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ABSTRACT 

 

This thesis addresses the challenge of computing food preparation context in the kitchen. The automatic 

recognition of fine-grained human activities and food ingredients is realized through pervasive sensing 

which we achieve by instrumenting kitchen objects such as knives, spoons, and chopping boards with 

sensors. Context recognition in the kitchen lies at the heart of a broad range of real-world applications. In 

particular, activity and food ingredient recognition in the kitchen is an essential component for situated 

services such as automatic prompting services for cognitively impaired kitchen users and digital situated 

support for healthier eating interventions. Previous works, however, have addressed the activity 

recognition problem by exploring high-level-human activities using wearable sensing (i.e. worn sensors 

on human body) or using technologies that raise privacy concerns (i.e. computer vision). Although such 

approaches have yielded significant results for a number of activity recognition problems, they are not 

applicable to our domain of investigation, for which we argue that the technology itself must be genuinely 

“invisible”, thereby allowing users to perform their activities in a completely natural manner.  

In this thesis we describe the development of pervasive sensing technologies and algorithms for fine-

grained human activity and food ingredient recognition in the kitchen. After reviewing previous work on 

food and activity recognition we present three systems that constitute increasingly sophisticated 

approaches to the challenge of kitchen context recognition. Two of these systems, Slice&Dice and Class-

based Threshold Dynamic Time Warping (CBT-DTW), recognize fine-grained food preparation 

activities. Slice&Dice is a proof-of-concept application, whereas CBT-DTW is a real-time application 

that also addresses the problem of recognising unknown activities. The final system, KitchenSense is a 

real-time context recognition framework that deals with the recognition of a more complex set of 

activities, and includes the recognition of food ingredients and events in the kitchen. For each system, we 

describe the prototyping of pervasive sensing technologies, algorithms, as well as real-world experiments 

and empirical evaluations that validate the proposed solutions.  
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Chapter 1: Introduction 

This thesis addresses two challenges: the development of pervasive sensing technologies for the kitchen; 

and development of methods for context recognition in the kitchen. Pervasive interaction, a term refering 

to interactions with pervasive computing technologies [97], or in the other words, technologies that are 

pervasively embedded and subjectively hidden into object surroundings. We borrowed the definition of 

“pervasive interaction” from this to our context: interaction between human and pervasive sensing 

technologies in which the technologies themselves are invisible to the users, and systems proactively 

support users in their natural interactions by leveraging of automatically sensed contextual information. 

Whilst in the kitchen there are many sources of contextual information, our primary concern is the 

development of a pervasive sensing and a context recognition system aware of food preparation tasks, and 

we therefore concern ourselves with the problem of recognising human food preparation activities and 

food ingredients. This chapter will describe our motivation for concerning ourselves with context 

recognition in the kitchen, and in particular the problems of human activity and food ingredient 

recognition using pervasive sensing. We then outline goals of the research and conclude with an outline 

of the structure of the thesis.    

1.1 The need for context recognition in the kitchen      

The number of older people with cognitive impairments in the UK surpassed 800,000 in 2010 and 

providing for their care has been estimated to cost the UK economy £23 billion a year [1]. The demand 

for the development of technology that supports such people during their activities of daily living (ADL) 

is now an officially recognised priority in the UK [42] and many other nations. The development of such 

technology and its effective deployment in people‟s homes has real potential to provide age-related 

impaired people with a more autonomous lifestyle, while at the same time reducing the financial burden 

on the state and these people and their families. The kitchen plays an important role in people‟s lives, as it 

is an indispensable place where many activities of daily living, such as cooking and food preparation, take 

place. Although the pervasive computing research community has recently made significant advances in 

the provision of real-world applications in healthcare, research into technology driven support for cooking 

and food preparation activities is still in its infancy.  

Context recognition in the kitchen has previously been identified as a necessary underpinning technology 

for a range of situated support services in the kitchen.  The scope of such applications is as broad as the 
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range of people who cook, from teenagers to cognitively impaired older adults. Indeed, existing examples 

of applications based on context recognition in the kitchen include prompting people with dementia for 

meal preparation [26, 79], task-based language learning [71] and healthier food preparation [76]. Potential 

applications include nutrition and healthier eating advice systems, situated cooking support systems, and 

even meal planning. Cooking is a relatively complex task, involving the use of tools and ingredients and 

requires significant physical (e.g. skill) and cognitive capability (e.g. planning, monitoring, memory). For 

certain classes of cognitively impaired people, for example, for people in the early stages of dementia and 

with mild cognitive impairment, preparing food and drinks is particularly demanding. As Wherton and 

Monk [42] identified in their comprehensive study of the lives and opinions of people in the early stages 

of dementia (and their carers) the capability to automatically monitor a users kitchen activities and 

provide situated prompts was highly desired, i.e., subjects in the study considered that facility to be 

prompted through food and drink preparation activities would positively impact on their actual 

independence and prolong the period of time that they could stay in their own home (a serious concern for 

people in the early stages of dementia and their carers). Such situated services would require the 

automatic recognition of what the user is doing, what food ingredient is being processed, and when it is 

done. These lead to the need for the recognition of human activities and food ingredients, two key 

components of the kitchen context.  

1.2 Thesis goals 

Although activity recognition problem is a matter of on-going concern for the research community, the 

problems of recognizing fine grain food preparation activities and food ingredients using pervasive 

sensing, particularly in real-time, remains an open problem. As we have already described, context 

recognition in the kitchen is likely to be a fundamental element for situated services to support people‟s 

cooking, nutrition and general wellbeing. Tracking the progression of food preparation steps within a  

recipe, for example, will need to utilize the information of both human activities and food ingredients in 

real-time to guide or prompt people while they are cooking. The goals of this thesis are therefore to 

develop solutions to two aspects of this problem food preparation activity recognition and food ingredient 

recognition.                                  

1.2.1 Activity recognition (AR) in the kitchen  

The AR problem in the kitchen is the problem of recognising fine-grained food preparation activities 

performed by a user during a food preparation and cooking task. Given the requirement placed on 

pervasive interaction that the technology platforms themselves should not impinge on people‟s natural 

engagement in activities we formulate a number of research challenges to be addressed: 
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1. How to develop pervasive sensing technologies to support the recognition of food preparation 

activities.   

2. How to recognise fine-grained activities from real-time data streams of pervasive sensors that are 

completely embedded into kitchen utensils and appliances. By fine-grained food preparation 

activities we mean activities which occur over few seconds such as chopping, scooping, dicing in 

normal recipes. These are distinct from high-level activities such as “making a tomato salad”, 

“making tea” or “cooking pasta” which often involve more than one fine-grained activities and 

occur over longer time periods (minutes).  

3. What is the appropriate way to measure the performance of such a recognition system both in 

terms of the experimental design (the data collection scenarios) and the methodologies (the 

annotation methods and the evaluation metrics). 

The first challenge requires us to explore the design space for sensing technologies that are both 

technically feasible but also appropriate to the everyday kitchen. Concerns about privacy inevitably 

steered us away from the general deployment of computing vision technologies and we instead have 

explored the design space for instrumented utensils and appliances. There is a clear requirement in such a 

case that whatever instrumented utensils we develop they must allow users (i.e. people) to perform their 

regular food preparation activities in unobtruted manner.  

The second challenge requires us to develop pattern recognition algorithms that can automatically 

segment and classify human activities from sensor data in real-time. The segmentation of sensing data 

must appropriate to the most common fine-grained activities and system latency must not place 

unnecessary constraints on the responsiveness of applications that might depend on activity recognition. 

Furthermore, approaches adopted should be sensitive to the challenges of collecting large scale annotated 

training (i.e. the smaller the amount of training data  that is required the better). 

The final activity recognition challenge is to evaluate whether the recognition system is feasible and 

reliable for real-world applications.  System must be rigorously evaluated using methodologies that are 

appropriate to their likely deployment. This includes the requirement that the performance of the 

recognition system must be evaluated on real-world datasets collected in ecologically valid settings. 

1.2.2 Food ingredient recognition in the kitchen 

Previous approaches to food recognition have been dominated by computer vision, RFID based 

technology, or acoustic sensing. Each approach has significant shortcomings, not only in relation to actual 

performance, but also to practicality of deployment (RFID) and privacy (i.e. computer vision). We 

therefore formulate food ingredient recognition in term number of research challenges: 
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1. How to develop pervasive sensing technologies that can “sense” food ingredients completely 

unobtrusively and without raising privacy concerns. And, how the technologies can be made 

compact and to “look like” natural objects. 

2. How to recognise a food ingredient while it is being prepared. 

3. What is the appropriate way to measure the performance of a food recognition system both in 

terms of the experimental design (the data collection scenarios) and the methodologies (the 

annotation methods and the evaluation metrics). 

The distinct challenge here is the development of a new pervasive sensing technology, as existing 

approaches are either impractical or considered unacceptably invasive  [15]. The impracticality of using 

RFID identification on food ingredients primarily relates to the detection of fresh foods. However, such 

fresh food are typically prepared with a knife and a chopping board (i.e. for chopping or slicing foods), 

and as instrumented knives are to be developed to support food preparation activity recognition we sought 

to leverage these in the development of a chopping board which can detect food ingredients placed on it, 

both before being chopped as well as while it is being chopped.  

1.3 Thesis outline 

Chapter 2 review related works and includes an overview of context recognition, particularly human 

activity and food recognition. We classify activity recognition research into three approaches (wearable, 

pervasive and pervasive-wearable sensing approaches for AR) and food recognition research into two 

approaches (computer vision and audio approaches).  

Chapter 3 describes our first activity recognition study, the Slice&Dice system, which includes a 

prototype of 4 kitchen utensils (3 knifes and one large spoon) instrumented with modified Wii Remotes, 

along with activity recognition algorithms from the WEKA library, and an initial evaluation. We also 

describes how we collected a real-world dataset captured based on 20 users preparing a mixed salad and 

sandwich, and how we annotated this with 11 distinct food preparation activities. 

Chapter 4 focuses on the development and implementation of a class-based threshold dynamic time 

warping system (CBT-DTW) for real-time activity recognition. We refine our evaluation methodology 

adopted in Chapter 3 and also demonstrate how this new activity recognition algorithm can deal with 

background activities such as idle and unknown activities, and how the CBT-DTW system can deal with 

activities for which only a small amount of training data is available.  

In Chapter 5, we describe the development of the Fiber Chopping Board (FCB), an optical an acoustic 

sensing system embedded in a functional chopping board. Algorithms for food recognition are developed 
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in two phases: (i) the recognition of food before being prepared using the optical imaging system (i.e. 

when it is placed on the board); and (ii) the recognition of food while it is being prepared using sounds 

recorded by a microphone hidden inside the FCB. Two food image classification algorithms are 

implemented and evaluated (a k-Nearest Neighbour and a linearly Support Vector Machine) and a 

Gausian Mixture models is used for food classification based on chopping and slicing sounds. 

Chapter 6 describes KitchenSense, a real-time context recognition software framework, including the 

system‟s architecture, software, hardware and data infrastructure. The components of this 4 tier system 

communicate within the constraints of a publisher-subscribe messaging framework. Furthermore, the 

chapter describes the re-design of the Slice&Dice instrumented utensils, in which we utilise the WAX3 

sensors of OpenMovement. In brief, this is a “put it all together” chapter which integrates the real-time 

activity recognition algorithm developed in Chapter 4 and the Fiber Chopping Board and food ingredient 

recognition methods described in Chapter 5 into a single framework.  

Chapter 7 covers our most significant empirical study and the evaluation of the KitchenSense‟s 

performance. We describe the collection of a large, complex, real-world dataset collected from 12 people 

who each prepared a spaghetti recipe 3 times (over 30 hours of food preparation data was collected and 

annotated). The dataset consists of more than 83,076 frames (i.e. seconds), 59 activities including 

unknown activities (i.e. 41 activities excluding unknown activities), 14,229 food images, and 8,798 

seconds of chopping and slicing foods. The dataset was independently annotated by two coders and an 

inter-rater reliability procedure was applied to assess the reliability of the annotation. Rigorous subject 

independent and subject dependent evaluations are carried out to measuring the performance of the 

recognition of 59 fine-grained human activities and 8 food ingredients. For each evaluation, both standard 

frame-by-frame analysis results and event-timing analysis results are reported.  

Chapter 8 summarizes the main contributions of the thesis, that is, our findings in pervasive sensing 

technology development, activity recognition, and food ingredient recognition. We also report the main 

limitations of our research and potential future work.      
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Chapter 2:  Literature Review 

This chapter presents a review of prior research work on activity and food recognition. After a brief 

discussion of the history of pervasive computing we consider previous related work in the fields of 

wearable sensing, pervasive sensing, and wearable-pervasive activity recognition. We then proceed to 

consider previous applications of computer vision-based and audio-based approaches to the problem of 

food recognition. 

2.1 The origins of ubiquitous computing 

About 60 years ago, the first computing era emerged (i.e. the Mainframe era) in which multiple people 

shared a single computer. In the second wave (1970s), the so-called Personal Computer era, users had a 

one-to-one relationship with computers. In the last 15 years, 8 billion embedded microprocessors have 

been produced every year and this number is dramatically increasing [98]. This has significantly changed 

the way people use computers, heralding the third wave, the so-called Ubiquitous Computing era: one 

person uses many computers, and this computational power is increasingly embedded in the world around 

us.   

Originating in Mark Weiser‟s vision [1], the term “ubiquitous computing” refers to a world in which 

computing devices „disappear‟ as they are woven into the fabric of our everyday surroundings. An 

alternative term, “pervasive computing”, was defined by Satya [2] as “the creation of environments 

saturated with computing and communication capability, yet gracefully integrated with human users”. 

Given the meanings of both terms are broad, and the similarity between the two terms obvious, ubiquitous 

computing and pervasive computing are used interchangeably throughout this thesis, as they typically are 

in the relevant literature [3]. 

Context recognition is a key problem in pervasive and ubiquitous computing. However, the term context 

itself is rather broad and is typically used to include any information that characterizes a situation. One of 

the most important elements of many contexts that are relevant to pervasive computing applications and 

services is the activity that a user engages in, that is, the human activity. Human activity recognition plays 

a vital role in a broad range of applications such as situated prompting, preventive health care systems and 

proactive service provision, yet the development of robust and generally applicable approaches to the 

representation and automatic recognition of human activity remains a basic challenge. 
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2.2 Human activity recognition (HAR) 

2.2.1 Wearable sensing activity recognition 

A large number of works have addressed the problem of activity recognition (AR) using accelerometers 

and other sensors worn on different parts of a user‟s body. Most approaches detect body-level activities, 

such as running, walking, or cycling, and many have produced significant results (i.e. recognition 

accuracies of 80% or higher). The majority of these studies employed wearable accelerometers [5, 17, 21, 

22, 23, 25] and supervised learning approaches, although there are a number of examples that employed 

heterogeneous arrays of sensors [7, 84], used unsupervised learning [81, 82] or transfer learning [83] for 

applying AR across different domains.  

In an early work on human activity recognition, Ravi et al. [5] used a wireless 3-axis accelerometer 

(sampling at 50 Hz) which was worn by a subject on the pelvis.  Two subjects performed eight activities, 

including standing, walking, running, climbing up stairs, climbing down stairs, sit-ups, vacuuming, and 

brushing teeth, multiple times for each activity. Features were computed along with sliding windows (of 

size 256) for training different classification algorithms. The performances of various classifiers were 

evaluated using 10-fold cross validation and a range of different test settings. In subject-dependent tests 

accuracies as high as 90% were achieved, although in subject-independent tests accuracies as low as 60% 

were reported (i.e. where one subject was used to train the system and the other to test the system). The 

results were promising, particularly subject-dependent test results. However, the dataset was relatively 

simple in that it only collected and evaluated data for the pelvis worn accelerometer. Furthermore, as data 

was only collected for two subjects, and in a non-naturalistic setting, the true scope of the variation in the 

conduct of the activities of interest is unlikely to have been captured.  

In a more general study of human activity, Bao et al. [7] sought to recognise 20 daily activities in 20 lay 

subjects who were asked to wear 5 wireless accelerometers on various points of their bodies (thigh, ankle, 

arm, wrist, and hip). The dataset was collected under semi-naturalistic settings, with the subjects being 

notified of start and end times of activities, and in an innovative twist the collected dataset was then 

annotated by the subject themselves. Various algorithms including C4.5 Decision Tree learning, Naïve 

Bayesian Networks, Instance Based Learning, and Decision Tables were trained and tested on the 

annotated data. A recognition rate of 84% was achieved for subject-independent evaluation, consequently 

this study has proven to be one of the most notable works in demonstrating the technical feasibility of 

recognizing human activities using multiple wireless wearable accelerometers. 

In contrast to studies that utilise a single modality of sensing (typically an accelerometer) for full-body 

activity recognition, Ward et al. [17] investigated the use of heterogeneous wearable sensors for AR in the 
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context of a workshop in which skilled and semi-skilled manual work was conducted. Accelerometers and 

microphones were attached to the dominant wrist and upper arm of each subject with the goal of 

recognising different workshop activities associated with physical assembly, such as sanding, drilling and 

grinding. It was demonstrated that the combination of both accelerometer and audio data could 

significantly enhance the classification procedure and thereby improve recognition rates. However, in a 

manner similar to [5], the dataset collection was not wholly naturalistic, but instead conducted under 

relatively controlled laboratory settings with the subjects being told (by the experimenters) both how and 

when to perform activities. However, the study constitutes a good example of the recognition of skilled 

and semi-skilled activities using tools (rather than traditional full-body activities such as walking) and is 

therefore a promising precursor for our own work on kitchen-based AR for which tool use is likely to be a 

significant component of the problem. 

In [21] Huynh et al. extended approaches to recognising low-level activities to classify both low- and 

high-level activities. Each subject wore 3 sensors, one on the wrist, hip and thigh. A 10-hour dataset of 16 

low-level activities, such as sitting, sleeping and walking, and 3 high-level activities, morning (i.e. 

activity associated with getting up in the morning), housework (i.e. doing housework) and shopping (i.e. 

shopping in a market and or store) were collected in realistic and relatively unconstrained settings in 

which subjects were able to make their own decisions as to which activities they performed and how they 

performed them. The collected data was tested using 4-fold cross validation and yielded an overall 

recognition rate of 79% for low-level activities, and 91.8% for high-level activities. While low-level 

activity recognition performance was not particularly high, compared to previous work, it was notable 

that the dataset was uncharacteristically large and naturalistic. Indeed, the naturalism of the data set (and 

the associated drop in recognition performance) illustrated the importance of collecting realistic data, as 

compared to Bao et al. [7] (reviewed above) or Zinnen et al. [22] who collected a dataset of 10 short and 

non-repeatable car-based activities such as open hood, close hood, heating on, heating off, open oil, close 

oil etc. using an accelerometer worn on a subject‟s right wrist (one single subject performed the activities 

for a duration of 18 minutes in total).   

Maekawa et al. [81] developed a highly heterogeneous sensing device which incorporated a camera, 

microphone, accelerometer, illuminometer, and a digital compass. The device was worn on a subject‟s 

wrist and was designed to enable the detection of home-based activities such as making juice, cooking 

pasta, listening to music, etc. Indeed the diversity of the activities targeted in part explains the diversity of 

the sensing modalities used (e.g. listening to music is probably best characterised by the presence of 

music but the absence of physical movement, or presence of rhythmical movement). In their experiment, 

the HMM+AdaBoost and HMM+C4.5 classification algorithms were applied to datasets, collected in a 
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semi-realistic manner, comprised of 15 activities from two home-like environments. During data 

collection, subjects (rather unnaturally) wore a laptop backpack that logged data collected by the sensor 

and transmitted via a wired connection. While it is inevitable that this could lead to atypically 

cumbersome performance of activities the subjects themselves were otherwise free to act as they desired. 

In a broad investigation of the design of a wearable activity recognition system Tapia et al. [25] sought to 

detect 52 activities (including the intensities of some activities and estimated energy expenditure), and 

experimented with a set of wearable sensors including 7 accelerometers, a bodybugg™ armband, a 

pedometer, 2 ActiGraph activity monitoring devices and a heart rate monitor. However, 3 accelerometers 

on the hip, wrist and foot, and a heart rate monitor, were finally selected. An overall activity recognition 

rate (including the intensities of activities) of 50.6% and 87.9% were achieved for subject independent 

and dependent evaluations, respectively. Posture and exercise activities could be accurately and reliably 

classified, while household and resistance activities were generally more problematic. In addition to 

activity recognition, the work demonstrated that energy expenditure estimation could be improved using 

both a heart rate monitor and activity dependent models rather than using accelerometer data only. 

The full range of sensing modalities from which activity can be usefully inferred is wide. For example, 

Bulling et al. [85] analysed eye movement data for activity recognition using a wearable 

electrooculography (EOG) device. Patterns of eye movement are characteristic of a subject‟s conscious 

and unconscious visual attention and therefore likely to be a good discriminator of intentional actions. 

Bulling et al. extracted 90 features that best describe eye movement and trained a SVM classifier on data 

from 8 subjects for which 6 typical office activities were annotated: copying a text, reading a printed 

paper, taking hand-written notes, watching a video, browsing the web (plus an additional unknown 

activity category). The approach yielded promising results in a subject-independent evaluation, with a 

76% precision rate, 70.5% recall rate, and an overall accuracy of 72.7% (56.7% true positives + 16% true 

negatives). 

Wearable activity recognition systems have a number of open problems related to their general 

applicability, most notably these include: (a) their sensitivity to the placement of sensors, for which 

approaches to the automatic adaptation wearable sensors (for displacement on a user‟s body) have been 

developed [81]; and (b) the need for annotated datasets for supervised learning approaches, for which a 

number of approaches have been developed, including, unsupervised training [82], transfer learning [83], 

self-taught learning [85], and routine discovery using unsupervised learning [90].  Addressing the 

placement and training problems not only reduces the time and cost required to annotate datasets (i.e. [82, 
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83, 90]) and the error introduced by sensor displacement, but also improve the general performance of 

activity recognition systems (i.e. [84]).           

A number of applications of wearable activity recognition have been proposed, and prototyped, 

particularly in the domain of health and wellbeing. These include dietary monitoring [24], the estimation 

of energy expenditure [25, 88] and behaviour observation and quantification for children with autism 

spectrum disorders [87].  In general, wearable computing activity recognition has been shown to be a 

promising direction for the development of pervasive computing applications. However, it is also well 

understood (and has been widely observed) that users are generally not comfortable wearing most sensor 

systems. Wearable sensors are often obtrusive to users‟ activities and have the potential to impact on the 

natural performance of many tasks. Interestingly, in our own application context activities in the kitchen 

relating to food preparation (i.e. chopping, peeling, coring, stirring etc.) are highly dependent on the 

motions of kitchen instruments themselves (i.e. kitchen utensils such as knives, spoons, whisks etc.) and 

these are rather distinct from the movements of user‟s body.  

2.2.2 Pervasive sensing activity recognition 

In contrast to wearable sensing, traditional pervasive sensing involves the embedding of sensors in the 

objects and the environment. Technologies such as Radio Frequency Identification (RFID) [9, 11], simple 

and cheap state-change sensors (such as reed or piezoelectric switches) [19] and acoustic sensors [89] 

have been widely exploited for high-level activity recognition at homes. Other systems have combined 

RFID technology and load sensing to detect eating activities and estimated calorie [29], and have 

integrated load sensors under a work surface in a nutrition-awareness application [30]. In general, RFID-

based systems infer human activities based on the identifying collections of objects involved. Objects 

typically have embedded, battery-free, passive RFID tags which can be detected by RFID readers also 

embedded in the environments or worn on the user‟s body [10, 14, 18]. Some previous work [16, 28] used 

sensors embedded in kitchen utensils, such as knives or spoons, to classify fine-grained food preparation 

activities in an unobtrusive manner. Notably, [26] detected low-level activities and prompted actors 

posing as people with dementia in support of their food and drink preparation tasks in the Ambient 

Kitchen [27]. 

In [11] Intel researchers developed sensing devices called WISPs (Wireless Identification and Sensing 

Platform) that can both communicate with, and are powered by, RFID readers. One advantage of WISPs 

is that they can transmit a RFID tag identifier along with the most recent acceleration data of a moving 

object. This increases the reliability of the detection of objects which are in use. In their experiment, a 

dense sensing infrastructure including 25 WISPs and 3 RFID readers were deployed in a studio 
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apartment. 10 subjects performed 14 high-level activities such as using the phone and making cereal.  

Results as high as 90% (precision and recall) were reported. These results demonstrate significant 

promise for real-world pervasive computing applications. However, the embedded technologies used in 

this work were not completely invisible to the users (i.e. WISPs were visibly attached to bowls and cups).  

Tapia et al. [19] deployed 77 simple ubiquitous sensors (i.e. RFID, reed and piezoelectric switches) in a 

home setting to detect high-level household activities such as preparing lunch, toileting, bathing, and 

grooming; collecting a dataset from two subjects over 14 days. A particular innovation was the fact that 

the annotation procedure was carried out by subjects while they were performing activities. Subjects were 

given a PDA running an experience sampling tool. Every 15 minutes, the PDA asked each subject to 

select a label and a duration time for the activity that was currently being performed. In this way, the 

dataset was continuously annotated while it collected. While such a data collection protocol is applicable 

to high-level activities (i.e. activities of duration greater than a minute), it would be difficult to argue that 

such a configuration of user and technology (i.e. user and data collection technology) is naturalistic, and 

subjects are unlikely to perform their activities in a wholly natural manner. Furthermore, such an 

approach is generally unsuitable for fine-grained activities (such as the elements of food preparation) that 

can occur within relatively short time intervals (i.e. within few seconds) and involve significant tool use. 

Pervasive acoustic sensing has been deployed in various contexts to facilitate home-based activity 

sensing. For example, Fogarty et al. [89] deployed unobtrusive microphone-based sensors at water 

distribution infrastructure locations. Sensors were attached to the outside of the water pipes of sinks, 

toilets, showers, and appliances in the home. Activities were inferred from the sounds produced by water 

usage based on pairs of zero-crossing rate and root mean square features that were extracted from sound 

streams. Accuracies ranged from 73-100% for water-usage related activities such as dishwasher usage, 

showering, clothes washer usage, kitchen sink activity, bathroom sink activity and toilet flushes. Indeed, 

the study has shown the feasibility of pervasive sensing for activity recognition in domestic homes even 

with low-cost, simple sensors, although inevitably there are a lot of activities that are not water usage 

related (such as food preparation).  

Pervasive sensing has been applied to a number of different activities related to both food preparation and 

the measurement of food and drink consumption. Chang et al. [29] addressed the problem of the 

estimation of prepared foods that are consumed by individuals with a meal. To do so, they instrumented 

the surface of a table with RFID and weight sensors (using a two layered surface) so as to track the food, 

and quantities of food, that was consumed by users. The surface of the table was divided into 9 cells, each 

of which had an embedded load cell and a RFID reader antenna (RFID tags were applied to food 
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containers). The user‟s behaviours were modelled as a sequence of event changes. The amount of 

consumed food was computed using a rule-based weigh-matching algorithm. To verify their approach, 4 

experiments were conducted and accuracies as high as 80% were reported. However, there was a clear 

assumption of a priori knowledge of food ingredients, which is not practical for real world dietary 

monitoring. Similarly, in practice, people often placed more than one dish on a single plate. In such cases 

the technical configuration described would not be able to distinguish between one dish (on a plate) and 

any other (on the same plate).      

A number of projects have also investigated the instrumentation of kitchens to support food and drink 

preparation [27, 30, 31, 32]. One notable early project was MIT‟s CounterIntelligence [31], an augmented 

kitchen that sought to provide instructive information to users while they are cooking. 

CounterIntelligence focussed on the design of situated interaction (rather than activity recognition) and 

incorporated several examples of how information could be displayed on kitchen surfaces to direct a 

user‟s attention appropriately. Reiko et al. [30] developed a cooking navigation system that guided novice 

cooks during cooking sessions. A cook could either learn how to cook or simply follow multimedia 

instructions to complete a task. After each preparation step, the cook had to manually click on the 

character icon on a screen to manually select the next step of the recipe. Although the system was 

intended to help a cook follow an optimized cooking plan, as with many of these early systems, context 

awareness, such as the recognition of preparation activities, was not incorporated.  In addition to 

supporting food preparation skills and competence, another potential goal of situated support in the 

kitchen is to promote people‟s nutritional awareness.  Chen et al. [32] provided nutrition information to 

users while they were cooking in their Smart Kitchen. Although the calorific value of foods could be 

semi-automatically estimated by the system‟s weight matching algorithm, the system was not able to 

detect the identity of food ingredients processed on the work surface. The users themselves had to 

manually update information for each ingredient before processing it. As such, [30, 32] constitute initial 

forays into the area of providing situated support for cooking, and go some way to demonstrating the need 

for a system that can automatically recognize food preparation activities and food ingredients. 

Olivier et al. [27] developed the Ambient Kitchen (at Culture Lab, Newcastle University), a high fidelity 

prototype for exploring the design of pervasive computing algorithms and applications for food and drink 

preparation. The environment integrates data projectors, cameras, RFID tags attached to food containers 

and 4 RFID readers installed under work surfaces, wireless accelerometers embedded into objects, and 

pressure sensors integrated under the floor. The Ambient Kitchen is a lab-based replication of a real-world 

kitchen in which careful design has hidden technologies from users. The Ambient Kitchen was aimed to 

support both the evaluation of pervasive computing prototypes and the simultaneous capture of multiple 
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synchronised sensor data streams. Indeed, while previous work exploring the requirements for situated 

support for people with cognitive impairments motivated the design of the physical sensing infrastructure, 

the Ambient Kitchen is primarily proposed as a platform of research in kitchen-based situated support, 

acting as: (a) design tool for designers for cooking applications (i.e. cookbook); (b) an observatory to 

collect sensor data for activity recognition algorithm development; and (c) as an evaluation test bed.  Our 

recognition system for the analysis of the food preparation activities [16] was integrated into the Ambient 

Kitchen and the real-time analysis version continuously runs as a background service simultaneously 

analyzing data from multiple, synchronized accelerometer sensors (see Chapter 3 and Chapter 7 for 

details of the integration of our results within the Ambient Kitchen).  

The principal attraction of pervasive computing (as opposed to wearable computing) is that by embedding 

devices into everyday objects (i.e. kitchen utensils and appliances) the underlying technology remains 

invisible to people. As such, people do not need to wear new digital devices to interact with proposed 

services, thereby allowing people to undertake their everyday activities unencumbered. Having said this, 

there are still many shortcomings associated with inexpensive and widely available technologies such as 

RFID technology. While RFID is widely used for embedded sensing, it still has a number of limitations, 

including that it cannot be attached on metal objects as this typically results in dropped signals. Moreover, 

in our experiments, several food ingredients that underwent significant processing (e.g. were chopped) 

were fresh foods and as such could not have RFID tags attached to them. To overcome this, we developed 

a chopping board and a set of kitchen utensils and appliances that can recognise both human activities and 

food ingredients non-invasively (see Chapter 5).  

2.2.3 Activity recognition using a combination of pervasive and wearable sensing 

The final sensing configuration to consider for human activity recognition, is the combination of 

embedded and wearable sensors. That is, the use of a combination of sensors that are embedded in objects 

in the environment as well as worn on the user‟s body. Much previous pervasive computing research has 

addresses the AR problem with such a configuration [8, 10, 12, 13, 14, 15, 18, 23]. 

Wang et al. [8] developed a home-based multi-modal sensing system to investigate human activities 

performed by single and multiple users. Users were asked to wear an audio recorder, two wireless 

accelerometers (on their wrists), and two RFID readers (on their palms). Common household objects such 

as cups, teaspoons, and computer mice were augmented through the attachment of RFID tags.  Two 

subjects performed 21 daily living activities (e.g. watching TV, making coffee, brushing teeth) over ten 

days; in their study most of the activities targeted were high-level. In [10], Wu et al. combined RFID 

technology and computer vision to recognise high-level kitchen activities specifically. A Bayesian 
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network algorithm was developed, and by incorporating common-sense knowledge this was used to learn 

models from video and RFID sensing. Their experiment in a kitchen was conducted with 33 RFID-tagged 

objects and 16 high-level activities including making tea, making sandwiches and boiling water.  A 

camera was installed with a view of the kitchen counter and subjects wore a bracelet RFID reader. It is 

well known that many kitchen utensils and appliances (e.g. pots and pans) are made of metal and this 

study showed that computer vision could enhance object detection. Indeed, the addition of computer 

vision increased activity recognition rates from 60% (using of RFID sensing only) to 80%, although it is 

worth noting that users expressed clear reservations about the use of cameras and the invasion of their 

private space by a technology more commonly associated with surveillance. More recently, the 

Opportunity project [12] deployed a very rich sensor environment to collect a large-scale dataset of 

activities. The environment simulated a studio flat with a chair, a kitchen, doors, a coffee making 

machine, and a table, which in total was instrumented with 72 wired and wireless sensors. From 

observation of the video captured during dataset collection it is readily apparent that the users were, to a 

significant degree, aware of technology embedded in their surroundings, so although the goal of the 

project is to collect a gold standard sensor dataset for daily activities, the ecological validity of the dataset 

itself is rather weak. 

The Quality of Life Technology Centre (QoLT) project [34] at Carnegie Mellon University, is typical of 

recent large-scale initiatives that aim to develop “technologies that will improve and sustain the quality of 

life for all people”. In addition to a multitude of cross-disciplinary research activities relating to the 

development of the methods that enable older adults and people with disabilities to live independently, 

QoLT also deployed a real-world kitchen. Spriggs et al. [33] describe their development an activity 

segmentation and recognition system that analysed a set of fine-grained activities (such as pour oil in cup 

and stir the mix) in the kitchen. Like Opportunity, the QoLT study employs a mixture of worn and 

environmental sensors, with subjects wearing cameras and inertial measurement units on their body, and 

other cameras and microphones were installed in the environment. 

2.3 Food recognition 

The ability to automatically recognise foods in our everyday environment, and particularly the kitchen, 

has many potential applications including in healthier eating interventions and dietary intake estimation 

applications. However, food recognition is a challenging problem and approaches are significantly less 

developed that for activity recognition more generally. The large majority of approaches to the food 

recognition are based on computer vision [34, 35, 36, 37, 38, 39, 40, 41] with a smaller number 

employing audio classification while the foods are being processed (e.g. being chopped) or consumed 

(e.g. chewed) [15, 24].  



 

15 

 

2.3.1 Computer vision and food recognition 

Similar to classical object recognition in computer vision, foods recognition are generally proceeds in 4 

steps: (a) food image pre-processing; (b) segmentation; (c) feature computation; (d) feature classification. 

For example, Shroff et al. [35] developed DiaWear, a food recognition system for a mobile phone. A 

neural network classifier with 5-10-5 feed-forward back propagation was employed for training and 

classifying colour, size, and texture features calculated from food images. Food images were manually 

taken by a user using a mobile phone camera. Although many variations in the layout of food (and 

occlusions) can occur in real-world settings, in DiaWear foods were assumed to be non-touching, 

complete and the background was assumed to be single coloured and lighter than object‟s colours (such 

assumptions are very strong and in impractical for real-world applications). Results were however 

reported for an experimental study on 4 foods: Hamburgers, Fries, Chicken Nuggets, and Apple Pies 

which showed recognition rates between 50-75% over a relatively small dataset of 120 static food images. 

Kok et al. [36] utilized colour in 2 steps for recognizing natural objects, by first creating an artificial 

colour contrast based pre-filter to detect an object‟s surroundings and then extracting bounded box 

features (SFBB). This method was evaluated for meat, chicken, bone, and grapefruit detection and 

significantly outperformed a 3-layer neural networks and SVMs (99% compared to 85% and 74%, 

respectively).  

Unsurprisingly, the detection of fast food appears to be a major concern of computer vision researchers in 

this domain [38, 40, 41]. Wu et al. [41], for example, collected a fast food database of 101 foods from 9 

restaurants in the USA. To recognise foods in videos of eating, key points of SIFT (scale-invariant feature 

transform) descriptors were extracted from each frame. Matching key points were ranked across food 

items. Several matching criteria were used, and SIFT with cosine matching of 3 key points was found to 

perform best, giving a recognition rate of 73% for 9 restaurants. Using this fast food database, Shulin et 

al. [40] proposed a pair-wise local feature based method for food recognition. Pairwise local features 

represent the spatial relationship between pixels of different food types. Pairwise local features of two 

pixel p1 and p2 included: pairwise distance (the distance between p1 and p2), pairwise orientation (the 

orientation of the line between p1 and p2) and pairwise midpoint (the category of the pixel in the middle of 

p1 and p2), and between pair (the category of all pixels between two pixels p1 and p2). The extracted 

pairwise features were classified using a SVM with X
2
 kernel function. The experiment on 7 food 

categories including sandwich, salad&sides, bagel, donut, bread&pastry, chicken, and taco yielded a 

78% accuracy rate which was a significant improvement on 49%, using colour features only, and 55%, 

using SIFT features only.  
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2.3.2 Audio-based food recognition 

There has been a relatively small number of food recognition studies based on acoustic data. For example, 

Amft et al. [24] developed a system using a microphone worn inside the subject‟s ear canal to classify 

different types of food from chewing sounds. The acoustic analysis was based on two steps: (a) chewing 

segment identification; and (b) chewing sound classification. Step (a) only used the intensity of audio 

signal and a simple classification procedure. In step (b) several features were computed, including: zero-

crossing rate, spectrum fluctuation, band energy ratio, and band width over frames of size 11.6 ms with a 

SIFT of 8.7 ms. These features then were averaged over continuously segmented frames (of one chewing 

segment or a single chew). An experiment with a C.4.5 decision tree and 10-fold cross validation was 

conducted for 4 foods (chips, apple, pasta, and lettuce) and gave a 66-86% overall accuracy for a single 

chew and 80-100% for a chewing segment.  

In contrast to the use of wearable sensors in [24], Kranz et al. [15] installed a AKG C1000S microphone 

in the Aware Kitchen and an augmented a knife with force and torque sensors. The microphone and a 

camera were positioned 30cm above the chopping board and audio and video streams were merged into 

one file for synchronisation. A study was conducted for 4 subjects cutting carrots, bananas, leeks, 

kohlrabi, peppers, and apples over 3 sessions. The audio log was segmented into 259 episodes for which 

each contained a cut or peel action, and a Hamming window of 20 ms frames (50 frames per second) was 

applied. Several features were computed for each frame, including: contours, pitch, energy, amplitude, 

and bandwidth (harmonics-to-Noise Ratio), and the computed features were then classified using a SVM 

with polynomial kernel. The overall recognition rate of 85% accuracy for 5 foods demonstrated the 

potential for audio-based food classification, although again the visibility and obtrusiveness of the 

technologies and general instrumentation suggest that a more sensitive product design for such 

technology-enhanced utensils is needed for practical and near real-world deployments. 

2.4 Conclusion and discussion 

A significant body of prior work exists that examines human activity recognition (HAR) and in particular 

the recognition of food preparation, consumption and food recognition itself. The literature covers three 

common approaches sensing configurations for HAR, wearable sensing, pervasive sensing, and wearable-

pervasive sensing combinations; and there exist two common approaches to food recognition, computer 

vision-based and audio-based. The principal drawback of previous work on wearable sensing and 

wearable-pervasive sensing for HAR is the obtrusive nature of the systems that users are required to wear, 

and in many studies users consistently express their scepticism as to the practicalities of wearing sensors 

solely for the purpose of recognising their everyday activities. One alternative, the use of computer vision 

based approaches (e.g. [10]), gives rise to more pointed concerns about privacy, indeed, computer vision 
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in particular is widely considered inappropriate in private settings such as the home. Furthermore, for 

applications such as the situated support of cognitively impaired people, it is unreasonable to expect such 

user to always remember to wear such sensors before performing activities. For these reasons, we deem 

that both wearable sensing and wearable-pervasive sensing combinations are not suitable technology 

configurations for our approach. 

By contrast, a small number of purely pervasive sensing approaches have emerged as a viable approach to 

activity and context recognition in the kitchen. Crucially, pervasive sensing has the potential to allow 

people to naturally interact in their environment providing the technology itself can be rendered either 

effectively invisible, or, through sensitive design, embedded appropriately into objects and the 

environment. However, existing pervasive sensing has several limitations. Embedding RFID technology 

in the kitchen environment (e.g. [9, 11, 19]), for example, is acceptable for food containers such as olive 

oil or sugar, but is not applicable to most fresh food ingredients which often are not kept in packaging or 

containers. Moreover, RFID technology does not reliably work if RFID tags are embedded into objects 

made from metal or out of the range of sensing which is often limited to relatively small regions where 

readers‟ antennas are located.          

Similarly, the relatively small body of work on food recognition mostly use computer vision techniques 

and cameras that are not unobtrusively embedded either into objects or the environment. Food 

photographs are usually manually taken by the users (e.g. [35, 39]) or are automatically taken by cameras 

installed in the environment (e.g. [38, 40, 41]) once again raising concerns about privacy and thus the 

viability of such systems for real-world applications. Moreover, previous work on food recognition [38, 

40, 41] has almost exclusively concentrated on fast food rather than ingredients to be used in a recipe (as 

in our scenario). Although one previous study [37] embedded a camera inside a microwave oven to detect 

the food on the dish, this was applicable only for cooked foods or food that needs to be warmed before 

being eaten. To our knowledge, only one work [15] classified food ingredients in the preparation stage 

using a microphone embedded in the kitchen environment and not in the object. The sensor is therefore 

easily aware by the user. We see this approachas a most potential approach. In the chapters that follows 

we develop such an approach, but embed the sensor into the object, to improve its performance and real-

world applicability through the development of  better recognition algorithms, better design of the kitchen 

utensils and use of a wider range of utensils, and finally by extending the sensing modalities to include 

computer vision applied in the privacy sensitive capture and classification of images of food placed on a 

chopping board.   
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Chapter 3: A Preliminary Study of Activity Recognition in the Kitchen 

In this chapter we describe our first HAR prototype, Slice&Dice, a proof-of-concept system, which aims 

to perform recognition of low-level food preparation activities in the kitchen. Slice&Dice comprises a set 

of specially designed kitchen utensils (three knives and one large spoon) prototypes using 3D printing 

technology and embedded (modified) Wii Remotes. Three classification algorithms are developed and 

trained using a real-world dataset collected from 20 subjects. As such, even for this prototype we have 

conducted a significantly more substantial and ecologically valid study than previous research, and the 

system is evaluated using a subject-independent protocol. The results show significant promise, and in 

subsequent chapters we build on these and extend the algorithms, sensing modalities and artefact design 

(i.e. the utensils). 

3.1 Introduction and the need for low-level activity recognition 

The kitchen is the household location where everyday activities such as cooking and food preparation are 

conducted. The overarching motivation for our inquiry into activity recognition in the kitchen is a general 

recognition that the provision of situated support services in the kitchen has significant potential to 

improve the health and wellbeing on individuals and families, for example, through the provision of 

nutritional advice and cooking skill support and cooking knowledge tutoring. For particular classes of 

users, such as cognitively impaired people, the situated support services in the kitchen have a significant 

role to play in helping them maintain more independent lifestyles.  For example, a study by Wherton and 

Monk of people with dementia and their formal and informal carers [42] found that so-called failures in 

task completion (i.e. food and drink preparation tasks) could occur when low-level actions were 

unexpectedly suspended or prolonged. In this case, the caregivers typically provide fine-gained prompts 

that helps the person with dementia complete low-level actions such as putting a teabag into a teapot or 

buttering a piece of toast.  While the support of people with dementia is in itself sufficient motivation for 

the need for low-level activity recognition of food and drink preparation activities, we should note that 

even situated support that is not targeted at cognitively impaired users requires the detection of activities 

at sub-task level, for example, for prompting the next step in a recipe based on the detection of the 

completion of the previous step.  

Our first prototype system therefore addresses a fine grained set of food preparation activities in the 

kitchen context, in which we attempt to recognise 11 common activities related to the preparation of a 

mixed salad based on data collected from 20 participants in a realistic (although admittedly) lab-based 

kitchen. An additional requirement is that we must make the technology used (primarily the sensors 

themselves) as unobtrusive and unencumbering as possible (unlike previous studies) and to do these we 
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choose to design complete utensils (using 3D printing technology) and embed consumer off-the-shelf 

sensors into the handles of these utensils. The chapter begins with the design and development of 

Slice&Dice system in Section 3.2. The data collection process is presented in Section 3.2. Section 3.3 

describes about data annotation and Section 3.4 is about system evaluation. Finally, conclusions and 

discussions are presented in the Section 3.5. 

3.2 Slice&Dice prototype  

3.2.1 System requirements 

Following our review of previous research studies and systems we have established a number of key 

requirements which our prototype has sort to address: 

(1) Low-level activity recognition: as previously argued, recognising low-level activities is necessary for 

the development of a range of situated services in the kitchen (i.e. [42]) our prototype must therefore 

be able to classify low-level activities. The range of low-level activities is primarily determined by 

three factors, the range of utensils that we intend to use, the range of recipes for which we will 

prepare using these utensils (and thus the set of actions), and the assumed skill level of the cook. By 

reviewing cooking videos uploaded to YouTube we identified 11 distinct low-level activities that 

were used in the instructions in these videos: chopping, peeling, slicing, dicing, coring, spreading, 

eating, stirring, scooping, scraping and shaving. The distinction between these activities are matters 

as we toward our framework for guiding or prompting people to cook. For example, it is better if 

some foods can be sliced (i.e. meat, ham), some can be diced (i.e. make cubes for a potato salad). 

Although this may not matter in all recipes, it is particularly for a mixed salad where lettuces need to 

be sliced, carrots need to be chopped (not only served foods, but also its good-lookings). We therefore 

require our prototype to be capable of classifying utensil use for each of these activities. 

(2) The sensing infrastructure should not interfere with the conduct of the activity itself.  In other words, 

the sensing technologies must be hidden from the users and be part of the system comfortable-to-use.  

Meeting this requirement will ensure that users to perform their activities in a natural manner as if 

they were performed in a regular non-instrumented environment (i.e. a regular home-based kitchen). 

Even the most unobtrusive wearable sensor systems does not fulfil this requirement due to the very 

fact that users are always required to remember to wear a sensor when preparing food or drinks.  

3.2.2 The Design of kitchen utensils 

The Wii Remote [43] is a consumer off-the-shelf wireless sensing system and games controller which 

supports two functionalities of relevance to our application: (i) input detection through an embedded 

accelerometer; and (ii) data communications through Bluetooth. The Wii Remote comprises a printed 
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circuit board (which is encapsulated by a white case) and uses an AXDL 330 accelerometer [3] and a 

Broardcom BCM2042 chip that integrates the entire profile, application, and Bluetooth protocol stack 

[92] (see Figure 3.1). Based on Micro Electro Mechanical System (MEMS) technology the AXDL 330 

accelerometer is a small, low power, 3-axis accelerometer with signal conditioned voltage outputs. The 

AXDL 330 accelerometer can sense acceleration in three axes with a minimum full-scale range of ±3g. 

While the static acceleration of gravity can be used to implement tilt-sensing in applications, dynamic 

acceleration measurement can be detected through the quanitifies of motion, shock or vibration. 

 

Figure 3.1: Broadcom BCM2042 (left) and Wii Remote printed circuit board (right). 

The Broadcom BCM2042 board is a system-on-chip which integrates an on-board 8051 microprocessor, 

random access memory/read only memory, human interface device profile (HID), application, and 

Bluetooth protocol stack. Furthermore, multiple peripherals and an expansion port for external add-ons 

are embedded on the board. The integration of these components and the technology‟s adoption in a mass 

market consumer games console has significantly reduced the cost of BCM2042. The Wii Remote‟s input 

capabilities include buttons, an infrared sensor and an accelerometer. The infrared sensor is embedded in 

a camera which detects IR light coming from an external sensor bar. The accelerations are measured in X, 

Y, and Z axes (relative to the accelerometer) and the three directions of the movement (X, Y, Z) can be 

computed through tilt angles. Wii Remote inputs and sensor values are communicated to a Bluetooth host 

through the standard Bluetooth HID protocol. Values for acceleration are transmitted with a sampling 

frequency of 40Hz. While we envisage that future versions of Slice&Dice might use the ADXL330 as a 

component of a smaller wireless sensor, the Wii Remotes provides an excellent platform for developing 

and evaluating classification algorithms in kitchen utensils that still retain a usable form factor. 



 

21 

 

  

Figure 3.2: Utensils instrumented using a modified Wii Remote. 

Four kitchen utensils: one big knife, one bread knife, one small knife, and one large serving spoon are 

instrumented with modified Wii Remotes as shown in Figure 3.2. The utensils casing themselves were 

designed using a 3D modelling tools and fabricated in acrylic using Fused Deposition Modelling (FDM) 

rapid prototyping.    

3.2.3 Classification algorithms 

The Slice&Dice system recognises human activities in 3 steps: data segmentation, feature computation 

and classification. In the data segmentation stage, acceleration data from utensils was converted into 

pitch and roll rotations as follows: 

Pitch = 2 arctan(
 

       )  (3.1) 

Roll = 2 arctan(
 

       )   (3.2) 

where x, y, z are acceleration values of the three axis and a triplet of (x,y,z) is called a sample. The 

samples are grouped into windows than have a 50% sample overlap between two adjacent windows. The 

length of windows is an algorithm parameter that we vary in in the evaluation the performance of 

different classification algorithms. 

In the feature computation step 4 different types of features: mean, standard deviation, energy and 

entropy are computed for the set of samples within a sliding window. Where n is the length of a slicing 

window, the features for acceleration data along with x-axis are computed as follows: 

Mean(x) =   
∑   

 
   

 
  (3.3) 
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Standard deviation(x) =  √
 

 
∑ (  

 )  [       ]  
     (3.4) 

Energy(x) =  
∑   

  
   

 
 (3.5) 

Entropy(x) = - ∑                 
 
     (3.6) 

where xi is an acceleration value, p(  ), a probability distribution of xi within the sliding window, can be 

estimated as the number of    in the window divided by n. 

As we have 4 utensils, each has a 3-axis acceleration (i.e. x, y and z) and 2 rotations (i.e. pitch and roll) 

the input feature vector therefore comprises of 80 features that will be used for training classifiers in the 

next step. In the classification step, three classification algorithms, Naïve Bayes, Bayesian Networks, and 

Decision Tree C4.5 (as implemented in Weka [45]), were used to classify the food preparation activities 

in this first version of Slice&Dice. 

3.3 Data collection 

It is widely accepted that datasets collected under real-world settings are crucial to the development of 

robust and reliable machine learning algorithms [20]. For this reason, for our data collection activity 

subjects participated in a relatively open food preparation task and in doing so conducted themselves 

without any imposed time-constraint or detailed instructions as to what to do and how to do it. 

3.3.1 Experiment settings 

 

 

Figure 3.3: The Ambient Kitchen, our laboratory based instrumented kitchen environment. 
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The experiment was carried out in the Ambient Kitchen [27]. Of the environment‟s five  IP cameras 

(installed inside the wall of the Ambient Kitchen) two were directly focused on the work surface where 

food was prepared by the subjects. The food ingredients provided to subjects included: tomatoes, 

potatoes, lettuce, carrots, onions, pepper, grapefruit, kiwi fruit, garlic, bread and butter. Four utensils: a 

big knife, a bread knife, a small knife and a serving spoon (see Figure 3.2) were placed on the work 

surface in preparation for each data collection session. These utensils, in which modified Wii Remotes 

were embedded into their handles wirelessly communicated with a computer behind one of the kitchen 

walls using a Bluetooth dongle device. A logging program running on the computer recorded one 

timestamp for each sample written into the log files to allow later synchronisation of acceleration and 

video data. The kitchen also included a (non-instrumented) wooden chopping board for cutting activities 

and a salad bowl. 

Twenty subjects without professional cooking experience were recruited from Newcastle University 

(through personal contacts of members of Culture Lab). Subjects were only asked to use the utensils and 

ingredients provided to prepare a mixed salad and a sandwich. No time constraints, nor other instructions 

from researchers, were imposed on the subjects. Consequently, the time taken to complete the task is 

varied significantly between subjects. Note that ethical approval was provided for the study, and subjects 

all signed privacy waivers relating to the video and accelerometer data collected. The annotated video and 

acceleration data has been made freely available to other researchers (see Appendix A).  

3.3.2 Real-world dataset challenges 

In the recorded videos, and the subsequent process of annotation, we observed that the dataset collected 

under realistic conditions gave rise to a number of particular challenges: 

(1) Variability of activities: as no instructions on how to perform the recipe were given to the 

subjects, the subjects could perform activities as they wished (i.e. on might argue “in a more 

natural way”). For example, some subjects chopped a carrot quite fast while others chopped it 

slowly, actions such as peeling were conducted in very different ways by different subjects, and 

utensil selection (for different ingredients) varied between subjects. 

(2) Ambiguity of annotation: preparation activities in the kitchen do not always fall into neat 

categories that can be readily classified by a human observer. For example, the distinction 

between chopping and dicing may be clear in some cases, in other cases subjects appear to move 

between the two, in an almost continuous manner. Establishing clear annotation protocols that 

ensure the consistent observer-based classification of activities requires us to address this problem 
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through the preparation of appropriate training materials and quality assurance (i.e. checking the 

annotators work systematically). 

(3) Inherent imbalance of the dataset: while all subjects performed a significant number of chopping, 

scooping, and peeling activities, only a small number of subjects performed eating (i.e. using the 

serving spoon to eat ingredients), dicing (i.e. rapid fine-grained chopping), and scraping (i.e. 

rather than peeling) activities. As a result distribution of activities in the captured dataset is not 

even. For example, in our collected dataset, for a window length of 64, there were 3116 instances 

of chopping but only 78 instances of dicing. 

3.4 Data annotation 

A set of 11 activity labels was decided upon based on an informal survey of language used in several 

hours of English language cooking videos found on YouTube. The activity labels were chopping, slicing, 

peeling, stirring, scooping, dicing, shaving, scraping, eating, spreading, and coring. Some illustrations of 

activity, and the acceleration patterns for these activities, are shown in Figure 3.4. 

 

 

 

(a) Dicing 

 

 

       (b) Spreading 
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         (c) Scooping 

 

 

           (d) Slicing 

 

Figure 3.4: Examples of food preparation activities. 

The collected videos were independently annotated by 3 annotators using the Anvil multimodal 

annotation tool [46]. Each annotator was provided with an informal description of the 11 activities 

previously identified, and was asked to annotate time period in the video when subjects were undertaking 

these activities (identifying each specific one).  Post-annotation, two datasets were created for training 

and testing the classification algorithms. Dataset A was the intersection of 3 annotated datasets where 

only labelled data for which all three annotators agreed was extracted. This corresponds to the data where 

there is complete agreement between to the annotators as to the activity being performed. As expected, it 

was noticed that the precise timing of the boundaries of the 11 activities was often unclear.  While dataset 

A was the subset of the data for which all annotators agreed, we repeated our experiments on a second 

dataset (B) which was the complete dataset annotated by one single annotator.  Dataset B was therefore a 

larger dataset corresponding to a single annotator‟s interpretation of the labels and video data.      

3.5 Evaluation 

This section presents the first evaluation of the Slice&Dice system on the dataset collected from 20 

subjects, for which we applied a subject-independent protocol.  

3.5.1 Procedures 

Although previous research on human activity recognition has generally used sliding window sizes 

ranging from 4.2 to 6.7 seconds [7], our problem domain is quite different in that our sensors are attached 

into the utensils themselves and we are well aware of relatively short time window within which some 
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activities might be best characterized. However, as this was the first version of Slice&Dice, we needed to 

determine window size with which the best results could be achieved. Therefore, the data was processed 

using a range of different window sizes:  0.8 seconds (i.e. 32 samples), 1.6 seconds (i.e. 64 samples), 3.2 

seconds (i.e. 128 samples), 6.4.seconds (i.e. 256 samples), and 12.8 seconds (i.e. 512 seconds) using the 

timestamp of the sample. As already described a 50% overlap between two consecutive windows was 

used. We deemed it not necessary to consider a window size smaller than 0.8 seconds  as none of the 

activities we are concerned with take place at this temporal scale, likewise, the upper bound for window 

was set to 12.8 seconds (i.e. too slow activity). 

A vector of 80 features was computed from each window, and was used the input to the classifiers. In this 

experiment, Slice&Dice was evaluated under the subject independent (“leave-one-subject-out”) protocol. 

Under this protocol, we trained 19 subjects and tested the one remaining subject. The process was 

repeated until all subjects were tested.  Finally, the results were aggregated. We report the evaluation 

results in terms of the accuracy of each activity, Acc(a), and the overall accuracy, which are calculated as: 

Let ni be the total number of instances of activity ai 

 Acc(ai) =  
                            

  
   (3.7) 

Overall accuracy = 
∑       

          

 
   (3.8) 

where N is the total number of instances in the dataset. 

3.5.2 Results 

We evaluated Slice&Dice on both datasets A and B. The preliminary results are presented as follows. 

(a) Performance results for dataset A 

Dataset A was constructed in an attempt of ours to reduce inconsistency between activity labels. The 

results of the performance of Slice&Dice on dataset A are shown in the Table 3.1. In this table, the 

highest accuracy (82.9%) was achieved by the Decision Tree C4.5 algorithm with a window size of 256. 

It is also apparent that the accuracy slightly increased when the sizes of the window used was larger (up 

to, but not including 512, due to the fact that the data significantly decreases to 252 instances for a 

window size of 512). 
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Algorithm 

  Window size 

32 64 128 256 512 

Decision Tree C4.5 77.7 78.7 80.3 82.9 80.2 

Bayesian Networks 70.8 72.5 79.7 78.9 69.1 

Naïve Bayes  47.5 45.6 50.5 52.4 51.3 

Table 3.1: Overall accuracies (%) on dataset A. 

The next most accurate was the Bayesian Network which demonstrated accuracy of ~79% for window 

sizes of both 128 and 256. Naïve Bayes yielded the worst accuracy of just around 50% for all window 

sizes.  The precise (action-by-action) details of accuracies for Decision Tree C4.5 are present in the Table 

3.2. 

Activity 

Window size 

32 64 128 256 512 

instances % instances % instances % instances % instances % 

chopping 2040 87.3 986 87.5 476 86.1 220 87.7 102 86.5 

peeling 712 96.9 342 95.9 170 97.1 80 97.5 36 94.4 

slicing 160 19.4 64 26.6 36 30.3 10 80.0 4 0 

dicing 184 19.6 86 18.6 38 15.8 12 4.2 4 0 

coring 354 73.4 170 77.7 80 76.3 36 80.6 10 60.0 

spreading 224 46.0 126 44.4 56 57.1 26 53.9 10 40.0 

eating 94 10.6 44 31.8 18 27.2 8 50.0 0 n/a 

stirring 392 78.6 192 85.9 86 90.7 36 91.7 14 100.0 

scooping 906 89.5 460 86.3 222 89.2 98 86.7 42 92.9 

scraping 98 50.5 48 56.3 22 18.2 8 75 2 0 

shaving 388 60.3 176 59.7 80 72.3 30 69.9 14 60.3 

Table 3.2: Detailed classification results (%) for Decision Tree C4.5 on dataset A. 

For dataset A, the best overall accuracy was achieved with a window size of 256 for which high levels of 

accuracy was also achieved for a number of the individual activities, chopping, peeling, slicing, coring, 

stirring and scooping (i.e. more than 80%). Notably poor accuracy was achieved for dicing. Accuracies of 

around 50% were achieved for spreading and eating, while scraping and shaving stood at around 70%.  
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(b) Performance results on the dataset B 

Dataset B was significantly larger than dataset A, and the overall accuracy of the C4.5 was slightly lower 

(see Table 3.3). On reflection this is to be expected as in dataset A all annotators agreed, and thus we 

expect the actions that have been annotated to unambiguously reflect the guidance given as to what use of 

a utensil corresponds to each activity.  Note that C4.5 still achieved an overall accuracy of nearly 80% for 

all window sizes.   

Algorithm 

Window size 

32 64 128 256 512 

Decision Tree C4.5 77.0 76.8 80.2 77.5 80.1 

Bayesian Networks 67.5 70.2 73.6 71.3 74.5 

Naïve Bayes 61.3 61.8 62.2 73.5 72.7 

Table 3.3: Overall accuracies (%) on dataset B. 

The performance of Naïve Bayes on dataset B is moderately better than on dataset A as the dataset B is 

bigger than dataset A and Naïve Bayes requires significant amounts of data for training. 

Activity 

Window size 

32 64 128 256 512 

instances % instances % instances % instances % instances % 

chopping 6184 88.3 3116 86.7 1510 88.1 726 86.6 328 90.9 

slicing 472 31.6 230 75.7 86 67.4 50 70.0 16 75.0 

peeling 788 72.5 378 27.5 150 35.3 82 24.4 36 19.4 

dicing 162 3.7 78 14.1 38 15.3 16 12.5 4 25 

coring 1246 94.5 612 94.8 300 92.7 130 86.6 64 82.8 

spreading 2177 88.0 1034 90.5 498 90.4 260 86.9 116 82.8 

eating 326 21.5 164 10.4 82 31.7 28 35.7 18 5.6 

stirring 1122 74.7 558 70.8 190 77.4 134 70.9 64 81.3 

scooping 796 37.3 390 39.5 186 51.1 76 47.2 32 81.3 

scraping 716 62.2 364 64.3 172 65.2 82 65.8 32 56.3 

shaving 848 75.9 416 79.6 200 90.5 88 86.4 42 92.9 

Table 3.4: Detail classification results (accuracy in %) for Decision Tree C4.5 on dataset B. 

The details (activity-by-activity) of the performance of C4.5 on dataset B are presented in Table 3.4 and it 

can be seen that these are consistent with that of dataset A. The activities of chopping, coring, spreading 

and shaving were accurately classified (i.e. >85%). Accuracies for the classification of slicing, stirring, 

and scraping were around 70%. Again the lowest performance was for dicing (12.5%). 
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3.6 Conclusion and discussion 

The aggregated results revealed the best performance for the C4.5 classifier at different window sizes 

across different activities. As one might expect, all classifiers performed worst for activities that are 

intuitively less well defined and in themselves were difficult to label for our human annotators. Classifier 

performance for relatively unambiguous activities such as chopping, peeling, coring, stirring, and 

scooping was above 80%, while classification of less distinct activities was significantly less accurate. 

This may in part be due to the low number of training instances for activities such as dicing, slicing, and 

scraping. We also saw significant improvements in accuracy for these activities on dataset B, where the 

number of training samples was higher (this is particularly true for scraping). Notably, as one might 

expect, since the activities themselves have different temporal scales (e.g. dicing vs. eating) the window 

size for which a classifier is most accurate varies across the activities.    

Our initial experiments showed that there are several areas in which Slice &Dice will need to improve in 

order to develop a real-time AR system for kitchen activities that can provide the sort of situated support 

for food preparation that we envisage. First, although a generally good level of overall accuracy was 

achieved (i.e. 82.9%), the accuracy for each activity varied widely, from over 90% for peeling, to near 

10% for dicing. Therefore, further work is required to find a better classifier, in particular one for which 

the accuracies between activities are more balanced. Secondly, in addition to accuracies (or recall), 

evaluation metrics such as false positive rates, precision, and confusion matrices should be used to 

provide more insight into the results. Finally, practical real-time AR must incorporate a rejection option 

for abnormal activities (i.e. unknown activities). We have addressed all this improvements in the next 

chapter (Chapter 4). 

In conclusion, Slice&Dice should be considered as a proof-of-concept activity recognition prototype that 

can recognise 11 mixed-salad preparation activities. With the reliable recognition rate of more than 80%, 

the system achieved our aim of demonstrating the feasibility of the use of pervasive sensing in the 

recognition of fine-grained human activities (in the kitchen). To the best of our knowledge, Slice&Dice 

was the a first work that systematically addressed the AR problem with embedded sensors in multiple 

kitchen utensils. Slice&Dice is the first step in the development of a low-level activity framework for 

fine-grained food preparation activities.  
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Chapter 4: Real-time Activity Recognition 

This chapter builds on our initial Slice&Dice prototype described in Chapter 3 and presents a real-time 

recognition framework for low-level food preparation activities. The recognition method is based upon  

dynamic time warping (DTW) which is a simple, fast, yet effective technique for real-time classification. 

As in our initial Slice&Dice application the recognition framework analyzes frames of contiguous sensor 

readings, but in this case the classification is in real-time and with low latency. Our DTW approach 

adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We 

demonstrate the effectiveness of the classification approach through a number of real-world practical 

experiments on our publically available dataset. Notably, our adaptive system shows superior 

performance when compared to a static recognizer. Furthermore, we demonstrate the generalization 

capabilities of the system by gradually reducing the number of training samples used, and demonstrate 

that the final system achieves appropriately accurate classification results even if only a small number of 

training samples is available. This is particularly relevant to our envisaged scenario of real-time situated 

support of food preparation in the kitchen. In section 4.2 we present the DTW-based method for real-time 

AR including an overview of DTW and the development of a DTW-based recognizer that incorporates 

the rejection option (i.e. detection of unknown activities as identified as necessary in Chapter 3), and how 

to improve the recognizer with adaptation. Our experimental evaluation is presented in section 4.3, and in 

section 4.4 we discuss our results and report our conclusions. 

4.1 Introduction 

In Chapter 3 we explored the nature of various low-level food preparation activities in detail, and it 

became clear that even the most fundamental activities exhibit significant variance. As already identified, 

the perceived variance is in part due to inherent ambiguity in our informal definitions of different food 

preparation activities (e.g. there is no widely accepted commonsense definition of dicing). But this 

variance also stems from a number of additional factors, including personal preferences of how to handle 

food ingredients and utensils, the level of formal or informal training a person has, the nature of the food 

ingredient and its intended post-preparation form, and even the biomechanical profile of the user (e.g. the 

size and strength of their hands). For example, consider the process of shaving a carrot using a knife. 

Some people perform long, slow movements of the utensil along the carrot towards themselves, which is 

comparable to “carving” the vegetable. Others tend to perform short, fast cuts of the carrot‟s surface 

thereby using the knife in more of a “chopping” action. Although both kinds of movements differ 

substantially, they represent the same kind of activity and an automatic recognition system needs to cope 

with this. People with experience of cooking generally use utensils in a more coordinated manner, and 
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depending on the size of the utensils handle, the utensil itself better suits people with hands of different 

sizes. 

In order to address this variation, we developed a fully automatic, real-time activity recognition system 

(the processing pipeline for which is outlined in Figure 4.1). As before, accelerometer data is recorded 

while a person is working in the kitchen and we use data from the modified Wii remotes integrated into 

standard kitchen utensils. The continuous sensor data streams are (x, y, z) acceleration triplets at a 

sampling frequency of 40Hz, and frames of 64 contiguous samples are extracted in a sliding window 

procedure. The use of sliding window size of 64 (i.e. 1.5 seconds) is necessitated by the need for real-time 

processing and thus a practical recognition rate (an ultimately response in an interactive system). 

Following some basic pre-processing and trivial movement detection (using a simple threshold based 

procedure), the actual classification of the extracted frame regarding the activities of interest is performed 

(central component of Figure 4.1). This recognition procedure is performed as a DTW-based template 

comparison with an automatically maintained template database. This database contains representative 

templates for the activities of interest together with activity specific thresholds for acceptance  and 

rejection. By analyzing the DTW scores the template database can be continuously adapted to represent 

the idiosyncrasies of the particular activities performed by different users. The output of the system 

consists of classification hypotheses for every extracted frame, including possible rejection, which in 

effect means segmentation of continuous sensor data streams 

4.2 Dynamic Time Warping based activity recognition for food preparation 

In this section we first briefly summarize the theoretical foundations of Dynamic Time Warping before 

presenting a detailed description of the key components of our real-time AR system for food preparation. 
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Fig. 4.1: Activity recognition for food preparation tasks (system overview). 

4.2.1 Dynamic Time Warping: a brief overview 

DTW [48] is a constrained, non-linear pattern matching method based on dynamic programming for 

measuring the dissimilarity between two time series. Let O = o1,o2,..,om and Y = y1,y2,..,yn be two time 

series. DTW finds an optimal mapping from O to Y by reconstructing a warp path W that optimizes the 

mapping of the two sequences: W = w1,w2,…,wK where max{m,n} ≤ K < m+n, where K denotes the length 

of the warp path. The warp path is constrained in the sense that it is anchored by the start and end points 

of both sequences. To map the in-between elements of both time series a step-wise distance minimization 

is performed for every position: 

δ(W) = min { ∑  (       )
 

   
}  (4.1) 

The actual distance calculation is usually (but not necessarily) based on the Euclidean distance d(oi,yj) and 

dynamic programming [48]: 

δ(i,j) = d(oi,yj) + min { δ (i-1,j), δ (i-1,j-1), δ(i,j-1)} (4.2)  

where i and j represent monotonically increasing indices of the time series O and Y. The resulting 

matching cost, δ(W), is then usually normalized to the range [0,1] to ensure comparability. 
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4.2.2 DTW-based recognition 

As before, our classification problem relates to the context in which accelerometers integrated into 

kitchen utensils continuously stream three-dimensional (x,y,z) acceleration data. A sliding window 

procedure aggregates 64 contiguous samples as frames, and adjacent frames overlap by 50%. The actual 

parameterization of the frame extraction process has been optimized in previous experiments (i.e. [16]). 

For every observation frame O[u], which is recorded for a particular utensil u, activity recognition is 

performed using the DTW-based algorithm as described in Figure 4.2. Note that by means of a trivial 

threshold comparison only those frames are considered where the utensil was actually moving. After 

computing and sorting the DTW scores for all templates (lines 3:8 in Figure 4.2), the set of the smallest 

min(K,n) scores is compared to the activity-specific thresholds (lines 9:15 in Figure 4.2), so-called class-

based threshold DTW (each activity has its own threshold) or CBT-DTW. If none of the DTW scores 

contained in the sorted list cost is smaller than the particular threshold the observation frame O is rejected, 

i.e., assigned to the unknown class. Heuristically we chose K=10, which provided reasonable results for 

acceptance and rejection on a cross validation set. The threshold function (Thresh, line 10 in Figure 4.2) 

retrieves the class-based threshold of the template Y[index[i]].  

Input: Observation frame O; Utensil u;  

Number K of sorted match scores to analyze for final result 

Output: Activity hypothesis 

 

 //Extract templates 

1: CurrentTemplates= ExtractTemplateDB(u); 

2: n = the number of templates in CurrentTemplates;   

3: For i from 1 to n do 

4:  Y[i] = CurrentTemplate.template[i]; 

5:  cost[i] = DTW(O,Y[i]); 

6:  index[i] = Y[i].Id; 

7: End for 

 // sort and maintain indices of the templates 

8: Sort(cost, index);  

9: For i from 1 to min{K,n} do 

10:  If cost[i] < Thresh(Y[index[i]]) then 

//Acceptance 

11:   activity(Y[index[i]]) -> activity_list; 

12:   break; 

13:  Else 

       //Rejection 

14:   unknown activity -> activity_list; 

15:  End if 

16: End for 

17: Return (activity_list); 

Figure 4.2: DTW-based activity recognition. 
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The recognition procedure utilizes activity specific thresholds Ta. Applying Chow‟s rule for reject option 

with multiple class-based thresholds [47] to our domain (i.e. unknown activities need to be rejected), an 

observation frame O is classified as being a particular activity, a, if: 

δ(O,t) = { δ(O,tj)} < Ta  (4.3) 

where t represents a template from the database, which represents the activity a. N is the overall number 

of templates in the database. A frame is classified as unknown (i.e., to be rejected) if: 

δ(O,t) = { δ(O,tj)} ≥ {Ti}  (4.4) 

where n denotes the number of classes of interest. The class-based thresholds (CBT) were manually 

selected through a 5-fold cross validation procedure. 

4.2.3 Template adaptation  

In order to adapt the overall recognition system to account for the idiosyncrasies users (e.g. personal 

preferences, biomechanics, etc) and use (e.g. the ingredient being acted upon), the template database is 

continuously updated, that is, templates are removed and added when necessary. The adaptation scheme 

used can be described as follows. Let fk define the weighted histogram of recognition hypotheses for a 

particular time step k consisting of activity specific entries fk(a), where a specifies the particular activity, 

and w denotes an (heuristically chosen) adaptation weight: 

fk(a)  {
                                

                         
 (4.5) 

α denotes an acceptance/rejection threshold, which is derived from the activity specific template 

thresholds:  

α =Ta / (1+ Ta)      (4.5a)  

All thresholds were optimized in a separate cross-validation procedure. Let γk(a) be the cumulative 

number of recognitions of activity a at time k. The positive probability of activity a at time k is computed 

as: 


k k

k

k

k
k

(a)γ

(a)f
/

(a)γ

(a)f
(a)ρ   (4.6) 

The negative probability of activity a at time k is therefore defined as: 

      
       

∑          
    (4.7) 
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At time k, if an observation frame makes φk(a) = min {φi(a)} for i =1..k, then this frame will be updated 

as a template in the positive list of the template database for later use (i.e. adaptation). The template which 

makes   φk(a)= max{φi(a)}for i=1..k is moved to the negative list in the template database at the same 

time. The negative list is used only when recognizer has recognised an unknown activity on the positive 

list, then recognizer one more classification attempt on the negative list before returning the activity list. 

4.3 Experimental evaluation 

In order to evaluate the applicability of the proposed class-based threshold dynamic time warping 

approach (CBT-DTW) to activity recognition, we performed a number of experiments. We used the 

(publically available) dataset from Chapter 3, in which 20 persons pursued typical food preparation tasks 

(salad and sandwich making) using our sensor-equipped utensils. Ten typical low-level activities were 

subject to recognition, namely chopping, peeling, slicing, dicing, scraping, shaving, scooping, stirring, 

coring, and spreading. Additionally, a considerable amount of sensor data, the activities associated to 

which does not belong to one of these ten known identified activities, nor to “idle” (i.e. utensils not 

active) was included in the dataset. In total more than 6 hours of sensor data was collected from the four 

sensor-equipped kitchen utensils (i.e the knives and the spoon). 

Extending our proof-of-concept Slice&Dice system, presented in Chapter 3, we aimed to conduct realistic 

experiments using the recognition system in a real-world scenario. This implies that the recognition 

system was applied online, i.e., continuous data streams had to be segmented and classified (open lexicon 

with rejection) in real-time, i.e., with negligible latency (the results are given in section 4.1). Furthermore, 

as previously explained, we were interested in the dependency of the recognition procedure on the 

number of annotated samples available for training. Since manual annotation is tedious and costly, it is 

somewhat unrealistic to rely on extensive training sets in order to apply recognition systems of this class. 

Consequently, we performed a second set of experiments in which the number of training samples was 

systematically decreased step-by-step. For this systematic exploration of the impact of training set size we 

report the classification results are reported in section 4.3.2 

Recognition results are reported as frame-wise precision and recall values. The precision for an activity 

was calculated by dividing the number of correctly classified frames by the total number of frames 

classified as being a particular activity (i.e. true positives/(true positives + false positives)). Recall was 

calculated accordingly as the ratio of the number of correctly classified frames to the total number of 

frames of an activity (i.e. true positives/total number of frames of an activity). For comparison, baseline 

results for the evaluation of the decision tree-based system described have already been provided in 

chapter 3. 
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4.3.1 Results for full training set  

For the first set of experiments we used all the available training data (see below) to evaluate the 

recognition system. The dataset was manually annotated by 3 independent annotators, and the consensus 

of the three annotators served as ground truth. Since we recorded complete cooking sessions the dataset, 

for obvious reasons, is dominated by idle “activities” (i.e., frames recorded while the particular utensil of 

interest is not moved at all). A quick subject-independent test (including all idle frames) led to 96.36% 

overall accuracy as the recognition of idle is almost perfect (based on a simple threshold comparison). To 

avoid this over-optimistic (and not so informative) evaluation, we limited the set of “idle” frames to four 

per utensil, which were randomly selected per subject. This effectively truncates the dataset to 12,265 

frames (of 64 samples each).  

Table 4.1: One-subject-leave-out evaluation (all figures are percentages). 

The evaluation was performed in a “leave-one-subject-out” manner, that is, we trained the recognizer 

using the data from 19 subjects, and tested on the data recorded for the remaining subject. This process 

was repeated for all 20 subjects and results were averaged. The overall performance of the proposed 

DTW-based approach is presented in Table 4.1. Additionally, the results are compared to those of the 

baseline system (Decision Tree C4.5). It can be seen that the new approach clearly outperforms the 

baseline with an overall precision rate of approximately 83% (CBT-DTW) as compared to 77.9% 

(Decision Tree C4.5), and an overall recall rate (averaged all classes) of 82.8% (CBT-DTW) compared to 

76.7% (Decision Tree C4.5). All differences are statistically significant.  

Activity 

 

CBT-DTW 

 

Decision Tree C4.5 

Precision Recall False Positive Precision Recall False Positive 

chopping 82.61 88.54 2.22 82.21 87.5 7.37 

coring 77.02 81.94 0.21 74.02 77.7 4.12 

dicing 51.16 54.63 0.25 24.87 18.7 4.25 

peeling 72.76 80.63 0.53 88.7 95.9 3.91 

scraping 80.09 81.1 0.12 56.8 56.3 3.37 

shaving 72.79 82.73 0.28 55.11 59.7 2.91 

slicing 70.31 70.73 1.21 33.47 26.6 4.95 

spreading 71.06 86.57 0.77 54.33 44.4 2.32 

scooping 97.92 94.55 0.78 91.2 86.3 2.6 

stirring 84.77 86.98 0.08 81.63 85.92 1.26 

idle 100.00 100.00      0.00 100.00 100.00      0.00 

unknown 91.00 80.92 4.96 85.30 83.20 9.82 

Overall 83.02±4.8 82.78±5.5 2.61±1.03 77.9±8.7 76.7±6.5 6.29±2.1 
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Additionally Table 4.2 illustrates the aggregated confusion matrix for the subject-independent evaluation 

of CBT-DTW. More details of CBT-DTW performance metrics are present in this confusion matrix, 

which has been aggregated from the recognition results of the “leave-one-subject-out” evaluation 

procedure.  

In addition, as seen in Table 4.1, areas of low recognition rate performance by C.4.5 are significantly 

improved upon by CBT-DTW, for example, dicing (from 18.7% to 54.6%), slicing (from 26.6% to 

70.7%). As shown in Chapter 3, the number instances of dicing and slicing was much smaller than the 

number instances of other activities, and consequently the initial low level of performance was due to the 

fact that these machine learning-based recognition algorithms evaluated in Chapter 3 (including C4.5) are 

highly dependent on the number of samples available to train the models. Therefore, we conducted 

another evaluation to explore the relationship between the number of trained samples and the recognition 

performances of both C4.5 and CBT-DTW, which are presented in Section 4.3.2.       

 ch
o

p
 

co
ri

n
g

 

d
ic

in
g
 

p
ee

li
n

g
 

sc
ra

p
in

g
 

sh
a

vi
n

g
 

sl
ic

in
g

 

sp
re

a
d

in

g
 

sc
o

o
p

in
g
 

st
ir

ri
n

g
 

id
le

 

u
n

kn
o

w
n
 

chop 88.4 0.1 5.5 0 0.3 0 4.6 0 0 0 0 1.1 

coring 0 81.9 0 6.4 3.1 0 0 38.9 0 0 0 4.7 

dicing 36.6 0 54.6 0 1.2 0 5.2 0 0 0 0 2.5 

peeling 0 4.0 0 80.6 5.8 3.7 0 0 0 0 0 5.9 

scraping 2.3 1.1 0.1 4.1 81.1 2.6 1.0 0 0 0 0 7.8 

shaving 2.0 0 0 8.4 1.2 82.7 0 0 0 0 0 5.6 

slicing 15.0 1.7 7.63 0 1.4 0 70.7 0 0 0 0 3.5 

spreading 0 0 0 0 5.8 1.7 0 86.6 0 0 0 6.0 

scooping 0 0 0 0 0 0 0 0 94.6 2.1 0 3.4 

stirring 0 0 0 0 0 0 0 0 8.1 87.0 0 5.0 

idle 0 0 0 0 0 0 0 0 0 0 100 0 

unknown 3.28 0.92 0.03 2.3 2.96 0.58 1.4 3.51 3.18 0.95 0 80.9 

Table 4.2: Aggregated confusion matrix for “leave-one-subject-out” evaluation of CBT-DTW (%). 
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4.3.2 Results for reduced training sets  

In the second set of experiments we analysed the dependency of classification accuracy on the number of 

samples available for training the recognizer. We did this by gradually reducing the amount of annotated 

training samples through a random selection of frame to be excluded from training, and evaluated the 

resulting recognizers on the remaining data. Figure 3 summarizes the classification accuracies of both the 

proposed CBT-DTW approach and the baseline system C4.5 classification algorithm. The number of 

frames used for model training is display on the x-axis, whereas the y-axis represents the classification 

accuracies. For the sake of clarity in the illustration the (discrete) accuracy and sample number values are 

displayed as (continuous) curves by interpolation through the sample values. It can be seen that the 

proposed DTW-based recognition produces significantly generalizable models even when only small 

amounts of training data are available. For example, with only 5 labeled frames for training (per activity) 

the accuracy of CBT-DTW is still approximately 78% (see figure 4.3). The performance of the baseline 

C4.5 system here drops to approximately 55%.  

 

Fig. 4.3: Classification accuracies of CBT-DTW in dependence of the amount of training data. 

4.4 Conclusion and discussion 

Our improved Slice&Dice prototype activity recognition system has the potential to automatically adapt 

towards the idiosyncrasies of people using kitchen utensils. Based on a Dynamic Time Warping 

procedure a template matching system has been developed, which successfully segments and recognizes 

ten low-level kitchen activities by analysing contiguous frames of sensor values. The adaptation of the 
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activity recognition systems to variation in certain activities is pursued by an automatic maintenance 

procedure, which effectively updates the template database when necessary. By means of an experimental 

evaluation on a large, realistic datasets that cover unconstrained food preparation we demonstrated the 

capabilities of the proposed approach. In a second set of experiments we gradually reduced the number of 

training samples. The proposed DTW-based recognition system shows superior generalization even if 

only a few samples are available for training. 

As we have argued, the automatically monitoring of food preparation activities is a key element of a 

situated support system, but such systems must be non-intrusive. Intrusiveness can occur in a variety of 

forms. In Chapter 3, we showed how by careful physical design we can develop utensils that have the 

sensors for the activity recognition into the actual objects (thereby obviating the need to wear a sensor or 

have invasive computer vision systems in the kitchen). However, ease of deployment is another 

significant source of intrusiveness and with our CBT-DTW based system we have demonstrated that 

sufficiently accurate recognition results can be achieved using just a small number of examples. While we 

have not undertaken the interaction design that would be associated with the deployment of such a set of 

instrumented utensils, one might reasonably anticipate that if such systems are to adapt to the particular 

users then this adaptation must be effective with minimal additional training data (as we have 

demonstrated). 

Finally, although we have demonstrated the feasibility of fine-grained activity recognition in the kitchen 

using pervasive sensing, the practical application of such a technology faces two additional challenges. 

Firstly, the food ingredients themselves provide the most valuable context information in the kitchen, and 

as yet we have not proposed a technical approach to their recognition. Moreover, while Wii Remotes have 

been embedded into specially modified handles of the knives and large spoon of our prototype, they are 

clearly inappropriate for many other kitchen utensils or appliances, for example, a peeler, sauce pan or 

frying pan. Based on these observations, in the subsequent chapters we demonstrate our efforts to develop 

a full kitchen deployment based on custom-design wireless accelerometers (whose size is much smaller 

than the Wii-remote) and embedded sensing objects such as a chopping board by which we can recognise 

fresh food ingredients.  
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Chapter 5: Fiber Chopping Board 

This chapter presents the development of the Fiber Chopping Board (FCB) for fresh food ingredient 

recognition in the kitchen. We begin by describing the properties of materials and the hardware chosen 

for building the FCB, and then describe the process of its design and construction in more detail. The 

process of sensing image calibration and processing is presented in Section 5.4. Two food recognition 

algorithms are developed and implemented. One is based on optical fiber imaging (Section 5.5), and the 

other utilizes the acoustic data stream while food ingredients are being acted up (Section 5.6). Our 

conclusions and discussion is presented in Section 5.7.    

5.1 Introduction 

Previous research [26, 51] has demonstrated that situated services, such as prompting, can be significantly 

improved if they can derive contextual information (i.e. 56% accuracy for context-unaware compared to 

74% for context-aware in [51]). As food is an essential element of food preparation then its automatic 

recognition of is a key functionality of applications such as nutrition advices [30], dietary maintenance 

and monitoring [29], or assisted cooking, particularly for novice cooks [32]. However, existing pervasive 

kitchen environments [27, 29, 30, 32, 34] are either not able to detect (or have very limited detection 

capabilities for [15]) food ingredients while people perform cooking tasks. This is particularly true where 

fresh food ingredients are components of a recipe [30, 32].   

Whereas in previous chapters we have demonstrated the feasibility of the recognition of human activities 

using accelerometers embedded in knives and spoon,in this chapter, we present the development of a 

compact, natural-looking chopping board using fiber optics and audio sensing technology. It is noticed 

that before developing the fiber chopping board we did several pilot studies about using acclerometer data 

from chopping/slicing activities to classify food ingredients while they are being chopped. The 

classification results are not so good (i.e. ~40% for 5 foods). Therefore we need to develop the fiber 

chopping board for food recognition. In contrast to previous work such as [15] where a readily observable 

microphone was installed in general kitchen environment, or [24] which used a wearable microphone, we 

used an optical sensing technology and a microphones that was completely embedded inside the chopping 

board (thereby satisfying our requirement for unobtrusive pervasive technology in the kitchen).  

5.2 Materials and hardware devices for the FCB 

5.2.1 Optical fibers 

The basis of the FCB is a flat, low resolution imaging system for which we will use an array of fiber optic 

cables. An optical fiber [53] is made of a pure glass which is flexible and immune to electromagnetic 



 

41 

 

interference. Light can be transmitted between two tips (ends) of a length of fiber (see Figure 5.1). 

Critical for our application is the fact that fiber only propagates light that enters within the acceptance 

cone of the fiber, which is related to its numerical aperture (NA). The half-angle of the acceptance cone 

(the acceptance angle) is (sin
−1

 NA). 

 

Figure 5.1:  An optical fiber. 

Both the core and the cladding of the fiber are transparent, and the core has a greater index of refraction 

than the cladding, which facilitates light being transmitted along the length through a process of total 

internal reflection. As in the FCB we want to make the chopping compact as a regular chopping board, we 

used 0.5mm unsheathed polymetylmethacrylate (PMMA) cored optical fibers with the following physical, 

optical and mechanical properties [56]: 

 Resin core: 486μm diameter 

 Refractive index: 1.49 

 Cladding: fluorinated polymer (0.5 mm diameter) 

 Strength: 14 N 

 Bend radius: 10 mm 

 Weight:0.3 g/m 

 Optical mode: Multiple 

 Numerical Aperture (NA): 0.5  

 Acceptance angle: 30◦ 

 Temperature for permanent usage: from -40◦C to 70◦C 

 

The first compact fiber optic sensing board was FiberBoard, developed by Jackson et al. [54] using a 

matrix of optical fibers to a channel light to a camera. FiberBoard is a surface that images infrared light 

scattered from touch points on a Frustrated Total Internal Reflection (FTIR) layer. Similarly, the FCB 

also uses a two-dimensional matrix of optical fibers to sense each discrete sensing point and terminate in 

a bundle that is placed at the aperture of a digital camera (in our case a commodity webcam). As the light 

can carry the colour information, when bundled, fibers can transmit imaged pattern of light which then is 
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decoded to produce an image map of the light transmitted through the fibers and can be further processed 

to determine images of the food placed on the surface. 

5.2.2 Acrylic glass 

Acrylic glass is a synthetic plastic material containing one or more derivatives of acrylic acid or poly 

methyl metacrylate (PMMA). An example of clear acrylic plastic sheet is shown in Figure 5.2.  We chose 

acrylic glass to frame the FCB. The top sheet of the FCB is a transparent acrylic glass sheet (see figure 

5.1 (left)), and the bottom sheet and surrounded frames are made of black acrylic glass. A white acrylic 

sheet was also use for the optical fiber mounting with which the fibers are securely held. All sheets used 

for the construction of the FCB were 5mm thick. The acrylic sheet has a number of attractive qualities 

including its lightweight, but also its strength and stiffness, in that it can endure food preparation 

activities (e.g. chopping) without being flexing significantly or fracturing.  

 

  

Figure 5.2: A transparent acrylic glass sheet (left) and a black acrylic glass sheet (right). 

 

5.2.3 Embedded camera and microphone 

We used a Logitech Quickcam Pro 5000 webcam board – after removing the external case this was small 

enough to embed within FCB. As a consumer webcam, the Logitech Quickcam Pro 5000 is a cheap 

imaging solution, but also captures video at resolutions up to 640x480 at a rate of 30 frames per second. 

The camera was particularly good for video capture in low-light conditions compared to other models we 

tested (i.e. the low intensity light that emerges from our bundle of fibers).  
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Figure 5.3: Logitech Quickcam Pro 5000 webcam (left) and its uncased version (right). 

We utilised the webcam‟s built-in microphone, which itself has embedded (Rightsound™) acoustic 

processing algorithms that analyses the entire spectrum of sound to better isolate the ambient noise. To 

integrate the camera and microphone into the FCB, the camera is “hidden” in a box inside but the 

microphone is positioned in contact with the top sheet of the FCB to better capture the sound of utensils 

interacting with the food during preparation on the surface of the FCB (see 5.3.1). 

 

Figure 5.4: Fiber support sheet 31.5×21.0×0.5 cm (left) and 5.0×3.0cm fiber bundle sheet (right). 

5.3 The design and construction  

The fiber support sheet (see Figure 5.4 (left)) contains 600 holes for the optical fibers, hence 600 fibers 

arranged in a 30×20 matrix with dimensions of 31.5×21.0×0.5 cm. The grid covers an area of 

approximately 660 cm
2
, which is typical of the surface area of the chopping board in everyday use. An 

additional fiber bundle sheet (5.0×3.0cm) is used to gather the receiving end of the fiber and hold these in 

place in front of the camera.  The tip of the collecting end of the fiber is inserted into a hole from the 

underside of the support sheet and fixed in place, with the tip abutting the top face of the support sheet, 

using adhesive that is applied to both the fiber support sheet (underside hole opening) and the fiber itself. 
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The tip of the receiving end of the fiber is similarly inserted into the fiber bundled sheet (Figure 5.5) and 

fixed with adhesive.  

 
 

Figure 5.5: (a) support sheet and bundle sheet (left); plan view of the FCB configuration (right). 

The surface of the FCB is a transparent acrylic sheet, which sits about the tips of the fibers that abut the 

top of the support sheet, this protects the fibers from damage or physical “clogging” by food stuffs. The 

microphone is fixed in contact with this surface layer (hidden from view) using adhesive tape. The frames 

of the side and bottom of the FCB are shown in Figure 5.5 (right) this physical support for the support, 

bundle, and surface sheets are made from black coloured acrylic glass. The dark colours ensures that 

ambient light from the sides and underside of the FCB does not enter the camera and thus the majority of 

the light transmitted by the optical fibers enters from the top-side of the FCB (as intended). Note that 

various spatial configurations and optical properties for materials were considered in the process of 

designing the FCB.       

  

Figure 5.6: Sensing configuration: red fibers transmit colour information from the surface of the FCB.  
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Figure 5.6 shows the configuration of the fiber sensing system. As described there are two layers to the 

FCB‟s, the lower layer is a 600-hole grid, adhered to 600 tips of fibers, and the higher layer is actual 

surface of the FCB (on which food preparation occurs). In essence, the fibers allow us flexibility of 

camera placement, and allow us to produce a low-resolution imaging device whilst maintaining a 

reasonable overall thickness for the chopping board (in practice this is now limited only by the minimum 

bend radius of the fiber) – the resulting board is only slightly greater than 6cm in thickness. The fibers 

terminate in an incoherent bundle that is interfaced to a camera (see figure 5.6). Details of how the images 

of food on the surface of the FCB are reconstructed from the image emmerging at the fiber bundle sheet 

are presented in Section 5.4 (image calibration & processing). 

5.4 Image calibration & processing 

The optical fiber bundle is incoherent as there is no linear spatial mapping between the fibers in the 

support sheet and the fiber bundle, thus image from the incoherent bundle of fibers must be calibrated in 

order to compute the in-out correspondence, and thereby allow reconstruction of the actual input image. 

The raw output image is then filtered with a nearest neighbour algorithm and processed; this produces an 

image that is sufficient for feature extraction and classification. 

5.4.1 Calibration 

Developing an effective calibration mechanism would significantly enhance the utility of low cost fiber 

bundles and allow the development of the sort of thin form factor image processing applications that we 

are proposing. In practice, the quality of the image is mainly affected by non-uniform fiber distributions 

and the presence of regions with a relative large interstitial spacing (between fibers). For FCB imaging, a 

two-pass calibration process is used for creating the mapping that transforms the camera image of the 

incoherent fiber bundle to an image of the surface of the FCB.    

 

 

Figure 5.7: Two-pass calibration sweeping the tool over surface to occlude light (left and right).   
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We based out calibration software for the FCB on the approach used in [54]. First, a physical (visually 

opaque) rectangular tool is moved at a roughly constant velocity perpendicular to each of two orthogonal 

axes of the FCB‟s surface whilst the camera‟s images of the optical fiber bundle are recorded. The 

relative timing of the resulting fluctuating light, from each fiber, is used by the calibration software to 

determine the mapping between the camera image of the fiber bundle and the fiber tip locations in the 

support sheet. The tool is a simple strip of opaque material having a width of a similar order to the fiber 

separation distance, and a length no less than that of the FCB‟s surface. When placed on the FCB in a 

well-lit environment, the tool creates a clear shadow that can be observed at the camera as light 

attenuation from the occluded optical fibers. During calibration the tool is first moved along the full 

length of the FCB (see Figure 5.7 (left), the “horizontal” sweep), aligned so that its length is 

perpendicular to the direction of motion, while the sequence observed at the camera is recorded. This 

process is then repeated for the orthogonal axis (see Figure 5.7 (right), the “vertical” sweep). The two 

resulting video streams form the input to the calibration software. 

 

Figure 5.8: Image calibration & processing pipeline: (a) input food ingredient; (b) raw input image from 

the fiber bundle; (c) the mapping, which assigns each fiber to a specific polygon in the virtual 

representation; (d) raw output image; (e) image after nearest neighbour filtering; (f) segmented image. 

 

The first stage of calibration analyses the video frames from the two sweeps, evaluating the luminance of 

each pixel to find its minimum. Pixels that vary sufficiently over time are assumed to represent a part of 

the fiber bundle, and the time of minimum illumination is proportional to the distance along the sweep 

axis that the optical fiber was occluded. For a given pixel, combining the values from both sweeps 
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provides a relative coordinate that corresponds to the position of the sensing end of the optical fiber in the 

plane of the FCB. 

 

The output from the first stage produces a mapping (see Figure 5.8c) that does not identify individual 

fibers – the mapping must therefore be normalized to combine pixels that represent the same fiber. This 

cannot easily be done in the plane of the camera image as fiber tips with similar mapping results can be 

immediately adjacent making them difficult to distinguish. Instead, the normalization can be performed 

by first using the destination mapping values to produce a reverse-projected image in the plane of the 

FCB. An image is produced as a result of taking each mapping coordinate and including a point with a 

low opacity and a small radius at that location. The accumulated image is thresholded and a “blob 

detection” pass identifies and labels connected regions. Each region is grown up to its neighbouring 

regions and, finally, this data is used to normalize the coordinates in the original output from the first 

stage. In this final input mapping the pixels are grouped together where they correspond to the same 

sensing fiber tip and, in addition, the amount each pixel changes is used to determine a weighting value 

for that pixel‟s contribution.  

At run-time, the input mapping is applied to the camera image, giving the average colour and brightness 

for each fiber. Further image processing requires an image of the FCB surface, so the individual fiber 

point values must be interpolated between their centres. In order to perform this calculation efficiently at 

run-time, three “output maps” are pre-computed, each specifying a fiber point and a weighting to apply at 

that location. To produce these output maps, the fiber points are tessellated into a triangular mesh and a 

bilinear interpolation is used to calculate the contribution from each vertex. After interpolation, the raw 

image is output (i.e. figure 5.8d). It can be noticed that the pixels of the raw image sometimes have a low 

quality. To address this a nearest-neighbour filtering algorithm is applied to the output image to smooth 

the noise. The nearest-neighbour filter approximates the colour of a point based on the colours of 

neighbouring points (using minimum distance). The filtered image is then used as the input to the final 

processing stages (i.e. figure 5.8e) segmentation and feature extraction.  

5.4.2 Image processing 

The filtered image from the FCB is processed in two steps: segmentation and smoothing. In image 

processing, an image is a set of pixels with their colour values. Segmentation seeks to add real world 

meaning to an image by assigning each pixel with a corresponding label. Once segmented, an image may 

still contain noise clusters that are often small artefacts of the capture technology used, and not associated 

with the region of interest. Smoothing will remove such regions.  
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(a) Carrot (b) Celery 

  

 

  

(c) Cucumber  (d) Dill 

  

 

  

(e) Green pepper  (f) Red pepper 

  

 

  

(g) Peeled Onion  (h) Yellow pepper 

  

 

  

(i) Spring onion  (j) Bacon 

  

 

  

Figure 5.9: Examples of the FCB’s filtered and segmented images. 

 5.4.2.1 Segmentation 

Image segmentation is the process of assigning a “meaning” to every pixel in the image through the 

assignment of a label. As the number of colours of a natural food image is unknown, an unsupervised 

method is necessary to perform food image segmentation. Therefore, an unsupervised K-Means 

Clustering algorithm [58] was implemented to perform real-time colour segmentation. In brief, K-Means 

is an unsupervised statistical method used for partitioning n instances into k clusters in which each 

instance belonging to the cluster with the nearest mean.  
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The clustering procedure follows 3 steps:   

Step 1:  Assign each pixel in the image to the cluster that minimizes the distance between pixel and the 

cluster centroid           ∑ ∑          
 

     

 
     (5.1) 

Where {xi} is a set of pixels of the image,    is the centroid (mean) of pixel values in Si 

Step 2:  Re-estimate the centroid of each cluster by averaging all of the pixel values in the cluster. 

Step 3:  Repeat steps 1 & 2 until no pixels change clusters (i.e. no pixel moves to another cluster). 

 

We start by setting the number of clusters, k=2, and then gradually increase k until the stop condition 

holds. In this way, all pixels of the image after segmentation are labelled (i.e. with the label of the cluster 

to which they belong). 

5.4.2.2 Smoothing 

When captured under realistic settings the image will contain noise, which gives rise to some (small) 

clusters not connected to the region of interest (the region corresponding to the ingredient on the FCB). 

Therefore, we apply a morphological closing-opening operation [59] to smooth the segmented image. The 

main region of interest that contains food will be extracted using colour and SURF features for food 

recognition (in the next step). 

5.5 FCB’s Imaging based food recognition 

The final step to be performed is the actual food recognition step based on the processed image generated 

by the FCB fiber imaging system. The recognition algorithm utilises SURF and colour features to classify 

the food images and was implemented to allow for real-time food recognition. We demonstrate the 

performance of the system with a pilot study.     

5.5.1 Feature extraction 

Speeded Up Robust Features (SURF) [60] is widely known as one of the most robust feature detectors 

and is used in numerous object tracking [61], object recognition [62] applications. Like SIFT [63], SURF 

features are descriptor-based features; unlike SIFT which is based on Difference of Gaussians (an 

approximation of the Laplacian of Gaussian), SURF is based on a Fast-Hessian Detector and has been 

demonstrated to be faster than SIFT and thus a more likely candidate for our real-time processing system. 

SURF is also well known to handle serious blurring (i.e. much better than SIFT) as it can still extract 

features from the blurred images. Moreover, SURF features are invariant to rotation and scale. These 

characteristics are very important for classification of food ingredients processed on the chopping board 

as the position of food will vary and they will have different sizes (i.e. a “baby” carrot is essentially a 

smaller version of a “large” carrot). While a SURF descriptor include the discriminating features one 
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might expect, such as angle, edges and points, the standard SURF ignores colour. However, colour 

information is very important for discriminating between food ingredients so in addition to SURF 

features, we also extract colour features and use these in our recognition pipeline. 

 

To classify food, a feature extractor (FE) was implemented that comprised two main procedures. One is 

an implementation of Fast-Hessian detector, and the other is an RBG colour histogram. The input of FE is 

an image segmented by our implementation of the K-Mean Clustering algorithm, the output of which is 

two lists: one contains a 64-element list of SURF interest points (SURF features) S=(s1, s2,.., s64), and the 

other is a 64-element colour histogram C=( c1, c2 ,…,c64). After normalization, these lists are combined 

into a 128-element feature vector: 

 

V = [α*s1, α*s2,..,α*s64, (1- α)*c65, (1- α)*c66 ,…,(1- α)*c128]  (5.2) 

 

where α is a weight by which SURF and colour matching features are proportionately ranked. In our 

experiment, a value of α=0.4 was heuristically chosen (by evaluating different values of α in a pilot 

study). So colour features are slightly more weighted than SURF features. 

5.5.2 Matching & Rejection 

Two algorithms were compared for food image classification: k-Nearest Neighbour (k-NN) and Support 

Vector Machines (SVM). The former was implemented from scratch for real-time food recognition and 

the latter was based on the SVM library developed by Chang et al. [93]. In brief, k-NN classifies a food 

image based on the closest distance in feature space between test and training images. In the algorithm, k 

was set to 1 and the Euclidean distance in feature space was used. As irrelevant objects unintentionally 

placed on the chopping board (i.e. a knife or a cook‟s hand) must be rejected, a threshold ti was assigned 

for each training food class fi. The threshold was manually defined as the result of a 4-fold cross-

validation procedure on the Euclidean distance between test and training food images.  Such a food 

recognition algorithm is simple, but fast enough for real-time image classification. 

 

A food is matched if the distanceof at least one of k closest images is greater than a threshold for the food 

class, otherwise, fi is rejected (classified as an unknown food).  

 

       {di} > ti    (5.3) 

Where di denotes the Euclidean distance of the test food image and the training food image of class 

i.Support Vector Machines [96] are a method commonly used for classification and regression machine 
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learning problems, and deal with the classification problem by finding the optimal separation hyperplane 

between classes based on the detection of representative training samples, so-called support vectors, of 

the boundaries of the class. One of the reasons for the selection of SVM for our food image classification 

problem is that SVM can find (and therefore classify) support vectors of the class even if only a small 

number of training samples are available (a reasonable assumption for real-world datasets which is often 

unbalanced).  

More formally, where x =(x1,x2,…,x128) denotes a 128-element feature vector for the food image I(x), 

SVM maps x into a high dimensional feature space H by I and constructs an optimal separating 

hyperplane in this space using a kernel function. Different kernel functions will construct different SVMs 

but as we need a real-time classifier we selected a linear SVM for our food image classification problem, 

and the remaining SVM parameters were set as follows: 

 

 Kernel function: f(x) = w
T
x + b (5.4) 

in which w=(w1,w2,…,w128) is the weight vector, and b is the bias. w
T
x denotes the scalar product 

between the weight vector w and feature vector x:  

w
T
x =  ∑      

   
     (5.5)     

 Cost parameter C and γ, the maximal distance in H space between the hyperplane and the closest 

image I(x), are estimated using a 4-fold cross-validation through the dataset.     

The reason for the choice of k-NN and SVM is both these algorithms can deal well with high dimentional 

data (i.e. 128-d feature vectors) and are quite fast for real-time implementation. Furthermore, SVM is able 

to deal effectively with unbalanced dataset (real-world datasets often unbalanced) .  

5.5.3 Pilot study #1 

A pilot study was conducted to evaluate the food recognition algorithms performance (using the FCB‟s 

imaging technology). The collected dataset is comprised of 1800 images of 12 food ingredients listed in 

the below table. The number of each type of food image was randomly selected between 50 and 250. The 

collected food images varied in position, rotation, and included hand “distractions”. The evaluation results 

of k-Nearest Neighbors algorithm are presented in Table 5.1 and the FCB sensed images, segmented 

images, computed colour and SURF features are available at:    

http://di.ncl.ac.uk/publicweb/AmbientKitchen/ChoppingBoard/Choppingboard2/Dataset1/  

http://di.ncl.ac.uk/publicweb/AmbientKitchen/ChoppingBoard/Choppingboard2/Dataset1/
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In Table 5.1 it can be seen that bacon and carrot have high recognition rates (over 90%). While the colour 

of bacon and carrot are similar, their SURF features are quite distinct consequently only very few of the 

images of carrots and bacon were misclassified. Images yielding large numbers of false positives (i.e. 

over 20%) were of peeled onions and yellow peppers, thus the misclassification of (and confusion 

between) peeled onions and yellow peppers was considerable, as was the case for tomatoes and red 

peppers. In a few instances, sticks of celery and leaves of lettuce were misclassified each other where 

both colour and SURF features were very similar. However, the overall recognition precision and recall 

rate was approximately 80% on 1800 images of 12 food ingredients demonstrating that the optical fiber 

imaging method in FCB has promised as a practical embedded food recognition technology. 

Food ingredient Precision (%) Recall (%) False Positive (%) 

Bacon 85.23  96.15 8 

Carrot 90.08 92.18 4 

Celery 59.09 87.64 16 

Cucumber 87.30 88.00 4 

Dill 88.27 78.61 8 

Green pepper 85.29 88.46 15 

Lettuce 93.20 67.71 18 

Onion 75.00 60.78 27 

Red pepper 73.30 81.64 26 

Spring onion 83.33 87.12 2 

Tomato 89.20 69.27 31 

Yellow pepper 73.50 72.08 24 

Total 82.76 78.77          15 

             Table 5.1: Preliminary evaluation results of food recognition using FCB imaging. 

5.6 Food recognition using acoustic data 

Acoustic event detection (EAD) approaches are widely used for activity recognition [65, 66] or speaker 

identification [64].  Applying EAD methods for food recognition is relevant because relatively distinctive 

sounds are generated when different food is being chopped. In this subsection, a food recognition 

algorithm using sound from a microphone embedded in the FCB is described. The algorithm recognizes 

the food being chopped in 3 steps: (i) audio segmentation; (ii) feature extraction and (iii) classification. 

5.6.1 Audio segmentation      

The audio stream (while food is being chopped) is segmented into one-second frames (each frame 

contains 44,100 samples). Each frame is then segmented into 50 blocks of 20ms each (each block 

contains 882 samples). It can be observed that the sounds made when chopping food occurs before a knife 
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make contact with the chopping board, so, to address such issues, an adaptive threshold based on energy 

is used – the segmentation algorithm works as follows. 

1: For each block in the frame do 

  Compute energy; 

2: Compute Mean of energies of all 50 blocks in frame; 

3: Find the peak block i (highest energy); 

4: For blocks nearest to block i do          

5:  If energy > 2*mean then remove block; 

6:          remove block I; 

   //possibly these are noises made from contact between knife and FCB  

7: For each block in the frame do 

8:       If energy < 0.5 the remove block //silent block  

 

Figure 5.10: Audio data segmentation. 

The threshold is adaptive to the mean of energy as each food has a different audio energy mean. In the 

pseudo-code (figure 5.10), line 1 and 2 compute energy and mean of energy. Since the highest energy 

sound is most likely made by the contact between the knife and the chopping board this needs to be 

removed along with the nearest blocks to the peak if their energies are greater than two times of the mean, 

(actually an adaptive threshold).  Line 6 removes silent blocks (i.e. when the knife is “in the air” before 

contacting to the food) as the blocks with energy smaller than 0.5*mean are likely silent blocks.   

5.6.2 Audio feature extraction 

After removing noise and silent blocks with the segmentation algorithm, the following audio features on 

each block of the remaining blocks are computed: (i) the first 13 Mel-frequency cepstrum coefficients 

(MFCCs); (ii) the spectral centroid; (iii) the spectral roll-off; (iv) energy; (v) entropy; and the zero 

crossing rate; all of which are widely used in AED classification problems [64, 65, 66]. Thus an 18-

element feature vector computed for each block, and feature vectors are averaged for each frame. This 

results in one feature vector per frame (after averaging). 

5.6.3 Audio classification 

We use the widely deployed Gaussian Mixture Model (GMM) for audio classification (i.e. [64]). A GMM 

is the weighted sum of a number of Gaussians where the weights are determined by a Normal distribution. 

Parameters A  = (μi,Ci,wi|i = 1. . .KA) are extracted from training data to model the likelihood of feature 

vectors for every food class of interest A:  

 

p(


f ), A = 


AK

i

iw
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where 


AK

i

iw
1

 =1 and wi is the prior probabilities for the i
th
 mixture components.  

Ɲ denote a Normal probability distribution with mean vector μ and covariance matrix Ci: 

  

 (5.5)  

 

Training mixture models for known food classes is a straightforward process. In brief, the parameters, wi, 

μi and Ci, are estimated on class-specific training data using an Expectation-Maximization (EM) 

algorithm. EM is an iterative algorithm that converges to a local optimum by assigning posterior 

probabilities to each component density with respect to each observation. Obviously, the posterior 

probabilities for each point imply that each data point has some probability of belonging to each cluster. 

Note that KA Gaussians are used to represent a food class. A must to be determined via 4-fold cross-

validation. Each Gaussian component is defined by its mean and covariance, and the mixture is defined 

by a vector of mixing proportions. As a rule of thumb, the classification performance is proportional to 

the number of Gaussians that can be robustly estimated.  

5.6.4 Pilot study #2 

To test our audio-based food recognition algorithm, a pilot study was conducted on 4 food ingredients in 

the Ambient kitchen. One subject was asked to chop 10 carrots, 10 cucumbers, 10 tomatoes, and 10 

lettuces. The recording session for each food started when the researcher notified the subject to start 

chopping allowing each food to be manually assigned a label by the researcher (e.g. chopping a carrot). 

After collection, the audio data was segmented, and the features extracted. Feature vectors were organized 

into 10 folders, 9 were used to train the GMM. The remaining folder was used for testing, and as before 

the procedure is repeated for all folders. 

 

Food Frames Accuracy (%) 

Carrot 169 89.94 

Cucumber 218 77.06 

Lettuce 123 91.06 

Tomato 91 75.82 

Total 601 83.36 

                    Table 5.2: Food recognition results using acoustic data in Pilot Study 2. 
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With an overall recognition rate of 83% on 4 foods, the results demonstrate the food recognition using 

audio stream of the microphone embedded in the chopping board has some potential. Our approach 

differs in configuration with previous attempts (e.g. Kranz et al. [15]) in that we use a cheap, built-in 

microphone on a Logitech quickcam camera that was completely embedded inside the chopping board 

(and the food is classified only when it is being chopped).     

 

5.7 Conclusion 

Although our first FCB prototype is comparable to a regular chopping board in terms of size, 

dimensionality, weight, and functionality, there are a number of obvious deficiencies in its design. Firstly, 

the board itself took several weeks to construct by hand, particularly the adhesive fixing of the fiber tips 

in the holes in the bundle and support sheets. Moreover, its frames and components are made of acrylic 

glass, a material that is relatively expensive. Furthermore, the camera integrated into this first version of 

the FCB was a wired (with a USB connector) which is still some way from the form factor one might 

expect from an everyday (essentially non-digital) appliance. Despite these shortcomings, we have 

presented the design and development of a truly novel everyday appliance with embedded context-

recognition, including our justification for the selection of materials and hardware, its design and 

construction, image calibration, processing and food recognition algorithms (based on the images and 

audio data the FCB produces).  

Through two pilot studies our preliminary evaluations of the performance of both the underlying capture 

technology and the recognition algorithms demonstrate that the FCB is a viable candidate for a 

“disappearing technology” approach to context-recognition in the kitchen, in particular, for the 

challenging and previously unaddressed problem of robustly and unobtrusively recognising fresh food 

ingredients. Moreover, the pilot study results serve to motivate the design, development and evaluation of 

technologies and algorithms for a larger-scale, real-world experiment of context recognition in the 

kitchen. To this end, in chapters 6 and 7 we will present the design, conduct and evaluation of a study that 

involved a much larger number of redesigned instrumented utensils and the collection of naturalistic data 

from 12 subjects who cooked a typical spaghetti-based recipe with 59 activities and 8 food ingredients 

involved.  
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Chapter 6: KitchenSense: Real-time Context Recognition in the Kitchen 

This chapter presents KitchenSense, a real-time context recognition framework in the kitchen. First, the 

design of an entirely new set of instrumented kitchen utensils is described, and then the implementation of 

KitchenSense for recognizing human activities and food ingredients in the naturalistic kitchen settings is 

presented. The framework can run as a background for context-aware based situated services and 

applications in a real kitchen. One such service is the tracking of progression steps in a recipe. Tracking 

progression steps within recipes can help novice user to cook more effectively, supporting their 

development of both skills and cooking knowledge, but it might also serve as the basis for a prompting 

system for cognitively impaired people in the kitchen. The utensil design is presented in the Section 6.2. 

The implementation of the recognition framework is described in Section 6.3 and we conclude with a 

discussion of KitchenSense in Section 6.4.  

6.1 Introduction 

In contrast to majority of related activity recognition research, this work utilizes three different types of 

sensors: wireless accelerometers, optical imaging, and acoustic data, all of which are embedded into 

either the chopping board (i.e. FCB) or other every day kitchen utensils. The main contribution of this 

chapter is two-fold. Firstly, we contribute the design of a new utensil set and the implementation of a real-

time recognition framework in the kitchen. The key requirement for the former is that the kitchen utensils 

must be unobtrusive to users and the full functionality and other properties of the kitchen utensils are 

maintained. Secondly, one of the most important requirements for a recognition framework is that it must 

be scalable. That means, that the environment must be capable of supporting the full range and number of 

instrumented utensils and that one sensor-embedded utensil can easily be replaced with another. 

Moreover, the framework must provide a platform for the realization of future applications or situated 

services which utilize activity and food recognition. 

To realize these requirements, the OpenMovement sensor platform was developed by the Digital 

Interaction Group‟s embedded engineering team (Dan Jackson, Cassim Ladha & Karim Ladha) at 

CultureLab, Newcastle University. OpenMovement includes a miniaturized wireless accelerometer, the 

WAX (formally WAX3), which can be easily integrated into modified utensils (see: [67]). Also, the 

physical handles and other elements of the kitchen utensils (adapted from commercially available 

utensils) have been completely re-modelled to provide both a more pleasing aesthetic and facilitate easier 

charging and replacement. The resulting sensors each have a latch that can be opened and closed to allow 

ready servicing of the embedded WAX devices.  



 

57 

 

For the implementation of the real-time recognition framework, a publishing-subscribe messaging 

paradigm (pub-sub for short) was proposed. One of the distinct advantages of pub-sub is that the 

components within the framework and applications can communicate with each other via a messaging 

mechanism, but can independently be developed. The architecture of the framework comprises four tiers: 

seven components, two event detectors, three training datasets, and three GUI applications. As an 

everyday kitchen is not used for large parts of the day, the event detectors utilize the cooking and food 

processing events to activate relevant components of the framework. In summary, the sensing 

technologies integrated into the redesigned utensils are invisible and unobtrusive to users in the kitchen 

and the scalability of the real-time recognition framework is maintained. Details of the kitchen utensil 

design and the implementation of the recognition framework are presented in the sections that follow.         

6.2 Kitchen Utensils 

Key requirements for the sensor platform and the instrumented utensils include that they are unobtrusive 

to users and maintain the full functionality (and other properties) of traditional kitchen utensils. Therefore, 

the sensors must be wireless and miniature such that they can easily be integrated into the bodies of  

utensils. As for Slice&Dice, the parts (mostly handles) of the utensils have been re-designed and modified 

using Fused Deposition Modelling (FDM) rapid prototyping technology.      

6.2.1 The OpenMovement sensor platform 

The OpenMovement WAX3 wireless triaxial accelerometer was developed by the Culture Lab Digital 

Interaction group embedded engineering team (Newcastle University) [67].  A WAX is miniature 

(32×13×9mm), lightweight (5g) (see Figure 6.1 (right)) and combines a MEMS accelerometer with an 

ultra low power IEEE802.15.4 radio. In form and performance they have been specifically designed to be 

easy to be embed into everyday objects (in our case kitchen utensils and appliances). In addition, WAXs 

are optimized for low-power sensing and transmission (i.e. several hours of continuous telemetry, and 

months in a „wake on activity‟ state) and are encapsulated in a hygienic and robust housing [18]. As the 

default setting, WAX sensors are configured to a sampling frequency of 50Hz (although this can be 

configured). For activity recognition, the sampling rate of 50Hz would be reasonable while this would 

effectively save battery. We also did another study using 100 Hz logging accelerometers [28], and the 

quality of activity patterns is not significantly improved (i.e. 76% accuracy). By design the sensors are an 

ideal low cost mechanism for collecting real-time movement data that is wirelessly transmitted to a 

receiver (at a configurable rate and channel). Note that each device can be used as a transmitter or 

receiver, where the receiving WAX3 device uses a USB connection to pass received data to a PC, for 

device configuration and for battery recharge. 
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Figure 6.1: Culture Lab’s OpenMovement wireless triaxial accelerometers (WAX3). 

6.2.2 Knives 

In our previous study (chapters 3 and 4) users used different knives while cooking, and their choice was 

highly dependent on their preferences and cooking skills. Therefore, a set of knives with re-designed and 

modified handles were developed. The knives used in KitchenSense constitute a significant improvement 

on those in Slice&Dice in that their form and balance are much closer to those one would expect to find in 

a regular kitchen (see figure 6.2). 

  

Figure 6.2: The set of WAX embedded knifes (left); opened knife (right). 

The set includes a small knife, a bread knife, a chef knife, and a slicing knife. While slicing knife and chef 

knife are likely to be used for similar tasks by users, the bread knife has a specialist use (for all but the 

most naïve cooks). The blades of the knives were fixed within the handle using strong epoxy resin glue. 

Inside the handle, pockets were designed, in both parts of the handle, to keep the sensor stable and 

correctly oriented and such that the antenna of the sensor is directed away from the steel blades of the 

knife.   
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6.2.3 Spoons & whisk 

We group the spoons and the whisk, as these are utensils that can be used for stirring, scooping, or 

whisking. In contrast to Slice&Dice, which had only one large spoon, a set of 4 different cooking spoons 

and a whisk were developed for KitchenSense (see Figure 6.3 (left)). Similar to the knives, the handles of 

the spoons were re-designed and modified to integrate WAX sensors. The set of modified spoons include 

a slotted spoon, a whisk, a spatula, a spoon and a ladle (respectively left-to-right in Figure 6.3 (left)). In 

pilot studies we found that the slotted spoon, spoon and spatula were used interchangeably in some 

situations, although the whisk was by far the most likely utensils to be used for whisking and beating (i.e. 

an egg) and the ladle for scooping liquid ingredients. 

  

Figure 6.3: The set of WAX embedded spoons (left); opened spoon (right). 

    

Figure 6.4:  Wax embedded sieve and colander (left); opened sieve (right). 
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6.2.4 Specialist utensils 

Two more specialist utensils were included because of their importance to the recipe selected for the 

large-scale user study: a modified sieve and a colander. The sieve‟s handle was re-designed to place the 

sensor (see figure 6.4 right), the upper part can be stripped for opening or closing the handle. For the 

colander, we simply attached the WAX sensor at the side using epoxy resin. The sieve is a specialist 

utensil for sieving flour, although both the sieve and colander are often used interchangeably for draining 

pasta or rice. 

6.2.5 Peeler 

Due to the relative complexity of a peeling mechanism (compared to a handle) the peeler was the most 

complex utensils to redesign. Its inclusion is important since the peeling of fruit and vegetables is an 

activity that takes place intermittently in food preparation, and often (but not always) punctuates the 

preparation of different ingredients on the chopping board. The complete support frame of the peeler was 

re-designed (figure 6.5 (right)), again as two parts, and the blade from the original utensil re-inserted.  

    

Figure 6.5: A WAX embedded peeler (left); opened peeler (right). 
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Figure 6.6: WAX embedded saucepans and frying pan (left); opened (right). 

The set of pots and pans included two saucepans and three frying pans. For the saucepans, both the lid‟s 

handle and the pan‟s handle were modified to embed WAX (so two sensors per pan, see Figure 6.6 (top-

right)). For the frying pans, only the handles were modified and one sensor was embedded per frying pan 

handle (figure 6.6, (bottom-right)).   

6.2.6 Other sensors 

In addition to the above kitchen utensils, KitchenSense includes the Fiber Chopping Board (Chapter 5) as 

a part the recognition framework, and several other WAX sensors were attached to ingredient containers 

including the bottle of vegetable oil, the salt container and the bottle of olive oil. Finally a WAX was 

attached to the water facet to allow us to detect when the water in the kitchen sink was being used. In total 

22 sensors were registered to the framework. 

To sum up, the pervasive sensing technologies used in the next study (see chapter 7) is developed in co-

operation with the Culture Lab members. For example, the utensil set was designed by the Culture Lab 

designers (Isaac Teece, Juergen Wagner), wireless accelerometers are developed by the electrical 

engineering team (Dan Jackson, Cassim Ladha & Karim Ladha), and the hardwares of fiber chopping 

board was designed and constructed with the help of John Shearer.   
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6.3 The Implementation of KitchenSense 

In order to realise the complex event-based heterogeneous sensing system, which includes 22 

accelerometers, an imaging stream and an audio stream, a publishing-subscribe messaging based 

architecture was proposed for KitchenSense.   

6.3.1 Architecture 

 

                            Figure 6.7: The KitchenSense architecture. 

The architecture of KitchenSense is illustrated in Figure 6.7. A topic-based publishing-subscribe 

messaging schema allows message-based communications among components of the framework in Tier 

3. In the pub-sub paradigm, components belong to one of three categories: (i) publisher; (ii) subscriber; 

and (iii) pub-sub server. All messages have the same format; the first part is the command, either 

“publish” or “subscribe”, the second part is a topic name, and the rest of the message is event data. The 

publisher broadcasts its message to the server without any specific-knowledge of the subscriber, and the 

subscriber acts upon the message (or not) based on its topic.  
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Overall, the architecture has 4 modules. The sensing module comprises real-time fusion data streamsand 

Event Detectors which can detect the events such as utensils and food placement on the chopping board. 

The Feature Extractor and Pattern Recognition module is the core of the framework and includes the 

Feature Extractor (FE) and the Recognizer components (components coloured blued in the Figure 6.7) 

and the pre-trained data.  The GUI App module contains the graphical user interface (GUI) applications 

such as the sensor data visualizer and the activity and food recognition displays. Our intention is that 

future situated services, which utilize context recognition, will be developed in this module; the 

components themselves are described in Section 6.3.2.          

6.3.2 Components 

There are seven relevant components (blued in the Feature Extractor and Pattern Recognition module on 

the architecture) in KitchenSense.  

Accelerometer Data Filter: this component performs the pre-processing of real-time acceleration data. 

The filter is activated when at least one utensil is in use, that is, the global variable Utensil_InUse = true 

passed by the Utensil Event Detector in the sensing module. The acceleration data streams are pre-

processed in two steps. The first step segments acceleration data into frames of one-second duration, 

associating a timestamp with each frame. The choice of frame length is based on our previous results 

(chapters 3-5) and the observation that this would cover most common of fine-grained accitivties which 

typically occur in one second (i.e. one chop),  and this also allows an appropriate recognition rate without 

unnecessary delays. Ideally, at a sampling frequency of 50Hz each frame contains 50 samples of X, Y, Z 

acceleration triplets. In practice, real-world factors means that some samples are lost or dropped (e.g. 

metallic items placed between the sensors and the receiver). Furthermore, the sensors themselves can 

yield noisy readings (e.g. too large or small). In such cases, a filter is applied to remove noise and fill out 

lost samples. Therefore, in a second step, the data filter performs both a low-pass filtering (removing 

abnormally low sample values) and a high-pass filtering (removing abnormally high sample values).  

Finally the frame is assessed and an appropriate action taken based on the following cases: 

Case 1:  If the frame contains 50 samples, it is published to the pub-sub server. 

Case 2:  If the frame contains less than 35 samples (i.e. less that 70% of its full complement) it is 

discarded on the grounds that there is insufficient information to classify activities.          

Case 3:  If the frame contains more than or equal to 35 samples, but less than 50 samples, it is resampled 

using a linear interpolation method [68] to fill out the lost samples; the re-sampled filtered 

frame is them published to the pub-sub server.     
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All messages (frames) published by the Accelerometer Data Filter are assigned the topic 

“Accelerometers” and the data fields contain the utensil identification and time stamp information, 

followed by the accelerometer data.     

Simple AR: is an activity recognition component that can detect movement of a utensil. Once a utensil is 

in use, Simple AR subscribes to the accelerometer data frame which has the topic “Accelerometers” and 

calculates the energy of the frames acceleration data. The calculated energy is then compared to a pre-

defined threshold to determine whether the utensil has intentionally been moved. The threshold is 

estimated through a 4-fold cross validation procedure on the training dataset. After the frame has been 

classified, the activity, along with its utensil name (e.g. ChefKnife_moving) is published to the pub-sub 

server under the topic “SimpleAR”.  

DTW AR: is the dynamic time warping activity recognition component as described in Chapter 4 (i.e. 

Real-time Activity Recognition). DTW is lightweight (i.e. O(n2) for standard DTW or O(n) for its 

improved version [99]) and works well with small number of training examples. The former give us a 

good chance for real-time implementation as multiple acceleration data streams can be classifed (one 

DTW classifies one data stream)  concurrently, and the later allows DTW to deal with unbalanced real-

world dataset as the number of data highly dependant on the users behaviours and preferences (greatly 

different behaviours between users and the preferences of using utensils to perform their activities in our 

dataset). For example, chopping patterns with the small knife are significantly different from chopping 

patterns with the chef-knife. Furthermore, in the future (beyond these studies and this thesis) plans 

included running, the classifier will directly on the sensor where computational resources much more 

constrained. Therefore DTW will be a good candidate. In the KitchenSense framework, the DTWAR 

component works as follows. Once the variable Utensil_InUse is set to true, the DTW AR component 

subscribes accelerometer data frames whose topic is “Accelerometers” as an observation frame of the 

DTW algorithm. The DTW classifier also needs training data (i.e. the Accelerometer Templates dataset in 

the Figure 6.7) to classify the activities. As real-time DTW-based activity recognition can detect both 

known and unknown activities, it publishes the recognized activity or unknown activity along with the 

utensil (e.g. ChefKnife_chopping, Spatula_unknown) to the pub-sub server under the topic “DTWAR”. In 

addition, as template adaptation is implemented in the component, adaptive templates are also updated in 

the Accelerometer Templates dataset (i.e. yellow arrow).        

FCB Audio FE: is the feature extractor which extracts the features from the audio data stream of the 

microphone embedded inside the Fiber Chopping Board. The FCB Audio FE component is activated if 

there is a food placed on the FCB (i.e. the global event variable Food_OnFCB =true). First, the 
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component subscribes to the recognized activities that have the topic “DTWAR”, and checks if the activity 

is chopping or slicing. If it is the case, the component segments audio data stream into one-second audio 

frames. Next the audio frame is segmented and then extracted to a feature vector (see session 5.6 in 

chapter 5). As uncompressed and compressed audio data can be extremely big and unsuitable for 

messaging between the publisher, subscriber and the pub-sub server, only the computed feature vector is 

published to the pub-sub server. The audio feature vector along with its timestamp is published by the 

FCB Audio FE component with the assigned topic named AudioFeature. 

FCB Imaging FE: is the feature extractor component that extracts a feature vector from an optical fiber 

sensing image of the Fiber Chopping Board. Once an ingredient is placed on the FCB (i.e. 

Food_OnFCB=true), the component gets an observation image (output from the image calibration and 

processing procedure as described in Section 5.4). The camera runs at a frequency of 3 Hz and each 

image is labelled with a time stamp. The image is then segmented to extract SURF and colour features 

(see section 5.5). The computed features of one image are stored in a feature vector that, along with its 

timestamp, is then published to the pub-sub server under the topic “ImageFeature”.  

Audio based FR: is the food recognizer based on audio features. The Audio based FR component 

subscribes to messages with the topic “AudioFeature” as audio observation data. The component also 

needs the pre-trained audio feature dataset for training the Gaussian Mixture Models before classifying 

observed food. The recognized food (possibly unknown) is then published to the pub-sub server under the 

topic “AudioFood”. 

Image based FR: is the food recognizer component that uses the fiber images from the FCB. The 

component consists of real-time k-Nearest Neighbour and a Support Vector Machine [94] based 

classifiers (see Section 5.6). The component subscribes to feature vector messages with the topic 

“ImageFeature” as an observation and the Image Feature Vectors dataset for training models. The output 

of the component is a food recognition result which is published to the pub-sub server with the topic 

“ImageFood”.      

6.3.3 Data & Events 

There are two type of data used in the recognition framework: training data which incorporated in the 

Training Data module (i.e. yellowed in the Figure 6.7) and real-time observation data.  
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Training data: Training data for the recognition components of the framework consists of three datasets: 

(i) accelerometer templates; (ii) audio feature vectors, and (iii) image feature vectors. The accelerometer 

templates dataset consists of a set of accelerometer data frames that are filtered (i.e. band-passed and re-

sampled). Each frame is stored in a text file whose name includes an absolute timestamp in seconds (at 

collection this is synchronized with other sensors) and the utensil and activity label.  

The pre-trained audio feature vectors dataset is a flat file that consists of a set of audio feature vectors. 

The file name identifies the utensil and the activity (e.g. ChefKnife_chop.csv). Each row is a feature 

vector which comprises of the first 13 MFCC features, followed by pitch, energy entropy, zero crossing 

rate, spectral roll off, short time energy, and lastly the name of the food ingredient.  A feature vector in 

the pre-trained image feature vectors dataset is similar to the audio feature vector but the size is much 

larger (128 features). Examples of feature vectors can be found in the Appendix B.  

Observation data: For the accelerometer, audio and image data, an observation frame has the same form 

as their templates for training data, but for the accelerometer data the activity label is omitted, and for the 

audio and image data the food is omitted (as the activity and food are what need to be recognized).  

Events: Two types of events, utensil events and food events, are detected by two event detectors in the 

Sensing module. All utensils of interest to the context recognition framework are instrumented with WAX 

sensors which go into a sleep mode when idle (to save energy). In use mode (i.e. when moved) the WAX 

(embedded in a utensil) sends acceleration data along with a sensor identifier to a queue. Therefore, the 

Utensil Event Detector detects whether a utensil is in use mode or idle mode by simply checking (i.e. 

polling) whether the queue is empty. If there is at least one utensil in use mode, the event global variable 

Utensil_InUse is set to be true and the Accelerometer data filter is activated to fetch accelerometer data 

from the queue of the Detector.  

To detect a food event, the FCB Event Detector performs a simple colour-histogram based procedure to 

detect whether there is any food placed on the FCB. The FCB Event Detector maintains two queues: one 

for audio and another for images. The detector uses a background image as the trained template and 

maintains its background colour histogram h1 (sized 8x8). As the recognition framework does not know 

when a user has placed a food on the chopping board, the FCB Event Detector computes the colour 

histogram h2 of each observation image, and then produces a cost using the Bhattacharyya distance 

between the observation image and the background image: 

 cost =  
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If the cost is smaller than a pre-defined threshold, then it is judged that food has been placed on the 

chopping board and the event global variable Food_OnFCB is set to true (otherwise Food_OnFCB is set 

to false). Simultaneously, the FCB Imaging FE is activated to compute features from the observation 

image. A pre-defined threshold is estimated from cross-validation procedure on various background 

images under ambient light conditions. This mechanism also improves the energy efficiency of 

KitchenSense. As in practice, kitchens are mostly not in use (i.e. people rarely spend more than 4 hours a 

day preparing food kitchen), therefore event detectors significantly reduce the amount of time that 

components of the recognition framework are active.  

 

Figure 6.8: Real-time accelerometer visualizer and recognized activity display. 

6.3.4 Graphical User Interfaces 

A number of GUI applications have been developed to support the situated display and visualization of  

the outputs of the recognition components. These applications reside in the GUI App module of the 

architecture and all are subscribers. The Accelerometer Data Visualizer subscribes to acceleration data, 

i.e. messages with a topic “Accelerometers”, and visualizes the data. The Recognized Activity Display 

simply subscribes the messages with the topic “DTWAR” or “SimpleAR” and displays these on the GUI. 

The GUI Recognized Food Application simply subscribes the messages which have topic “ImageFood” 

or “AudioFood” and displays this. For convenience, both the accelerometer visualization and the 

recognized activities are displayed on a single screen (see Figure 6.8) on the wall of the Ambient Kitchen.  
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6.4 Conclusion and discussion 

KitchenSense was implemented in the Ambient Kitchen and represents a significant improvement over 

the initial implementation [27] replacing the web service-base software infrastructure of the previous 

version with a pub-sub messaging server. Ambient Kitchen 2.0 is thus a scalable and naturalistic kitchen 

environment designed for improving cooking skills, promoting healthier eating, and helping cognitively 

impaired people to live more independently in their own homes. In total the kitchen is instrumented with 

an embedded sensing infrastructure including RFID (not used in our study), WAX embedded utensils and 

kitchen objects (22 in total) and the Fiber Chopping Board. The Ambient Kitchen 2.0 also uses 4 large 

LCD screens hidden behind a glass façade on the wall as a situated display (replacing the original blended 

projector displays). We do not demonstrate any actual situated services, but in Chapter 7 only evaluate the 

real-time recognition framework, the environment is “application ready” as has since been demonstrated 

in the task-based language learning application, the French Kitchen [71].  

We have presented the design of the new kitchen utensil set and our design and implementation of 

KitchenSense, a real-time context recognition framework in the kitchen. The integration of the miniature 

OpenMovement WAX sensors into modified kitchen utensils, and the design and implementation of Fiber 

Chopping Board, has fully realised our vision of invisible and unobtrusive context-recognition framework 

and environment. Scalability issues have been appropriately addressed allowing developers to readily to 

add or replace sensors or whole utensils, and develop new applications or situated services within the GUI 

App module of the application framework.  

The main goal of the development of the KitchenSense was to provide the infrastructure capability for 

situated services and assistive applications in the kitchen. Such situated services, prompting, improving 

cooking competence, or providing nutrition intake advice, are very likely to rely on the automatic 

detection of human activity and foods in their inference mechanisms. Tracking the progression steps in a 

recipe, for example, requires the reliable detection of food preparation activities and food ingredients. The 

next step in supporting such activities is however far from trivial. Recipe tracking is likely to utilise 

statistical graphical models which can be trained from both daily cooking activities as well as common 

sense knowledge of recipes. In such a graphical model for a recipe, the steps would be nodes and the 

edges (conditional) transition probabilities between nodes. Search (i.e. finding a sequence of steps) on the 

graph could be heuristically guided by the recipe knowledge. However, the full realisation of recipe 

tracking is beyond the scope of our immediate concerns and in Chapter 7 we conduct a full evaluation of 

KitchenSense for multiple subjects preparing a meal that is considerably more complex than has been 

undertaken in previous research.            
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Chapter 7: Experiment and Evaluations 
 

This chapter describes an experiment that is the technical culmination of our work, the performance 

evaluation of KitchenSense, the real-time context recognition framework in the Ambient Kitchen 2.0. A 

dataset was collected from 12 people cooking a Spaghetti Röstie using the utensils and chopping board 

described in the chapters 5 and 6. The large dataset collected was independently annotated by two coder 

and cross-checked by an inter-rater procedure for reliability. The KitchenSense framework was then 

rigorously evaluated under both the subject independent protocol and subject dependent protocols at both 

frame-by-frame and continuous event levels.                      

7.1 Introduction 

A dataset collected under naturalistic conditions is more likely to be of value to the development and 

evaluation of reliable, robust machine learning algorithms for activity recognition, as it would capture 

much of the variety that actually arises as a result of the naturalistic performance of food preparation 

activities. Such an evaluation would be further enhanced if subjects that take part in such studies have 

different levels of skills (i.e. professionals, amateurs, and novices). The contributions of this chapter are 

twofold. First we describe the design and collection of a dataset involving 12 subjects, in which each 

subject cooked the same meal in three separate sessions in the realistic setting of the French Kitchen, our 

Ambient Kitchen 2.0‟s sibling. These subjects were given a spaghetti recipe (Spaghetti Röstie), the 

ingredients for the recipe, and the instrumented utensils and chopping board (as previously described). 

During the cooking session subjects performed the activities at their own pace, and in their own style, 

without any instructions or guidance from the experimenters. The total length of all the recorded videos 

was approximately 30 hours. The video was annotated by two independent coders. The annotated results 

were then checked using an inter-rater reliability procedure. Our second contribution is the exhaustive 

performance evaluation of KitchenSense, on this annotated dataset, both a frame-by-frame and an event-

timing evaluation was conducted under the subject independent and subject-dependent protocols.        

7.2 Dataset collection  

This section describes the data collection exercise which was conducted in the French Kitchen [71], a 

sibling of the Ambient Kitchen 2.0 [69], but which is also equipped with a fully functional sink and 

cooker (both hobs and stove). As for the Ambient Kitchen 2.0 the environment had 22 WAX embedded 

utensils, the Fiber Chopping Board (FCB) plus a number of cameras placed in the environment (for 

observation only).     
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7.2.1 Realistic settings for the kitchen environment 

The French Kitchen (see figure 7.1) is organized much like any IKEA kitchen installed in a regular house. 

Olive oil, salt, and soy sauce are located in an overhead cabinet. The set of knives, frying pans and the 

peeler are located on a shelf, while the saucepans, sieve, colander and a mixing bowl are located on a 

lower shelf. The cooking spoon, whisk, slotted spoon, and spatula lie in a cutlery container (a flat box) on 

one of the work surfaces. The Fiber Chopping Board also sits on the work surface located between the 

stove and sink. To facilitate capture of cooking activities (for the annotation) a number of digital cameras 

were installed; a map of these is presented in Figure 7.2. One digital camera (Camera 3) and a Kinect 

camera (the data for which was not used in our experiments) were positioned in the upper cabinet so as to 

capture a “bird‟s eye” view of food preparation activities, in particular, activities on the FCB. Camera 1 

and Camera 2 were positioned above the height of a user to afford a clear view of both the work surfaces 

and the whole kitchen space (for example, so it can be observed how and when a subject gets and adds 

salt, or drains the spaghetti in the sink). Camera 4 had a dedicated view of the stove and thus preparation 

activities that involve the hob and the oven.  

 

Figure 7.1: The French Kitchen, a sibling of the Ambient Kitchen 2.0. 
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Figure 7.2: 4 Digital cameras installed in the kitchen for recording cooking videos. 

The full set of utensils and the FCB used in the experiment are shown in the Figure 7.3. The set of 

utensils is divided into five groups. The knife group consisted of one chef’s knife, one slicing knife, one 

small knife and one bread knife. The spoon group included one spoon, one slotted spoon, one spatula and 

one whisk. The pan group included 2 saucepans, including instrument lids, and 3 frying pans. The group 

of food containers included a mixing bowl (i.e. big bowl), a colander, and a sieve. A final group covers 

the water faucet (i.e. the tap) and non-fresh food ingredient containers including salt, olive oil and soy 

sauce. Examples of activities that can apply to one or more members of group are given in Table 7.1.    

 

 

 

Figure 7.3: The utensil set and the FCB used for the experiment; closed (left) and opened (right). 
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The rationale and design of the utensils has been described in Chapter 6. These designs allow WAX 

sensors to be embedded into the handle, side handles, lid, or attached to a jar, bottle or bowl.  

Group Utensil Example activities 

Knife Chef’s Knife, Slicing Knife, Small Knife, Bread Knife chop, slice, scrape  

Spoon Spoon, Slotted Spoon, Spatula, Whisk stir, scoop, whisk, tap, press  

Pan 2 Saucepans, 3 Frying Pans shake, move 

Container Big Bowl, Sieve, Colander drain, pour, wash 

Other Tap, Salt, Olive Oil in use, add, pour 

                            Table 7.1:  Groups of utensils and example activities. 

Ingredients Instruction steps 

Onion 

Mushroom 

Courgette 

Spaghetti 

Chives 

Basil 

Parsley 

Ham 

Egg 

Cream 

Olive oil 

Salt 

Soy sauce 

1. Cook spaghetti until al dente. 

2. Drain spaghetti in a colander and rinse it with cold water. 

3. Cut the spaghetti into 3 cm long pieces. 

4. Clean mushrooms wipe them dry. 

5. Cut mushrooms into slices. 

6. Peel courgette. 

7. Cut courgette into slices. 

8. Wash and dry the chives. 

9. Cut chives into small rings. 

10. Peel onion and cut it into halves. 

11. Dice one onion half. 

12. Heat oil in a frying pan. 

13. Fry onions in frying pan. 

14. Add mushroom and courgette slices into pan. 

15. Sauté mushrooms and courgette until the liquid has evaporated. 

16. Deglaze pan content with soy sauce add cream and boil it. 

17. Add salt and pepper into the sauce and keep it warm. 

18. Before serving add chives into the sauce. 

19. Cut the second onion half into thin slices. 

20. Wash and dry basil and parsley and pluck of their leaves. 

21. Cut basil into thin strips. 

22. Chop parsley finely. 

23. Cut ham into thin strips. 

24. Beat eggs in a bowl.  

25. Add spaghetti pieces, onion slices, parsley, ham and eggs into a bowl and mix them 

together. 

26. Heat oil in frying pan and fry small portions of the spaghetti mix until golden brown 

(Rösties). 

27. Serve Rösties with mushroom sauce. 

 

                   Table 7.2: The Spaghetti Röstie recipe. 

 



 

73 

 

7.2.2 Recipe selection 

The Spaghetti Röstie recipe was chosen on the grounds that it involves 13 different food ingredients, of 

which 8 ingredients can be prepared on the chopping board if the subject so chooses (i.e. as a recipe it 

served as a good candidate for the evaluation of the performance of the food recognition algorithms with 

the FCB). The ingredients cover a wide range of common recipe ingredients such as onions, mushrooms, 

ham, eggs, soy sauce and olive oil etc. Moreover, the recipe has 27 instruction steps, most of which could 

be performed with one or more utensils of our utensil set (Table 7.2) and cover most common kitchen 

activities, including chopping, slicing, scooping, adding ingredients, and peeling etc.    

7.2.3 Data collection procedure 

12 subjects were recruited through an email advertisement to staff and students at Newcastle University. 

Overall each subject prepared the Spaghetti Röstie recipe three separate times (3 sessions). To start, a 

subject was introduced to the methods and procedure of the experiment, and signed both ethics and 

consent forms. The subject was then given the recipe. An important element of our experimental design 

was that we wanted subjects to have a good understanding of all the steps of the recipe prior to them 

preparing the dish. This was with a view to avoiding the situation whereby they slavishly return to the 

written recipe again and again while cooking (i.e. we aimed to create a more cooking context). The 

subjects learnt about the recipe through a specially designed board game played with food and activity 

cards, in which players used the cards and the board to perform simulated cooking activities and 

manipulate the locations of the ingredients, utensils, and food containers. Thus the game allowed subjects 

to practice the meal preparation (with the recipe) before embarking on any actual cooking. Only when a 

subject was confident as to the steps required in the preparation of the meal were they introduced to the 

kitchen, that is, where to find the ingredients and utensils and how the hob and oven work.   

A cooking session started with a synchronization procedure. This was carried out by the experimenter 

who in plain view of a camera distinctively hit (i.e. for acceleration data synchronization) the small knife 

on a kitchen surface 5 times, thereby making distinct noises (i.e. for audio synchronization). After the 

synchronization step, the subject was left alone to prepare the meal. During the meal preparation, no time-

constraints and no instructions were provided to the subject. After finishing the cooking session, the 

synchronization procedure was performed again. In between cooking sessions, a questionnaire was 

administered to the subject. The questionnaire addressed issues of meal preparation routines and whether, 

in general, a subject was aware the technologies inside the kitchen and within the utensils. On completion 

of all three cooking sessions subjects were paid £20 to compensate them for their time.        
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All data were recorded on a server located behind the wall of the kitchen. The accelerometer data for the 

WAX sensors were written into one logging file. Each sample was written with its timestamp. For the 

Fiber Chopping Board, the embedded camera recorded three images per second and the image files were 

named with timestamps (i.e. capture times). Audio was recorded when the session started at the original 

frequency of 44,100 Hz which was then down-sampled to 8000 samples per second using the Audacity 

software tool, as for feature extraction previous studies [15, 24, 64, 65, 66] have shown that an audio 

sampling rate between 2K and 12K sufficient for food classification (and event detection). 

       

                                    Figure 7.4: An example of data synchronization. 
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7.2.4 Data synchronization 

Once collected (in log files) the sensor data needed to be synchronized with the observational videos. To 

synchronize the audio with the videos, we used the media synchronization function of the ELAN 

(EUDICO Linguistic Annotator) toolkit [73]. Here the audio data is first visualised in ELAN such that the 

5 audio peaks produced by the synchronization procedure at the beginning of the session are clearly 

visible. The fifth peak is marked as the offset time, which we took to be the absolute start time. Then, 

audio data from the beginning of the log file to the offset time was removed. Similarly, the acceleration 

data was visualized and the fifth peak of 5 continuous peaks was marked as the offset and the 

corresponding row number in the acceleration data (and its timestamp) was identified. Data, from the 

beginning to the offset time, was then removed (see figure 7.4). The synchronization of collected food 

images of the FCB to the videos was a more straightforward process as each image file had its own name 

that includes the timestamp of the recording. 

7.3 Annotation & inter-rater reliability 

Annotating the data is the first step in the data analysis, that is, the generation of a ground truth for 

evaluating the performance of the recognition algorithms. Also, the annotated data can be segmented for 

training supervised machine learning algorithms. In our previous study we demonstrated that the 

consistency of the data was significantly improved where the annotation was repeated by more than one 

coder. Hence, two coders were asked to independently annotate the dataset. The annotated data was then 

crosschecked using an agreement inter-rater reliability scheme.  

 

Figure 7.5: Hierarchical annotations. 

7.3.1 Annotation protocol 

The ELAN annotation tool [73] was used to annotate the dataset. ELAN is particularly useful in that it 

supports the sensor data visualization and hierarchical annotations (see Figure 7.5). Visualization is 

valuable for visually identifying sensor errors and the alignment between sensor data and videos data (as 

already described). Hierarchical annotation allows better support for annotations allowing the association 
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of specific activities to specific utensils (ultimately sensors). In our annotation schema each utensil has 

two associated annotation levels (referred to as tiers). One tier relates to the overall movement of the 

utensil. The second corresponds to activity annotations made by the coder (annotator) such as chopping, 

slicing etc. As 22 sensors are used in this study, approximately 40 tiers are displayed in an annotation 

window. With two-tier annotations for each utensil, common errors such as the use of the incorrect tier 

(i.e. a coder annotating the wrong utensil with an activity) can be minimized.    

An annotation document was prepared for the coders. The document contained instructions as to how to 

use ELAN, definitions of activity labels, and detailed examples describing how to make an annotation for 

each activity. In addition, sample videos were made for some activities that were potentially ambiguous to 

coders such as the difference between chopping and slicing. The procedure of annotating a food 

ingredient processed on the FCB was rather different. Cases where food were placed on the FCB varied 

from the simple (and most common) case of one single item, to multiple food items being placed on the 

FCB. The case where a ingredient was placed on the FCB, but had not been acted upon was 

straightforward, but when it was being chopped, knife activities had to be annotated with annotation 

labels that combined the knife activities and ingredient labels (e.g. chop,basil). This schema significantly 

reduced the redundancies of repeated annotations that we required in pilot annotation exercises that we 

conducted.              

Coders were recruited from Newcastle University via a job advertisement on the University‟s vacancies 

website. The requirements for coders were that they had a good understanding of English, basic 

computer-skills, and were not one of our research team members or a person associated with the research 

project in any way. The coders were paid £10.00 per hour. All coders were trained and practiced ELAN 

using the annotation scheme instruction document. The coders were asked to make sure they were 

confident that they understood all label definitions in the document, and were asked to pay careful 

attention to the sample videos. All of the collected videos were independently annotated by two coders.  

7.3.2 Activity labels 

16 activity labels are defined for coders to use when annotating the video. In order to avoid unnecessary 

ambiguity, a set of utensils to which these activity annotations generally applied were also specified (see 

Table B.1 in Appendix B). For example, scooping generally only applied to spoon, slotted spoon, and 

spatula, while draining generally only applies to sieve or colander. Some activities, such as add and pour 

are distinct to a set of ingredient. For example, pour generally only applies to liquid ingredients such as 

soy sauce or olive oil and containers, while add applies to “solid” ingredients such as salt. In practice 
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these definition of activity-object relations form part of our working of our definition for an activity. 

Table 7.3 lists the activity labels along with utensils to which they apply.    

As described, annotation document provided to coders includes: (i) an activity label has a definition that 

elaborates how the activity is performed with a utensil; (ii) a how-to-annotate note using ELAN; and (iii) 

an example of the label. The scooping label, for example, is defined as: 

“scooping is a move a food or mix from a container/pan/plate to another container/pan/plate 

using the spoon, the slotted spoon, or the spatula. Annotation begins with the spoon enters the 

container and ends with the food portion got out of the spoon”.  

Definitions of most activities are straightforward, although a small number of activities such as chopping 

and slicing need more refined definitions as we found that in pilot annotation sessions they were often 

confused with each other. For example, the definition of chopping provided was as follows:  

“chopping is a distinct cutting activity where the knife moves up and down causing it to make 

contact with the chopping board and then break contact with the chopping board. Some minor 

forward and backward movements may be seen but these do not significantly cut the ingredient.”  

In contrast, slicing is defined as:  

“slicing is any cutting activity [excludes peeling] with the knife that is not chopping. If the knife 

remains in contact with the board or if the predominant movement is forwards and backwards 

then this cutting activity is not chopping.” 

In such cases, in addition to definitions, we also made example videos for coders. The labels for food 

ingredients were taken from the recipe and are well defined. All are elaborated in the annotation 

document. There is one special activity, unknown, which was referred as a baggage or in other words a 

null activity [17, 72] and this label was applied to any other movements of the utensil which are not 

defined in the activity list. Note that coders did not need to annotate unknown activities that had been 

automatically subtracted from the moving data. 

7.3.3 Inter-rater reliability 

Our previous studies showed the consistency of the annotated data could be significantly improved if an 

activity label assigned to a data segment was agreed upon by more than one coder [16]. Table 7.3 shows 

the agreement rate for each label assigned by two coders. The agreement rate procedure first takes two 

sequences annotated by two coders and segments these into one-second frames. Each frame is associated 

with its label and an absolute time. A longest common subsequence (LCS) based algorithm [74] was used 
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to compute agreement rates of the frames agreed by both coders. LCS is a dynamic programming 

algorithm which solves the problem of finding a longest common subsequence from two sequences by 

dividing the sequence into subsequences until they become as simple as possible (i.e. a subsequence 

contains one single frame only), and then the solution is constructed starting with a comparison between 

the two simplest subsequences.  However, unlike the standard LCS, which only considers the element 

values (often one simplest subsequence contains one element), the LCS used in our agreement rate 

procedure used both the label and the absolute time associated with each frame.      

Activity & food labels Utensils Agreement  (%) 

chop,cour chef knife, slicing knife, small knife 49.3 

chop,mush 62.1 

chop,chiv 37.59 

chop,onio 68.51 

chop,basil 32.69 

chop,spag 70.65 

chop,ham 49.82 

slice,cour 67.11 

slice,chiv 49.23 

slice,pars 25.72 

slice,onio 62.65 

slice,spag 73.22 

slice,ham 72.4 

slice,basil 31.74 

slice,mush 62.35 

scrap 93.27 

pour soy sauce,  olive oil, bowl 91.2 

peel Peeler 93.18 

add Salt 89.63 

drain sieve, colander  82.14 

wash sieve, colander, bowl 79.25 

stir spoon, slotted spoon, spatula 84.67 

scoop 80.61 

turn 81.38 

press 73.72 

tap 69.82 

shake frying pans 79.65 

in use tap water 96.58 

cour fiber chopping board 92.46 

mush 82.62 

chiv 74.36 

onio 89.95 

basi 62.38 

pars 61.41 

spag 95.63 

ham 90.24 

Overall 73.69 

                                 Table 7.3: Agreement inter-rater reliability (%). 

Figure 7.6 is an example of agreement between two sequences labeled by two coders in 8 seconds. The 

upper sequence labeled by coder 1 contains 6 frames with one slice followed by 5 chops and the lower 

sequence labeled by coder 2 contains 7 frames with one slice followed by 5 chops, then the other slice. 



 

79 

 

Although both sequences have 5 common chops, only 4 of them are overlapped (i.e. each pair has the 

same label and absolute time, blued in the figure 7.6). Therefore the agreement rate is 4/8 = 50%.   

 

Figure 7.6: Agreement example of two coders. 

In Table 7.3 the overall agreement rate is 73.69%. Despite our best efforts to improve the training 

material for coders, low agreement was still apparent for chopping and slicing activities, particularly for 

chopping/slicing parsley and basil. This was not only because of the apparently similar appearance of the 

chop and slice action, but because parsley and basil look similar when being chopped and sliced in the 

videos. The scraping activity was found to be very distinct from other knife activities; hence agreement 

was 93% between both coders. In general, agreement rates for food labels were high (except for parsley 

and basil which was 60%). Annotations for activities performed with other utensils also exhibited 

agreement rates between 70-90%. In fact, the source of disagreements in the use of these labels was 

generally due to insertion, deletion, substitution, overfill or underfill issues within subsequences (which is 

described in more detail in our event-timing analysis section).   

 

Figure 7.7: The distribution of the utensil usage. 
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7.3.4 Distribution of data and prior-probabilities  

7.3.4.1 Distribution of the utensil usage 

The distribution of utensil usage is presented in the Figure 7.7. In the collected dataset, chef knife and 

spatula dominate at around 14% of usage time, while the whisk and colander are below 1%. From our 

observations of the collected videos, the sieve was preferred over the colander for draining the cooked 

spaghetti. Also, the subjects had a tendency to use the spoon rather than whisking with the whisk.   

7.3.4.2 Distribution of the chop and slice food ingredients 

Table 7.4 presents results for the use of chef knife, slicing knife and small knife for chopping and slicing. 

As frame sizes are of one-second duration, the figures correspond to both the number of frames and 

seconds.    

 

 

 

 

 

 

           Table 7.4: The distribution of knife use for chopping and slicing (in frames). 

The chef knife was used most at 6044 seconds (72.85%) of which 4517 seconds was spent chopping and 

1527 seconds was spent slicing; followed by the small knife (20.24%) of which 250 seconds was spent 

chopping and 1429 seconds was spent slicing.  It is observed that subjects tended to chop with chef-knife 

or slicing knife, and slice with the small knife. For the food ingredients, mushrooms, onion and courgette 

were mostly chopped while subjects preferred to slice parsley and spaghetti.    

7.3.4.3 Distribution of the known vs. unknown activities 

Known activities are the activities with pre-defined labels in the annotation description document. Any 

other activities are unknown. It was interesting to observe the proportions of each in our dataset. In Figure 

7.8 (left) we can see known activity events correspond to 54% of annotated activities, but in terms of time 

(in frames) make up just 45%. In general, unknown activities made up around half the cooking time. 

Reducing this time by improving cooking skills based on kitchen context recognition would be an open 

Food 

Duration for food on 

the FCB (s) 

Chef knife Slicing knife Small knife 

chop slice chop slice chop slice 

Basil 637 279 207 0 97 0 29 

Chive 1125 267 237 41 0 88 94 

courgette 260 876 47 145 0 73 358 

Ham 527 167 197 0 25 0 144 

Mush 821 1363 208 77 0 89 341 

Onion 409 1491 566 169 28 0 462 

Parsley 744 0 149 0 15 0 67 

spaghetti 220 74 124 9 0 0 28 

Total (frames) 4743 4517 1527 400 174 250 1429 
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challenge for further application development, for example, developing situated advice applications that 

improve cooking competence [28] including cooking plan optimization. 

  

Figure 7.8: The distribution of known and unknown activities, events (left) & frames (right) distribution. 

7.3.4.4 The prior-probabilities of activity events 

The prior-probabilities of activity events given utensil in use events in the dataset are present in the table 

7.4a. Utensil in use events are detected when the utensils are moving (i.e. trigged by the sensor signals). 

Therefore, moving activity events are 100% detection for Sauce pans and their lids. Prior-probabilities of 

Tap water in use and unknown activity events are generally higher than thoese of other activity events. 

The overall of prior-probability distribution of known and unknown activity events is shown in figure 7.8 

(left).    

7.4 Evaluation methods and performance metrics 

This section describes our evaluation of KitchenSense, the activity and food recognition framework 

introduced in Chapter 6. The frame-by-frame based analysis adopted in chapters 3 and 4 demonstrated the 

feasibility of pervasive sensing technologies for kitchen context recognition from a real-time data stream. 

However, because of variability in the duration of food preparation activities, for example, that chopping 

might take a few seconds while washing a food might take 10 minutes, we need to add to our frame-by-

frame approach to the context recognition problem in the kitchen with an analysis of event duration 

estimation (which we refer to as event-timing). This we believe is useful not only for situated service 

provision, but also for time and resource optimisation. By event, we mean a set of continuous frames of 

variable duration (with a start and end time).  

In addition, in order to correctly make comparisons between ground truth data and predicted events, we 

adopt the notation of a segment from [33, 72]. A segment is a variable-duration sequence of continuous 

frames during which the label of both the recognition system and the ground truth does not change. A 

segment is partitioned from a continuous data stream and can be a part of, or the whole of, an event. The 
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boundaries of a segment are determined by a change of either the ground truth or the predicted event 

(produced by a recogniser). For example, there are 4 segments differently coloured in Figure 7.6, the first 

segment contains the first frame labelled slice by a recogniser. The second segment contains one frame 

marked slice in ground truth annotation and chop by a recogniser. The third segment is the next 5 

consecutive frames labelled as chop in both the predicted sequence and ground truth sequence, and the 

fourth segment contains last two frames of the ground truth data. 

activity event | 

utenstil in use event 

Prior-probability activity event | 

utenstil in use event 

Prior-probability 

Pr(pour|Big_Bowl) 0.05 Pr(move|SaucePan 180_lid) 1 

Pr(wash|Big_Bowl) 0.1 Pr(drain|Sieve) 0.06 

Pr(unknown|Big_Bowl) 0.88 Pr(wash|Sieve) 0.01 

Pr(chop|Chef_knife) 0.29 Pr(unknown|Sieve) 0.92 

Pr(slice|Chef_knife) 0.16 Pr(chop|Slicing_knife) 0.21 

Pr(scrap|Chef_knife) 0.04 Pr(slice| Slicing _knife) 0.09 

Pr(unknown|Chef_knife) 0.51 Pr(scrap| Slicing _knife) 0.04 

Pr(basil|Chopping board) 0.04 Pr(unknown| Slicing _knife) 0.66 

Pr(chive|Chopping board) 0.06 Pr(stir | Slotted Spoon ) 0.28 

Pr(courgette|Chop. board) 0.06 Pr(scoop| Slotted Spoon ) 0.09 

Pr(ham|Chopping board) 0.06 Pr(tap| Slotted Spoon ) 0.03 

Pr(mushroom|Chop. board) 0.15 Pr(press | Slotted Spoon ) 0.06 

Pr(onion|Chopping board) 0.08 Pr(unknown| Slotted Spoon ) 0.53 

Pr(parsley|Chop. board) 0.04 Pr(chop|Small_knife) 0.11 

Pr(spaghetti|Chop. board) 0.06 Pr(slice| Small _knife) 0.46 

Pr(unknown|Chop. board) 0.45 Pr(scrap| Small _knife) 0.14 

Pr(drain| Colander) 0.13 Pr(unknown| Small _knife) 0.29 

Pr(wash| Colander) 0.02 Pr(pour|Soy sauce) 0.14 

Pr(unknown| Colander) 0.89 Pr(unknown|Soy sauce) 0.86 

Pr(shake| Fry. Pan 200) 0.24 Pr(stir| Spatula) 0.24 

Pr(unknown| Fry. Pan 200) 0.85 Pr(scoop| Spatula) 0.04 

Pr(shake| Fry. Pan 240) 0.37 Pr(turn| Spatula) 0.12 

Pr(unknown|Fry. Pan 240) 0.63 Pr(tap| Spatula) 0.02 

Pr(shake| Fry. Pan 280) 0.4 Pr(press| Spatula) 0.03 

Pr(unknown|Fry. Pan 280) 0.6 Pr(unknown| Spatula) 0.55 

Pr(pour| Olive Oil) 0.18 Pr(stir| Spoon) 0.37 

Pr(unknown| Olive Oil) 0.82 Pr(scoop| Spoon) 0.15 

Pr(peel| Peeler) 0.14 Pr(tap| Spoon) 0.06 

Pr(unknown| Peeler) 0.86 Pr(unknown| Spoon) 0.42 

Pr(add| Salt) 0.15 Pr(in_use | Tap Water) 0.79 

Pr(unknown| Salt) 0.85 Pr(unknown |Tap Water) 0.21 

Pr(move|Sauce Pan 180) 1 Pr(whisk| Whisk) 0.15 

Pr(move|SaucePan 180_lid) 1 Pr(tap| Whisk) 0.02 

Pr(move|Sauce Pan 180) 1 Pr(unknown| Whisk) 0.84 

Table 7.4a: Prior-probabilities of activity events given utensil in use events 
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7.4.1 Evaluation methods 

We adopt both subject independent and dependent protocols for evaluating KitchenSense. In the subject 

independent protocol, the subject to test is not included into the training data. Although subject 

independent evaluation is generally more punitive, it should lead the development of AR systems that are 

more feasible to deploy. In the dependent evaluation, a 10 fold cross-validation method is used, that is, 

the data are partitioned into 10 parts in which 9 parts are used for training and one is used for testing, then 

the process is repeated. Thus, the subject dependent protocol does not partition the training and test data 

by subject (unlike in the independent case). In practice, such an evaluation is meaningful for applications 

where individual differences between subjects are unlikely to have an impact on performance.   

Frame-by-frame analysis is a fundamental approach to the evaluation of AR from real-time data streams, 

but frame-by-frame performance is not wholly sufficient as it does not quantify event errors shown in the 

figure 7.9 which may have serious implications for applications that incorporate functionality such as 

recipe step tracking. Therefore, in this chapter, in addition to standard frame-by-frame analysis, we 

included a performance analysis at event level (based on frames, i.e. time), which we refer to as event-

timing analysis.      

As we wanted to evaluate food recognition performance of the FCB with images and audio, two separate 

evaluations for the FCB were conducted: (i) food recognition using fiber sensing images when food is 

placed on the FCB, but before it is chopped or sliced, and (ii) food recognition based on sounds produced 

when the food is being chopped or sliced. The ground truth for the former was drawn from the set of 

images between the food being placed on the FCB and the start time of a chopping or slicing event, for 

which there was considerable agreement between coders. The ground truth for the latter constructed from 

chop and slice activities of knives.  

7.4.2 Performance metrics 

Events in the kitchen are important for both context recognition and situated services, and these are 

detected by our recognition framework. We also want to distinguish between a long (and important) 

event, such as chopping a food, which might often occur over many seconds or even minutes, and a minor 

event such as putting a knife aside which can occur within 1 second. Therefore we needed to report not 

only the number of event errors, but also the significance (i.e. in term of frames or seconds) of such event 

errors. Consequently, we measure the errors of the events and their lengths (hence our use of the term 

event-timing analysis).  Standard performance metrics such as precision (i.e. true positives/(true positives 

+ false positives)), recall (i.e. true positives/( true positives + false negatives)), and false positives are 

used for measuring the recognition performance for frame-by-frame analysis. Newer metrics including 
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insertion, deletion, overfill, underfill and substitution [33, 72] are be used for measuring the combination 

of event-timing matches and errors, and they are defined as follows.   

 

                  Figure 7.9: Error examples for our event-timing analysis. 

 Insertion: a predicted event has no matched frame with any ground truth event. 

 Deletion: a ground truth event has no matched frame with any predicted event. 

 Underfill: at least one frame in the ground truth event is not covered by its predicted event. 

 Overfill: at least one frame in the predicted event is not covered by its ground truth event.  

 Substitution: incorrectly predicted (i.e. chopping incorrectly classified as unknown).     

The illustration of each of the five metrics is shown in Figure 7.9.   

7.5 Frame-by-frame based analysis 

A frame is a fixed-length, one second, of data (i.e. 50 samples). The selection of this frame length can be 

justified on the basis that: (i) it covers most of activities in the kitchen (i.e. most fine-grained activities 

that we are interested in have a duration of more than one second); (ii) a latency of much more than one 

second would have serious implications for the timeliness of feedback in real-time applications. 

Moreover, our previous experiments demonstrated that an appropriate level of accuracy could be achieved 

with a frame length of around one second. Under the subject independent protocol, 11 subjects were 

trained, and one subject was left out, to test, and the process was repeated for all other subjects and the 

results aggregated. The subject dependent protocol uses all 12 subjects for training data, which are 

partitioned into 10 subsets. Each subset is tested using the other 9 subsets as training data. Again the 

process was repeated for other subjects and the results are aggregated. 
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7.5.1 Accelerometer-based Activity Recognition results 

Figure 7.10 shows overall performance results of subject independent and dependent evaluations. These 

results include unknown activities. As anticipated, the protocol results are higher than subject independent 

results, with 92% vs. 87% for precision, and 84% vs. 79% recall, respectively. The number of false 

positives, however, was lower for the subject independent protocol.   

Precision and recall rates were 87.6% and 79.3% respectively for the subject independent protocol which 

can generally be considered high for a recognition system which is evaluated on a relatively large-scaled 

dataset comprising 59 activities, and where the dataset is significantly imbalanced (see the number of 

frames for each activity in the third column on table 7.5).     

.   

Figure 7.10: Frame-by-frame activity recognition results. 

The false positive rate, which reports the percentage of incorrect recognition events for the recognition 

framework, was 11.22% for the subject independent protocol and approximately 10% for the subject 

dependent protocol. These are acceptable and can be explained by the fact that there is generally 3 or 

more classes of activity that needs to be classified per utensil. Table 7.5 shows the aggregated subject 

independent protocol results in detail, these indicate that there are a significant number of 

misclassifications between known and unknown activities. The activities chop and slice, have a high 

misclassification rate (i.e. 20%) and are often confused. As already described this is most likely due the 

fact that their movement patterns are quite similar. Unsurprisingly, the saucepans have low false positive 

rates (less than 1%) and high correct recognition rates (more than 90%) since only one class of activity 

applies to them. In practice, the activities associated with saucepans are detected by the simple activity 

recognition (SimpleAR) component which detects their movement using a pre-defined threshold.  



 

86 

 

Utensil Activity Ground truth (frames) Precision (%) Recall (%) False Pos (%) 

Bowl Pour 56 61.82 60.71 37.50 

 Wash 67 55.77 43.28 34.33 

 Unknown 2,378 94.25 83.43 5.09 

Chef_Knife Chop 4,159 85.77 83.89 13.92 

 Slice 1,340 69.15 66.57 29.7 

 Scrap 302 94.18 91.06 5.63 

 Unknown 5,894 83.58 83.07 16.32 

Slicing_Knife Chop 879 69.63 59.73 26.05 

 Slice 499 76.17 87.78 27.45 

 Scrap 40 92.86 97.50 7.50 

 Unknown 1,708 84.60 75.23 13.7 

Small_Knife Chop 258 67.44 78.68 37.98 

 Slice 1,916 87.56 59.13 8.40 

 Scrap 37 65.38 45.95 24.32 

 Unknown 1,751 82.11 79.44 17.30 

Oliver_oil Pour 346 92.28 89.88 7.51 

 Unknown 4,074 96.56 83.33 2.97 

Peeler Peel 1,014 95.90 90.04 3.85 

 Unknown 1,109 87.93 86.74 11.90 

Salt Add 343 91.45 81.05 7.58 

 Unknown 1,673 85.90 88.11 14.47 

Sieve Drain 1,453 52.93 31.04 27.60 

 Wash 87 71.84 85.06 33.33 

 Unknown 1,386 92.89 83.84 6.42 

Slotted_spoon Stir 3,547 90.63 75.56 7.81 

 Scoop 148 94.56 93.92 5.41 

 Tap 83 88.46 83.13 10.84 

 Press 145 77.17 48.97 14.48 

 Unknown 3,325 75.93 87.55 27.76 

Soy_sauce Pour 318 92.46 88.68 7.23 

 Unknown 2,812 92.72 91.47 7.18 

Spatula Stir 4,369 93.49 91.74 6.39 

 Scoop 293 96.50 84.64 3.07 

 Turn 686 84.97 66.76 11.81 

 Tap 81 91.55 80.25 7.41 

 Press 246 69.11 57.72 25.2 

 Unknown 6,638 87.66 89.00 12.53 

Spoon Stir 3,059 98.90 91.11 1.01 

 Scoop 352 89.46 84.38 9.94 

 Tap 193 89.82 77.72 8.81 

 Unknown 4,060 83.83 89.63 17.29 

Tap_Water in_use 3,276 81.52 44.29 10.04 

 Unknown 3,872 80.69 33.68 8.06 

Colander Drain 275 42.50 24.73 33.45 

 Wash 5 0 0 0 

 Unknown 466 80.43 72.32 17.60 

Whisk Whisk 295 97.37 75.25 2.03 

 Tap 9 87.50 77.78 11.11 

 Unknown 306 92.93 90.20 6.86 

Sauce_Pan_180 Move 859 99.10 91.92 0.83 

Sauce_Pan_200 Move 1,743 95.75 91.14 4.05 

Sauce_Pan_180_lid Move 211 99.86 89.77 0.12 

Sauce_Pan_200_lid Move 505 99.83 91.95 0.15 

Frying_Pan_200 Shake 296 89.79 75.89 8.63 

 Unknown 1,251 86.85 82.33 12.47 

Frying_Pan_240 Shake 208 82.16 72.04 15.64 

 Unknown 1,652 91.88 86.99 7.69 

Frying_Pan_280 Shake 188 77.40 72.87 21.28 

 Unknown 1,292 96.40 84.91 3.17 

Total 83,076 87.63 79.40 11.22 

        Table 7.5: Frame-by-frame performance for the subject independent protocol. 



 

87 

 

In Table 7.5, one activity, washing with the colander, has only 5 frames. This is the only clear case where 

our frame length is insufficient, that is, the duration of the activity too short and thus the recognition 

system fails to classify it. High recognition rates (80-90%) are achieved for scooping and stirring of the 

spatula, spoon and slotted spoon. These results are consistent with our previous studies (Chapter 3 and 4). 

Other activities such pour (olive oil), add (salt), peel (peeler) similarly have the expected high accuracy 

(85-90%) since just two classes of activity need to be recognised per utensil. Drain and wash activities of 

the sieve, bowl and colander have low recognition rates and high false positive rates probably based on a 

lack of distinctiveness between their movement patterns.  

In addition to an evaluation on the open dataset, in which unknown activities are included, we also carried 

out a simple evaluation on the closed dataset, which excludes the unknown activities – this gives us an 

indication of how unknown activities impact on performance. The closed dataset contains 41 activities 

and is 50% smaller than the open dataset.  Overall, the precision, recall and false positives for the closed 

dataset are 88.52%, 76.3%, and 9.93%, respectively, showing that the performance of the recognition 

framework is not significantly effected by the inclusion or exclusion of unknown events.  

7.5.2 Image-based food recognition results 

The image dataset consists of 14,229 images. As a result of the fact that the collection was under more 

realistic settings (than our pilot study in Chapter 5), a considerable number of noisy images are included 

into the dataset. Indeed compared to the  collected images used for our pilot experiment in the Chapter 5, 

for which we had more control over the level of ambient light and the behaviour of the subjects, this 

dataset is significantly more challenging and includes more instance of occlusion, more variability in 

image quality and generally more imbalanced. The k-NN‟s results for food recognition based on image 

classification are shown in Figure 7.11. Precision, recall and false positive rates are 81.5%, 70%, 18% for 

the subject independent protocol, and 89%, 74%, 11% for the subject dependent protocol, respectively. 

Although the false positive rate is relatively high, the overall results are promising, especially given the 

relative complexity of the dataset (8 food ingredients) and that a number of them, such as parsley and 

basil, have a very similar visual appearance (and were often confused with each other by our coders).        
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         Figure 7.11: Summary results for k-NN frame-by-frame image-based food recognition. 

Food Ground truth 

kNN SVM 

Precision 

(%) 

Recall  

(%) 

FP 

(%) 

Precision 

(%)  

Recall 

(%)  

FP 

(%)  

basil 1911 81.96 59.36 18.04 76.77 69.18 6.33 

chives 3375 81.05 68.16 18.95 73.60 55.47 10.13 

courgette 780 80.60 92.15 19.40 91.41 92.18 1.54 

ham 1581 78.43 91.26 21.57 94.5 88.87 5.44 

mushroom 2463 78.68 57.89 21.32 87.66 78.2 13.28 

onion 1227 73.63 77.59 26.37 86.55 74.9 11.25 

parsley 2232 86.03 62.69 13.97 72.31 70.21 17.74 

spaghetti 660 96.61 91.5 3.39 95.91 92.73 3.33 

Total 14229 81.50 70.12 18.50 81.71 72.68 10.15 

Table 7.6:  Frame-by-frame image-based food recognition results for subject independent protocol. 

Table 7.6 presents the results for each ingredient. We see that courgette, ham, and spaghetti have 

precision and recall rates as high as 80-90%. Lower recognition rates are achieved for basil, chives, onion, 

mushrooms and parsley, around 60% for recall. Here basil and parsley, and mushroom and onion have 

similar colours and forms. Moreover, subjects placed more than one mushroom on the FCB to chop or 

slice and as a result the images are considerably noisier than for other foods. In addition, the image 

processing pipeline of the FCB generally does not perform well for white coloured objects such as a 

peeled onion or a mushroom. The false positive rates for all foods are relatively high (i.e. more than 10%) 

except for spaghetti for the k-NN classifier, and for basil, courgette, ham and spaghetti for the SVM. As 
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explained this was because the k-NN made numerous mutual misclassifications for onion and mushroom, 

parsley and basil, courgette and chive, and ham and spaghetti.        

Figure 7.12 shows the results for food image classification using the Support Vector Machine (SVM) 

classifier with linear kernel function. The detailed results are also shown in the Table 7.6 for the subject 

independent protocol. Although the improvement (comared to kNN) is not particularly significant for 

precision and recall, the false positive rate is considerably reduced (18.5% vs. 10.15%).  For the subject 

dependent protocol, the results for the SVM were 90.25% (precision), 78.82% (recall), and 6.49% (false 

positives). Overall, the SVM‟s performance distinctly better than the performance of the k-NN.  

 

Figure 7.12: Results for SVM frame-by-frame image-based food recognition. 

7.5.3 Audio-based food recognition results 

Figure 7.13 presents the overall performance of food recognition based on audio classification for both 

the subject independent and dependent protocols. In general, recall rates are higher than 70% while 

precision is maintained at around 80% for both chop and slice. As expected, subject dependent results are 

(only moderately) higher than subject independent results. For example, the precision rate is 87% (vs. 

81%) and the recall rate is 73% (vs. 72%) for chopping activities. These results demonstrate slightly 

higher classification rates than for the food images. 
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Figure 7.13: frame-by-frame audio-based food recognition results. 

Food 

Chop Slice 

Ground Precision (%) Recall (%) FP (%)  Ground Precision (%) Recall (%) FP (%) 

basil 279 68.56 64.87 29.75 333 70.19 75.68 32.13 

chive 308 67.92 52.92 25.00 331 73.54 79.76 28.70 

courgette 1094 85.39 79.07 13.53 405 86.75 85.68 13.09 

ham 167 86.00 77.25 12.57 366 75.14 73.50 24.32 

mush 1529 80.67 72.07 17.27 549 78.25 66.85 18.58 

onion 1748 85.24 72.37 12.53 1056 88.61 84.00 10.80 

parsley 83 62.16 55.42 33.73 231 66.50 56.71 28.57 

spaghetti 167 71.43 71.86 28.74 152 72.25 82.24 31.58 

 Table 7.7:  Detailed frame-by-frame audio-based food recognition results (subject independent). 

As detailed in Table 7.7 the highest recall and precision rates (i.e. approx. 80%) are achieved for 

chopping courgette, which is also consistent with slicing courgette, and a low false positive rate was 

maintained. High rates are also achieved for slicing onion, which has 84% and 88% for recall and 

precision respectively, and the lowest false positive rate (i.e ~10%). Parsley, however, has the lowest 

recognition rate using audio alone. Chopping parsley had 55% and 62% for recall and precision and a 

false positive rate of over 30% (the highest of the ingredients). Slicing parley was moderately better with 

precision and recall rates of 66% and 56% respectively.  In conclusion, slicing food ingredients had 

slightly higher recognition rates than chopping food ingredients despite a slightly higher false positive 
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rate. With the overall precision and recall of over 70% for chopping and slicing food ingredients, audio-

based classification still demonstrates potential for food recognition in this domain.       

7.6 Event-timing analysis 

As already explained, a standard frame-by-frame evaluation procedure simply counts the number of 

frames which belong to four statistical performance metrics categories: true positive, false positive, true 

negative and false negative. However, these metrics do not adequately described what we term event 

recognition errors. For some domains, the inaccurate recognition of events (i.e. too many or too few 

events) could be significant, even where the frame-by-frame performance is high. As our framework is 

designed to underpin situated services, recognizing contextual information must include the correct 

characterisation (and segmentation) of events. Therefore, in addition to a frame-by-frame analysis, we 

have evaluated the performance of KitchenSense in relation to event-timing.  

We use the term predicted sequence to describe the sequence of activities (including unknown activities) 

that are recognized by KitchenSense (described in Chapter 6). Each predicted sequence is compared with 

an activity sequence in the ground truth, which we called the ground truth sequence, in computing our 

performance metric. For simplicity, each evaluation is treated as a binary classification problem with one 

activity against all other activities (i.e. chopping activity vs. not-chopping activity). In this way, at each 

point in time, only two classes are considered. The results of comparisons are then aggregated for the 

overall performance.           

The event-timing evaluation procedure takes as its inputs a predicted sequence, which includes detected 

events and frames, and the ground truth sequence. Both sequences are partitioned into the sequences of 

segments ordered by time. A dynamic time warping algorithm is implemented to align and compare two 

sequences of segments. If a segment contains a whole predicted event that is not matched with any ground 

truth event, then this is classed an insertion error. If a segment contains a whole ground truth event and it 

is not matched with any predicted event, then it is considered a deletion error. A segment containing a 

part of a ground truth event which does not match with the predicted event, we term this an underfill 

error. A segment for which a part of a predicted event does not match with the ground truth event is 

termed an overfill error. If a segment contains a part of an event, but all frames in this part have incorrect 

labels, this is terms a substitution error. Under this evaluation scheme, some false positive frames of the 

frame-by-frame performance will evaluated as overfill errors, and false negative frames as underfill 

errors. 
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Figure 7.14: Event error detection (insertion and deletion). 

Figure 7.14 presents a summary of the event errors. Here, two kinds of event errors apply, insertion and 

deletion. An insertion error occurs when there is no ground truth event for a whole corresponding 

predicted event, while a deletion error occurs when no predicted event is found for a ground truth event. 

Overall, as shown in Figure 7.14, the number of insertion errors for the subject dependent protocol is 

significantly less than the number of errors generated by the subject independent protocol. However, 

deletion errors are only slightly different, which indicates that they are a more serious problem.   

7.6.1 Event-timing activity recognition results 

Figure 7.15 presents the overall results for the event-timing performance of the recognition framework.  

 

 

 

 

Figure 7.15: Overall event-timing activity recognition results. 
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Table 7.8: Detailed event-timing errors, sums are shown at the bottom of the table. 

Utensil  Activity 

Ground Insertion Deletion Overfill Underfill 

 Event (%) fr (%) Event fr. (%) fr.(%) fr.(%) 

Big_Bowl 

pour 21 4.76 3.57 9.52 7.14 1.79 16.07 

wash 42 2.38 4.48 28.57 32.84 0 0 

unknown 375 2.93 1.30 12.00 5.55 5.55 6.77 

Chef_Knife 

chop 473 3.17 0.34 15.22 4.06 0.50 5.89 

slice 263 2.66 1.72 5.32 5.07 2.46 2.31 

scrap 65 1.54 0.99 0 0 0.33 10.93 

unknown 94 12.77 0.15 18.09 2.12 1.93 7.28 

Colander 

drain 63 6.35 1.82 7.94 10.54 1.82 8.73 

wash 9 0 0 66.67 100.00 0 0 

unknown 422 3.79 5.79 7.58 23.82 5.58 28.33 

Frying_Pan_200 
shake 118 9.32 3.87 5.08 10.42 0 2.08 

unknown 413 3.39 2.96 6.30 21.50 3.12 8.55 

Frying_Pan_240 
shake 397 1.26 11.37 1.26 18.48 5.21 4.27 

unknown 397 7.81 2.97 5.29 9.20 0.54 12.23 

Frying_Pan_280 
shake 601 1.50 18.62 2.33 11.70 9.04 7.98 

unknown 444 0.90 4.88 14.64 10.37 1.70 5.80 

Olive_Oil 
pour 118 7.63 4.34 4.24 0 0.87 3.47 

unknown 368 3.26 1.15 1.63 1.84 0.29 2.43 

Peeler 
peel 60 0 0 5.00 1.38 0 0.20 

unknown 368 4.89 5.50 8.97 8.30 1.71 6.13 

Salt 
add 97 0 0 1.03 1.46 0 3.50 

unknown 495 15.56 2.51 4.24 5.50 1.26 7.95 

Sauce_Pan_180 move 463 0.22 0.83 3.24 4.23 0.51 2.05 

Sauce_Pan_180_lid move 251 0.80 0.28 4.38 2.00 0.49 8.69 

Sauce_Pan_200 move 510 1.37 2.34 9.22 12.58 3.21 3.82 

Sauce_Pan_200_lid move 172 1.74 0.92 5.23 3.91 0.46 7.28 

Sieve 

drain 33 3.03 0.21 36.36 18.3 0.21 1.03 

wash 3 0 0 33.33 6.90 0 0 

unknown 530 6.04 2.67 11.70 8.59 3.25 6.71 

Slicing_Knife 

chop 98 3.06 1.59 9.18 8.53 0.46 0.68 

slice 43 2.33 1.60 4.65 3.41 0.40 10.82 

scrap 21 0 0 0 0 7.50 2.50 

unknown 316 4.75 2.99 18.04 12.47 7.44 8.26 

Slotted_Spoon 

stir 291 2.75 0.82 4.12 1.72 0.42 0.59 

scoop 97 1.03 3.38 1.03 1.35 2.70 15.54 

tap 32 0 0 6.25 6.02 10.84 25.30 

press 63 1.59 2.07 4.76 4.83 4.83 3.45 

unknown 67 7.46 0.39 5.97 0.66 4.90 3.70 

Small_Knife 

chop 56 5.36 2.33 3.57 1.94 0.78 5.04 

slice 244 0.41 0.10 2.87 1.98 1.62 0.47 

scrap 71 5.63 29.73 0 0 5.41 8.11 

unknown 178 10.67 2.74 10.67 6.28 1.60 13.42 

Soy sauce 
pour 50 0 0 4.00 2.20 0 0.63 

unknown 271 1.85 0.53 4.80 3.02 0.46 7.54 

Spatula 

stir 427 0.70 0.34 2.58 1.35 0.21 0.50 

scoop 72 0 0 8.33 10.58 0.68 1.02 

turn 211 5.69 5.10 11.37 9.77 1.02 5.10 

tap 35 2.86 3.70 0 0 1.23 0 

press 61 0 0 1.64 6.50 0.41 8.54 

unknown 322 2.48 0.44 16.15 2.32 0.44 1.79 

Spoon 

stir 192 4.17 0.59 0.52 0.62 0.07 1.11 

scoop 78 0 0 1.28 1.99 0 0.28 

tap 34 0 0 11.76 7.77 0 0 

unknown 202 7.43 1.08 10.40 1.55 0.07 5.27 

Tap_Water 
in use 486 0.21 0.21 27.16 11.97 0.49 10.87 

unknown 5 0 0 20 5.53 2.89 6.92 

Whisk 

whisk 35 5.71 1.69 8.57 5.08 1.02 1.69 

tap 4 0 0 0 0 0 0 

unknown 202 0.99 3.92 1.98 4.58 4.25 18.95 

Total (subj. independent)  11929 3.26 1.17 8.06 4.78 1.56 5.20 

Total (subj. dependent)   2.25 0.78 7.75 2.22 0.88 3.12 
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Two metrics, true negative and true positive, are included in the recognition rate. True positive measures 

the proportion of frames correctly classified as they are labelled in the ground truth sequence at a certain 

time. For example, a chop at time t is recognized as a chop (i.e. both chop frames appeared in both 

predicted and ground truth sequence at time t). True negative mean correctly classified as not being the 

activity of concern, for example, if not chopping at a time is correctly classified as not chopping. 

Therefore, from our charts we can see that the overall accuracy was 76.28%  (i.e. 37.16+39.11%) for the 

subject independent protocol and 87.84% (i.e. 40.9+46.94%) for the subject dependent protocol. These 

are lower than we calculated using the frame-by-frame evaluation. Five other metrics measure the 

incorrect event and timing classification. The incorrect recognition rate (error rate) for timing and event 

errors is 23.91% for the subject independent protocol and 12.2% for the subject dependent protocol. 

Overall, the recognition rates are reasonable, given that our study was conducted in a real-world setting 

(unlike comparable studies which are usually conducted in much more controlled environments). 

Deletion and substitution errors for the subject dependent protocol are significantly less than those for the 

subject independent protocol, 5% compared to 2.2% for deletion, and 11% compared to 5% for 

substitution. Using Table 7.8 to consider this in more detail we see that washing with the colander has 

100% deletion, which led to a 0% recognition rate. This problem was not apparent in the confusion matrix 

of the frame-by-frame evaluation as it was the result of an event deletion. Other activities have high 

deletion errors (10%-30%) including washing with the big bowl, draining spaghetti using colander, and 

draining spaghetti using the sieve. However, we should accept the possibility that in these cases the 

sensors may have got wet leading to the signal being dropped.       

As shown in Table 7.8, scoop, stir, pour, add, chop and slice have between 0-3% event-timing error rates, 

which are extremely low. In particular, scraping and pouring oil have a 0% deletion time error (i.e. no 

frame or event is missing when classified). In contrast, the colander, big bowl and sieve have high 

deletion error rates. The frying pan and saucepan activities have moderate deletion error rates (5-10%) 

although these are relatively high compared to other utensils. It is unclear whether the heat from hob 

might be causing signal drops. High insertion errors rates are apparent for scraping with the small knife 

(29%) and tap water (27%) even though there are on a small number of insertion events. This can be 

explained by the fact that the events inserted are relatively long. In practice, sensors attached to a tap 

faucet will move in a distinct manner, but only for relatively short durations when the user turns the tap 

on or off. Similarly, scraping with the small knife is similar to a number of unknown movements. 

Therefore, a number of unknown events were readily classified as scraping and led to insertion and 
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substitution errors. By contrast, scraping with the chef knife and slicing knife are quite distinct and very 

few unknown events were inserted. Subjects often scraped with a “push” action, pushing chopped 

ingredients across the chopping board to make space to chop other ingredients with the chef knife or the 

slicing knife. 

Unknown activities had high overfill and underfill error rates with considerably more underfills than 

overfills (i.e. 5.2% vs 1.56% for subject independent and 3.12% vs. 0.88% for subject dependent). 

Overfill and underfill corresponds to misalignment between predicted and ground truth sequences. These 

can in part be explained by the occurrence of noisy movements (actually unknown activities) at the 

beginning and end of segments that were not annotated by the coders.  

7.6.2 Event-timing results for image-based food recognition 

The events of placing a food ingredient on the FCB (before it is chopped) are listed in Table 7.9. These 

events are detected by the food image classification component of the recognition framework.  The 

overall results are shown in the figure 7.16.   

 

 

 

 

Figure 7.16: Event-timing k-NN results for image food recognition. 

As shown in Figure 7.16, the overall recognition accuracy rate (true positive + true negative) was 55.48% 

for the subject independent protocol and 63.42% for the subject dependent protocol. These are 

considerably lower than the frame-by-frame analysis results. As seen, substitution (incorrectly classified) 

and insertion errors mainly contribute to the event-timing errors. This can be explained from our 

observations of collected videos, that users sometimes placed non-food items such as a knife or a spoon 

on the FCB. These items were not annotated by coders (not part of our annotation protocol) and therefore 

were omitted from the ground truth – although they would have been likely to be identified by the 

recognition framework.  Such cases would have led to insertion errors. As seen the chart, deletion error 

rates are low (~1%) primarily because the FCB reliably recognises such events in general.  
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Food  

Ground Truth Insertion(%) Deletion(%) Overfill(%) Underfill(%) Substitution(%) 

event time event time  event time Time Time Time 

basil 27 637 48.15 14.60 3.70 0.94 2.98 5.65 20.09 

chive 39 1125 10.26 13.07 2.50 0.80 5.24 7.91 24.00 

courgette 35 260 14.29 5.77 2.86 4.23 6.54 10.38 2.31 

ham 35 527 5.71 3.98 8.57 0.57 17.27 5.88 5.31 

mushroom 93 821 12.90 13.15 2.15 0.73 3.05 11.45 11.45 

onion 52 409 11.54 10.27 1.92 2.20 3.18 7.09 7.09 

parsley 24 744 37.50 13.58 25.00 1.48 10.89 9.01 22.45 

spaghetti 35 220 25.71 14.09 5.71 6.36 17.73 17.27 3.64 

Table 7.9: Detailed event-timing errors for kNN subject independent image-based food recognition  

From Table 7.9 we can see that more than 20% of basil, chive and parsley is substituted by other foods or 

each other. As already described, from the collected images it can readily be seen that the appearance of 

basil and parley are quite similar in both shape and colour. 11% of mushroom and 7% of onion are also 

substituted. The lowest substitution rate is achieved by courgette (2.3%) and spaghetti (3.6%) which both 

have distinct shapes and colours. Most foods have relatively high insertion error rates (10%-14%) except 

for courgette and ham. This is also because one single courgette was chopped or sliced at a time (actually 

there is just one per recipe), and the ham often entirely covered FCB, considerably reducing the 

possibility of noise. Deletion time, however, was high for both courgette and spaghetti and spaghetti also 

had high overfill and underfill errors (approximately 17%).  

Food  Ground truth Insertion(%) Deletion(%) Overfill(%) Underfill(%) Subst.(%) 

event Time event time event time Time Time time 

basil 27 637 18.52 9.89 3.70 2.04 5.18 5.65 17.9 

chive 39 1125 12.82 10.76 10.26 0.98 7.91 8.44 14.49 

courgette 35 260 5.71 3.46 8.57 0.77 2.31 1.92 2.69 

ham 35 527 2.86 4.36 5.71 0.57 1.33 1.52 1.33 

mushroom 93 821 4.30 9.62 2.15 0.85 4.38 5.85 9.26 

onion 52 409 11.54 7.82 3.85 1.71 3.67 4.65 6.36 

parsley 24 744 12.5 7.66 4.17 1.48 5.78 6.32 16.94 

spaghetti 35 220 8.57 8.18 2.86 0.91 2.73 2.27 6.82 

Table 7.10: Detailed event-timing errors for SVM subject independent image-based food recognition. 

SVM performance for event-time food recognition based on images is presented in Figure 7.17, the 

detailed results for which are presented in Table 7.10. The results show significant improvement over the 

k-NN‟s performance. For the subject independent protocol, the SVM‟s overall accuracy was 68.62%, 
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which is a 13% improvement on the kNN. Subject dependent performance of SVM was 76.79% for 

overall accuracy which was a 12% improvement in the k-NN.      

  

Figure 7.17: Event-timing SVM results for food recognition based on images. 

In summary, the overall subject dependent accuracy for food recognition based on images using the kNN 

was 55.5% and these results were significantly improved using the linear SVM to 68.6% and 76.8% for 

the subject independent and the subject dependent protocols respectively. These results are promising for 

optical fiber imaging for food recognition in the kitchen under ambient lighting conditions.           

 

Figure 7.18: Audio event-timing food recognition results for chooping. 

7.6.3 Event-timing results for food recognition based on audio 

7.6.3.1 Chopping food event-timing results 

Overall, the recognition rates were approximately 70% for the subject independent protocol and 82.07% 

for the subject dependent protocol. Timing errors were approximately 30% and 18% for both evaluations, 

and were dominated by substitution and insertion. The high substitution time indicates that a considerable 

number of audio frames were misclassified. Using Table 7.11 to consider these results in more detail it is 

apparent that mushroom, parsley, and chive have a high substitution time of more than 10%, while ham 
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and courgette both have low substitution and deletion time errors. The high insertion and underfill time 

errors for onion is probably due to the users who chopped the onion into smaller parts and then made 

chopped each part individually (this can produce very short chopping events). Less timing errors, hence 

higher accuracy, was achieved for courgette and ham, which is consistent with frame-by-frame results.  

Food 

insertion deletion overfill underfill substitution 

event time event time Time time time 

Basil 5.71 8.24 2.86 1.08 2.15 0.72 11.47 

Chive 7.32 9.42 2.44 0.65 2.92 3.57 12.66 

Courgette 13.89 0.46 0.10 0.27 1.37 0.46 0.73 

Ham 8.33 1.80 0.33 2.99 2.99 1.80 2.99 

Mushroom 8.87 10.73 4.81 4.38 8.44 7.13 14.98 

Onion 5.13 10.47 3.85 2.23 4.52 13.22 5.66 

Parsley 9.68 9.64 3.23 3.61 4.82 2.41 14.46 

Spaghetti 3.70 11.38 7.01 2.40 7.78 3.59 6.59 

Table 7.11: Event-timing errors for chopping food recognition based on audio (all figures in 

percentages). 

  

Figure 7.19: Audio event-timing results for food recognition with the slicing activity. 

7.6.3.2 Event-timing results for slicing food   

The overall event-timing results for audio-based recognition of food with the slicing activity are shown in 

Figure 7.19. In general, the results are consistent with the result for chopping (but slightly better). As 

shown in Figure 7.18, overall accuracy for the subject independent protocol was 70.6% and for the 

subject dependent protocol was 81.4%. This can be explained that sounds produced by slicing are more 

distinct and less noisy. In fact, most noise during chopping or slicing was made by the contact between 

the knife‟s blade and the surface chopping board. The fact that this effect is slightly less for slicing than 

for chopping probably explains the lower overall event and timing errors. As shown in the chart Figure 



 

99 

 

7.16, substitution and insertion time, dominate event-timing errors at 15% for the subject independent 

protocol and 10% for the subject dependent protocol (again these are a slight improvement on the 

chopping food activity).  The results are also better than for image based food recognition.   

 Food 

Insertion deletion Overfill underfill substitution 

event time event time Time time time 

basil 3.23 9.61 3.23 2.70 3.30 1.20 9.31 

chive 7.14 6.34 2.38 0.91 2.72 0.91 11.48 

courgette 4.26 2.22 0.1 0.74 1.98 0.25 0.49 

ham 4.08 1.64 2.04 1.09 1.09 0.82 1.37 

mushroom 13.04 15.66 7.61 5.83 11.48 11.11 11.84 

onion 4.82 7.86 2.41 2.65 6.06 9.19 9.56 

parsley 8.57 0.87 8.47 4.76 5.63 9.09 8.23 

spaghetti 14.29 18.42 10.2 1.97 7.89 1.32 2.63 

Table 7.12: Event-timing errors for food recognition based on audio for slicing (all figures in 

percentages). 

As detailed in Table 7.12, high insertion and substitution event timing errors are apparent for chive, 

mushroom and onion. In contrast, ham and courgette have low insertion and substitution event timing 

errors. These results are consistent with chopping food activity results. Also slicing spaghetti has less 

substitution timing errors than chopping spaghetti (i.e. 2.6% vs. 6.5%). However, slicing spaghetti has 

more insertion time than chopping spaghetti (i.e. 18.4% vs. 11.3%).  

7.7 Conclusion and discussion 

This chapter constitutes the culmination of our research in that we presented the results of a real-world 

evaluation of KitchenSense‟s performance in a full-blown and naturalistic study. A dataset was collected 

from 12 subjects who each prepared a Spaghetti Röstie three times in the French Kitchen. The kitchen 

setting for the experiment was almost equivalent to a home-based kitchen and the subjects performed 

their cooking and food preparation activities in a natural manner. No time constraints were imposed on 

the cooking time and no instructions were given to the subject when cooking. We collected videos for 30 

hours food preparation and these videos were independently annotated by two (trained) coders. Annotated 

data was then subjected to an inter-rater reliability procedure. 

We evaluated the accuracy of both activity recognition and food recognition. Both aspects rigorously 

analysed using both frame-by-frame and event-timing approaches. Accelerometer data were used for 

evaluating activity recognition. Image and audio data are for food recognition. Each evaluation was 

carried out under the subject independent protocol and subject dependent protocols. For the frame-by 
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frame analysis of activity recognition, subject independent protocol performance results of 79% for recall 

and 87% for precision were achieved. For the subject dependent protocol (on the open dataset of 59 

activities including unknown activities) result of 84% for recall and 92% for precision were achieved. An 

evaluation on the closed dataset of 41 activities (excluding unknown activities) produced consistent 

results that were just 2% lower than those for the open dataset. The frame-by-frame analysis for food 

recognition has also demonstrated the potential for optical and audio sensing within a chopping board. 

Generally, food image classification results were also very promising. The k-NN classifier produced 

results of 70% for recall and 81.5% for precision  (subject independent), and 74% for recall and 89% for 

precision (subject dependent). The SVM‟s results were 73% for recall and 82% for precision (subject 

independent), and 79% for recall and 90% for precision (subject dependent).  Moreover, audio food 

classification results were around 70% for recall and 80% for precision for both chopping and slicing 

food. These results are very promissing for practical AR-based applications. 

In addition to the frame-by-frame analysis, an evaluation of event-timing was carried out as the 

recognition of events and their timings is very important to a number of the situated support services that 

we envisaged in our motivation. The results for event-timing activity recognition were slightly lower than 

those achieved with the frame-by-frame approach, as five more errors relating to event and timing were 

included. Activity recognition performance maintained overall accuracies of around 76% (subject 

independent) and 88% (subject dependent). Note that for image-based recognition the SVM‟s results 

achieved 68% accuracy (subject independent) and 77% (subject dependent) notably higher than the k-NN, 

but also notably lower than those of the frame-by-frame analysis. However, the audio-based recognition 

results were considerably better at 70% (subject independent) and 80% (subject dependent) for both 

chopping and slicing food ingredients. In short, the performance achieved by KitchenSense has gone 

some way towards demonstrating the feasibility of activity and food recognition using pervasive sensing 

in the kitchen contexts.  

The results also point to a number of areas where improvement is required. The event-timing deletion 

errors are probably the most serious error category, and the level of these is still high for our 

accelerometer-based activity recognition. Likewise, as with most vision systems, image-based food 

recognition performance is significantly affected by the ambient light-conditions. Thus the recognition 

algorithm should be improved to be more adaptive as ambient lighting changes. Moreover, one 

phenomenon that had a direct impact on the performance results was the noise generated by non-food 

items being placed on the FCB. To this end the rejection of unknown items could be improved (i.e. with 

adaptive-thresholds). Finally, one of the most effective means of improving event-timing recognition rates 
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for both food and activities would be to use smoothing. As seen in the evaluation section, event-timing 

errors could be significantly reduced by smoothing over detected events.  
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Chapter 8: Conclusion 

8.1 Key contributions 

8.1.1 Human activity recognition 

On addressing the problem of human activity recognition in the kitchen, our main contributions relate to 

the development of pervasive sensing technologies, algorithms, and empirical evaluation of our activity 

recognition framework.  

Rapid prototyping of Wii-Remote instrumented utensils: Our preliminary study used modified versions of 

4 Wii Remotes to instrument 3 knives and one large serving spoon. This involved retaining the Wii-

Remote‟s BCM2042printed circuit board, on-board 8051 microprocessor, and ADXL330 accelerometer 

and Bluetooth HID communication, but removing the cases, buttons and IR camera. This results was in 

effect a wireless sensor unit that was small enough to enable us to embed them into purpose made utensil 

handles. The handles were designed (using 3D modeling software) and then printed out using Fused 

Deposition Modelling rapid prototyping technology. This was the first step, and our first successful 

attempt, to fulfill the requirement of producing a sensing platform that maintained the full functionality of 

the utensil but that was invisible to users (i.e. the subjects of our studies).        

The collection and annotation of a real-world dataset with Wii-Remote instrumented utensils: using the 

first version of our modified utensils were collected our first dataset. This dataset was collected from 20 

subjects whilst preparing a mixed salad and sandwich under semi-realistic settings in the Ambient 

Kitchen. The subjects were given food ingredients and the instrumented utensils and were asked to 

perform activities in a natural manner without any (apparent) observation or instruction from members of 

the research team. The collected videos were independently annotated by three coders using 12 food 

preparation activity labels.            

Activity classification of accelerometer data for 4 Wii-Remote instrumented utensils: In our the first 

attempt at activity recognition in the kitchen, several classification algorithms, including a Decision Tree 

C4.5, Naïve Bayes, and a Bayesian network, were used. The feature vectors were extracted from different 

sized sliding windows for training and testing those classifiers. Through an initial frame-by-frame and 

subject independent evaluation we established that the Decision Tree C4.5‟s performance was the highest 

with an activity recognition rate of 82.9% (without unknown activities). 

Real-time detection of 12 activities including unknown and idle activities: Using the dataset collected in 

our first study (Wii Remote instrumented utensils) and with the inclusion of unknown and idle activities 

(i.e. open dataset), we explored the feasibility of developing a recognition algorithm for food preparation 
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activities in real-time. A class-based threshold dynamic time warping recognition system (CBT-DTW) 

was developed and implemented. Our findings shows that a CBT-DTW activity recognition system 

performed well on this real-world dataset even when a number of activities had a small number of 

training examples (such imbalance is typical of real-world dataset. On a frame-by-frame evaluation, the 

system could detect 12 activities with 82% recall and 83% precision (subject independent) in real-time.   

The development of a set of 18 utensils and appliances instrumented with 22 WAX3 accelerometers: Our 

improved set of kitchen artefacts contained most common utensil used in everyday kitchen. The use of the 

OpenMovement WAX3 accelerometers made it extremely easy to embed (and thereby hide) these sensors 

inside utensils that retained the look and feel of a consumer product. The handles and various parts of 

utensils (e.g. lids of the saucepans) were re-designed and again printed out using the 3D FDM prototyping 

technology. 

The development of the KitchenSense activity framework: the development of a scalable four tier 

publishing-subscribe architecture by which the basic activity recognition. Tier 1 comprises real-time 

fusion data streams. Tier 2 is the Event Detector layer which can detect the events such as utensils and 

food placement on the chopping board. Tier 3 is the core of the framework and includes the Feature 

Extractor (FE) and the Recognizer components (and the pre-trained data.  Tier 4 contains allows the 

implementation of situated services lie behind the motivation for this research. The system was 

implemented and deployed in both the Ambient Kitchen 2.0 and its sibling installation the French Kitchen 

(where we conducted our main study). 

The collection and annotation of a realistic, complex dataset using KitchenSense: given a recipe, a set of 

18 instrumented utensils, and 4 further instrumented objects, 12 subjects were asked to prepare the 

Spaghetti Röstie recipe 3 times each (i.e. 3 cooking sessions) without observation or instruction members 

of the research team.  Approximate 30 hours of food preparation time was video recorded, and the footage 

was annotated by two independent coders. The annotation was then evaluated using an agreement inter-

rater reliability scheme. The dataset consisted of 83,076 frames (one second per frame) of 59 activities 

including unknown activities, 14,229 images of 8 food ingredients (from the FCB), and 8,798 audio 

frames for the chopping and slicing foods. This constitutes a genuinely unique and complex dataset 

collected under naturalistic conditions in a kitchen.          

Real-time recognition of 59 fine-grained food preparation activities including unknown activities: 

Through a rigorous frame-by-frame analysis, we established an activity recognition performance of 

79.4% (recall) and 87.6% (precision) for the subject independent protocol, and 84% (recall) and 92% 

(precision) for the subject dependent protocol. These results demonstrated the feasibility of pervasive 
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sensing technologies and the recognition of larger numbers of fine-grained food preparation activities in 

the kitchen. The results have the potential to underpin practical applications that utilize context 

recognition such as situated support and prompting services. 

Continuous (event-timing) real-time recognition of 59 fine-grained food preparation activities: We 

argued that event information is important for many of our envisage applications and thus recognised that 

some classes of error are likely to be missed if we only evaluated at the frame-by-frame level. We 

therefore designed and conducted a rigorous event-timing analysis for continuous activity recognition. 

This resulted in recognition accuracies of 76.3% (subject independent) and 87.8% (subject dependent) 

and we characterised the nature and likely source of our event and timing errors, that is, the occurrence 

and likely source of insertion, deletion, substitution, overfill, underfill, and substitution errors. 

As a result, we envisage that many of the above contributions will form the basis of next generation 

applications that utilize real-time activity recognition, including prompting people with dementia, tasks-

based language learning, user identification, and healthier cooking in the kitchen. Indeed, although not 

reported in this thesis, we were involved in the development of prototypes for many of these applications 

and these were developed during the course of this research [16], [26], [28], [69], [70], [71], [76], [77], 

[78] and [79]. 

8.1.2 Food recognition 

The development of the fiber chopping board (FCB): the FCB is an instrumented chopping board 

comprising 600 embedded optical fibers, a webcam camera for food image sensing and a microphone for 

discriminating foods being chopped or sliced. With the integration of optical fibers into the FCB, we were 

successful in developing the first embedded sensing device for fresh foods (as they are prepared). Two 

algorithms, k-Nearest Neighbour and Support Vector Machines, were developed for classifying the food 

images captured by the FCB and a Gaussian Mixture Model algorithm was used for audio-based food 

recognition based on the FCB‟s audio capture capability.  In two pilot studies we established the 

reliability of the FCB as a food recognition technology.    

The recognition of food ingredients using optical fiber sensing images: Our frame-by-frame analysis of 

14,229 images of 8 food ingredients in our main study yielded recognition rated of the k-Nearest 

Neighbor of 70% (recall) and (81.5%) precision under the subject independent protocol, and 74% (recall) 

and 89% (precision) under the subject dependent protocol. The Support Vector Machine slightly 

outperformed the k-NN with subject independent results of 82.7% (precision) and 72.7% (recall), and 

subject dependent results of 90.2% (precision) and 78.8% (recall). These results demonstrate considerable 

and promising for embedded optical sensing in this domain.       
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Audio-based classification of food on the chopping board: Using the FCB‟s audio capture capability we 

demonstrated the feasibility of using the sounds produced when a food is chopped and sliced to recognise 

the food. These sounds were first pre-processed (i.e. noise reduction) and then a large feature vector was 

extracted. A Gaussian Mixture Model algorithm was trained and tested using these features and a frame-

by-frame analysis on 5,375 images. For chopping we achieved subject independent recognition rates of 

72% (recall) and 81.3% (precision) and subject dependent rates of 73% (recall) and 86.7% (precision). 

For slicing we achieved subject independent recognition rates of 77% (recall) and 79.6% (precision) and 

subject dependent rates of 82.7% (recall) and 83.4% (precision). 

Continuous recognition of food ingredients from embedded imaging: An evaluation of event-timing 

recognition for 8 different food ingredients using the optical fiber sensed images of the FCB demonstrated 

a subject independent accuracy of 55.5% for k-NN and 68.6% for SVM, and a subject dependent 

accuracy is 63.4% for k-NN and 76.8% for SVM.  

Continuous recognition of food ingredients using sounds from chopping activities. Features extracted 

from food chopping sounds captured by the microphone embedded inside the FCB were classified using a 

pre-trained GMM classifier and an event-timing analysis yielded a subject independent accuracy of 70% 

and subject dependent accuracy of 82%. 

Continuous recognition of food ingredients using sounds from slicing activities: Features extracted from 

food slicing sounds captured by the microphone embedded inside the FCB were classified using a pre-

trained GMM classifier and an event-timing analysis yielded a subject independent accuracy of 70.6% 

and subject dependent accuracy of 81.4%. 

8.2 Limitations and discussions 

8.2.1 Limitations on activity recognition 

The results of our design, implementation and experimental studies of activity recognition are bound by a 

number of limitations, some of which are feasible topics for future development and research: 

 Although our instrumented utensils prototypes had most of the functional and aesthetic qualities 

of regular cooking utensils, a key deficiency was their lack of full water resistance. Reflection on 

some of the evaluation results led us to believe that some of the embedded sensors, particularly 

those in the handles of the sieve and colander utensils, might have got wet when being washed or 

being used to drain ingredients. Such cases are likely to have led to dropped signals and will have 

impacted negatively on the evaluation of the recognition framework (i.e. event deletion).    
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 Although a most activities have good recognition rates (i.e. more than 70% accuracy), a few 

activities had notably low accuracies. For instance, draining with the sieve (53%), draining with 

the colander (43%), washing the colander (0%), chopping with the small knife (67%), and 

washing the big bowl (56%). While many of the low accuracy activities are related to draining or 

washing activities, and therefore might be due to signal losses when sensors got wet, further 

detailed exploration is required as it may be that the lexicon of activity labels for utensils such as 

the small knife is inappropriate (i.e. the fine grained set of activities used for the small knife is 

unrealistically large and we should simply have one activity for the small knife, for example, cut).   

 A small number of activities have high false positive rates (i.e. more than 30%). For example, 

draining with the colander (33.4%), washing the sieve (33.3%), chopping with the small knife 

(37.9%), pouring with the big bowl (37.5), this might explained in the same manner and the low 

activity recognition rates.     

 In general, substitution and underfill errors caused by event and timing were relatively high for 

continuous activity recognition (i.e. 11% substitution and 5.2% underfill for the subject 

independent protocol, and 5.2% substitution and 3.12% underfill for the subject dependent 

protocol). 

8.2.2 Limitations on food recognition 

The fiber chopping board (FCB) is the first prototype of its kind for performing embedded food 

recognition. Although it fulfilled many of the functionalities of a normal chopping board (in that the 

sensing infrastructure was largely “invisible” to users), several limitations were apparent: 

 As all the components of the board were made of acrylic glass, the weight of the first prototype 

was rather heavier than a normal (e.g. wooden) chopping board. 

 The camera and microphone embedded inside the FCB was wired. This wired quality of the 

board, and its unusually high weight, is potentially incongruous to a regular kitchen user. Indeed 

chopping boards are usually frequently washed between the preparation of ingredients and that 

users did not attempt to do this is indicative of the fact that they were not using it completely 

naturalistically. Replacement by a wireless webcam is a readily available solution. 

 The recognition rates of some foods such as basil and parsley are still not high (i.e. between 50-

60% accuracy), without higher resolution imaging (i.e. an alternative imaging technology to fiber 

optics) this is unlikely to be achievable. However, the rise in popularity of multi-touch interaction 

more generally means that surface-based imaging technology is a matter of considerable 

commercial interest. 
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 In general, the overall continuous food recognition accuracies of 68.6% for image classification 

and 70% for audio classification (subject independent) are still quite low and they need to be 

further improved.  Specific cases such as the high false positives rates for mushrooms and parsley 

(10-20%) indicate that the sensitivity of the colour imaging (and the impact of ambient light on 

this) and the resolution of the imaging are the primary factors here. 

 In general, the two most common event-timing errors for food recognition were substitution and 

insertion; 5-9% for insertions and 9-15% for substitutions. This significantly impacted on the 

overall accuracy of the continuous food recognition.     

8.3 Future work 

8.3.1 Deployable pervasive sensing technology  

Some of the simplest next steps for this research relate to practical issues of deployment, and changes to 

the design of the sensors and utensils that impact on this. Firstly, as already described, utensils need to be 

fully water-proof. Furthermore, while the power-saving functionality of the WAX3 sensors means that 

they can be deployed for weeks without recharging, a solution for charging the sensor batteries that does 

not require the utensils to be physically dismantled is required. Similarly, there are a number of obvious 

improvements that could be made to the FCB; the wired camera and microphone should be replaced with 

wireless one, and the FCB‟s frames, currently made from acrylic, should be replaced with wood (or a 

lighter weight plastic). As we ultimately intend that KitchenSense will support applications such as 

dietary monitoring, calorie intake estimation and healthier nutrition advice systems, it is likely that food 

ingredients will need to be weighed and KitchenSense should be capable of estimating their weight (post-

preparation) and make this information available to situated support service applications. The integration 

of load sensors in food bearing surfaces is already a feature of a number of other research prototypes and 

this is a relatively simple enhancement for the FCB.        

8.3.2 Recognition algorithms 

Improving the recognition rates for activities and foods as well as reducing the false positive and event-

timing errors are the key issues for the development of the recognition algorithms of the KitchenSense. 

For example, future versions of the activity recognition algorithm should also utilize the concurrent 

movement patterns of utensils as these often directly rate to the activities being performed. For instance, 

washing a food container can be detected with the combination of the sensors embedded in the food 

container and the sensor attached to the tap. Moreover, common sense knowledge of the recipe being 

prepared, and the sub-activities of the recipe, could have a significant impact on recognition rates (i.e. 

people nearly always peel a carrot before chopping it).  
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In the initial experiments, k-Nearest Neighbor and Support Vector Machine algorithms performed 

reasonably well on the food image classification task (i.e. 70%-78% overall accuracies). In order to 

reduce false positives (frame-by-frame analysis) and substitution and insertion errors (event-timing 

analysis) a better rejection schema could be used which is based on an adaptive-threshold and will 

perform better rejection of non-food items placed on, or sensed by, the Fiber Chopping Board. The 

adaptive-thresholds should also be automatically adjusted in relation to the ambient lighting conditions.   

Although the Gaussian Mixture Model algorithm performed well on the food recognition task, using the 

sounds associated with the chopping and slicing food activities, it is highly desirable that both the 

recognition rate and real-time performance is improved. One candidate enhancement would be to address 

the high dimensionality of the audio feature vector used in KitchenSense. Solutions for reducing the 

dimensionality of the feature vector include Principal Component Analysis [94] or the selection of an 

optimised feature set based on feature learning [80]. Furthermore, smoothing sliding windows might be 

considered as a means of improving the accuracy while reducing the incorrect classification rate.  

8.3.3 Recipe tracking 

While KitchenSense has clear potential as a deployable context aware sensing framework, we have not 

actually demonstrated its utility to any of the situated support services that we envisage. The most likely 

candidate would be a recipe tracking service as the monitoring the progression of food preparation steps 

while a user is making a meal in the kitchen is itself likely to be an underpinning service for many other 

applications, such as prompting people during meal preparation, guiding/teaching the novice cook for 

improving cooking skills, automatic cooking video segmentation for creating cooking media, etc.  

To realise recipe tracking our first problem is how to represent a recipe. One possibility is that the recipe 

is simply represented as a sequence of food preparation steps. For example, the Spaghetti Röstie recipe 

can be split into 10 steps: preparing spaghetti, preparing courgette, preparing parsley, preparing ham, 

preparing mushroom, preparing chives, preparing onion, preparing basil, cooking mix, and serving. Each 

step might be a combination of several utensils, activities and food ingredients. For example, the step 

“preparing courgette” would be collection of chef knife, peeler, peeling, chopping or/and slicing, 

scooping and courgette. In this presentation, a step is treated as a high-level activity and its components 

are (in-use) utensils, foods, and low-level activities. 

In order to track the on-going step within a recipe approaches such as hidden Markov models (HMM) are 

required to model the recipe. Food preparation steps that need to be tracked are hidden states. An 

observation can be an in-use utensil, a human activity or a food ingredient. Observations are actually the 

outputs from the KitchenSense framework. The model parameters would be the initial state matrix, state 
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transition matrix, and observation probability matrix. These parameters might be trained either by mining 

recipe knowledge from the web collections of recipes, or collected datasets, using Expectation 

Maximization training algorithms [96] or similar approaches. 
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Appendix A: Data for Slice&Dice and CBT-DTW Experiments 

In the chapter 3 and 4 we described the experiments for Slice&Dice and CBT-DTW systems.  We now 

describe the process of creating the experimental data. The collected dataset for Slice&Dice is stored in: 

http://di.ncl.ac.uk/publicweb/AmbientKitchen/KitchenData/Slice&Dice_dataset/ 

 

 

   

 

 

 

 

 

 

 

 

 

                 Figure A.1: Example of configuration file 

In the \data folder, there are data of 20 subjects each is stored in a separate folder which contains 5 video 

files (from 5 IP cameras), Wii Remote‟s acceleration data log files: bigknife.dat, knife.dat, smallknife.dat, 

spoon.data, and a configuration file named index.xml. Example content of a configuration file is shown in 

the figure A.1.     

 

 

<Capture Time="2009-02-06T17:13:33"> 

<Directory> 

D:/AmbientKitchen-Logger/App/Capture/6-2-2009/Subject1 

</Directory> 

<Configuration> 

<Mote1 type="wiimote"> 

<index>1</index> 

<samplerate>40</samplerate> 

</Mote1> 

<Mote2 type="wiimote"> 

<index>2</index> 

<samplerate>40</samplerate> 

</Mote2> 

<Mote3 type="wiimote"> 

<index>3</index> 

<samplerate>40</samplerate> 

</Mote3> 

<Mote4 type="wiimote"> 

<index>4</index> 

<samplerate>40</samplerate> 

</Mote4> 

<Camera1 type="ipcamera"> 

<address>192.168.168.21</address> 

<password>admin</password> 

<port>8200</port> 

<username>admin</username> 

</Camera1> 

<Camera2 type="ipcamera"> 

<address>192.168.168.22</address> 

<password>admin</password> 

<port>8200</port> 

http://di.ncl.ac.uk/publicweb/AmbientKitchen/KitchenData/Slice&Dice_dataset/
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                  Figure A.2: example of an annotation file 

Annotation files are stored in the \annotationfiles folder. Each file is for each subject and is in Anvil 

format. Each entry in a file contains an entry number, start, end times of the activity and an activity label. 

Example content of an annotation file is shown in the figure A.2. 

The folder \features contains features computed from the acceleration data. As Slice&Dice uses WEKA 

Toolkit for activity classification, all entries in the feature files are organized into WEKA file format (i.e. 

extension with .arff)    

@relation kitchen 

@attribute MeanX real 

@attribute MeanY real 

@attribute MeanZ real 

@attribute MeanPitch real 

@attribute MeanRoll real 

@attribute StandardDeviationX real 

@attribute StandardDeviationY real 

@attribute StandardDeviationZ real 

<el index="1" start="6.84" end="9.2"> 

<attribute name="action">dicing</attribute> 

<comment>Andrew is using the bigknife to slice carrot</comment> 

</el> 

<el index="2" start="11.12" end="18.2"> 

<attribute name="action">dicing</attribute> 

<comment>Andrew is using the bigknife to slice garlic</comment> 

</el> 

<el index="3" start="31.52" end="49.6"> 

<attribute name="action">chopping</attribute> 

<comment>Andrew is using the knife to chop potato</comment> 

</el> 

<el index="4" start="56.96" end="68.64"> 

<attribute name="action">spreading</attribute> 

<comment>Andrew is using the smallknife to spread butter</comment> 

</el> 

<el index="5" start="73.64" end="77.88"> 

<attribute name="action">spreading</attribute> 

<comment>Andrew is using the smallknife to spread butter</comment> 

</el> 

<el index="6" start="79.44" end="83.24"> 

<attribute name="action">spreading</attribute> 

<comment>Andrew is using the smallknife to spread butter</comment> 

</el> 

<el index="7" start="105.8" end="114.6"> 

<attribute name="action">coring</attribute> 

<comment>Andrew is using the smallknife to core pepper</comment> 

</el> 

<el index="8" start="119.56" end="120.76"> 

<attribute name="action">coring</attribute> 

<comment>Andrew is using the smallknife to core pepper</comment> 

</el> 
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@attribute StandardDeviationPitch real 

@attribute StandardDeviationRoll real 

@attribute EnergyX real 

@attribute EnergyY real 

@attribute EnergyZ real 

@attribute EnergyPitch real 

@attribute EnergyRoll real 

@attribute EntropyX real 

@attribute EntropyY real 

@attribute EntropyZ real 

@attribute EntropyPitch real 

@attribute EntropyRoll real 

 

@attribute utensil {smallknife, knife, bigknife, spoon} 

@attribute class {chopping, scraping, peeling, slicing, dicing, coring, 

spreading, stirring, scooping, shaving, eating} 

 

@data 

152.625,127.8125,125.28125,0.574439968995822,0.706056833735001,4.463392767839

28,2.40361056537868,7.15775093430192,0.0155684224098495,0.0230641931313793,23

314.3125,16341.8125,15746.625,0.330223653756252,0.499048209468696,13.18680351

24267,16.6259575367031,10.5299181861608,4.59210007120964,4.59210007120964,-

0.439114858512793,0.31548440720205,-0 

0260434161368887,bigknife,chopping 

 

152.4375,125.703125,122.84375,0.570647638619613,0.714483991030677,4.365614933

77508,4.30726017723274,6.99155461521256,0.0180018682042745,0.0228066239037854

,23256.25,15819.828125,15139.46875,0.325962794720984,0.511007515533012,14.215

3522974959,12.0381004737584,8.98957808647481,4.33216987849966,4.3321698784996

6,0.0554137996989744,0.333639333470558,0.070324807251755,bigknife,chopping 

 

152.609375,125.734375,125.40625,0.56673234667041,0.710025860666836,3.30538002

495553,4.06679460501449,4.24528690873774,0.0123665921286412,0.016301583826574

3,23300.546875,15825.671875,15744.75,0.321338485363426,0.504402464450937,16.5

82294924312,13.42918282878,13.6770499023078,4.91414640475065,5.00078980232065

,0.16779977808857,0.720315327063313,0.299706422881269,bigknife,chopping 

 

Figure A.3: example of a feature file 

The feature files are stored into window sized folders. For example, \Features\subject1\64\ contains the 

files of features computed from the slicing window length of 64 samples. The code implemented in C# for 

feature computation is present in the figure A.4. 

public Feature computeFeatureWindow(AccData[] accdata, int head, int tail, 

int N) 

        { 

            

            // compute the sums of X,Y,Z, pitch, roll, and angle 

 

            sumX = 0; 

            sumY = 0; 

            sumZ = 0; 

            sumX2 = 0; 

            sumY2 = 0; 
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            sumZ2 = 0; 

            sumPitch = 0; 

            sumRoll = 0; 

            sumPitch2 = 0; 

            sumRoll2 = 0; 

 

            for (i = head; i < tail; i++) 

            { 

                sumX = sumX + accdata[i].X; 

                sumY = sumY + accdata[i].Y; 

                sumZ = sumZ + accdata[i].Z; 

                sumX2 = sumX2 + accdata[i].X * accdata[i].X; 

                sumY2 = sumY2 + accdata[i].Y * accdata[i].Y; 

                sumZ2 = sumZ2 + accdata[i].Z * accdata[i].Z; 

                sumPitch = sumPitch + accdata[i].pitch; 

                sumRoll = sumRoll + accdata[i].roll; 

                sumPitch2 = sumPitch2 + accdata[i].pitch * accdata[i].pitch; 

                sumRoll2 = sumRoll2 + accdata[i].roll * accdata[i].roll; 

            } 

 

            // Mean features 

            meanX = sumX / N; 

            meanY = sumY / N; 

            meanZ = sumZ / N; 

            meanPitch = sumPitch / N; 

            meanRoll = sumRoll / N; 

 

 

            // Energy features 

            EnergyX = sumX2 / N; 

            EnergyY = sumY2 / N; 

            EnergyZ = sumZ2 / N; 

            EnergyPitch = sumPitch2 / N; 

            EnergyRoll = sumRoll2 / N; 

 

            // standard deviation 

            sumX1 = 0; 

            sumY1 = 0; 

            sumZ1 = 0; 

            sumPitch1 = 0; 

            sumRoll1 = 0; 

 

            for (i = head; i < tail; i++) 

            { 

                sumX1 = sumX1 + (accdata[i].X - meanX) * (accdata[i].X - 

meanX); 

                sumY1 = sumY1 +(accdata[i].Y - meanY) * (accdata[i].Y - 

meanY); 

                sumZ1 = sumZ1 + (accdata[i].Z - meanZ) * (accdata[i].Z - 

meanZ); 

                sumPitch1 = sumPitch1 + (accdata[i].pitch - meanPitch) * 

(accdata[i].pitch - meanPitch); 

                sumRoll1 = sumRoll1 + (accdata[i].roll - meanRoll) * 

(accdata[i].roll - meanRoll); 

            } 

            standarddeviationX = Math.Sqrt(sumX1 / N); 

            standarddeviationY = Math.Sqrt(sumY1 / N); 
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            standarddeviationZ = Math.Sqrt(sumZ1 / N); 

            standarddeviationPitch = Math.Sqrt(sumPitch1 / N); 

            standarddeviationRoll = Math.Sqrt(sumRoll1 / N); 

 

            // Entropy features 

            double[] PX = new double[N]; 

            double[] PY = new double[N]; 

            double[] PZ = new double[N]; 

            double[] Ppitch = new double[N]; 

            double[] Proll = new double[N]; 

            for (i = head; i < tail; i++) 

             { 

                 PX[i] = 0; 

                 PY[i] = 0; 

                 PZ[i] = 0; 

                 Ppitch[i] = 0; 

                 Proll[i] = 0; 

            }  

            for (i = head; i < tail; i++) 

             { 

                 for (j = head; j < tail; j++) 

                 { 

                     if (accdata[i].X == accdata[j].X) PX[i]++; 

                     if (accdata[i].Y == accdata[j].Y) PY[i]++; 

                     if (accdata[i].Z == accdata[j].Z) PZ[i]++; 

                     if (accdata[i].pitch == accdata[j].pitch) Ppitch[i]++; 

                     if (accdata[i].roll == accdata[j].roll) Proll[i]++; 

                 } 

                 

             } 

            EntropyX = 0; 

            EntropyY = 0; 

            EntropyZ = 0; 

            EntropyPitch = 0; 

            EntropyRoll = 0; 

            for (i = head; i < tail; i++) 

            { 

                PX[i] = PX[i]/N; 

                PY[i] = PY[i] / N; 

                PZ[i] = PZ[i] / N; 

                Ppitch[i] = Ppitch[i] / N; 

                Proll[i] = Proll[i] / N; 

            } 

 

            for (i = head; i < tail; i++) 

            { 

                if (PX[i] >0) 

                    EntropyX = EntropyX - (PX[i] * Math.Log(PX[i])); 

                if (PY[i] > 0) 

                    EntropyY = EntropyY - (PY[i] * Math.Log(PY[i])); 

                if (PZ[i] > 0) 

                    EntropyZ = EntropyZ - (PZ[i] * Math.Log(PZ[i])); 

                if (Ppitch[i] > 0) 

                    EntropyPitch = EntropyPitch - (Ppitch[i] * 

Math.Log(Ppitch[i])); 

                if (Proll[i] > 0) 

                    EntropyRoll = EntropyRoll - (Proll[i] * 
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Math.Log(Proll[i]));  

            } 

 

            // Correlations 

            double sumXY, sumYZ, sumZX; 

            sumXY = 0; 

            sumX2 = 0; 

            sumY2 = 0; 

            sumYZ = 0; 

            sumZ2 = 0; 

            sumZX = 0; 

            for (i = head; i < tail; i++) 

            { 

                sumXY = sumXY + (accdata[i].X * accdata[i].Y); 

                sumYZ = sumYZ + (accdata[i].Y * accdata[i].Z); 

                sumZX = sumZX + (accdata[i].Z * accdata[i].X); 

                sumX2 = sumX2 + (accdata[i].X * accdata[i].X); 

                sumY2 = sumY2 + (accdata[i].Y * accdata[i].Y); 

                sumZ2 = sumZ2 + (accdata[i].Z * accdata[i].Z); 

            } 

 

            correlationXY = (N * sumXY - sumX * sumY); 

            if ((sumX2 - sumX * sumX != 0) && (sumY2 - sumY * sumY != 0)) 

            { 

                correlationXY = correlationXY / (Math.Sqrt(N * sumX2 - sumX * 

sumX) * (Math.Sqrt(N * sumY2 - sumY * sumY))); 

            } 

 

            correlationYZ = (N * sumYZ - sumZ * sumY); 

            if ((sumZ2 - sumZ * sumZ != 0) && (sumY2 - sumY * sumY != 0)) 

            { 

                correlationYZ = correlationYZ / (Math.Sqrt(N * sumZ2 - sumZ * 

sumZ) * (Math.Sqrt(N * sumY2 - sumY * sumY))); 

            } 

 

            correlationZX = (N * sumZX - sumZ * sumX); 

            if ((sumZ2 - sumZ * sumZ != 0) && (sumX2 - sumX * sumX != 0)) 

            { 

                correlationZX = correlationZX / (Math.Sqrt(N * sumZ2 - sumZ * 

sumZ) * (Math.Sqrt(N * sumX2 - sumX * sumX))); 

            }       

        } 

 

Figure A.4: Feature Computation code (implemented in C#) 

The CBT-DTW system used the Slice&Dice‟s dataset with only acceleration value features extracted 

from acceleration signals. Dataset for CBT-DTW‟s experiments with pre-processing from Slice&Dice‟s 

dataset is stored in: http://di.ncl.ac.uk/publicweb/AmbientKitchen/KitchenData/CBTDTW_dataset/ 

In which, the segmented 64-sample frames which are stored in \features folder, and processed data (nicer 

format with fully annotated and re-organized) are stored in \processed_data. Notice that as CBT-DTW 

can deal with idle and unknown activities, there are a significant numbers of unknown and idle frames 

included in \features folder. 
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Appendix B: Data for KitchenSense’s experiments 

The root stores the data for KitchenSense‟s experiments is: 

http://di.ncl.ac.uk/publicweb/AmbientKitchen/KitchenData/KitchenSense_dataset/ 

In which, it has 5 sub-folders:   

\Docs contains guide documents used for annotation process, including annotation protocols, guides on 

how to annotate activities and food ingrdients on chopping board, and activity descriptions. The table A.1 

presents some examples of activity descriptions, and the table A.2 shows the food descriptions for 

annotating the fiber chopping board: 

Activity Utensils Description 

Chopping 

 

(chop) 

Most 

knives 

 

(Bread 

knife,  

chef knife, 

slicing 

knife, 

small 

knife) 

Chopping is a distinct cutting activity where the knife moves up and down causing 

it to make contact with the chopping board and then break contact with the 

chopping board. Some very small forward and backward movements may be seen 

but these do not actually cut the ingredient. 

 

Annotation: Begins: The knife is positioned above the ingredient in preparation. 

Then the knife moves downwards and makes contact with the ingredient for the 

first time. Ends: The knife makes contact with chopping board it is lifted up again, 

breaking contact with the chopping board and returning to an approximate of the 

starting position for the final time. There are no pauses longer than 1 second 

during this period. 

 

If the knife does not move in a clear up and down movement or does not 

break contact with the board this is slicing (see overleaf). 

 

See Figure 1 and videos chop_cour.avi, chop_mushroom.avi and 

chop_onion.avi for illustrative examples. 

 

Label example: chop,onio  

http://di.ncl.ac.uk/publicweb/AmbientKitchen/KitchenData/KitchenSense_dataset/
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Slicing 

 

(slice) 

Most 

knives 

 

(Bread 

knife,  

chef knife, 

slicing 

knife,  

small 

knife) 

In this study, slicing is any cutting activity with the knife that is not chopping. If 

the knife remains in contact with the board or if the predominant movement is 

forwards and backwards then this cutting activity is not chopping, so we call it 

slicing. This means a great variety of movements are all categorised as slicing in 

this study. Therefore, in essence; 

 

Annotation: Begins: The knife is placed in a preparatory position and makes 

contact with the ingredient for the first time. Ends: The knife loses contact with 

the ingredient for the final time. There are no pauses longer than 1 second during 

this period. 

Therefore, it is not until you have watched the movement that you can determine; 

 What the preparatory position is,  

 In what direction contact with the ingredient is made (downwards or 

forwards), 

 How contact with the ingredient is lost, 

Some video clips have been selected to illustrate the different knife movements we 

would label as slicing because the movement is not chopping. 

slice_basil1 and slice_ham3: The knife is moving forwards and backwards more 

than up and down. When moving forwards and backwards the knife remains in 

contact with the board whilst cutting the ingredient. 

slice_cour1 and slice_mushroom1: The knife is moving up and down through the 

ingredient, however the tip of the knife remains in contact with the board. 

 

Label example: slice,onio 

Scraping 

 

(scrap) 

Most 

knives      

                                

(Bread 

knife, chef 

knife, 

slicing 

knife, 

small 

When scraping the blade of a knife pushes ingredients towards a location on the 

chopping board, or to push ingredients off the chopping board into a container. 

 

Annotation: Begins: The knife is in contact with the chopping board and pushes 

the ingredients for the first time. Ends: The knife has been removed from being in 

contact with the chopping board after it has pushed the ingredients, for the final 

time. With no pauses longer than 1 second during this period. 

 

Label example: scrap 
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knife) 

Peeling 

 

(peel) 

Knives 

(Bread 

knife,  

chef knife, 

slicing 

knife, 

small 

knife, 

peeler) 

Peeling describes an action that removes a layer of an ingredient. 

Annotation: Begins: The peeler or knife makes contact with the ingredient for the 

first time and begins to move along it, removing the outer layer. Ends: The peeler 

or knife no longer has contact with the ingredient once it has reached the end of 

the ingredient and removed a piece of the outer layer. With no pauses longer than 

1 second during this period. 

 

Label example: peel,cour 

Stirring 

 

(stir) 

Spoons 

(Spoon, 

slotted 

spoon, 

ladle, 

whisk, 

spatula) 

Stirring is defined by using one of the spoons to stir ingredients inside a container. 

A stirring movement can occur in circles, in “eights”, backward and forward, 

sideways or in any other form that mixes/moves ingredients. 

Annotation: Begins: Spoon enters container and begins to stir for the first time. 

Ends: Spoon leaves container, or it is left in the container and the participant lets 

go of the utensil, for the final time. With no pauses longer than 1 second during 

this period. 

Label example: stir 

Scooping 

(scoop) 

Spoons 

(Spoon, 

slotted 

spoon, 

ladle) 

Scooping is a movement in which ingredients are moved from one container into 

another. A spoon scoops out a portion of ingredients from container A. The spoon 

is used to move this portion of ingredients and add it to container B. Both 

containers may be on a flat surface and so are not angled or one may be angled to 

aid the scooping of ingredients into the spoon.  

Annotation: Begins: Spoon enters container A for the first time. Ends: The 

spoon‟s angle is changed (turned upside down) so the ingredients fall from the 

spoon into the new container B, for the final time. With no pauses longer than 1 

second during this period. 

Label example: scoop 

Whisking 

(whisk) 

Whisk Whisking is a quick light sweeping motions performed with a Whisk. 

 

Annotation: Begins: Whisk enters container for the first time and begins to 

whisk. Ends: Whisk leaves container, or it is left in the container and the 

participant lets go of the whisk, for the final time. With no pauses longer than 1 
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second during this period. 

 

Please note: This description of one whisk and how to annotate whisking is 

very similar to stirring. The difference is in the UTENSIL and the 

MOVEMENT. 

Label example: whisk 

Adding 

(add) 

Containers 

(Colander, 

sieve, big 

bowl) 

Pans 

(Sauce 

pans, 

frying 

pans) 

Ingredient 

containers 

(salt) 

Adding describes the movement of ingredients from container, ingredient 

container or pan A to container or pan B. Container A‟s angle increases until the 

ingredient falls out. In some cases the participants used a spoon to support the 

ingredients movement. 

 

Annotation: Begins: Container A‟s angle begins to increase for the first time. 

Ends: Container A‟s angle reduces until it returns to the original angle or the 

participant moves the container away or begins to put it down for the final time.  

With no pauses longer than 1 second during this period. 

 

Please note: Container B receiving the ingredient is not annotated. If the 

ingredient is liquid it is likely the pouring label is most appropriate. 

Label example: add or add,salt 

Pouring 

(pour) 

Containers 

(Colander, 

sieve, big 

bowl) 

Pans 

(Sauce 

pans, 

frying 

pans) 

Ingredient 

containers 

(Olive oil, 

soy sauce) 

Pouring describes the movement of ingredients from container, ingredient 

container or pan A to container or pan B. The difference between pouring and 

adding is that when pouring the ingredient moving is either purely, or the majority 

of it, is liquid. Container A‟s angle increases until the ingredient slides out. In 

some cases the participants used a spoon to support this action. 

 

Annotation: Begins: Container A‟s angle begins to increase for the first time. 

Ends: Container A‟s angle reduces until it returns to the original angle or the 

participant moves the container away or begins to put it down for the final time.   

 

Please note: Container B receiving the ingredient is not annotated. If the 

ingredient is not liquid based it is likely the adding label is most appropriate. 

Label example: pour,mix 

Draining Containers The contents of a sauce pan is moved to a sieve or colander to separate the 
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(drain) (Colander, 

sieve) 

ingredient from the water. This action is done over or in the sink. 

Annotation: Begins: All the ingredient has been transferred from the sauce pan 

into the sieve or colander. Ends: All the ingredient has been removed from the 

sieve or colander into another container. 

Label example: drain 

Shaking 

(shake) 

Pans 

(Sauce 

pan, frying 

pan) 

Shaking, also described as throwing, is only performed with a frying pan or sauce 

pan without using another utensil. The user slightly lifts the pan and performs a 

backward-forward movement. This movement causes the ingredients to be 

shaken/mixed in the pan. With this movement the ingredients may be thrown out 

of the pan and have to be caught again. 

Label example: shake 

Table B.1: Activity description 

Utensil Description 

Chopping 

board 

When annotating the chopping board focus is on what ingredients have been placed on it. The 

annotation begins when the ingredient is placed onto the board. The annotation ends when the 

ingredient is A) removed from the board in the same state as when it was first placed on the 

board, or B) when it begins to be cut or sliced. Once the ingredient has begun to be chopped or 

sliced it is no longer a whole ingredient, therefore it is ignored as far as the annotations for the 

chopping board are concerned even though it may stay on the board for a significant period of 

time. 

The best way to annotate the chopping board is by watching the video and identify when the 

ingredient is placed on the board. Annotate a small annotation, only 1 or 2 seconds, to highlight 

when the ingredient is placed on the board. Next, continue to watch the video and create an 

annotation to highlight either; A) the ingredient is removed, or B) has begun to be chopped or 

sliced. If the ingredient has been removed then merge these two annotations by using the „Merge 

with annotation before‟ function as discussed earlier. If the ingredient has begun to be chopped 

or sliced, create a second annotation just before this event to highlight when the ingredient was 

still whole. Then merge this annotation with the annotation highlighting when the ingredient was 

placed on the chopping board (both these processes are illustrated below).  

A) Ingredient is placed onto chopping board and then removed: 
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Chopping_board 
 

onio     

 

 0 1 2 3 4 

 

 

 

 

 

   

 

 

 

 

Chopping_board  onio      

 
 

 0 1 2 3 4 

    

 

 

 

  

 

Chopping_board  Onio  

 

 0 1 2 3 4 

 

Table B.2: Food ingredient descriptions for annotating food processed on the FCB 

\Data-processing Codes contains the codes used for processing the experimental data, for example, codes 

for generating ELAN files, pre-processing data, inter-rater reliability, data extraction and segmentation, 

feature computation etc. The codes might have been written in C# or Matlab. 

Onion placed on chopping board 

Onion removed from chopping board 

These two annotations are merged into one 
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\FCB-SampleImages contains sample images from fiber chopping board for KitchenSense‟s experiments. 

These images were randomly setected from 12 subjects. They are also used for training and evaluating the 

KitchenSense system. 

\data contains all data collected from 12 subjects. Each subject has 3 sessions. In each session, 5 folders 

contains video, accelerometers, annotation, audio, and images. In order to reduce sizes of data, the 

folders are stored in compressed files (i.e. accelerometers.zip, annotation.zip, audio.zip, and images.zip) 

except for the video file. Below are detail descriptions for each folder.  

 \video: contains a video file which is combined from 4 videos from digital cameras. This video 

file is the one that was synchronized with accelerometers, embedded camera, and microphone. 

The start-time of the video is also the absolute time for all other sensors.  

 \annotation: contains 2 ELAN-output files which have an extension of “EAF” and are in XML 

format (see Figure B.1), independently coded by two annotators and two .txt files which are 

converted from these two EAF files for event ground truth. For example, s1_s3_a1.eaf  and  

s1_s3_a1.txt are files annotated by the annotator 1 for subject 1, session 1 (some entries were 

shown in the Figure B.1 and B.2). 

<ALIGNABLE_ANNOTATION ANNOTATION_ID="a600" TIME_SLOT_REF1="ts300" 

TIME_SLOT_REF2="ts333"> 

                <ANNOTATION_VALUE>chop,cour </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a601" 

TIME_SLOT_REF1="ts339" TIME_SLOT_REF2="ts340"> 

                <ANNOTATION_VALUE>chop,cour </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a602" 

TIME_SLOT_REF1="ts342" TIME_SLOT_REF2="ts344"> 

                <ANNOTATION_VALUE>chop,cour </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a603" 

TIME_SLOT_REF1="ts351" TIME_SLOT_REF2="ts362"> 

                <ANNOTATION_VALUE>chop,cour </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a604" 

TIME_SLOT_REF1="ts363" TIME_SLOT_REF2="ts368"> 

                <ANNOTATION_VALUE>chop,cour </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 
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        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a605" 

TIME_SLOT_REF1="ts384" TIME_SLOT_REF2="ts385"> 

                <ANNOTATION_VALUE>chop,chiv </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a606" 

TIME_SLOT_REF1="ts396" TIME_SLOT_REF2="ts399"> 

                <ANNOTATION_VALUE>chop,onio </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a607" 

TIME_SLOT_REF1="ts404" TIME_SLOT_REF2="ts405"> 

                <ANNOTATION_VALUE>chop,onio </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

        <ANNOTATION> 

            <ALIGNABLE_ANNOTATION ANNOTATION_ID="a608" 

TIME_SLOT_REF1="ts406" TIME_SLOT_REF2="ts414"> 

                <ANNOTATION_VALUE>chop,onio </ANNOTATION_VALUE> 

            </ALIGNABLE_ANNOTATION> 

        </ANNOTATION> 

     

Figure B.1: Example of Annotation file (ELAN format). 

 
Chef_Knife_activity  331851 350679 chop,mush  

Chef_Knife_activity  353749 400913 chop,mush  

Chef_Knife_activity  510767 522525 chop,cour  

Chef_Knife_activity  526099 554158 chop,cour  

Chef_Knife_activity  580156 588341 chop,cour  

Chef_Knife_activity  600821 612324 chop,cour  

Chef_Knife_activity  639833 655126 chop,cour  

Chef_Knife_activity  662451 670032 chop,cour  

Chef_Knife_activity  721036 733470 chop,chiv  

Chef_Knife_activity  805896 810795 chop,onio  

Chef_Knife_activity  818368 823763 chop,onio  

Chef_Knife_activity  959410 971800 slice,onio  

Chef_Knife_activity  974790 977690  chop,onio 

Chef_Knife_activity  1620997 1703080 slice,basi  

Chef_Knife_activity  1704288 1705172 silce,ham 

Chef_Knife_activity  1731562 1737400 chop,spag  

Chef_Knife_activity  1740554 1743128 chop,spag  

ChoppingBoard  141011 331860 mush  

ChoppingBoard  509037 510758 cour  

ChoppingBoard  712913 721028 chiv  

ChoppingBoard  804354 805865 onio  

ChoppingBoard  1618467 1621006 basi 

 

Figure B.2: Example of Annotation file (text format). 



 

124 

 

In figure B.2, the first column is the tier of annotation which defines the activities of a 

specific utensil. The second column is the start time and the third is end time (in 

milliseconds) of the activity, and the fourth column is the activity label.   

 \images contains images of food ingredients captured from optical fiber sensing of FCB. 

 \accelerometers contains an original acceleration data log file (i.e. see file wax-2011-09-22-

11-19-07.csv and sample content in the Figure B.3), accelerometer data file after 

synchronized (i.e. s11_s2.csv in the Figure B.4), the synchonisation information in 

startTime.txt, the map.txt file contains mapping information between sensor Ids and Utensils, 

the folder Utensil contains utensil‟s acceleration data files which were extracted from the 

synchonized acceleration data file and map.txt, and the Frame folder, which contains 

segmented frames for inputs and training data for the CBT-DTW activity recogtnition 

algorithm (see Figure B.4).   

ACCEL,2011-09-22 10:19:46.473,305,113,-0.03125,0.96875,-0.1875 

ACCEL,2011-09-22 10:19:46.493,305,114,0,0.9375,-0.125 

ACCEL,2011-09-22 10:19:46.513,305,115,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.533,305,116,-0.03125,0.9375,-0.125 

ACCEL,2011-09-22 10:19:46.553,305,117,0,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.573,305,118,-0.03125,0.9375,-0.125 

ACCEL,2011-09-22 10:19:46.593,305,119,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.613,305,120,-0.03125,0.9375,-0.125 

ACCEL,2011-09-22 10:19:46.633,305,121,-0.03125,0.9375,-0.125 

ACCEL,2011-09-22 10:19:46.653,305,122,-0.0625,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.673,305,123,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.693,305,124,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.713,305,125,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.733,305,126,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.753,305,127,-0.03125,0.96875,-0.15625 

ACCEL,2011-09-22 10:19:46.773,305,128,-0.03125,0.9375,-0.15625 

ACCEL,2011-09-22 10:19:46.793,305,129,-0.03125,0.96875,-0.15625 

ACCEL,2011-09-22 10:19:46.813,305,130,-0.03125,0.96875,-0.15625 

ACCEL,2011-09-22 10:19:46.833,305,131,-0.0625,0.96875,-0.125 

ACCEL,2011-09-22 10:19:46.853,305,132,-0.03125,0.96875,-0.15625 

ACCEL,2011-09-22 10:19:46.582,103,118,0.03125,0.25,-1.0625 

ACCEL,2011-09-22 10:19:46.602,103,119,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.622,103,120,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.642,103,121,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.662,103,122,0.0625,0.21875,-1.03125 

ACCEL,2011-09-22 10:19:46.682,103,123,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.702,103,124,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.722,103,125,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.742,103,126,0.03125,0.25,-1.03125 

ACCEL,2011-09-22 10:19:46.762,103,127,0.03125,0.25,-1.03125 

 

Figure B.3: the content of accelerometer log file. 
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The first column of accelerometer log file is marked “ACCEL”, the second column is the 

timestamp which is in yyyy-mm-dd hh:mm:ss.ms format, the third column is the sensor Id, 

the fourth column is the row number for each sensor, and the rest 3 columns are X,Y, and 

Z acceleration values. 

 

Figure B.4: The content of accelerometers folder. 

It is noticed that the data in the Utensil and Frame folders were processed and ready for 

training and testing the activity recognition algorithm. Example of the data is shown in 

the  Figure B.5:  

43.8499999999985,-1,-0.09375,-0.375,1 

43.8700000000026,-0.96875,-0.09375,-0.34375,1 

43.8899999999994,-0.96875,-0.09375,-0.3125,1 

43.9099999999962,-0.96875,-0.0625,-0.3125,1 

43.9300000000003,-0.96875,-0.09375,-0.34375,1 

43.9490000000005,-0.96875,-0.09375,-0.3125,1 

43.9700000000012,-0.71875,0.09375,-0.375,1 

43.989999999998,-1,0,-0.3125,1 

44.010000000002,-1,0.03125,-0.28125,1 

44.010000000002,-1,-0.03125,-0.40625,1 

44.0299999999988,-0.96875,0.03125,-0.3125,1 

44.0500000000029,-0.96875,0,-0.28125,1 

44.0699999999997,-1,0,-0.28125,1 

44.0899999999965,-0.96875,0.03125,-0.25,1 

44.1100000000006,-1,0,-0.34375,1 

44.1299999999974,-1.0625,-0.0625,-0.34375,1 

44.1500000000015,-1,-0.03125,-0.28125,1 

44.1979999999967,-0.9375,0.0625,-0.3125,1 

 

                  Figure B.5: Example of utensil and frame data. 

The first column is the absolute time stamp, followed by X, Y, Z acceleration values, then 

sampling bit. If sampling bit = 1, the sample is from sensor. otherwise, the sample is 

resampled.   

 \audio contains an audio log file, frames segmented from chopping food audio data, and 

frames segmented from slicing food audio data, and their feature files (see Figure B.6).    
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Figure B.6: audio folder 

In chop and slice folders, there is a file named features_session_removesilence.txt which 

contains features computed from chopping and slicing food audio data after segmented 

and removed silence (see Figure B.7). The values from left to right order are MFCC1,…, 

MFCC13, pitch, Energy_Entropy, Zero-crossing rate, SpectralRollOff, and 

ShortTimeEnergy, respectively. 

-16.257397,1.056199,0.696328,0.672959,0.201935,0.538859,0.161169,-

0.023742,0.014536,0.115432,0.124885,0.139197,0.089206,136.868162,0.303315,0.0

16382,0.000845,0.130052,cour 

-

16.368237,1.340869,0.830765,0.811322,0.151580,0.505590,0.191896,0.000198,0.05

1181,0.142693,0.091469,0.204422,0.161538,143.039448,0.241015,0.009009,0.00121

3,0.065860,cour 

-

16.011404,1.281156,0.873534,0.698709,0.202831,0.410811,0.306292,0.028607,0.01

0376,0.134441,0.148607,0.260930,0.084682,137.485793,0.149459,0.047463,0.00094

1,0.024518,cour 

-16.297820,1.235793,0.600426,0.609774,0.080476,0.457046,0.287025,-0.103231,-

0.020666,0.164749,0.175675,0.204826,0.088676,148.185773,0.102286,0.022942,0.0

01124,0.014382,cour 

-16.311679,1.569056,0.685693,0.674889,0.218303,0.374531,0.189603,-

0.115052,0.000028,0.150939,0.145680,0.269995,0.092848,141.712543,0.219090,0.0

36296,0.000827,0.051404,cour 

-16.039122,1.615481,0.795496,0.784691,0.218628,0.325293,0.123262,-0.098830,-

0.027929,0.112514,0.115311,0.189310,0.149675,149.967465,0.251346,0.012411,0.0

01408,0.072512,cour 

-16.031185,1.613834,0.958423,0.804143,0.121936,0.309499,0.317905,-0.077206,-

0.169446,0.102259,0.105967,0.202647,0.053469,145.110115,0.161256,0.008933,0.0

00670,0.029687,cour 

 

Figure B.7: Audio feature file of chopping activity 
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