60 research outputs found

    Single channel audio separation using deep neural networks and matrix factorizations

    Get PDF
    PhD ThesisSource Separation has become a significant research topic in the signal processing community and the machine learning area. Due to numerous applications, such as automatic speech recognition and speech communication, separation of target speech from the mixed signal is of great importance. In many practical applications, speech separation from a single recorder is most desirable from an application standpoint. In this thesis, two novel approaches have been proposed to address this single channel audio separation problem. This thesis first reviews traditional approaches for single channel source separation, and later elicits a generic approach, which is more capable of feature learning, i.e. deep graphical models. In the first part of this thesis, a novel approach based on matrix factorization and hierarchical model has been proposed. In this work, an artificial stereo mixture is formulated to provide extra information. In addition, a hybrid framework that combines the generalized Expectation-Maximization algorithm with a multiplicative update rule is proposed to optimize the parameters of a matrix factorization based approach to approximatively separate the mixture. Furthermore, a hierarchical model based on an extreme learning machine is developed to check the validity of the approximately separated sources followed by an energy minimization method to further improve the quality of the separated sources by generating a time-frequency mask. Various experiments have been conducted and the obtained results have shown that the proposed approach outperforms conventional approaches not only in reduction of computational complexity, but also the separation performance. In the second part, a deep neural network based ensemble system is proposed. In this work, the complementary property of different features are fully explored by ‘wide’ and ‘forward’ ensemble system. In addition, instead of using the features learned from the output layer, the features learned from the penultimate layer are investigated. The final embedded features are classified with an extreme learning machine to generate a binary mask to separate a mixed signal. The experiment focuses on speech in the presence of music and the obtained results demonstrated that the proposed ensemble system has the ability to explore the complementary property of various features thoroughly under various conditions with promising separation performance

    Robust speech recognition with spectrogram factorisation

    Get PDF
    Communication by speech is intrinsic for humans. Since the breakthrough of mobile devices and wireless communication, digital transmission of speech has become ubiquitous. Similarly distribution and storage of audio and video data has increased rapidly. However, despite being technically capable to record and process audio signals, only a fraction of digital systems and services are actually able to work with spoken input, that is, to operate on the lexical content of speech. One persistent obstacle for practical deployment of automatic speech recognition systems is inadequate robustness against noise and other interferences, which regularly corrupt signals recorded in real-world environments. Speech and diverse noises are both complex signals, which are not trivially separable. Despite decades of research and a multitude of different approaches, the problem has not been solved to a sufficient extent. Especially the mathematically ill-posed problem of separating multiple sources from a single-channel input requires advanced models and algorithms to be solvable. One promising path is using a composite model of long-context atoms to represent a mixture of non-stationary sources based on their spectro-temporal behaviour. Algorithms derived from the family of non-negative matrix factorisations have been applied to such problems to separate and recognise individual sources like speech. This thesis describes a set of tools developed for non-negative modelling of audio spectrograms, especially involving speech and real-world noise sources. An overview is provided to the complete framework starting from model and feature definitions, advancing to factorisation algorithms, and finally describing different routes for separation, enhancement, and recognition tasks. Current issues and their potential solutions are discussed both theoretically and from a practical point of view. The included publications describe factorisation-based recognition systems, which have been evaluated on publicly available speech corpora in order to determine the efficiency of various separation and recognition algorithms. Several variants and system combinations that have been proposed in literature are also discussed. The work covers a broad span of factorisation-based system components, which together aim at providing a practically viable solution to robust processing and recognition of speech in everyday situations

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Efficient and Robust Methods for Audio and Video Signal Analysis

    Get PDF
    This thesis presents my research concerning audio and video signal processing and machine learning. Specifically, the topics of my research include computationally efficient classifier compounds, automatic speech recognition (ASR), music dereverberation, video cut point detection and video classification.Computational efficacy of information retrieval based on multiple measurement modalities has been considered in this thesis. Specifically, a cascade processing framework, including a training algorithm to set its parameters has been developed for combining multiple detectors or binary classifiers in computationally efficient way. The developed cascade processing framework has been applied on video information retrieval tasks of video cut point detection and video classification. The results in video classification, compared to others found in the literature, indicate that the developed framework is capable of both accurate and computationally efficient classification. The idea of cascade processing has been additionally adapted for the ASR task. A procedure for combining multiple speech state likelihood estimation methods within an ASR framework in cascaded manner has been developed. The results obtained clearly show that without impairing the transcription accuracy the computational load of ASR can be reduced using the cascaded speech state likelihood estimation process.Additionally, this thesis presents my work on noise robustness of ASR using a nonnegative matrix factorization (NMF) -based approach. Specifically, methods for transformation of sparse NMF-features into speech state likelihoods has been explored. The results reveal that learned transformations from NMF activations to speech state likelihoods provide better ASR transcription accuracy than dictionary label -based transformations. The results, compared to others in a noisy speech recognition -challenge show that NMF-based processing is an efficient strategy for noise robustness in ASR.The thesis also presents my work on audio signal enhancement, specifically, on removing the detrimental effect of reverberation from music audio. In the work, a linear prediction -based dereverberation algorithm, which has originally been developed for speech signal enhancement, was applied for music. The results obtained show that the algorithm performs well in conjunction with music signals and indicate that dynamic compression of music does not impair the dereverberation performance

    Single channel overlapped-speech detection and separation of spontaneous conversations

    Get PDF
    PhD ThesisIn the thesis, spontaneous conversation containing both speech mixture and speech dialogue is considered. The speech mixture refers to speakers speaking simultaneously (i.e. the overlapped-speech). The speech dialogue refers to only one speaker is actively speaking and the other is silent. That Input conversation is firstly processed by the overlapped-speech detection. Two output signals are then segregated into dialogue and mixture formats. The dialogue is processed by speaker diarization. Its outputs are the individual speech of each speaker. The mixture is processed by speech separation. Its outputs are independent separated speech signals of the speaker. When the separation input contains only the mixture, blind speech separation approach is used. When the separation is assisted by the outputs of the speaker diarization, it is informed speech separation. The research presents novel: overlapped-speech detection algorithm, and two speech separation algorithms. The proposed overlapped-speech detection is an algorithm to estimate the switching instants of the input. Optimization loop is adapted to adopt the best capsulated audio features and to avoid the worst. The optimization depends on principles of the pattern recognition, and k-means clustering. For of 300 simulated conversations, averages of: False-Alarm Error is 1.9%, Missed-Speech Error is 0.4%, and Overlap-Speaker Error is 1%. Approximately, these errors equal the errors of best recent reliable speaker diarization corpuses. The proposed blind speech separation algorithm consists of four sequential techniques: filter-bank analysis, Non-negative Matrix Factorization (NMF), speaker clustering and filter-bank synthesis. Instead of the required speaker segmentation, effective standard framing is contributed. Average obtained objective tests (SAR, SDR and SIR) of 51 simulated conversations are: 5.06dB, 4.87dB and 12.47dB respectively. For the proposed informed speech separation algorithm, outputs of the speaker diarization are a generated-database. The database associated the speech separation by creating virtual targeted-speech and mixture. The contributed virtual signals are trained to facilitate the separation by homogenising them with the NMF-matrix elements of the real mixture. Contributed masking optimized the resulting speech. Average obtained SAR, SDR and SIR of 341 simulated conversations are 9.55dB, 1.12dB, and 2.97dB respectively. Per the objective tests of the two speech separation algorithms, they are in the mid-range of the well-known NMF-based audio and speech separation methods

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Détection de motifs audio pour la séparation de sources guidée. Application aux bandes- son de films.

    Get PDF
    Lorsque l'on manipule un signal audio, il est généralement utile d'opérer un isolement du ou des éléments sonores que l'on cherche à traiter. Cette étape est couramment appelée séparation de sources audio. Il existe de nombreuses techniques pour estimer ces sources et plus on prend en compte d'informations à leur sujet plus la séparation a des chances d'être réussie. Une façon d'incorporer des informations sur une source est l'utilisation d'un signal de référence qui va donner une première approximation de cette source. Cette thèse s'attache à explorer les aspects théoriques et appliqués de la séparation de sources audio guidée par signal de référence. La nouvelle approche proposée appelée SPOtted REference based Separation (SPORES) examine le cas particulier où les références sont obtenues automatiquement par détection de motif, c'est-à-dire par une recherche de contenu similaire. Pour qu'une telle approche soit utile, le contenu traité doit comporter une certaine redondance ou bien une large base de données doit être disponible. Heureusement, le contexte actuel nous permet bien souvent d'être dans une des deux situations et ainsi de retrouver ailleurs des motifs similaires. L'objectif premier de ce travail est de fournir un cadre théorique large qui une fois établi facilitera la mise au point efficace d'outils de traitement de contenus audio variés. Le second objectif est l'utilisation spécifique de cette approche au traitement de bandes-son de films avec par exemple comme application leur conversion en format surround 5.1 adapté aux systèmes home cinema.In audio signal processing, source separation consists in recovering the different audio sources that compose a given observed audio mixture. They are many techniques to estimate these sources and the more information are taken into account about them the more the separation is likely to be successful. One way to incorporate information on sources is the use of a reference signal which will give a first approximation of this source. This thesis aims to explore the theoretical and applied aspects of reference guided source separation. The proposed approach called SPOtted REference based Separation (SPORES) explore the particular case where the references are obtained automatically by motif spotting, i.e., by a search of similar content. Such an approach is useful for contents with a certain redundancy or if a large database is be available. Fortunately, the current context often puts us in one of these two situations and finding elsewhere similar motifs is possible. The primary objective of this study is to provide a broad theoretical framework that once established will facilitate the efficient development of processing tools for various audio content. The second objective is the specific use of this approach to the processing of movie soundtracks with application in 5.1 upmixing for instance

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017)

    Get PDF

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes
    corecore