.

Tangible Programming Bricks

Tangible programming bricks [15] embeds electronics on the physical objects that actually
perform the commands themselves. These bricks can be stacked upon other bricks in upward
direction to physically build a program. The connector system used for stacking bricks relies
on the plastic knobs and tubes of the LEGO SYSTEM for physical clutching [14]. Additionally
it employed "inset card" system for providing various inputs to the bricks.

9

2 Background and Related Work

(a) MIT’s Tangible Programming Bricks (b) Quetzal - Programming parts

Figure 2.4: Tangible programming examples

Quetzal

In Quetzal [8] programming language, users have to physically link the tangible programming
objects. Tangible objects embody the meaning of the instructions in a programming language.
Quetzal is developed for teaching programming for middle school and late elementary school
children for controlling LEGO Mindstroms robots.

2.3.5 Programming with Simplified Natural Language

With this approach, the end-user programming systems try to infer the desired program di-
rectly from the users’ instructions. These systems are often implemented as a dialog between
the computer and the user, and sometimes combined with the programming by demonstra-
tion technique. However, it is very complex for users to modify existing programs afterwards;
therefore, the systems are sometimes provide a graphical feedback similar to the visual pro-
gramming systems.

CAMP: a magnetic poetry interface

CAMP [19] is a programming system which enables end-users to build ubicomp applications
for their home. The actions supported by CAMP are capture, access, and delete, and the
possible capture data types are still-pictures, audio, and video. CAMP requires that the
used technology is context-aware, i.e. it can recognize the contexts of people and objects,
such as locations and activities. The CAMP interface consists of a vocabulary area, a poem
authoring area, and an interpretation area. To form poems, the user can drag magnets from
the vocabulary to the authoring area. When pressing the “run” button, CAMP displays an
interpretation.

10

2.4 Human-Computer Interaction through Speech Interfaces

Figure 2.5: CAMP interface

2.4 Human-Computer Interaction through Speech Interfaces

Speech interfaces play a crucial role in enhancing human-computer interactions especially
in smaller mobile devices like smart phones for which graphical user interface has obvious
limitations considering that user input on mobile devices is rather inconvenient due to the
lack of a full hardware keyboard, it becomes obvious that such devices are a good platform
for voice-controlled applications utilizing cloud-based speech recognition.

For programming by speech only approaches in smart environments, dialogue based systems
promises best solution as interactive dialogue can be used to seek clarifications and avoid
misunderstandings and to provide rich feedback.

Figure 2.6: Amazon Echo

There are several spoken dialogue systems in the mobile application industry. Two of the most
popular applications are Apple’s personal assistant Siri and Google’s personal assistant Google
Now. Another widely known application featuring highly sophisticated natural language and
speech processing technology is the question answering system IBMWatson famous for beating
the two ultimate champions in the quiz show Jeopardy. Another recent addition to speech

11

2 Background and Related Work

recognition systems used in home environment is Amazon Echo. It is a wireless speaker and
voice command device and is capable of voice interaction, music playback, making to-do lists,
setting alarms, and providing weather, traffic and other real time information. It can also
control several smart devices.

12

Chapter 3

System Concept
This chapter will discuss about the evolution of speechweaver interaction techniques and
approaches along with other possible alternatives.

3.1 Interaction Goals

In a publication by Gregory D. Abowd[1], he suggests shifting the focus of Ubiquitous Com-
puting research towards design problems as the necessary technologies for creating smart
environments already exists but lacks good interaction techniques for the people to interact
and manipulate and program these smart environments.

Taking motivation from the above suggestion, this section of thesis investigates various inter-
action techniques and approaches that enable the inhabitants of the smart environments to
create applications in the form of cross-device behaviours without necessarily requiring pro-
gramming expertise, just by using natural interactions like observation, physical manipulation,
speech and rational thinking.

One of the starting point of this work is the belief that the developed application should
support the ability of users to intermix services provided by the devices surrounding them.
Additionally, the following design goals motivated the development of Speechweaver interac-
tion approach :

• Enable end-users to express their ideas in the same way they think about them for
creating smart environment behaviours [16]

• Provide a tool that is live & reactive, which enables end-users to create, visualize, test
and debug behaviours in their environment without relying on advanced developers.

• Provide different levels of abstraction to get better understanding over various devices
and their capabilities present in their environment.

• Provide adequate User-Interface (UI), right tools and methods to find smart devices in
their environment.

13

3 System Concept

3.2 Interaction Evolution

Some of the important user interaction with Speechweaver application involves creating new
behaviour, modifying existing behaviour and removing a behaviour from their smart environ-
ment. The author believes that there is a common general approach that an end-user will take
for doing any of the above mentioned tasks. For example, the process of interaction evolution
with Speechweaver application by a user for modifying an existing behaviour consists of the
following stages :

• Identify opportunities : Inhabitant of a smart environment identifies an opportunity
to change the behaviour of the environment for example, he observes that lights are
turning on even when the room is sufficiently bright.

• observe changes : Inhabitant observes the environment carefully to determine what
is triggering the change and when the change happens.

• Decision making : Inhabitant decides on if the environment behaviour needs to be
changed and if so, how it should be done and by what measure.

• Describe behaviour to system : Inhabitant describes the changes to the environment
and checks immediately if it behaves how he intended it to behave.

The whole process occur iteratively until the inhabitant is satisfied with the behaviour. For
creating a new behaviour the above stages holds true with one extra step to check for the
availability of devices for fulfilling the identified opportunities.

3.3 Interaction Technique

This section will discuss about the various decisions that were made to come up with a final fea-
sible interaction techniques and approaches from various alternatives for the Speechweaver.

3.3.1 Multimodal Systems

Humans interact with the physical world multimodally. We employ multiple senses to explore,
experience and understand the surrounding environment. Hence there is a need to develop
multimodal interfaces for the user interactions in a smart environment. Using only traditional
WIMP schema (Windows, Icons, Menus and Point Device) based interaction between humans
and computation will be less effective and in some cases not feasible. Multimodal interfaces
describes interactive systems that seek to leverage natural human capabilities to communicate
via speech, gesture, touch, facial expression, and other modalities, bringing more sophisticated
pattern recognition and classification methods to human–computer interaction. Multimodal
interfaces are growing in importance due to advances in hardware and software, the benefits
that they can provide to users, and the natural fit with the increasingly ubiquitous mobile
computing environment [20]

14

3.3 Interaction Technique

Speechweaver application combines spoken language understanding capability with direct
physical manipulation in the surrounding environment supplemented by a graphical user in-
terface (GUI). This combination gives a rich set of modalities for the users to interact in their
smart environment.

3.3.2 Mobile vs Desktop vs non GUI Applications

As mentioned in [3], interaction in end user programming of smart environments would be
classified into physical environment interaction and desktop/tablet based interaction. A com-
bination of these two interaction types is needed to give better user experience when building
the application. However, since computers and other devices exists in different forms and
are physically distributed in a ubiquitous smart environment, applications running on a tra-
ditional desktop computers are not suitable for interaction. As mentioned in [2] ubiquitous
computing environments inspires application development that is "off the desktop".

These considerations were motivation behind building a mobile device based application which
enables users to move around to find various devices and their effects while defining behaviours
for their smart environment.

3.3.3 Web application vs Native application

A native mobile application is developed essentially for one particular device and is installed
directly onto the device itself. Users of native apps usually download them via app stores
online or the app marketplace, such as the Apple App Store, the Google Play store and so
on. A web application, on the other hand is basically Internet-enabled applications that are
accessible via the mobile device’s Web browser. They do not need to be downloaded onto the
user’s mobile device in order to be accessed and can run on all the devices which support web
browsers.

Multimodal interfaces developed using web-standards have a number of key advantages beyond
their easy accessibility to a large number of users. First, interfaces provided via the network
can run computationally demanding processes such as speech recognition on fast servers,
which is especially important for mobile devices. Second, web-based applications can make
use of a growing array of powerful services available via the web. Further, web applications
can be easily turned into hybrid applications with various tooklkits (PhoneGap, Titanium
Appcelerator) which package an HTML5 and JavaScript-based applications using WebViews
feature in mobile devices.

Other advantages of web application compared to native application are :

• Native application require development for each mobile platform whereas web applica-
tions are developed once and run on all the platforms

• A web application updates itself where as a native application needs to constantly down-
load updates

15

3 System Concept

• Native applications are more expensive to develop and the resources are less compared
to web applications.

Taking into account the above advantages, Speechweaver was chosen to be a web application
instead of a native application to run on a mobile device.

3.4 End-user Application Development Analogies

Analogies are powerful cognitive mechanisms that people use to construct new knowledge
from knowledge already acquired and understood [18]. When an end-user is introduced to
application development in a particular domain using a well understood analogy it would be
easier to comprehend the approach.

End-user development systems used analogies and metaphors to introduce people to program-
ming and application development. Tern [9], a tangible programming language designed to
introduce computer programming for children consists of a collection of wooden blocks shaped
like jigsaw puzzle pieces. ‘jigsaw pieces’ metaphor is based on the familiarity evoked by the
notion and the intuitive suggestion of assembly by connecting pieces together. CAMP [19]
uses “magnetic poetry” as visible representations of the applications.

Other analogy which can be used to introduce general programming environment is "factory"
which is described in [13]. In this analogy, A program is a factory and the learner is a factory’s
creator. Factories are made of machines (programming interfaces), which are coordinated to
systematically receive, manipulate, and produce products (program output and behavior). In
general, learners have many tools to help create, run, and inspect their factory (the program-
ming environment).

For Speechweaver, "cooking" analogy was used as the creation of a new smart environment
application is like cooking a recipe. Cooking involves following steps :

• Deciding which recipe to cook

• Collect all the ingredients required for a recipe

• Finally, Food is cooked by following well defined step-by-step procedure by combining
ingredients in varying quantity according to your taste and requirement.

• Recipe : A recipe is a list of behaviours that are brought together because they have
something in common (Ingredients).

• Behaviours : A behaviour is a combination of ingredients and methods (speech ,
gesture, observing etc), created by end-user that produces a meaningful relation among
them. In Speechweaver, behaviour takes the form of event-condition-action template.

• Ingredients : An Ingredient is a combination of a service and its source.

16

3.5 Choosing Abstractions

3.5 Choosing Abstractions

The author wanted Speechweaver application to be human-centric and only moderately ab-
stract. If the implementation is too abstract it will negate users ability to reason about the
program. "only moderately abstract" mean that user should be able to understand the "raw"
capabilities provided by the devices and use them directly to describe environment behaviour.
However, given the highly heterogeneous and sometimes unfamiliar nature of the smart en-
vironments and the devices available around them, the application should make some sense
out of the components available and present to the end user. This approach removes some
additional burden on the end users.

Speechweaver should provide as well as allow users to create abstractions called "templates".
Templates contain slots to be filled by components. Various types of templates are possible
which are discussed below.

• Templates for activity recognition : Various sensors values can be used to recognise
an activity in an environment. This method of recognising activity is bundled and
presented to the user at a higher abstraction level than the sensor data that is easy for
the users to understand.

• Templates for Task Execution : In task execution templates, a sequence of actions
can be bundled and presented as a task.

• Templates for complete solutions : Finally, both activity recognition and task
execution can be grouped and presented to the user as a package.

Templates play a very important middle-ground between potentially inflexible applications
written by developers and individual components [17]. But choosing right abstraction for a
domain is very important when creating templates. In Speechweaver application, we support
two types of templates : Ready made templates and User defined templates.

3.5.1 Ready Made Templates

Ready made templates are written by advanced programmers and are made available for the
end users for use without worrying about how they are implemented. A ready made template
can be an activity recognition template or a task execution template or a complete solution
template. Templates are filled automatically when included in a recipe based on the existing
ingredients in the recipe or the available ingredients in the surrounding environment.

17

3 System Concept

Figure 3.1: A ready made template ingredient

3.5.2 User Defined Templates

Users can create their own templates for simple "true" or "false" end scenarios. For example,
instead of describing behaviour "Switch on the lamp when illumination is less than 200", user
can just say “Switch on the lamp when it is dark” by creating a template called "dark" as "It
is dark when illumination is less than 200". Different combinations of sensors and conditions
can be used while creating user defined templates. These user defined templates will be stored
in a generic way so that user can rename it and reuse it with other components.

3.6 Collecting Ingredients (Device Referencing)

A ubiquitous smart space is usually populated by hundreds of devices that are embedded in
their surroundings. They must blend into the background and provide services to the the
inhabitants. The services provided by these devices are essential for the success of such smart
spaces. Thus, finding and understanding these services will play a vital role in building smart
environment applications by end users.

One of the key motivation behind developing Speechweaver application is to come up with
a interaction approach that supports finding of available devices and their services by the
end users to be later used in defining behaviour of the smart environment. This process is
called collecting ingredients within the context of the Speechweaver application. There are
various ways of referencing a device and its components within a smart environment using
Speechweaver application and they are discussed in the following section.

3.6.1 Searching among all Connected Devices List

One way of referencing a particular device is to search among all the devices available in the
surrounding environment. However, since smart spaces contains many such devices it gets
very difficult to find the required device and further to confirm if the referenced device is the
correct one.

18

3.6 Collecting Ingredients (Device Referencing)

Figure 3.2: All the connected device list in a test smart environemnt

3.6.2 Device Referencing by Location

In this approach, devices are tagged with a location name during the initial configura-
tion/setup of a smart environment. The location name is entered based on where the device
is physically placed within the smart space. Speechweaver application lists all the locations
and then when a user selects a location, all the devices whose location field is same as the
selected location are listed for the user to be referenced.

Figure 3.3: A list of all the locations to which devices are tagged

3.6.3 Device Referencing by Physical Proximity

One way to reduce the complexity in finding a device among hundreds of devices is by using
the device proximity information. If only a list of devices are shown which are close to the
current user then it is much easier to refer to the required device. Speechweaver provides
three methods (BLE Beacons, NFC and Augmented Reality) for scanning devices which are
in proximity. It takes help of other devices called "helper devices" which are other meSchup
clients on which the corresponding scanning software will be running. Users can configure

19

3 System Concept

helper devices in the settings options of the application and then use those devices along
with the mobile device on which Speechwaever interface is running to scan the environment
for referencing devices. The best metaphor to describe these interactions is that the user is
“probing the world with a tool” as rightly described in [2].

Figure 3.4: Approaches for referencing devices by proximity

BLE Beacons

In this approach, BLE Beacons are attached to the devices. Every BLE beacons has a 128-
bit universally unique identifier (UUID) which is tagged to a unique device during initial
configuration of the environment. By using a BLE scanner running on a smart phone, the
UUID advertised by a beacon is detected and the associated device is referenced. Due to their
short range, the device referencing is based on actual physical proximity.

NFC

NFC (near field communication) is a wireless technology which allows for the transfer of data
such as text or numbers between two NFC enabled devices. NFC tags, for example stickers
or wristbands, contain small microchips with little aerials which can store a small amount
of information for transfer to another NFC device, such as a mobile phone. Each NFC tags
has a 7 byte unique identifier called UID. This UID can be associated to a unique device in
a environment and can be later scanned by a phone running NFC scanner to reference the
device.

Augmented Reality Markers

Another way of tagging a device is by using augmented reality markers. A unique marker is
associated with each device. Then by using a AR marker scanning application running on a
smart phone/tablet the marker can be detected and the corresponding associated device can
be referenced.

20

3.7 Content Elements

3.6.4 Device Referencing by Direct Physical Manipulation

In the direct physical manipulation approach, as the name suggests sensors are directly ma-
nipulated to reference devices to which the manipulated sensors are connected. For example,
if a illumination sensor is connected to a Arduino device, then room illumination levels can
be changed by turning on/off the lights or closing/opening the window shutters. In this way,
the illumination sensor is manipulated and the associated device is referenced.

3.7 Content Elements

Speechweaver allows creation of different types of media content elements as shown in the
figure 3.5. The content elements include images, videos, audios and web pages. They can be
created by simply providing a name, URL path of the resource and selecting the type of content
(image, audio, video, webpage). These content elements can then be added into the ingredients
list of a recipe to e used in a behaviour. The reason for creating the media content elements
is due to difficult in referring them. For example, if the users wants to display a weather
website on a screen he should specify the complete URL (www.weather.com) while creating
the behaviour. But when a content element is created representing "www.weather.com", then
the resource can be directly referred in the application as "weather".

Figure 3.5: Different content elements

3.8 Live Value Element

When describing a behaviour to the Speechweaver, users can refer to the current live value of
the previously referenced sensor just by saying "current value" or "present value". When a live
value is referenced a special element will appear through which one can access the live value
of the sensor at any point in time. Value of the live element can be freezed or set to running
mode to fine tune the behaviour. There is also a manual edit mode for the live value element
which enables the users to manually specify values when sensor is not currently in operation.
Live element in edit mode adpats itself to the sensor type. If sensor returns a string, then in

21

3 System Concept

edit mode a string input field is shown. Similarly for numeric sensor value a slider input is
shown and for a boolean sensor a switch is shown.

(a) Live Value Token Running (b) Live Value Token Freezed

Figure 3.6: Live Value Token

Figure 3.7: Live value token in manual edit mode

3.9 User Interface Design

User interface design of the Speechweaver should enable the following features

• Logical organisation of an IOT application using cooking anology.

• Easily finding "things" present in their smart environment.

• Meaningful visual representation of sensor values.

• Meaningful representation of device capabilities.

• Assisting end-users by writing general purpose domain dependent templates

• Scripting cross-device behaviour by speech.

• Visualizing spoken behaviour in best way possible so as to look for errors and correcting
them.

22

3.9 User Interface Design

3.9.1 Behaviour editor design

Figure 3.8: Behaviour Editor Screen

Behaviour editor screen is shown in the figure 3.8. The editor screen is divided into two
panels. The panel with bigger area is the ingredients panel. In this panel a list of all the
added ingredients are displayed as live widgets. The ingredients representing sensors display
last values sent by the associated sensor triggers. The content ingredients are represented
with a bigger size widgets so that they are easily distinguished by other types of ingredients.
Template ingredients can be identified by their green boarders. Different kinds of ingredients
can be added by clicking on the "+ Ingredients" button on the top-right corner of the main
menu bar. Similarly ingredients can be removed from the ingredients panel by clicking on the
recycle bin icon which turns red when in delete mode and then clicking on the ingredients
to be removed. The smaller lower panel represents the cooking area which will be explained
in the later sections. The interface is designed similar to traditional chat applications where
upper panel displays chat messages and the lower panel displays the input area. It is designed

23

3 System Concept

in this way so that the user gets the feeling that he is chatting with the application.

3.9.2 Cooking Panel (Speech Area) Design

Figure 3.9: Speech area

The cooking panel is where all the speech related controls and visualization appears. On the
top left corner, the input field represents the behaviour name. The relatively big button with
mic icon on the top right corner is used to turn on/off the speech recognition. The second
button from the right is used to remove one speech token at a time. The third button is
used for clearing all the speech tokens in the speech panel. The last button is for saving the
behaviour so that so that the behaviour can be deployed to the environment for testing. The
final recognised speech input is displayed as tokens in the speech panel. The tokens include
both plain text as well as the ingredients.

Speechweaver can understand the spoken behaviour only when certain structure is maintained
in the speech. The structure is generalised to Condition-Action-Else-Action form ie. when
certain conditions specified in the behaviour is met then a set of actions will be performed
otherwise another set of actions will be performed.

3.9.3 Component element design

Figure 3.10: Sensor component ingredient design

Services offered by devices are visually represented in the Speechweaver as widgets as shown
in the figure 3.10. The visual representation consists of an icon of the device module which

24

3.10 Speechweaver Spoken Sentence Structures

is offering the service then followed by the service name. If the service is a sensor, then the
last triggered value of the sensor is also displayed as shown in the figure. Additionally, all the
services provided by a module are grouped and visualized as shown in the figure 3.11

Figure 3.11: A module representation along with it capabilities

3.10 Speechweaver Spoken Sentence Structures

Even though behaviour is described by speech in natural language, Speechweaver imposes
rigid structure on the spoken sentences. Basically, application can understand only one kind
of behaviour description but the description can be spoken in different ways. This can be
explained by an example. The basic sample behaviour description that speechweaver can
understand is as below,

"When the illumination is less then 200 and couch load is greater then 100 than turn on the
light otherwise turn off the light"

In the above behaviour description, the bold words define the structure of the spoken sen-
tence. They are the keywords used by the application to parse the sentence correctly for
code generation. Some of the keywords can be interchanged by other words supported by the
application. For example, "When" can be interchanged with "If" and similarly "than" can
be interchanged with "do" or "trigger". "else" can be used instead of "otherwise". Then
the above sentence transforms to as below,

"if the illumination is less then 200 and couch load is greater then 100 do turn on the light
else turn off the light"

In addition to using different keywords, same sentence can also have different structure but
can still be understood by the system provided the system is introduced to such a structure
by adding additional code generation templates which will be discussed in the next chapter.
For example, the above behaviour can also be described as below,

"Turn on the light When the illumination is less then 200 and couch load is greater then 100
otherwise turn off the light"

25

3 System Concept

As you can see, the sentence structure is slightly changed from the original sentence but
still can be understood by the application. The behaviour description after "otherwise" is
optional. Also, when multiple comparisons are involved in the condition part of the behaviour,
"and" and "or" should be used in between comparisons with their meaning equivalent to their
meaning in Boolean operations.

3.11 Application Development in Speechweaver

The entire work flow of application creation in the Speechweaver can be best explained with
an example. In the following example, we will go step-by-step creating a sample application
called "House Lighting" in a smart home setting. The purpose of this application is to turn
on/off the lights in different rooms in the house based on the room illuminations.

Step 1 : A recipe named "House Lighting" is created.

Figure 3.12: Sample Recipe list view

Step 2 : All the required ingredients for the recipe are collected. In this case, all the smart
light bulbs and the illumination sensors in all the rooms should be added into the ingredients
list of the recipe. The easiest way of adding all illumination sensors is by referencing by
manipulation. By going to the individual rooms and turning on/off the light bulbs can trigger
changes in the illumination sensor values and thus, the device to which illumination sensor
is connected appears on the manipulation screen. Light bulbs can be added by manually
selecting from the list of all connected devices.

Step 3 : Once all the required ingredients are added to the recipe, a behaviour for a room is
created for example "living room lighting".

Step 4 : Then in the behaviour editor, a behaviour is described referring to the illumination
sensor and the light bulb in the living room and saved. The sample behaviour can be as
follows,

When the living room illumination is less then 200 then turn on the living room bulb otherwise
turn off the living room bulb

Step 5 : Similarly, other behaviours for other rooms based on their illumination levels are
created and saved.

26

3.11 Application Development in Speechweaver

Figure 3.13: Sample Behaviour list view

All these behaviours together make a smart home application. Thus, a recipe is equivalent to
an application in the smart environment.

27

Chapter 4

Implementation
Speechweaver is built using modern web-programming technologies, enabling the development
of a browser-based application which rival the quality of traditional native interfaces, yet
are available on a wide array of Internet-connected devices. It is designed to work in real-
time within a smart environment. The communication between Speechweaver and the smart
environment happens through meSchup middleware. Speechweaver itself is built using NodeJS
on the backnend and on the frontend, web components technology is used using polymer JS
library. JSON files are used as database on the backend.

4.1 System Overview

Figure 4.1: System Overview

29

4 Implementation

4.2 meSchup Middleware

The meSchup middleware combines arbitrary devices, their sensors, and actuators for pro-
gramming smart spaces by non experts in electronics and low-level programming. This mid-
dleware abstracts from various device communication technologies such as Wi-Fi, Bluetooth,
BLE, ZigBee, Z-Wave and other incompatibilities and provides real-time access to sensors
and actuators of different kind of networked device in a unified way. This reduces the time
between conceptualizing a smart space interaction and realizing it to minutes instead of days
or weeks, as is often the case when creating implementations from the ground up. The
meSchup server runs the middleware server software.The server offers a web-based GUI for
device configuration, event monitoring,and behavior scripting, and is lightweight enough to
run on small, low-cost embedded devices such as the Raspberry Pi 2 or the Intel Edison. It
is fully implemented in NodeJS which allows it to run on all major operating systems.

(a) meSchup Hub (b) Some of the meSchup clients

Figure 4.2: meSchup Platform

4.2.1 Rule Engine

meSchup middleware contains a scripting engine that allows users to write scripts (called
"behaviours") in Javascript to weave devices, sensors, and actuators in a space into smart
behavior instantly and without requiring recompilation or time-consuming redeployments.
Application layer of meSchup can access any sensor in a smart environment and trigger any
kind of actuator based on user-defined logic in the rules. Programming sensor-rich smart
environments with Javascript opens the ubicomp domain to a huge community of web devel-
opers. Behaviour scripts are annotated with a name and a description and can be activated
or deactivated anytime. Within the script editor, developer can address any device known by
the middleware and any sensor or actuator in a unified way.

30

4.3 Technologies used for Application Development

4.2.2 Device Ontologies

At the core of meSchup middleware, lies a knowledge base in the form of device metadata and
module metadata. Device metadata provides information about device type, communication
technology, device status, description and all the input and output channels available. Module
metadata consists of information about associated device type, description, available settings
like sampling rate and sampling interval and details about services provided by these modules
like data type, data range etc. This wealth of knowledge about a device can lead to formation
of device ontology. An ontology is defined as “a formal, explicit specification of a shared
conceptualization” [5] and is used to represent knowledge within a domain as a set of concepts
related to each other. The interrelationships of entities represented by ontologies can then be
effectively used when referencing devices by speech.

4.2.3 REST API

A RESTful web API that provides the same functionality as the main GUI allows the im-
plementation of alternative or additional graphical or multimodal user interfaces is included
in the meSchup server. This API provides services like getting all the connected devices,
available behaviours and modifying them.

4.3 Technologies used for Application Development

Speechweaver web application frontend is built using polymer library which is built on top of
the web components standards to create custom HTML elements.

4.3.1 Web Components

Web Components [21] are a set of standards currently being produced by Google engineers
as a W3C specification that allow for the creation of reusable widgets or components in web
documents and web applications. The intention behind them is to bring component-based
software engineering to the World Wide Web. The components model allows for encapsulation
and interoperability of individual HTML elements.

Web Components consists of several separate technologies [22] :

Custom Elements : Custom elements provide a way to build own, fully-featured custom
HTML tags and elements. They can have their own scripted behavior and CSS styling. This
allows to give components a meaningful name so that the component can be used like any
other HTML element.

HTML Templates : The HTML template element <template> is a mechanism for holding
client-side content that is not to be rendered when a page is loaded but may subsequently be
instantiated during runtime using JavaScript.

31

4 Implementation

Shadow DOM : Shadow DOM provides encapsulation for the JavaScript, CSS, and tem-
plating in a Web Component. Shadow DOM makes it so these things remain separate from
the DOM of the main document.

HTML Imports : HTML Imports are a way of including HTML documents in other docu-
ments. It is intended to be the packaging mechanism for Web Components. One can import
an HTML file by using a <link> tag in an HTML document.

4.3.2 Polymer.js

The Polymer library [4] is a lightweight sugaring layer on top of the web components API’s to
help in building own web components. It adds convenient features like templating, two-way
data binding and property observation to make it easy to build powerful, reusable elements
with less code. The polymer library is developed by Google Inc.

4.4 Speechweaver Application Architecture

Figure 4.3: Speechweaver Application Architecture

32

4.4 Speechweaver Application Architecture

4.4.1 Important Application Elements

Speech Element

Speech element is a wrapper for the various services provided by the Web Speech API. Web
Speech API enables web applications to handle voice data easily. It has tow components:
Speech recognition ans Speech synthesis. Speech element is a polymer element custom built for
handling all the speech related activities within the application. It’s API includes specifying
language and dialect of the input speech and turning on/off the continues speech input mode.

Recipe element

In speechweaver, spoken language understanding happens in two steps. The first step is taken
care by the recipe element. In this step, the text returned by the speech recognition element
is parsed in real time for references to the ingredients and the live value element. When a
reference is found, then the plain text is replaced by the appropriate reference. The final
spoken behaviour is a mix of plain strings and ingredient references. In this way, we annotate
the spoken plain text with additional information which is used later for the easy of parsing
code in the code-parser element.

For example, when a user describes the following behaviour : "when the illumination is less
than the current value then show sunrise on the webview" the visual feedback is as shown in
the figure 4.4.

Figure 4.4: Visual feedback of annotated spoken behaviour

Code parser element

Second stage of spoken language understanding happens in the code parser element, where
the annotated spoken behaviour received from the recipe element is compared against a list
of code generation templates supported by the application for parsing the javascript code. A
sample code generation template is shown below.

[
{

"language": "en",
"sample": "when illumination is less than 200 turn on the light otherwise
turn off the lights",
"vocabulary" : {

"_if": ["if", "when"],

33

4 Implementation

"_then": ["then", "do", "trigger"],
"_else": ["else", "otherwise"],
"_and" : ["and"],
"_or": ["or"],
"_greater": ["over" , "beyond" , "large" , "above" , "outside"],
"_smaller": ["below" , "short" , "beneath" , "within"],
"_equalto": ["comparable" , "exact", "same"]

},
"condition" : {

"_after" : "_if",
"_before": "_then"

},
"action_true": {

"_after": "_then",
"_before": "_else"

},
"action_false": {

"_after": "_else",
"_before": null

},
"structure" : "_if_then_else"

}
]

This code generation template is used for extracting if-this-than-that-else structured be-
haviours. "language" key specifies ISO 639-1 Language Code of the speaker language. "Sample"
field is for the reference of the structure. "vocabulary" field contains all the vocabulary used
in the behaviours and their equivalent synonyms. "Condition" field specifies the code parser
element where to find the "if-this" part of the if-this-than-that-else structure. "action_true"
specifies the position of the actions to be taken when the condition is true and "action_false"
specifies the position of actions when condition is false. "Structure" field specifies the code
generation template.

Code generation element extracts behaviour structure by comparing the position of the above
mentioned structural words and builds a unique string. A template is chosen for code gener-
ation whose "structure" filed contains the same unique string. Code generation templates are
listed in priority order so that first matched template is used for generating the Javascript
code. Along with the actual code additional filters and other fine tuning code is also added
in the final output. A sample code generated by the code parser is shown below.

// Filter 1 is for events from other sensors than ones used in the behaviour
if(! (fromDeviceModule(api.device.Android,"IlluminationSensorOne")))
return;
// Filter 2 is for unchanged sensor values
var state_0 = load("state_0",0);

if(!(changed("state_0",api.device.Android.IlluminationSensorOne.value)))

34

4.5 How does Speechweaver work?

return;
if((api.device.Android.IlluminationSensorOne.value < 10)) {
api.device.Android.photoframe.showURL = "https://www.rt.com/news/" ;

}
else {

//else part here
api.device.Android.photoframe.showURL = "http://worldartsme.com/images/happy-family-c
artoon-clipart-1.jpg" ;

}

In meSchup rule engine, whenever there is an incoming event from a sensor, all the behaviours
available in the rule engine is executed once. Due to this nature of the rule engine filters
are added at the beginning of the behaviours. For the Javascript code generated by the
Speechweaver application, two filters are added as shown in the above sample code. First
filter allows further execution of the behaviour only if the incoming event is from one of the
sensors specified in the behaviour otherwise it returns the execution control blocking further
execution of the behaviour. The second filter is used for filtering out the events triggered from
the sensors specified in the behaviour but when they are not unchanged from the previous
cycle of execution. If the triggered sensor value is same as the previous value, then there is
no state change and hence further execution of the behaviour is blocked.

Web Socket Client

Web socket client element can subscribe to a particular communication channel provided by
the server. In Speechweaver, it is subscribed to channel "events". Whenever there is an
incoming event from a sensor to the server, server forwards that event to all the web socket
clients subscribed to "events" channel. Web socket client element then forwards these events
to all the other elements within the application listening for sensor events to update their
internal status.

Application Backend

The backend of the application consists of a nodeJS server. It provides an API for managing
application data stored in JSON files.

4.5 How does Speechweaver work?

4.5.1 Connecting to meSchup Server

When the Speechweaver web application is loaded in the web browser, all the web components
required by the application are loaded. After all the web components are ready to be used,
Speechweaver web socket client subscribes to appropriate channel (’events’) on the meSchup

35

4 Implementation

server socket. This enables speechweaver to receive all the sensor events from the devices
connected to the meSchup hub. The IP and port address of the meSchup server required for
the connection should be specified on the "settings panel" of the application as shown in the
figure.

Figure 4.5: Application settings panel

After connection is established successfully between the meSchup server and the speechweaver,
two rule groups ("Speechweaver" and "Speechweaver_global") are created in the meSchup
server if they don’t exist yet. First rule group is used for executing rules created by the
application and the second rule group is used for writing ready made templates by advanced
developers as described in the previous sections. Then the database of all the ready made
templates and devices connected to meSchup hub is obtained in a RESTful way and parsed in
the speechweaver application to represent them as templates, modules and their properties.

4.5.2 Initializing the Application

Speechweaver can be customised to the surrounding smart environment and the person using
it. Back in the "settings panel", users preferred language along with the dialect (if available) is
selected. Additionally, helper devices for scanning NFC tag, BLE beacons and AR marker are
selected if they are available in the environment. All the available recipes and their behaviour
details will be loaded from the local server database. Also, all the user generated content and
user defined templates will be loaded to be used later as ingredients.

4.5.3 Recipe and Behaviour Creation

After creating a recipe and adding ingredients, a spoken behaviour described by the user
for the smart environment is parsed and converted into a javascript code by the code-parser
element as described in the previous section. Then, the javascript code (behaviour) is then
placed in the "Speechweaver" rule group of the meSchup rule engine using meSchup REST

36

4.5 How does Speechweaver work?

API. Finally, when a sensor triggers an event related to the described behaviour, it will be
reflected in the smart environment.

37

Chapter 5

Evaluation
The aim of this evaluation is to study the user interaction experience and approaches used
while programming cross-device applications and to evaluate the results. Additionally, this
evaluation was intended to show that it is possible for the end-user to create new applications
using speechweaver application and it’s related approaches.

5.1 Evaluation Objectives

Our objectives for the evaluation were, broadly, to see how easy end users found Speechweaver
for programming their environments. It does not include measuring system or the participants
performance in terms of time. For the purpose of this evaluation, we focused on assessing four
major questions for the interface:

• Does the Speechweaver interface allows users to describe the behaviour(program) of
their connected products in a natural way ?

• Does the scripts generated by the application accurately match the user’s desired be-
haviour?

• To what degree will the users feel the need for a visual feedback while speaking?

• Will the end users to able to understand the concept of referencing devices by various
methods provided by the application ?

The focus of this evaluation was to determine the usability of the Speechweaver application
and to investigate further via interviews about different approaches that participants took in
order to create, change and remove behaviours from the environment.

5.2 Evaluation Methodology

We investigated the Speechweaver application in the context of smart living room with a
task-based user study of 8 participants. The study was conducted during the second week
of February over a period of 3 days. The average session length was 75 minutes. Data was
collected by the study moderator (myself) in the form of audio and video capture, personal

39

5 Evaluation

interview and a set of questionnaire completed by each participant. Whole experimental set
up was covered by a video camera however, option was made available to run the user study
without a camera for participants who did not wish to be recorded.

Each session comprised of four phases: introduction, demo, executing tasks and an interview.
The introduction phase consisted of introducing the setup and the speechweaver to the partic-
ipant and were asked to fill a pre-study questionnaire. During demo phase, participants were
shown a demo which involved all the approaches and functionalities that can be used for the
later tasks. Then the tablet running speechweaver application was given to the participants to
explore the application and get familiarised with all the options. Once participants indicated
they were ready to start the tasks, the execution phase began. participants were asked to
perform the three tasks by providing them with sheets containing description, sample sen-
tences and additional keywords. The order in which the participants had to complete these
tasks was the same for all (T1, T2, T3). Help was given to a participant only when absolutely
necessary. Participants were allowed to complete tasks at their own pace. After completion
of each task, participants were asked to give a score and comments to same set of questions
related to the completed task.

After completing all the three tasks, participants were asked to fill in standard System Usabil-
ity Scale (SUS) questionnaire. Additionally, another set of questionnaire related to speech-
weaver application were also asked to be filled.

The study session ended with a semi-structured interview. Questions in the interview were
designed to elicit the participants understanding of various features, functionalities and ap-
proaches used by the speechweaver application and also to get feedback and suggestions for
improving the application. Participants were also asked if they want to use such a system in
their homes, work spaces and in other scenarios. Only English language was used for the user
study.

Participants

Participants were recruited by posting advertisements and sending mails. Participation was
voluntary. Out of 8 participants, 2 were female. Most of the participants were students at
the university with one exception who was an employee also at the university. Participants
age ranged from 23-41. 3 participants were very inexperienced in programming and one being
highly experienced and others had a general knowledge about programming. Only one of the
participant had previously used home automation products. Only 4 participants previously
used speech recognition related applications before with majority specifying Apple Siri and
Google Now on their smart phones.

5.3 Smart Environment Test Setup

An smart environment was setup using meSchup hub and its clients. The environment was set
up at a informal place used for meetings and discussions at the HCI department in University

40

5.3 Smart Environment Test Setup

of Stuttgart. The smart environment consisted of a couch fitted with load sensor so that the
sensor triggers events when the load on the couch seat is changed. An illumination sensor
was hidden in the environment which again triggers events when the illumination level in the
area is changed. Two lamps were connected to two separate edimax smart plugs which can be
turned on/off by http requests from the meSchup rule engine. An accelerometer sensor was
attached to the lib of a box so that when the box is open accelerometer sensor triggers events.
We called this box as smart mail box. A notification device was placed on the coffee table
in front of the couch which has the capabilities to vibrate, produce sound and display lights
in different colors. An Android tablet was also placed on a stand on which meSchup client
application with a web display was running. All the sensors are configured to appropriate
levels of sensitivity. The event triggered by these sensors include the data values of the
sensors.

Figure 5.1: Test Smart Environment

We made ready made templates for turning on and turning off both the lamps connected to
edimax smart plugs as it is not possible to do the same by speech due to involved complexity.
Another ready made template called "mailbox" was created for the accelerometer attached
to the lid of mail box such that the template displays "open" when the lid is opened beyond
a certain point otherwise it displays "close". Finally a ready made template for notification
module called "notify" was created in which it is configured to vibrate and display lights in a
certain rapid frequency.

41

5 Evaluation

5.4 Participant Tasks

Each participant had to perform three tasks in total. First task was to introduce the concept
of ready-made templates and overall approach in general. Second task included adding ingre-
dients by various device referencing approaches and the third task combined all the previous
approaches and also increased complexity which required using two conditions.

T1: mail inserted in mailbox –> Notification

Usually mailbox (physical) is placed outside the house. Hence you will not know when the
mailman places letters in the box or whenever someone opens the box. But you want to
be notified when someone opens the mail box. Your goal is to connect the mailbox with a
notification so that when someone opens the mailbox you get a notification.

(a) Mailbox with embedded accelerometer sensor (b) Notification Module

Figure 5.2: Task 1 Smart Objects

T2: sitting on a couch –> show news on the digital photo frame else family
photo

You bought a new couch. It has sensors embedded in it. The sensors show different readings
based on if someone is sitting on the couch or not. You also have a digital photo frame on
the table which has capabilities to display photos, news, videos etc. Your goal is to relate
the couch to the photo frame so that when someone sits on the couch the digital photo frame
should display news. When no one is sitting on the couch it should display family photo.

T3: sitting on a couch + room lighting is low –> turn on the lights

Energy consumption is a big environmental issue. You want to reduce energy consumed by
your house. You see an opportunity how you can connect the smart couch to your room
illumination and a lamp. You want to automate the task of turning on the lamp when room
illumination levels are low. However, since you want to reduce energy consumption you want
to turn on the lamp only when someone is sitting on the couch.

42

5.5 Results

(a) Load Sensor (b) Digital Photo Frame

Figure 5.3: Task 2 Smart Objects

5.5 Results

All the participants were able to complete the given tasks with little or no assistance, although
the time taken to accomplish these tasks varied from participant to participant.

For Task 1 (T1), participants assessed the easy of fulfilling the task on average 5.25 (SD=2.12)
on a Likert scale where 1 was "Strongly disagree" and 7 was "Strongly agree". 75% of the
participants were mostly satisfied with the amount of time it took for them to complete the
task. 50% of the participants felt that they still need to learn a lot to be able to use the
system after the task.After T1, participants like the fact that how quickly they would connect
the mailbox to the notification module. They also noticed that there was no delay in the
working of the system i.e there was an instant reaction from the notification module when the
mailbox was opened. And they felt that the connection that they made worked well all the
time without any issues. None of the participants faced significant problems with the speech
recognition except that one participant complained that the system didn’t understand her
ascent.

Figure 5.4: Participants rating for the statement "System had understood me well" after T1

43

5 Evaluation

For Task 2 (T2), participants assessed the easy of fulfilling the task on average 4.87 (SD=1.80)
on the same scale as described for T1. This slight change in value indicated that T2 was
slightly difficult compared to T1 for the participants. Only 50% of the participants were
mostly satisfied with the amount of time it took for them to complete the task as compared
to T1 which was 75%. After T2, the percentage of participants who felt the need to learn
about the system increased to 75%. During T2, participants faced significant problems with
the speech recognition as well as the language structure they need to use to describe the
behaviour to the system for it to understand. They felt that the system imposes too many
conditions on the spoken language. They also faced difficulties incorporating device names
into the speech.

Figure 5.5: Participants rating for the statement "System had understood me well" after T2

For Task 3 (T3), participants assessed the easy of fulfilling the task on average 5.5 (SD=1.6).
We interpret this increase in agreement to the fact that participants understood how the
system works. 87.5% of the participants were mostly satisfied with the amount of time it took
for them to complete the task. However, after T3, only 37.5% of the participants some what
agree on the fact that they still need to learn a lot to use the system.During T3, learning
effect kicked in as participants faced less issues with the speech recognition and the structure
of the sentence they should use. Some appreciated that they can use multiple conditions to
trigger an action. At the end of T3, some of the participants felt that it is easy to use the
system and they like the approach of selecting devices.

44

5.5 Results

Figure 5.6: Participants rating for the statement "System had understood me well" after T3

On the System Usability Scale (SUS), Speechweaver scored 79.06(SD=14.57) which indicates
that the application did not have any too serious usability deficiencies that would have effected
its utility.

Figure 5.7: Participants SUS score

Only 5 out of total 8 participants used live value feature but 1 participant found it not so easy
to use. Other choose to directly specify a value for sensor comparison. 75% of the participants
strongly agree that it is important that the system works on a mobile device (tablet) but only

45

5 Evaluation

only 62.5% of the participants strongly agree that it is helpful that system works on a mobile
device. 87.5% of the participants strongly agree that referencing devices by manipulation
useful and rest were undecided. 87.5% agree using NFC tags for device referencing easy
and the rest some what disagree. All the participants agree that "ingredients" concept was
easy to understand and also that visual feedback while speaking is helpful. Only 62.5% of
participants agree that speech recognition works well and 25% disagree about the same and
rest undecided.

Figure 5.8: Participants rating for the statement "I found it helpful that the system works on
a mobile device"

Figure 5.9: Participants rating for the statement "I find the “ingredients” concept easy to
understand"

46

5.6 Discussion

Figure 5.10: Participants rating for the statement "I found adding devices by manipulation
helpful"

Figure 5.11: Participants rating for the statement "I found the visual feedback while speaking
helpful"

The study also revealed that none of the participants found it difficult to understand the basic
principles of the system. After a brief learning phase most of the participants were able to
use the speechweaver to create behaviours in the smart environment.

5.6 Discussion

Even though all the participants could complete all the tasks with little or no assistance, some
felt that the over all approach is very complicated. Others liked the fact that they could put
many conditions into the behaviour and everyone liked the instant execution of behaviour in
the environment. The other observations are discussed in the below section.

47

5 Evaluation

Speech Recognition

During the study, almost every participant experienced difficulty with the speech recognition
results at some point or the other. But when the speech recognition results were wrong for the
second straight time, the frustration levels of the participants started to increase and some
participants started shouting at the tablet very loudly. One of the participant complained;

"System does not understand me"

The recognition results were unpredictable when the dialect of the English language was not
chosen correctly. The recognition results was also very bad when an individual word is spoken
out of context. For example, when the participant said "when the weight is less than 20"
the recognition results were most of the time "When the rate is less than 20". But when the
spoken sentence is changed to "when my weight is less than 20" then the recognition accuracy
improved very drastically. This observation shows that we need to include complete context
into the spoken speech for correct results.

Speech Visualization & Manipulation

Even though most of the participants agreed that visualization for the speech input is nec-
essary, some participants failed to notice recognition errors while they are speaking and few
didn’t notice even after they finished speaking. They directly pressed "Save" button without
looking into the visualization of the spoken text as one of the participant said;

I was really concentrating on what to say not what is being displayed on the screen

Participants most often forgot to both start and stop the speech recognition. This suggests
that there is a need for more feedback regarding the current status of the recognition. Also,
when there is an error in the recognition participants choose to clear all the text even though
there was an option to clear one word at a time from the last word. Since the application shows
the interim speech recognition results, some participants did not wait for the final recognised
tokens when the interim results were wrong and cleared the whole text. Some participants
also didn’t save the behaviour and expected the behaviour to work in the environment mostly
taking cue from the natural world where there is no need to confirm after one finish speaking.
One of the participant did not find the visualization of the spoken text as tokens natural
especially with the recognised ingredients.

Spoken Language Structure

Most of the participants did not get the structure recognised by the application correct at the
first attempt. It was only after looking at the sample sentences and the keywords given that
they would figure it out that they need to follow a structure when they are framing a sentence
to speak. During the study, they complained that it is difficult to keep to the structure and
wording, one of the participant complained as below;

48

5.6 Discussion

"I am not used to this kind of wording and I am not used to the structure. It’s more for the
programming people. It’s a programming speech and not a spoken speech"

Especially, they complained that "then" keyword used by the application for separating condi-
tion and actions does not fit in their spoken language style. However at the end of the study
every participant felt that the approach was easy as one participant rightly mentioned

"After getting familiar with the kind of speech and its structure it is not that difficult"

Referencing Sensors

All the participants could easily relate the device ingredients with the objects in the real world
and all the of them found referencing devices by manipulation interesting and very helpful.
However one participant rightly said

"If you now how to manipulate something then it is easy to add them into ingredients"

Every participant sat on the couch to refer load sensor by manipulation and some of them
could easily figure out that turning on the lamp will manipulate the illumination sensor to be
added into ingredients. But when a sensor is manipulated, Speechweaver displays the device
to which the sensor is connected this was not intuitive as participants had to go to the device
view and select the sensor manually.

Templates & Live Value Element

The mailbox ready made template was understood by the participants readily when they
opened and closed the lid of the box to see the template change its status from "open" to
"close". But they could not understand the templates associated with actuators such as
"notify" template as there is no visual or written description about its association and its
capabilities. There was some confusion with the "notify" template which you can see from the
participants complains below. From this observation we can infer that Participants preferred
abstractions over the sensor values instead of pure sensor values but were confused when
abstractions are used for actuators.

"What can notify do? I don’t get that" "I didn’t have the verb for what this notifier should
do"

Not every participant used the live value element but the ones who used it found that it is
easy to change the sensor comparison values in the behaviour later when their initial sensor
observations did not produce desired behaviours in the environment. The participants who
did not use the live value element where frustrated when they had to remove spoken tokens
to use different sensor reading somewhere in the middle of the behaviour. One issue with the
live value element is that it should be referred only after initially referring to a sensor. One
of the participant did it the other way and did not get the intended results.

49

Chapter 6

Conclusion and Future Work
This chapter concludes this thesis report by reflecting upon the original goals and objectives
of the project and presenting a detailed discussion of the overall significance of the results.
This chapter will also discuss the status of the prototype and proposed future work.

6.1 Summary

The end goal of this thesis has been to come up with a best possible approach to end user
programming of smart environments. We choose programming by speech as our primary
approach for creating cross-device behaviours combined with demonstration of user intent
during device referencing as well as during describing behaviour to the system. The applica-
tion prototype was then built on top of an existing infrastructure "meSchup" which had the
capability of scripting behaviour using Javascript language. In addition to programming the
cross-device behaviour by speech, application also introduced various approaches that helped
end users in referencing devices of interest out of multitude of available devices in a ubiquitous
smart environment. Application also provided various types of abstractions over pure sensors
and actuators to simplify the process for the end user. By developing such a system, we
believe that we have achieved our original goal of enabling end-users create own applications
for their smart environments according to their needs without relying on technicians or other
programmers.

6.2 Discussion

Even though the chosen interaction approach for Speechweaver is feasible for end-user pro-
gramming of smart environments, at its current stage, Speechweaver prototype requires many
improvements to be made. It’s serious drawback is the kind of spoken sentences required for
the application to understand. The sentence structure is rigid requiring certain keywords to
be included even though it is not natural in a spoken language. Other serious drawback is
the lack of interactive feedback to resolve misunderstanding and seek clarification. It has lot
of other drawbacks and limitations some of which are discussed below and the future work
needed to improve the application is discussed in the next section.

51

6 Conclusion and Future Work

Memorization efforts

Sometimes application forces the users to use certain keywords (ex. THEN) which doesn’t
feel natural for the user in his/her spoken language. This requires for the user to remember
to use certain words during creating behaviour which user feel an additional burden.

Error Prevention

Application does not take any steps in preventing user from speaking language structure which
is not supported. Instead, it fails silently till the user figures out the valid spoken sentence
structure for creating a behaviour. there is a lack of information that should be provided to
the user about the sentence structure approval or disapproval.

Suitable Feedback

The application does not point out if it understand the spoken structure or not. Further,
there is no way for the user to know if the created behaviour is successfully deployed to the
smart environment. The only way to confirm is, to manipulate the environment according to
the created behaviour and check for the correctness of the behaviour.

If the application takes long time processing the spoken behaviour to convert it to code, the
system doesn’t inform user in any way about the current status and how long the user should
wait.

Handling Errors

Application does not provide any error messages to solve the problem. There is no way for
the user to know the right location of the error and the reason for the error and there is no
communication to the users about the right actions he much take to solve the problem.

Help Tool

Application does not provide any extensive help to aid users in creating the behaviour. It
doesn’t provide any instructions about what kind of spoken sentences are supported. As
the application is in its prototype phase, it does not provide a complete help system. The
application could present more introductory information for first time users about itself.

52

6.3 Future Work

6.3 Future Work

This section describes a number of recommendations for the future work on this project. Many
improvements can be made on the application concept itself and the implementation of the
system architecture and the performance. However the most important work to be done to
enhance the usability of the application is to support more natural spoken language instead
of rigid structures. Some other recommendations for future work are discussed below:

Location Context Awareness

The system partially addresses the location context of various devices within the environment
in a very high level. But this information is not used when creating behaviours. For example,
if there are multiple devices with display capability, and if the use wants to create a new
behaviour for displaying news on a device located in the living room, he should just say "display
news in the living room" instead of searching for display device name in the ingredients.

End-User Debugging

When the complexity of a behaviour increases it becomes increasingly difficult for the end-users
to understand and identify the error source. More research on the methods and techniques to
understand the behaviour and trace back the error in the design is needed to deal with the
users frustration of not knowing the root cause of the issues they face.

Dialog based Error Resolution

When the application did not understand something said by the user, then it should enter
into a dialogue with the user to resolve error in a step by step approach. The error resolution
approach can be a combination of visual feedback, speech synthesis and device vibration.

Usable Help Guide

To enhance the usability of the application, guidance could be provided in steps to creating be-
haviours.This could be in the form of a wizard or simple on screen instructions advancing user
from one stage to another. Another suggestion is speech synthesis of the supported sentence
structures or dynamically generating meaningful behaviours from the existing ingredients and
providing to the user as hints.

53

6 Conclusion and Future Work

Avoiding Helper devices

Speechweaver uses additional helper devices (NFC, BLE and AR Scanners) for referencing
other devices in the smart environment. This could be avoided by directly implementing the
scanner features in the Speechweaver application itself. Implementing complete augmented
reality marker scanner in a browser is highly challenging however other scanners like BLE and
NFC can be easily implemented.

Behaviour Execution Visualization

Keeping track of cross-device behaviours in smart environments is a challenging task for every-
day users. As the number of devices in a smart environments is expected to rise many folds,
it is important to provide tools for the users to monitor, control and visualize the interactions
between the devices. Even though Speechweaver application allows users to read behaviours
as a plain text and also allows users to enable/disable and remove behaviours, given the num-
ber of behaviours there should be a alternate way to easily visualize the interconnections in a
graphical way.

Additional programming Constructs

Currently the Javascript code generated by speech weaver contains only IF-ELSE control
statements. This limitation also restricts the kind of behaviours that can created by the
application. Providing support for other control structures like FOR loop will enable users to
create different types of behaviour.

54

55

A User Study

Appendix A

User Study
A.1 Pre-Study Questionnaire

2/28/2016 Pre-Study Questionnaire

https://docs.google.com/forms/d/1xaP7xWUj4xG3WB1bDyyW5Ws3w0GRcnAX6aWDYzphK5Q/viewform 1/2

Pre-Study Questionnaire
* Required

Please enter your gernder *

 Female

 Male

What is your age? *

What is your occupation? *

How would you assess your general programming experience? *

1 2 3 4 5

Inexperienced very experienced

Do you have any experience with the home automation products? *

 Yes

 No

If "yes" can you mention them

How do you access you spoken English language? *

1 2 3 4 5

Very Bad Very Good

Do you have any experience with speech recognition applications? *

 Yes

 No

Edit this form

56

A.1 Pre-Study Questionnaire

2/28/2016 Pre-Study Questionnaire

https://docs.google.com/forms/d/1xaP7xWUj4xG3WB1bDyyW5Ws3w0GRcnAX6aWDYzphK5Q/viewform 2/2

Powered by

If "yes", how often do you use them

1 2 3 4 5

Very rarely Very often

Can you mention them

This content is neither created nor endorsed by Google.

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

Never submit passwords through Google Forms.

57

A User Study

58

A.2 Questionnaire for Tasks

A.2 Questionnaire for Tasks

2/28/2016 Questionnaire for Tasks

https://docs.google.com/forms/d/1fl_LcHkdVMa_9NwD1l5Tsy9rQFXIo3GDkehhItCVitw/viewform 1/2

Questionnaire for Tasks
* Required

overall, this task was : *

1 2 3 4 5 6 7

Very easy Very difficult

“It was easy to fulfill the task” *

1 2 3 4 5 6 7

Strongly disagree Strongly agree

“The system has understood me well” *

1 2 3 4 5 6 7

Strongly disagree Strongly agree

"I was satisfied with the amount of time it took to completing this task" *

1 2 3 4 5 6 7

Strongly disagree Strongly agree

“I still need to learn a lot to be able to use the system” *

1 2 3 4 5 6 7

Strongly disagree Strongly agree

What worked well?

What did not work well?

Edit this form

59

A User Study

2/28/2016 Questionnaire for Tasks

https://docs.google.com/forms/d/1fl_LcHkdVMa_9NwD1l5Tsy9rQFXIo3GDkehhItCVitw/viewform 2/2

Powered by This content is neither created nor endorsed by Google.

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

Never submit passwords through Google Forms.

60

A.2 Questionnaire for Tasks

61

A User Study

A.3 Post Study Questionnaire

2/28/2016 Post-study Questionnaire

https://docs.google.com/forms/d/1g3WA6UVqfu5TfMqqD6Yg6_CERgYrFCo6sglcUs_26og/viewform 1/2

Post-study Questionnaire
* Required

“I found the speech recognition to work well” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found the visual feedback while speaking helpful” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I find the “ingredients” concept easy to understand” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found adding devices by manipulation helpful” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found adding devices by manipulation easy to use” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found adding devices via NFC tags easy to use” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found working with the “current value” helpful”

1 2 3 4 5 6 7

strongly disagree strongly agree

Edit this form

62

A.3 Post Study Questionnaire

2/28/2016 Post-study Questionnaire

https://docs.google.com/forms/d/1g3WA6UVqfu5TfMqqD6Yg6_CERgYrFCo6sglcUs_26og/viewform 2/2

Powered by

“I found it easy to work with the “current value” feature”

1 2 3 4 5 6 7

strongly disagree strongly agree

“I found it helpful that the system works on a mobile device” *

1 2 3 4 5 6 7

strongly disagree strongly agree

“I find it important that the system works on a mobile device” *

1 2 3 4 5 6 7

strongly disagree strongly agree

This content is neither created nor endorsed by Google.

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

63

A User Study

64

A.4 System Usability Study Questionnaire

A.4 System Usability Study Questionnaire

2/28/2016 System Usability Study

https://docs.google.com/forms/d/17svLXfASYnjNC_o2Cs8ps8AnBiZGGvxJjke6QGqmNA8/viewform 1/2

System Usability Study
* Required

I think that I would like to use this system frequently *

1 2 3 4 5

Strongly disagree Strongly agree

I found the system unnecessarily complex *

1 2 3 4 5

Strongly disagree Strongly agree

I thought the system was easy to use *

1 2 3 4 5

Strongly disagree Strongly agree

I think that I would need the support of a technical person to be able to use this system *

1 2 3 4 5

Strongly disagree Strongly agree

I found the various functions in this system were well integrated *

1 2 3 4 5

Strongly disagree Strongly agree

I thought there was too much inconsistency in this system *

1 2 3 4 5

Strongly disagree Strongly agree

I would imagine that most people would learn to use this system very quickly *

1 2 3 4 5

Strongly disagree Strongly agree

Edit this form

65

A User Study

2/28/2016 System Usability Study

https://docs.google.com/forms/d/17svLXfASYnjNC_o2Cs8ps8AnBiZGGvxJjke6QGqmNA8/viewform 2/2

Powered by

I found the system very cumbersome to use *

1 2 3 4 5

Strongly disagree Strongly agree

I felt very confident using the system *

1 2 3 4 5

Strongly disagree Strongly agree

I needed to learn a lot of things before I could get going with this system *

1 2 3 4 5

Strongly disagree Strongly agree

100%: You made it.

This content is neither created nor endorsed by Google.

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

66

Bibliography
[1] Gregory D. Abowd. “What Next, Ubicomp?: Celebrating an Intellectual Disappearing

Act”. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. UbiComp
’12. Pittsburgh, Pennsylvania: ACM, 2012, pp. 31–40. isbn: 978-1-4503-1224-0. doi:
10.1145/2370216.2370222. url: http://doi.acm.org/10.1145/2370216.2370222.

[2] Gregory D. Abowd and Elizabeth D. Mynatt. “Charting Past, Present, and Future
Research in Ubiquitous Computing”. In: ACM Trans. Comput.-Hum. Interact. 7.1 (Mar.
2000), pp. 29–58. issn: 1073-0516. doi: 10.1145/344949.344988. url: http://doi.
acm.org/10.1145/344949.344988.

[3] Marc Godon et al. “The First Interaction Design Pattern Library for Internet of Things
User Created Applications”. In: Human-Computer Interaction. Design and Development
Approaches SE - 26 6761 (2011), pp. 229–237. issn: 0302-9743. doi: 10.1007/978-3-
642- 21602- 2{_}26. url: http://dx.doi.org/10.1007/978- 3- 642- 21602-
2%7B%5C_%7D26.

[4] Google. Polymer library. url: https://www.polymer-project.org/1.0/.
[5] Nicola Guarino et al. “An ontology of meta-level categories”. In: Principles of Knowl-

edge Representation and Reasoning: Proceedings of the Fourth International Conference
(KR94. Morgan Kaufmann, 1994, pp. 270–280.

[6] Dominique Guinard. “Current Trends in Web Engineering: 10th International Confer-
ence on Web Engineering ICWE 2010 Workshops, Vienna, Austria, July 2010, Revised
Selected Papers”. In: ed. by Florian Daniel and Federico Michele Facca. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010. Chap. Mashing Up Your Web-Enabled Home,
pp. 442–446. isbn: 978-3-642-16985-4. doi: 10.1007/978-3-642-16985-4_42. url:
http://dx.doi.org/10.1007/978-3-642-16985-4_42.

[7] Valentin Heun, James Hobin, and Pattie Maes. “Reality Editor: Programming Smarter
Objects”. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication. UbiComp ’13 Adjunct. Zurich, Switzerland: ACM,
2013, pp. 307–310. isbn: 978-1-4503-2215-7. doi: 10.1145/2494091.2494185. url:
http://doi.acm.org/10.1145/2494091.2494185.

[8] Michael S. Horn and Robert J. K. Jacob. “Designing Tangible Programming Languages
for Classroom Use”. In: Proceedings of the 1st International Conference on Tangible and
Embedded Interaction. TEI ’07. Baton Rouge, Louisiana: ACM, 2007, pp. 159–162. isbn:
978-1-59593-619-6. doi: 10.1145/1226969.1227003. url: http://doi.acm.org/10.
1145/1226969.1227003.

67

http://dx.doi.org/10.1145/2370216.2370222
http://doi.acm.org/10.1145/2370216.2370222
http://dx.doi.org/10.1145/344949.344988
http://doi.acm.org/10.1145/344949.344988
http://doi.acm.org/10.1145/344949.344988
http://dx.doi.org/10.1007/978-3-642-21602-2{_}26
http://dx.doi.org/10.1007/978-3-642-21602-2{_}26
http://dx.doi.org/10.1007/978-3-642-21602-2%7B%5C_%7D26
http://dx.doi.org/10.1007/978-3-642-21602-2%7B%5C_%7D26
https://www.polymer-project.org/1.0/
http://dx.doi.org/10.1007/978-3-642-16985-4_42
http://dx.doi.org/10.1007/978-3-642-16985-4_42
http://dx.doi.org/10.1145/2494091.2494185
http://doi.acm.org/10.1145/2494091.2494185
http://dx.doi.org/10.1145/1226969.1227003
http://doi.acm.org/10.1145/1226969.1227003
http://doi.acm.org/10.1145/1226969.1227003

Bibliography

[9] Michael S. Horn and Robert J. K. Jacob. “Tangible Programming in the Classroom with
Tern”. In: CHI ’07 Extended Abstracts on Human Factors in Computing Systems. CHI
EA ’07. San Jose, CA, USA: ACM, 2007, pp. 1965–1970. isbn: 978-1-59593-642-4. doi:
10.1145/1240866.1240933. url: http://doi.acm.org/10.1145/1240866.1240933.

[10] C. Jones. “End user programming”. In: Computer 28.9 (), pp. 68–70. issn: 0018-9162.
doi: 10.1109/2.410158. url: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=410158.

[11] Ken Kahn. “ToonTalkTM—An Animated Programming Environment for Children”.
In: Journal of Visual Languages & Computing 7.2 (1996), pp. 197–217. issn: 1045-
926X. doi: http://dx.doi.org/10.1006/jvlc.1996.0011. url: http://www.
sciencedirect.com/science/article/pii/S1045926X96900117.

[12] Caitlin Kelleher and Randy Pausch. “Lowering the Barriers to Programming: A Taxon-
omy of Programming Environments and Languages for Novice Programmers”. In: ACM
Comput. Surv. 37.2 (June 2005), pp. 83–137. issn: 0360-0300. doi: 10.1145/1089733.
1089734. url: http://doi.acm.org/10.1145/1089733.1089734.

[13] A.J. Ko, B.A. Myers, and H.H. Aung. “Six Learning Barriers in End-User Programming
Systems”. In: Visual Languages and Human Centric Computing, 2004 IEEE Symposium
on. Sept. 2004, pp. 199–206. doi: 10.1109/VLHCC.2004.47.

[14] Timothy S. McNerney. “From turtles to Tangible Programming Bricks: explorations in
physical language design”. In: Personal and Ubiquitous Computing 8.5 (2004), pp. 326–
337. issn: 1617-4917. doi: 10.1007/s00779-004-0295-6. url: http://dx.doi.org/
10.1007/s00779-004-0295-6.

[15] Timothy Scott McNerney. “Tangible programming bricks: An approach to making pro-
gramming accessible to everyone”. PhD thesis. Massachusetts Institute of Technology,
1999.

[16] Brad A. Myers, John F. Pane, and Andy Ko. “Natural Programming Languages and
Environments”. In: Commun. ACM 47.9 (Sept. 2004), pp. 47–52. issn: 0001-0782. doi:
10.1145/1015864.1015888. url: http://doi.acm.org/10.1145/1015864.1015888.

[17] Mark W. Newman et al. “Designing for Serendipity: Supporting End-user Configura-
tion of Ubiquitous Computing Environments”. In: Proceedings of the 4th Conference
on Designing Interactive Systems: Processes, Practices, Methods, and Techniques. DIS
’02. London, England: ACM, 2002, pp. 147–156. isbn: 1-58113-515-7. doi: 10.1145/
778712.778736. url: http://doi.acm.org/10.1145/778712.778736.

[18] Alexander Repenning and C Perrone. “Programming by analogous examples”. In: Your
Wish is My Command (2001), pp. 351–370.

[19] K.N. Truong, E.M. Huang, and G.D. Abowd. “CAMP: A magnetic poetry interface
for end-user programming of capture applications for the home”. In: Lecture notes in
computer science (2004), pp. 143–160. issn: 03029743. doi: 10.1145/1378773.1378776.
url: http://www.springerlink.com/index/4YF49UJ57QX3FT35.pdf.

68

http://dx.doi.org/10.1145/1240866.1240933
http://doi.acm.org/10.1145/1240866.1240933
http://dx.doi.org/10.1109/2.410158
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=410158
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=410158
http://dx.doi.org/http://dx.doi.org/10.1006/jvlc.1996.0011
http://www.sciencedirect.com/science/article/pii/S1045926X96900117
http://www.sciencedirect.com/science/article/pii/S1045926X96900117
http://dx.doi.org/10.1145/1089733.1089734
http://dx.doi.org/10.1145/1089733.1089734
http://doi.acm.org/10.1145/1089733.1089734
http://dx.doi.org/10.1109/VLHCC.2004.47
http://dx.doi.org/10.1007/s00779-004-0295-6
http://dx.doi.org/10.1007/s00779-004-0295-6
http://dx.doi.org/10.1007/s00779-004-0295-6
http://dx.doi.org/10.1145/1015864.1015888
http://doi.acm.org/10.1145/1015864.1015888
http://dx.doi.org/10.1145/778712.778736
http://dx.doi.org/10.1145/778712.778736
http://doi.acm.org/10.1145/778712.778736
http://dx.doi.org/10.1145/1378773.1378776
http://www.springerlink.com/index/4YF49UJ57QX3FT35.pdf

[20] Matthew Turk. “Multimodal interaction: A review”. In: Pattern Recognition Letters
36 (2014), pp. 189–195. issn: 0167-8655. doi: http : / / dx . doi . org / 10 . 1016 / j .
patrec.2013.07.003. url: http://www.sciencedirect.com/science/article/
pii/S0167865513002584.

[21] W3C. Web Components. url: http://webcomponents.org/.
[22] W3C. Web Components. url: https://developer.mozilla.org/en-US/docs/Web/

Web_Components.
[23] Mark Weiser. “The Computer for the 21st Century”. In: SIGMOBILE Mob. Comput.

Commun. Rev. 3.3 (July 1999), pp. 3–11. issn: 1559-1662. doi: 10 . 1145 / 329124 .
329126. url: http://doi.acm.org/10.1145/329124.329126.

All links were last followed on Feburary 28, 2016.

http://dx.doi.org/http://dx.doi.org/10.1016/j.patrec.2013.07.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.patrec.2013.07.003
http://www.sciencedirect.com/science/article/pii/S0167865513002584
http://www.sciencedirect.com/science/article/pii/S0167865513002584
http://webcomponents.org/
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
http://dx.doi.org/10.1145/329124.329126
http://dx.doi.org/10.1145/329124.329126
http://doi.acm.org/10.1145/329124.329126

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	Abstract
	Introduction
	Overview
	Motivation
	Problem Statement
	Thesis Outline

	Background and Related Work
	Ubiquitous Computing
	End-User Programming
	End-User Programming for Ubiquitous Computing
	Visual Programming
	Form based Programming
	Programming by Example
	Tangible Programming
	Programming with Simplified Natural Language

	Human-Computer Interaction through Speech Interfaces

	System Concept
	Interaction Goals
	Interaction Evolution
	Interaction Technique
	Multimodal Systems
	Mobile vs Desktop vs non GUI Applications
	Web application vs Native application

	End-user Application Development Analogies
	Choosing Abstractions
	Ready Made Templates
	User Defined Templates

	Collecting Ingredients (Device Referencing)
	Searching among all Connected Devices List
	Device Referencing by Location
	Device Referencing by Physical Proximity
	Device Referencing by Direct Physical Manipulation

	Content Elements
	Live Value Element
	User Interface Design
	Behaviour editor design
	Cooking Panel (Speech Area) Design
	Component element design

	Speechweaver Spoken Sentence Structures
	Application Development in Speechweaver

	Implementation
	System Overview
	meSchup Middleware
	Rule Engine
	Device Ontologies
	REST API

	Technologies used for Application Development
	Web Components
	Polymer.js

	Speechweaver Application Architecture
	Important Application Elements

	How does Speechweaver work?
	Connecting to meSchup Server
	Initializing the Application
	Recipe and Behaviour Creation

	Evaluation
	Evaluation Objectives
	Evaluation Methodology
	Smart Environment Test Setup
	Participant Tasks
	Results
	Discussion

	Conclusion and Future Work
	Summary
	Discussion
	Future Work

	User Study
	Pre-Study Questionnaire
	Questionnaire for Tasks
	Post Study Questionnaire
	System Usability Study Questionnaire

	Bibliography

