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SOUND EVENT DETECTION IN MULTICHANNEL AUDIO USING SPATIAL AND
HARMONIC FEATURES

Sharath Adavanne, Giambattista Parascandolo, Pasi Pertilä, Toni Heittola, Tuomas Virtanen

Department of Signal Processing, Tampere University of Technology

ABSTRACT

In this paper, we propose the use of spatial and harmonic features in
combination with long short term memory (LSTM) recurrent neu-
ral network (RNN) for automatic sound event detection (SED) task.
Real life sound recordings typically have many overlapping sound
events, making it hard to recognize with just mono channel audio.
Human listeners have been successfully recognizing the mixture of
overlapping sound events using pitch cues and exploiting the stereo
(multichannel) audio signal available at their ears to spatially local-
ize these events. Traditionally SED systems have only been using
mono channel audio, motivated by the human listener we propose to
extend them to use multichannel audio. The proposed SED system
is compared against the state of the art mono channel method on the
development subset of TUT sound events detection 2016 database
[1]. The usage of spatial and harmonic features are shown to im-
prove the performance of SED.

Index Terms— Sound event detection, multichannel, time dif-
ference of arrival, pitch, recurrent neural networks, long short term
memory

1. INTRODUCTION

A sound event is a segment of audio that a human listener can con-
sistently label and distinguish in an acoustic environment. The ap-
plications of such automatic sound event detection (SED) are nu-
merous; embedded systems with listening capability can become
more aware of its environment [2][3]. Industrial and environmental
surveillance systems and smart homes can start automatically de-
tecting events of interest [4]. Automatic annotation of multimedia
can enable better retrieval for content based query methods [5][6] .

The task of automatic SED is to recognize the sound events in a
continuous audio signal. Sound event detection systems built so far
can be broadly classified to monophonic and polyphonic. Mono-
phonic systems are trained to recognize the most dominant of the
sound events in the audio signal [7]. While polyphonic systems go
beyond the most dominant sound event and recognize all the over-
lapping sound events in a segment [7][8][9][10]. We propose to
tackle such polyphonic soundscape which replicates real life sce-
nario in this paper.

Some SED systems have tackled polyphonic detection using
mel-frequency cepstral coefficients (MFCC) and hidden Markov
models (HMMs) as classifiers with consecutive passes of the Viterbi

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND, and
Google Faculty Research Award project “Acoustic Event Detection and
Classification Using Deep Recurrent Neural Networks”. The authors also
wish to acknowledge CSC-IT Center for Science, Finland, for computational
resources.

algorithm [7]. In [11], a non-negative matrix factorization was used
as a pre-processing step, and the most prominent event in each of
the stream was detected. However, it still had a hard constraint of
estimating the number of overlapping events. This was overcome
by using coupled NMF in [12]. Dennis et al [8] took an entirely dif-
ferent path from the traditional frame-based features by combining
generalized Hough transform (GHT) with local spectral features.

More recently, the state of the art SED systems have used log
mel-band energy features in DNN [9], and RNN-LSTM [10] net-
works trained for multi-label classification. Motivated by the good
performance of RNN-LSTM over DNN as shown in [10], we con-
tinue to use the multi-label RNN-LSTM network.

The present state of the art polyphonic SED systems have been
using a single channel of audio for sound event detection. Poly-
phonic events can potentially be tackled better if we had multichan-
nel data. Just like humans use their two ears (two channels) to rec-
ognize and localize the sound events around them [13], we can also
potentially train machines to learn sound events from multichan-
nel of audio. Recently, Xiao et al [14] have successfully used spa-
tial features from multichannel audio for far field automatic speech
recognition (ASR) and shown considerable improvements over just
using mono channel audio. This further motivates us to use spatial
features for SED tasks. In this paper, we propose a spatial feature
along with harmonic feature and prove its superiority over mono
channel feature even with a small dataset of around 60 minutes.

The remaining of the paper is structured as follows. We de-
scribe in Section 2 the features used and the proposed approach.
Section 3 presents a short introduction to RNNs and long short-
term memory (LSTM) blocks. Section 4 presents the experimental
set-up and results on a database of real life recordings. Finally, we
present our conclusions in Section 5.

2. SOUND EVENT DETECTION

The sound event detection task involves identifying temporally the
locations of sound event and assigning them to one among the
known set of labels. Sound events in real life have no fixed pat-
tern. Different contexts, for example, forest, city, and home have a
different variety of sound events. They can be of different sparsity
based on the context, and can occur in isolation or be completely
overlapped with other sound events. While recognizing isolated
sounds have been done with an appreciable accuracy [15], detecting
the mixture of labels in an overlapped sound event is a challeng-
ing task, where still a considerable amount of improvements can be
made. Figure 2 shows a snippet of sound event annotation, where
three sound events - speech, car, and dog bark happen to occur. At
time frame t, two events - speech and car are overlapping. An ideal
SED system should be able to handle such overlapping events.

The human auditory system has been successfully exploiting
the stereo (multichannel) audio information it receives at its ears to
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Figure 1: Framework of the training and testing procedure for the
proposed system.

isolate, localize and classify the sound events. A similar set up is
envisioned and implemented, where the sound event detection sys-
tem gets a stereo input and suitable spatial features are implemented
to localize and classify sound events.

The proposed sound event detection system, shown in Figure 1,
works on real life multichannel audio recordings and aims at detect-
ing and classifying isolated and overlapping sound events.

Three sets of features -log mel-band energies, pitch frequency,
and its periodicity, and time difference of arrival (TDOA) in sub-
bands, are extracted from the stereo audio. All features are extracted
at a hop length of 20 ms to have consistency across features.

2.1. Log mel-band Energy

Log mel-band energies have been used for mono channel sound
event detection extensively [9][10][16] and have proven to be good
features. In the proposed system we continue to use log mel-band
energies, and extract it for both the stereo channels. This is moti-
vated from the idea that human auditory system exploits the interau-
ral intensity difference (IID) for spatial localization of sound source
[13]. Neural networks are capable of performing linear operations,
which includes the difference. Therefore, when trained on the stereo
log mel-band energy data, it will learn to obtain information similar
to IID.

Each channel of the audio is divided into 40 ms frames with
50% overlap using hamming window. Log mel-band energies are
then extracted for each of the frames (mel in Table 1). We use 40
mel-bands spread across the entire spectrum.

2.2. Harmonic features

The pitch is an important perceptual feature of sound. Human lis-
teners have evolved to identify different sounds using the pitch cues,
and can make efficient use of pitch to acoustically separate each of
the mixture in an overlapping sound event [17]. Uzkent et al [18]
have shown improvement in accuracy of non speech environmen-
tal sound detection used pitch range along with MFCC’s. Here we
propose using the absolute pitch and its periodicity as the features
(pitch in Table 1).

The librosa implementation of pitch tracking [19] on thresh-
olded parabolically-interpolated STFT [20] was used to estimate the
pitch and periodicity.

Since we are handling multi-label classification it is intuitive to
identify as many dominant fundamental frequencies as possible and
use them to identify the sound events. The periodicity feature gives
the confidence measure for the extracted pitch value and helps the
classifier to make better decisions based on pitch.

The overlapping sound events in the training data (Section 4.1)
did not have more than three events overlapping at a time, hence we
have limited ourselves to using the top three dominant pitch values

SPEECH SPEECH

CAR

DOG BARKDOG BARK

time

frame t

Figure 2: Sound events in a real life scenario can occur in isolation
or overlapped. We see that at frame t, speech and car events are
overlapping.

per frame. So, for each of the channels, top three pitch values, and
its respective periodicity values are extracted at every frame in 100-
4000 Hz frequency range (pitch3 in Table 1).

2.3. Time difference of arrival (TDOA) features

Overlapping sound events have forever troubled classification sys-
tems. This is mainly because the feature vector for the overlapped
frame is a combination of different sound events. But, human listen-
ers have been able to successfully identify each of the overlapping
sound events by isolating and localizing the source spatially. This
has been possible due to the interaural time delay (ITD) [13]

Each sound event has its own frequency band, some occur in
low frequencies, some in high, and some occur all across the fre-
quency band. If we can divide the frequency spectrum into different
bands, and identify the spatial location of the sound source in each
of these bands, then this is an extra dimension of the feature, which
the classifier can learn to estimate the number of possible sources
in each frame, and their orientation in the space. We implement this
by dividing the spectral frame into five mel-bands and calculating
the time difference of arrival (TDOA) at each of these bands.

For example, if a non-overlapping isolated sound event is
spread across the entire frequency range, and we are calculating
the TDOA in five mel-bands. We should have the same TDOA val-
ues for each of the bands. However, if we have two overlapping
sounds S1 and S2, where S1 is spread in the first two bands and S2

is spread in the last two bands. The feature vector will have differ-
ent TDOA values for each of the sounds, which the classifier can
learn to isolate and identify them as separate sound events.

The TDOA can be estimated using the generalized cross-
correlation with phase-based weighting (GCC-PHAT) [21]. Here,
we extract the correlation for each mel-band separately:

Rb(∆12, t) =

N−1∑
k=0

Hb(k)
X1(k, t) ·X∗

2 (k, t)

|X1(k, t)||X2(k, t)|e
i2πk∆12/N , (1)

where N is the number of frequency bands, X(k, t) is the FFT co-
efficient of the kth frequency band at time frame t and the subscript
specifies the channel number, Hb(k) is the magnitude response of
the bth mel-band of total of B bands and ∆12 is the sample delay
value between channels. The TDOA is extracted as the location of
correlation peak magnitude for each mel-band and time frame.

τ(b, t) = argmax
∆12

{Rb(∆12, t)} (2)

The maximum and minimum TDOA values are truncated be-
tween values −2τmax, 2τmax, where τmax is the maximum sample
delay between a sound wave traveling between microphones.
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Feature Name Length Description
mel 40 Log mel-band energy extracted on a single channel of audio
pitch 2 Most dominant pitch value and periodicity extracted on a single channel
pitch3 6 Top three dominant pitch and periodicity values extracted on a single channel
tdoa 5 Median of multi-window TDOA’s extracted from stereo audio
tdoa3 15 Concatenated multi-window TDOA’s extracted from stereo audio

Table 1: Definitions of acoustic features proposed for sound event detection.

The sound events in the training set were seen to be varying
from 50 ms to a few seconds. In order to accommodate such vari-
able length sound events, TDOA was calculated in three different
window lengths — 120, 240 and 480 ms, with a constant hop length
of 20 ms. The TDOA values of these three windows were con-
catenated for each mel-band to form one set of TDOA features.
So, TDOA values extracted in five mel-band, and for three window
lengths, on concatenation gives 15 TDOA values per frame (tdoa3
in Table 1).

TDOA values in small windows are generally very noisy and
unreliable. To overcome this, the median of the TDOA values from
the above three different window lengths for each sub-band of the
frame was used as the second set of TDOA features (tdoa in Table
1). Post filtering across window lengths, the TDOA values in each
mel-band were also median filtered temporally using a kernel of
length three to remove outliers.

3. MULTI-LABEL RECURRENT NEURAL NETWORK
BASED SOUND EVENT DETECTION

Deep neural networks have shown to perform well on complex
pattern recognition tasks, such as speech recognition [22], image
recognition [23] and machine translation [24]. A deep neural net-
work typically computes a map from an input to an output space
through several subsequent matrix multiplications and non-linear
activation functions. The parameters of the model, i.e. its weights
and biases, are iteratively adjusted using a form of optimization
such as gradient descent.

When the network is a directed acyclic graph, i.e. information
is only propagated forward, it is known as a feedforward neural
network (FNN). When there are feedback connections the model is
called a recurrent neural network (RNN). An RNN can incorporate
information from previous timesteps in its hidden layers, thus pro-
viding context information for tasks based on sequential data, such
as temporal context in audio tasks. Complex RNN architectures —
such as long short-term memory (LSTM) [25] — have been pro-
posed in recent years in order to attenuate the vanishing gradient
problem [26]. LSTM is currently the most widely used form of
RNN, and the one used in this work as well.

In SED, RNNs can be used to predict probabilities for each
class to be active in a given frame at timestep t. The input to the
network is a sequence of feature vectors x(t); the network computes
hidden activations for each hidden layer, and at the output layer a
vector of predictions for each class y(t). A sigmoid activation func-
tion is used at the output layer in order to allow several classes to be
predicted as active simultaneously. By thresholding the predictions
at the output layer it is possible to obtain a binary activity matrix.

3.1. Neural network configurations

For each recording, we obtain a sequence of feature vectors, which
is normalized to zero mean and unit variance, and the scaling pa-
rameters are saved for normalizing the test feature vectors. The se-

quences are further split into non-overlapping sequences of length
25 frames. Each of these frames has a target binary vector, indicat-
ing which classes are present in the feature vector.

We use a multi-label RNN-LSTM with two hidden layers each
having 32 LSTM units. The number of units in the input layer de-
pends on the length of the feature being used. The output layer has
one neuron for each class. The network is trained by back propa-
gation through time (BPTT) [27] using binary cross-entropy as loss
function, Adam optimizer [28] and block mixing [10] data augmen-
tation. Early stopping is used to reduce over-fitting, the training is
halted if the segment based error rate (ER) (see Section 4.2) on the
validation set does not decrease for 100 epochs.

At test time we use scaling parameters estimated on train-
ing data to scale the feature vectors and present them in non-
overlapping sequences of 25 frames, and threshold the outputs with
a fixed threshold of 0.5, i.e., we mark an event is active if the poste-
rior in the output layer of network is greater than 0.5 and otherwise
inactive.

4. EVALUATION AND RESULTS

4.1. Dataset

We evaluate the proposed SED system on the development subset of
TUT sound events detection 2016 database [1]. This database has
stereo recordings which were collected using binaural Soundman
OKM II Klassik/studio A3 electret in-ear microphones and Roland
Edirol R09 wave recorder using 44.1 kHz sampling rate and 24-bit
resolution. It contains two contexts - home and residential area.
Home context has 10 recordings with 11 sound event classes and
the residential area context has 12 recordings with 7 classes. The
length of these recordings is between 3-5 minutes.

In the development subset provided, each of the context data is
already partitioned into four folds of training and test data. The test
data was collected such that each recording is used exactly once as
the test, and the classes in it are always a subset of the classes in
the training data. Also, 20% of the training data recordings in each
fold were selected randomly to be used as validation data. The same
validation data was used across all our evaluations.

4.2. Metrics

We perform the evaluation of our system in a similar fashion as [1]
which uses the established metrics for sound event detection defined
in [30]. The error rate (ER) and F-scores are calculated on one
second long segments. The results from all the folds are combined
to produce a single evaluation. This is done to avoid biases caused
due to data imbalance between folds as discussed in [31].

4.3. Results

The baseline system for the dataset [1] uses 20 static (excluding
the 0th coefficient), 20 delta and 20 acceleration MFCC coefficients

8
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Feature combination Home Residential area Average
ER F (%) ER F (%) ER F (%)

Baseline system using GMM classifier
in DCASE 2016 [1][29]

mfcc; delta; acc 0.96 15.9 0.86 31.5 0.91 23.7

Mono channel feature With RNN-
LSTM network

mel1 0.94 27.4 0.88 38.3 0.91 32.9

Hybrid (mono and stereo) features with
RNN-LSTM network

mel1; pitch1 0.97 25.4 0.85 43.4 0.91 34.4
mel1; pitch31 0.96 27.6 0.88 43.9 0.92 35.7
mel1; tdoa 1.02 19.4 0.89 40.2 0.96 29.8
mel1; tdoa3 0.98 25.9 0.87 40.5 0.92 33.2

Stereo features with RNN-LSTM
network

mel2 1.03 25.4 0.84 45.9 0.93 35.6
mel2; pitch2 1.03 24.9 0.93 40.9 0.98 32.9
mel2; pitch32 0.97 26.6 0.88 41.7 0.92 34.2
mel2; tdoa 1.01 24.4 0.82 46.4 0.91 35.4
mel2; tdoa3 0.96 24.9 0.86 38.5 0.91 31.7
mel2; tdoa3; pitch2 0.97 25.7 0.85 43.1 0.91 34.4
mel2; tdoa3; pitch32 0.99 26.5 0.91 35.2 0.95 30.9
mel2; tdoa; pitch2 0.98 24.7 0.87 43.8 0.92 34.2
mel2; tdoa; pitch32 0.94 26.3 0.89 40.5 0.91 33.4

Table 2: Segment based error rate (ER) and F-score achieved for different feature combinations in home and residential area contexts for the
development set. The features listed in Table 1 are used in different combinations with the proposed RNN-LSTM network. The subscripts ’1’
and ’2’ in the feature combinations column represent how many channels the features were extracted on. For example, feature combination
mel2; tdoa; pitch2 means that the final feature vector has log mel-band energies, most dominant pitch and periodicity values extracted on
both the stereo channels, and the time difference of arrival (TDOA) calculated between the stereo channels. The highlighted ER and F-score
pair for each context is the best ER score achieved.

extracted on mono audio with 40 ms frames and 20 ms hop length.
A Gaussian mixture model (GMM) consisting of 16 Gaussians is
then trained for each of the positive and negative values of the class.
This baseline system gives a context average ER of 0.91 and F-score
of 23.%. An ideal system should have an ER of 0 and an F-score of
100%.

In Table 2 we compare the segment based ER and F-score for
different combinations of proposed spatial and harmonic features.
In all these evaluations, only the size of the input layer changes
based on the feature set, with the rest of the configurations in the
RNN-LSTM network remaining unchanged.

Mono channel audio was created by averaging the stereo chan-
nels in order to compare the performance of the proposed spatial and
harmonic features for multichannel audio. One of the present state
of the art SED system for mono channel is proposed in [10]. An
RNN-LSTM network is trained in a similar fashion with log mel-
band energy feature (Section 2.1) and evaluated. Across contexts,
the F-score was seen to be better than the GMM baseline system
with comparable ER. Here onwards we use this mono-channel log
mel-band feature and RNN-LSTM network configuration result as
a baseline for comparisons.

A set of hybrid combinations were tried as shown in Table 2.
All combinations other than mel1; tdoa performed better than the
baseline across contexts in F-score.

Finally, the full spectrum of proposed spatial and harmonic
features were evaluated in different combinations with RNN-
LSTM network. With a couple of exceptions - mel2; pitch2 and
mel2; tdoa3; pitch32, all the combinations of features performed
equal to or better than the baseline in average F-scores, with
marginally similar average ER as baseline. Given the dataset size
of around 60 minutes, it is difficult to conclusively say that the bin-
aural features are far superior to monaural features; but they surely
look promising.

Binaural features - mel2 and mel2; tdoa; pitch2 in Table 3
were submitted to the DCASE 2016 challenge [29], where they

were evaluated as the top performing systems. Monaural feature
mel1 was submitted unofficially to compare the performance with
binaural features. The hyper-parameters of the network were tuned
before the submission, and hence the development set results in Ta-
ble 3 are different from Table 2. Three hidden layers with 16 LSTM
units each were used for mel2, while mel1 and mel2; tdoa; pitch2

were trained with two layers each having 16 LSTM units.

Feature
combination

Evaluation
dataset

Development
dataset

ER F (%) ER F (%)
mel1 0.79 46.6 0.90 35.3
mel2 0.80 47.8 0.88 34.7
mel2; tdoa; pitch2 0.88 37.9 0.87 34.8

Table 3: Comparison of segment based error rate (ER) and F-score
for development and evaluation dataset. The evaluation dataset
scores are the result of DCASE 2016 challenge [29].

5. CONCLUSION

In this paper, we proposed to use spatial and harmonic features
for multi-label sound event detection along with RNN-LSTM net-
works. The evaluation was done on a limited dataset size of 60 mins,
which included four cross validation data for two contexts — home
and residential area. The proposed multi-channel features were seen
to be performing substantially better than the baseline system using
mono-channel features.

Future work will concentrate on finding novel data augmen-
tation techniques. Augmenting spatial features is an unexplored
space, and will be a challenge worth looking into. Concerning the
model, further studies can be done on different configurations of
RNN like extending them to bidirectional RNN’s and coupling with
convolutional neural networks.
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ABSTRACT

Deep neural networks (DNNs) have recently achieved a great suc-
cess in various learning task, and have also been used for classi-
fication of environmental sounds. While DNNs are showing their
potential in the classification task, they cannot fully utilize the tem-
poral information. In this paper, we propose a neural network ar-
chitecture for the purpose of using sequential information. The pro-
posed structure is composed of two separated lower networks and
one upper network. We refer to these as LSTM layers, CNN lay-
ers and connected layers, respectively. The LSTM layers extract
the sequential information from consecutive audio features. The
CNN layers learn the spectro-temporal locality from spectrogram
images. Finally, the connected layers summarize the outputs of two
networks to take advantage of the complementary features of the
LSTM and CNN by combining them. To compare the proposed
method with other neural networks, we conducted a number of ex-
periments on the TUT acoustic scenes 2016 dataset which consists
of recordings from various acoustic scenes. By using the proposed
combination structure, we achieved higher performance compared
to the conventional DNN, CNN and LSTM architecture.

Index Terms— Deep learning, sequence learning, combination
of LSTM and CNN, acoustic scene classification

1. INTRODUCTION

Acoustic scene classification aims to recognize the environmental
sounds that occur for a period of time. Many approaches have been
proposed for acoustic scene classification including feature repre-
sentation, classification models, and post-processing. The support
vector machine (SVM) was one of the most successful learning
model in a number of scene classification tasks. As SVM is a binary
classifier, some additional methods must be combined to apply them
to the multi-class problems, such as the use of tree or clustering
schemes [1, 2]. Furthermore, many machine learning-based scene
classification techniques were proposed in the detection and clas-
sification of acoustic scenes and events (DCASE) challenge 2013
[3, 4, 5].

However, as deep learning techniques have been widely used
on various learning tasks, researchers have started to apply them
to acoustic scene classification as well [6, 7]. In [8], a DNN-based
sound event classification algorithm was performed with several im-
age features.

Deep neural networks (DNNs) are powerful pattern classifier
which enables the networks to learn the highly nonlinear relation-
ships between the input features and output targets. Though the

DNNs work well in the classification task, they cannot be used to
map sequences to sequences because of their structural limitations.
To overcome this shortcoming, recurrent neural networks (RNNs)
and long short-term memory (LSTM), which is a special type of
RNN, have been applied to sequence learning [9].

DNNs can only map from present input vector to output vector,
whereas LSTM can map from sequence to output sequence or vec-
tor. Therefore, LSTM can learn the temporal information through
consecutive input vectors. The authors in [10] and [11] proposed
sound event detection techniques based on bi-directional LSTM
which yielded higher performance compared to the DNNs. Unlike
sound events which occur in a short time frame, acoustic scenes are
maintained for relatively longer range. Thus, applying RNNs to the
acoustic scene classification will improve the performance.

Other approaches were proposed to use convolutional neural
networks (CNNs) with spectrogram image features (SIF) [12]. In
[13], the authors addressed the importance of spectro-temporal lo-
cality and proposed a CNN-based acoustic event detection algo-
rithm.

In this paper, we propose to combine the LSTM and CNNs in
parallel as lower networks in order to exploit sequential correlation
and local spectro-temporal information. In the LSTM layers, se-
quences of Mel-frequency cepstral coefficients (MFCCs) features
are utilized as input in order to extract the sequential information.
The CNN layers learn the spectro-temporal locality from SIF, and
SIF clips are set to have the same length with the timestep of LSTM
inputs. The outputs of the two separated layers are combined by the
connected layers which are able to learn complementary features
of LSTM and CNN. To compare the performance of the proposed
method with various neural networks, we conducted a number of
experiments on the TUT acoustic scenes 2016 dataset [14]. The re-
sults revealed that the combination of LSTM and CNN outperforms
the conventional DNN, CNN and LSTM architecture with respect
to classification accuracy.

2. LONG SHORT-TERM MEMORY

The key idea of RNN is that the recurrent connections between the
hidden layers allow the memory of previous inputs to retain internal
state, which can affect the outputs. However, RNN mainly have two
issues to solve in the training phase: vanishing gradient and explod-
ing gradient problems [15]. When computing the derivatives of ac-
tivation function in the back propagation process, long-term compo-
nents may go exponentially fast to zero. This makes the model hard
to learn the correlation between temporally distant inputs. Mean-
while, when the gradient grows exponentially during training, the
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exploding gradient problem occurs. In order to solve this prob-
lem, the LSTM architecture was proposed [16]. LSTM layers are
composed of recurrently connected memory blocks in which one
memory cell contains three multiplicative gates. The gates perform
continuous analogues of write, read and reset operations which en-
able the network to utilize the temporal information over a period
of time.

3. PARALLEL COMBINATION OF LSTM AND CNN

In this section, we describe our approach to improve the classifi-
cation accuracy of acoustic scene. The schematic of the proposed
neural networks structure can be seen in Figure 1.

3.1. Feature extraction

In the proposed system, different types of neural networks are com-
bined in parallel. Thus, each network accept different form of input
feature. The LSTM layers utilize sequence of acoustic feature, but
the CNN layers use spectrogram images. As inputs for the CNN
layers, the SIF are extracted from the sound spectrogram [8, 12, 17].
Firstly, a spectrogram is generated by short-time Fourier transform.
Given audio frame s(n) segmented by lengthN and Hamming win-
dow w(n), the short time spectral column F(f, t) at time t is com-
puted as,

F(f, t) =

∣∣∣∣∣
N−1∑
n=0

s(n)w(n)e
−j2πnf

N

∣∣∣∣∣ (1)

for f = 0, ..., N/2. In order to generate a spectrogram image which
has K-bin frequency resolution, down sampling is performed by
using a window of length W = N/2K as follows:

Fdown(f, t) =
W−1∑
i=0

F(f + i, t)/W, (2)

for f = 0, ..., (K − 1). Finally, a simple de-noising method is
performed by subtracting each minimum frequency bin value in a
frame-wise manner as follows:

Fdn(f, t) = Fdown(f, t)−min
t
{Fdown(f, t)} (3)

for f = 0, ..., (K − 1). In the proposed system, the extracted SIF
has size of K × τ , where τ represents the time resolution which is
also identical to the timesteps in the LSTM layers.

3.2. LSTM layers

The hidden layers of LSTM have self-recurrent weights. These en-
able the cell in the memory block to retain previous information. In
the proposed system, τ vectors are used for sequential learning. The
lower part in Figure 1 depicts how the sequences are trained through
the LSTM layers. Previous τ −1 vectors and one present vector are
forwarded to the recurrent layer sequentially. If the MFCC vec-
tors from xt−τ+1 to xt are used as the present inputs, vectors from
xt−τ+2 to xt+1 will be used as the next input sequence. The out-
put vector zLSTMt is extracted from input MFCC sequence xLSTMt

through the LSTM layers, where xLSTMt = [xt−τ+1, ..., xt].

1st LSTM layer

1st convolutional layer

1st pooling layer

2nd convolutional layer

2nd pooling layer

down sampling

& denoising

2nd LSTM layer

𝑥𝑡
𝐿𝑆𝑇𝑀

𝑥𝑡
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1st fully connected layer

2nd fully connected layer
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Figure 1: Neural network structure for the proposed technique.

3.3. CNN layers

From Section 3.1, SIF xCNNt , which is a F × τ matrix, are ex-
tracted. The convolutional layer performs 2-dimensional convolu-
tion between the spectrogram image and the pre-defined linear fil-
ters. To enable the network to extract complementary features and
learn the characteristics of input SIF, a number of filters with differ-
ent functions are used. Thus, if we apply K different filters to the
spectrogram image, K different filtered images are generated in the
convolutional layer. The filtered spectrogram images are forwarded
to the pooling layer which conducts down sampling. Especially,
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max pooling divides the input image into a set of non-overlapping
sub-regions and selects the maximum value. By reducing the spatial
size of representation via pooling, the most dominant feature in the
sub-region is extracted. The pooling layer operates independently
on every filtered image and resizes them spatially. In the last pool-
ing layer, the resized outputs are rearranged in order to fully connect
with the upper layer. The flattened output vector zCNNt is extracted
from xCNNt through the CNN layers

3.4. Connected layer of LSTM and CNN

In [18], long-term recurrent convolution network (LRCN) model
was proposed for visual recognition. LRCN is a consecutive struc-
ture of CNN and LSTM. LRCN processes the variable-length in-
put with a CNN, whose outputs are fed into LSTM network, which
finally predicts the class of the input. In [19], a cascade struc-
ture was used for voice search. Compared to the method men-
tioned above, the proposed network forms a parallel structure in
which LSTM and CNN accept different inputs separately. Con-
catenated vector zconcatt is forwarded to the fully connected layer,
where zconcatt = [zLSTMt , zCNNt ]. The connected layers can train
the complementary information of LSTM and CNN. These enable
the proposed model to learn the sequential information and spectro-
temporal information, simultaneously. Finally, the class probability
ŷt is predicted through the softmax layer.

4. EVALUATION

To assess the performance of the proposed method, we conducted a
number of experiments on the TUT acoustic scenes 2016 dataset
which consists of recordings from various acoustic scenes. The
dataset contains 1170 recordings of total 9.75 hours with 15 differ-
ent classes. Audio signals sampled at 44.1 kHz sampling frequency
were divided into 40 ms frames with 50% hop size. Experiments
were conducted using 4-fold cross validation. The final results were
obtained by averaging over all evaluation folds.

We evaluated the classification accuracy using two measures:
frame-based accuracy and segment (30s)-based accuracy. Due to
the softmax output layer of our networks, probability distributions
among the J class labels were obtained individually. Given zconcatt ,
the predicted class label at t frame was computed by,

Cframe = argmax
j

P (ŷt = j|zconcatt ) (4)

where j denotes class index. To obtain the class label of the entire
audio segment, the likelihood was computed follows as:

Csegment = argmax
j

T∑
t=1

log(P (ŷt = j|zconcatt )), (5)

where T represents the number of frames in the one audio segment.

4.1. Neural networks setup

All networks in our experiments were trained using mean squared
error as the loss function supervised by one-hot encoding class vec-
tors. The randomly ordered mini-batches in each epoch was set to
be 256. After a mini-batch was processed, the weights were updated
using adadelta [20]. In order to mitigate the over-fitting problem in
the training phase, we used the dropout technique which has already
proved its regularization capability [21]. The output layer contained
15 softmax nodes identical to the number of scenes.

Table 1: Frame-based classification accuracy (%) on IEEE DCASE
2016 Challenge Task 1 Development Dataset.

Scene DNN CNN LSTM CNN-
LSTM

beach 76.56 65.29 79.86 81.26
bus 44.69 62.61 56.21 60.99

cafe/restaurant 47.79 61.89 57.72 57.12
car 75.49 71.11 85.51 80.57

city center 80.41 79.13 89.26 91.25
forest path 87.24 72.15 91.69 92.22

grocery store 77.19 57.39 83.07 84.71
home 66.28 72.71 52.70 55.39
library 64.07 71.27 69.29 72.55

metro station 85.71 85.76 82.52 82.47
office 83.40 78.93 82.97 89.09
park 38.24 36.11 48.89 43.88

residential area 61.87 51.71 52.54 57.74
train 22.46 38.87 24.42 38.21
tram 73.57 56.82 72.99 76.46

Overall acc 65.66 64.12 68.64 70.92

4.1.1. DNN

As a baseline system, we built a DNN which has three hidden lay-
ers with 512 hidden units each and used the ReLU activation in
the hidden layers. The input features were 60-dimensional MFCC
features including both delta and acceleration MFCC coefficients.
Input layer was composed of a concatenation of 9 input frames (the
current frame and the four previous and four next frames) resulting
in 540 input units. To regularize the network, we used dropout with
a probability of 40% for all hidden layers.

4.1.2. CNN

The CNN architecture for the baseline system comprised two con-
volutional layers, two pooling layers and one fully connected layer
with softmax layer on the top. The input features were F × τ size
SIF, where F=40 and τ=40. In the first convolutional layer, the
input SIF is convolved with 32 filters of fixed size 5×5. The first
pooling layer then reduce the size of filtered SIF. We utilized max-
pooling with kernel size 2×2 for all pooling layers. As an activation
function, ReLU was applied. The second convolutional layer per-
form convolution between the output of the pooling layer and 16
filters of fixed size 5×5. After the second pooling is performed, the
flattened output is combined with fully connected layer with 512
units. Dropout was only used after the second pooling layer and the
fully connected layer with probabilities 30% and 40%, respectively.

4.1.3. LSTM

The network had two hidden layers with 256 LSTM units each and
one feed-forward layer with 512 ReLU units. The structure of two
LSTM layers is identical to the lower part in Figure 1. The input
sequence consisted of 40 frames of 60-dimensional MFCC features.
Dropout was applied with a probability of 40% for all layers. The
output layer was identical to the mentioned in the previous section.
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Table 2: Segment-based (30s) classification accuracy (%) on IEEE
DCASE 2016 Challenge Task 1 Development Dataset. Asterisk(*)
CNN-LSTM represents the accuracy on Evaluation Dataset.

Scene Base. DNN CNN LSTM CNN-
LSTM

*CNN-
LSTM

beach 69.3 84.62 73.08 88.46 88.46 84.6
bus 79.6 51.28 88.46 67.95 65.38 100

cafe/rest. 83.2 58.97 73.08 67.95 60.26 61.5
car 87.2 78.21 73.08 88.46 89.74 88.5

city center 85.5 92.31 91.03 93.59 97.44 92.3
forest path 81.0 93.59 82.05 98.72 97.44 100

grocery store 65.0 83.33 71.79 85.90 91.03 96.2
home 82.1 80.77 89.74 64.10 70.51 88.5
library 50.4 75.64 83.33 76.92 76.92 46.2

metro station 94.7 94.87 100.0 92.31 94.87 88.5
office 98.6 93.59 96.15 87.18 96.15 100
park 13.9 41.03 43.59 57.69 52.56 96.2

resident. area 77.7 87.18 75.64 73.08 74.36 65.4
train 34.9 25.64 46.15 29.49 43.59 53.8
tram 85.4 88.46 82.05 88.46 88.46 100

correct - 881 912 905 926 -
Overall acc 72.6 75.30 77.95 77.35 79.15 84.1

4.1.4. Combination of LSTM and CNN

As a proposed system, we built a combined structure of LSTM and
CNN in parallel. The network setup and structure of LSTM part and
CNN part was identical to the aforementioned networks in Section
4.1.2 and 4.1.3, respectively. To combine and further train the two
separated networks, we used fully connected layers. The connected
layers were consisted of two hidden layers with 512 ReLU units
each.

4.2. Results and discussion

We compared the average accuracies over all scenes for the conven-
tional DNN, CNN, LSTM, and the proposed network. The frame-
based classification results are given in Table 1. Table 2 shows the
segment-based classification accuracy, where the correct represents
the number of correctly classified segments among the total 1170
segments. The proposed method achieved higher accuracy than
other networks in both frame-based and segment-based classifica-
tion.

Though the combined neural network achieved higher perfor-
mance on average, it did not give the best classification results
across all scenes. In the bus case, CNN outperformed other net-
works. In the park case, LSTM had better result. In the residential
area case, DNN achieved higher performance. This can be inter-
preted that the proposed network cannot fully train some acoustic
scenes, and these scenes may not contain enough temporal infor-
mation. Future research will deal with a more robust network archi-
tecture to extract distinct features of acoustic scenes.

The proposed method was found to improve classification per-
formance and achieved an average accuracy of 79.15%. The base-
line accuracy of audio scene classification task in DCASE 2016
challenge [14], which was based on MFCCs and GMMs, was

72.6%. Our method improved the performance by relative 6.6%.
Finally, The accuracy on the evaluation dataset was 84.1%.

5. CONCLUSION

In this paper, in order to enhance the classification accuracy of
acoustic scenes, we proposed a novel neural network structure
which achieved higher performance compared with the conven-
tional DNN, CNN and LSTM architecture in terms of both frame-
based and segment-based accuracy. In the segment-based classi-
fication results, the proposed technique obtained improvement of
3.85%, 1.2% and 1.8% in comparison with DNN, CNN and LSTM
architecture, respectively. By combining different networks in par-
allel, the proposed method was able to learn complementary infor-
mation of LSTM and CNN. Future works will study other neural
network architectures in order to extract distinct features of acous-
tic scenes.
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ABSTRACT

In this paper, we present a sound event detection system based
on a deep neural network (DNN). Exemplar-based noise reduc-
tion approach is proposed for enhancing mel-band energy feature.
Multi-label DNN classifier is trained for polyphonic event detec-
tion. The system is evaluated on IEEE DCASE 2016 Challenge
Task 2 Datasets. The result on the evaluation set yields up to 0.787
and 0.3660 in terms of F-Score and error rate on segment-based
metric, respectively.

Index Terms— Sound event detection, deep neural network,
exemplar-based noise reduction

1. INTRODUCTION

Sound event detection (SED) plays an important role in computa-
tional auditory scene analysis, with a specific purpose of detecting
meaningful sounds, generally referred to sound events. Detecting
sound events such as speech, footstep and door slam provides fun-
damental information for understanding the situation using acous-
tic signal. Furthermore, SED could be utilized in many applica-
tions, including automated surveillance systems, information re-
trieval, smart home systems and military applications.

Many previous works on SED were based on conventional
speech recognition techniques. The most common approach is to
use a system based on spectral features such as Mel-Frequency Cep-
stral Coefficients (MFCCs) and Hidden Markov Models (HMMs)
for sound event classification [1, 2]. In recent works, approaches
based on Support Vector Machine (SVM) [3, 4, 5] or non-negative
matrix factorization (NMF) [6, 7, 8] were also proposed for SED.
Most of the previous works were monophonic SED, which focused
on detecting a single event at the same time. However, more than
two events can happen simultaneously in real environments. In
this case, conventional monophonic SED approaches may not be
suitable for detecting overlapping events. Polyphonic SED aims
to detect multiple sound events in the same time instance of the
sound data. A polyphonic AED system that used MFCC for feature
and HMMs as classifiers with consecutive passes of the Viterbi al-
gorithm was proposed [9]. In [10], Generalized Hough transform
(GHT) voting system has been used to recognize overlapping sound
events. In another work, NMF-based approach was used for source
separation and then events were detected from each stream [11].
Deep neural networks (DNNs) have shown good performance for
polyphonic SED by modeling overlapping sound events in a natural
way [12].

Data augmentation

Artificial 
event scene

DNN training

Noise reduction

Feature extraction

Event scene

Post-processing

DNN 
classification

Noise reduction

Feature extraction

Training stage Test stage

Estimated events

Figure 1: Flowchart of the proposed system

In this paper, we propose a DNN-based SED system. In the
proposed system, data augmentation is performed to deal with data
sparsity problem in small training dataset and generate polyphonic
event examples. Exemplar-based noise reduction algorithm is pro-
posed for feature enhancement. DNN classifier is trained for poly-
phonic event detection and adaptive thresholding algorithm is ap-
plied as a post-processing for robust event detection in noisy condi-
tion.

2. THE PROPOSED SED SYSTEM

The proposed system consists of 4 main processing stages. The
overall system is illustrated in Fig. 1. First, data augmentation is
performed to generate artificial sound event scenes which are used
for training the classifier. In the second stage, mel-band energy fea-
tures are extracted and enhanced by exemplar-based noise reduc-
tion. Third, the enhanced feature is fed to a DNN classifier. The
features from artificial sound event scene are used for training the
DNN classifier. In final stage, the sound events are detected by fil-
tering and thresholding the output of the DNN classifier.
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Figure 2: Exemplar-based approach for noise reduction

2.1. Data augmentation

DNNs have shown good performance as classifiers in many applica-
tions. When the training data is large, the DNN could learn from the
variations presented in the training data under the same labels and
make classifications that are robust to intra-class variations. How-
ever if the training data from each class is not sufficient to cover
its intra-class variations, the DNN classifier trained with the data
may have poor generalization ability, leading to low classification
performance for test samples. In [13], data augmentation approach
was used for training DNNs to deal with the data sparsity problem.

Unlike speech datasets which usually consist of hours of data
or more, conventional sound event dataset is not sufficiently long
enough to train a robust DNN classifier. Under this condition, data
augmentation can help to enhance the performance of the DNN
classifier by improving the generalization ability of the neural net-
work. In recent research, data augmentation approach was per-
formed for better performance in polyphonic SED [14]. In this pa-
per, to construct the diverse sound event data from a small dataset,
artificial event scenes are generated using data augmentation. In the
artificial event scenes, events are overlapped to each other or ma-
nipulated by time stretching and power modification for diversity of
dataset. These event scenes are corrupted by white, blue and pink
noises.

2.2. Exemplar-based approach for noise reduction

In real life recordings, various noises exist and make it difficult to
detect sound events correctly. To alleviate the effect of the noises,
noise reduction is performed for feature enhancement. Since we as-
sume that the test noise conditions are unknown, model adaptation-
based approaches for noise robustness may not be suitable. In order
to suppress unseen noises in test conditions, exemplar-based noise
reduction approach is proposed. In this approach, noise exemplars
are selected from the event scene features, then noise is directly sub-
tracted from the event scene features by using the noise exemplars.

For each event scene, mel-band energy features are extracted
and the features that have L1 norm corresponding to the lower 30%
are considered to be noise candidates. From the candidates,K noise
frames are selected randomly or using K-means algorithm for noise
exemplars. For each frame, best matching noise exemplar that min-
imizes the noise estimation error, defined as in (1), is selected.

Ek = ||max(Xt −Nk, 0)||1 + α · ||max(Nk −Xt, 0)||1 . (1)

Ek is the noise estimation error of a noise exemplar Nk and Xt is

1st hidden layer

…

Polyphonic label of 𝑡𝑡 frame

…

… …
𝑡𝑡 frame feature𝑡𝑡 − 𝑙𝑙 frame feature 𝑡𝑡 + 𝑙𝑙 frame feature

Nth hidden layer

… …

…

Figure 3: A DNN structure for the proposed SED system

a feature vector at time index t. Noise estimation error Ek is the
summation of under estimation error and over estimation error with
ratio α. The selected noise exemplar is subtracted from the frame
feature for noise reduction. The proposed noise reduction process
is illustrated in Fig. 2.

2.3. DNN Classifier

In this paper, we trained a DNN-based classifier for SED. Unlike
speech, sound events come from different physical sources so they
possess unique characteristics that are distinct from one another.
The DNN structure is employed to successfully represent distinct
sound events in a single model. The DNN system for SED is illus-
trated in Fig. 3. The DNN consists of an input layer, a few hidden
layers and an output layer which are fully connected to their adja-
cent layers. As for the input, the mel-band energy features enhanced
by the proposed noise reduction approach are used. To consider
temporal information, several adjacent frame features are concate-
nated for a single frame input. The output of the DNN is the es-
timated labels for input frames. The number of output unit is the
same as that of the event classes, and each output unit is matched to
each class. When the event exists in input frame, the output unit of
the class is set to 1, otherwise it is set to 0. We used rectified linear
activation function for hidden layers and sigmoid function units for
the output layer.

Artificial event data generated by data augmentation is used for
training the DNN classifier. In the fine-tuning stage, backpropa-
gation algorithm with the minimum mean squared error (MMSE)
function between the correct label and the estimated label is em-
ployed to train to the DNN. A stochastic gradient descent algorithm
is performed in mini-batches to improve learning convergence. To
deal with overfitting problem, we used the dropout technique which
has already proved its regularization capability for training DNN
[15].

2.4. Post-processing

The output of the DNN classifier is filtered for robust event detec-
tion. An averaging filter may help to remove outliers, but also dis-
courage precise detection in onset or offset period of an event due to
non-event periods nearby. For precise onset and offset detection, we
used two filters: one of which is a sigmoid function and the other
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is the former reflected about the y-axis. The former one is sensitive
to the onset and the latter one is sensitive to the offset of an event.
To detect both onset and offset of an event correctly, larger values
of the output of two filters are taken from both output of the filters.

Generally, static threshold value is used for detection. How-
ever, in noisy event scenes, static threshold value can lead to high
false detection error rate when the noise has similar characteristic
with the events. To consider the noise effect on detection, adaptive
threshold value is used as in (2) ,

Ti = Tbase + β · Si (2)

where Ti is an adaptive threshold value of class i, Tbase is a base
threshold value, Si is mean of the DNN output of the class i in the
event scene which reflects noise similarity with class i, and β is
ratio value for Si. When noise characteristic is similar to class i, Ti

gets higher and reduces false detection error rate of class i.

3. EXPERIMENTAL RESULT

In order to evaluate the performance of the proposed system, we
conducted a SED experiment on IEEE DCASE 2016 Challenge
Task 2 Train/Development Datasets [16]. The training dataset was
composed of mono recordings of isolated acoustic events typi-
cally found in an office environment. 11 classes were available:
clearthroat, cough, doorslam, drawer, keyboard, keys, knock, laugh-
ter, pageturn, phone, speech and each class was represented by 20
recordings in training dataset. The development dataset consisted of
18 two-minute recordings in various noise and event density condi-
tions. Only training dataset and noises sampled from probability
density functions were used for learning the system and develop-
ment dataset was used for evaluation.

Data augmentation was performed for generating the training
event scene. Each sound event scene was about two-minute long.
All events in the training dataset were normalized to have the same
power and 30 of them were randomly selected for one event scene.
To diversify the training data, half of the events were manipulated
by stretching the time at a ±10% rate and modifying the power in
the range of 50%− 200%. One third of the events were overlapped
to each other for polyphonic event examples. To consider the ef-
fect of noise on events, white Gaussian noise at signal-to-noise ratio
(SNR) levels 6 to 18 dB and pink noise and blue noise at SNR level
12 dB were mixed. Total 110 artificial event scenes were generated
for training the system.

We used mel-band energy as input features. Instead of original
frequency 44.1 kHz, we used the sampling frequency of 30 kHz,
spanning 50 bands between 100 Hz and 15 kHz. We used a ham-
ming window with a frame length of 30 ms and a frame shift of 10
ms for frame segmentation. For noise reduction, K = 100 noise
exemplars are selected and α is set to 0.5. As training data and test
data may have power mismatch, the features extracted from each
event scene are normalized.

For training the DNN-based classifier, 50-dimensional mel-
band energy features were used as input. The input layer for DNN
was formed by applying a context window of 11 frames, having
550 visible units for the network. The DNN had 3 hidden layers
with 768 hidden rectified linear units with in each layer and the fi-
nal sigmoid output layer had 11 units, each corresponding to the
event classes. The parameters of the network were initialized by
random values sampled from zero-mean normal distribution. The
fine-tuning of the network was performed using mean squared er-

Table 1: Average detection results on IEEE DCASE 2016 Challenge
Task 2 Development Dataset

Metrics Segment-based Event-based

Precision 0.9311 0.7553
Recall 0.9211 0.8367

F-score 0.9261 0.7939

Substitutions 0.0091 0.0152
Deletions 0.0698 0.1481
Insertions 0.0590 0.2559

ER 0.1379 0.4192

Table 2: Average detection results on IEEE DCASE 2016 Challenge
Task 2 Evaluation Dataset

Metrics Segment-based Event-based

F-score 0.787 0.671

ER 0.3660 0.6178

ror as the loss function by error back propagation supervised by the
correct label of frames. The mini-batch size for the stochastic gra-
dient descent algorithm was set to be 128. The learning rate was
initially set to be 0.015 and exponentially decayed over each epoch
with decaying factor 0.99 after fifth iteration. The momentum was
set to be 0.7. The training was stopped after 80 epochs. The dropout
percentage of 20% was applied for regularization.

In post-processing stage, two 21-tap sigmoid shape filters are
applied for smoothing output of the DNN. Larger values are taken
from both output of the filters and thresholded for event detection.
We set Tbase to 0.6 and α to 0.5 for adaptive thresholding. Same
events within 200ms gap are concatenated and events shorter than
100ms are removed.

As evaluation measures the F-Score and the error rate (ER) are
used on Segment-based level. The F-Score F is the harmonic mean
of precision P and recall R. The ER is the total number of inser-
tions I , deletions D and substitutions S relative to the number of
reference events N .

F =
2P ·R
P +R

, ER =
S +D + I

N
(3)

The results on the development dataset, averaged over the 18 syn-
thetic audio event scenes are shown in Table 1. F-score and ER
on segment-based metrics are 0.9261 and 0.1379, respectively. On
event-based overall metrics, F-score and ER are 0.7939 and 0.4192,
respectively. For DCASE 2016 task 2 challenge evaluation, both
training data and development data are used for training DNN clas-
sifier. In Table 2, the results on the evaluation dataset are shown.
F-score and ER on segment-based metrics are 0.787 and 0.3660,
respectively. On event-based overall metrics, F-score and ER are
0.671 and 0.6178, respectively.

4. CONCLUSION

We presented a SED system based on a DNN. We used data aug-
mentation to deal with data sparsity problem and exemplar-based
approach for noise reduction. We trained a DNN for classification
and filtering and adaptive thresholding are used for detecting events.
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The proposed system has shown promising results on IEEE DCASE
2016 Challenge Task 2 Datasets.
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ABSTRACT

In this paper we present our work on Task 1 Acoustic Scene Classi-
fication and Task 3 Sound Event Detection in Real Life Recordings.
Among our experiments we have low-level and high-level features,
classifier optimization and other heuristics specific to each task. Our
performance for both tasks improved the baseline from DCASE: for
Task 1 we achieved an overall accuracy of 78.9% compared to the
baseline of 72.6% and for Task 3 we achieved a Segment-Based
Error Rate of 0.48 compared to the baseline of 0.91.

Index Terms— audio, scenes, events, features, segmentation,
DCASE, bag of audio words, GMMs, sound event detection, acous-
tic scene classification

1. INTRODUCTION
Audio plays a critical role in understanding the environment around
us. This makes audio content analysis research important for tasks
related to multimedia [1, 2], and human computer interaction [3, 4]
to mention a pair. However, unlike the field of computer vision
which has a variety of standard publicly available datasets such as
Imagenet, audio event/scene analysis lacks such large dataset. This
makes it difficult to compare different approaches and establishing
the state of art. The second iteration of DCASE [5], occurring in
2016, offers an opportunity to compare approaches on a standard
public dataset. This edition it includes four different tasks: acous-
tic scene classification, sound event detection– real and synthetic
audio, and audio tagging.

The state-of-the-art of the previous DCASE challenge, for both
acoustic scenes [6–8] and sound event detection [6, 8, 9], attributed
their success mainly to features and audio representations rather
than classifiers. Hence, an important aspect in our work is to em-
phasize on classifier exploration along with features. In this paper
we present our work performed on Task 1 and Task 3. We proposed
a variety of methods for both tasks and we obtained significant im-
provement over the baseline methods.

2. TASKS AND DATA
The goal of Task 1, Acoustic Scene Classification, is to classify a
test recording into one of predefined classes that characterizes the
environment in which it was recorded for example park, home, of-
fice. TUT Acoustic Scenes 2016 dataset is used for this task. It con-
sists of recordings from various acoustic scenes. For each record-
ing location, a 3-5 minute long audio recording was captured. The
original recordings were then split into 30-second segments for the
challenge. There are 15 acoustic scenes for the task.

Task 3, Sound Event Detection in Real Life Recordings, eval-
uates performance of sound event detection in multi-source condi-

tions similar to our everyday life. There is no control over the num-
ber of overlapping sound events at each time, not in the training nor
in the audio data. TUT Sound Events 2016 dataset is used for Task
3, which consists of recordings from two acoustic scenes: Home
and Residential Area. There are 18 selected sound event classes, 11
for Home and 7 for Residential Area.

3. TASK 1: ACOUSTIC SCENE CLASSIFICATION
From machine learning perspective, we treated Task 1 as a multi-
class classification problem. The first step is to use a suitable
method for characterizing acoustic scenes in the audio segments.
An effective approach for characterizing audio events is bag-of-
audio-words based feature representation [10], which is usually
built over low-level features such as MFCCs. Acoustic scenes, how-
ever, are more complex mixtures of different audio events and a
more robust representation is required. To obtain a more robust
representation we use Gaussian Mixture Models (GMMs) for fea-
ture representations of audio segments. Broadly, we employed two
high-level feature representations to represent audio scenes. On the
classification front we used Support Vector Machines (SVMs) as
our primary classifier and in combination with other classifiers.

3.1. Feature Representations
Let D-dimensional MFCCs vectors for a recording be represented
as ~xt, where t = 1 to T , T is the total number of MFCCs vectors
for the recording. The major idea behind both high-level feature
representation is to capture the distribution of MFCCs vectors of a
recording. We will refer to these features as ~α and ~β features and
the sub-types will be represented using appropriate subscripts and
superscripts.

The first step in obtaining high-level fixed dimensional feature
representation for audio segments is to train a GMM on MFCC
vectors of the training data. Let us represent this GMM by G =
{wk, N(~µk,Σk), k = 1 to M}, wherewk, ~µk and Σk are the mix-
ture weight, mean and covariance parameters of the kth Gaussian in
G. We will assume diagonal covariance matrices for all Gaussians
and ~σk will represent the diagonal vector of Σk. Given the MFCCs
vectors ~xt of a recording, we computed the probabilistic assignment
of ~xt to the kth Gaussian. These soft assignments are added over
all t to obtain the total mass of MFCCs vectors belonging to the kth

Gaussian (Eq 1). Normalization by T is used to remove the effect
of the duration of recordings.

Pr(k|~xt) = wkN(~xt;~µk,Σk)
M∑
j=1

wjN(~xt;~µk,Σk)

, P (k) = 1
T

T∑
i=1

Pr(k|~xt) (1)
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The soft count histogram features referred to as ~α is, ~αM =
[P (1), ..P (k)..P (M)]T . ~αM is an M -dimensional feature repre-
sentation for a given recording. It captures how the MFCC vectors
of a recording are distributed across the Guassians in G. ~αM is
normalized to sum to 1 before using it for classifier training.

The next feature (~β), also based on the GMM G, tries to capture
the actual distribution of the MFCC vectors of a recording. This is
done by adapting the parameters of G to the MFCC vectors of the
recording. We employ maximum a posteriori (MAP) estimation to
for the adaptation [11] [12]. Parameter adaptation for kth Gaussian
follows the following steps. First we compute,

nk =
T∑
t=1

Pr(k|~xt), Ek(~x) = 1
nk

T∑
t=1

Pr(k|~xt)~xt, Ek(~x2) = 1
nk

T∑
t=1

Pr(k|~xt)~x2
t

(2)

Finally, the updated mean and variances are obtained as

~̂µk =
nk

nk + r
Ek(~x) +

r

nk + r
~µk (3)

~̂σk =
nk

nk + r
Ek(~x2) +

r

nk + r
(~σ2
k + ~µ2

k)− ~̂µ2
k (4)

The relevance factor r controls the effect of the original parameters
on the new estimates. We obtain 2 different feature representation
using the adapted means (~̂µk) and variances (~̂σk). The first one de-
noted by ~βM is anM×D dimensional feature obtained by concate-
nating the adapted means ~̂µk for all k, that is ~βM = [~̂µT1 , ...~̂µ

T
K ]T .

In the second ~β features adapted ~̂σk are concatenated along with ~̂µk
to obtain a 2×M×D dimensional features. This form of ~β features
are denoted by ~βMσ .

3.2. Classification
Once the feature representation for audio segments have been ob-
tained, Task 1 essentially becomes a multi-class classification prob-
lem. Our primary classifiers are SVMs where we explore a vari-
ety of kernels. For the ~β features, we use Linear Kernel (LK) and
RBF Kernel (RK). For soft-count histogram ~α features we explore
a panoply of kernels. Along with LK and RK we explored the fol-
lowing kernels.

• Exponential χ2 Distance (ECK): the kernel is computed as
K(~x, ~y) = exp−γD(~x,~y), where D(~x, ~y) =

∑
i(xi −

yi)
2/(xi + yi) is χ2 distance.

• χ2 Kernel (CK): In this case K(~x, ~y) =
∑
i

2xiyi
xi+yi

• Intersection Kernel (IK): K(~x, ~y) =
∑
i min(xi, yi)

• Exponential Hellinger Distance Kernel (EHK): K(~x, ~y) =

exp−γD(~x,~y) where D(~x, ~y) =
∑
i(
√
xi −

√
yi)

2

• Hellinger Kernel (HK): (~x, ~y) =
∑
i

√
xiyi

The details of these kernels can be found in [13–15]. For kernels
where γ term appears, the optimal value of γ value can be obtained
by cross validation over training data. However, setting γ equal
to the inverse of average distance D(~x, ~y) between training data
points works well in general as well. We use [16] [17] for SVM
implementation.

Finally, we have a classifier fusion step where we combined the
output of the different classifiers. We combined multiple classifiers
by taking prediction vote from each classifier and the final predicted
class is the one which gets the maximum vote. We call it the Fused
Classifier and we observed that the fused classifier can give signifi-
cant improvement for several acoustic scenes.

Table 1: Task 1 Accuracy for different cases (Single Classifier)
~αM ~βM ~βMσ

M LK RK ECK CK IK EHK HK LK RK LK RK
64 62.8 60.6 66.2 66.3 66.0 64.7 65.3 76.8 76.6 75.5 76.7

128 63.6 62.3 67.5 67.1 66.4 67.4 66.5 76.5 75.3 77.5 77.5
256 63.9 63.9 67.3 67.8 66.5 68.7 67.7 76.5 71.9 76.6 75.9
512 65.0 62.9 67.8 67.8 67.1 68.9 69.3 76.4 72.2 76.2 75.9

Table 2: Overall Task 1 Accuracy (Fused Classifier)
Baseline Proposed

Scene Fold 1 Fold 2 Fold 3 Fold 4 Avg. Fold 1 Fold 2 Fold 3 Fold 4 Avg.
Beach 84.2 66.7 78.9 47.4 69.3 100 71.4 89.5 52.6 78.4
Bus 68.4 65.0 100 85.0 79.6 68.4 50.0 100 95.0 78.4

Cafe/Restaurant 66.7 94.7 71.4 100 83.2 88.9 63.2 76.2 95.0 80.8
Car 70.0 89.5 89.5 100 87.3 80.0 100 100 100 95.0

City Center 83.3 73.7 89.5 95.5 85.5 88.9 84.2 100 95.5 92.1
Forest Path 57.1 100 66.7 100 81.0 81.0 100 100 100 95.2

Grocery Store 52.6 81.0 89.5 36.8 65 89.5 81.0 94.7 84.2 87.3
Home 100 55.6 95.0 77.8 82.1 100 61.1 80.0 44.4 71.4

Library 47.6 38.9 15.0 100 50.4 47.6 33.3 85.0 100 66.5
Metro Station 84.2 94.4 100 100 94.7 94.7 94.4 100 100 97.3

Office 100 100 94.4 100 98.6 78.9 100 72.2 83.3 83.6
Park 10.0 5.6 0 40.0 13.9 65.0 33.3 50.0 30.0 44.6

Residential 78.9 47.6 100 84.2 77.7 84.2 42.9 94.7 57.9 69.9
Train 16.7 31.6 30.4 61.1 34.9 50.0 63.2 34.8 88.9 59.2
Tram 88.9 88.9 63.6 100 85.3 83.3 88.9 63.6 100 84.0

Overall 67.2 68.9 72.3 81.9 72.6 80.0 71.1 82.7 81.8 78.9

3.3. Results
Our experimental setup with the folds structure, is same as the one
provided by DCASE. We extracted 20 dimensional MFCC features
using 30mswindow and 50% overlap. MFCCs are augmented with
their delta and acceleration features. For our final feature represen-
tation we experimented with 4 different values of GMM component
size M , 64, 128, 256 and 512. The relevance factor r for ~β is set to
20. Due to space constraints we cannot present fold-and-scene spe-
cific results for all cases and hence overall accuracy for all 4 folds
is shown. Table 1 shows overall accuracy results for different cases.
The accuracy for the MFCC-GMM baseline method provided in the
challenge is 72.6%.

We can observe from Table 1 that ~α features in general do not
perform better than the baseline method for any SVM kernel. How-
ever, ~β features clearly outperformed baseline method. In the best
case, withM = 128 and ~βMσ our method outperformed the baseline
by an absolute 5%.

Table 2 shows results for the fused classifiers. For the fusion
step we did not consider classifiers built over ~α since these classi-
fiers are inferior compared to those using ~β features. We can ob-
serve that our proposed method beats the baseline method by an
absolute 6.3%. Moreover, for scenes such as Park, Train, Library
where the baseline method gives very poor results, we improved
the accuracy by an absolute 16− 30%. We also obtained supe-
rior overall accuracy on all folds which suggests that our proposed
method is fairly robust. This is further supported by the fact that on
DCASE evaluation set, We achieved an overall accuracy of 85.9%.

4. TASK 3: SOUND EVENT DETECTION IN REAL LIFE
RECORDINGS

Detection of sound events in scenes and long recordings have been
treated as a multi-class classification problem before in [18–20]
where a classifier is trained with the sound segments. For test-
ing, the classifier outputs segment/frame-level predictions for all
the classes. In order to follow a similar approach, first we wanted
to analyze features’ performance for sound events regardless of the
scene. This way, we could have an intuition of performance on the
harder scenario of Task 3 where not every segment of the scene cor-
responds to a labeled sound event.
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Feature Type Accuracy% Classifier
MFCCs 67.7 Logistic Regression
GBFB 52.4 Gradient Boosting
SGBFB 61.5 Gradient Boosting
Scatnet 62.1 Random Forest
Stacked 66.68 Random Forest
Stacked + PCA 66.06 Random Forest

Table 3: Sound-event classification accuracy for different feature
types using the 18 sounds and the 75 training - 25 testing ratio.
Stacked included normalized MFCCs +SGBFB +Scatnet.

4.1. Features and Classifiers Optimization
For the features we tried the conventional MFCCs with standard pa-
rameters such as 12 coefficients plus energy, delta and double delta
for a total of 39 dimensions. Moreover, we explored three features
addressing the time-frequency acoustic characteristics. The Gabor
Filter Bank (GBFB) in [21] have 2D-filters arranged by spectral
and temporal modulation frequencies in a filter bank. The Sepa-
rable Gabor filter bank (SGBFB) features extract spectro-temporal
patterns with two separate 1D GBFBs, a spectral one and a temporal
one. This approach reduces the complexity of the spectro-temporal
feature extraction and further improves robustness as demonstrated
in [22]. Both features have the default parameters from the tool-
box1 for a total dimension of 1,020 each. The Scatnet [23] features
are generated by a scattering architecture which computes invariants
to translations, rotations, scaling and deformations, while keeping
enough discriminative information. It can be interpreted as a deep
convolution network, where convolutions are performed along spa-
tial, rotation and scaling variables. As opposed to standard convo-
lution networks, the filters are not learned but are scaled and rotated
wavelets. The features were extracted with a toolbox2 using 0.25
second segments. The dimensionality of the three Scatnet compo-
nents are 2, 84, 435 for a total of 521. Additionally, we included the
normalized (mean and variance) Stacked (MFCCs+ SGBFB+ Scat-
net) with PCA and also the normalized (mean and variance) Stacked
without PCA. For the PCA we used Scikit’s [24] and used the full
dimensionality of 1,580 as the number of input components and the
resultant automatic reduction was 909 dimensions. For all the fea-
ture types and for the sake of avoiding the length variability of the
temporal dimension, we averaged the vectors across time to end up
with one single vector per sound event file.

Then, for the classifiers we considered Tpot [25], built on top
of Scikit [24], which is a Python tool that automatically creates
and optimizes machine learning pipelines using genetic program-
ming. This toolbox (version 4) considers 12 classifiers such as De-
cision Tree, Random Forest, Xtreme Gradient Boosting, SVMs, K-
Neighbors and Logistic Regression. The main Tpot parameter is
“number of generations”, which corresponds to the number of it-
erations carried to tune the classifier, we set it to 15. An example
of the best classifier for each feature type can be seen in Table 3.
Interestingly, decision tree-based algorithms and logistic regression
outperformed others like SVMs.

For our experiments, we extracted the 18 sound events from
the two scenes using the annotations, and then we extracted differ-
ent feature types from these isolated sounds. For each feature type
experiment, the sound events’ feature files were fed to Tpot in a

1http://www.uni-oldenburg.de/mediphysik-
akustik/mediphysik/downloads/gabor-filter-bank-features/

2http://www.di.ens.fr/data/software/scatnet/

Feature Type Accuracy% Classifier
Home 56.4 Random Forest
Home + G 55.2 Random Forest
Home + G + P 55.7 Random Forest
Residential 53.3 Gradient Boosting
Residential + G 57.8 Decision Tree
Residential + G + P 56.7 Random Forest

Table 4: Sound-event classification accuracy using the DCASE set
up with four-folds partitions. The inclusion of the [G]eneric class
improved performance for both scenes, whereas the inclusion of the
[P]erturbed audio improved only the Home performance.

Figure 1: [H]ome and [R]esidential without the generic class. Ob-
ject impact and bird singing capture most of ambiguities.

randomly selected ratio of 75% training and 25% testing, each set
with different files. We kept the same partitions across our experi-
ments for consistency. The performance was measured in terms of
accuracy and is displayed in Table 3.

The features with the best performance were MFCCs with
67.7% and thus we keep them for our DCASE evaluation set up.
The other features have shown better results than MFCCs on audio
classification, but it wasn’t the case for this particular dataset. Re-
sults for Scatnet was 62.1%, for GBF was 52.4%, and for SGBF was
61.5%. Moreover, the two normalized stacked features performed
almost as good as MFCCs with 66.68% for the stacked without PCA
and 66.08% for the stacked with PCA. In principle the stacked ver-
sion contains more information about the acoustics and thus they
were expected to perform better. Nevertheless, they didn’t outper-
form MFCCs which is designed for speech and focus on lower fre-
quencies rather than on a wider frequency range. We cannot draw
a fundamental conclusion on the performance of these features for
sound event classification since the amount of data and classes are
determinant.

4.2. Inclusion of Generic Sound Event Class
In the annotated scenes, not every segment of audio corresponds
to a labeled sound. Hence, it cannot be assured that any of our
sound event classes have to be present on every test segment. To
handle out-of-vocabulary segments, we proposed a generic sound
event class.

For the first experiment we wanted to analyze the impact of the
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generic class together with the 18 sounds in the multi-class classifi-
cation set up described in Section 4.1 using MFCCs. To create such
class, we used the sound events annotations and trimmed out the au-
dio between the labeled segments, which are unlabeled. Then, we
randomly selected from both scenes, 60 audio files which is about
the average number of sound event samples per class. In order to
visualize the performance, we included the normalized confusion
matrices (CMs) in Figures 1 and 2. The accuracy performance
without the generic class was 67.7% and with the generic class was
60.94%. The performance dropped with the inclusion of the new
class, but we can also observe how although the generic class shared
the background acoustics with the other sound classes, it didn’t sig-
nificantly ambiguate with them.

The second set of experiments used the DCASE setup of sep-
arate scenes and four folds, and utilized the sound events with and
without the generic class, but this time the generic class will have
files particular to the scene. The results can be seen in Table 4
showing benefit of including the generic class. Moreover, the CMs
not included due to space limitations, had cleaner diagonals. The
reasons for performance improvements on the DCASE set up are
suggested by the utilization of less sound classes, which reduces
class ambiguity. The utilization of the generic class built with same-
scene files as opposed to a mix of both scenes. As well as the opti-
mization per scene of the classifier using Tpot.

4.3. Generation of Data Through Perturbation
The scarcity of labeled data per event is a common issue as dis-
cussed in [26, 27]. Annotations are costly, sounds don’t occur with
the same frequency and in general it’s hard to capture enough vari-
ations of the same sound to train robust models. To address this
problem, multiple techniques have been explored in the literature
such as perturbation of the audio signal as in [28, 29]. The authors
presented multiple types of perturbations resulting in improvements
of speech separation. For Task 3 we performed time-based perturba-
tion by speeding up and slowing down the sound event samples. We
empirically analyzed multiple combinations of speed up-down val-
ues for different events. We concluded that speeding up more than
30% the original signal resulted in unintelligible audio and speeding
down the signal more than 100% would be unlikely to occur. The
range included 13 different speed values and the original version.

The set of experiments used the DCASE setup of separate
scenes and four folds, and utilized the time-based perturbed audio.
For training, we added to the original files the 13 versions of the per-
turbed audio files, whereas for testing, the set remained intact. The
results can be seen in Table 4, where the performance for Home
improved, but not for Residential. Thus, we decided to use pertur-
bation for the DCASE evaluation.

4.4. Sound Event Detection and Submission Systems
For Task 3, we used the DCASE setup of separate scenes and four
folds in a similar setup as the experiments from Table 4. For each
scene, we extracted the sound events from the recordings using the
annotations from the train set, followed by the extraction of MFCCs
features. After, we trained the Tpot optimized multi-class classifier
with the event samples. For testing, instead of using sound event
files only, we segmented the scene recordings from the test set into
one-second consecutive segments. This number was selected due to
the metric schema of the DCASE evaluation, which considers one-
second segments. After, we extracted audio features from the test
segments and evaluate them with the classifier to obtain scores for
each trained sound event class. The label corresponding to the high-
est score was chosen for the segments and then were written down

Figure 2: [H]ome and [R]esidential with the generic class. Al-
though this class shared the background acoustics with the 18
sounds, it didn’t cause major confusion.

Acoustic Scene SBER F-score
Home 0.62 48.8
Home + G 0.70 42.3
Home + G + P 0.72 39.2
Residential 0.34 77.7
Residential + G 0.48 65.2
Residential + G + P 0.56 59.6

Table 5: Our Segment-based Error Rate, using [G]eneric and
[P]erturbation, outperformed the baseline.

into the DCASE format output file and fed to the official scoring
scripts 3 along with the ground truth to compute performance.

We utilized the pipeline for three experiments, without generic
class & without perturbation, with generic class & without pertur-
bation and with generic class & with perturbation. The results using
the development-test set is shown in Table 5. Although the inclu-
sion of the generic class and the perturbation did not improve results
for SBER, all cases outperformed the baseline method by a signifi-
cant margin for both Home and Residential scenes. Our submission
consisted on the runs using G and G+P but using the evaluation set.
The eval results were SBER of 0.9613 and Fscore of 33.6% given
by the G+P version. 5. CONCLUSION
In this paper we showed different approaches for both acoustic
scene classification (Task 1) and sound event detection (Task 3) of
the 2016 DCASE challenge. On both tasks we were able to obtain
significant improvement over the baseline method. For Task 1 we
observed that the ~β features performed much better than ~α features.
Although, linear and RBF kernels with ~β features can outperform
the baseline by considerable margin on its own, we make note of the
fact that a multiple classifier system can give further improvements.
For Task 3, we tested different features and classifiers and signif-
icantly improved the baseline. Moreover, we explored a way of
handling out-of-vocabulary sound segments with the generic class
and the inclusion of perturbed audio to add robustness.

3http://www.cs.tut.fi/sgn/arg/dcase2016/sound-event-detection-metrics
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ABSTRACT

In this paper, we investigate sparse convolutive non-negative ma-
trix factorization (sparse-CNMF) for detecting overlapping acoustic
events in single-channel audio, within the experimental framework
of Task 2 of the DCASE’16 Challenge. In particular, our main focus
lies on the efficient creation of the dictionary, as well as the detec-
tion scheme associated with the CNMF approach. Specifically, for
the dictionary creation stage, we propose a shift-invariant method
for its size reduction that outperforms standard CNMF-based dictio-
nary building. Further, for detection, we develop a novel algorithm
that combines information from the CNMF activation matrix and
atom-based reconstruction residuals, achieving significant improve-
ments over conventional detection based on activations alone. The
resulting system, assisted by efficient background noise modeling,
outperforms a traditional NMF baseline provided by the Challenge
organizers, achieving a 24% relative reduction in the total error rate
metric on the Challenge Task 2 test set.

Index Terms— Convolutive Non-Negative Matrix Factoriza-
tion, Dictionary Building, Overlapping Acoustic Event Detection

1. INTRODUCTION

Acoustic event detection (AED) is a research topic that has attracted
significant interest in the literature. Its main goal is the end-pointing
and classification of each event present in an audio recording. In its
general form, multiple acoustic events may occur simultaneously,
making the task extremely challenging. Application areas of AED
include, among others, smart home environments, surveillance and
security, as well as multimedia database retrieval.

In the case of isolated AED, conventional detection and classi-
fication approaches, such as ones based on hidden Markov models
(HMMs) in conjunction with traditional audio features (for example
MFCCs) achieve satisfactory performance [1]. In the case of over-
lapping AED however, such methods need to be modified in order
to allow multiple event detection. For example, in [2], multiple-path
Viterbi decoding is employed to deal with the overlapping scenario.
Other works for overlapping AED include multi-label deep neural
networks [3], temporally-constrained probabilistic component anal-
ysis models [4], generalized Hough-transform based systems [5],
and non-negative matrix factorization (NMF) [6].

Among these, NMF-based approaches and their variants have
begun to attract interest in the field of both isolated and overlapping

This work has been partially funded by the BabyRobot project, sup-
ported by the EU Horizon 2020 Programme under grant 687831.

AED in recent years. This is due to both their robustness and their
natural ability to detect multiple events occurring simultaneously,
as long as appropriate non-negative and linear representations of
them are available. For example, in [7], a rather small dictionary of
events is automatically built using sparse-CNMF, and subsequently
the activations produced are used as input for HMM training for
each class. Also, in [6], using a large dictionary, NMF activations
are directly exploited to perform detection for each event class.

In this paper, overlapping AED is performed on the Task 2
dataset of the DCASE’16 Challenge [8], consisting of single-
channel audio that contains eleven office-related events syntheti-
cally mixed in various conditions. The detection system proposed
is based on the sparse-CNMF framework: Given a dictionary with
spectral patches (“atoms”) for each class (acoustic event), it deter-
mines the activations of each atom over time, thus allowing detec-
tion of overlapping events. The main contributions of the work lie in
the investigation of methods for efficient dictionary building and in
the design of a novel method for the final detection step. In particu-
lar, an efficient dictionary selection method based on shift-invariant
similarity between atoms is proposed, achieving improved results
compared to the standard automatic dictionary building of sparse-
CNMF. Also, in the final detection step, a combination of activa-
tions with the reconstruction errors for each class is proposed. The
approach yields significant improvements over conventional detec-
tion employing activations alone, indicating the complementary in-
formation contained in the reconstruction errors.

The remainder of the paper is organized as follows: Section 2
overviews the sparse-CNMF framework; Section 3 presents dic-
tionary building for CNMF, including the proposed shift-invariant
size reduction approach; Section 4 covers the CNMF detection ap-
proaches considered; Section 5 discusses additional system compo-
nents, such as background noise modeling, feature extraction, and
post-processing; Section 6 reviews the experimental framework and
reports our results; and, finally, Section 7 concludes the paper.

2. SPARSE-CNMF FOR AED

The application of sparse-CNMF for overlapping AED is based
on the idea of linear decomposition of events into spectral patches
(“atoms”). Given the linearity of the features employed, mixtures
of events will be mainly decomposed into atoms from the mixed
classes, therefore indicating their presence. To accomplish this,
non-negative features with approximate linearity are required: spec-
trograms and filterbank energies are typically used for this purpose.

NMF is a linear non-negative approximate factorization of the
observed feature matrix. CNMF [9] is its convolutive extension, and
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it is formulated as follows: Given a non-negative data feature matrix
V∈ <≥ 0,M×N, where M denotes the feature vector size and N the
available number of feature vectors, the goal is to approximate V by
matrix Λ, derived as a temporal convolutive sum of a “dictionary”
and “activations”, namely

V ≈ Λ =

T−1X
t = 0

Wt ·
t→
H , (1)

where, operator
t→• shifts the columns of its matrix argument t

places to the right, Wt ∈ <≥ 0,M×R denotes the non-negative dic-
tionary matrix at time step t , H ∈ <≥ 0,R×N represents the non-
negative activation matrix, T is the number of time frames spanned
by each dictionary atom, and R stands for the number of atoms in
the dictionary. The i-th column of Wt describes the i-th atom, t
time steps after its beginning. The dictionary thus contains R atoms
of size M× T each. Minimization of a suitable error cost function
D(V||Λ) results in the iterative estimation of Wt and H [9, 10].

For detection, assuming a given dictionary Wt , t ∈ [ 0 , T−1 ] ,
that contains atoms of the various classes of interest, the esti-
mated H provides the activations of each class through time. Al-
though CNMF produces activation patterns that tend to be sparse,
in detection-related tasks sparsity of H becomes crucial. To achieve
it, sparse-CNMF, a variant of CNMF, is often used, minimizing the
following objective,

G (V ||Λ) = D (V ||Λ) + λ ‖H‖1 , (2)

with parameter λ controlling the trade-off between sparseness on
H and accurate reconstruction of V by Λ . Depending on the
cost function selected (KL-divergence, Euclidean distance), differ-
ent updating equations result [11, 12].

3. DICTIONARY BUILDING

Dictionary building is a very important step in exemplar-based
methods. Representative atoms from each class must be contained
in the dictionary matrix, capable of reconstructing unseen data. Us-
ing training data consisting of isolated event instances, a sufficient
number of atoms is extracted and stored in the dictionary for each
class of interest, resulting to matrices

Wt = [W
(1)
t , . . . ,W

(C)
t ] , t ∈ [ 0 , T−1 ] , (3)

where C is the number of classes. In the case of CNMF-based
methods, due to increased computational complexity, we need to
create a rather compact dictionary. In the following, we present two
alternatives for this task.

3.1. CNMF-based

For each class of interest, the training instances are concatenated
to form its data matrix, V(i). Then, via sparse-CNMF, matrices
W

(i)
t and H(i) are computed (as in [12]), and W

(i)
t ∈<≥ 0,M×Ri

stored in the dictionary. The duration, T , of each atom and their
total number, R i , are predefined. By extracting the same number
of atoms for each class, their total number becomes R = C ·R i .

3.2. Shift-invariant dictionary reduction

Here, we propose an alternative way for dictionary creation that
selects a group of atoms from the original training data. For each
class, first, a large number of atoms is extracted from its data matrix

V(i), using a sliding window of duration T (shifted by one feature
frame at a time). Then, only R i of them are selected by “uniformly
sampling” the set of the resulting atoms, as explained next. The
process aims at selecting different types of existing atoms based
on a similarity measure, appropriate for CNMF. In our case, such
similarity should be shift-invariant: i.e., two atoms are considered
similar if the Euclidean distance between them, or between their
temporally shifted versions, is small.

To achieve atom comparisons in a shift-invariant way, we first
rearrange them into vectors of size M ·T , in a row-wise manner.
This way, a time-shift of atoms results to shifts of their correspond-
ing vectors. Then, atom similarity is measured as the Euclidean
distance between the magnitudes of the Fourier transforms (DFTs)
of the rearranged vectors, based on the well-known shift-invariant
property of this transform. The available atoms are thus mapped
to their Fourier-magnitude vectors, which are subsequently sorted
based on their Euclidean distance from their mean. Finally, R i

atoms are selected by uniformly sampling the resulting sorted list.
The adopted sampling scheme represents a simple approach to

desired dictionary size reduction. Alternatively, well-known clus-
tering methods like k-means could also be used for the task.

4. DETECTION APPROACHES

As stated earlier, having created the dictionary matrix Wt , sparse-
CNMF accepts as input the data matrix V, and outputs the desired
activation matrix H (following the approach in [11]). The final
event detection can occur by exploiting the information in the above
matrices. We present two main approaches for accomplishing this.

4.1. Using activations only

Most of NMF-based approaches employ the information in H di-
rectly [6], or indirectly [7]. In our method, activations in H are
directly used for detecting possible events. In particular, for each
class, the activations are summed across all their atoms, for each
frame, resulting in a new matrix H′∈<≥ 0,C×N, with elements

H ′( i , n ) =
X

r ∈{i}

H( r , n ) , (4)

where i denotes the class ( i = 1,· · ·, C ), {i} the set of row indices
in H that correspond to the i-th event atoms, and n ∈ {1,· · ·, N}
the time frame. Then, at time n , a class is considered active if
H ′(i,n) > θH , where θH is a suitably chosen activation thresh-
old. A post-processing step can also be employed to yield smooth
activations. Finally, as activation refers to atoms, T− 1 additional
frames following the detected activations are considered active.

4.2. Incorporating reconstruction residuals

An alternative method to the above decides for an event activa-
tion, not by thresholding the elements of H′, but by measuring
KL-divergence between V and Λ , when only the atoms of the
event in question and of background noise are used in reconstruction
(see Section 5.1 for details on background noise modeling). More
specifically, the total reconstruction error of sparse-CNMF over
a time-segment, seg , under consideration, is D (Vseg ||Λseg ) ,
whereas reconstruction error on basis of only the i-th event and
noise is D (Vseg ||Λ(i,bg)

seg ) , where,

Λ(i,bg)
seg =

T−1X
t = 0

W
(i,bg)
t ·

t→

H(i,bg)
seg , (5)
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Figure 1: An example of applying the long-term signal variability
(LTSV) measure to background noise detection (see Section 5.1).
Ground truth peaks correspond to acoustic events.

with H
(i,bg)
seg denoting the part of H that contains only rows cor-

responding to atoms of the i-th class or background noise and
columns that correspond to the time frames of seg . Similarly, in
the above, Λseg and Vseg contain the columns of (1) and of the
data matrix, respectively, within the segment under consideration.

We define the “residual ratio” of the i-th event as the ratio be-
tween the residual on basis of (5) to the total one, using (1), namely

E(i , n) =
D (Vseg ||Λ(i,bg)

seg )

D (Vseg ||Λseg)
, for all n ∈ seg . (6)

In computing (6), non-overlapping segments of 1 sec. in duration
are used. Small residual ratio values for the i-th event in a given
segment means that large percentage of the reconstruction in that
segment is achieved using only the i-th event (together with back-
ground noise). Activations in H′ with large magnitude are also of-
ten related with large percentage of reconstruction, but this is not
always the case. From the minimization of (2), large magnitude ac-
tivations may occur for a given event and a given time frame, but
with a small corresponding reconstruction contribution.

In our first approach using activations only, the event detec-
tion criterion is the activation matrix H element magnitudes. In
the residuals-based approach, instead, the criterion is the accuracy
of reconstruction using only atoms and activations of a particular
event. In our final system, submitted to the Challenge, we combine
both. Thus, the i-th event is considered active at time frame n, if

H ′(i , n) > θH and E(i , n) < θE . (7)

Thresholds θH and θE are chosen as explained in Section 5.2.

5. SYSTEM IMPLEMENTATION DETAILS

5.1. Background noise modeling

In addition to modeling the acoustic events by incorporating rep-
resentative atoms in the dictionary, background noise modeling is
necessary for robust AED. With the presence of background noise
atoms in the dictionary, false alarm event activations are avoided in
areas that events are not present. Also, more reliable reconstruction
is possible in active areas, assuming additive noise.

In our approach, and following work in [6], we extract the
background noise atoms from the observed data during decoding
(on-the-fly). The advantage of this scheme is the adaptation of the
background dictionary to slightly different conditions, possibly ex-
isting each time. However, instead of assuming background noise
present at the beginning and end of the observed data, as in [6], we
attempt to extract background atoms from various areas of the sig-
nal, by employing the long-term signal variability (LTSV) measure,

described in [13]. This measure has been successfully used in voice
activity detection, and it is based on the fact that background noise
usually exhibits smaller variability through time in its spectrum.

In our system, a frame is considered as noise if its LTSV value
is lower than a fixed threshold, θL . As before, the shift-invariant
dictionary reduction method is applied to areas that noise is de-
tected to help provide background noise atoms. An example of the
LTSV based approach is shown in Figure 1, where LTSV values for
a Challenge corpus signal are depicted, together with ground-truth
locations of acoustic events. As it can be seen, LTSV values and the
chosen θL ensure that acoustic event time frames are avoided.

5.2. Features, system parameters, and post-processing

We now provide some additional details of our implemented sys-
tem. Concerning audio feature extraction, we have experimented
with various feature sets that satisfy non-negativity and approximate
linearity: Mel-filterbank energies, Gammatone-filterbank energies,
DFT spectrogram, and the variable Q-Transform (VQT). The first
three are computed using 30 msec long frames with a 10 msec shift,
whereas VQT is obtained from the baseline system of [8]. Our fi-
nal submitted system uses 150-dimensional Mel-filterbank energy
features (M= 150).

Regarding dictionary building, atoms of 200 msec (T = 17
frames) in duration are used, and for the CNMF-framework, pa-
rameter λ in (2) is set to 0.7. Further, approximately 200 atoms per
event class are used (Ri≈ 200), with R≈ 2.4k total atoms (includ-
ing background noise modeling).

Concerning the various thresholds employed, θH in (7) is com-
puted as a percentage (15%) of the maximum value of matrix H′

elements. Threshold θE in (7) is computed as a percentage (106%)
of the minimum of E(i , n) for a given segment. Such values are
optimized on available development data (see Section 6.1).

Finally, as a post-processing stage in the detection system, one-
dimensional dilation is performed on each row of matrix H′, in
order to broaden the intervals of high-peaked activations produced.
In the case of the combined method, dilation is performed before
the combination with the residuals approach. At the end, T − 1
frames after each detected activation are also considered as active.

6. EXPERIMENTS

6.1. Database

We perform experiments on the DCASE’16 Challenge database de-
signed for Task 2 – “Sound event detection in synthetic audio” [8].
The corpus contains recordings of eleven office-related acoustic
events (see also Figure 2), consisting of three parts: The training set
with 20 isolated recordings of each event; a development set with
18 two-minute long recordings of synthetic mixtures of audio events
and noise at various SNRs and event overlap conditions (“density”
and “polyphony”); and a test set of similar structure to the devel-
opment set (54 recordings), only used in the Challenge evaluation,
with its ground-truth publicly unavailable at the moment.

6.2. Experimental setup

In this paper, we report experiments on both the development and
test sets (the latter as only provided by the Challenge organizers).
Specifically, for the development set, due to its particularity of con-
taining the same event instances as the training set, we use two dif-
ferent setups, described next.
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Table 1: Performance of baseline and proposed systems on 3 sets.

system setup #1 setup #2 test
Fscore ER Fscore ER Fscore ER

NMF-baseline 0.42 0.79 0.32 0.87 0.37 0.89
activations-only 0.83 0.30 0.43 0.79 --- ---
activations&residuals 0.84 0.29 0.55 0.63 0.56 0.68

Table 2: Performance of different feature sets and dictionary sizes.

features feat. dict. setup #1 setup #2
dim. size Fscore ER Fscore ER

VQT 545 200 0.79 0.37 0.29 0.88
Gamma 150 200 0.82 0.33 0.35 0.86

Mel 150 200 0.83 0.30 0.43 0.79
Mel 150 100 0.81 0.36 0.42 0.85
Mel 100 100 0.83 0.30 0.42 0.82
DFT 545 100 0.78 0.42 0.41 0.83

Table 3: Performance of different dictionary building methods.
dictionary setup #1 setup #2

building method Fscore ER Fscore ER
sparse-CNMF 0.64 0.60 0.29 0.89

shift-invariant reduction 0.83 0.30 0.42 0.82

• Setup #1: This is identical to the default setup of Task 2. One
dictionary is built using all isolated training data, and then AED
is performed on all 18 development set recordings.

• Setup #2: Here, to allow testing on unseen event instances, we
perform a 18-leave-one-out experiment. In total, 18 dictionar-
ies are built, each tested on a single development set recording,
by using each time all available training set instances, except
those contained in the particular development set recording.

6.3. Metrics

We report results employing the adopted Challenge metrics [8],
namely frame-based Fscore and frame-based total error rate (ER).
The latter is defined as ER =(I + D + S)/N , where I denotes
acoustic event insertions, D deletions, S substitutions, and N the
total number of ground-truth events at a given frame. ER is com-
puted in frames of 1 sec. in length.

6.4. Results

In Table 1, the results using the Challenge-provided NMF baseline,
our submitted system, and a variant of it are compared for the differ-
ent experimental setups considered. Regarding the NMF-baseline,
it builds the dictionary using the training data, and extracts 20 atoms
per class. Atoms have single-frame duration, and are extracted from
the variable-Q transform spectrogram (VQT, 60 bins, 10 msec step).
A post-processing stage applies median filtering to the output and
allows up to five concurrent events [8].

Both our systems, depicted in Table 1, perform dictionary cre-
ation employing the shift-invariant reduction approach, and their
details are provided in Section 5.2. It is obvious that both outper-
form the baseline in all setups. In particular, our submitted system
(“activations & residuals”) achieves 63.3%, 27.6%, and 23.6% rel-
ative reduction in ER over the baseline for setup #1, #2, and the
test set, respectively. It seems that the extraction of more atoms per
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Figure 2: AED on the “dev 1 ebr 6 nec 3 poly 0.wav” Challenge
recording: (a) ground-truth; (b) output of our submitted system.
Acoustic event labels are also shown.

class (almost ten-fold over the baseline), combined with the incor-
poration of temporal structure under the CNMF-framework, lead to
major improvements.

Comparing our two detection approaches, we can observe that
the system using the combination of activations and reconstruction
residuals (submitted to the Challenge) achieves a 20% ER relative
reduction in setup #2, compared to the system using activations
only. This highlights the complementarity of the two methods. The
improvement is mainly due to the elimination of false activations,
exhibiting large peaks in H′ but also having a large residual ratio.

In Table 2, we show experimentation regarding different audio
feature sets, together with variations in their dimensionality and dic-
tionary size (number of atoms per class is depicted). We can observe
that Mel-filterbank energies achieve the best performance among
the different sets considered. It thus seems that they are more ap-
propriate for the set of acoustic events considered in the Challenge.
Also from the Mel feature results (150-dimensional), we can ob-
serve that increasing dictionary size leads to slight improvements.

A comparison of the different dictionary building methods is
shown in Table 3, using the same detection system in both cases
(a 100-dimensional Mel-filterbank, activations-only system, with
100 atoms per class). Clearly, the shift-invariant dictionary size
reduction approach outperforms conventional CNMF-based dictio-
nary building. This provides evidence that accurate representation
of event atoms (instead of approximate) is beneficial to detection,
as long as we have a way to select appropriate atoms.

Finally, in Figure 2, the output of our system is shown against
ground-truth for a particular audio recording of the development set.

7. CONCLUSIONS

We presented a sparse-CNMF based system for overlapping audio
event detection, employing an efficient dictionary building method
and a novel detection approach. Attention was also given to back-
ground noise modeling and on experimentation with different pos-
sible feature sets for the CNMF framework. Results obtained on
Task 2 of the DCASE’16 Challenge were promising, significantly
outperforming the NMF-baseline provided.

In future work, better ways to combine activation-based and
residual-based approaches will be investigated. Also the perfor-
mance of our system will be tested in more datasets relevant to
overlapping acoustic event detection.

28



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

8. REFERENCES

[1] P. Giannoulis, G. Potamianos, A. Katsamanis, and P. Maragos,
“Multi-microphone fusion for detection of speech and acous-
tic events in smart spaces,” in Proc. 22nd European Signal
Processing Conference (EUSIPCO), 2014, pp. 2375–2379.

[2] A. Diment, T. Heittola, and T. Virtanen, “Sound event detec-
tion for office live and office synthetic AASP challenge,” Proc.
IEEE AASP Challenge on Detection Classif. Acoust. Scenes
Events (WASPAA), 2013.

[3] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Poly-
phonic sound event detection using multi label deep neural
networks,” in Proc. International Joint Conference on Neural
networks (IJCNN), 2015, pp. 1–7.

[4] E. Benetos, G. Lafay, M. Lagrange, and M. D. Plumbley,
“Detection of overlapping acoustic events using a temporally-
constrained probabilistic model,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 6450–6454.

[5] J. Dennis, H. Tran, and E. Chng, “Overlapping sound event
recognition using local spectrogram features and the gener-
alised Hough transform,” Pattern Recognition Letters, vol. 34,
no. 9, pp. 1085–1093, 2013.

[6] J. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and
H. Van hamme, “An exemplar-based NMF approach to audio
event detection,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, 2013, pp. 1–4.

[7] C. Cotton and D. Ellis, “Spectral vs. spectro-temporal features
for acoustic event detection,” in Proc. IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics (WAS-
PAA), 2011, pp. 69–72.

[8] Detection and Classification of Acoustic Scenes and Events
2016. [Online]. Available:
http://www.cs.tut.fi/sgn/arg/dcase2016/

[9] P. Smaragdis, “Non-negative matrix factor deconvolution; ex-
traction of multiple sound sources from monophonic inputs,”
in International Conference on Independent Component Anal-
ysis and Signal Separation, 2004, pp. 494–499.

[10] W. Wang, A. Cichocki, and J. Chambers, “A multiplicative
algorithm for convolutive non-negative matrix factorization
based on squared Euclidean distance,” IEEE Transactions on
Signal Processing, vol. 57, no. 7, pp. 2858–2864, 2009.

[11] P. O’Grady and B. Pearlmutter, “Convolutive non-negative
matrix factorisation with a sparseness constraint,” in Proc.
16th IEEE Signal Processing Society Workshop on Machine
Learning for Signal Processing, 2006, pp. 427–432.

[12] W. Wang, “Convolutive non-negative sparse coding,” in Proc.
IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), 2008,
pp. 3681–3684.

[13] P. Ghosh, A. Tsiartas, and S. Narayanan, “Robust voice activ-
ity detection using long-term signal variability,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 3, pp. 600–613, 2011.

29



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

SYNTHETIC SOUND EVENT DETECTION BASED ON MFCC
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ABSTRACT

This paper presents a sound event detection system based on mel-
frequency cepstral coefficients and a non-parametric classifier. Sys-
tem performance is tested using the training and development
datasets corresponding to the second task of the DCASE 2016 chal-
lenge. Results indicate that the most relevant spectral information
for event detection is below 8000 Hz and that the general shape of
the spectral envelope is much more relevant than its fine details.

Index Terms— Sound event detection, spectral envelope, cep-
stral analysis

1. INTRODUCTION

Automatic sound event detection is a rather recent researchissue
and any advance related to it may impact a variety of application
fields [1]. Probably, the most intuitive approach to sound descrip-
tion for event detection consists in parameterising its spectrum.
Specifically, mel-frequency cepstral coefficients (MFCC) provide
a low-dimensional procedure for coding the shape of the spectral
envelope that has been successfully applied to speech processing
tasks such as speaker verification [2] or laryngeal pathology detec-
tion [3]. In fact, this type of coefficients has also been applied to
sound event detection [1, 4, 5]. Yet, it is known that sound percep-
tion not only works in spectral domain, but also in temporal domain
[6]. Such temporal dimension may be included in sound event de-
tection by different means such as calculating MFCC derivatives,
training hidden Markov models for classification, or both [1, 4].

When it comes to detecting several sound events happen-
ing simultaneously, proposed approaches include decomposition
of sound spectra in several components prior to classification [7],
adding complexity to the classification stage to allow for multiple
event detection [1], or combinations of both [8].

In our view, a priori decomposition of sound spectra in sev-
eral components is problematic, since the addition of two signals in
temporal domain does not necessarily result in the additionof their
power spectra. For this reason, we approach the problem by directly
coding the spectrum of the recorded signal using MFCC. The tem-
poral dimension of the event detection problem is acknowledged by
calculating the first derivatives of MFCCs and by splitting the sound
signal into frames before processing. In this work, we concentrate
on the design of the datasets and the signal analysis; consequently
no assumption is made regarding the distribution of the calculated
signal parameters. For this reason, a non-parametric classifier is
chosen.

This work has been partially financed by the Spanish Government,
through project grant number TEC2012-38630-C04-01.
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Figure 1: Power spectral density (PSD) of synthetic noise, estimated
from a 6.5 second-length fragment using the Welch method [9]. For
reference purposes, ‘A Weighting’ and ‘CCIRR 468-4’ curves[10]
have also been plotted.

2. MATERIALS

Audio recordings were provided by IRCCYN,́Ecole Centrale
de Nantes. They correspond to 11 sound event types (see
Tab.1) recorded in a quiet environment, using a condenser micro-
phone (AT8035, manufactured by Audio-Technica) connectedto
a portable recorder (H4n, manufactured by Zoom). Audio signals
were sampled at 44.1 kHz and recorded with a single microphone
(monophonic recordings). The microphone pass band ranges from
40 to 20,000 Hz.

20 events from each type were recorded, hence resulting 220
recordings each one containing a single sound event. For valida-
tion purposes, an additional dataset was built using the previous
220 recordings as a basis. This consists of 18 recordings with 2
minute durations. These were obtained by combining some of the
single-event recordings into a single file and adding noise recorded
in an independent session. Overlapping between events was al-
lowed in 50% of the resulting files. Noise was approximately grey
(Fig.1) and several levels of event-to-background ratio (EBR) were
allowed: -6, 0 and 6 dB.

3. SIGNAL ANALYSIS

3.1. Inspection of sound spectra

Fig.2 depicts the estimated spectra, averaged for each typeof event.
While some types have distinct spectral envelope shapes, such as
key drops or phone ringing, there are others for which the spectral
envelopes are similar. This is especially the case of cough,throat
clearing, laughter and speech, since all these sounds are produced as
outputs of the same acoustic filter: the human vocal tract. Such fact
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Type# Type name Event
1 Clearthroat Throat clearing
2 Cough Cough
3 Doorslam Door slam
4 Drawer Drawer sliding
5 Keyboard Typewritting
6 Keys Keys dropping on a desk
7 Knock Knocking on a door
8 Laughter Laughter
9 Pageturn Paper page turning
10 Phone Phone ringing
11 Speech French speech
12 Back Background noise

Table 1: Event types. Recordings corresponding to the 12th type
(back) were obtained by cutting out event-free segments from the
validation dataset.

suggests that parameterisation schemes based only on estimating
the average spectral envelope are likely to have poor performances.

From another point of view, all spectra exhibit a decay at fre-
quencies above 13 kHz. However, the power spectral density of
background noise (backtype in Fig.2) grows from 13 to 22 kHz, as
also shown in Fig.1. As a consequence, the EBR above 13 kHz is a
decreasing function of frequency.

3.2. Parameter computation

Considering aforementioned characteristics of the targetsound
event spectra, we propose a parameterisation scheme based on the
calculation of mel-frequency cepstral coefficients (MFCCs) and
their derivatives. The proposed signal processing scheme comprises
the next stages:

1. Windowing: Each digital audio signal is first normalised to
yield a unit power discrete-time signalx [n], composed by
N samples (n = 0 . . . N − 1). This signal is segmented in
speech frames of length equal toL samples through multi-
plication by a framing windoww [n]:

xp [n] = x [n+ p (L− l0)] · w [n] (1)

wherel0 is the number of overlapping samples between con-
secutive frames andp is the frame index.

2. Fourier transform: From each speech frame, the short-term
Discrete Fourier Transform (stDFT) is computed as:

Xp (k) =
L−1
∑

n=0

xp [n] · e
−j 2πnk

NDFT (2)

whereNDFT is the number of points of the stDFT,NDFT ≥
L andk = 0 . . . NDFT − 1.

The absolute frequency value that corresponds to each stDFT
coefficient is:

fk =

{

fs ·
k

NDFT
if k ≤ NDFT

2

fs ·
k−NDFT

NDFT
if k >

NDFT

2

(3)

beingfs the sampling frequency.

3. Mel distortion: After the computation of the stDFT, the next
step is frequency distortion in spectral domain. This is made
according to [11, chap. 2]:

f
mel
k = sgn [fk] · 2595 · log10

(

1 +
|fk|

700

)

(4)

4. Mel spectrum smoothing: This is done by integrating the en-
ergy present in the spectrum of the processed speech frame
along a set of pre-defined mel-frequency bands. These are
M equal-width bands linearly distributed betweenfmel

MIN and
fmel
MAX with 50% overlap between consecutive bands. Each

one is characterised by its centre mel frequency and its width.
Theith centre frequency is

f
mel
c,i = f

mel
MIN +

(

f
mel
MAX − f

mel
MIN

)

·
i

M + 1
(5)

where i = 1 . . .M . Thus, each band covers the range
Imel
i =

[

fmel
c,i−1, f

mel
c,i+1

]

, yielding bandwidth

∆f
mel = 2 ·

fmel
MAX − fmel

MIN

M + 1
(6)

Integration along bands is commonly done using triangular
windows [12, chap. 6]. Thus, the result for each band is:

X̃p (i) =
1

Ai

·
∑

fmel
k

∈Imel
i

∣

∣

∣

∣

∣

fmel
k − fmel

c,i−1

∆fmel

2

− 1

∣

∣

∣

∣

∣

|Xp (k)| (7)

where the normalising termAi ensures that for each band
the mean energy is computed without any bias:

Ai =
∑

fmel
k

∈Imel
i

∣

∣

∣

∣

∣

fmel
k − fmel

c,i−1

∆fmel

2

− 1

∣

∣

∣

∣

∣

(8)

5. Transformation into cepstral domain: The last step in MFCC
computation is transformation of the afore-mentioned
smoothed mel spectrum into cepstral domain. Such transfor-
mation can be realised by calculating the inverse DFT of the
logarithm of the power spectrum [13]. Given that the speech
signal is real-valued, it may be assumed that its spectrum is
symmetric. Furthermore, if̃Xp (0) is defined to be equal to
1, which simply means adding a constant value to the signal
in temporal domain, then the power cepstrum of the mel-
wrapped and spectrally smoothed signal can be written as:

Xp [q] = 1

2M+1

∑M

i=−M
log

(

X̃p (i)
)

e
j 2πi

2M+1
q

= 1

M+ 1
2

∑M

i=1
log

(

X̃p (i)
)

cos
(

πiq

M+ 1
2

)

(9)

The coefficientsXp [q] are called MFCC and they may be
computed using an expression that resembles the discrete
cosine transform (DCT) of the logarithm of the smoothed
mel-wrapped spectrum of the speech framexp [n]. In fact,
the original MFCC formulation [14] directly uses the sec-
ond form of the DCT (DCT-2) [15, chap. 8]. Herein, (9) is
preferred because it has a simpler relation to the DFT.

6. Derivation: Derivation of MFCC to obtain∆MFCC is per-
formed using a eighth-order discrete differentiating filter:
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Figure 2: Average power spectral density for each type of event. Spectra have been averaged for all 20 recordings belonging to each type.
Estimation has been carried out using the Welch method [9].
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1

2
Xp+2 [q]

+
1

3
Xp−3 [q]−

1

4
Xp+4 [q] (10)

4. CLASSIFICATION

The feature vectors describing sound frames that result from the
previous signal analysis scheme have probability distributions with
shapes that significantly differ between distinct sound events. For
instance, the distributions for thespeechandkeysclasses illustrated
in Fig.3 present different shapes. From another point of view, it
is known that for classification problems, the choice of classifier is
much less relevant than the availability of as many data as possible
[16]. For these reasons, a non-parametric discriminant approach
based on the k-nearest-neighbours (kNN) rule [17] was selected.

5. POST-PROCESSING

Let Nt (p) be the number of neighbours belonging to event typet

assigned to thepth sound frame by the kNN rule, therefore:

12
∑

t=1

Nt (p) = k (11)

Then, a straightforward application of this classificationrule would
lead to assigning event typeT (p) to thepth sound frame such that:

T (p) = argmax
t

Nt (p) (12)
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Figure 3: Distribution of frames belonging tospeech(left) andkeys
(right) classes in the feature space defined by the three firstprin-
cipal components of the feature vectors including 15 MFCC + 15
∆MFCC parameters.

However, the following procedure was used in order to smooth
the effect of outlier frames:

1. Low-pass filtering of the number of neighbours by comput-
ing the local average using a sliding Hamming windowwh:

Ñt (p) =

∑P1

∆p=−P1
Nt (p+∆p) · wh [∆p]

∑P1

∆p=−P1
wh [∆p]

(13)

2. Discarding events for which the filtered number of neigh-
bours is below a certain threshold:

N̂t (p) =

{

Ñt (p) if Ñt (p) ≥ Nthres

0 otherwise
, t = 1 . . . 11

(14)

3. Assigning an event type to each frame, in case the smoothed
number of neighbours corresponding to some class is above
the threshold; otherwise, the frame is considered to belong
to thebackclass:
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Param. Value Explanation
L 1324 30 ms frames withfs = 44.1 kHz
l0 331 25% overlap between adjacent frames

ω [n] Hamming window
NDFT 1324 Same as frame length
fmel
MIN 62.63 mel Corresponding tof = 40 Hz

fmel
MAX 3582 mel Corresponding tof = 13 kHz
M 40
k 25
P1 5 200 ms filter length

Nthres 6.75
P2 1 Corresponding to 25 ms

∆τMIN 2 s
TMIN 300 ms

Table 2: Parameter values for the reference system.

T (p) =

{

argmaxt N̂t (p) if maxt N̂t (p) > 0
12 otherwise

t = 1 . . . 12 (15)

4. Discarding events that are not detected in a minimum num-
ber of consecutive frames:

T̃ (p) =

{

T (p) if
∑P2

∆p=−P2
T (p+∆p) = 2P2 + 1

12 otherwise
(16)

After classification of every sound frame, decision on the on/off
times of sound events is made based on the next rules:

A. An event is considered to be formed by a set of consecutive
frames corresponding to the same value ofT̃ (p). In such a case,
the event type is defined bỹT (p) and its starting and ending
times are defined by the central time instants of the first and last
frames of the set, respectively.

B. Two events of the same type are merged into a single one if the
time difference between the starting time of the second one and
the ending time of the first one is less than a certain threshold
∆τMIN. The resulting event duration is from the starting time
of the first original event to the ending time of the second one.

C. A minimum event durationTMIN is defined. If the duration of a
given event is shorter, then its starting point is advanced and its
ending point delayed so that its duration equalsTMIN.

6. EXPERIMENTS & RESULTS

The previously described system, with the parameter valuessum-
marised in Tab.2, was used as a reference and applied to the detec-
tion of sound events in the additional dataset described in section
2. Results for 20 MFCC + 20∆MFCC are summarised on the left
column of Tab.3.

System performance can be significantly improved by building
a training dataset with features as similar as possible to those of the
validation dataset. In this case, if noise sequences extracted from
the additional dataset are added to the 220 training recordings with
the same levels of SNR as in the validation dataset, namely -6, 0
and 6 dB, and the resulting 660 sound signals are used as the new

Perform. Refer. Training 8000 Hz
Measure System with noise 15 MFCC

Segment F 9.61% 70.06% 67.65%
based ER 0.9569 0.4706 0.4973
Event F 6.07 % 62.99% 60.22 %
based ER 1.059 0.6616 0.6902

Table 3: Event detection results in terms of F-score (F ) and Error
Rate (ER).

Average Clearthroat Cough Knock
F 34.2% 54.0% 25.0% 42.4%
ER 2.2537 0.7510 0.9053 1.8566

Doorslam Drawer Keyboard Keys
F 4.5% 33.1% 67.5% 12.5%
ER 3.0628 0.9033 0.5426 1.1156

Laughter Pageturn Phone Speech
F 47.6% 5.6% 71.3% 12.8%
ER 0.7647 0.9744 0.4793 13.4350

Table 4: Class average evaluation results (segment-based).

training dataset then the system performance can be significantly
improved, as shown in the middle column of Tab.3.

Results in the right column of Tab.3 indicate that the most rel-
evant information is concentrated below 8000 Hz (fmel

MAX = 2840)
and that it can be described using only 15 MFCCs plus their deriva-
tives without any big loss of performance. This being a simpler
configuration, a more robust performance is to be expected.

Last, it should be noted that the post-processing rule B im-
plicitly allows event overlapping. In fact, detection performance
for the recordings in the validation set with overlapped events
(F = 65.84%, ER = 0.5030 for the segment-based evaluation;
F = 59.18%, ER = 0.6869 for the event-based evaluation) is
similar to the overall performance (Tab.3).

7. CONCLUSIONS

The reported results in sound event detection, obtained using a sys-
tem based on MFCC parameters and a non-parametric classifierlead
to two main conclusions. In the first place, system performance
is critically affected by a proper selection of the sound recordings
used for training the system. In this particular case, usingrecord-
ings with noise levels similar to those in the testing set hasallowed
a significant improvement in performance. Secondly, the keyspec-
tral information for sound event detection seems to be concentrated
below 8000 Hz. Additionally, the fact that 15 MFCCs provide al-
most the same performance as 20 MFCCs reveals that the essential
information is in the overall shape of the spectral envelopeand not
in its fine details, be them either narrow peaks or narrow valleys.

APPENDIX: EVALUATION RESULTS

Performance of the proposed system (15 MFCCs; 40-8000 Hz) for
the DCASE 2016 evaluation dataset is reported in [18]. The overall
indicators for the segment-based evaluation wereER = 2.0870
andF = 25.0%; for the event-based evaluations, they wereER =
1.3064 andF = 25.7%. Per-class results are summarised in Tab.4.
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ABSTRACT

In this study, we propose a new method of polyphonic sound event
detection based on a Bidirectional Long Short-Term Memory Hid-
den Markov Model hybrid system (BLSTM-HMM). We extend the
hybrid model of neural network and HMM, which achieved state-
of-the-art performance in the field of speech recognition, to the
multi-label classification problem. This extension provides an ex-
plicit duration model for output labels, unlike the straightforward
application of BLSTM-RNN. We compare the performance of our
proposed method to conventional methods such as non-negative
matrix factorization (NMF) and standard BLSTM-RNN, using the
DCASE2016 task 2 dataset. Our proposed method outperformed
conventional approaches in both monophonic and polyphonic tasks,
and finally achieved an average F1 score of 67.1 % (error rate of
64.5 %) on the event-based evaluation, and an average F1-score of
76.0 % (error rate of 50.0 %) on the segment-based evaluation.

Index Terms— Polyphonic Sound Event Detection, Bidirec-
tional Long Short-Term Memory, Hidden Markov Model, multi-
label classification

1. INTRODUCTION

Sounds include important information for various applications such
as life-log, environmental context understanding, and monitoring
system. To realize these applications, It is necessary to extract in-
ternal information automatically from not only speech and music,
which have been studied for long time, but also other various types
of sounds.

Recently, studies related to sound event detection (SED) at-
tracted much interest to aim for understanding various sounds. The
objective of SED systems is to identify the beginning and end of
sound events and to identify and label these sounds. SED is di-
vided into two scenarios, monophonic and polyphonic. Mono-
phonic sound event detection is under the restricted condition that
the number of simultaneous active events is only one. On the other
hand, in polyphonic sound event detection, the number of simulta-
neous active events is unknown. We can say that polyphonic SED
is a more realistic task than monophonic SED because in real situa-
tions, it is more likely that several sound events may happen simul-
taneously, or multiple sound events are overlapped.

The most typical approach to SED is to use a Hidden Markov
Model (HMM), where the emission probability distribution is repre-
sented by Gaussian Mixture Models (GMM-HMM), with Mel Fre-
quency Cepstral Coefficients (MFCCs) as features [1, 2]. Another
approach is to utilize Non-negative Matrix Factorization (NMF)

[3, 4, 5]. In the NMF approaches, a dictionary of basis vectors
is learned by decomposing the spectrum of each single sound event
into the product of a basis matrix and an activation matrix, then
combining the basis matrices. The activation matrix at test time is
estimated using the basis vector dictionary. More recently, meth-
ods based on neural networks have achieved good performance
for sound event classification and detection using acoustic signals
[7, 8, 9, 10, 11, 12]. In the first two of these studies [7, 8], the
network was trained to be able to deal with a multi-label classifica-
tion problem for polyphonic sound event detection. Although these
networks provide good performance, they do not have an explicit
duration model for the output label sequence, and the actual output
needs to be smoothed with careful thresholding to achieve the best
performance.

In this paper, we propose a new polyphonic sound event de-
tection method based on a hybrid system of bidirectional long
short-term memory recurrent neural network and HMM (BLSTM-
HMM). The proposed hybrid system is inspired by the BLSTM-
HMM hybrid system used in speech recognition [13, 14, 15, 16],
where the output duration is controlled by an HMM on top of a
BLSTM network. We extend the hybrid system to polyphonic SED,
and more generally to the multi-label classification problem. Our
approach allows the smoothing of the frame-wise outputs without
post-processing and does not require thresholding.

The rest of this paper is organized as follows: Section 2 presents
various types of recurrent neural networks and the concept of long
short term memory. Section 3 describes our proposed method in de-
tail. Section 4 describes the design of our experiment and evaluates
the performance of the proposed method and conventional methods.
Finally, we conclude this paper and discuss future work in Section
5.

2. RECURRENT NEURAL NETWORKS

2.1. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a layered neural network
which has a feedback structure. The structure of a simple RNN
is shown in Fig. 1. In comparison to feed-forward layered neural
networks, RNNs can propagate prior time information forward to
the current time, enabling them to understand context information
in a sequence of feature vectors. In other words, the hidden layer of
an RNN serves as a memory function.

An RNN can be described mathematically as follows. Let us
denote a sequence of feature vectors as {x1,x2, ...,xT }. An RNN
with a hidden layer output vector ht and output layer one yt are
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Figure 1: Recurrent Neural Network

calculated as follows:

ht = f(W1xt +Wrht−1 + b1), (1)
yt = g(W2ht + b2), (2)

where Wi and bi represent the input weight matrix and bias vector
of the i-th layer, respectively, Wr represents a recurrent weight
matrix, and f and g represent activation functions of the hidden
layer and output layer, respectively.

2.2. Bidirectional Recurrent Neural Network

A Bidirectional Recurrent Neural Network (BRNN) [13, 17] is a
layered neural network which not only has feedback from the pre-
vious time period, but also from the following time period. The
structure of a BRNN is shown in Fig. 2. The hidden layer which
connects to the following time period is called the forward layer,
while the layer which connects to the previous time period is called
the backward layer. Compared with conventional RNNs, BRNNs
can propagate information not only from the past but also from the
future, and therefore have the ability to understand and exploit the
full context in an input sequence.

2.3. Long Short-Term Memory RNNs

One major problem with RNNs is that they cannot learn context in-
formation over long stretches of time because of the so-called van-
ishing gradient problem [19]. One effective solution to this problem
is to use Long Short-Term Memory (LSTM) architectures [20, 21].
LSTM architectures prevent vanishing gradient issues and allow the
memorization of long term context information. As illustrated in
Fig. 3, LSTM layers are characterized by a memory cell st , and
three gates: 1) an input gate gI

t , 2) a forget gate gF
t , and 3) an

output gate gO
t . Each gate g∗ has a value between 0 and 1. The

value 0 means that the gate is closed, while the value 1 means that
the gate is open. In an LSTM layer, the hidden layer output ht in

Figure 2: Bidirectional Recurrent Neural Network

Figure 3: Long Short-Term Memory

Eq. 1 is replaced by the following equations:

gI
t = σ(WIxt +WI

rht−1 + st−1), (3)

gF
t = σ(WFxt +WF

r ht−1 + st−1), (4)

st = gI
t ⊙ f(W1xt +Wrht−1 + b1) + gF

t ⊙ st−1, (5)

gO
t = σ(WOxt +WO

r ht−1 + st−1), (6)

ht = gO
t ⊙ tanh(st), (7)

where W and Wr denote input weight matrices and recurrent
weight matrices, respectively, subscripts I , F , and O represent the
input, forget, and output gates, respectively, ⊙ represents point-wise
multiplication, and σ represents a logistic sigmoid function.

2.4. Projection Layer

Use of a projection layer is a technique which reduces the compu-
tational complexity of deep recurrent network structures, which al-
lows the creation of very deep LSTM networks [14, 15]. The archi-
tecture of an LSTM-RNN with a projection layer (LSTMP-RNN) is
shown in Fig. 4. The projection layer, which is a linear transforma-
tion layer, is inserted after an LSTM layer, and the projection layer
outputs feedback to the LSTM layer. With the insertion of a projec-
tion layer, the hidden layer output ht−1 in Eqs. 3-6 is replaced with
pt−1 and the following equation is added:

pt = WIht, (8)

where Wl represents a projection weight matrix, and pt represents
a projection layer output.

3. PROPOSED METHOD

3.1. Data generation

There are only 20 clean samples per sound event in the DCASE2016
task 2 training dataset. Since this is not enough data to train a deeply
structured recurrent neural network, we synthetically generated our
own training data from the provided data. The training data gen-
eration procedure is as follows: 1) generate a silence signal of a

Figure 4: Long Short-Term Memory Recurrent Neural Network
with Projection Layer
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predetermined length, 2) randomly select a sound event from the
training dataset, 3) add the selected sound event to the generated
silence signal at a predetermined location, 4) repeat Steps 2 and 3
a predetermined number of time, 5) add a background noise sig-
nal extracted from the development set at a predetermined signal to
noise ratio (SNR).

In this data generation operation, there are four hyper-
parameters; signal length, number of events in a signal, number
of overlaps, and SNR between sound events and background noise.
We set signal length to 4 seconds, number of events to a value from
3 to 5, number of overlaps to a value from 1 to 5, and SNR to a value
from -9 dB to 9 dB. We then generated 100,000 training samples of
4 seconds length, hence, about 111 hours of training data.

3.2. Feature extraction

First, we modified the amplitude of the input sound signals to ad-
just for the differences in recording conditions by normalizing the
signals using the maximum amplitude of the input sound signals.
Second, the input signal was divided into 25 ms windows with a 40
% overlap, and we calculated a log filterbank feature for each win-
dow in 100 Mel bands (more bands than usual since high frequency
components are more important than low frequency ones for SED).
Finally, we conducted cepstral mean normalization (CMN) for each
piece of training data. Feature vectors were calculated using HTK
[22].

3.3. Model

We extended the hybrid HMM/neural network model in order to
handle a multi-label classification problem. To do this, we built a
three state left-to-right HMM with a non-active state for each sound
event. The structure of our HMM is shown in Fig. 5, where n = 0,
n = 5 and n = 4 represent the initial state, final state, and non-
active state, respectively. Notice that the non-active state represents
not only the case where there is no active event, but also the case
where other events are active. Therefore, the non-active state of
each sound event HMM has a different meaning from the silence.
In this study, we fix all transition probabilities to a constant value of
0.5.

Using Bayes’ theorem, HMM state emission probability
P (xt|sc,t = n) can be approximated as follows

P (xt|sc,t = n) =
P (sc,t = n|xt)P (xt)

P (sc,t = n)

≃ P (sc,t = n|xt)

P (sc,t = n)

(9)

Figure 5: Hidden Markov Model of each sound event

Figure 6: Proposed model structure

where c ∈ {1, 2, . . . C} represents the index of sound events, and
n ∈ {1, 2, . . . , N} represents the index of HMM states, hence,
P (sc,t = n|xt) satisfies the sum-to-one condition of

∑
n P (sc,t =

n|xt) = 1. In the BLSTM-HMM Hybrid model, HMM state poste-
rior P (sc,t = n|xt) is calculated using a BLSTM-RNN. The struc-
ture of the network is shown in Fig. 6. This network has three hid-
den layers which consist of an LSTM layer, a projection layer, and
the number of output layer nodes is C×N . All values of the poste-
rior P (sc,t|xt) have the sum-to-one condition for each sound event
c at frame t, it is obtained by the following softmax operations

P (sc,t = n|xt) =
exp(ac,n,t)∑N

n′=1 exp(ac,n′,t)
, (10)

where a represents the activation of output layer node. The network
was optimized using back-propagation through time (BPTT) with
Stochastic Gradient Descent (SGD) and dropout under the cross-
entropy for multi-class multi-label objective function

E(Θ) =

C∑
c=1

N∑
n=1

T∑
t=1

yc,n,t ln(P (sc,t = n|xt)), (11)

where Θ represents the set of network parameters, and yc,n,t is the
HMM state label obtained from the maximum likelihood path at
frame t. (Note that this is not the same as the multi-class objective
function in conventional DNN-HMM.) HMM state prior P (sc,t)
is calculated by counting the number of occurrence of each HMM
state. However, in this study, because our synthetic training data
does not represent the actual sound event occurrences, the prior ob-
tained from occurrences of HMM states has to be made less sensi-
tive. Therefore, we smoothed P (sc,t) as follows

P̂ (sc,t) = P (sc,t)
α, (12)

where α is a smoothing coefficient. In this study, we set α = 0.01.
Finally, we calculated the HMM state emission probability using
Eq. 9 and obtained the maximum likelihood path using the Viterbi
algorithm.

4. EXPERIMENTS

4.1. Experimental condition

We evaluated our proposed method by using the DCASE2016 task 2
dataset [18, 6]. In this study, we randomly selected 5 samples per
event from training data, and generated 18 samples which have
120 sec length just like DCASE2016 task 2 development set using
selected samples. These generated samples are used as develop-
ment set for open condition evaluation, and remaining 15 samples
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Table 1: Experimental conditions
Sampling rate 44,100 Hz

Frame size 25 ms
Shift size 10 ms

Learning rate 0.0005
Initial scale 0.001

Gradient clipping norm 5
Batch size 64
Time steps 400

Epoch 20

per class are used for training. Evaluation is conducted by using
two metrics: event-based evaluation, and segment-based evaluation,
where an F1-score (F1) and an error rate (ER) are utilized as evalu-
ation criteria (see [24] for more details).

We built our proposed model using following procedure: 1) di-
vide an active event into three segments with equal intervals in order
to assign left-to-right HMM state labels, 2) train the BLSTM-RNN
using these HMM state labels as supervised data, 3) calculate the
maximum likelihood path with the Viterbi algorithm using RNN
output posterior, 4) train the BLSTM-RNN by using the obtained
maximum likelihood path as supervised data, 5) repeat step 3 and
step 4. In this study, when calculating the maximum likelihood path,
we fixed the alignment of non-active states, i.e., we just aligned
event active HMM states. When training networks, we checked the
error for test data every epoch, and if the error became bigger than in
previous epoch, we restored the parameters of previous epoch and
re-train the network with a halved learning rate. All networks were
trained using the open source toolkit TensorFlow [23] with a single
GPU (Nvidia Titan X) . Details of the experimental conditions are
shown in Table 1.

4.2. Comparison with conventional methods

To confirm the performance of our proposed method, we com-
pared it with the following four methods: 1) NMF (DCASE2016
task2 baseline), 2) BLSTM-RNN, 3) BLSTM-RNN disregarding a
few missing frames, 4) BLSTM-RNN with median filter smooth-
ing. NMF is trained using remaining 15 samples per class by
DCASE2016 task2 baseline script. In this study, we do not change
any settings except for the number of training samples. BLSTM-
RNN has the same network structure as BLSTM-HMM with the
exception that the number of output layer nodes which have a sig-
moid function as an activation function corresponds to the num-
ber of sound events C. Each node conducts a binary classification,
hence, each output node yc is between 0 and 1. We set the thresh-
old as 0.5, i.e., yc > 0.5 represents sound event c being active, and
yc ≤ 0.5 non-active. For post-processing, we applied two meth-
ods, median filtering, and disregarding a few missing frames. In
this time, we set the degree of median filtering to 9, and the number
of disregarded frames to 10.

Experimental results are shown in Table 2. Note that the results
of test set are provided by DCASE2016 organizers [18]. From the

Table 2: Experimental results
Event-based (dev / test) Segment-based (dev / test)
F1 [%] ER [%] F1 [%] ER [%]

NMF (Baseline) 14.6 / 24.2 665.4 / 168.5 35.9 / 37.0 183.4 / 89.3
BLSTM 66.5 / - 85.3 / - 87.0 / - 25.9 / -
BLSTM (w/ disregard) 75.9 / - 52.5 / - 87.0 / - 25.9 / -
BLSTM (w/ median) 75.8 / 68.2 53.2 / 60.0 87.7 / 78.1 24.2 / 40.8
BLSTM-HMM 76.6 / 67.1 51.1 / 64.4 87.2 / 76.0 25.9 / 50.0

Table 3: Effect of background noise
Event-based Segment-based

EBR [dB] F1 [%] ER [%] F1 [%] ER [%]
-6 73.7 58.0 86.0 28.0
0 76.7 51.3 87.4 25.9
6 79.6 44.1 88.1 23.9

results, we can see that the methods based on BLSTM are signif-
icantly better than NMF-based method in polyphonic sound event
detection. As regards post-processing, in study [8], the authors re-
ported that they did not require post-processing since RNN outputs
have already been smoothed. However, we confirmed that post-
processing is still effective, especially for event-based evaluation.
In addition, although RNN outputs are smoother than the outputs of
neural networks without a recurrent structure, there is still room for
improvement by smoothing RNN outputs. Our proposed method
achieved the best performance for development set on event-based
evaluation, which supports this assertion.

4.3. Analysis

In this section, we focus on the factors which influenced the perfor-
mance of our proposed method using development set. The first fac-
tor is SNR between background noise and events. The performance
of our proposed method for development set of each SNR condition
is shown in Table 3. From these results, there are clear differences in
performance between the different SNR conditions. This is because
the loud background noise caused more insertion errors, especially
small loudness events such as doorslam and pageturn.

The second factor is the difference in performance between the
monophonic and polyphonic tasks. The performance of our pro-
posed method on each type of tasks is shown in Table 4. In general,
polyphonic task is more difficult than monophonic task. However,
we observed a strange behavior with better scores in the polyphonic
task than in the monophonic task, while the opposite is normally to
be expected. We will investigate the reason as a future work.

5. CONCLUSION

We proposed a new method of polyphonic sound event detec-
tion based on a Bidirectional Long Short-Term Memory Hidden
Markov Model hybrid system (BLSTM-HMM), and applied it to
the DCACE2016 challenge task 2. We compared our proposed
method to baseline non-negative matrix factorization (NMF) and
standard BLSTM-RNN methods. Our proposed method outper-
formed them in both monophonic and polyphonic tasks, and finally
achieved an average F1-score of 67.1% (error rate of 64.5%) on the
event-based evaluation, and an average F1-score 76.0% (error rate
of 50.0%) on the segment-based evaluation.

In future work, we will investigate the reason for the counter-
intuitive results in the difference between monophonic and poly-
phonic task, the use of sequence discriminative training for
BLSTM-HMM, and we will apply our proposed method to a real-
recording dataset.

Table 4: Difference in the performance between monophonic and
polyphonic task

Event-based Segment-based
F1 [%] ER [%] F1 [%] ER [%]

Monophonic 76.2 54.0 84.3 32.4
Polyphonic 76.9 49.6 88.7 22.5
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ABSTRACT

In this paper, Non-negative Matrix Factorization is applied
for isolating the contribution of road traffic from acoustic
measurements in urban sound mixtures. This method is
tested on simulated scenes to enable a better control of the
presence of different sound sources. The presented first re-
sults show the potential of the method.

Index Terms— Non-negative Matrix Factorization, road
traffic noise mapping, urban measurements

1. INTRODUCTION

Noise in cities is one of the main sources of annoyance es-
sentially caused by road, air an rail traffic. To know better the
noise spatial distribution, the number of people impacted and
to preserve quiet areas, the European Directive 2002/49/EC
[1] requires that cities over 250 000 inhabitants produce noise
maps for road, air and rail traffic. Road traffic noise maps are
produced based on a census of the traffic volumes and mean
speeds along the main roads which allows estimating their
acoustic emission. Assuming knowledge of the city topogra-
phy, the acoustic propagation within the streets is then calcu-
lated. In addition, noise observatories are being deployed in
some agglomerations. They aim to facilitate both the manda-
tory five year update of maps and the validation of the simu-
lated noise maps. Combining classical noise maps with mea-
sures would also be a promising approach to go towards more
accurate noise maps [2] [3].

However, to achieve those important goals, we have
to isolate the road traffic contribution from measurements
of the sound mixture that contain many other sources.
Indeed, urban sound environments are composed of a large
variety of sounds as traffic noise, horn, bird whistles, foot
steps, construction sound noise, voices . . . Each has its own
spectral properties and temporal structure and may overlap
with the other sound sources. Without distinction between
these, the traffic noise level estimation is calculated with

some sources which do not belong to a traffic car class and is
then overestimated. In this study car horn and braking noise
are not considered as a traffic car noise as they are not taken
into account in traffic noise map.

Different techniques exist and were shown relevant for
recognition or detection in urban environment [4] [5] but they
do not take into account the overlap between the sources.
Methods for source separation, such as Computational Audi-
tory Scene Analysis [6] or Independent Component Analysis
[7] are efficient but are, to the best of our understanding, not
suitable for urban applications. Indeed, the first one has been
primarily developed to simulate the human auditory system
whereas the second one requires as many sensors as sound
sources, which is unrealistic in a urban context.

Non-negative Matrix Factorization (NMF) [8] has the ad-
vantage to deal with the overlap between the sound sources.
It has been used for many applications in audio domain such
as polyphonic music transcription [9] or for source separation
of musical content [10]. Thus the NMF seems to be a suitable
method for the isolation of the contribution of road traffic
from measurements. We propose to apply an NMF scheme
on a corpus of urban sound mixtures to validate its ability
to estimate the noise level of road traffic. The specificity of
urban sound environments, and the fact that the method has,
to the best of our knowledge, never been used in this setting,
stands as a challenge and requires specific adaptations.

In this paper, we present the implementation of our ex-
perimental plan and some first results. Section 2 exposes the
structure of the proposed system based on the NMF frame-
work. Then the experimental protocol is presented in Sec-
tion 3 and preliminary results are discussed in section 4.

2. PROPOSED APPROACH

The aim of the system is to estimate the level of some pre-
defined sources in the mixture coming from measurements
of the urban scene. As can be seen in Figure 1, the signal is
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Figure 1: Block diagram of the proposed method

first mapped to a time-frequency plane using the Short Time
Fourier Transform. Using the NMF framework, the contri-
bution of the road traffic is isolated and its level, L̃eq,tr, is
estimated.

2.1. Non-Negative Matrix Factorization

Non-negative Matrix Factorization is a dimension-reduction
technique expressed by

V ≈ Ṽ = WH (1)

where VF×N , is the power spectrogram of an audio, Ṽ is
the approximate power spectrogram determined by the NMF,
WF×K , is the basis matrix (called dictionary), in our case,
representing a set of sound spectra usually found in urban
areas. HK×N is the feature matrix standing for the tempo-
ral variation of each spectrum. All these elements are con-
strained to be positive leading to additive combinations only.
The approximation (1) is determined by a minimization prob-
lem

min
W,H≥0

D(V||WH). (2)

D(V||WH) is called cost function, a dissimilarity mea-
sure usually belonging to the β-divergence for the NMF. 3
popular expressions are compared in this study namely the
Euclidean distance (β = 2),

DEUC(V||WH) = ||V −WH||, (3)

the Kullback-Leibler divergence, (β = 1),

DKL(V ||WH) = V log
V

WH
−V + WH, (4)

and the Itakura-Sato divergence, (β = 0),

DIS(V ||WH) =
V

WH
− log

V

WH
− 1. (5)

Note that decimal β values between 0 and 2 will be investi-
gated in a further study. Here, the supervised NMF is con-
sidered where W is fixed and only H is updated iteratively.
The choosen algorithm is the maximisation-minimisation al-
gorithm proposed by Févotte and Idier [11].

Hk+1 ←− Hk.

WT
[
(WHk)β−2.V

]
WT

[
WHk

]β−1


γ(β)

(6)

where γ(β) = 1 for β ∈ [1 2] and γ(β) =
1

2
for β = 0.

2.2. Method

Our approach consists in considering an audio signal
recorded in an urban context, sampled at 44, 1 kHz and
expressed in the time-frequency plan using a Short Time
Fourier Transform. The size of the Hanning window is 5000
points with an overlap of 50 % and NFFT = 4096 points.
The temporal resolution chosen is, for the moment, very low
(∆t ≈ 0, 05 s).

The supervised NMF is then performed with the spec-
trogram V in the input, a fixed dictionary W and Ṽ in the
output. Currently, H is updated for a number of iterations
fixed at 100. When the iteration is over, it is possible to esti-
mate the level of the elements of interest. In the case of road
traffic, Ṽtr = [WH]tr which allows to calculate the sound
pressure level L̃p for each temporal frame

L̃p,tr,n = 20 log

∑
f ṽn,tr

p0
(7)

with ṽn,tr, the n-th temporal frame of the matrix Ṽtr and
p0 = 2× 10−5 Pa, the reference sound pressure. The equiv-
alent traffic sound level estimated, L̃eq,tr, is then determined
by
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L̃eq,tr =
1

T

∑
n

10 log
(

10L̃p,tr,n/10
)

(8)

where T is the duration of V.

3. EXPERIMENT

To evaluate the ability of the NMF framework to estimate
the road traffic level, we consider simulated sounds mixtures
where the actual level of contribution of the traffic is known.
This solution ensures controlling the road traffic level, Leq,tr,
relatively to the other sources in comparison to real record-
ings where it would not be correctly determined. Further-
more, working on simulated sound mixtures will create a
controlled framework where the time of presence of each
source is exactly known. Thus allows the production of spe-
cific sound environments (animated streets, parks . . . ).

The mixtures are simulated with simScene software de-
veloped by Mathias Rossignol and Gregoire Lafay [12]1

which synthesizes sound mixtures from a sound database of
isoled sound events. This tool can control multiple parame-
ters as the event/background ratio, the sample duration, the
time between samples . . . Each of these parameters is coupled
with a standard deviation to bring some variability between
the scenes produced. In the output, an audio file of each
sound class is created that allows us to compute the specific
contribution of each class present in the scene. The sound
database we use is composed of sound samples provided with
the software and completed by others sounds found online2.
The scenes are built with the first half of the database, the
second half being considered as the dictionary W. For tests
of feasibility, the first constructed scenes are simple but more
realistic scenes fully consistent will be soon produced.
For this preliminary study, 20 scenes are created with a du-
ration of 15 s. Each one is composed of 3 classes of sounds
that can typically be heard in urban areas: car, bird and car
horn and a noise background (voice hubbub). Currently, our
dataset for creating these scenes is composed of 30 audio
samples for the car class and 3 samples for bird and horn
classes. The dictionary W is then composed of the same
number of samples but extracted form the second half of our
database. The aim of this preliminary study is to see the in-
fluence of some parameters of the NMF (such as the diver-
gence calculation or the number of iteration) on the quality of
the traffic noise levels estimation. The NMF is performed on
each scene i and Lieq,tr is compared with the computational
level L̃ieq,tr to evaluate the performance of the method by
computing the error,

1Open-source project available at: https://bitbucket.org/
mlagrange/simscene

2www.freesound.org

RSME =

√√√√ 1

N

N∑
i=1

(Lieq,tr − L̃ieq,tr)2 (9)

where N , the number of scenes created.

4. RESULTS

Figure 2 presents the spectrograms obtained by simScene
(on left) and by the NMF (on right) for one scene with the
Euclidean distance (3) after 100 updates of H. We can
observe the bird on the frequency range [3000− 6000] Hz,
the horn is characterized by its harmonic content whereas
the car is mainly composed of low frequencies with a slower
temporal evolution. From each sound mixture, comparison
between Lp,n and L̃p,n for Euclidean distance (EUC),
Kullback-Leibler (K-L) and Itakura-Sato (I-S) divergences
can be made (Figure 3 for the scene presented in Figure 2).

For this scene, in the time interval [1.5− 4.5] s, there is
no traffic, the actual sound level is then zero. But we can
see in Figure 3 that the class car contributes to describe
the noise background level. This result is the consequence
of the minimization problem (2) where this sound class is
activated to reduce the cost function even though there is no
traffic. Nevertheless, the noise background is low enough
in comparison with the other class sounds to not distort the
estimations.

Let us now consider the error RMSE with respect to the
number of iterations of the NMF computed on the N scenes
for the three β-divergences on Figure 4. The error between
Leq,tr and the equivalent sound pressure of the global
mixture, Leq (global error), is added. This corresponds to
the error that would be made if no source separation was
done and all the sound sources were taken into account
without distinction.

Even if the global error is low (≈ 2dB), the use of the
NMF to compute the traffic noise level produces a better es-
timation than taking the sound mixture with all the sound
source. The Kullback-Leibler divergence produced the most
interesting results with the lowest and the most stable RMSE.
Surprisingly, the Itakura-divergence, despite its scale invari-
ant property [11], has an error similar to the Euclidean dis-
tance. This result may change in the future with more com-
plex and more realistic scenes.

5. CONCLUSION

In this article, we proposed to use the supervised NMF
framework to estimate the road traffic noise levels based
on acoustic measurements achieved in an urban context. In
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Figure 2: Spectrograms of a sound mixture composed with 3 sound classes (car, horn, bird). On the left, the initial audio
spectrogram given by simScene, in the middle, the estimation Ṽ given by the NMF, on the right, the traffic car noise estimated
Ṽtr after the source separation.
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our opinion, such approach would find many applications in
the environmental acoustics field such other than improving
noise maps with acoustic measurements, for example acous-
tic biodiversity monitoring.

This method is tested on sound mixtures simulated using
the simScene software which allows us to get the exact traffic
contribution separately from the other sounds. The method is
tested by comparing the equivalent sound level between the
traffic element of simScene and the estimation given by the
NMF for three cost functions. The first results show that this
method gives a better estimation of the sound level than if the
source separation is not done, thus demonstrating its interest.
Both the road traffic time of presence and amplitude are ac-
curately estimated, advocating for the use of the NMF for
isolating the road traffic contribution. The Kullback-Leibler
divergence results in the lowest errors and will therefore re-
ceive specific attention for future work.

Further investigations with more realistic and complex
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Figure 4: RMSE evolution

scenes are now required to confirm the behavior of the
Kullabck-divergence. Then, some refinements of the NMF
including acoustics considerations should improve the good-
ness of the road traffic noise levels estimation. For instance,
the addition of some temporal constraints with a smoothness
constraint within the NMF framework such as [13] [14] [15]
to better model the temporal evolution of the traffic elements
is currently investigated.
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ABSTRACT
This paper proposes an acoustic event detection (AED) method us-
ing semi-supervised non-negative matrix factorization (NMF) with
a mixture of local dictionaries (MLD). The proposed method based
on semi-supervised NMF newly introduces a noise dictionary and a
noise activation matrix both dedicated to unknown acoustic atoms
which are not included in the MLD. Because unknown acoustic
atoms are better modeled by the new noise dictionary learned upon
classification and the new activation matrix, the proposed method
provides a higher classification performance for event classes mod-
eled by the MLD when a signal to be classified is contaminated
by unknown acoustic atoms. Evaluation results using DCASE2016
task 2 Dataset show that F-measure by the proposed method with
semi-supervised NMF is improved by as much as 11.1% compared
to that by the conventional method with supervised NMF.

Index Terms— Acoustic event detection, Non-negative matrix
factorization, Semi-supervised NMF, Mixture of local dictionaries

1. INTRODUCTION

To identify a physical event or a sound source by which an observed
acoustic signal has been produced, acoustic event detection (AED)
is studied in various research fields such as smart home systems
[1, 2], environmental and ecological surveillance [3, 4], and au-
dio and video indexing [5, 6, 7]. Particularly, to make cities safer,
AED as part of a monitoring system is expected to find hazardous
sounds related to crimes, accidents, and incidents in public spaces
[8, 9]. Environmental sound coexisting with a target acoustic signal
causes wrong feature extraction and results in failure of detection.
AED methods based on non-negative matrix factorization (NMF)
have been proposed as promissing solutions [10, 11, 12, 13]. For
AED, NMF models an acoustic event as a combination of acous-
tic atoms which constitutes spectra of acoustic events. NMF-based
methods learn a dictionary of acoustic atoms by decomposing train-
ing signals into their spectral bases. A signal to be classified is
decomposed into bases of the dictionary and the corresponding ac-
tivation matrix by supervised NMF. The extracted activation matrix
represents a mixture ratio of acoustic atoms in the signal and is used
as a feature vector.

One of the most important points for an NMF-based AED
method is how to learn a dictionary of acoustic atoms. Gem-
meke et al. [14] made a dictionary by concatenating event spe-
cific basis matrices which were extracted by performing NMF on
each acoustic event individually. However, when different acous-
tic events share the same acoustic atoms, the dictionary becomes
redundant. This redundancy prevents proper extraction of an acti-
vation matrix. Komatsu et al. [15] used a mixture of local dictio-
naries (MLD) [16] constituting sub-groups of bases which directly
models acoustic atoms. The MLD is learned with constrained NMF
using a prior knowledge of acoustic atoms, which is obtained from
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Figure 1: Block diagram of the proposed acoustic event detec-
tion.The supervised NMF is a special case of semi supervised NMF
without a noise dictionary Wn and a noise activation matrix Hn.

clustered spectra of training signals. Modeling acoustic atoms di-
rectly by sub-groups of basis, the MLD has less redundancy and
performs more accurate feature extraction. However, the conven-
tional method performs supervised NMF [17, 18] using their fixed
dictionaries upon classification. When a signal to be classified has
unknown spectra (e.g. environmental sound) which are not included
in training signals, the unknown spectra are expressed by acoustic
atoms in the training signals. The extracted activation matrix is con-
taminated by unknown spectra and leads to failure of detection.

This paper proposes an AED method using semi-supervised
NMF with the MLD. The proposed method based on semi-
supervised NMF newly introduces a noise dictionary and a noise
activation matrix both dedicated to unknown acoustic atoms which
are not included in training data. Because unknown acoustic atoms
are better modeled by the new noise dictionary learned upon clas-
sification and the new activation matrix, the proposed method pro-
vides a higher classification capability for event classes modeled by
MLD when a signal to be classified are contaminated by unknown
acoustic atoms.
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Figure 2: Relationship among training/test spectrum, the MLD, and
the noise dictionary

2. PROPOSED METHOD

Figure 1 shows a block diagram of the proposed method. It con-
sists of three parts, dictionary learning, classifier training, and event
classification. Acoustic signals are used after being transformed to
spectrograms.

In dictionary learning, the training spectrogram V is decom-
posed into an initial basis matrix W0 by basic un-supervised NMF
[19]. Next, K-means clustering is applied to W0, and G centroids
µ(g) are obtained where g ∈ {1, ..., G} denotes an index of cen-
troid. A MLD W is learned by constrained NMF using µ(g) as
prior knowledge.

In classifier training, an event-specific activation matrix H(i) is
extracted from the corresponding spectrogram V(i) with supervised
NMF using the MLD W where i denotes an index of each acoustic
event class. Column vectors of H(i) at each time frame are used as
feature vectors for training the classifier.

In event classification, unlike classifier training, semi-
supervised NMF is applied to a test spectrogram V(∗) with the
MLD W and a noise dictionary Wn which is learned from V(∗).
Wn and [H(∗),Hn] which are activation matrices of the MLD and
the noise dictionary are alternately updated. Unknown spectra in-
cluded in V(∗) are expressed by Wn and Hn, so that H(∗) is ex-
tracted properly. The classifier uses only H(∗) as a feature vector
for classification of acoustic event classes.

2.1. Dictionary learning

MLD consists of G sub-groups of bases which model acoustic
atoms W = [W(1), ...,W(G)]. A basis matrix W(g) ∈ RF×Kg

+

consists of Kg basis vectors where RF×Kg

+ , F , and g denote a set
of non-negative F × Kg matrices, the number of frequency bins,
and an index of each acoustic atom.

To determine acoustic atoms, an initial basis matrix W0 is first
extracted from the entire training data spectrogram V ∈ RF×T

+

with the basic un-supervised NMF where T denotes its number of
time frames. K-means clustering is then applied to bases in W0 to
select G centroids µ(g) which represent centroids of acoustic atoms.

NMF is again applied to V with the centroids µ(g) and the follow-
ing cost function D (V|Λ):

D (V|Λ) = DKL(V|Λ)

+ η
∑
g

DKL(µ
(g)|W(g)) + λ

∑
t

Ω(ht), (1)

where Λ = WH is approximation of V and H is an activation
matrix of MLD W. A column vector ht of H at time frame t
consists of activations h(g)

t for W(g) (g = 1,...,G),

H = [h1, ...,ht, ...,hT ], (2)

h>
t = [h

(1)
t

>
, ...,h

(g)
t

>
, ...,h

(G)
t

>
], (3)

where [·]> denotes a matrix transpose.
Cost function in (2) consists of three terms; a generalized

Kullback-Leibler(KL) divergence DKL (V|Λ) between V and Λ,
a constraint

∑
g DKL(µ

(g)|W(g)), and a group sparsity constraint∑
t Ω(ht). The first term is a generalized KL divergence used by

the basic un-supervised NMF algorithm. The second term is a con-
straint which allocates sub-groups of bases W(g) to g th acoustic
atoms characterized by the centroid µ(g). The strength of constraint
is controlled by η. The third term represents group sparsity con-
straint at time t controlled by λ, where

Ω(ht) =
∑
g

log(ε+ ‖h(g)
t ‖1) (4)

is used in prior arts [16, 20] to turn off activation of the irrelevant
acoustic atoms.

To minimize the cost function in (2), the following update rules
are iteratively applied:

W(g) ←W(g) �
{(

V

Λ

)
H> + η

µ(g)

W(g)

}/{
1
(
H> + η

)}
,

(5)

H← H�
{
W>

(
V

Λ

)}/{
W>1

}
, (6)

h
(g)
t ← h

(g)
t

1

1 + λ
/{

ε+ ||h(g)
t ||1

} (7)

where 1 is a matrix with all elements equal to 1 and with a dimen-
sion of V. A � B represents element wise multiplication, A

/
B

and A
B

represent element wise division. The procedure of dictio-
nary learning is shown in Algorithm 1.

Algorithm 1 Dictionary learning for MLD
1: INPUT: V
2: Obtain W0 by a basic NMF
3: Obtain µ(g) by using K-means to W0

4: Initialize W and H with random values.
5: repeat
6: Update W using (5).
7: Update H using (6) and (7).
8: until Convergence
9: OUTPUT: W
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2.2. Classifier training

In classifier training, an activation matrix H(i) is extracted from the
corresponding training spectrogram V(i) by supervised NMF with
MLD W and a classifier is trained using the activation matrices
where i ∈ {1, ..., I} represents an event-class index. In supervised
NMF, V(i) is approximated by a product of W and H(i),

V(i) ∼WH(i). (8)

For a given W by dictionary learning, H(i) is updated using (6)
and the group sparsity constraint in (7). The procedure is shown in
Algorithm 2.

Once H(i) has been obtained, column vectors ht(i) of H(i) at
each time frame t are used as feature vectors to train the classi-
fier. Simple linear support vector machine(SVM) [21] is used for
classifier. Multi-class SVM is trained based on the one-against-all
approach.

Algorithm 2 Feature extraction with supervised NMF
1: INPUT: V(i) and W
2: Initialize H(i) with random values.
3: repeat
4: Update H(i) using (6) and (7). with fixed W
5: until Convergence
6: OUTPUT: H(i)

2.3. Event classification

In event classification, the proposed method extracts an activation
matrix from a test spectrogram using semi-supervised NMF with
MLD. A noise dictionary is learned concurrently with extracing the
activation matrix. Unknown spectra included in a test spectrogram
is expressed by the noise dictionary and the corresponding activa-
tion matrix, so that an activation matrix of acoustic atoms are ex-
tracted properly.

Let V(∗) and Wn ∈ RF×Kn
+ denote the test spectrogram and

the noise dictionary, respectively, where Kn is the number of bases
in the noise dictionary. H(∗) and Hn denote activation matrices of
MLD and Wn, respectively. The relationship among these matrices
is described as in the following approximation:

V(∗) ∼ Λ(∗) = [W,Wn]

[
H(∗)
Hn

]
. (9)

In semi-supervised NMF, H(∗), Hn and Wn are updated to mini-
mize a generalized KL divergence DKL

(
V(∗)|Λ(∗)

)
, applying an

update rule for the activation matrix in (6), a group sparsity con-
straint in (7) and the following update rule for Wn:

Wn ←Wn �
{(

V(∗)

Λ(∗)

)
H>

n

}/{
1H>

n

}
. (10)

The procedure is shown in Algorithm 3.
Figure 2 is a simple illustration of the relationship among train-

ing/test spectrum, MLD, and the noise dictionary. The relationship
is explained as data points on the 3-dimentional simplex [22, 23].
© and F represent training and test spectrum, respectively, ♦ and
4 represent bases and centroids of MLD, respectively. In dictionary
learning, sub-groups of bases ♦ in MLD are learned to span convex
hulls enclosing training spectra©. In event classification, the noise
dictionary is learned from unknown test spectra F lying outside the
convex hulls which is indicated with the shaded area. Therefore un-
known spectra included in the test spectrogram are expressed by the

noise dictionary and MLD can extract a proper activation matrix of
acoustic atoms.

After extracting H(∗) , the classifier receives H(∗) as a feature
and outputs a T × I binary classification-result matrix R, where I
represents the number of event classes for classification. A binary
column vector of R per frame corresponds to the presence of each
event class. When a column of R contains two non-zero elements
for example, there are two detected events in that frame. A non-
zero and a zero column vector stand for event-detected and event-
undetected status, respectively.

Algorithm 3 Feature extraction with semi-supervised NMF
1: INPUT: V(∗) and W
2: Initialize Wn, H(∗) and Hn with random values.
3: repeat
4: Update Wn using (10)
5: Update H(∗) and Hn using (6) and (7).
6: until Convergence
7: OUTPUT: H(∗)

3. ADDITIONAL PROCESSING SPECIFIC TO
EVALUATION

DCASE 2016 task 2 Dataset is used for evaluating the proposed
method. The Dataset includes 11 sound classes, which are typically
found in the office and shown on the left side of Figure 4. The task
2 has two types of dataset; Training Dataset used for generating
MLD and training SVM classifiers, and Development Dataset used
for classification.

Training Dataset consists of 20 noise-free files for each sound
class totaling 220 files. Development Dataset includes 18 files to
cover 6 event occurrence patterns and three SNRs, namely, −6, 0,
and 6 dB, each of which contains all 11 sound classes. Develop-
ment Dataset also has an annotation file for each sound data file to
evaluate classification result.

Because DCASE 2016 task 2 Dataset is used for evaluation with
the annotation file and classification results, each classification re-
sult needs to be expressed in the format of the annotation file, which
is defined as columns of sound class name, onset time, and offset
time. The classification-result matrix R is applied a median fil-
ter in a row-wise manner. Columns of R are further replaced with
zero column vectors when the corresponding frame is determined
as silent by an integrated spectral intensity (ISI) or as a gap shorter
than 0.1 second (10 frames). Values of F-measure are calculated by
sed eval tools [24] for evaluation on segment based metrics over 1
second for each SNR and each event.

4. EVALUATION AND DISCUSSION

Table 1 shows a parameter setting used in the evaluation. For gener-
ating spectrograms from sound files, a variable q transform (VQT)
[25] was used. VQT spectrograms were extracted for all files of
DCASE task 2 Dataset. MLD was generated from the obtained
VQT spectrograms. The number of bases in the noise dictionary
for semi-supervised NMF was set to the one with the best perfor-
mance for each event class.

Figure 3 compares F-measure values calculated by the conven-
tional AED with supervised NMF[15] and the proposed AED with
semi-supervised NMF for different SNRs. The F-measures by the
proposed method are 4.7%, 7.7%, and 11.1% higher than those by
the conventional method at SNRs of 6, 0, and −6 dB, respectively.
The degradation of F-measure from 6 to 0 dB is 2.0% and that from
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Figure 3: Evaluation results for all event classes at three different
SNRs using DCASE2016 task 2 Dataset.

Table 1: Parameter setting for the evaluation.
Parameter value
Sampling rate 44.1 kHz
Fmin for VQT 27.5 Hz
Number of bins per octave for VQT 60
γ for VQT 30.0
Number of basis for MLD 46
Number of group basis for MLD 4

6 to −6 dB is 13.9% for the proposed method. These values are
smaller than those for the conventional method.

Conventionally, the input spectrogram including the noise is
modeled by fixed MLD, which is learned without noise, and the
activation matrix of MLD, so that the activation matrix of MLD
includes errors. The proposed method dedicates both a noise dic-
tionary and its activation matrix to the noise. Because noise spectra
are better modeled by the noise dictionary learned upon classifi-
cation and its activation matrix, the proposed method provides a
higher F-measure values than conventional method at each SNR,
when known acoustic atoms in the learning data are contaminated
by noise in event classification. Therefore, the proposed method is
robust to the noise.

Results for each event class are compared in Figure 4. It
shows big improvement for cough and page turn. Especially, the
F-measure of page turn is improved by 24.4%. The F-measure
for clear throat, keyboard, keys, laughter, phone, and speech show
small improvement. Door slam, drawer, and knock did not im-
prove at all. The proposed method generally provides better re-
sults than the conventional method for each event class, because the
conventional method is a special case of the proposed method with
no noise dictionary and no noise activation matrix. The effect of
the proposed method changes according to similarities between an
event-class spectrum and an unknown noise spectrum. It seems that
an event class with big improvement by the proposed method has
MLD that can be easily activated by the noise spectrum. The pro-
posed method reduces such erroneous activation with a help of the
noise dictionary. In contrast, when the spectrum of an event class
are clearly different from the noise spectrum, the proposed method
is not as effective as for the similar spectrum case. Further investi-
gation is left for future study.

0 20 40 60 80 100
F-measure [%]

clearthroat

cough

doorslam

drawer

keyboard

keys

knock

laughter

pageturn

phone

speech

[Event Class] Segment Based F-measure

Conventional

Proposed

Figure 4: Evaluation results for each acoustic event of DCASE2016
task 2 Dataset.

Table 2: DCASE 2016 Challenge results.
Error rate F-measure

Development dataset 0.27 86.7 %
Evaluation dataset 0.33 80.2 %

5. DCASE 2016 CHALLENGE

Table 2 shows segment-based overall results of our sysmtem. To ob-
tain better performance for DCASE 2016 Challenge, we addition-
ally incorporate noise suppression [26] for test spectrogram V(∗)
as preprocessing to suppress stationary noise in V(∗). Parameters
of the proposed method are optimized for the development dataset.
In particular, event classes have their respective optimal number of
bases in the noise dictionary for semi-supervised NMF. Therefore,
for detection of each event class, the corresponding optimal num-
bers of bases are used ; 1 for cough, doorslam, pageturn, and phone,
2 for clearthroat, 3 for drawer and keyboard, 4 for keys, and 10 for
knock, laughter, and speech.

6. CONCLUSIONS

An acoustic event detection (AED) method using semi-supervised
non-negative matrix factorization (NMF) with mixture of local dic-
tionaries (MLD) has been proposed. The proposed method has
newly introduced a noise dictionary and a noise activation matrix
both dedicated to unknown acoustic atoms which are not included
in the learning data. Because unknown acoustic atoms are better
modeled by the new noise dictionary learned upon classification and
the new activation matrix, the proposed method provides a higher
classification capability for event classes modeled by MLD when a
signal to be classified is contaminated by unknown acoustic atoms.
Evaluation results using DCASE2016 task 2 Dataset have shown
that F-measure by the proposed method with semi-supervised NMF
has been improved by as much as 11.1% compared to that by the
conventional method with supervised NMF.
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ABSTRACT
The DCASE Challenge 2016 contains tasks for Acous-
tic Scene Classification (ASC), Acoustic Event Detection
(AED), and audio tagging. Since 2006, Deep Neural Net-
works (DNNs) have been widely applied to computer vi-
sions, speech recognition and natural language processing
tasks. In this paper, we provide DNN baselines for the
DCASE Challenge 2016. In Task 1 we obtained accuracy of
81.0% using Mel + DNN against 77.2% by using Mel Fre-
quency Cepstral Coefficients (MFCCs) + Gaussian Mixture
Model (GMM). In Task 2 we obtained F value of 12.6% us-
ing Mel + DNN against 37.0% by using Constant Q Trans-
form (CQT) + Nonnegative Matrix Factorization (NMF). In
Task 3 we obtained F value of 36.3% using Mel + DNN
against 23.7% by using MFCCs + GMM. In Task 4 we ob-
tained Equal Error Rate (ERR) of 18.9% using Mel + DNN
against 20.9% by using MFCCs + GMM. Therefore the DNN
improves the baseline in Task 1, 3, and 4, although it is worse
than the baseline in Task 2. This indicates that DNNs can be
successful in many of these tasks, but may not always per-
form bette than the baselines.

Index Terms— Deep Neural Network (DNN), Acous-
tic Scene Classification (ASC), Acoustic Event Detection
(AED), Audio Tagging

1. INTRODUCTION

Sounds carry a large amount of information about our ev-
eryday environment. Humans can perceive the sound scene
around them (busy street and office, etc.), and recognize in-
dividual sound events (car passing by and footsteps). Al-
though image classification and detection have been popu-
lar in recent years, audio classification and detection have
not attracted a similar level of attention. In the past years,
CLEAR 2007 was a challenge on detecting events and ac-
tivities [1]. The DCASE Challenge 2013 [2] contained chal-
lenge for scene classification and synthetic acoustic classi-
fication . The DCASE Challenge 20161 has four tasks in
acoustic related problems. Task 1 is Acoustic Scene Classi-
fication (ASC), the goal of which is to classify a test record-
ing into one of the predefined classes that characterize the

1http://www.cs.tut.fi/sgn/arg/dcase2016/

environment in which it was recorded, for example “park”,
“home”, “office”. Task 2 is Acoustic Event Detection (AED)
in Synthetic audio, which aims at detecting sound events in
synthetic mixture (e.g. “door slam”, “human speaking”) that
are present within an audio. Task 3 is Sound Event Detec-
tion in Real Life Audio. In contrast to Task 2, it aims to de-
tect acoustic events in real life, such as “bird singing”, “car
passing by”. Task 4 is Domestic Audio Tagging, the goal of
which is to perform multi-label classification on short record-
ings collected in a domestic environment.

ASC and AED are intimately related to industry applica-
tions. They have applications in audio indexing [3], audio
classification [4], audio tagging [5], audio segmentation [6],
surveillance, military and public abnormal event detection
[7], etc. In previous work, Mel Frequency Ceptral Coeffi-
cients (MFCCs) and Gaussian Mixture Model (GMM) were
used for ASC [8]. McLoughlin et al. improved on this result
by using auditory features and Deep Neural Network (DNN)
classifier [9]. Unsupervised learning proposed by Lee et al.
[4] uses convolutional deep belief networks to learn audio
features. In AED, the Constant Q Transform (CQT) and
Nonnegative Matrix Factorization (NMF) are widely used
to detect sound events in a recording [10]. Hidden Markov
Models (HMM) with Viterbi decoding have been proposed in
[7], where a universal background model (UBM) is used to
model background sound. In [11], a Bidirectional Long Short
Term Memory (BLSTM) is proposed, which yields better re-
sult than the HMM. In audio tagging, MFCCs + GMM is a
standard method to detect whether or not tags occur in the
audio [12]. Recently Convolution Neural Networks (CNNs)
have been used for audio tagging in [13].

This work aims at providing DNN baseline for all four
tasks of the DCASE Challenge 2016. The remainder of the
paper is organized as follows. Section 2 discusses related
works. Section 3 describes the deep DNN structure. Section
4 presents experimental results we obtained on Task 1 - 4 of
DCASE Challenge 2016. Section 5 draws conclusion of our
work and future research.

2. DEEP NEURAL NETWORKS

DNNs have been widely used in Computer Vision (CV), Nat-
ural Language Processing (NLP), etc. since 2006. Their vari-
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ants include CNNs and Recurrent Neural Networks (RNNs).
In this paper, we propose to use the same features and the
same structures of DNN for all of the four tasks in the
DCASE Challenge 2016. This is aimed at evaluating how
DNN performs in these tasks compared with original base-
line methods, as well as providing a baseline for other re-
searchers to compare.

2.1. Features

In audio processing, MFCCs are widely used in speech
recognition. They are developed with the assumption that
sounds are produced by glottal pulse passing through vocal
tract filter. However, with MFCCs some useful information
about the sound may be lost, which restricts its ability for
recognition and classification. In recent years, Mel Filter
Bank Features have been widely used in speaker recognition
[14]. Other features such as Constant Q Transform (CQT)
[15] are used in music related tasks, which has good resolu-
tion in low frequency. In this paper, we apply Mel-filter bank
features with 40 channels to all of the four tasks. Features
extraction code is based on librosa2.

2.2. DNN structure

The DNN we used in our experiment is a fully connected
neural network with 3 hidden layers. As the bag of frames
feature cannot capture time dependency, the input to the
DNN is taken as a concatenation of 10 frames mel-bank fea-
tures so there are 400 input nodes (10 frames * 40 Mel-filter
banks). We use 500 hidden units per layer. ReLU [16] ac-
tivation function is used. For Task 1, softmax output and
categorical cross-entropy loss function are used. For Tasks
2, 3, and 4, binary output and binary cross-entropy function
are used. Dropout [17] with value of 0.1 is used to avoid
overfitting. RMSProp [18] optimizer is used since it is gen-
erally faster than Stochastic Gradient Descend (SGD). The
DNN structure is shown in Figure 1.

3. EXPERIMENTS

In this section we evaluate the performance of Mel-filter bank
features plus DNN on DCASE Challenge 2016 Tasks 1 - 4
on ASC, AED and audio tagging. We use 40 Mel-filter bank
features. Then we apply the DNN shown in Figure 1 to all
of the four tasks. These systems are implemented in python.
The source code can be found in Task 13, Task 24, Task 35,
Task 46. Our DNN implementation is based on Hat7, which

2https://github.com/librosa
3https://github.com/qiuqiangkong/DCASE2016 Task1
4https://github.com/qiuqiangkong/DCASE2016 Task2
5https://github.com/qiuqiangkong/DCASE2016 Task3
6https://github.com/qiuqiangkong/DCASE2016 Task4
7https://github.com/qiuqiangkong/Hat

Figure 1: DNN used for Task 1 - 4

is an open source deep learning framework built on top of
Theano8.

3.1. Task 1: Acoustic Scene Classification

The TUT Acoustic scenes 2016 datasets [19] is used in this
task. The dataset consists of recordings from various acoustic
scenes, all having distinct recording locations. Each record-
ing contains 30-second segments. There are altogether 15
classes with 4 fold cross validation. For training DNN, the
batch size is set to 100. RMSProp (Section 3.2) learning
rate is set to 10-3 at beginning then is tuned to 10-4 after
30 epochs. The maximum number of epochs is set to 100.
Time consumption is 3 s/epoch on Tesla 2090. The results
are shown in Table 1. NG is the abbreviation of Not Given.
Dev., Test means development dataset and private dataset, re-
spectively.

Table 1: Accuracy of Task 1
Chunk
based acc.
(Dev.)

Segment
based acc.
(Dev.)

Segment
based acc.
(Test)

MFCCs + GMM
(Baseline)

NG 72.5% 77.2%

Mel + DNN 63.3% 76.4% 81.0%

From this table, it can be observed that using the Mel +
DNN obtains an accuracy of 81.0%, outperforms MFCCs +
GMM baseline (77.2%) in test dataset. Detailed results of
development set on each fold are shown in Table 2.

8http://deeplearning.net/software/theano/
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Figure 2: Confusion matrix of segment based accuracy in
Task 1.

Table 2: Fold wise accuracy of Task 1 using Mel + DNN
Frame based
acc.

Segment based
acc.

fold 1 65.2% 80.0%
fold 2 61.5% 70.7%
fold 3 62.0% 74.8%
fold 4 64.6% 80.1%
average 63.3% 76.4%

Table 2 shows that the accuracy of different folds (de-
velopment dataset) are different, with frame based accuracy
ranging from 61.5% to 65.2% and segment based accuracy
ranging from 70.7% to 80.1%. This indicates the dataset is
not homogeneous. The overall confusion matrix is shown in
Figure 2. We can see that “park” is easily mis-recognized as
“residential area”. This may result from the fact these scenes
share similar features, which are difficult to classify using the
bag of words model.

3.2. Task 2: AED in Synthetic Audio

A dataset provided by IRCCYN Ecole Centrale de Nantes is
used in Task 2 [19]. The training set includes 11 classes of
sound events. There are 20 samples provided for each sound
event class in the training set, plus a development set consist-
ing of 18 minutes of synthetic mixture material in 2 minute
length audio files. The event-to-background ratio (EBR)9 is
set to -6, 0, +6 dB. In this task, we set the RMSProp learning
rate to 10-3, the batch size to 20, the number of epochs to
20, respectively. Binary output and sigmoid cost function are
used. Time consumption in Tesla 2090 GPU is 0.1 s/epoch
(one processor). Results are shown in Table 3.

9http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-
synthetic-audio

Table 3: F value of Task 2
EBR F value (Dev.) F value (Test)
CQT + NMF
(Baseline)

41.6% 37.0%

Mel + DNN 17.4% 12.6%

Table 3 shows that using Mel + DNN yields an F value of
12.6% which is worse than CQT + NMF baseline (37.0%).
One possible explanation for this underperformance is that
without data augmentation, DNN is not good at classify-
ing the samples with additive noise, while the NMF based
technique has better ability in modeling sounds with additive
noise. Detailed results on development dataset on different
EBR levels of -6, 0, +6 dB are shown in Table 4.

Table 4: Fold wise F value of Task 2 using Mel + DNN
F value

-6 dB 16.0%
0 dB 17.6%

+6 dB 18.8%
Average 17.4%

3.3. Task 3: AED in Real Life Audio

The TUT Sound events 2016 dataset [19] is used in this task.
Audio in the dataset is a subset of TUT Acoustic scenes 2016
dataset (used for task 1). The TUT Sound events 2016 dataset
consists of recordings from two acoustic scenes: Home (in-
door) and Residential area (outdoor). In this task, we set the
RMSProp learning rate to 10-3, the batch size to 20, the num-
ber of epochs to 50. Results are shown in Table 5.

Table 5: F value of Task 3
Home
(Dev.)

Residential
area (Dev.)

Average
(Dev.)

Average
(Test)

MFCCs + GMM
(baseline)

15.9% 31.5% 23.7% 34.3%

Mel + DNN 29.2% 47.0% 38.1% 36.3%

Table 5 shows that for real life event detection using
Mel + DNN yields an F value of 36.3%, which outperforms
MFCCs + GMM baseline (23.7%). Detailed results on de-
velopment dataset on each fold are shown in Table 6.
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Table 6: Fold wise F value of Task 3 using Mel + DNN
Home Residential

area
fold 1 28.0% 62.4%
fold 2 28.8% 34.5%
fold 3 22.3% 43.7%
fold 4 37.5% 47.5%
average 29.2% 47.0%

3.4. Task 4: Domestic audio tagging

The CHiMe-Home dataset is used in Task 4 . The objec-
tive of this task is to perform multi-label classification on
4-second audio chunks. There are 7 labels occurring in au-
dio segments including child speech and adult male, etc. Bi-
nary output and binary cross-entropy loss function are used
because the labels can occur simultaneously. We set the RM-
SProp learning rate to 10-3, the batch size to 500, the number
of epoch to 100. Cross validation with 4 folds is used. Re-
sults are shown in Table 7.

Table 7: F value of Task 4
EER (Dev.) (Test)

MFCCs + GMM
(baseline)

21.0% 20.9%

Mel + DNN 20.9% 18.9%

Table 7 shows that we obtain Equal Error Rate (ERR)
of 18.9% using Mel + DNN, which is similar to MFCCs +
GMM baseline (20.9%). Detailed results on development
dataset on four folds are shown in Table 8.

Table 8: Fold wise EER of Task 4 using Mel + DNN
EER

fold 1 19.3%
fold 2 15.6%
fold 3 26.3%
fold 4 22.4%
average 20.9%

4. CONCLUSION

In this paper, we have applied the same DNN structure to
Task 1 - 4 in the DCASE Challenge 2016 as a DNN base-
line for future research. In summary, in Task 1, Mel + DNN

is better than MFCCs + GMM (accuracy of 81.0% against
77.2% ). In task 2, Mel + DNN is worse than the CQT +
NMF baseline (F value 12.6% against 37.0%). In task 3, Mel
+ DNN is better than the MFCCs + GMM baseline (F value
36.3% against 23.7%). In task 4, Mel + DNN is better than
MFCCs + DNN baseline (18.9% against 20.9%). We publish
our codes of Task 1 - 4 and hope this will attract interests
from other institutions to do further research.
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BAG-OF-FEATURES ACOUSTIC EVENT DETECTION FOR SENSOR NETWORKS

Julian Kürby, Rene Grzeszick, Axel Plinge, and Gernot A. Fink

TU Dortmund University, Dortmund, Germany

ABSTRACT

In this paper a novel approach for acoustic event detection in sen-
sor networks is presented. Improved and more robust recognition
is achieved by making use of the signals from multiple sensors. To
this end, various known fusion strategies are evaluated along with
a novel method using classifier stacking. A comparative evaluation
of these fusion strategies is performed on two different datasets:
the ITC-Irst database, and a set of smart room recordings. In both
datasets, 32 distributed microphones were used for recording. Fur-
thermore, the effect of previously observed as well as unobserved
locations is investigated. The proposed stacking yields a notable
improvement. The performance of recognizing events at previously
unobserved locations can be improved by sorting the channels ac-
cording to their posterior probabilities.

Index Terms— Bag-of-Features, Acoustic Event Detection,
Sensor Arrays, Robustness, Acoustic Sensor Networks

1. INTRODUCTION

The detection and classification of acoustic events is important for
many practical applications in various environments: The recog-
nition of such events can be used for meeting and online lecture
analysis and annotation [1]. Surveillance in cluttered scenes can
be improved by an acoustic analysis in order to detect unexpected
scenarios that are not easily visually recognizable (e. g. screams or
glass breaking) [2]. In a slightly different field of research outdoor
applications are addressed. These include mobile robots for secu-
rity [3], urban planning [4], and the analysis of possible noise com-
plaints [5]. It can also be used to improve the robustness of different
real world applications, such as speech enhancement, speaker track-
ing, or the calibration of microphone arrays [6–8]. What makes this
problem difficult is the vast diversity of the acoustic events.

Methods for online analysis of acoustic events are typically ap-
plied over short time windows and combined with a sliding window
approach. One common approach stems from speaker identifica-
tion [9]. A Gaussian mixture model (GMM) is trained for each
class. The estimates of all GMMs are summed up over all frames
and the class with the highest likelihood is chosen. These meth-
ods are sometimes termed ’Bag-of-Frames’ [10,11]. Over the last
years, methods that build on the Bag-of-Features (BoF) principle
have emerged in the field of acoustic event detection [12,13]. There,
features are clustered in order to obtain a histogram representation
which is then classified. The BoF principle has been proven to gen-
eralize well with respect to the diversity of the acoustic events.

Many methods in acoustic event detection focus on a single sig-
nal. However, in many scenarios a sensor network with multiple
microphones is available (cf. [8,14]). In [15] multiple channels are
used to extract features describing spatial information. These fea-
tures work well for classifying scenes where the sound sources oc-
cur at distinct locations. In [16] a multi-channel approach that uses

cFusion

Features Quantization Classification

Figure 1: Overview of the proposed method. A three-step BoF ap-
proach for acoustic event detection is applied to every source in a
sensor network comprised of many microphones, before the results
are combined by a fourth fusion step.

Regression Forests is proposed. The confidence scores of different
channels are accumulated and then the presence is predicted using
a pre-defined threshold. In [17] different combination strategies in-
cluding accumulation of log probabilities, the maximum rule, and
majority voting are evaluated. Both works show that the combina-
tion of information obtained from multiple channels improves the
robustness of the system and the detection results.

This paper extends the BoF approach discussed in [13,18] and
provides a thorough evaluation of different multi-channel fusion
strategies in the context of acoustic event detection. The heuris-
tic combination strategies presented in [17] are compared with a
novel method based on classifier stacking. A comparative evalua-
tion on two different datasets is given. Furthermore, different train-
ing and test setups are evaluated having a closer look at the pre-
requisites necessary for successfully exploiting information from
multiple sources.

2. METHOD

For the acoustic event detection in sensor networks, a single channel
Bag-of-Features (BoF) approach is extended to multiple channels
by adding an additional fusion step that combines the information
from different microphones. A sliding window approach is used for
detection. For each window, four basic processing steps are applied,
as shown in Fig. 1:

1. Given an input signal and a short time window, a set of fea-
ture vectors is calculated for all frames in this window.

2. The feature vectors of all frames in the training set are clus-
tered in a supervised manner using a GMM for each class.
The features within one window are assigned to the clus-
ters using soft assignment. These are accumulated in a his-
togram, the BoF representation.
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3. These representations are then used for classification, apply-
ing maximum likelihood classification.

4. The results from multiple channels are fused in order to get a
more robust classification. A novel fusion strategy based on
classifier stacking is proposed.

2.1. Single-channel BoF acoustic event classification

For the single-channel BoF based acoustic event classification, a
single microphone or beamformed signal is processed in short time
windows. The processing steps are explained in more detail in the
following.

Features Given an input signal and a time window n of w mil-
liseconds, a set of feature vectors Yn = (y1 . . . yK) is calculated.
For sound and especially speech processing, the mel frequency cep-
stral coefficients (MFCCs) are one of the most widely used features.
The input signal is filtered by a mel frequency filter bank, from the
logarithm of its magnitude the discrete cosine transform (DCT) is
computed and its second to 13th coefficient is used. From that the
gammatone frequency cepstral coefficients (GFCCs) were derived
in [19]. Here, the filterbank of the MFCCs is replaced by linear
phase gammatone filters. As for the MFCCs, the second to 13th

GFCC coefficients are used. In addition, a single loudness filter is
evaluated. In total the feature vector has a dimensionality of 27. A
whitening transformation is computed on the training data which is
applied to all feature vectors.

Feature Representation A BoF approach is used for building
a codebook of acoustic words from the training set. While the
classical BoF uses hard quantization via the k-Means algorithm,
soft quantization by GMMs has been shown to improve the per-
formance [13,20]. The basic principle also employs a globally es-
timated codebook which can lead to mitigation of significant dif-
ferences. A remedy for this effect is to build codebooks of size I
for all C classes Ωc separately and then concatenating them into
a large super-codebook [13]. Here, the expectation maximization
(EM) algorithm is applied to all feature vectors yk for each class
Ωc in order to estimate I means and standard deviations µi,c, σi,c

for all C classes. All means and deviations are concatenated into a
super-codebook v with V = I · C elements

vj=(I·c+i) = (µi,c, σi,c) (1)

where the index j is computed from the class index c and the Gaus-
sian index i as j = I ·c+i. Using this codebook, a soft quantization
of a feature vector yk can be computed as

q(yk, vj) = N (yk|µj , σj) /
∑
j′

N (yk|µj′ , σj′) . (2)

Then, a histogram b can be computed over allK frames of the input
window by

b(Yn, vj) =
1

K

∑
k

q(yk, vj) . (3)

Classification The probability P (vj |Ωc) of an acoustic word vj
given class Ωc is estimated using a set of training samples Yn ∈ Ωc

for each class c by Lidstone smoothing:

P (vj |Ωc) =
α+

∑
Yn∈Ωc

b(Yn, vj)

αV +
∑V

m=1

∑
Yn∈Ωc

b(Yn, vm)
(4)

A typical choice for the smoothing factor α is in the range of [0, 1].
Here, α is set to 0.5. Since all classes are assumed to be equally
likely and have the same prior, maximum likelihood classification
is used. The posterior is estimated using the relative frequency of
all acoustic words

P (Yn|Ωc) =
∏
vj∈v

P (vj |Ωc)
b(Yn,vj) . (5)

2.2. Multi-channel fusion

In a sensor network containing M microphones the approach can
be evaluated for each microphone m individually. It is assumed,
that all microphones are synchronized at least at a frame level. The
results can then be combined in order to obtain a more robust classi-
fication. In the following three traditional heuristic fusion strategies
(cf. [17]) will be reviewed and a novel approach based on classifier
stacking will be introduced.

Majority voting A straightforward fusion approach is evaluating
each channel separately so that a set of class labels

ĉ(m) = argmax
c

Pm(Yn|Ωc) (6)

is estimated. Then, a majority voting over all decisions ĉ(m) is per-
formed. This assumes that most microphones are able to detect the
correct event. However, it discards the posterior probabilities which
might carry important information about the confidence of the sin-
gle channels.

Maximum rule The maximum rule is a fusion strategy that con-
siders the posterior probabilities of each channel instead of the la-
bels. It chooses the class with the overall highest posterior probabil-
ity. For each class the maximum over all channels is computed and
then the class with the highest probability in the complete sensor
network is chosen:

ĉ = argmax
c

max
m

Pm(Yn|Ωc) . (7)

This approach can be highly influenced by positive outliers. It is
assumed that at least one microphone is positioned well with respect
to the acoustic event.

Product rule Alternatively the product of the posterior probabili-
ties is used. For each of the classes the product of the posteriors of
all channels is computed. Then, the class with the highest probabil-
ity product in the complete sensor network is chosen:

ĉ = argmax
c

∏
m

Pm(Yn|Ωc) . (8)

In contrast to taking the highest probability this strategy is strongly
influenced by negative outliers.

Classifier stacking While the previous approaches are mere heu-
ristic approaches that decide on a fusion strategy, it is also possible
to learn a combination strategy from the training data. A second
classifier is trained that uses the posterior probabilities from all mi-
crophones in the sensor network as input features. The learned clas-
sification function F is then used for predicting the class:

ĉ = F
(
(Pm(Yn|Ωc))(c,m)

)
. (9)

56



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

global channel-specific
70

75

80

85

model

F-
sc

or
e

[%
] SC

max
product
vote
stacking

Figure 2: Frame-wise F-score [%] comparing fusion strategies with
the single-channel (SC) baseline on the ITC-Irst dataset. For the
single-channel results the mean and standard deviation are plotted.

Two thirds of the training data are used for training the single-
channel BoF models and the single-channel classifiers and the last
third is used in order to train a Random Forest classifier on the pos-
terior probabilities of the single-channel evaluations.

Note that the classifier learns the probabilities based on their
ordering. Therefore, it implicitly learns the position of the micro-
phones and also the locations at which the different acoustic events
occur. This can be an advantage for events or especially noise
sources with a fixed location (e. g. doors or windows). However,
it can be a limitation for events that can occur at arbitrary locations
such as speech. A remedy for this effect is ordering theM channels
according to the highest posterior probability. Sorting the channels
descending by probability provides a new ordering:

M =

[
argsort

m
max

c
Pm(Yn|Ωc)

]
(10)

After re-ordering of the channels, the posterior probabilities are
again used as input for the classifier F . Thus, the indices (c,m)
in eq. 9 are replaced by (c,Mm).

2.3. Detection

Due to its simplicity and rapid computation, the BoF approach can
easily be adapted to event detection, where a sequence of acoustic
events is given. It currently runs in approx. 20% real time on a
single core i7 cpu. The classification window is moved forward in a
sliding window approach by one frame k at a time. The recognition
result is used for the frame that is centered in the window so that
context information is available for a short time before and after the
frame. As the window has a length of wmilliseconds, there is a
processing delay of only w/2 milliseconds.

3. EVALUATION

The experiments are conducted on two different datasets for acous-
tic event detection, the ITC-Irst dataset [14] as well as a set of
recordings conducted in a smart conference room at TU Dortmund
University. On these datasets the detection performance of the pre-
sented multi-channel approaches are evaluated and compared to a
single-channel baseline. All channels were synchronized with a
global clock in both datasets.

3.1. ITC-Irst Dataset

The ITC-Irst dataset is comprised of 16 different acoustic events, in-
cluding door knock, door slam, steps, chair moving, spoon (cup jin-
gle), paper wrapping, key jingle, keyboard typing, phone ring, ap-
plause, cough, laugh, door open, phone vibration, mimo pen buzz,

evaluation method channels error F-score

event-
based

RF [16] mean (4) 15.4% 91.8%
RF [16] fusion (4) 13.0% 93.3%
HMM2 [14] SC (1) 23.6% -
HMM1 [14] SC (1) 45.2% -
SVM [14] SC (1) 64.4% -

frame-
based

RF [16] fusion (4) 30.7% 82.8%
proposed mean (32) 39.0% 77.4%
proposed stacking (32) 25.6% 84.2%

Table 1: Results on the ITC-Irst dataset using the CLEAR evalua-
tion protocol with the first 12 classes as foreground in comparison
to literature results. The methods use either a single channel or dif-
ferent fusion approaches (number of channels in parentheses).

falling object, and unknown/background. The recording room was
equipped with 32 microphones, 28 of which were located in seven
T-shaped arrays on the walls and four were table microphones. The
experiments consist of twelve recording session on three different
days. The first three sessions of each day are considered as training
and the fourth session is used for testing.

The first experiments were conducted using all sounds except
silence and unknown as classes of interest. Then, in order to allow
for comparability with existing experiments [14,16], only the first
twelve classes were considered as foreground and the remaining
ones as background.

Baseline For the evaluation, two different setups were considered.
First, the BoF model is trained on the events of all microphones
yielding a global model. Second, a separate model is trained for
each microphone in the sensor network. In both cases, the BoF
model is computed using a codebook size of I = 30 centroids for
each class and a window size of w = 600 ms based on the results
in [18]. For the baseline each channel is evaluated separately and the
average over all microphones is reported (single channel is denoted
as SC).

Fusion experiments In the following the multi-channel fusion
strategies are compared with each other and to the baseline of
single-channel results. The first two sessions of each day are used
for training the base classifier, the third session for training the
stacking classifier. Since the positions of the acoustic events were
changed for each of the three recording days, the stacking classifier
is able to learn different acoustic locations. The fourth session is
used for testing so that it contains the different locations from all
three days. Note that the single-channel and heuristic approaches
are trained on the complete training set. The frame-wise F-scores
are shown in Fig. 2. The models that are trained for every channel
separately perform much better than a single global model. Fur-
thermore, it can be seen that the classifier stacking that learns a
fusion strategy from the training data outperforms the heuristic ap-
proaches.

Literature comparison For comparison with the literature, only
the first twelve classes are used as foreground (cf. [14,16]). Re-
gression Forest (RF) were evaluated in combination with a multi-
channel fusion approach using this setup [16]. Note that only four
channels were used for evaluating the RF while the proposed ap-
proach is able to incorporate all 32 microphones. In contrast to
[16], a frame-based evaluation protocol is used in this paper. The
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set model SC max prod. vote stacking sorted (32) sorted (5)

separate global 10.7 ± 4.2% 8.5 ± 3.5% 9.3 ± 3.3% 9.5 ± 3.2% 7.6 ± 3.0% 7.2 ± 2.3% 7.1 ± 2.4%
channel-wise 12.2 ± 4.0% 9.2 ± 3.8% 9.4 ± 3.3% 9.8 ± 3.1% 10.0 ± 2.9% 9.5 ± 2.7% 8.4 ± 2.7%

mixed global 7.6 ± 3.2% 5.1 ± 1.3% 6.2 ± 1.7% 6.5 ± 1.7% 3.2 ± 0.9% 3.4 ± 1.0% 3.8 ± 1.1%
channel-wise 6.3 ± 2.6% 4.6 ± 1.6% 5.3 ± 1.8% 5.5 ± 1.7% 2.7 ± 1.0% 2.7 ± 0.9% 2.8 ± 0.8%

Table 2: Mean frame-wise classification error and its standard deviation over five splits of the position experiments. In ”separate”, the events
of the training and test set occur on different sides of the smart room, in ”mixed” on both.

global channel-specific
80

85

90

95

100

model

F-
Sc

or
e

[%
] SC

max
product
vote
stacking

Figure 3: Mean F-score [%] and the standard deviation over the five
splits of smart room recordings using different fusion strategies on
the dataset.

Acoustic Frame Error Rate (AFER) is calculated analogously to the
Acoustic Event Error Rate (AEER) [14], but with respect to the
frames1. The frame-wise results of [16] are calculated on the result-
ing sequences, that were kindly provided by the authors. The results
are shown in Tab. 1, reporting F-Scores, AEER (event-based error)
and AFER (frame-based error). Additionally the event-based re-
sults of the RF and the CLEAR evaluation [14] are shown in Tab. 1.
The CLEAR evaluation compared two different HMM and an SVM
approach for acoustic event detection on this setup using a single
microphone. The event-based results show that RFs achieve state of
the art results.

On a frame level the proposed approach yields similar perfor-
mance to the RF. The proposed classifier stacking shows the best
results with 25.6% AFER and 84.2% F-score. The performance
which is obtained using the stacking improves the results by a mar-
gin compared to the single-channel performance.

3.2. Smart room recordings

An additional set of acoustic events has been recorded in a smart
room at TU Dortmund University.2 The room is equipped with 32
microphones of which 16 are located at the table and the remain-
ing 16 are mounted at the ceiling. The acoustic events were located
at multiple positions in the room without any overlap. There is a
lot of structure-borne noise changing the characteristics of sounds
based on the microphones location. 19 sound categories have been
recorded: applause, chairs, cups, door, doorbell, doorknock, key-
board, knock, music, paper, phonering, phonevibration, pouring,
screen, speech, steps, streetnoise, touching, ventilator, and silence.
Following the approach proposed in [5], acoustic events that are
longer than five seconds were split into blocks of up to four sec-
onds.

1A similar evaluation has been proposed for the DCASE2016 challenge
referred to as a segment based metric.

2The dataset is publicly available as Multi-channel acoustic event dataset
at http://patrec.cs.tu-dortmund.de/cms/en/home/Resources/

General experiments For generating different training and test
sets five random splits were performed. Each split randomly selects
two thirds of the data from each class for training and the remaining
third for testing. For the stacking experiments the training data is
randomly divided in two thirds for training the single-channel mod-
els and classifiers and the other third for training the stacking classi-
fier. The sliding window is evaluated within the annotated four sec-
ond blocks. All classes are considered as foreground events, using
silence as background. The results are shown in Fig. 3. As for the
ITC-Irst experiments, the stacking approach outperforms the heuris-
tic fusion strategies. The best results are obtained using channel-
specific models and classifier stacking which yields a frame-wise
F-Score of 96.6 ± 0.7%. This is an improvement of 3.7% com-
pared to the mean results of the single-channel evaluation.

Position experiments The dataset contains a set of nine classes
occurring on multiple positions (applause, door, doorknock, key-
board, music, phonering, phonevibration, speech, and ventilator).
Here, the data has been recorded on different sides of the room (left
& right respectively). Again five splits have been computed. Each
split randomly selects the data of an acoustic event from the left
or right side for training and the other side for testing, and vice
versa. Hence, the robustness of the stacking classifier toward lo-
cation changes can be investigated. The classification results are
reported as the frame-wise classification error in Tab. 2. The clas-
sification error is used, because in this experiment all classes are
considered as foreground. For comparison, five mixed sets using
data from both sides for testing and training are also shown. As
expected, the proposed stacking approach works well if a diverse
set of training samples is provided. However, there is a drop in the
performance when the locations in the test differ from the training
set. This limitation can be overcome by sorting the input for the
stacking classifier. In Tab. 2 the results for all 32 and the first 5
microphones of the sorted setM (denoted as sorted (32) and sorted
(5) respectively) are shown (see eq. 10). Interestingly, the global
model seems more robust toward reducing the information covered
by the training set. This is probably due to the fact that multiple
event locations and all microphones at different postions are used
for training the model.

4. CONCLUSION

In this paper a multi-channel approach for acoustic event detec-
tion in sensor networks that builds on the Bag-of-Features principle
has been presented. It was shown that combining the information
from different channels allows for improving the performance of
the recognition system. A novel fusion strategy that uses classifier
stacking has been introduced which yields state-of-the-art results.
Sorting the ordering of the microphones according to the posterior
probability can overcome the requirement of having all locations in
the training set.
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ABSTRACT

In this paper, we propose a parallel Convolutional Neural Network
architecture for the task of classifying acoustic scenes and urban
sound scapes. A popular choice for input to a Convolutional Neu-
ral Network in audio classification problems are Mel-transformed
spectrograms. We, however, show in this paper that a Constant-
Q-transformed input improves results. Furthermore, we evaluated
critical parameters such as the number of necessary bands and filter
sizes in a Convolutional Neural Network. These are non-trivial in
audio tasks due to the different semantics of the two axes of the in-
put data: time vs. frequency. Finally, we propose a parallel (graph-
based) neural network architecture which captures relevant audio
characteristics both in time and in frequency. Our approach shows a
10.7 % relative improvement of the baseline system of the DCASE
2016 Acoustic Scenes Classification task [1].

Index Terms— Deep Learning, Constant-Q-Transform, Con-
volutional Neural Networks, Audio Event Classification

1. INTRODUCTION

Recent advances with Deep Learning approaches in image retrieval
have fueled the interest as well in audio-based tasks such as speech
recognition and music information retrieval. A particular sub-task
in the audio domain is the detection and classification of acous-
tic sound events and scenes, such as the recognition of urban city
sounds, vehicles, or life forms, such as birds.1 The IEEE AASP
Challenge DCASE 2016 is a benchmarking challenge for the “De-
tection and Classification of Acoustic Scenes and Events”. It com-
prises four tasks, which include acoustic scene classification in ur-
ban environments (task 1), sound event detection in synthetic and
real audio (tasks 2 and 3) and audio tagging of human activity in a
domestic environment (task 4). In this paper we focus particularly
on acoustic scene classification in urban environments (task 1). The
goal of this task is to classify test recordings into one of predefined
classes that characterizes the environment in which it was recorded,
for example “metro station”, “beach”, “bus”, etc. [1].

A popular choice for applying Deep Learning to audio is the use
of Convolutional Neural Networks (CNN). The apparent method is
to use an audio spectrogram (derived from the Fast Fourier Trans-
form and/or other transformations) as an input to a CNN and to
apply convolving filter kernels that extract patterns in 2D, similar as
being done for image analysis and object recognition. Yet, audio has
a fundamental difference to images: The two axes in a spectrogram

1http://www.imageclef.org/lifeclef/2016/bird

do not represent a spatial coherence of visual data, but exhibit two
completely different semantics: time and frequency. Approaches
have been reported applying convolutions directly on the wave form
(i.e. time domain) data, however with not fully satisfying success
so far [2]. Therefore, typically audio is transformed into the time-
frequency domain, with some (optional) further processing steps,
such as the Mel transform and/or a Log transform.

In an earlier publication related to our participation in the
MIREX benchmarking contest (“Music Information Retrieval Eval-
uation eXchange”) [3] we have shown the successful application
of Mel-spectrogram based Convolutional Neural Networks on mu-
sic/speech classification (discrimination) [4]. Our approach won the
MIREX 2015 music/speech classification task with 99.73 % accu-
racy.2 As our background is the recognition of semantic high-level
concepts in music (e.g. genre, or mood, c.f. [5, 6]), and Mel Fre-
quency Cepstral Coefficients (MFCCs) are used in both music and
speech recognition, the use of the Mel scale was an evident choice.

However, we realized in the course of developing a solution
for the task of classifying acoustic scenes from urban sounds that
an adaptation was necessary to cover activity in very low and very
high frequencies that may or may not be rhythmical. Our research
and experimentation led us to applying the Constant-Q-Transform
(CQT), which captures low and mid-to-low frequencies better than
the Mel scale. We also did a number of alterations in the archi-
tecture of the Convolutional Neural Network. Earlier research [7]
showed that a combination of a CNN that captures temporal infor-
mation and another one that captures timbral relations in the fre-
quency domain is a promising approach for music genre recogni-
tion, in which typically both tempo and timbre (e.g. particular in-
struments) play an important role. Again, this had to be adapted for
the task of audio scene classification.

In Section 2 we will give a brief overview of related work. Sec-
tion 3 describes the data set and the task’s challenge. Section 4
describes our method in detail, while Section 5 presents prelimi-
nary results. Finally, Section 6 summarizes the paper and provides
conclusions.

2. RELATED WORK

A variety of publications study the modeling of audio signals in time
and/or frequency domain for the purpose of acoustic scene recog-
nition and event detection. Mel-frequency Cepstral Coefficients
(MFCCs) typically model the frequency relations very well and are

2http://www.music-ir.org/mirex/wiki/2015:
Music/Speech_Classification_and_Detection_Results
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used frequently as part of an audio event detection system. How-
ever, MFCCs without any derivatives are not performing very well.
Only by including derivatives of first and second order the temporal
context is included to a certain extent [8]. The authors of [9] propose
to use the Matching Pursuit (MP) algorithm to supplement MFCC
features to yield higher accuracy. They demonstrate the effective-
ness of joint MP + MFCC features for unstructured environmental
sound classification, e.g. chirpings of insects and sounds of rain,
which are investigated for their temporal domain signatures. Cot-
ton and Ellis [10] propose an approach modeling acoustic events
directly describing temporal context. They use convolutive non-
negative matrix factorization (NMF) to discover spectro-temporal
patch bases, which correspond to event-like structures. Features
are derived from the activations of these patch bases. Mesaros et
al present a combination of MFCC features with a Hidden Markov
Models (HMM) based audio event detection system [11]. They test
it on a diverse set of 61 classes of isolated events (54 % accuracy)
as well as real life recordings (23.8 % avg. accuracy).

In 2013, the IEEE AASP Challenge “Detection and Classifi-
cation of Acoustic Scenes and Events” (DCASE) was organized
for the first time to help move forward the research in this do-
main [12, 13]. The dataset used in the acoustic scene classifica-
tion task comprised 10 classes of indoor and outdoor urban and of-
fice sounds, similar to the current one. The authors of [12] also
provide an overview of previous approaches in literature: The two
main methodologies are 1) the bag-of-frames approach using a set
of low-level features (e.g. MFCCs), modeling long-term statistical
distribution of the local features and 2) the use of an intermediate
representation that models the scene using higher level features that
are usually captured by a vocabulary of “acoustic atoms”, which
represent audio events that are learned in an unsupervised manner
from the data (e.g. by NMF). The authors also present a NMF-based
system for the event detection task, in which the constant-Q trans-
form (CQT) is used for the time-frequency representation, with a
log-frequency resolution of 60 bins per octave. The best performing
system in the DCASE 2013 office live event detection task [8] laid
the focus on spectro-temporal features and used a two-layer HMM.
The authors compare amplitude modulation spectrograms, Gabor
filterbank features and MFCCs and employ various noise reduction
/ signal enhancement strategies. The use of Gabor filters is moti-
vated by their similarity to spectro-temporal patterns of neurons in
the auditory cortex of mammals. Their proposed spectro-temporal
features achieve a better recognition accuracy than MFCCs. An-
other work that explores the temporal dynamics in the audio and
tackles the sensitivity of MFCCs to background noise is found in
[14]. The authors present a work on unsupervised feature learn-
ing for urban sound classification, employing the spherical k-means
algorithm for feature learning. It is shown that classification accu-
racy can be significantly improved by feature learning if the domain
specificities are taken into account – in this case capturing the tem-
poral dynamics of urban sound sources.

The authors of [15] use a framework of spectrogram image-
based SIF features and human auditory system modeling SAI fea-
tures (stabilized auditory image) in various configurations together
with Support Vector Machines (SVM) and Deep Neural Networks
(DNN). The DNN uses 5 to 6 fully connected layers with 100 to 300
hidden units each and is shown to perform better than the SVM. A
comparison is done to a range of other systems on various noise
levels. One finding is that the SIF features used in conjunction with
DNN incorporate additional temporal context being advantageous
for classification in noisy environments.

3. DATA SET

For both the development and the evaluation of the system we de-
scribe in Section 4 we used the TUT Acoustic scenes 2016 dataset
provided by the DCASE 2016 organizers for task 1 on Acous-
tic scene classification [1]. The goal of this task is to classify a
recording into one of 15 different classes that represent urban and
some non-urban environments. The 15 classes are: beach, bus,
cafe/restaurant, car, city center, forest path, grocery store, home,
library, metro station, office, park, residential area, train and tram.
In this task 1, individual train and test files are exclusively labeled
with one class.

The sounds were recorded from different locations (mostly in
Finland) and use 44.1 kHz sampling rate and a 24 bit resolution.
For each location, a 3-5 minute long audio recording was captured.
The original recordings were then split into 30-second segments for
the challenge. This imposes the need for particular attention when
doing train/test set splits or cross-validation: one needs to make sure
that recordings from the same location are not to be found in differ-
ent sets, as it introduces a beneficial bias. Thus, the task organizers
made sure that all segments from the same original recording are
included in a single subset – either development dataset or evalua-
tion dataset. They also provide a 4-fold cross-validation setup for
the development set which ensures this correct splitting.

For each acoustic scene, 78 segments (39 minutes of audio)
were included in the development dataset and 26 segments (13 min-
utes of audio) were kept for evaluation. The development set con-
tains 1170 30-sec segments (in total 9h 45mins of audio), and the
evaluation set 390 30-sec segments (3h 15mins).

Full annotations for the development set were available, but no
annotations for the evaluation set, as the task was still open at the
time of this writing. We therefore exclusively used the development
set of this data set to create, improve and evaluate our methodology
for acoustic scene classification described in the next section, using
the 4-fold cross-validation splits provided by the organizers.

4. METHOD

For the task of acoustic scene classification we use Convolutional
Neural Networks, which we trained on CQT-transformed audio in-
put. We describe these two parts in more detail.

4.1. Audio Preprocessing: CQT

Before being input to the neural network, a few preprocessing steps
are carried out on the original audio which are depicted in Figure 1.
First of all, a stereo audio signal is transformed to mono by averag-
ing the two channels. Then, we apply the Constant-Q-Transform.
The Constant-Q-Transform (CQT) is a time-frequency representa-
tion where the frequency bins are geometrically spaced and the so
called Q-factors (ratios of the center frequencies to bandwidths) of
all bins are equal [16]. The CQT is essentially a wavelet transform,
which means that the frequency resolution is better for low frequen-
cies and the time resolution is better for high frequencies. The CQT
is motivated from both musical and perceptual viewpoints: The hu-
man auditory system is approximately “constant Q” in most of the

Audio File Mono CQT Log NN

Figure 1: Preprocessing of audio before input to CNN
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audible frequency range, and also the fundamental frequencies of
the tones in Western music are geometrically spaced along the stan-
dard 12-tone scale [16]. Thus, the CQT typically captures 84 bands
covering 7 octaves of 12 semi-tones each, however, it allows to set
a different number of bands and also a higher number of bands per
octave. In our approach, we use a total number of 80 bands, with the
standard setting of 12 bands per octave, meaning that the 4 highest
bands will be cut off. We use a hop length of 512 samples (simi-
lar as it is typically used when a fast Fourier transform is applied
on 1024 samples long windows to calculate a spectrogram), i.e. a
CQT is computed every 512 samples (11.6 milliseconds). Follow-
ing the CQT, we perform a Log10 transform of all values derived
from the CQT. This process is performed on chunks, or segments,
of 41472 samples length (0.94 seconds), resulting in 82 CQT frames
(analogously to FFT frames). The idea is to process a multitude of
short-term segments from an audio example to be learned by the
neural network. In this case, a 30 second input file results in 31
CQT excerpts of shape 80 bands × 82 frames.

4.2. Convolutional Neural Network
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Figure 2: CNN architecture

Following [7] we created a parallel CNN architecture, which
comprises a CNN Layer which is optimized for processing and rec-
ognizing relations in frequency domain, and a parallel one which is
aimed at capturing temporal relations (c.f. Figure 2). Both parts of
the CNN architecture use the same input, i.e. the 80 bands × 82
frames CQT matrix as output of step 1 described in Subsection 4.1.
In each epoch of the training, multiple training examples, sampled
from the segment-wise CQT extraction of all files in the training
set, are presented to both pipelines of the neural network. Both
CNN layers are followed by a Max Pooling layer, which performs
a sub-sampling of the matrices that are output after applying the
CNN’s filter kernels. We describe this in more detail: In a Convo-
lutional Neural Network, weights are essentially learned in a filter
kernel of a particular shape. Multiple of such filter kernels – in our
approach 32 in each pipeline – are applied to the input data, by con-
volving over the input image. Convolution means multiplication of
the filter kernel with an equal sized portion of the input image. This
filter kernel window is then moved sequentially over the input data
(typically from left to right, top to bottom), producing an output of
either equal size (when padding is used at the borders), or reduced
by filter-length - 1 on each axis (when no padding is used, and the
filter kernel is kept inside the borders of the input).

The particularity of this process is that the weights that are
stored in each filter kernel are shared among the “input units” re-
gardless of their input location. The filter weights are updated after
each training epoch using back-propagation. Thus, by convolving
over the input data, the filter kernels learn characteristic structures

of the input data. The subsequent Max Pooling step serves as a data
aggregation and reduction step. The pooling length in each direc-
tion determines how many “pixels” are aggregated together in the
output. Max pooling thereby preserves only the maximum value
from the input within its pooling window. Note that Max Pooling is
applied to all 32 filter outputs (even though not visible in Figure 2).

In our CNN architecture, depicted in Figure 2, we use two
pipelines of CNN Layer with 32 filter kernels each, following by
a Max Pooling on all of these filter kernels. The upper pipeline is
aimed at capturing frequency relations. Its filter kernel sizes are set
to 14×15 and the Max Pooling size to 1×17. This means that the
output of the filtering step is 32 matrices of shape 67×68, which
are then “pooled” to 32 matrices of shape 67×4, preserving more
information on the frequency axis than in time. On the contrary,
the lower pipeline uses filter sizes of 4×8 and pooling of 15×1,
aggregating on the frequency axis and therefore retaining more in-
formation on the time axis: Its output shape is 5×75 (32 times).

In the next step, the parallel architecture is merged into a single
pipeline, by flattening all the matrices from both previous pipelines,
concatenating them and feeding them into a dense (fully connected)
layer with 200 units. Note that the input to this layer is 20,576
weights (the flattened output of the two previous pipelines) and with
200 fully connected units (and one bias) this layer has 4,115,400 pa-
rameters. The complete network has 4,126,223 parameters, which
hints at the power of Convolutional Layers: to drastically reduce
the weights that are needed to make the network learn, through the
spatial weight sharing principle of the filter convolution approach.
Note, however, that setting the filter and pooling parameters is less
straight-forward than in image retrieval where typically quadratic
shapes are used for both the filter and the pooling shapes, due to the
different semantics of the two axes while in images the axes have
the same semantics. The parameters we described were found after
a larger set of experiments (not described in this paper).

Recently, a number of techniques have been presented that
make Deep Neural Networks generalize faster and better. One such
technique is Dropout: it can be applied to any layer and reduces
overfitting by dropping a percentage of random units at each weight
update [17, 18]. Dropping means that it disregards these units in
both input and output, so that they do not contribute to activation,
nor to any weight updates. In terms of activation of a unit’s output,
the traditional Sigmoid function has been widely replaced by the
ReLU: The Rectified Linear Unit simplifies and speeds up the learn-
ing process by using the activation function f(x) = max(0, x)
[19]. Due to its sparse activation (in a randomly initialized net-
work) only about 50% of hidden units are activated, which makes
the network generalize much faster [20]. The Leaky ReLU [21] is
an extension to the ReLU that does not completely cut off activation
for negative values, but allows for negative values close to zero to
pass through. It is defined by adding a coefficient α in f(x) = αx,
for x < 0, while keeping f(x) = x, for x ≥ 0 as for the ReLU.

In our architecture, we apply Leaky ReLU activation with
α = 0.3 in both Convolutional layers, and Sigmoid activation in the
dense layer. We apply a Dropout value of 0.1 to the fully connected
layer. The last layer is a so-called Softmax layer: It connects the
200 units of the preceding layer with as many units as the number
of output classes (15), and applies the Softmax function to guaran-
tee that the output activations to always sum up to 1 [20]. The output
from the Softmax layer can be thought of as a probability distribu-
tion and is typically used for single-label classification problems.
All layers are initialized with the Glorot uniform initialization [22].

For the experiments presented in Section 5 this CNN architec-
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ture was trained over 100 epochs with a constant learning rate of
0.02. The model is adapted in each epoch using Stochastic Gradi-
ent Descent (SGD) and a mini-batch-size of 40 instances.

The system is implemented in Python and using librosa for the
CQT-transform and Theano-based library Keras for Deep Learning.

5. RESULTS

5.1. Data set and Baseline

For our experimental results, we used exclusively the development
dataset that was provided by the DCASE 2016 Acoustic Scene Clas-
sification task organizers, which was described in Section 4.The
task organizers also provide a cross-validation setup for this devel-
opment dataset which consists of 4 folds distributing the 78 avail-
able segments based on location, to ensure that all files recorded
in same location are placed on the same side of the evaluation, in
order to prevent bias from recognizing the recording location.We
used the provided fold splits in order to make results comparable
to other work, including the baseline system that was also provided
by the task organizers. The baseline system is a GMM classifier
using MFCC audio features calculated using frames of 40 ms with
a Hamming window and 50 % overlap. 40 Mel bands are extracted
but only the first 20 coefficients are kept, plus delta and accelera-
tion coefficients (60 values in total). The system learns one acoustic
model per acoustic scene class (GMM with 32 components) and
performs the classification using a maximum likelihood classifica-
tion scheme (expectation maximization) [1]. The reported average
classification accuracy over 4 folds is 72.5 %.

5.2. Evaluation

As our system analyzes and predicts multiple audio segments per
input audio file, there are several ways to perform the final predic-
tion of an input instance:

Maximum Probability: The output probabilities of the Softmax
layer for the 15 classes are summed up for all segments be-
longing to the same input file. The predicted class is deter-
mined by the maximum probability among the classes from
the summed probabilities.

Majority Vote: Here, the predictions are made for each segment
processed from the audio file as input instance to the net-
work. The class of an audio segment is determined by the
maximum probability as output by the Softmax layer for this
segment instance. Then, a majority vote is taken on all pre-
dicted classes from all segments of the same input file. Ma-
jority vote determines the class that occurs most often.

In both cases, the resulting accuracy is determined by compar-
ing the file-based predictions to the groundtruth provided by the task
organizers. We present the result achieved by the system described
in Section 4 and compare the impact of different audio transforma-
tions as an input step to the CNN. Table 1 shows the results. The
Mel frequency transforms have been computing using a Fast Fourier
Transform (FFT) with a Hanning window of 1024 samples and 50 %
overlap. The segment size of the audio chunks has been chosen to
be equal to the one used for CQT, which results in 80 frames. The
FFT spectrogram frequency bands are transformed to Mel scale by
applying 40 or 80 Mel filters. Subsequently a Log10 transform is
applied. From the results table we see that the approach with 80

Mel filters performed only slightly better. Yet, we also see that us-
ing the CQT instead of the Mel-transform has a beneficial impact.
The best result is achieved with 80 CQT bands. It is 80.25 % ac-
curacy with the Maximum Probability strategy and 80.07 % with
Majority Vote. Applying the full standard CQT of 7 octaves with
12 semi-tones each performed worse. Extending the 12 semi-tones
to 18 bands per octave, with 126 CQT bands in total (covering the
same 7 octaves) did also not improve the results.

Transform Bands / Frames Amaxprob Amajvote

Mel 40×80 76.23% 75.62%
Mel 80×80 76.55% 76.38%
CQT 80×82 80.25% 80.07%
CQT 84×82 78.11% 77.59%
CQT 126×82 79.39% 79.14%

Table 1: Different input transformations to the parallel CNN

li ci tr pa fo gr re ca tr of be me bu ho ca

library 61 0 0 1 0 3 0 0 3 0 0 10 0 0 0

city_center 0 76 0 0 0 0 1 0 0 0 0 1 0 0 0

tram 0 0 70 1 0 1 0 3 2 0 0 0 1 0 0

park 5 0 0 35 0 0 26 0 0 0 7 1 2 2 0

forest_path 0 0 0 0 75 0 2 0 0 0 0 0 0 0 1

grocery_store 0 3 0 0 0 73 0 0 0 0 0 2 0 0 0

residential_area 0 3 0 20 7 0 48 0 0 0 0 0 0 0 0

car 0 0 3 0 0 0 0 75 0 0 0 0 0 0 0

train 0 0 11 3 0 0 2 0 51 0 0 1 9 0 1

office 0 0 0 0 0 0 0 0 0 68 0 0 0 10 0

beach 0 1 0 5 0 0 6 2 0 0 64 0 0 0 0

metro_station 6 0 0 5 0 0 0 0 0 0 0 66 0 1 0

bus 0 0 2 2 0 0 1 1 11 0 0 0 61 0 0

home 0 0 3 0 1 0 2 0 0 1 0 0 0 71 0

cafe/restaurant 0 0 0 0 0 20 0 0 1 0 0 3 3 6 45

Figure 3: Confusion Matrix of the best model of Table 1.

Next, we investigate the per-class accuracies by having a look
at the confusion matrix in Figure 3. It can be observed that the
best configuration of the proposed system excels for the classes city
center, forest path, grocery store, car and home with accuracies
ranging from 91% to 97.4%. The largest confusions are between
the classes residential area and park, cafe/restaurant and grocery
store as well as tram, train and bus.

6. SUMMARY

We have shown how we adapted a musically inspired Convolutional
Neural Network approach to recognize acoustic scenes from record-
ings of urban environments. The crucial adaptations were the uti-
lization of the Constant-Q-Transform to capture essential audio in-
formation from both low and high frequencies in sufficient resolu-
tion and the creation of a parallel CNN architecture which is capa-
ble of capturing both relations in time and frequency. The presented
Deep Neural Network architecture has shown a 10.7 % relative im-
provement over the baseline system provided by the DCASE 2016
Acoustic Scene Classification task organizers, achieving 80.25 %
on the same 4-fold cross-validation setup as provided. With a few
additional optimizations, described in our submission abstract [23],
our approach achieved 83.3 % accuracy on the evaluation set in the
challenge (rank 14 of 35). On the domestic audio tagging task,
our improved approach is the winning algorithm (rank 1 of 9) with
16.6 % equal error rate. We conclude that this system is capable of
detecting urban acoustic settings, yet there is ample room for im-
proving the system further.
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ABSTRACT
We propose a system for acoustic scene classification using pair-
wise decomposition with deep neural networks and dimensionality
reduction by multiscale kernel subspace learning. It is our contri-
bution to the Acoustic Scene Classification task of the IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE2016). The system classifies 15 different acoustic
scenes. First, auditory spectral features are extracted and fed into
15 binary deep multilayer perceptron neural networks (MLP). MLP
are trained with the ‘one-against-all’ paradigm to perform a pair-
wise decomposition. In a second stage, a large number of spectral,
cepstral, energy and voicing-related audio features are extracted.
Multiscale Gaussian kernels are then used in constructing optimal
linear combination of Gram matrices for multiple kernel subspace
learning. The reduced feature set is fed into a nearest-neighbour
classifier. Predictions from the two systems are then combined by a
threshold-based decision function. On the official development set
of the challenge, an accuracy of 81.4% is achieved.

Index Terms— Computational Acoustic Scene Analysis,
Acoustic Scene Classification, Multilayer Perceptron, Deep Neural
Networks, Multiscale Kernel Analysis

1. INTRODUCTION

Acoustic scene classisfication aims at recognising the acoustic
background and goes under the field of Computational Auditory
Scene Analysis (CASA) [1]. Acoustic scene analysis is a challeng-
ing task since a plethora of different overlapping sound sources are
composing the acoustic mark of a certain scene, making it a com-
plex combination of various acoustic events.

In the past years, we observed an increasing interest on intelli-
gent audio-based systems able to recognise an environment around
a device [2]. This has stimulated the research community to find
more robust and efficient methods ranging from unsupervised ap-
proaches such as acoustic novelty detection [3, 4] to supervised ap-
proaches such as acoustic scene classification and sound even de-
tection [5].

Several works on acoustic scene classification applied different
spectral, energy and voicing-related features, in conjunction with
neural networks [6]. A system for acoustic scene recognition is de-
scribed and evaluated in [7]. That system uses several audio features
and a nearest neighbour (NN) classifier. In [8], a system for acous-
tic scene classification is described. The approach relies on Sup-

port Vector Machines (SVM), embedded in a hierarchical or paral-
lel framework. In [9], the detection and classification of acoustic
events is evaluated by providing a testbed. In [10], it was shown
how, in the case of small amounts of training data, new acoustic
events can be learned by a system. In [11], large-scale acoustic
features are used in combination with SVM for the task of acoustic
scene analysis.

Acoustic scene classification is applicable in several fields such
as intelligent user interfaces [12], serious games [13], automotive
[14], and street routing [15], where the context can be recognised
using acoustic scene classification techniques.

In the scene classification task of the IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE2016), systems for acoustic scene recognition are com-
pared. The provided corpus is divided into a development set and a
non-public evaluation set. The dataset is categorised into 15 differ-
ent classes of acoustic scenes.

This contribution describes our investigated method for acous-
tic scene classification. From the recordings, auditory spectral fea-
tures and a large number of spectral, cepstral, energy and voicing-
related audio features are extracted. Fifteen binary deep MLP neural
networks are trained in a ‘one-against-all’ fashion to perform a pair-
wise decomposition instead of simply training a multi-class neural
network. In a second stage, multiscale Gaussian kernels are used
for multiple kernel suspace learning in order to decrease the dimen-
sionality of the feature space. The reduced feature set is fed into
a nearest-neighbour classifier. Finally, the predictions from the two
system are then combined with a threshold-based decision function.
To our best knowledge, little research focuses on multikernel sub-
space learning for CASA. Thus, we aim at filling this white spot
in the litterature in order to verify if this method can significantly
improve the generalisation abilities of a system for acoustic scene
classification.

On the official development set of the challenge, an accuracy
of 81.4 % is achieved. The employed database, audio features and
classification methods are described in Section 2. Experimental re-
sults are presented in Section 3, and conclusions are given in Sec-
tion 4.

2. METHODOLOGY

2.1. Database
For evaluation of our system, we employ the official dataset of the
IEEE AASP Challenge on Detection and Classification of Acoustic
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Scenes and Events [5]. Thereby, we use only the data of the scene
classification task. This dataset contains 30 s recordings of various
acoustic scenes, categorised into fifteen different classes. For each
of the fifteen classes, the database contains 39 minutes of recordings
in the development set, summing up to 9 hours and 45 minutes total
duration of the development set. In addition, for the challenge, the
systems were evaluated with a non-public test set containing similar
data. Sounds were recorded with a high-quality binaural recording
system, whereby the portability and subtlety of the system allowed
to obtain unobstructed everyday recordings with relative ease. Since
the recordings were performed with binaural microphones on the
ears of a person, the head-related transfer function (HRTF) of that
person is intrinsically incorporated.

2.2. Acoustic features

Auditory Spectral Features (ASF) [16, 17] are computed by apply-
ing the Short Time Fourier Transformation (STFT) using a frame
size of 40 ms and a frame step of 20 ms. Each STFT yields the
power spectrogram which is converted to the Mel-Frequency scale
using a filter-bank with 26 triangular filters obtaining the Mel spec-
trograms M40(n,m). Finally, to match the human perception of
loudness, a logarithmic representation is chosen:

M40
log(n,m) = log(M40(n,m) + 1.0). (1)

In addition, the positive first order differences D40(n,m) are cal-
culated from each Mel spectrogram as follows:

D40(n,m) = M40
log(n,m)−M40

log(n− 10,m), (2)

with n being the frame index, and k the frequency bin index. Fur-
thermore, the frame energy and the log frame energy are also in-
cluded as a feature leading to a total number of 56 features. The
features are extracted with our open-source audio feature extractor
openSMILE [18].

We separately consider the feature sets of the ‘emobase’ config-
uration [19]. These features are obtained by extracting the following
Low-Level Descriptors (LLDs): intensity, loudness, 12 MFCC, fun-
damental frequency (F0), probability of voicing, F0 envelope, 8 line
spectral frequencies, zero-crossing rate. Statistical functionals are
then applied to the LLDs and their first order differences. The fol-
lowing functionals have been used: max./min. value and respective
relative position within input, range, arithmetic mean, two linear
regression coefficients, and linear and quadratic error, standard de-
viation, skewness, kurtosis, quartile 1–3, and 3 inter-quartile ranges
resulting in a total of 988 features.

2.3. Pairwise Decomposition

Multi-class neural learning [20] can be implemented via several
paradigms. One of those is the so called ‘one-against-all’ paradigm.
It consists in decomposing an N -class pattern recognition problem
into a system of L > 1 neural networks. The L neural networks are
trained using a given data set with the assumption of using different
class lables. A decision function is usually applied to fuse the re-
sults of L neural networks and provide the final system prediction.
The ‘one-against-all’ modelling paradigm employs an ensamble of
L = N binary neural networks, ANNi, i = 1, ..., N , each with
one unit output layer Yi with output function fi (usually sigmoid
function) that provides fi(x̄) = 1 or 0 whether the input vector x̄
belongs to class i or does not belong to class i. In order to train
the i-th neural network ANNi, the training set Str is relabelled in

two sets, Str = Str
i ∪ S̄i

tr , where Str
i consists of all the refer-

ence patterns belonging to class i (labelled as ‘1’), and S̄i
tr consists

of all the reference patterns belonging to remaining other classes
(labelled as ‘0’). The decision module in this paradigm should be
designed to face the following three output scenarios: The first sce-
nario consists in obtaining fi = 1, and fj = 0 for all j given
i 6= j. The decision function D can be easily implemented as
D(x̄, f1, f2, ..., fL) = argmaxi=1,...,L(fi). The second scenario
consists in obtaining all fi = 0 for i = 1, ..., L. The third one
consists in having more than one neural networks output ‘1’. In
both last scenarios the system is uncertain and the decision func-
tion outputs the class label that corresponds to the neural network
that shows the largest output value by the activation function at the
output layer unit:

D(x̄, y1, y2, ..., yL) = argmaxi=1,...,L(yi), (3)

where yi is the output of the activation function used in the output
layer of the i-th neural network.

Since we used fully connected MLP feed-forward neural net-
works, we will refer to this approach as pairwise decomposition
with MLP (PDMLP).

In our final system we applied an enhanced decision function
that relies on an auxiliary system when the PDMLP is uncertain.
The adopted decision function is described in Section 2.5.

2.4. Auxiliary Systems

A system of N binary neural networks trained with ‘one-against-
all’ is indeed a more flexible system and allows for a better dis-
crimination of one class. However, it has one major drawback, the
system decision borders generated by theN binary neural networks
are suffering from overlapping or uncovering regions in a feature
space. In order to mitigate this drawback we introduced some aux-
iliary systems when the N binary neural networks are providing
uncertain outputs. We applied three different auxiliary system: se-
lected ‘one-against-one’ (OAO) classification, SVM, and Multiple
kernel leaning.

2.4.1. Selected ‘one-against-one’
A first auxiliary system decomposes an N -class pattern classifica-
tion problem into N(N − 1)/2 two-class classification problems
using the OAO paradigm. Let’s define the N(N − 1)/2 two-class
neural networks as ANNk(i, j), with 1 ≤ k ≤ L = N(N − 1)/2.
AnANNk(i, j) represents a neural network trained to discriminate
class i from class j , for 1 ≤ i < j ≤ N . AnANNk(i, j) is trained
with reference patterns of class i and j, and its output, fk(i, j), is
indicating whether the input pattern x̄ is either class i or j. In our
case, we refer to selected OAO (sOAO) since we just use as an aux-
iliary system the binary classifier ¯ANNk(i, j) where i and j are
the two more likely classes resulting from the output of the PDMLP
in Section 2.3.

2.4.2. Support Vector Machines
As a second auxiliary system we applied the traditional SVM ap-
proach trained on the high dimensional feature set ‘emobase’.

SVMs have shown to achieve good performances for the task
of acoustic scene analysis [10, 11], and are used in this contribution
as a comparison to a state-of-the-art method.

2.4.3. Multiple Kernel Learning
The third auxiliary system is based on MultiScale-Kernel Fisher
Discriminant Analysis (MSKFDA). This methods was recently
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proven to be effective in solving emotion recognition in speech [21].
To our best knowledge, little research focuses on multiscale repre-
sentation in CASA and we believe that this method for subspace
learning may significantly improve the generalisation of the system
by learning more robust features. This method benefits from alter-
natively optimising two variables, namely the kernelised mapping
directions and a nonnegative linear combination for kernels with
different scaling parameters.

The research of MSKFDA provides the possibility of solving
multiscale analysis of acoustic scene factors. For Gaussian kernels,
it is easy to draw the multiscale case by regulating scaling parame-
ters. The kernel transforming between samples xi and x is shown
in Eq. (4), with the parameters σm > 0, m = 1, 2, . . . ,M and
i = 1, 2, . . . , N :

(Ωxi)m = φT
m(xi)φm(x) = e

− (xi−x)
2

σ2m , (4)

where Ωxi is the multiple kernel coordinate matrix, and φm(x) is
the high dimensional form of x. Kernel methods are originally rep-
resented as high-dimensional space by adopting inner product forms
in RKHS. However, it can be also assumed that kernel methods
bring a dimension-limited feature transformation in graph embed-
ding. This transformation constructs a new feature space for each
sample by kernel functions and training samples. Thus, the rela-
tionship between a given sample and each training sample leads to
the new features. Then, the scales of kernels are mainly determined
by the parameters of respective kernels.

As is shown in Figure 1, for sample x, the original features x
are transformed into new features Ωxβ by linearly combining mul-
tiscale kernels, where β ∈ <M×1 is the column vector with corre-
sponding elements βm ≥ 0 for kernelm. Then, for the new features
of x, the dimensionality-reduced sample can be achieved by using
AT Ωxβ in bilateral ways, where A contains the kernel mappings.
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Figure 1: Schematic diagram of learning multiscale kernels. The
original features x are transformed into new features Ωxβ by lin-
early combining multiscale kernels.

High-dimensional acoustic features inevitably include much in-
terference resulting from the factors of background environment
sound, speakers, etc., in spite of state-of-the-art feature acquisition
ways. Therefore, CASA systems would benefit from the suggested
novel feature reduction method in combination with the embedding
graphs of FDA and multiple kernel learning. In addition, few pa-
rameters need to be regulated in FDA. For these reasons, we utilise
MSKFDA as an auxiliary tool in order to obtain better performance
as second stage of our algorithm.

2.5. Decision Functions

In our final system, the decision function is obtained by first apply-
ing a threshold to the output activations of a PDMLP. If the number
of outputs above the threshold is 1, then the predicted class is the
one corresponding to the neural network that generated that output.
Otherwise, if more outputs are above the threshold or none of the
outputs are above the threshold we only rely on the auxiliary sys-
tem predicted class. The value of threshold is set to 0.3 and was
optimised on the development set.

3. EXPERIMENTS

This section contains the experimental setup and the evaluation of
different approaches on the development set of DCASE.

3.1. Setup

In the fifteen binary classifiers composing the PDMLP system, MLP
were trained on 100 parallel sequences per batch, using Stochastic
Gradient Descent with Adam by applying a fixed learning rate of
0.001 and a binary cross-entropy objective function. We used recti-
fied linear units as activation function. Weights were initialized with
Gaussian normal distribution (σ = 0.1, µ = 0). For better general-
ization, the networks were trained using early stopping on the cor-
responding test set per each fold. Furthermore, the early stopping
criterion was applied considering the sum of all validation errors at
each epoch of each network. In this way, we first reduced the train-
ing time by a factor of 3 and we also avoided potential overfitting.
The training procedure stopped after a maximum number of 1000
epochs. The ‘selected OAO’ auxiliary networks were trained in the
same fashion. In order to compare the proposed approaches with
state-of-the-art methods, we also evaluated traditional multi-class
MLP with exactly the same training algorithm and parameters, ex-
cept that we used a multi-class cross entropy error as objective func-
tion. All networks were trained using Theano [22] and Lasagne1.
We also evaluated SVM with a linear kernel and complexity value
C = 0.001, 0.01, 0.1, 1.0, 10.0. SVM are trained with the sequen-
tial minimal optimisation (SMO) algorithm using the training data.
The parameters in the MSKFDA are set as follows. The number
of scales is set as M = 21, with the Gaussian scaling parameters
σm (m = 1, 2, . . . ,M ) selected as 0.0001n, 0.0003n, 0.0005n,
0.0007n, 0.001n, 0.003n, 0.005n, 0.007n, 0.01n, 0.03n, 0.05n,
0.07n, 0.1n, 0.3n, 0.5n, 0.7n, n, 3n, 5n, 7n, and 10n, respec-
tively, where n is the number of original features. We employ
openSMILE’s ‘emobase’ feature set which results in n = 988 here.
The dimensions d of the dimensionality-reduced feature space are
selected no larger than 21. The number of iterations is set as 7. A
Nearest-Neighbour classifier is selected as the final decision maker.

3.2. Results

We first tested traditional multi-class approaches by using SVM
and MLP in order to compare the performance of PDMLP with
state-of-the-art methods. Table 1 reports performances on the de-
velopment set using the 4-fold cross validation as specified in the
challenge baseline. By applying PDMLP, we can observe an abso-
lute improvement of 7% accuracy over the baseline of the DCASE
challenge [5]. SVMs perform slightly better than the baseline with
up to 74% accuracy (best performance obtained with C = 0.1).

1https://lasagne.readthedocs.io
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Table 1: Comparison of performances between traditional multi-
class systems and the proposed method with 15 binary classifiers
(PDMLP). Multi-class classifiers: Gaussian Mixture Models (Base-
line), Support Vector Machines (SVM), and Multi Layer Perceptron
(MLP). For neural networks, the layout is indicated in parenthesis
(number of units× number of layers). Results are given in terms of
accuracy [%].

Method Fold1 Fold2 Fold3 Fold4 Mean
Baseline [5] 67.2 68.9 72.2 81.9 72.5
SVM 72.2 73.9 77.1 72.4 74.0
MSKFDA 76.8 73.7 79.5 79.7 77.5
MLP (54x3) 78.5 70.8 77.7 75.9 75.9
MLP (256x3) 78.6 77.7 76.2 77.1 77.4
PDMLP (54x3) 82.6 76.9 77.5 77.0 78.5
PDMLP (256x3) 81.4 78.2 77.5 80.8 79.5

Table 2: Combination of the PDMLP system with different auxil-
iary systems. Best accuracy (%) obtained on the development set
with 4-fold cross validation. Auxiliary systems: Support Vector
Machines (SVM), selected ‘one-against-one’ classifier (sOAO), and
MultiScale-Kernel Fisher Discriminant Analysis (MSKFDA) with
nearest-neighbours. Results are given in terms of accuracy [%].

Folds
Method 1 2 3 4 Mean
PDMLP 81.4 78.2 77.5 80.8 79.5
PDMLP-SVM 79.4 75.8 78.6 80.0 78.4
PDMLP-sOAO 81.9 80.4 75.8 81.2 80.8
PDMLP-MSKFDA 81.5 79.8 81.5 82.9 81.4

MSKFDA performs significantly better than SVM with an auccu-
racy of 77.5%, corroborating our assumption that multikernel sub-
space learning is effective for acoustic scene classification. Multi-
class MLP are evaluated using different layouts. For simplicity, we
only report the best results obtained with three hidden layers com-
posed by 54 units and 256 units. We can observe that, increasing
the dimension of the hidden layer to 256 units brings better perfor-
mances up to 77.4% accuracy, however, no more improvement was
observed by further augmenting the dimensionality of the hidden
layer. The same layout (256-256-256) also brought about an in-
crease in performance in the PDMLP method of up to 79.5% accu-
racy. We kept this layout for the PDMLP as final first stage system
and applied the auxiliary systems by adopting the enhanced deci-
sion function described in Section 2.5.

Table 2 shows the results obtained from the fusion with SVM,
sOAO and MSKFDA. We observe that the combination with SVM
is not fruitful and led to a decrease in performance down to 78.4%
accuracy. However, combining PDMLP and sOAO seems to in-
crease performances up to 80.8% with an absolute improvement of
1.3% accuracy. Further improvement is observed with the com-
bination of PDMLP and MSKFDA up to 81.4% with an absolute
improvement of 8.9% accuracy over the challenge baseline.

Table 3 shows the confusion matrix for the best-performing sys-
tem, using PDMLP and MSKFDA. Some classes (office, car) are
recognised with high accuracy, while for others (park, restaurant,

train), low scores are obtained. Most confusions are made between
the classes park and residential area or city and train. The record-
ings of the classes park and residential area are partly very similar.

Summing up, we believe that such a system is more robust to
variation since it relies on two generalised system. In fact, PDMLP
can be considered already a very flexible system given that it was
tailored to discriminate one class against the rest. Additionally, we
carefully trained the 15 MLP considering the overall validation er-
ror, avoiding individual training and subsequent overfitting. Fur-
thermore, by selecting MSKFDA as auxiliary system we relied on
another well-generalised model trained on a reduced and rubust fea-
ture set obtained via multi kernel subspace learning.

Table 3: Confusion Matrix of the development data for the proposed
system, achieving an accuracy of 81.4 %.
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beach 62 0 0 0 4 0 0 0 0 0 0 7 4 0 1
bus 0 68 0 6 0 0 0 0 0 0 0 0 0 2 2
cafe/rest. 0 0 59 0 0 0 6 2 0 7 0 1 0 0 3
car 0 4 0 71 0 0 0 0 0 0 0 0 0 3 0
city 0 0 0 0 74 0 1 0 0 0 0 0 3 0 0
forest 1 0 0 0 0 73 0 1 0 0 0 1 2 0 0
grocery 2 0 9 0 0 0 56 0 0 11 0 0 0 0 0
home 5 0 1 0 0 1 0 67 2 0 1 1 0 0 0
library 0 0 3 0 0 0 2 0 71 0 0 0 0 2 0
metro st. 0 0 0 0 0 0 3 5 0 70 0 0 0 0 0
office 0 0 0 0 0 0 0 0 5 0 73 0 0 0 0
park 4 0 0 0 2 1 0 0 4 0 0 47 20 0 0
res. area 2 0 0 0 1 4 0 0 1 0 1 15 54 0 0
train 0 9 6 0 15 0 1 0 1 0 0 0 0 39 7
tram 0 1 0 0 2 0 5 0 0 0 0 0 0 1 69

4. CONCLUSIONS

We presented and evaluated a system for acoustic scene classifica-
tion. Combining pairwise decomposition with deep neural networks
and dimensionality reduction by multiscale kernels, an accuracy of
81.4 % is obtained on the development set of the D-CASE chal-
lenge. A comparison with stat-of-the-art approaches showed that
the pairwise decomposition can alone bring a significant (one-tailed
z-test [23], p<0.001) improvement. Furthermore, we found that a
dimensionality reduction via multiple kernel learning is also effec-
tive and outperforms the baseline significantly. The two methods
seems to be complementary and thus – if combined – they provide a
more robust system. Some acoustic scenes (park, restaurant, train,
city) are difficult to recognise due to the high variability in the class
and the similarity between the different classes. In future works, we
will focus on new acoustic features and enhanced decision functions
for the late fusion stage.
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ABSTRACT 

This paper presents a system for acoustic scene classification 
(ASC) that is applied to data of the ASC task of the DCASE’16 
challenge (Task 1). The proposed method is based on extracting 
acoustic features that employ a relatively long temporal context, 
i.e., amplitude modulation filer bank (AMFB) features, prior to 
detection of acoustic scenes using a neural network (NN) based 
classification approach. Recurrent neural networks (RNN) are 
well suited to model long-term acoustic dependencies that are 
known to encode important information for ASC tasks. However, 
RNNs require a relatively large amount of training data in com-
parison to feed-forward deep neural networks (DNNs). Hence, 
the time-delay neural network (TDNN) approach is used in the 
present work that enables analysis of long contextual infor-
mation similar to RNNs but with training efforts comparable to 
conventional DNNs. The proposed ASC system attains a recog-
nition accuracy of 76.5 % on the development set, which is 4.0 % 
higher compared to the DCASE’16 baseline system. 

 
Index Terms— Time-delay neural networks, acoustic scene 

classification, DCASE, amplitude modulation filter bank fea-
tures.1 

1. INTRODUCTION 

Machine listening for automatic scene classification (ASC) be-
comes increasingly popular, e.g., as reflected by a past ASC chal-
lenge that compared research results of many international re-
search teams [1]. Devices like hearing-aids, smart-phones, and 
robotic platforms are equipped with microphones and applica-
tions analyzing the acoustical environment, e.g., to allow for 
switching parameters of signal processing schemes [2,3]. Hence, 
in many situations it is of interest to know the environment in 
which an electronic device is used, e.g., to distinguish acoustic 
conditions of a conference room, cafeteria or subway. ASC algo-
rithms aim at classifying the surrounding environment automati-
cally by identifying acoustic events and sound characteristics that 
are specific for the environment. In contrast to acoustic event 
detection (AED) [4,5,6], individual events are of minor interest 

                                                                 
1 This work was funded in parts by the European Commis-

sion (project EcoShopping, project no.609180) and the Federal 
Ministry for Education and Research (BMBF), project ACME 
4.0, FKZ 16ES0469). 

and since acoustic scenes do not change rapidly, constraints on 
temporal resolution for ASC are more relaxed than for AED and 
often comprise lengths of 30 seconds [1,7,8] up to 3 minutes [9]. 

Different approaches have been proposed for the purpose of 
automatic ASC such as the use of a bag-of frames approach [9], 
for which a Gaussian mixture model (GMM) in combination with 
Mel-frequency cepstral coefficients (MFCCs) are adopted. This 
approach has established itself in the field of scene classification 
and till today is still accepted as a reasonable baseline system for 
the DCASE challenges 2013 [1] and 2016 [7], though most of the 
systems in the DCASE’13 challenge could outperform the base-
line results. Proposed features within DCASE’13 ranged from 
standard features such as MFCCs [10,11] and low-level features 
like energy, spectral flux etc. [12,13] over cochleograms [14] to 
histogram of gradients (HOG) features [8] and Gabor filter bank 
(GFB) features [15] that both have been derived from computer 
vision. Most back-end classifiers used for the DCASE’13 chal-
lenge were based on support vector machines (SVM) 
[16,12,14,8,11].  

In a recent publication [17], the idea of using HOG features 
was revisited and improved by using them in conjunction with 
the subband power distribution (SPD). Other common approach-
es for ASC apply non-negative matrix factorization (NMF) to 
spectrograms to decompose features before classification [18,19].  

In this contribution, we propose the use of amplitude modu-
lation filter bank (AMFB) features [20] in combination with a 
neural network (NN) based classifier for the task of ASC. AMFB 
features analyze temporal amplitude fluctuations of static MFCCs 
within modulation frequency subbands. In combination with 
GMM and deep neural network (DNN) based systems, AMFB 
features have demonstrated to outperform numerous other com-
mon feature extraction methods in automatic speech recognition 
(ASR) [21,20,22]. In addition to AMFB features, spectral flux, 
spectral centroid, and spectral entropy features are calculated and 
appended. 

DNNs are well established in, e.g., ASR [23,24] and have 
recently received increased attention also in the field of AED 
[25,26]. In ASR and AED, DNNs have proven to outperform 
conventional GMM-HMM approaches [27,25] and NMF-based 
features [26] under the constrained of availability of sufficient 
training data. Hence, DNNs may also be well suited for acoustic 
ASC, since ASC corpora mostly comprise several hours of data, 
e.g., the LITIS Rouen dataset [8] that comprises 25 hours of ur-
ban sound scenes, which is necessary to train a reasonable NN-
based system. 

Here, we report on our work on the DCASE’16 challenge 
and results are shown using a time-delay neural network (TDNN) 
architecture [28] that relies on AMFB features as an input for the 
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Task 1 of the DCASE’16 challenge, which comprises less than 
10 hours of recordings [7]. Results are compared to the 
DCASE’16 baseline system that applies GMM acoustic models 
in combination with MFCC features. 

2. METHODS 

2.1. Extraction of Amplitude Modulation Filter Bank Fea-
tures 

The acoustic feature extraction scheme employs the amplitude 
modulation filter bank (AMFB) to decompose short-term spectral 
features into AM frequency components [20]. Signal processing 
steps are depicted in Fig. 1. The short-term spectral representa-
tion Yk (l) for block l is calculated by applying a discrete Fourier 
transform (DFT) on audio segments of 25 ms length with a hop 
size of 10 ms. Segments are windowed by the Hann function 
wb (n) to minimize the spectral leakage effect. 
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In (1) and (2), n, k, b, and N represent the discrete time and 
frequency indices, the analysis window length, and the DFT 
length, respectively. 

The magnitude of the complex valued spectrum Yk (l) is 
passed to the triangular-shaped Mel filters Fk,m that integrate DFT 
bins into M = 40 critical spectral bands. Mel-spectral energies are 
compressed using a logarithmic function, whereby the log-Mel-
spectrogram Ŷm (l) is derived for each Mel band m. 
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Log-Mel-spectral energies are analyzed by a discrete cosine 
transform (DCT), which leads to the cepstrogram Ỹc (l) with C 
being the DCT length. 
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Temporal dynamics of the cepstrogram are analyzed using 
the AMFB. The AMFB consists of I complex exponential func-
tions qi (l0), that are windowed by the zero-phase Hann envelope 
Wi (l0). 
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Bi determines the AM filter length with the sampling period T. 
Ωi and βi are the angular AM frequency and the -3 dB AM filter 
bandwidth, respectively. Convolution of qi (l0) and Ỹc (l0) yields 
the AM frequency decomposition of the cepstrum. 

( ) ( )( ),ic c iQ l Y q l= ∗  (8) 

Center frequency (CF) and bandwidth (BW) settings of the 
employed AM filters are presented in Table 1, which are derived 
by an ASR study on finding optimal AMFB parameters using 
different ASR corpora [22]. The last step of AMFB feature ex-
traction is the concatenation of real and imaginary AM filter 
outputs to form a feature vector. Note that the imaginary part of 
the DC filter is zero, and thus is not taken into account. 

2.2. Other Features 

Spectral flux, spectral centroid, and spectral entropy features are 
derived according to Eq. 9-11 and appended to AMFB features. 
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These three feature types are used to measure the spectral 
“center of mass”, the spectral “rate of change”, and the spectral 
“complexity” [12,13]. 

2.3. Classification 

Extracted features are fed into a time-delay neural network 
(TDNN) to extract further acoustic cues and to perform the clas-
sification task. The TDNN differs from a conventional DNN by 
the multi-splicing concept that enables an efficient way of mod-
elling a large temporal context [28,29]. Multi-splicing denotes a 
method by which feature frames and intermediate DNN-layer 

Fig. 1. Signal processing scheme to extract amplitude modula-
tion filter bank features. 

Table 1. Center frequency (CF) and bandwidth (BW) parameters 
of the amplitude modulation filter bank. 

i 0 1 2 3 4 
CF [Hz] 0 5.5 10.15 15.91 27.03 
BW [Hz] 8.25 5.5 6.13 8.27 19.52 
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outputs are time-delayed and stacked to form the input to an 
upstream neural network (NN) layer. Splicing configurations per 
NN-layer are presented in Table 2. For example, the splicing 
notation [-6, 0, 4] in the first NN-layer denotes that the current 
frame minus six, the current frame itself, and the current frame 
plus 4 are spliced together by stacking input feature frames. We 
do not splice consecutive frames in the first layer, since AMFB 
features are used as input that already capture a temporal context 
of +/- 13 time frames and, thus, consecutive AMFB feature 
frames have highly overlapping filter functions and a high re-
dundancy, respectively. The same principle applies to outputs of 
deeper NN-layers that capture an increasing temporal context 
due to the previous splicing stages. In total the TDNN captures 
feature frames ranging from -92 to +90, which corresponds with 
the feature frame rate of 100 Hz to a total temporal context of 
approx. 1.8 seconds. 

The TDNN training is based on the greedy layer-wise su-
pervised training [30] and the layer-wise backpropagation algo-
rithm [27], respectively. As nonlinear activation units we are 
using the p-norm function that effect a dimension reduction of 
NN-layer outputs that each consist of 576 neurons in our setup. 
For example, for a group of G neurons xi the p-norm output y is 
being computed by Eq. 12 with p = 2 and G = 6. 

1

1

pG
p

ip
i

y x x
=

 = =  
 
  (12) 

Thus, the output of each NN-layer is reduced from 576 to 
96. The final TDNN output layer has 15 neurons representing 
the 15 acoustic scenes that need to be discriminated. 

3. EXPERIEMNTAL SETUP 

For evaluating the algorithms, the database provided within the 
DCASE’16 challenge is used [7]. It consists of 15 scene classes: 
lakeside beach, bus, cafe/restaurant, car, city center, forest path, 
grocery store, home, library, metro station, office, urban park, 
residential area, train, and tram. Each scene is composed of 39 
minutes of stereo recordings at 44.1 kHz sampling frequency 
that are trimmed to 30 second files. The data is divided into four 
disjoint sets to conduct a four-fold cross-validation, where all 
files belonging to one specific time/location are part of one set.  

Evaluation is conducted file-wise applying the accuracy 
measure, i.e., the number of correctly classified files in ratio to 
the total number of files. 

4. RESULTS 

In order to artificially augment the number of training frames the 
left and right channel of the stereo audio data is used in addition 
to the mean of both channels. In the testing phase the TDNN 
output for each of these three audio tracks is computed and the 
detected acoustic scene within an audio test file is based on a 
majority vote across frames and audio tracks. Note that prior to 
feature extraction we resampled data of the DCASE’16 challenge 
to 16 kHz. 

Results of the proposed method and the DCASE’16 baseline 
system are presented in Table 3. On the cross-validation devel-
opment set, the average improvement of the TDNN system 
amounts 4 % compared to the baseline. Particular strength can be 
noted for the environments beach, car, forest path, grocery store, 
library, park, residential area, and train. A decreased perfor-
mance is found for the environments bus, café/restaurant, home, 
metro station, and office. Fig. 2 depicts the confusion matrix of 
the proposed classification system. It shows that some environ-
ments with relatively low recognition rates, i.e., café/restaurant, 
bus, library, park, and train, are mostly confused with similar or 
related environments such as café/restaurant > grocery store, 
bus > tram/train, library > home, park > residential area, and 
train > tram/bus. 

Scene classification results of the evaluation test data are 
shown in Table 3. The average recognition score of the proposed 
TDNN system constitutes 79.0 %, which is 1.8 % higher com-
pared to the baseline results. Whereas in most acoustic scenes the 
TDNN system scored significantly better or with comparable 

Table 3. Acoustic scene classification results of the DCASE’16 
baseline system and the proposed TDNN-based system. 

 Hit Rates [%] 

 
Development 

(Cross-Validation) 
Evaluation 

Environment Baseline 
Proposed 
Method 

Baseline 
Proposed 
Method 

Beach 69.3 79.5 84.6 88.5 

Bus 79.6 56.4 88.5 100.0 

Café/Restaurant 83.2 44.9 69.2 19.2 

Car 87.2 96.2 96.2 100.0 

City Center 85.5 88.5 80.8 92.3 

Forest Path 81.0 98.7 65.4 100.0 

Grocery Store 65.0 87.2 88.5 88.5 

Home 82.1 76.9 92.3 92.3 

Library 50.4 69.2 26.9 38.5 

Metro Station 94.7 79.5 100.0 80.8 

Office 98.6 76.9 96.2 100.0 

Park 13.9 56.4 53.8 61.5 

Residential Area 77.7 88.5 88.5 76.9 

Train 33.6 64.1 30.8 46.2 

Tram 85.4 84.6 96.2 100.0 

Average 72.5 76.5 77.2 79.0 
 

Table 2. Multi-splicing configuration of the TDNN system. 
Numbers in brackets indicate frame indices that are spliced 
together at each neural net layer. 

NN-Layer Input Context [Frames] 

1 [-6 ,0 ,4] 

2 [-12 ,0 ,12] 

3 [-24 ,0 ,24] 

4 [-50 ,0 ,50] 

5 [0] 
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accuracy as the baseline system, classification results of the ca-
fé/restaurant environment are clearly deteriorated. A closer in-
vestigation of why this acoustic scene has not been detected well 
enough is still pending. Possibly it has been confused with the 
grocery store (cf. Fig. 2), which exhibits similar acoustic condi-
tions and events. 

5. DISCUSSION AND CONCLUSIONS 

A time-delay neural network (TDNN) based acoustic scene clas-
sification approach is proposed that employs the amplitude mod-
ulation filter bank (AMFB) as well as spectral flux, centroid, and 
entropy features. The system aims at analyzing a relatively long 
temporal context to identify the acoustic environments. It is 
shown that the AMFB-TDNN system improves over a MFCC-
GMM baseline system by approximately 4.0 % and 1.8 % on the 
development and evaluation test data, respectively. Further im-
provements may be attained by additionally utilizing binaural 
cues of the stereo DCASE’16 data that is recorded using a mani-
kin head with in-ear microphones and by emphasizing other 
features such as iVectors, for example. 
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ABSTRACT
Sounds around us convey the context of daily life activities. There
are 360 million individuals [1] worldwide who experience some
form of deafness. For them, missing these contexts such as fire
alarm can not only be inconvenient but also life threatening. In this
paper, we explore a combination of different audio feature extrac-
tion algorithms that would aid in increasing the accuracy of identify-
ing environmental sounds and also reduce power consumption. We
also design a simple approach that alleviates some of the privacy
concerns, and evaluate the implemented real-time environmental
sound recognition system on Android mobile devices. Our solution
works in embedded mode where sound processing and recognition
are performed directly on a mobile device in a way that conserves
battery power. Sound signals were detected using standard devi-
ation of normalized power sequences. Multiple feature extraction
techniques like zero crossing rate, Mel-frequency cepstral coeffi-
cient (MFCC), spectral flatness, and spectral centroid were applied
on the raw sound signal. Multi-layer perceptron classifier was used
to identify the sound. Experimental results show improvement over
state-of-the-art.

Index Terms— Environmental sound recognition, signal pro-
cessing, machine learning, Android OS

1. INTRODUCTION

Understanding or recognizing context of sounds in environmental
surroundings is very important in terms of making the next move
based on a sound that occurred. Examples include evacuating a
building on hearing a fire alarm or attending to a baby on hearing
the cries. Such activities depend on human hearing which intelli-
gently filters out sounds and quickly recognizes it thereby signaling
the brain to take the next step. According to the World Health Or-
ganization [1], over 360 million individuals worldwide suffer from
some form of disabling hearing loss. Deaf individuals can neither
hear sounds nor distinguish between many sounds. Such situations
could be life threatening at times and also inconvenient.

Providing access to sound in some other form of communica-
tion are in demand for its practical applications towards assisting
deaf individuals in their daily activities. Capturing, detecting, iden-
tifying sounds and alerting users in the form of visual notifications,
and vibrations is a concept known as Environmental sound recog-
nition. Although auditory recognition is an active research area
where extensive efforts have been made over fifty years, the focus
has largely been on recognizing human speech or music, and much
less efforts have been directed towards acoustic event recognition
[2, 3]. Over the past decade, environmental sound recognition has
become popular leading to a considerable amount of research.

Technology has progressed to a stage where a powerful compu-
tational device can be easily carried in your pocket. Therefore, one
of the emerging trends is the increased demand for sound recogni-
tion applications to be available on these portable devices. Despite
the existence of non-portable applications that are capable of acous-
tic environmental recognition, it decreases the practical application
of being able to move anywhere thereby hindering the freedom of
deaf individuals. Additionally, reproduction of non-portable sys-
tems is considered either not suitable or leads to low performance
on mobile devices [4, 5].

In this paper, we carry out investigations, experiments and pro-
pose a simple but effective approach to recognizing everyday en-
vironmental sounds using mobile devices, in particular on the An-
droid platform. Our goal is to notify the user about an acoustic event
that just occurred in the users surroundings.

Our main contribution is to deliver a real-time sound recogni-
tion system on Android devices following several principles. First,
the fundamental nature of our system is a sound processing system
and its key performance metric is the relative accuracy of correctly
recognized sounds. With systems which provide only conceptually
similar features [6], we managed to get similar and even a higher
level of accuracy. Second, we designed a battery friendly approach
and as a result of various tests, our application managed to be ap-
proximately two times more battery efficient than other similar ap-
plications. Third, it was proved that mobile devices were hardware
efficient by optimizing the computational resources. Fourth, our
sound recognition system is network independent indicating that it
will be always available. Fifth, the machine learning algorithm that
we used for the application has the capability to learn new types of
sounds and update the model on Android platform. Last, we provide
a simple design that alleviates privacy concerns over audio.

The rest of this paper is organized as follows. Section 2 moti-
vates the problem of classifying environmental sounds. Section 3
provides a system overview. Section 4 discusses the sound datasets
used in experiments. Section 5 describes our approach in designing
the sound recognition system and explains in detail about the system
functionality such as sound detection, feature extraction and classi-
fication techniques. Section 6 provides an evaluation of approaches
used in related work and our approach. Section 7 concludes the
research and proposes future work.

2. ACOUSTIC EVENT RECOGNITION OVERVIEW

Natural sounds (dog barking, rain, rooster, sea waves) and artifi-
cial sounds (helicopter, siren etc.,) that might be heard in a given
environment [2] are often referred to as acoustic events. Unlike
music signals, the characteristics of environmental sounds do not
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exhibit meaningful stationary patterns such as melody and rhythm
[7]. Moreover, acoustic events differ from human speech because
there is no existing sub-word dictionary for sounds in the same way
that is possible to decompose words into their constituent phonemes
[2]. Usually, environmental sound recognition systems have three
main components: acoustic events detection as they occur, process-
ing of these events in real-time by extracting useful information to
create an acoustic feature for classification and then the determina-
tion of the most suitable category for that event, based on training
carried out with similar samples [2].

3. SYSTEM OVERVIEW

Different mobile recognition system design choices were explored
in prior related works [4, 8]. For example, feature extraction and
sound recognition could be done directly on the phone and this
mode is called embedded sound recognition. Another architecture is
where both the feature extraction and recognition are done in cloud
which is synoymous with a back-end server. [8]. In addition, we can
have a combination of both approaches, distributed sound recogni-
tion, where the recognition is split across the mobile device and the
server.

In our case, due to the high requirement of system availabil-
ity we have decided to use the embedded mobile sound recognition
architecture where both feature extraction and recognition are im-
plemented on the mobile device alone. The main advantage of this
mode is that the application will work in conditions where there is
no Wi-Fi connection [4]. Mobile internet will not be sufficient since
we are using 44100 Hz and 16 bits per sample. Mathematically, it
is equivalent to 705600 bits per second which averages to 5 MB per
minute and that requires a lot of internet bandwidth.

Our system consists of two main deliverables: A desktop appli-
cation that considers a set of environmental sounds [10] as training
data and extracts features, then trains the model to classify sounds
based on the features and an Android application component that
loads the machine learning model generated by the desktop appli-
cation. The goal is to provide a single application that identifies
multiple sounds such that the user can use the application like a
baby monitor or a fire alarm alerter. To achieve this, the android
application first detects the sound activity in the environment and
captures the sound using a microphone, then extracts the features
from the captured sound. Finally, it classifies the sound into its cor-
respondent class using Multi-Layer Perceptron classifier.

4. SOUND DATASET

The dataset used in this paper is the ESC-10 [10] which represents
three general groups of sounds. It includes transient/percussive
sounds, sometimes with very meaningful temporal patterns (sneez-
ing, dog barking, clock ticking) and sound events with strong har-
monic content (crying baby, crowing rooster). Additionally, it also
contains more or less structured noise/soundscapes (rain, sea waves,
fire crackling, helicopter, chainsaw). This dataset was available un-
der a Creative Commons non-commercial license through the Har-
vard Dataverse project [9]. Furthermore, the recordings are avail-
able in a unified format (5- second-long clips, sampled at 44.1kHz,
16 bits resolution, single channel) [10].

5. SYSTEM APPROACH

Most sound recognition systems follow either the Simple Classi-
fier approach, Gaussian Mixture Model approach or HMM Model
approach [11]. In our system we followed the approach with the
lowest energy consumption and relatively high accuracy where the
system detection component will continuously record the environ-
mental sounds in chunks of one second each. Then, each captured
sound signal will be processed by splitting it into frames (win-
dows) of 1024 samples (around 25 millisecond (ms) considering
the 44.1kHz sampling rate). In the case of training, splitting is done
with an overlap of 50%, whereas in the testing there is no overlap
in the splitting process. Each frame is smoothed with a Hanning
window which is used with gated continuous signals and long tran-
sients to give them a slow onset and cutoff in order to reduce the
generation of side lobes in their frequency spectrum.

Next, each frame is passed to the MFCC, ZCR, Spectral Cen-
troid and Spectral Flatness feature extractors. Then, statistical val-
ues such as mean and standard deviation of the extracted features
are calculated. The feature extraction stage plays an important part
for the recognition process (explained in Subsection 5.2). At the
end of this stage, there is a constant size feature vector for the whole
one second sound signal. By analyzing each frame individually, the
spectrogram type B solution technique is applied for selecting the
features set [11]. We have considered this solution since from an
implementation point of view, this technique does not need much
memory [11]. Finally, the feature vector will be passed to the clas-
sification model to get the best match. The described recognition
approach is shown in Fig. 1.

5.1. Sound Detection

The detection technique implemented in the system is based on the
standard deviation of normalized power sequences. This method
immediately signals a possible impulsive sound [11]. The signal
is based on the normalization of successive windowed power se-
quences where the detection flag is signaled when the power ex-
ceeds the threshold value, which in our case is 0.015 [11] This tech-
nique aims to be simple yet an efficient detection scheme with a
low computational load since it intends to be running all the time.
Moreover, the performance turns out to be relatively the same as
other more energy consuming advanced methods as described in
[11].

5.2. Feature Extraction

As most recent research propose, feature analysis is considered the
most crucial and important part in building a robust and effective
recognition system [11, 12]. The aim of feature extraction is to
convert the sound signal into a sequence of feature vectors in order
to produce a set of characteristic features that describe the sound
signal [13, 14].

From a physical point of view, signals can be represented in dif-
ferent domains: time or frequency domain. Therefore, acoustic fea-
tures can be grouped into two groups, temporal and spectral features
that can be extracted using time and frequency domain respectively
[12]. Due to the nature of the environmental sound, which is con-
sidered as unstructured data and no assumptions can be made about
detectable repetitions or harmonic structure in the signal, many fea-
tures are needed to describe the audio signals [12].

In this work, several analysis methods were considered, in-
spired from the speech recognition community. As mentioned in
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Figure 1: System Architecture.

Section 5, the feature extraction is applied on frame level. Time
domain features such as Zero Crossing Rate, Spectral Centroid and
Flatness were considered. Zero crossing rate (ZCR) is a measure
of the number of times the signal value crosses the zero axe [14].
It is considered a very simple, yet useful feature. ZCR is defined
formally as illustrated in (1)

ZCR =
1

T − 1

T−1∑
t=1

∏
StSt−1 < 0 (1)

Where s is a signal of length T and the indicator function PA
is 1 if its argument A is true and 0 otherwise. After the ZCR is
applied for each frame of the 1 second signal, the mean and standard
deviation were computed for all of the ZCR coefficients.

In order to obtain frequency domain features, we first ap-
plied the Fast Fourier Transform (FFT) algorithm to convert the
sound signal from its original time domain into magnitude spec-
trum. Three types of features were extracted from each frame: Mel-
frequency cepstral coefficient (MFCC), spectral centroid, and spec-
tral flatness.

MFCC is the most common feature used in audio classification
[15, 10, 11, 8]. The idea of the MFCC technique is to distribute
the cepstral coefficients according to the critical bands, instead of
the traditional linear distribution. Usually, it is mentioned as calcu-
lation of 13 Mel-frequency cepstral coefficients and discarding 0th
order coefficient for each of the 25 ms frames. After that, the mean
and standard deviation of each frame element are computed which
results in 12 values representing means and 12 values representing
standard deviation.

Another widely used feature is spectral centroid, which mea-
sures the brightness of a sound. Brightness is especially relevant for
continuous instrumental sounds and is calculated as the amplitude-
weighted average of all partials for the whole duration of the event
[16]. In spectral centroid, the higher the centroid, the brighter the
sound is [12]. It is calculated as the weighted mean of the frequen-
cies present in the signal, determined using a Fourier transform,
with their magnitudes as weights [14].

Centroid =

N−1∑
n=0

f(n)x(n)

N−1∑
n=0

x(n)

(2)

where x(n) represents the weighted frequency value, or magni-
tude, of bin number n, and f(n) represents the center frequency of
that bin. Similarly, spectral flatness has been useful in audio signal
processing which quantifies the tonal quality; namely, how much

tone-like the sound is as opposed to being noise-like [12]. It is cal-
culated by dividing the geometric mean of the power spectrum by
the arithmetic mean of the power spectrum [14]:

Flatness =

N

√
N−1∏
n=0

x(n)

N−1∑
n=0

x(n)

N

=

exp( 1
N

N−1∑
n=0

lnx(n))

1
N

N−1∑
n=0

x(n)

(3)

where x(n) represents the magnitude of bin number n. Note that
a single (or more) empty bin yields a flatness of 0, so this measure
is most useful when bins are generally not empty.

As in MFCC, mean and standard deviation were calculated for
spectral centroid. Moreover, min and max were calculated for spec-
tral flatness. In total we obtained a vector of features with 30 el-
ements which describe the signal to help the classifier provide the
best match.

5.3. Classification

For the classification stage, we worked with the Weka Classification
Library [17]. It is a collection of machine learning algorithms for
data mining tasks which provides a number of classification mod-
els. We used an unofficial stripped down version of the library [18]
which was compatible on the Android platform. The author of the
project claims that this is the same Weka project with the GUI com-
ponents removed so that it can work on Android.

As mentioned previously, a desktop application has been devel-
oped to extract the features from the datasets mentioned in Section
4 and then saves the training and test data into separate ARFF files
(Attribute-Relation File Format) for training the model and then
evaluating it. Another option is to save the extracted features from
both datasets and then save them into one file for cross validation.

The extracted features were input to five classifiers: Multi-layer
Perceptron, SVM (SMO in Weka), RandomForest, BayesNet and
NaiveBayes. Weka uses Sequential Minimal Optimization (SMO)
to solve the SVM training problem by using heuristics to partition
the training problem into smaller problems that can be solved ana-
lytically. Training and testing were performed on ESC-10 dataset,
using 2, 3, 4 and 5 fold cross validation. The results for the 10 class
datasets are shown in figure 2.

5.4. Design to Alleviate Privacy Concerns

Gray [19] gives a nice explanation on privacy implications of having
always-on microphone enabled devices. We utilized some of the de-
sign approaches in our application to alleviate privacy concerns. For
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Figure 2: Cross Validation of 10 class dataset.

example, the user would know when the application is listening to a
sound, when it has detected a sound and finally when it’s classifying
the sound; all of which are provided by flashing lights. Addition-
ally, we also give the user an option to turn the sound recognition
on or off. This makes it clear that user has given consent for the
application to be always-on listening.

6. EVALUATION

We evaluate our proposed system’s accuracy by comparing the re-
sults obtained using a combination of feature extraction algorithms
and Multi-Layer perceptron classifier with the results obtained from
previous studies [10]. The same dataset [10] was used in the evalu-
ation.

Additionally, one of the main factors of a successful application
is the battery consumption. We evaluate the battery efficiency of our
proposed application with another similar application.

6.1. Multi-layer Perceptron Accuracy

Fig. 2 lists the accuracy of each classifier on 10 classes dataset. As
a result of training the models, Multi-layer Perceptron was chosen
as it performed with the best overall accuracy with 74.5% for the 10
class dataset and also due to the ability to derive meaningful patterns
from unstructured data.

We perform multiple versions of cross validation to ensure com-
parability with ESC paper results [10]. Though a large number of
folds is more expensive, it does however give a less biased esti-
mate of the model performance. Additionally, the variance of the
resulting estimate for different samples or partitions of data to form
training and test sets is reduced as the number of folds are increased.
As a result, cross validating the classifiers with more folds provide
more accurate results. Table (1) shows an example of this.

6.2. Accuracy Comparision

The results of the proposed system were compared to results in the
research paper considering environmental sound recognition [9] us-
ing Random Forest and Multi-layer perceptron classifiers. The re-
sults were acquired by using 5-fold cross validation. For the pur-
pose of objective results the same dataset was used: ESC-10 dataset

Class-Fold 10 Classes
2 folds 69.25%
3 folds 73.25%
4 folds 71.75%
5 folds 74.5%

Table 1: Multi-layer Perceptron Cross Validation Results

ESC-10
Random forest Multi-Layer Perceptron

Proposed
system

73.75% 74.50%

ESC paper re-
sults [10]

73.70% 62.50%

Table 2: Comparison with previous research studies

[10]. From Table (2), we can see that our system performs with a
better accuracy using Multi-Layer Perceptron classifier.

6.3. Battery Consumption

We have compared battery consumption of our system with Oto-
sense [6] which is also an environmental sound recognition system.
Battery consumption was tested by measuring the mobile device
runtime for 5 repetitions. The tests were held by using two smart-
phones: LG Nexus 5 and LG Nexus 4. During all of the tests the
mobile devices were initially fully charged, the connection to inter-
net was switched off and no background processes were stopped.
The runtime was measured until the mobile devices switched off.
Table (3) shows the average runtime for the both systems using the
mobile devices stated above. Both of the mobile devices perform
almost twice better when running our proposed approach.

7. CONCLUSION

In this paper, a viable real-time environmental sound recognition
system for Android mobile devices was developed. The system
uses a sound detection algorithm which helps reduce power con-
sumption. In addition, a combination of several feature extracting
algorithms were applied to accurately identify sounds. Finally, sev-
eral classifiers were compared with described features and Multi-
Layer Perceptron classifer performed best with 74.5% accuracy on
10-class dataset. The recognition accuracy of the proposed system
exceeds the results of previous efforts using the same dataset [10].

The current dataset was chosen specifically for benchmarking
purposes with prior papers. Looking into the future we propose to
filter out sounds, just as fire crackling, clock-tickling, which are not
really useful for people who are deaf or hard of hearing.

LG Nexus 5 LG Nexus 4
Proposed System 5 hours 27 minutes 7 hours 15 minutes

Otosense [6] 3 hours 4 minutes 3 hours 50 minutes

Table 3: Average runtime duration
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ABSTRACT

This contribution reports on the performance of systems for

polyphonic acoustic event detection (AED) compared within the

framework of the “detection and classification of acoustic scenes

and events 2016” (DCASE’16) challenge. State-of-the-art Gaussian

mixture model (GMM) and GMM-hidden Markov model (HMM)

approaches are applied using Mel-frequency cepstral coefficients

(MFCCs) and Gabor filterbank (GFB) features and a non-negative

matrix factorization (NMF) based system. Furthermore, tandem and

hybrid deep neural network (DNN)-HMM systems are adopted. All

HMM systems that usually are of single label type, i.e., systems

that only output one label per time segment from a set of possible

classes, are extended to multi label classification systems that are a

compound of single binary classifiers classifying between target and

non-target classes and, thus, are capable of multi labeling. These

systems are evaluated for the data of residential areas of Task 3 from

the DCASE’16 challenge. It is shown that the DNN based system

performs worse than the traditional systems for this task. Best re-

sults are achieved using GFB features in combination with a single

label GMM-HMM approach.

Index Terms— acoustic event detection, DCASE’16, Gabor

filterbank, deep neural network

1. INTRODUCTION

Acoustic event detection (AED) denotes the automatic identifica-

tion of sound events in audio signals. Commonly, the acoustic

event’s category as well as its time of occurrence are to be recog-

nized. Application fields for AED are e.g., surveillance of pub-

lic spaces for security issues [1–3], monitoring of health states

e.g. in care systems [4–6] or condition monitoring of technical sys-

tems [7, 8].

AED in monophonic environments, i.e., for settings in which

only single, isolated acoustic sources are active for a given time

interval, has been the main focus of research in the past, with

prominent comparisons of competitive systems in, e.g., the “clas-

sification of events, activities and relationships” (CLEAR’07) and

“detection and classification of acoustic scenes and events 2013”

(DCASE’13) challenges. Established methods for detecting acous-

tic events in monophonic environments are often based on Mel-

frequency cepstral coefficient (MFCC) features and hidden Markov

∗This work was funded in parts by the European Commission (project
EcoShopping, (no. 609180) and the Federal Ministry for Education and
Research (BMBF), project ACME 4.0, FKZ 16ES0469)

models (HMMs) using Gaussian mixture models (GMMs) as obser-

vation probability functions (GMM-HMM) [9–11]. These systems

are denoted as single label classification systems since for a cer-

tain time segment they select one and only one label from a set of

pre-trained classes based on maximum likelihood criteria or compa-

rable scores. However, in many realistic environments rarely only

a single source is active per time instance. Instead, usually mul-

tiple sources emit sound waves simultaneously leading to a mixed

sound signal at a receiver. This case of multiple and overlapping

sound signals is commonly referred to as polyphony. For acoustic

event detection systems this case is by far more challenging than the

monophonic case, not only because of the pure signal mixture of an

unknown number of acoustic events present in the signal but also

because training and test data can be considerably different due to

the vast number of possibilities of event mixtures. Recently, poly-

phonic acoustic event detection has gained considerable attention,

e.g., by being addressed in the DCASE’16 challenge. Some ap-

proaches for polyphonic event detection are based on MFCC and

GMM-HMM classifiers. Using these back-ends, either binary clas-

sification between target events and universal background model is

performed [12] or classification on multiple streams separated by

non-negative matrix factorization (NMF) is conducted [11]. Further

approaches apply NMF as part of feature extraction by thresholding

the activations of the source code book [13, 14]. In recent publica-

tions, deep neural networks (DNNs) are used [3, 15, 16]. The out-

put of the DNNs replaces the NMF-features, while the classification

continues to rely on thresholded feature values. In the field of au-

tomatic speech recognition (ASR), DNNs are well-established and

constitute the state-of-the-art baseline. Incorporation into recog-

nition systems is based on two paradigms, tandem and hybrid ap-

proaches [17]. For the tandem approach, DNN features replace the

MFCC features while the back-end is a conventional GMM-HMM

classifier. Commonly, bottleneck features are used, for which one

layer of the DNN acts as “bottleneck” with only a small number

of neurons compared to the preceding and subsequent layers [17].

The hybrid approach uses DNNs as observation functions replacing

the GMMs leading to DNN-HMM back-ends. They can be used

with any kind of features. A common observation with DNNs is

that they need more training data than for example GMM-HMM

systems with MFCCs features.

This paper describes the authors contribution to the DCASE’16

challenge. It focuses on the subtask of Task 3 containing acoustic

data recorded in residential environments (cf. Section 2). We in-

vestigate the performance of GMM-HMM systems using MFCCs

and Gabor filterbank (GFB) features, the best scoring system of the

DCASE’13 challenge, as well as NMF. Furthermore, we examine
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Table 1: Event statistics of Task 3 for the residential area. Given are

the number of events (‘num. ev.’), the average duration (‘av. dur.’)

and the total duration (‘tot. dur.’) of each class individually and

overall as mean and standard deviation.

num. ev. av. dur. [s] tot. dur. [s]

bird singing 130 7.55± 25.19 981.21
car passing by 57 9.16 ± 4.81 521.94

children shouting 23 2.00 ± 1.68 46.16
object banging 15 0.76 ± 0.70 11.33

people speaking 40 8.08± 24.42 323.08

people walking 32 5.50 ± 5.94 176.11

wind blowing 22 6.09 ± 5.98 133.96

overall 319 6.88± 18.59 2193.79

the performance of DNN tandem and hybrid approaches. Single

label and multi label classification systems are used.

The remaining of this paper is structured as follows. The exper-

imental setup including the dataset ‘residential area’ of Task 3 from

the DCASE’16 challenge is outlined in Section 2. The concept of

single label and multi label systems is explained in Section 3. The

individual classification systems are detailed in Section 4. The re-

sults for these systems are shown in Section 5. Conclusions are

drawn in Section 6.

2. EXPERIMENTAL SETUP

The following experiments are based on the setup and data of Task 3

of the DCASE’16 challenge [18]. Task 3, called ‘Sound event

detection in real life audio’, consists of stereo data recorded at

44.1 kHz and in a home environment and in a residential area. Only

the first channel is used in our contribution. The dataset of the home

environment comprises eleven classes of a total duration of 36 min

whilst the dataset of the residential area is a compound of seven

classes and a total duration of 42 min. Since these are relatively few

data especially for training of DNNs, we will just show results for

the larger subset ‘residential area’. Details of this subset are given

in Table 1. The proposed four cross-validation sets from the chal-

lenge are used as well as the evaluation measures F-Score and the

acoustic event error rate (AEER) [18]. The F-Score F represents

the relation between the precision P and the recall R, i.e.,

P =
Ncorr

Nest

; R =
Ncorr

Nref

; F =
2 · P ·R
P +R

, (1)

where Ncorr denotes the number of correct hits, Nest the number

of estimated events and Nref the number of reference events. The

AEER is the sum of insertions I , deletions D and substitutions S

relative to the number of reference events Nref, i.e.

AEER =
I +D + S

Nref

. (2)

Both measures are applied on 1 sec segments and averaged over all

crossvalidation folds.

3. SINGLE AND MULTI LABEL SYSTEMS

For detecting events, two main classification systems will be tested:

Single label classification and multi label classification systems. A
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Figure 1: General schematic of the applied classification systems.

single label classification system consists of multiple models for

different classes. The model yielding highest probability for a time

segment is selected as label. Thus, such approaches are not capa-

ble of detecting simultaneous or overlapping events. Commonly,

HMM systems are single label classification systems. To overcome

this disadvantage and get multiple labels per time segment, the sin-

gle label systems can be extended to multi label classification sys-

tems. A single binary classifier consists of a target class model and

a garbage or background model that covers all non-target classes.

Hence, a compound of such binary classifiers in a classification sys-

tem is able to label each time segment with multiple labels.

4. CLASSIFICATION SYSTEMS

The commonly applied classification systems consist of a fea-

ture extraction step and a back-end (cf. Figure 1). In the training

phase, the extracted features, e.g. MFCCs, GFB features, DNN fea-

tures etc., are used to create class models for the back-end that can

be, e.g., HMMs. In the testing phase, these models are applied to

the extracted features of the test data to decode it and output labels

for time segments. The adopted systems of this contribution will be

detailed in the following.

4.1. Baseline System

As baseline we use the provided baseline system from Task 3 of the

DCASE’16 challenge [18]. It is composed of a GMM model using

MFCCs. The MFCC features use 40 ms windows with 50% shift.

The first 19 coefficients and the 0th energy coefficient plus deriva-

tions of first (∆) and second order (∆∆) are used, that are computed

over 9 time frames. The GMM is based on 16 Gaussian mixtures

per class model and is applied on sliding windows of 1 second. The

baseline is just applied in a binary classification system.

4.2. NMF System

The NMF system is based on the baseline system of Task 2 of the

DCASE’16 challenge. It uses variable Q-transform (VQT) spec-

trograms of 60 bins per octave and a step size of 10 ms. The NMF

codebook consists of 20 spectral templates per class that are learned

during a training phase. For the original baseline, the 20 spectral

templates were generated by averaging the delivered 20 event files
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Table 2: Results of Task 3 for the residential area. In each row, the performance of the respective system is given in terms of AEER and

F-Score. Both measures are divided into the total average and the class-wise average. A check mark in column ‘multi label’ indicates that the

system is capable of making multi label outputs, e.g. the binary systems, otherwise systems produce single label output. For DNN features,

the underlying features are given in brackets. Note: The baseline system uses other parameters for MFCCs than the other MFCC based

systems depicted in rows 3, 4, 7, 8, 10 and 11. Best scores are highlighted by bold numbers.

no. multi- back-end feature AEER F-Score [%]
label total class total class

1
√

baseline MFCC 0.86 1.16 34.6 19.9
2

√
NMF VQT 1.35 2.11 14.8 8.7

3 GMM-HMM MFCC 0.77 1.02 41.2 15.8
4

√
GMM-HMM MFCC 0.81 1.08 41.0 16.6

5 DNN-HMM log-Mel 1.02 3.47 17.2 8.5
6

√
DNN-HMM log-Mel 1.78 5.87 16.0 13.3

7 DNN-HMM MFCC 1.04 3.75 10.7 7.9
8

√
DNN-HMM MFCC 1.22 2.86 22.6 14.7

9
√

GMM-HMM DNN(log-Mel) 2.17 6.23 28.6 19.6
10

√
GMM-HMM DNN(MFCC) 1.87 6.08 30.8 18.8

11
√

GMM-HMM MFCC+DNN(log-Mel) 2.37 5.89 32.4 24.1

12 GMM-HMM GFB 0.74 1.01 48.5 19.2
13

√
GMM-HMM GFB 0.93 1.44 44.2 17.6

per class. Hence, the codebook size depended on the amount of

files. To avoid the dependency on the dataset size, we modified the

training phase by applying a GMM with 20 mixture components

to the complete spectrogram data of each class to create the de-

sired number of spectral templates. Based on these templates, data

is decoded by a NMF. The NMF output is postprocessed using a

threshold (1.0), a minimum event length of 60 ms and a maximum

number of concurrent events (5).

4.3. DNN-HMM Hybrid System

For the DNN-HMM hybrid system, the commonly applied GMM

observation function of an HMM is replaced by a DNN. The HMM

for each class is modeled by one transition state, i.e., it is actually a

GMM. Viterbi-decoding is applied with multiple, unlimited number

of repetitions of events per file to get time segment labels. The input

layer consists of the current time frame plus 4 frames before and

after, thus, extending the feature dimensionality by a factor of 9.

Several different combinations of number of layers (2,3,4), number

of neurons per layer (20, 32, 39, 64, 128, 256) and characteristics

like a bottleneck have been tested. Here, only the results of the DNN

yielding best performance using three hidden layers with 128, 20,

and 39 neurons will be shown. The hidden layers use the rectified

linear unit (ReLU) as activation function, whilst the output function

applies the softmax function.

Two types of features are investigated. One feature type is based

on static MFCCs, i.e., a window length of 25 ms and 10 ms shift is

used to compute the twelve first coefficients as well as the 0th. The

other feature type is a logarithmic Mel (log-Mel)-spectrogam with

40 frequency bins (window length of 25 ms and shift of 10 ms).

4.4. GMM-HMM Sytem

The GMM-HMM systems use GMMs as observation functions for

HMMs. The HMM of each class is modeled by one transition state.

The best number of mixtures is evaluated on the validation fold, i.e.,

the performance of the mixture yielding the best total performance

will be shown. In contrast to the baseline, the decoding is done

using Viterbi-decoding with multiple repetitions of events per file.

Several different features are used for this system. Basic

MFCCs as for the DNN-HMM hybrid system (cf. Section 4.3) with

additional ∆ and ∆∆ features. Another feature type is based on the

GFB. The GMM-HMM(GFB) system [19] achieved highest perfor-

mance on the previous DCASE’13 challenge [20]. Here we use the

GFB optimized for AED that has been shown to improve the results

for the acdcase2013 challenge [21].

Furthermore, features are derived from DNNs, thus building a

tandem system. Therefore, the DNNs of the hybrid systems are

applied, and, hence, are either based on MFCCs or on the log-Mel-

spectrogram. The hybrid DNNs are modified by deleting the output

layer that represents the class probabilities, and replacing it by the

second last layer containing 39 neurons. Furthermore, the activation

function ReLU is replaced by a linear activation function to produce

features with better discriminative abilities [22]. We used HTK [22]

to adapt HMMs and DNNs.

5. RESULTS

The results of the tested systems are given in Table 2. The AEER

and the F-Score are shown. They are divided into a total average

over all frames and into a class-wise average, i.e., the score for each

class is computed and the average of these numbers are depicted.

Hence, effects on scores resulting from different amount of data per

class are avoided. Each row describes a system. A check mark (
√

)

in column ‘multi label’ indicates that a system has multi label out-

put, which are the baseline system, the NMF system and the multi

label versions of the HMM approaches. No check mark indicates

that a system has single label output, which are the standard HMM

versions.

It can be seen that the NMF based system (cf. Row 2), which is

the baseline system of Task 2 of the DCASE’16 challenge, performs

relatively poorly compared to the GMM(MFCC) baseline (Row 1).

This might result from the polyphonic training data. Commonly,

the training data for NMF approaches consist of isolated events.

82



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

However, the data for Task 3 was polyphonic. Thus, a proper code-

book is unlikely to be generated leading to much confusion between

classes. Another reason for the inaccuracy of the approach might be

that beeing the baseline system of Task 2, the used parameters for

the classifier may not be optimal for Task 3.

The GMM-HMM-systems using MFCCs (cf. Rows 3 and 4)

achieve better results for the AEER and for the total F-Score. For

the class-wise F-Score, they are slightly worse. This is a result of

the unequal amount of data per class. Both GMM-HMM-systems

are particularly good in recognition of the classes with most data

‘bird singing’ and ‘car passing by’. For class ‘bird singing’, the

single label GMM-HMM-systems (cf. Row 3) yields a class-wise

F-Score of 56.3% whereas the baseline yields F-Score of 35.5%.

This imbalance leads to a better total F-Score for the GMM-HMM-

systems but a worse class-wise F-Score than for the baseline.

Against expectation, the single label approach of the GMM-

HMM-system yields better performance than the multi label ap-

proach, though the single label approach is not capable of detect-

ing multiple overlapping events and, thus, in contrast to the binary

approach, by its nature can never yield 100% accuracy. For the

applied dataset, it seems to be beneficial to just output one label

with maximum likelihood than to try to detect multiple concurrent

events.

However, for the DNN-HMM hybrid systems (cf. Rows 5

to 8), the binary versions yield better F-Scores than the single la-

bel systems. In comparison to the baseline, they perform worse

for all shown measures. The tandem systems (cf. Rows 9 to 11)

yield worse AEER scores. However, the F-Scores are relatively

high. For the system with concatenated MFCC and DNN features

(cf. Row 11), even the highest class-wise F-Score of all examined

systems is achieved. The reason for the low AEER but high F-Score

lies in the high number of label outputs that are generated by the tan-

dem system. It causes many errors but also a high recall R forcing

a relative high F-Score.

The best scores except for the class-wise F-Score are achieved

by the single label GMM-HMM with GFB features (cf. Row 12).

Especially the total F-Score is much higher than for all other

tested systems. Similar to the GMM-HMM-systems using MFCCs

(cf. Row 4), the multi label version of the GMM-HMM system

adopting GFB features (cf. Row 13) performs less well than the

single label version.

6. CONCLUSIONS

This study reports system performances for different acoustic event

detection strategies applied to Task 3 (‘residential area’ data) of the

DCASE’16 challenge. We compared commonly used GMM sys-

tems to tandem and hybrid DNN systems. Single and multi label

systems were applied. We showed that for this task, DNNs are less

accurate than GMM-HMM systems. Probably, the amount of data

available for Task 3 is too low to train DNNs properly. The GMM-

HMM system in combination with GFB features which was devel-

oped for the DCASE’13 challenge [19] for isolated events and that

was meanwhile improved as described in [21], yields best perfor-

mance of all tested systems. Furthermore, a single label system that

is only able to output one label per time segment seems not to be

inferior to a multi label classification system for polyphonic data.

A drawback for all classification systems is the little amount of

available data within this challenge. As it could be observed, the

two classes with most data, which are ‘bird singing’ and ‘car pass-

ing by’, achieved best recognition results for nearly all classification

systems. Testing the approaches on larger corpora is thus subject of

future work.
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ABSTRACT

This paper investigates several approaches to address the acoustic
scene classification (ASC) task. We start from low-level feature
representation for segmented audio frames and investigate differ-
ent time granularity for feature aggregation. We study the use of
support vector machine (SVM), as a well-known classifier, together
with two popular neural network (NN) architectures, namely mul-
tilayer perceptron (MLP) and convolutional neural network (CNN).
We evaluate the performance of these approaches on benchmark
datasets provided from the 2013 and 2016 Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) challenges.
We observe that a simple approach exploiting averaged Mel-log-
spectrograms and SVM can obtain even better results than NN-
based approaches and comparable performance with the best sys-
tems in the DCASE 2013 challenge.

Index Terms— Acoustic scene classification, Audio features,
Multilayer Perceptron, Convolutional Neural Network, Support
Vector Machine.

1. INTRODUCTION

Acoustic scene classification (ASC), a particular form of audio clas-
sification, consists in using acoustic information (audio signals) to
infer the context of the recorded environment [1]. Examples of such
environments are bus, office, street, etc... It offers a wide range
of applications in connected home, e.g. expensive video cameras
can be replaced by cheap microphones for monitoring daily activ-
ity, and for smartphones, e.g. they could automatically switch to
silence mode during a meeting or automatically increase the sound
volume in a noisy environment. However, real-life ASC is not a
trivial task as recognising a greater variety of sounds in both indoor
and outdoor environments would require a new set of strategies and
adjustments of existing machine learning techniques to make the
most out of the available data.

While speaker identification [2], speech recognition [3], and
some audio classification tasks in music information retrieval such
as music genre recognition [4, 5] or music instrument recognition
[5] have been studied for a long time, the real-life ASC task has
become active quite recently in the research community. While the
classification task itself has been studied since at least 2002 [6],

∗Part of this work has been done while the first author was with Techni-
color.
†Email:quang-khanh-ngoc.duong@technicolor.com

it was only recently that efforts were made to provide a bench-
mark for the task, with the new initiative of the DCASE chal-
lenges in 2013 and 2016. Various techniques have been proposed
to tackle the problem with the use of different acoustic features
(e.g. cochleogram representation, wavelets, auditory-motivated rep-
resentation, features learned by neural networks) and different clas-
sifiers (e.g. Support Vector Machine (SVM), Gaussian Mixture
Model (GMM), Hidden Markov Model (HMM)) [7]. One of the
most popular approaches, known as bag-of-frames (BOF) approach
[8, 9] is used as a baseline in the DCASE challenge, and exploits
the long-term statistical distribution (by GMM) of the short-term
MFCCs.

Besides the DCASE challenge, nonnegative matrix factoriza-
tion (NMF) was recently exploited for sound event detection in real
life recordings [10]; recurrent neural networks (RNN) were inves-
tigated for polyphonic sound event detection in real life recordings
[11]; and deep neural networks (DNN) have been developed for
sensing acoustic environment [12]. It would be interesting to note
that while DNNs [13, 14] were recently applied with great success
to many different audio, visual and multimedia tasks, it was less
investigated within the DCASE 2013 challenge and one of the rea-
sons would be the lack of a substantial amount of labeled data for
training.

This paper aims to study the use of well-established low-
level acoustic feature representations and different machine learning
techniques, including DNN-based methods and SVM, for the ASC
task. While most existing approaches extract an acoustic feature
vector for each short-term audio frame, then perform a frame-based
classification based either on BOF over GMMs [8, 9] or simple ma-
jority voting [15, 16, 7], we investigate the use of an another feature
representation, i.e. a single vector for a whole audio scene, aim-
ing an extremely compact representation that greatly reduces the
computational cost for the whole ASC system, since the number
of examples to be used to train the classifier is drastically reduced.
We evaluate the use of this compact feature with SVM and MLP on
both DCASE 2013 and DCASE 2016 datasets and the performance
are more or less equivalent to a frame-based approach with major-
ity voting strategy. Furthermore, it results in classification accuracy
comparable to the best systems participating in the DCASE 2013
challenge.

The rest of the paper is organized as follows. In Section 2 we
present the general framework which involves different approaches
for feature extraction and classification. Experiment results on
DCASE dataset obtained by our approaches and some state-of-the-
art methods are discussed in Section 3. We finally conclude in Sec-
tion 4.
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Audio
signal

Feature
extraction Classification Class

label

Figure 1: General workflow of the acoustic scene classification
framework.

2. ACOUSTIC SCENE CLASSIFICATION FRAMEWORK

The general workflow of an ASC system is usually divided into
two major steps as shown in Fig. 1. In the first, the feature ex-
traction step, various types of hand-crafted representations have
been considered in the literature such as chroma, pitch, spectro-
grams, zero-crossing rate, and linear predictive coding coefficients
[1]. Among them, features based on Mel-frequency Cepstrum Co-
efficients (MFCCs) computed for each short-time frame are ar-
guably the most common one, as it can be seen by the DCASE
2013 Challenge, where out of 12 systems submitted, at least 7 in-
volved MFCCs [1]. More recent DNN-based approaches usually
attempt to learn higher level features from these low-level signal
representations [12, 17]. In the classification step, popular classi-
fiers include SVM and GMM [7]. In the following, we will first
describe the standard Mel-log-spectrogram, as the low-level feature
used in this work, and the proposed compact representation from it
in Section 2.1. We then briefly present some exploited classification
approaches in Section 2.2. The choice of hyperparameters for both
feature extraction and classifiers is discussed in Section 2.3.

2.1. Feature extraction

The time domain audio signal x(n) is first transformed into the
frequency domain by means of the short-term Fourier transform
(STFT) as

STFT{x}(m,ω) =

+∞∑
n=−∞

x(n)w(n−mL)e−jωn (1)

where w(n) is a window function (which is Hanning window in our
implementation), m denotes frame index and L the frame shift. The
spectrogram is then defined as

S(m,ω) = | STFT{x}(m,ω)|2 (2)

In our DNN-based system, we use spectrogram with a logarith-
mic amplitude scale (named log-spectrogram) as the frame input
feature which is computed as

FLog-spec(m,ω) = log(S(m,ω)). (3)

In our other systems, we first map the spectrogram S(m,ω) into the
auditory-motivated Mel frequency scale - denoted by MS(m,ω),
then transform it into logarithmic scale as

FMel-log-spec(m,ω) = log(MS(m,ω)). (4)

Note that with the CNN-based system, we use the raw log-
spectrogram as the input feature in order to give flexibility for the
CNN to learn a higher level feature representation optimized for the
ASC task. For SVM-based systems we have tested four different
features: spectrogram, log-spectrogram, Mel-log-spectrogram, and
MFCC, and found that the two last ones result in a very similar

ASC performance that outperforms the two first ones. As the Mel-
log-spectrogram is simpler to compute than the MFCC, we use it as
the main acoustic feature in this paper. Finally, we propose to aver-
age the feature vectors for all frames so as to present a whole audio
example by an extremely compact feature vector whose entries are
computed as

fAvg−mel−log−spec(ω) =
1

M

M∑
m=1

FMel-log-spec(m,ω). (5)

This type of averaging of features is very straight-forward and
has already been used in past works [18][19] in ASC. However, no
submitted systems in the DCASE 2013 Challenge made use of it,
misleadingly pointing to a lack of efficiency of this method.

2.2. Classification approaches

2.2.1. Support vector machine

SVM has been known as one of the most popular classifiers for
many different tasks. It was also widely used in the DCASE 2013
challenge [7]. In our work, we used SVM as a benchmark classi-
fier to evaluate the effectiveness of different features, as mentioned
in Section 2.1, as well as to obtain the optimal choice of hyperpa-
rameters (e.g. the window size and the number of Mel-frequency
coefficients) for the considered task.

In our implementation, we train SVMs using a coordinate de-
scent algorithm [20] and following a one-vs-the-rest scheme to per-
form classification of multiple classes [21]. We have tested SVM
with linear kernel and Gaussian radial basis function (RBF) kernel
and found that the linear kernel works slightly better than RBF ker-
nel for the DCASE 2013 dataset.

2.2.2. Multilayer Perceptron

Multilayer Perceptron (MLP) is a fully connected feedforward arti-
ficial neural network architecture that maps sets of input data onto
a set of appropriate outputs. It can be seen as a logistic regres-
sion classifier where the input is first transformed using a non-linear
transformation [22, 23]. A typical set of equations for an MLP is the
following. Layer k computes an output vector hk using the output
hk−1 of the previous layer, starting with the input x = h0,

hk = f(Wkhk−1 + bk) (6)

where bk denotes a vector of offsets (or biases) and Wk a matrix
of weights. The function f is called the activation function and it is
applied element-wise. Common options for it are sigmoid function,
hyperbolic tangent, and rectified linear unit (ReLU). The latter, i.e.
f(x) = max(0, x), was used to obtain the results reported in this
document.

The top layer output is used for making a prediction and is com-
bined with the groundtruth label into a loss function. We use soft-
max as the classification layer and the log-likelihood loss function
regularized with `1 and `2 penalties. This cost function is then opti-
mized using mini-batch stochastic gradient descent (SGD) with an
adaptive learning rate [24] and dropout is performed between the
hidden layers [25].
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2.2.3. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network
designed to exploit the redundancy and correlation between neigh-
bour units. It has gained great success in different fields such as
image and video recognition, natural language processing, speech
recognition, etc., [14]. This motivates us to investigate the use of
CNN for the ASC task in this work.

We trained CNNs over the log-spectrogram of the signals with a
structure of vertical filters, i.e. the frequency bins can also be inter-
preted as a CNN channel (as in RGB channels for images) instead
of a dimension and the convolution is ran over the time axis. This
type of structure was proposed for music recommendation in Spo-
tify1 and is justifiable by the fact that an audio “pattern” detected in
a high-frequency region is usually different from that same pattern
in a low-frequency region. Thus it is desirable to model the vertical
filters to extract more meaningful information from the spectral rep-
resentation. More details about the implemented CNN architecture
can be found in Section 3.1.

2.3. Hyperparameter optimization

The choice of hyperparameters in each step of the ASC system or
in any machine learning task can significantly affect the final clas-
sification result. Such hyperparameters are e.g. the window length
and hop length in the STFT computation for feature extraction, the
regularization parameter for SVM, the number of hidden units in an
MLP, and the step size for the SGD algorithm in DNN based meth-
ods. The conventional strategy of tuning these parameters manually
would not be feasible as it requires a great number of trials so that
all parameters can be optimized together. Thus, in this work we in-
corporate a Bayesian optimization [27] method to find these param-
eters altogether. The algorithm models the generalization accuracy
of a classifier as a function of the corresponding parameters, and
finds the optimal parameters that maximize the expected accuracy
given the observed dataset.

In our implementation, we use Hyperopt [28], a Python library
for optimizing hyperparameters in machine learning algorithms,
with the Tree of Parzen Estimators (TPE) [29], an algorithm that
falls into the class of sequential model-based optimization (SMBO)
[30] algorithms. The TPE algorithm performs cross-validation with
the development datasets of DCASE 2013 and DCASE 2016 and
finds an optimal set of hyperparameter values. It is interesting to
note that the optimal window size for STFT computation found by
the TPE algorithm is quite long, i.e. about half of a second. This
can be explained by the fact that the acoustic events are more spread
in time compared to e.g. speech which is very localized so as the
window length used for STFT is usually much smaller.

3. EXPERIMENTS

We evaluate the ASC performance of our four implementing sys-
tems with the benchmark DCASE 2013 dataset, which allows
to compare with the state-of-the-art approaches participating in
the challenge, in Section 3.1. We then present the result with
DCASE 2016 dataset in Section 3.2. Our first system (named Pro-
posed SVM-A) uses an extremely compact feature as the Mel-log-
spectrogram coefficients averaged for all frames, and SVM with
a linear kernel as classifier. The second system (named Proposed
SVM-V) performs frame classification by SVM with a linear kernel,

1http://benanne.github.io/2014/08/05/spotify-cnns.html

then majority voting in the end. The third system (named Proposed
MLP) takes the compact averaged Mel-log-spectrogram as input,
learns an intermediate feature representation by MLP, then classi-
fies by softmax as the last layer of the MLP. The fourth system
(named Proposed CNN) takes log-spectrogram as low-level input
feature, learns higher feature representations by CNN layers, then
classifies by softmax.

3.1. Results with the DCASE 2013 dataset

The DCASE 2013 dataset consists of 30-second audio segments be-
longing to 10 classes. Each class has 10 segments in the develop-
ment set and 10 other examples in the test set [31].

The ASC performance was evaluated in terms of the classifica-
tion accuracy, averaged over all classes, and shown in Table 2. Note
that as we did not have access to the groundtruth labels of the test
set at the time of these experiments, we evaluated our systems aver-
aging with the standard 5-fold cross-validation on the development
set only, while results for most other approaches in the table are
obtained with the test set [7]. Some hyperparameters for each sys-
tems were found by the Bayesian optimization method presented in
Section 2.3. More detailed settings for each system are as follows.
The window length for the STFT was set by 0.57 seconds and 0.41
seconds for the SVM-A and SVM-V system, respectively, the num-
ber of Mel-frequency coefficients is about 1900, the regularization
parameter C in SVM for SVM-A and SVM-V were 0.98 and 0.62,
respectively. MLP had one hidden layer with 677 units, dropout rate
and learning rate for parameter training was set by 0.08 and 0.011,
respectively. CNN had 3 convolutional layers, the number of filters
for each layer are 50, 29, and 19, respectively, and the max-pooling
ratios between layers are 3, 4, and 3.

As it can be seen, the two systems based on SVMs outperform
the ones based on NNs. This can be explained by the fact that the
dataset may be not large enough for training DNNs directly. Three
of our proposed systems (SVM-A, SVM-V, and MLP) achieve com-
parable performance with some of the best performing approaches
in the DCASE 2013 Challenge - as we suppose that there is not
much difference between development set and the test set. More-
over, we achieve higher accuracy than Li et al. [16] in the same
development set. Finally, we note that the proposed feature, which
is extremely compact so as to represent a whole 30-second audio
segment by just a single vector, can be sufficient for the classifi-
cation as the SVM-A and MLP obtained 75% and 72% accuracy,
respectively.

3.2. Results with the DCASE 2016 dataset

The DCASE 2016 dataset is structured in a similar way as the
DCASE 2013 dataset. However the number of acoustic classes is
extended to 15, and the number of examples for each class is sig-
nificantly enlarged to 78 for the development set and 26 for the test
set.

The results for development set obtained by our four systems
are shown in Table 2, where the best performance of 80% is
achieved by the SVM-A system with a window length of 0.42 sec-
onds and a hop size of 0.14 seconds for the STFT computation. This
result confirms again the benefit of using the proposed compact fea-
ture representation and the use of a long window for the spectral
transformation. The MLP, which obtains similar performance as
the baseline, had two hidden layers with 66 and 199 units, respec-
tively, SGD was used for parameter training with learning rate of
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Method Acoustic feature Classifier Accuracy
Baseline MFCC ”bag-of-frames” GMM 55%
Geiger et al. [15] Diverse features SVM + majority voting 69%
Roma et al. [26] MFCC with Recurrence Quantification Analysis SVM 76%
Proposed SVM-A Averaged Mel-log-spectrogram Linear SVM 75%
Proposed SVM-V Frame Mel-log-spectrogram Linear SVM + majority voting 78%
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer 72%
Proposed CNN Log-spectrogram CNN with softmax as classification layer 62%

Table 1: Acoustic scene classification results with DCASE 2013 test dataset (for state-of-the-art approaches) and development dataset (for
our proposed approaches). Note that other submitting systems resulting in less classification accuracy are not mentioned in the table.

Method Acoustic feature Classifier Accuracy
Baseline MFCC ”bag-of-frames” GMM 75%
Proposed SVM-A Averaged Mel-log-spectrogram Linear SVM 80%
Proposed SVM-V Frame Mel-log-spectrogram Linear SVM + majority voting 78%
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer 75%
Proposed CNN Log-spectrogram CNN with softmax as classification layer 59%

Table 2: Acoustic scene classification results with DCASE 2016 development dataset.
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Figure 2: Confusion matrix of the SVM-A method in the develop-
ment set of the DCASE 2016 database after a 4-fold cross-validation
over 78 samples of each class.

0.003 and batch size of 100, weights for `1 and `2 penalties were
10−5 and 10−4, respectively. The CNN, with the same configura-
tion used for the DCASE 2013 dataset, still resulted in the lowest
performance. These four systems will also be tested with the test
set for participating in the DCASE 2016 challenge.

The confusion matrix for SVM-A is shown in Fig. 2, where
rows are groundtruth, columns are the inferred class label, and val-
ues are number of the classified acoustic scene. As it can be seen,
some environments containing a specific type of noise (such as car,
metro station, forest path) are quite easy to recognize, while some

others (such as home, residential area, park) are quite confusing.

4. CONCLUSION

In this article we present several approaches for the ASC task, tar-
geting on fast systems working with very compact feature repre-
sentations so that ASC can be implemented e.g. in smartphones.
We investigate the use of Bayesian optimization for hyperparameter
optimization and find its benefit in e.g. choosing the optimal win-
dow length for STFT or setting DNN parameters. By evaluating on
benchmark DCASE datasets, we find that (1) a long window size
for spectral transformation is more relevant for the environmental
acoustic scenes, (2) a very compact feature representation by long-
term temporal averaging of Mel-log-spectrogam coefficients would
be sufficient for the task compared to more complicated approaches,
and (3) similar accuracies are found for the two datasets, possibly
owing to the similarities between these datasets or to the robustness
of the proposed systems. Finally, it is worth noting that DNN ap-
proaches have not reached the same performance of the more classi-
cal SVM based systems so far. Thus future work would be devoted
to investigate transfer learning strategies for DNN based systems
where part of the DNN can be initially learned by a large amount of
external audio data.
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M. Wojnarski, and J. Swietlicka, “Report of the ISMIR 2011
contest: music information retrieval,” in Foundations of Intel-
ligent Systems. Springer Berlin Heidelberg, 2011, pp. 715–
724.

[6] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and
T. Sorsa, “Computational auditory scene recognition,” in
Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, vol. 2. IEEE, 2002, pp.
II–1941.

[7] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and
M. D. Plumbley, “Detection and classification of acous-
tic scenes and events,” Multimedia, IEEE Transactions on,
vol. 17, no. 10, pp. 1733–1746, 2015.

[8] J.-J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-
frames approach to audio pattern recognition: A sufficient
model for urban soundscapes but not for polyphonic music,”
The Journal of the Acoustical Society of America, vol. 122,
no. 2, pp. 881–891, 2007.

[9] M. Lagrange, G. Lafay, B. Defreville, and J.-J. Aucouturier,
“The bag-of-frames approach: a not so sufficient model for
urban soundscapes,” The Journal of the Acoustical Society of
America, vol. 138, no. 5, pp. EL487–EL492, 2015.

[10] A. Mesaros, T. Heittola, O. Dikmen, and T. Virtanen, “Sound
event detection in real life recordings using coupled ma-
trix factorization of spectral representations and class activ-
ity annotations,” in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 151–155.

[11] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent
neural networks for polyphonic sound event detection in real
life recordings,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2016, pp. 6440–6444.

[12] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: Robust
smartphone audio sensing in unconstrained acoustic environ-
ments using deep learning,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’15. ACM, 2015, pp. 283–294.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” Sig-
nal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97,
2012.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[15] J. T. Geiger, B. Schuller, and G. Rigoll, “Recognising acous-
tic scenes with large-scale audio feature extraction and SVM,”
IEEE AASP Challenge: Detection and Classification of
Acoustic Scenes and Events, Tech. Rep, 2013.

[16] D. Li, J. Tam, and D. Toub, “Auditory scene classification us-
ing machine learning techniques,” IEEE AASP Challenge on
Detection and Classification of Acoustic Scenes and Events,
2013.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, vol. 35,
no. 8, pp. 1798–1828, 2013.

[18] K. J. Piczak, “Esc: Dataset for environmental sound classifi-
cation,” in Proceedings of the 23rd ACM international confer-
ence on Multimedia. ACM, 2015, pp. 1015–1018.

[19] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxon-
omy for urban sound research,” in Proceedings of the 22nd
ACM international conference on Multimedia. ACM, 2014,
pp. 1041–1044.

[20] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan, “A dual coordinate descent method for large-scale
linear SVM,” in Proceedings of the 25th international confer-
ence on Machine learning. ACM, 2008, pp. 408–415.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
The Journal of Machine Learning Research, vol. 9, pp. 1871–
1874, 2008.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural net-
works, vol. 2, no. 5, pp. 359–366, 1989.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive mod-
eling, vol. 5, p. 3, 1988.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,” The
Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by pre-
venting co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[26] G. Roma, W. Nogueira, P. Herrera, and R. de Boronat, “Recur-
rence quantification analysis features for auditory scene clas-
sification,” IEEE AASP Challenge: Detection and Classifica-
tion of Acoustic Scenes and Events, Tech. Rep, 2013.

[27] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in
neural information processing systems, 2012, pp. 2951–2959.

[28] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python
library for optimizing the hyperparameters of machine learn-
ing algorithms,” in Proceedings of the 12th Python in Science
Conference. Citeseer, 2013, pp. 13–20.

[29] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Al-
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ABSTRACT

In this paper, we propose two methods for polyphonic Acoustic
Event Detection (AED) in real life environments. The first method
is based on Coupled Sparse Non-negative Matrix Factorization
(CSNMF) of spectral representations and their corresponding class
activity annotations. The second method is based on Multi-class
Random Forest (MRF) classification of time-frequency patches. We
compare the performance of the two methods on a recently pub-
lished dataset TUT Sound Events 2016 containing data from home
and residential area environments. Both methods show compara-
ble performance to the baseline system proposed for DCASE 2016
Challenge on the development dataset with MRF outperforming the
baseline on the evaluation dataset.

Index Terms— Acoustic event detection, random forest classi-
fier, non-negative matrix factorization, sparse representation

1. INTRODUCTION

Acoustic Event Detection (AED) is an important task in machine
listening. It aims to automatically recognise, label, and estimate the
position in time in a continuous audio signal of meaningful sounds,
referred to as acoustic events. There exists a number of real-world
applications for AED such as home-care [1], surveillance [2], multi-
media retrieval [3], urban traffic control [4], to name just a few. The
task of AED can be broadly classified into monophonic and poly-
phonic detection. Monophonic detection, which has been the major
area of research in this field, aims to recognize only one prominent
event at a time [5, 6, 7]. However, in real-life environments multiple
events occur at the same time making the task challenging. Poly-
phonic detection aims to identify these several overlapping events
at the same time.

Several solutions have been proposed for polyphonic AED.
Some approaches were strongly inspired by speech recognition
systems, using mel frequency cepstral coefficients (MFCCs) with
Gaussian Mixture Models (GMMs) combined with Hidden Markov
Models (HMM) [8, 9]. Another popular technique for AED is
matrix factorization of time-frequency spectra, especially Non-
negative Matrix Factorization (NMF) [10]. NMF has been used
to extract dictionaries for each acoustic event class in a supervised
manner using isolated sounds [11, 12]. This approach served as
a baseline for the Event Detection - Office Synthetic subtask of

The research leading to these results has received funding from the Eu-
ropean Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014)
under grant agreement no 642685 MacSeNet. MDP is also partly supported
by EPSRC grant EP/NO14111/1

DCASE2013 Challenge [13]. In the same challenge, the best per-
formance on polyphonic AED was achieved by examplar-based
NMF decomposition followed by HMM postprocessing [14]. An-
other system used NMF to separate sound into different tracks and
then detected events in each track separately assuming prior knowl-
edge of the number of overlapping sources [15]. Probabilistic La-
tent Component Analysis (PLCA), the probabilistic counterpart of
NMF, was also used for polyphonic AED using isolated sounds as
training data [16].

Recently, several approaches for polyphonic AED that learn
models directly from the mixture of sounds have been proposed.
NMF applied to annotated overlapping events was used directly on
the mixture of sounds, without the need to learn from isolated sam-
ples [17, 18]. Feed-forward deep neural networks (FNNs) trained
on mixtures of sounds for multi-label AED achieved better perfor-
mance than NMF [19]. Recurrent neural networks (RNNs) using bi-
directional long short-term memory (BLSTM), which can directly
model the sequential information of audio, were reported to out-
perform FNNs on the same dataset [20]. Despite their successes
DNNs have several drawbacks. They are computationally complex
and rely on huge amounts of data, hence data augmentation is often
necessary to achieve better results [20]. Moreover, it is often diffi-
cult to interpret, what features does a DNN learn. On the contrary,
methods such as NMF or multi-class classification are less compu-
tationally complex, and, in the case of NMF, may offer interpretable
dictionaries.

In this paper, we propose two methods for polyphonic AED.
The first method is inspired by promising results of coupled ma-
trix factorization in [18]. We explore this idea by modifying the
learning algorithm to explicitly sparse NMF. The second method is
based on a multi-class random forest classification [21]. The ran-
dom forest classifier has proved efficient for environmental sound
classification and for monophonic AED [22, 6]. Therefore, we ex-
plore its application to polyphonic AED. As feature input for both
methods we chose 2D time-frequency patches, which have proven
effective for standard NMF [7]. We investigate the influence of the
size of the patch. We compare our results on the TUT Sound Events
2016 introduced for the DCASE2016 Challenge [23].

This paper is organised as follows: Section 2 presents the de-
tails of training and testing procedures of the two methods. The
experimental setup and the results of the evaluation are shown in
Section 3. Section 4 contains the discussion of the results and con-
clusions. Conclusions and future work are presented in Section 5.

90



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

2. METHOD

We propose two methods for polyphonic AED and compare them
on the development set of Task 3 of the DCASE2016 Challenge.
The first method is based on sparse dictionary learning using non-
negative matrix factorization (NMF) on 2D spectral patches coupled
with class annotations. The second is based on a simple multi class
random forest classification of 2D spectral patches. Both methods
classify directly the mixture of events instead of building separate
models for each sound event. The output of each method per frame
is directly a set of multiple labels class activity. In order to make
a fair comparison between the methods, we use the same prepro-
cessing and post processing for both approaches. Both methods are
implemented using python. For audio processing we used librosa
[24] and for machine learning scikit-learn [25] libraries.

2.1. Preprocessing

We pre-process the data to reduce the dimensionality but at the
same time remain meaningful representation appropriate for envi-
ronmental sounds. Therefore, as a feature representation we choose
to use the perceptually motivated mel scale [26]. We extract mel-
spectrograms with 40 components, using a window size of 23 ms,
hop size of the same duration and sampling frequency of 44.1
kHz. In order to model temporal dynamics of environmental sounds
we choose a spectro-temporal representation of the data, which is
achieved by grouping several consecutive frames into 2D spectral
patches, also known as shingling, which has proven to be a dis-
criminative feature for environmental audio classification [22]. We
investigate the size of patches as it may differ depending on the
characteristics of the sounds that we are trying to detect. Finally,
the patches are normalised to account for intensity level difference
among different occurrences of the events.

2.2. Coupled Sparse Non-negative Matrix Factorization

Coupled Sparse Non-negative Matrix Factorization (CSNMF) is in-
spired by the approach by Dikmen et al. [17]. The system presented
by the authors uses coupled matrix factorization to learn dictionar-
ies based on spectral representation of signals and the correspond-
ing labels. In our method, we use sparse NMF to learn the coupled
dictionaries in an analogical way.

The aim of a standard NMF is to find a low-rank representation
of a matrix V by approximating it as a product of a non-negative
dictionary W and its non-negative activation matrix H, so that:

V ≈ V̂ = WH (1)

where V ∈ RF×N
+ , W ∈ RF×K

+ and H ∈ RK×N
+ .

In a coupled matrix factorization problem we are given two dif-
ferent matrices V(1) and V(2), which we want to decompose into
non-negative dictionaries W(1) and W(2) which share a common
activation matrix H. For polyphonic AED, V(1) is a spectral rep-
resentation of the signal of size F × N , V(2) is a binary matrix
of class activation of size E × N . F is the number of frequency
bins, N number of frames and E number of classes of events. The
dictionaries W(1) and W(2) are found by minimizing the following
objective function:

η1D
(1)(V(1)||W(1)H) + η2D

(2)(V(2)||W(2)H) + λ||H||1 (2)

where D(V||V̂) is chosen to be Kullbeck-Leibler (KL) divergence
between the data V and the approximation V̂ and λ is a regulariza-
tion parameter that penalizes over the l1-norm, which induces spar-
sity on activation matrix H. To facilitate computation the weighting
parameters are chosen to be equal, i.e η1 = η2 = 1. We choose 60
bases for NMF, the number selected empirically.

The authors of [17] used an estimator based on maximum
marginal likelihood (MMLE), which was shown to return sparse
solutions. In order to investigate the influence of sparsity on the
performance of the algorithm, we introduce the sparse regularisa-
tion explicitly and minimise the objective function in (2) using the
multiplicative update rule for NMF with a sparsity constraint λ on
the activation matrix [10, 27]:

W←W� VHT

1 ·HT

H← H � WT V
WT · 1 + λ

(3)

where V is a concatenation of V(1) and V(2) , W is a concate-
nation of W(1) and W(2), H the common activation matrix, λ the
sparsity regularizer and 1 is a matrix of ones of the size of V . A�B
denotes a Hadamard product of two matrices, A/B - Hadamard di-
vision and other multiplications are matrix multiplications.

Having learnt the dictionaries W(1) and W(2), in the testing
phase we obtain an activation matrix Htest based on spectral repre-
sentation of the test data, V(1), and its dictionary W(1). Next, we
obtain the class activity matrix, V(2), by multiplying the activation
matrix Htest with the label dictionary W(2). More details can be
found in [17]. The estimated class activity matrix needs to be bina-
rised using an arbitrary threshold to show the presence or absence
of the sound.

2.3. Multi-class random forest classification

The multi-class random forest classification (MRF) method is based
on classification of spectro-temporal patches using random forest
classifier of 500 trees. This combination of features and classifier
has proved to perform well on environmental sound classification
task [22]. As the authors of [22] classify single events only, we
modify the method to perform polyphonic AED. ForE events in the
dataset, we model all their possible combinations, i.e. we construct
M = 2E classes. That means, that the setM of possible classes is a
Cartesian product of {0, 1}E . We classify each patch as belonging
to one of the M product classes and concatenate all the estimates to
form a class activation matrix. We can only model combinations of
sounds already seen in the training set. Hence, any new combination
of audio events will not be recognised correctly.

2.4. Postprocessing

We post-process the annotation matrices obtained by both methods
using the baseline approach for DCASE2016, i.e. discarding events
shorter than 100 ms and removing gaps shorter than 100 ms between
the events.

3. EXPERIMENTS

3.1. Experimental setup and metrics

The two methods, CNMF and MRF, are tested on the TUT Sound
Events 2016 dataset provided as a development set for Task 3 of
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DCASE2016 Challenge [23]. The dataset consists of two everyday
environments: one outdoor environment which is residential area
with 7 classes, and one indoor environment, home with 11 classes.
Table 1 shows the list of classes and the number of instances for
both acoustic scenes. We can clearly see that the dataset is unbal-
anced, especially the residential area acoustic scene. Two classes,
namely “bird singing” and “cars passing by”, account for 74% of all
the class instances. The home acoustic scene dataset is more bal-
anced, but the two most appearing classes, i.e. “dishes”, and “object
impact”, account for 42% of all instances.

Residential area Home
Event class instances Event class instances
object (banging) 23 (object) rustling 60
bird singing 271 (object) snapping 57
car passing by 108 cupboard 40
children shouting 31 cutlery 76
people speaking 52 dishes 151
people walking 44 drawer 51
wind blowing 30 glass jingling 36

object impact 250
people walking 54
washing dishes 84
water tap running 47

Table 1: TUT Sound Events 2016: event classes and number of
instances

As a metric for evaluating the methods we chose the official
measure proposed for DCASE2016 Challenge, that is segment-
based F-score given by the formula:

F =
2P ·R
P +R

,P =
TP

TP + FP
,R =

TP

TP + FN
(4)

where TP is the number of true positives, FP - false positives,
and FN - false negatives.

The second metric that we report is Error Rate (ER), proposed
for DCASE2016, which measures the amount of errors in terms of a
number of insertions I(k), deletionsD(k) and substitutions S(k) in
a segment k [23]. The Error Rate is then calculated by integrating
segment-wise counts over the total number of segments K, with
N(k) being the number of active ground truth events in segment k:

ER =

∑K
k=1 S(k) +

∑K
k=1D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
(5)

Both F-score and Error Rate are calculated in 1 second seg-
ments.

3.2. Results

3.2.1. Binarization of activity matrix

The activation matrix that we get from CSNMF method needs to be
binarized with a certain threshold in order to determine the presence
of events. To determine the threshold value, we search among a
number of threshold values to find the best balance between the F-
score and Error Rate. For residential area environment the threshold
is chosen to be of 30% of the maximum activation value, whereas
for home environment - 20% of the maximum activation value.

3.2.2. Temporal context and sparsity

Table 2 and 3 show the influence of the sparsity regularizer and
size of the 2D time-frequency patches on the performance of the
proposed CSNMF method in residential area and home environment
respectively. For the residential area we can see that adding some
temporal context improves the F-score. The best result is achieved
for 4 concatenated frames. Longer context is not beneficial for the
method. Similarly, enforcing sparsity improves the results with the
highest performance for λ = 0.3. However, for home environment
the best performance is achieved with high sparsity, λ = 0.5, but
using a single time frame as an input.

λ 0 0.1 0.2 0.3 0.5 1

1 frame 22.8% 30.5% 31.9% 19.3% 25.4% 23.5%
2.45 1.37 1.13 1.03 1.11 0.95

4 frames 32.7% 33.9% 32.9% 35.8% 29.8% 11.7%
1.46 1.09 0.95 0.86 0.95 1.03

6 frames 36.0% 34.2% 36.7% 35.1% 31.5% 16.3%
0.96 1.01 0.91 0.96 0.92 1.05

8 frames 32.5% 42.0% 31.0% 32.6% 27.6% 14.6%
1.21 0.95 1.02 0.96 1.00 1.06

10 frames 36.9% 43.2% 29.6% 23.6% 23.3% 15.8%
0.96 0.96 1.00 1.07 1.04 1.09

12 frames 37.4% 37.5% 34.6% 21.7% 16.8% 12.6%
0.97 0.95 1.04 1.04 1.10 1.09

Table 2: Residential area environment: F-score (%) and Error Rate
(ratio) for different values of sparsity regularizer λ and temporal
context (number of concatenated frames) using CSNMF

λ 0 0.1 0.2 0.3 0.5 1

1 frame 8.3% 8.0% 7.1% 7.5% 11.7% 11.4%
5.72 3.18 1.73 1.79 1.25 1.32

4 frames 6.0% 7.4% 6.8% 10.0% 7.9% 11.6%
3.13 1.83 1.36 1.41 1.35 1.35

6 frames 8.4% 9.3% 6.3% 6.7% 9.3% 10.1%
1.77 1.58 1.40 1.51 1.48 1.65

8 frames 7.9% 10.0% 7.9% 6.5% 6.6% 7.6%
1.62 1.48 1.39 1.40 1.60 1.82

10 frames 4.9% 6.6% 7.7% 8.6% 6.8% 7.0%
1.52 1.55 1.45 1.56 1.74 1.94

12 frames 6.6% 6.4% 5.8% 6.9% 5.1% 10.0%
1.51 1.37 1.52 1.72 1.78 2.03

Table 3: Home environment: F-score (%) and Error Rate (ratio)
for different values of sparsity regularizer λ and temporal context
(number of concatenated frames) using CSNMF

Table 4 shows the influence of the temporal context for the sec-
ond proposed method, i.e. MRF classification. The best F-score and
Error Rate for residential area environment is achieved for 2D time-
frequency patches of 4 concatenated frames. For home environment
the best result is achieved for 1 frame only.

3.2.3. Method comparison

The results on the development dataset for each context for the
baseline, our Coupled Sparse Non-negative Matrix Factorization
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Residential area Home
F ER F ER

1 frame 36.8% 0.84 10.3% 0.97
4 frames 44.7% 0.83 14.9% 0.98
6 frames 45.0% 0.85 16.8% 0.98
8 frames 44.2% 0.84 17.4% 0.98
10 frames 44.1% 0.84 17.3% 0.99
12 frames 43.7% 0.83 16.2% 0.99

Table 4: F-score and Error Rate for different temporal context
(number of concatenated frames) using Multi-class Random Forest
(MRF) for home and residential area environments

(CSNMF) approach and our Multi-class Random Forest (MRF) ap-
proach in terms of F-score and Error Rate are shown in Table 5.
As a baseline we chose the system provided for the DCASE2016
Challenge, which is based on MFCC acoustic features and GMM
classifier [23]. On the development set, the MRF classifier out-
performs the baseline in residential area environment and achieves
comparable average results. CSNMF achieves similar F-score as
the baseline but with a higher Error Rate. The results on the evalu-
ation dataset are shown in Table 6. MRF outperformed the baseline
and CNMF in both F-score and Error Rate.

Residential area Home Average
System F ER F ER F ER
baseline 31.5% 0.86 15.9% 0.96 23.7% 0.91
CSNMF 35.8% 0.86 11.7% 1.25 23.8% 1.06
MRF 44.7% 0.83 17.4% 0.98 31.1% 0.91

Table 5: Development dataset: Results for each context for the
baseline system, Coupled Sparse Non-negative Matrix Factoriza-
tion (CSNMF) approach and Multi-class Random Forest (MRF) ap-
proach in terms of F-score and Error Rate

Evaluation dataset
System F ER
baseline 34.3% 0.88
CSNMF 29.2% 1.07
MRF 44.1% 0.82

Table 6: Evaluation dataset: Average results for the baseline sys-
tem, Coupled Sparse Non-negative Matrix Factorization (CSNMF)
approach and Multi-class Random Forest (MRF) approach in terms
of F-score and Error Rate

4. DISCUSSION

We observe much lower performance of each of the compared meth-
ods on the home environment of the development dataset. This may
be due to higher level of polyphony.

We have investigated the influence of the temporal context, i.e.
number of concatenated frames, on the performance of the systems.
Taking CSNMF method into consideration, introducing 2D spec-
tral patches was beneficial for the residential area acoustic scene,
however, it did not improve the performance for the home acous-
tic scene. That may be due to the fact that in the home environ-
ment we experience more impact sounds, such as “object impact”,

“cupboard”, “object snapping”. Therefore, longer temporal con-
text may blur the information contained in a single frame. On the
contrary, residential area contains many sounds with long charac-
teristics, such as “car passing by”, “bird singing”, which are at the
same time the most frequent ones in the dataset.

We also investigated the influence of inducing explicit spar-
sity on matrix factorization, which has lead to better performance.
Higher sparsity needs to be imposed for shorter temporal context.

An interesting discussion is brought up by analysing the results
on the residential area environment of the evaluation dataset. As
seen in Table 7, the algorithms, especially MRF, in fact recognize
two classes very well, i.e. “bird singing” and “car passing by”, ap-
pearing much more often in the dataset than the others. Neverthe-
less, the average F-score of MRF is 9.9 percentage points higher
than the baseline. Such a result shows the necessity of either eval-
uating the algorithms on a balanced dataset, where the events are
distributed more evenly or using class-wise metrics to compare the
performance of the algorithms.

MRF CSNMF
Event label Nref F ER F ER
(object) banging 11 0.0% 1.00 0.0% 1.27
bird singing 413 54.7% 1.15 56.3% 1.54
car passing by 213 68.6% 0.65 16.1% 0.98
children shouting 15 0.0% 1.00 0.0% 1.13
people speaking 57 0.0% 1.14 16.3% 2.16
people walking 146 0.0% 1.00 10.1% 1.46
wind blowing 48 0.0% 1.00 4.1% 0.98

Table 7: Residential area environment: F-score, Error Rate and
number of references (Nref) in the dataset for each class us-
ing Multi-class Random Forest (MRF) and Coupled Sparse NMF
(CSNMF)

5. CONCLUSION

In this paper we presented two methods for polyphonic AED in
real environments. Both of the presented approaches achieve simi-
lar segment-wise F-score and Error Rate to the DCASE2016 base-
line system on the TUT Sound Events 2016 dataset. The proposed
MRF classification of spectral patches outperformed significantly
the baseline on evaluation dataset despite its obvious drawbacks,
such as incapability of recognizing a combination of sounds that
was not present in the training dataset. Therefore, in the future
we will investigate the possibilities of generating new combina-
tions of sounds by allowing for multi-label classification. More-
over, spectro-temporal patches retrieved by shingling are a straight-
forward way for modelling temporal context, which did not im-
prove detection on home environment. Therefore, we will inves-
tigate more complex time-frequency structure descriptors, such as
the scattering transform. Additionally, we will investigate multi-
resolution approaches to model both short and long acoustic events.
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ABSTRACT
This workshop paper presents our contribution for the acoustic scene
classification (ASC) task proposed for the “detection and classification
of acoustic scenes and events” (DCASE) 2016 challenge. We propose
the use of a convolutional neural network trained to classify short
sequences of audio, represented by their log-mel spectrogram. We
also propose a training method that can be used when the system
validation performance saturates as the training proceeds. The system
is evaluated on the public ASC development dataset provided for the
DCASE 2016 challenge. The best accuracy score obtained by our
system on a four-fold cross-validation setup is 79.0% which constitutes
a 8.8% relative improvement with respect to the baseline system.

Index Terms— Acoustic scene classification, convolutional neu-
ral networks, DCASE, computational audio processing

1. INTRODUCTION

When we talk of ASC we refer to the capability of a human or an
artificial system to understand an audio context, either from an on-line
stream or from a recording. “Context” or “scene” are concepts that
humans commonly use to identify a particular acoustic environment,
i.e. the ensamble of background noises and sound events that we
associate to a specific audio scenario, like a restaurant or a park. For
humans this may look like a simple task: complex calculations that
our brain is able to perform and our extensive life experiences allow
us to easily associate these ensembles of sounds to specific scenes.
However, this task is not trivial for artificial systems. The interest
in computational ASC lies in its many possible applications, like
context-aware computation [1], intelligent wearable interfaces [2]
and mobile robot navigation [3]. In the field of machine learning
different models and audio feature representations have been proposed
to deal with this task, especially in the last few years, thanks to the
contributions to the previous DCASE challenge in 2013 [4]. Some
examples of classifiers used in the previous challenge are Gaussian
mixture models (GMMs) [5], support vector machines [6] and tree
bagger classifiers [7].

Nowadays, application of convolutional neural networks (CNNs)
for audio-related tasks is becoming more and more widespread, for
example in speech recognition [8], environmental sound classifica-
tion [9] and robust audio event recognition [10]. To the best of our
knowledge this is the first work introducing a CNN-based classifier
specifically designed for ASC.

Our system is designed to output class prediction scores for short
audio sequences. During training a recently-proposed regularization

*This work has been done during an internship at Tampere University of
Technology.

technique is used, i.e. batch normalization. In addition, we propose
a training procedure that will allow the classifier to achieve a good
generalizing performance on the development dataset. Hence our
intent is to propose a system capable of improving the baseline system,
represented by a GMM [11] classifier, and to give a novel contribution
for future development in the use of neural networks for the ASC task.

In Section 2 a brief background about CNNs is given. Then, a
detailed description of the proposed system is reported in Section 3.
Finally, results for the proposed model and comparisons between
different configurations are presented in Section 4 and our conclusions
are reported in Section 5.

2. CONVOLUTIONAL NEURAL NETWORKS

In a CNN inputs are processed by small computational units (neurons)
organized in a layered structure. The most remarkable feature that
makes CNNs a particular subset of feed-forward neural networks
is the presence of convolutional layers. Convolutional layers are
characterized by neurons (called kernels) that perform subsequent non-
linear filtering operations along small context windows of the input,
i.e. their receptive fields (RFs). This localized filtering is a feature
known as local connectivity and it represents one key characteristic for
obtaining invariance against input pattern shifts. Parameters defining
the RF are its width (L), height (H), depth (D) and stride. The area
(L×H) defines the dimension of the kernel’s context window and
the stride defines how much this window will slide between two
filtering operations. Both area and stride are free parameters, whereas
the depth is the same as the input’s. For example, if the input is a
three-channel (RGB) picture the network will be fed with a tensor
with depth D = 3. In an audio analysis scenario the input can be
a spectrogram, represented by a bi-dimensional matrix, which has
unitary depth dimension (D = 1). Moreover, if the convolutional
layer is acting on the output of another convolutional layer, then D
will be equal to the number of kernels of the former layer.

Non-linear filtering consists of two steps. In the first place an out-
put is calculated through a linear combination of each pixel currently
seen by the RF. Then, this output is fed into a non-linear function, i.e.
the activation function. Activation functions that are typically used are
the sigmoid, the hyperbolic tangent or the rectifier function. Finally,
subsequent kernel outputs are collected in matrices that are called
feature maps.

Pooling layers are usually placed after each convolutional layer
to reduce each feature map dimensions and to enhance the network
invariance to input pattern shifts. The most common pooling layer
is formed by filters that operate with non-overlapping windows by
extracting the highest value from the area, i.e. max-pooling. Therefore,
the stacking of multiple convolutional and pooling layers will make
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Figure 1: Block diagram of the proposed method.

the network able to extract features with a gradual increment of the
input overview. The output layer is usually a fully-connected softmax
layer. So, if we define yi as the output of neuron i in the last layer we
will have:

yi = softmax(xi) =
exp(xi)∑N

j=1(exp(xj))
, (1)

where N is the number of possible classes, xi the input to the non-
linearity and yi the prediction score for the input sequence to belong
to the ith class. Hence the overall output is a vector y containing all
network’s prediction scores associated to each class. If we let yj to be
the highest of these scores, the predicted class for the input sequence
will be the j th class. In order to optimize the network parameters a
comparison between the prediction vector y and a target vector is
performed in terms of a loss function. Typically used loss functions
are the mean squared error or the categorical cross-entropy.

3. PROPOSED METHOD

In this section we describe our method and the architecture chosen
for the proposed system. The main steps are represented as a block
diagram in Figure 1.

3.1. Feature representation and preprocessing

The feature representation we choose for our system is the log-mel
spectrogram. To calculate it we apply a short-time Fourier transform
(STFT) over windows of 40 ms of audio with 50% overlap and Ham-
ming windowing. We then square the absolute value of each bin and
apply a 60-band mel-scale filter bank. Finally, the logarithmic conver-
sion of the mel energies is computed. The whole feature extraction
process has been implemented in Python using the librosa [12] library.

After the extraction process we normalize each bin by subtracting
its mean and dividing by its standard deviation, both calculated on the
whole training set of each fold. We then split normalized spectrograms
into shorter spectrograms, which we will call sequences hereafter.
Tests with different sequence lengths are reported in Section 4. Unlike
frames used for the STFT, we choose sequences to be non-overlapping.
At the end of this process the input to the CNN is a matrix which can
be treated as a mono-channel image.

3.2. Proposed architecture

The proposed model consists of a deep CNN and it is represented
in Figure 2. Parameters we report here are chosen as a result of
experiments aimed to test different kernel numbers and different RF
areas.

The first layer performs a convolution over the input spectrogram
with 128 kernels characterized by 5× 5 RFs and unitary depth and
stride in both dimensions. The obtained feature maps are then sub-
sampled with a max-pooling layer which operates over 5 × 5 non-
overlapping squares. The second convolutional layer is the same as the
first one, with the exception that more kernels (256) are used in order to
grant higher level representation. The second and last sub-sampling is
then performed aiming to the “destruction” of the time axis. Therefore,
we use a max-pooling layer which operates over the entire sequence
length and, on the frequency axis, only over four non-overlapping
frequency bands. The activation function used for kernels in both
convolutional layers is the rectifier function, therefore kernels are
usually called rectifier linear units (ReLUs) [13]. Finally, since the
classification involves 15 different classes, the last is a softmax layer
composed of 15 fully-connected neurons.

The classification for the whole segment is obtained by averaging
all prediction scores obtained for its sequences. Recalling the notation
introduced in Section 2, the CNN output y(i) is now a vector containing
all class-wise prediction scores for the ith sequence. Then, the predicted
class c∗ for the whole segment is calculated as:

c∗ = argmax
c

[
1

M

M∑
i=1

y(i)c

]
, (2)

where M is the number of sequences into which the segment is split
and y(i)c is the cth entry of y(i). In other words, the predicted class
is the position of the maximum entry yc∗ in the vector given by the
average of all prediction vectors output for each sequence.

The system is implemented with the Keras library (vers. 1.0.4) [14]
for Python and its training is performed with an Nvidia Tesla K80
GPU showing an average training time of 50 s per epoch. The loss
function we use for training is the categorical cross-entropy and
the optimization algorithm we choose for its minimization is the
adaptive momentum (adam) [15]. Basing on preliminary experiments
we propose to use the optimizer default parameter configuration.

3.3. Regularization and model training

Batch normalization, introduced in [16], is a technique that addresses
the issue described by Shimoidara et al. [17], known as internal covari-
ate shift. We can look at batch normalization as an intermediate layer
placed after each of the two convolutional layers in order to whiten the
output of such layers. As showed in [16] and in our preliminary exper-
iments, this practice can drastically reduce the training convergence
time. A batch normalization layer applies a linear transformation
BNβ,γ to its input x as follows:

BNβ,γ(x) =
γ√

Var[x] + ε
· x+

(
β − γ · E[x]√

Var[x] + ε

)
, (3)

where E[x] and Var[x] are the mean and the variance of the input
to the batch normalization layer, calculated for a batch of samples.
Moreover, γ and β represent the transformation parameters that will
be learned during training. We use batch normalization to normalize
kernel outputs, therefore we have one γ and one β for each kernel.
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Figure 2: Block scheme of the used convolutional neural network. Max-pooling windows are represented in red, kernel RFs are in light blue.

By using batch normalization we increase the model complexity, but
preliminary experiments showed better performance and a drastic
reduction of the number of epochs needed for training convergence.

The proposed training method consists of two phases. The first,
called non-full training, starts with a splitting of the whole training
data into two subsets: one for training and one for validation. Every
epoch we collect training spectrograms into class-wise feature lists so
to randomly shuffle and time-shift them before the sequence splitting.
This is done in order to increase the input variability, hence showing the
network always slightly different sequence spectrograms. Then, every
five epochs we check the segment-wise performance on both training
and validation sets according to the metrics described in Section 4.
After the check, we save the network parameters if the segment-
wise validation score has improved. Finally, we stop the training if
no improvement is recorded after 100 epochs. With this setup it is
possible to notice that the segment-wise validation performance is
prone to saturate. This means that the score starts to oscillate around
a fixed, stable value. When this happens we say that the system has
converged, therefore it is possible to proceed to the second phase,
which we call full training. In this phase we decide to re-train the
network on all the training data for a fixed number of epochs. This
number is chosen by looking at the convergence time of segment-wise
validation accuracies during the non-full training. A model trained
this way will reach a convergence state without excessive overfit and
making the best of all the available training data. This fact may turn
out to be particularly desirable when dealing with small datasets, such
as in this case.

4. EVALUATION

4.1. Dataset and metrics

For our evaluation we use the DCASE 2016 [11] development dataset
as provided at the beginning of the challenge, when mobile phone
interferences were not annotated. We do not consider this a problem,
since only less than the 1% of the total audio duration is affected. The
dataset consists of 1170 audio segments of thirty seconds, equally
distributed between 15 different classes, and of text files including both
the annotated ground truth and the recommended data subdivision. The
15 classes are: beach, bus, café/restaurant, car, city center, forest path,
grocery store, home, library, metro station, office, park, residential
area, train and tram.

Groups of segments have been obtained by splitting a longer audio
file recorded in a single location. Due to this fact it is important not
to train and evaluate the network performance on segments coming
from the same location, since this would falsify the generalization
score. Because of this, we decide to use the training and test subsets

recommended in the dataset annotations. The train/test split gives
us approximatively 880 training segments for each fold, some folds
having fewer segments. This is due to the fact that different long
recordings have been split into a variable number of segments, ranging
from three to ten. This means that the distribution of per-location
segments is not uniform. Similarly to what was done for the recom-
mended sets, for the training/validation split we decide how many
locations to use for validation and then pick all segments coming from
those locations.

The model is evaluated according to a four-fold cross-validation
scheme. For the evaluation of each fold, per-class accuracies are
initially calculated on the test set on a segment-wise level. These
accuracies are obtained by dividing the number of correctly classified
segments by the total number of segments belonging to the class.
Accuracies for each fold are then obtained by averaging all the 15
per-class accuracies. Finally, the overall accuracy is calculated by
averaging the four per-fold accuracies.

4.2. Classification accuracy and sequence length

Our ability to distinguish different scenes from acoustic information
is influenced by the length of the sequence we can listen to. Hence,
the main focus of this section is a comparison between accuracies
obtained with different sequence lengths. The average convergence
time we estimate, hence the chosen full training period, is 200 epochs.
For full training configurations we compute mean accuracies over
four experiments involving different random weights initializations.
Results we report in Table 1 apparently highlight that medium-length
sequences, like three or five seconds, perform better than extremely
short or long sequences. The best accuracy is achieved by the three-
second configuration, with an average accuracy of 75.9% with the
non-full training configuration. The accuracy rises to 79.0% if full
training is performed.

A deeper insight into which classes are mostly misclassified can
be obtained by looking at the confusion matrix in Figure 3, which we
obtained by grouping results of all folds. What emerges is that some
classes — e.g. “park” and “residential area”, or “bus” and “train” —
are often confused by the system. This may indicate that our model is
relying more on the background noise of the sequence rather then on
acoustic event occurrences. We believe that this can also explain why
classes with very similar background noises are confused even when
30-second sequences are used. Due to results in Table 1, we choose
three seconds as the sequence length used for the challenge evaluation
results. For the final training we use the whole development dataset
and we estimate the new convergence time to be 400 epochs. With this
configuration our model reaches a 86.2% accuracy score, therefore
ranking the sixth place out 57 systems submitted in the first task of

97



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

Table 1: Accuracy comparison for the proposed model trained with
different sequence lengths (seq. len.) and training modes (“non-full”
and “full”). Standard deviations refer to full training accuracies.

seq. len. (s) accuracy (%)

non-full full ± s.d.

0.5 68.2 75.4 0.75
1.5 74.0 78.4 1.19
3 75.9 79.0 0.68
5 74.1 78.3 0.86

10 71.5 77.3 0.88
30 74.0 75.6 0.44

Table 2: Accuracy comparison for different systems and training
modes (“non-full” and “full”). Neural architectures are identified by
their number of hidden layers.

system seq. len. (s) accuracy (%)

non-full full

two-layer MLP (log-mel) - 66.6 69.3
one-layer CNN (log-mel) 3 70.3 74.8
two-layer CNN (log-mel) 3 75.9 79.0
two-layer CNN (MFCC) 5 67.7 72.6
baseline GMM (MFCC) - - 72.6

the DCASE 2016 challenge.

4.3. Comparison of other systems

Here we report new comparisons with other systems that have been
tested during our development. All parameter configurations are cho-
sen in order to give each system a representation capacity that can be
comparable with the proposed network’s.

The first system we introduce is a multi-layer perceptron (MLP)
with two hidden layers. The input layer consists of 900 nodes to which
we apply log-mel features for a context window of 15 frames. We then
stack two hidden layers with 512 ReLU units (both batch-normalized)
and an output layer with 15 softmax neurons. The difference from
the proposed network is that the output is now the class associated
to the central frame of the context window, which is sliding with
unitary stride along the spectrogram. Segment-wise classification is
performed as described in Eq. (2), but now M represents the number
of frames in a segment. With the non-full training setup the proposed
model achieves a 66.6% accuracy with a convergence time of 100
epochs. A full training for 100 epochs lets the model achieve a 69.3%
accuracy.

The second model we use for the comparison consists of a CNN
whose input is a three-second sequence. The input is processed by only
one hidden convolutional layer with 2048 ReLU kernels whose RFs
cover all the mel-energy bands and a context window of 15 frames. In
this very first step the frequency dimension is narrowed, hence the
first layer outputs are matrices with unitary height. Then, after a batch
normalization layer, we stack a max-pooling layer to shrink also the
time dimension, hence obtaining a single number for each feature map.
This structure is very similar to a MLP, since each kernel looks at all
the mel-energy bands of a single context window at the same time.
The key difference is represented by the max-pooling, which, similarly
to the proposed model’s, emphasizes the occurrence of a particular

Predicted label

Figure 3: Confusion matrix for the proposed CNN evaluated on the
four folds. Three-second sequences are used.

input pattern no matter where it appears in the sequence. This network
achieves a 70.3% accuracy with the non-full training setup, which
rises to 74.8% if a full training is performed for 100 epochs.

The last result we report intends to compare our architecture
and the baseline system when both are trained on mel-frequency
cepstral coefficients (MFCCs). Details about the feature parameters
are reported in [11]. The baseline system trains 15 different mixtures
of 16 Gaussians in order to model each of the 15 classes. Classification
is performed by comparing each mixture to the test audio file in terms
of log-probabilities of the data under each model. The most similar
mixture gives the chosen class. We choose a sequence length of five
seconds for this comparison. Our model reaches a 67.7% overall
accuracy with the non-full training setup and the average convergence
time on the validation data is 100 epochs. The performance reaches a
72.6% overall accuracy with a full training setup, which equals the
baseline accuracy.

5. CONCLUSIONS

Our work proposes one out of many possible ways of approaching
acoustic scene classification with CNNs. In doing so we reach a 79.0%
accuracy on the DCASE 2016 development dataset, demonstrating that
a two-layered convolutional network can achieve higher accuracies if
compared to a two-layer MLP (9.7% more), a one-layer CNN (4.2%
more) and a GMM-MFCC system (6.4% more). We observed also
that, under particular circumstances, training the network without
monitoring its generalization performance can lead to a relevant
accuracy improvement. This is true especially when the lack of training
data is a narrow bottleneck for the network generalizing performance.
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ABSTRACT
This paper outlines preliminary steps towards the develop-
ment of an audio-based room-occupancy analysis model.
Our approach borrows from speech recognition tradition and
is based on Gaussian Mixtures and Hidden Markov Models.
We analyse possible challenges encountered in the develop-
ment of such a model, and offer several solutions including
feature design and prediction strategies. We provide results
obtained from experiments with audio data from a retail store
in Palo Alto, California. Model assessment is done via leave-
two-out Bootstrap and model convergence achieves good ac-
curacy, thus representing a contribution to multimodal people
counting algorithms.

Index Terms— Acoustic Traffic Monitoring, Audio
Forensics, Retail Analytics

1. INTRODUCTION

Information about the occupancy of a certain location is rel-
evant for several applications, specially in surveillance tasks
and staff management. For example, occupancy can be used
to detect intruders in a house, or to generate optimal em-
ployee schedules according to shopper traffic. The existing
systems for occupancy detection rely on multimodal systems,
including video, Wifi, Bluetooth and, to a much lesser extent,
audio. Conversely, the use of audio in occupancy estima-
tion empowers the development of a model, not dependent
on speaker separation, that is robust to issues that are com-
mon in computer vision and systems that rely on tracking
electronic devices1, such as occlusion and people clusters[1].

1.1. Related work

The occupancy estimation literature can be subdivided in in-
vasive and non-invasive strategies. Invasive strategies [2, 3,

This research was supported in part by the TerraSwarm Research Cen-
ter, one of six centers supported by the STAR net phase of the Focus Center
Research Program (FCRP) a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

1An increasingly hard task with the randomization of MAC addresses
and privacy laws

4] use various devices, e.g. smartphones and ultrasonic trans-
mitters, to project sound, e.g. sinusoids and chirps, onto the
environment and use the environment’s response to the pro-
jected sound to estimate activity in the space; Non-invasive
strategies [5, 6, 7] rely on detecting speech sounds in the en-
vironment to estimate occupancy. In addition to potentially
disturbing humans and animals, invasive strategies require
the expensive task of deploying devices, e.g. 891 mobile
devices to cover 600 square meters and less than 20 peo-
ple [6], in the location and badly suffer from the addition of
non-human objects and subjects to the space being analyzed.
Non-invasive strategies that rely on speech only to estimate
occupancy will disregard people who are in a space but not
talking, and badly suffer from situations in which speech di-
arization is not possible. In addition, most of these systems
are only able to handle small groups of people.

The limitations presented above and the lack of a stan-
dard technique or key paper on the topic of audio-based
room-occupancy analysis confirm the need for the develop-
ment of such a technique. There is no annotated dataset for
audio-based room-occupancy analysis and, therefore, the ac-
quisition of data remains a blatant challenge. Although [8]
describes the layout of a rather promising prototype to esti-
mate the occupancy of rooms and buildings based on audio,
they provide no information on experiments nor results de-
scribing the efficiency of their system. In this paper we de-
scribe a system that is not invasive, suited for large groups of
people, based on real data and computationally inexpensive.

2. METHODOLOGY

2.1. Dataset and ground truth

The dataset used in this research is comprised of proprietary
audio recordings made with a smartphone placed in a retail
store located in the United States. The smartphone’s micro-
phone was aimed towards the inside of the store and placed at
the store’s main and single entrance, at approximately 5 me-
ters from the floor. The recordings took place during open
hours (10h, 22h). The ground truth data is divided into 15-
minute slices and it provides the cumulative occupancy at the
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end of each 15-minute time window. The ground truth was
obtained from video data submitted to Amazon’s Mechani-
cal Turk. Figure 2 illustrates the occupancy for that specific
week.

Figure 1: Occupancy

Figure 2: Store occupancy for the first week of April.

2.2. Room-occupancy Analysis

Several challenges are present in the development of an
audio-based room-occupancy analysis system. In our con-
text, the ground truth only provides information about the
aggregated occupancy at the end of each 15-minute interval.
This provides a challenge to feature selection, that is, select-
ing the audio slice that best represents the ground truth. In
addition, since there’s one dependent variable for each 15-
minute interval, regression models would require the design
of summary statistics of the audio data to be used as the inde-
pendent variable, thus extremely reducing the amount of in-
formation retrieved from each training sample. During eval-
uation we considered generalized linear models (GLM). Sur-
prisingle, the mean error of the best linear model, Poisson
Regression, was 33% worse than the GMM-HMM model de-
scribed in this paper.

2.2.1. Audio Features

In our experiments we performed cross-validation on the
training set using lasso regression models with the follow-
ing features and linear regression models using all posible
combination of amplitude (median, mean, standard devia-
tion), spectral (centroid, spread, skewness, kurtosis, slope)
and mfcc (raw, 1st delta, 2nd delta) features.

We observed the p-values, 5% significance, of the re-
gression models and concluded that the MFCC features
contributed the most to prediction accuracy on the train-
ing set. Given this conclusion, our room-occupancy analy-
sis algorithm uses the well-known Mel-Frequency Cepstral
Coefficients[9] (MFCC). A total of 20 MFCCs (computed
with a FFT Size of 4096 samples, Hop Size of 1024 sam-
ples and audio sample rate is 11050 hz) along with their first
(20 features) and second (20 features) deltas[10] assembling

a feature vector with 60 dimensions total. Given that sounds
produced by humans are rarely stationary, the delta features
provide valuable information.

2.2.2. Window selection

Our labeled data provides the cumulative occupancy at the
end of a 15-minute time window. This represents two chal-
lenges: first, it is necessary to find out what temporal slice of
the audio data should be used; second, the length of this slice
must be chosen such that it maximizes the model’s perfor-
mance. Window size is chosen under the one-standard-error
rule using 50 iterations of leave-two-out Bootstrap with win-
dow sizes in the interval [30, 260] seconds, with a 10 seconds
step size and starting at the end and increasing towards the
beginning of the audio file.

2.2.3. GMM-HMM model

We propose a solution that references the speech recognition
literature[11] and combines Gaussian Mixtures with Hidden
Markov Models. The GMM is appropriate, for it provides a
better categorization of the distribution of the audio features
and a reliable estimate of the likelihood function, p(X|λ),
where X = x1, x2, . . . , xT is a sequence of feature vectors
(MFCCs and deltas in our case), xt is a feature vector in-
dexed at discrete time t ∈ [1, 2, ..., T ], and λ represents some
model. As described in[12], for a D-dimensional feature vec-
tor x (60-dimensional in our case), the mixture density used
for the likelihood of data x given model λ is defined as:

p(x|λ) =

M∑
i=1

wipi(x) (1)

This density is a weighted linear combination ofM unimodal
Gaussian densities, pi(x), with parameters µi (D × 1 mean
vector) and Σi (D ×D covariance matrix):

pi(x) =
1

(2π)D/2|Σi|1/2
exp{−1

2
(x− µi)

′Σ−1
i (x− µi)}

(2)
Under the assumptions in[12], our model only uses the

diagonal covariance matrix and the maximum likelihood
model parameters are estimated using the well-known iter-
ative expectation-maximization (EM) algorithm[11]. Tradi-
tionally, the feature vectors of X are assumed independent
and the log-likelihood for some sequence of feature vectors
X is computed as:

LL(X|λ) =
T∑

t=1

log(p(xt|λ)) (3)

We bin our occupancy data by taking the integer square root
of occupancy values, thus circumscribing the problem of cre-
ating one GMM per occupancy value. The lowest occupancy
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is 0 and the maximum is 221, thus producing 15 occupancy
bins. For each occupancy bin and its respective audio data,
one bin-dependent GMM is trained with the MFCC features
described above and using the Bayesian Information Crite-
rion (BIC) for model selection over the number of compo-
nents in the set C = {2, 3, 4, 5, 6, 7, 8, 16, 32} on a test set.

In addition to the GMM, a HMM[13] can be used to com-
pute P (O|λ), that is the probability of the observation se-
quence O = o1, o2, . . . , oT , i.e. occupancy sequence, given
model λ. As described in[14], the probability of observations
O for a fixed state sequence Q = q1, q2, . . . , qT , P (O|Q,λ)
is:

T∏
t=1

P (ot|qt, λ) = bq1(o1)bq2(o2)...bqT (oT ) (4)

where b is an array storing the emission probabilities at time
t given model (bin-dependent GMM in our case). The prob-
ability of the state sequence Q is given by:

P (Q|λ) = πq1aq1q2aq2q3 ...aqT−1qT (5)

where π is an array storing the initial probabilities and a is an
array storing the transition probability from state qt to state
qt+1. We can calculate the probability of the observations
given the model as:

P (O|λ) =
∑
Q

P (O|Q,λ)P (Q|λ) (6)

Decoding of the hidden state is computed using the
Viterbi[15] algorithm to find the best path (single best state
sequence) for an observation sequence. We define the prob-
ability of the best state path for the partial observation se-
quence as:

δt(i) = max
q1,q2,··· ,qt−1

P (q1q2, · · · , qt = s1, o1, o2, · · · , ot|λ)

(7)
Figure 3 illustrates our system and its use of the Hidden
Markov Model and the Viterbi algorithm. Each circle rep-
resents the log-likelihood score of each feature vector given
each binned GMM. The lines represent the transition prob-
abilities and the highlighted states and bold lines show the
state path that maximizes the log-likelihood.

3. EXPERIMENTS AND RESULTS

Several techniques were used for prediction, starting with
using the log-likelihoods of each feature vector given each
GMM and ending with a HMM.

3.1. Prediction with GMMs

Following the bin-dependent GMM training, two prediction
strategies are chosen, including aggregating the posterior
probabilities of each GMM and majority voting.

Figure 3: HMM and Viterbi illustration

3.1.1. Posterior Probabilities Aggregation (PPA)

This procedure consists of aggregating the posterior proba-
bilities of each state by computing the sum of bin occupancy
predictions weighted by their posterior probabilities. Let x
be an audio feature vector and Λ be a set of 15 bin-dependent
GMMs. From Bayes theorem:

P (x|Λi) =
P (Λi|x)P (x)

P (Λi)
(8)

Assuming that P (Λ) is uniform and knowing that P (x) is
similar for all models, we conclude that P (Λi|x) ∝ P (x|Λi).
Finally, we define the estimated occupancy bin (B̂)2 for fea-
ture vector x at time t and models Λ as:

B̂(xt) =

|Λ|−1∑
i=0

ieLL(xt|Λi) (9)

This will produce underpredictions because the maximum
value mapped to a bin is always larger than the bin’s max-
imum predicted value, e.g. bin 2 maximum mapped and pre-
dicted values are 6 and 4 respectively.

3.1.2. Majority Voting (MJ)

This procedure consist of calculating the log-likelihood,
LL(X,λ) of the audio features given each bin-dependent
GMM and finally selecting the bin that more often has the
highest log-likelihood score.

Using the GMM only approach and these techniques, in-
formally speaking the prediction results circulate around the
correct prediction value. However, the results for both tech-
niques show jumps in occupancy prediction that are rather
unlikely because the model ignores transition probabilities
between states. Therefore, we decided to address this prob-
lem by using a HMM and the Viterbi algorithm.

2We use log-sum-exp to prevent computational underflow
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3.2. Prediction with HMM and Viterbi

This strategy divides prediction into four stages.The first
computes the log-likelihood of the audio features given each
bin-dependent GMM; the second applies the Viterbi algo-
rithm to the computed log-likelihoods to obtain the best path
for a specific time window. The third predicts the occupancy
bin using posterior probabilities aggregation or majority vot-
ing; finally, the inverse of the square root of the predicted
bin is calculated, thus translating the prediction back into the
linear domain. For the HMM, the initial probabilities π are
uniform (1/15), the emission probabilities b are computed us-
ing the GMMs and the transition probabilities a are derived
using heuristics.

3.3. Model Assessment and Selection

We used leave-two-out Bootstrap[16] for model assessment
and selection, as it is a suitable technique for our small
dataset of 386 samples. The Bootstrap technique was used to
estimate the best window size, within the range [30, 260] sec-
onds, and the most accurate prediction strategy based on the
GMM-HMM model. For each window size and prediction
strategy, a total of 50 bootstrap iterations were performed and
the prediction errors were computed.

Figure 4 shows bootstrapped root mean squared errors
(RMSE) for all window sizes and using the MJ and PPA tech-
niques. Accuracy increases, specially in PPA, almost linearly
and proportionally to the window size.

Figure 4: RMSE using GMM-HMM and Poisson
Regression(GLM). The PPA technique converges around

210 seconds and considerably outperforms other techniques.

Model and window selection is performed using the one-
standard-error rule and analysis of the violin plot provided
in Figure 5. The best predictor uses the PPA technique
with a window size of 210 seconds. Figure 6 shows room-
occupancy predictions with a window of 210 seconds and
both prediction techniques.

4. CONCLUSION AND FUTURE WORK

We have described an algorithm for audio-based room-
occupancy analysis that relies on Gaussian Mixtures and

Figure 5: Bootstrapped error using GMM-HMM and PPA.

Hidden Markov Models. Our algorithm has advantages over
other algorithms for audio-based occupancy analysis:

It is not invasive our algorithm does not require projecting
audio into an environment, thus not causing distur-
bance to humans or animals present.

It handles large groups our algorithm is capable of han-
dling occupancy prediction up to 200 people and with
capability of expansion.

It is inexpensive prediction is computationally cheap and
can be easily done on a smart phone, thus preventing
privacy issues from sending audio via network.

We analyzed different types of prediction techniques and
concluded that the GMM-HMM posterior probabilities ag-
gregation is the most accurate approach. The algorithm per-
formed considerably well in retail store environments with
occupancy up to 200 people.

Figure 6: Ground Truth (GT) and predictions using the
above described techniques. Poisson Regression (GLM)

performs considerably worse than the GMM-HMM models.

The results from the current work validate the GMM-
HMM model despite the expectation of better results with
regression models. For future work, we plan to compute the
transition probabilities from data, add a Voice Activity De-
tection pre-processing step to the pipeline, denoise the audio
data and perform comparative analysis with the results ob-
tained in this paper.
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ABSTRACT

In this paper, we present a deep neural network (DNN)-based acous-
tic scene classification framework. Two hierarchical learning meth-
ods are proposed to improve the DNN baseline performance by in-
corporating the hierarchical taxonomy information of environmen-
tal sounds. Firstly, the parameters of the DNN are initialized by the
proposed hierarchical pre-training. Multi-level objective function
is then adopted to add more constraint on the cross-entropy based
loss function. A series of experiments were conducted on the Task1
of the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2016 challenge. The final DNN-based system achieved
a 22.9% relative improvement on average scene classification er-
ror as compared with the Gaussian Mixture Model (GMM)-based
benchmark system across four standard folds.

Index Terms— Acoustic scene classification, deep neural net-
work, hierarchical pre-training, multi-level objective function

1. INTRODUCTION

In recent years, much research effort has been attracted for mak-
ing sense of everyday or environmental sounds. It focuses on how
to convert audio (non-speech and non-music) recordings into un-
derstandable and actionable information: specifically how to allow
people to search, browse and interact with sounds. Some specif-
ic tasks were investigated in recent years, including acoustic scene
classification (ASC) [1], sound event detection (SED) [2, 3] and do-
mestic audio tagging. ASC aims to associate a semantic label to an
audio segment that identifies the sound environment where it has
been produced [1]. The goal of SED is to detect the sound events
that are present within an audio signal, estimate their start and end
times, and give a class label to each of the events. For audio tag-
ging, there is no information about sound event onset or offset, only
labels. This paper will focus on the ASC task.

The ASC problem was first proposed by Sawhney and Maes
[4]. Recently, more related work was conducted during the IEEE
AASP Challenge: Detection and Classification of Acoustic Scenes
and Events [5, 6, 7]. Mel Frequency Cepstrum Coefficients (MFCC-
s) were used as the audio feature by most of the submitted systems.
GMMs, Support Vector Machines (SVMs) or hidden Markov mod-
els (HMMs) were commonly used classifier [6, 8, 9]. Other meth-
ods, such as non-negative matrix factorization (NMF) approaches
can also be used to extract an intermediate representation prior to
classification [10].

Recently, deep learning methods have obtained great success-
es in speech, image and video fields [11, 12, 13, 14] since Hin-
ton and Salakhutdinov [15] showed the insights in using a greedy

This work was supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) of the UK under the grant EP/N014111/1.

Vehicle

Hierarchical Acoustic Scene Taxonomy

home … lib park … beachbus … car

Indoor Outdoor

Figure 1: Example of a hierarchical acoustic scene taxonomy.

layer-wise unsupervised learning procedure to train a deep model
in 2006. Deep learning methods were also investigated for acoustic
scene classification tasks in [16, 17, 18]. In [16], a series of exper-
imental investigations on the DNN structure, including the number
of hidden layers and input frame expansion, were presented. It al-
so demonstrated that DNN can yield better results than GMM and
SVM. Convolutional neural networks (CNNs) which are the variant
of DNNs have been also adopted for environmental sound classifi-
cation in [17].

There has also been research about the taxonomy of the envi-
ronmental sounds [19, 20]. The taxonomy of environmental sound-
s indicates that hierarchical categories information exists in sound
classes. For example, environmental sounds can be coarsely clas-
sified into indoor, outdoor and vehicle in Fig. 1, and these are the
high-level scene classes. Meanwhile, corresponding branches de-
note the low-level scene classes.

In this paper, we propose a hierarchical learning method in-
corporating the acoustic scene taxonomy information for ASC in
a DNN-based framework. Two approaches are presented to uti-
lize the acoustic scene taxonomy information. Firstly, a high-level
DNN is discriminatively trained to predict three high-level class-
es, namely vehicle, indoor and outdoor. Then the trained DNN is
used to initialize the low-level DNN except for the top classifica-
tion layer to learn the more difficult low-level scene classes, name-
ly bus, home, park, etc. This learning process is named as hier-
archical pre-training, which follows the common “easiest thing
first hardest second” learning experience of human [21]. Hierar-
chical pre-training is a supervised process which is different from
the common Restricted Boltzmann machine (RBM) based unsuper-
vised pre-training [15]. The second idea is based on a proposed
multi-level objective function, which means the DNN not only
predicts the target low-level scene classes, but also predicts the three
high-level scene classes as the auxiliary task. It is actually a multi-
task learning [22] which has been demonstrated to be effective in
recent DNN-based speech enhancement [23] and speech recogni-
tion [24].

The rest of the paper is organized as follows. In Section 2 we
describe the DNN-based acoustic scene classification baseline sys-
tem. Hierarchical pre-training and multi-level objective function are
presented in Section 3. In Section 4, we present a series of experi-
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ments to assess the system performance. Finally we summarize our
findings in Section 5.

2. DNN-BASED ACOUSTIC SCENE CLASSIFICATION

DNN is a non-linear multi-layer model with powerful capability to
extract robust feature related to a specific classification [13] or re-
gression [12] task. ASC is a typical classification problem where a
specific scene label should be assigned to an audio segment.

2.1. DNN baseline

A basic DNN consists of a number of different layers stacked to-
gether in a deep architecture: an input layer, several hidden layers
and an output layer. More precisely, when the goal is to classify an
audio feature x among N acoustic scene classes, a DNN estimates
the posteriors pj , j ∈ {1, ..., J}, of each class given the input fea-
ture x. The input x which is fed into DNN represents the contextual
audio feature, such as 11 consecutive frames centered at the current
frame. Such contextual information was shown to improve the pre-
diction performance in DNN-based speech enhancement or speech
recognition [12, 13]. The activation functions used in each hidden
unit of the hidden layers are non-linear sigmoid or Rectified Linear
Units (ReLUs) [25] function. The ReLU, which is adopted in this
work, has several advantages over the sigmoid: faster computation
and more efficient gradient propagation and it is defined below:

f(y) = max(0, y) (1)

where y is the output of the hidden unit before activated by ReLU.
The output is computed via the softmax nonlinearity to force the
target label to have the maximum posterior while competing with
other non-targets. The objective is to minimize the cross entropy
between the predictions of DNN p = [p1, ..., pJ ]

T and the target
probabilities d = [d1, ..., dJ ]

T . The loss function is defined as
follows:

L = −
J∑

j=1

dj · log(pj) (2)

The classical back-propagation (BP) algorithm [13] can be used to
update the weights and bias of DNN based on the calculated error.

2.2. Dropout for the over-fitting problem

Deep learning architectures have a natural tendency to over-fitting
especially when there is a little training data. Dropout is a simple
but effective way to alleviate this problem [25]. In each training
iteration, the feature value of every input unit and the activation of
every hidden unit are randomly removed with a predefined proba-
bility (e.g., ρ). These random perturbations effectively prevent the
DNN from learning spurious dependencies. At the decoding stage,
the DNN discounts all of the weights involved in the dropout train-
ing by (1− ρ), regarded as a model averaging process [26].

For the acoustic scene classification task, the testing audio seg-
ment could be totally different from the used training audio seg-
ments due to the presence of background noise. Thus Dropout
should be adopted to improve its robustness to generalize to vari-
ants of testing segments.

……

……

……

3 classes (Indoor outdoor vehicle)

……

……

……

15 classes (car, home, park, etc)

……

DNN1 DNN2

Figure 2: Proposed hierarchical pre-training.

2.3. Decision maker based on average confidence

ASC aims to assign a single semantic label to an audio segment.
Majority voting is often used to make a global decision across all
of the single audio frames in this segment [1]. Here we proposed to
use a more precise decision making scheme:

ĉ = max
j

(
1

T

T∑
t=1

pt,j

)
(3)

where T is the total number of frames belonging to the current test-
ing audio segment, ĉ denotes the predicted global scene label based
on the average confidence across the whole frames, and pt,j repre-
sents the estimated DNN posterior at the t-th frame for class j.

3. PROPOSED HIERARCHAL LEARNING FOR ASC

In this section, we present two novel methods: hierarchical pre-
training and multi-level objective function incorporating the scene
taxonomy information for DNN-based ASC.

3.1. Hierarchical pre-training

Pre-training is crucial to avoid the algorithm getting stuck in a lo-
cal optimum for training a deep model especially when the training
data is not sufficient. The two most notable pre-training method-
s are the RBMs [15] based and stacked auto-encoders [27] based
greedy layer-wise algorithms. They are both unsupervised while
the proposed hierarchical pre-training is supervised. In the acoustic
scene taxonomy research [20], the acoustic scenes are naturally cat-
egorized into hierarchical classes. Fig. 2 shows how the proposed
DNN-based method incorporates the hierarchical taxonomy infor-
mation. The hierarchical pre-training consists of two steps. First-
ly, the DNN1 was trained to predict the three high-level acoustic
scene classes, namely indoor, outdoor and vehicle. DNN2 was then
trained to estimate the posterior of the 15 target low-level acoustic
scene classes with the initialized weights from DNN1. Note that the
classification layer of DNN2 was initialized with random weights
because this top layer is different from DNN1. It is easier for DNN
to learn the three coarsely classified high-level classes than the 15
target classes. However, the DNN2 can be better fine-tuned based
on DNN1. It follows the common sense of human learning process:
easiest things first, hardiest second. The experience of learning eas-
ier things could benefit the learning for harder things.
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Figure 3: Proposed multi-level objective function based on the well
trained DNN2. W and b denote the weights and bias, respectively.

3.2. Multi-level objective function

Multi-task learning [22] is successfully adopted in DNN-based
speech enhancement [23] and DNN-based speech recognition [24].
The auxiliary target was demonstrated beneficial for the primary tar-
get. Inspired by this, a multi-level objective function is proposed to
incorporate the hierarchical acoustic scene taxonomy information
into the integrated objective function.

Fig. 3 shows the proposed multi-level objective function based
on the well trained DNN2. The main difference between DNN2 and
DNN3 is that an additional softmax layer is designed to describe
the three high-level classes (indoor, outdoor and vehicle). W and
b denote the weights and bias, respectively. W′ and b′ of DNN3
were both initialized by W and b of DNN2. The additional softmax
layer (W′′, b′′) was randomly initialized. With this modification,
the cross entropy based loss function should be changed to contain
two parts as follows:

L1:N = −α
N∑
t=1

J∑
j=1

dt,j log(pt,j)− (1− α)
N∑
t=1

K∑
k=1

dt,klog(pt,k)

(4)
where N is the mini-batch size, dt,j denotes the target probability
at the t-th frame for the j-th low-level scene class, dt,k denotes the
DNN predicted posterior at the t-th frame for the k-th high-level
scene class. α is the weighting factor to tune the error contribu-
tion from the above two parts. J and K represent the 15 low-level
classes and the three high-level classes, respectively.

Hence, the proposed multi-level objective function is another
idea to utilize the hierarchical scene taxonomy information besides
the proposed pre-training in Sec. 3.1.

4. EXPERIMENTAL SETUP AND RESULTS

The proposed methods were evaluated on the Task1 of DCASE
2016 challenge. There are 15 acoustic scenes for this task 1. Three
high-level scene classes are also indicated. For all of the acoustic
scenes, each of the recordings was captured in a different location:
different streets, different parks and different homes. Recordings

1C1: Lakeside beach (outdoor); C2: Bus, traveling by bus in the city
(vehicle); C3: Cafe / Restaurant, small cafe/restaurant (indoor); C4: Car,
driving or traveling as a passenger (vehicle); C5: City center (outdoor);
C6: Forest path (outdoor); C7: Grocery store, medium size grocery store
(indoor); C8: Home (indoor); C9: Library (indoor); C10: Metro station (in-
door); C11: Office, multiple persons, typical work day (indoor); C12: Urban
park (outdoor); C13: Residential area (outdoor); C14: Train (traveling, ve-
hicle); C15: Tram (traveling, vehicle).

were made using a Soundman OKM II Klassik/studio A3, electret
binaural microphone and a Roland Edirol R-09 wave recorder us-
ing 44.1 kHz sampling rate and 24 bit resolution. The recordings
are down-sampled into 16 kHz in this paper. The microphones are
specifically made to look like headphones, being worn in the ears.
As an effect of this, the recorded audio is very similar to the sound
that reaches the human auditory system of the person wearing the
equipment.

The dataset consists of two subsets: a development dataset and
an evaluation dataset. In this paper, only the development dataset is
used for evaluation because the labels of the evaluation dataset have
not been released. The development dataset contains 1170 segments
in total with 30 seconds length for each. A cross-validation setup
with four folds is provided for the development dataset. The scor-
ing of acoustic scene classification will be based on classification
accuracy. Each segment is considered as an independent test sam-
ple. Confusion matrix among various acoustic scene classes would
also be presented.

The official baseline system is based on the MFCC acoustic
features and GMM classifier. The system learns one acoustic model
per acoustic scene class, and performs the classification with max-
imum likelihood classification scheme. The length of each frame
is 40 ms with 50% hop size. The acoustic features include 20-
dimension MFCC static coefficients (0th coefficient included), delta
coefficients and acceleration coefficients.

For the DNN method, 11 frames of Mel-filter bank features
with 40 channels were used as the input. Two hidden layers with
500 ReLU hidden units for each layer were adopted for DNN. The
learning rate was 0.005. The momentum was set to 0.9. Weight cost
was not used. The dropout value for the input layer was 0.1 while
0.3 for hidden layers. α in Eq. 4 was 0.6. NVIDIA-Tesla-M2090
GPU was used to train the DNN models. The output unit number
for DNN1, DNN2 and DNN3 were 3, 15 and 18, respectively.

4.1. Evaluations for the proposed methods

As shown in Fig. 2, DNN1 should be trained as the pre-trained mod-
el for DNN2. Table 1 gives the frame-wise accuracy (%) for the
three high-level scene classes on four cross-validation (CV) folds
using DNN1. All of the related CV audio segments were excluded
from the training sampels. An average of frame-level 90% accura-
cy can be obtained for the classification of three high-level acoustic
scene classes, namely indoor, outdoor and vehicle. Therefore, DNN
can easily deal with this learning. It would offer a good starting op-
timization point for the fine-tuning of DNN2 with the initialized
weights from DNN1. Then the DNN2 was trained to predict the 15

System Fold 1 Fold 2 Fold 3 Fold 4 Average
DNN1 93% 90% 89% 91% 90%

Table 1: Frame-wise accuracy (%) for three high-level scene classes
on different cross-validation (CV) folds using DNN1. All of the re-
lated CV audio segments were excluded from the training samples.

target acoustic scene classes based on the well trained DNN1. Ta-
ble 2 presented the overall comparison of acoustic scene accuracy
(%) on different CV folds among the DCASE2016 official GMM
baseline, the DNN baseline improved by dropout, the DNN2 with
the hierarchical pre-training based on DNN baseline, and the DNN3
optimized by the proposed multi-level objective function based on
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Systems Fold 1 ACC (%) Fold 2 ACC (%) Fold 3 ACC (%) Fold 4 ACC (%) Average ACC (%)
GMM-baseline 72.50 66.80 70.10 75.70 71.28

DNN-baseline (+dropout) 79.62 67.24 75.84 78.08 75.19
DNN2 (+hierarchical pre-training) 80.69 71.72 77.52 78.77 77.17

DNN3 (++multi-level objective func) 81.38 72.41 77.85 79.79 77.86

Table 2: The overall comparison of acoustic scene accuracy (%) on different cross-validation (CV) folds among the DCASE2016 official
GMM baseline, the DNN baseline improved by dropout, the DNN2 with the hierarchical pre-training based on DNN baseline, and the DNN3
optimized by the proposed multi-level objective function based on DNN2. All of the related CV audio segments were excluded from the
training samples.
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Figure 4: The confusion matrix among 15 acoustic scene classes by
comparing the DNN predicted class with the target class on all of
the four folds. Cx, x ∈ {1, ..., 15} represent the indices of the 15
classes which were defined in footnote 1.

DNN2. All of the related CV audio segments were excluded from
the training samples. The DNN baseline improved by dropout out-
performed the provided GMM-MFCC baseline at all folds. The
acoustic scene accuracy was increased from 71.28% to 75.19% on
average. It also should be noted that the DNN is just slightly better
than GMM on Fold 2 where the performance is the lowest. How-
ever, with the proposed hierarchical pre-training, its accuracy was
significantly improved from 67.24% to 71.72% on Fold 2. There-
fore, it demonstrates that the proposed hierarchical pre-training is
important in challenging scene classification situations. DNN2 ob-
tains an 8% relative improvement compared with the DNN baseline
from 75.19% to 77.17%.

The DNN3 optimized by the proposed multi-level objective
function gives further improvement. The final average acoustic
scene accuracy was increased to 77.86%. It indicates that the ad-
ditional constraint imposed in Eq. 4 can benefit the primary target.
Finally, the proposed DNN system offers 22.9% and 10.8% relative
improvements compared with the GMM-MFCC baseline and the
DNN baseline, respectively. Note that the DNN baseline is a strong
system since it is optimized by dropout training.

4.2. Further discussions

Fig. 4 presents the confusion matrix among 15 acoustic scene class-
es by comparing the DNN predicted class with the target class on
all of the four folds. Cx, x ∈ {1, ..., 15} represents the indices of
the 15 classes which were defined in footnote 1. Observed from
this confusion matrix, one phenomenon is that park (C12) easily
gets confused by residential area (C13), and vice versa. It could
be explained that similar acoustic events happened in both acoustic
environments, like the bird singing and car passing-by. Another in-
teresting case is that grocery store (C7) tends to be mis-recognized
as restaurant (C3) due to the common human speech events. This
might suggest that the presence of common human speech needs
to be reduced in the audio segments before the acoustic scene clas-
sification is conducted. Tram (C15) also has the tendency to be
incorrectly identified as Train (C14). Table 3 presents the final ac-

System Proposed method DCASE2016 Baseline
acc 80.5% 77.2%

Table 3: Accuracy (%) for the final evaluation set.

curacy for the evaluation set. The final DNN model was trained
with the whole 1170 segments of the development set. Note that
the proposed method can only get 73.3% accuracy if the DNN was
trained on Fold1 only (as given on DCASE2016 Task1 website).

5. CONCLUSIONS

In this paper, we have studied how to incorporate the taxonomy in-
formation into deep learning framework, and developed two DNN-
based hierarchical learning methods for the acoustic scene classifi-
cation task. The first novel method, called hierarchical pre-training
which is a supervised learning process, can help the second DNN
to get a better initialized weights based on the learning experience
from the three high-level coarsely classified classes. It can achieve
an 8% relative improvement compared with the DNN baseline im-
proved by Dropout. The second proposed approach was the multi-
level objective function which was inspired by the multi-task learn-
ing. It can help improve the prediction accuracy of the primary 15
target low-level classes by adding additional estimation of the three
high-level classes in the DNN output, which was also regarded as
imposing more constraint on the cross-entropy loss function. This
idea can further improve the scene classification performance. Fi-
nally, the proposed DNN system has obtained 22.9% and 10.8%
relative improvements over the GMM-MFCC baseline and the well
trained DNN baseline, respectively.
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ABSTRACT
Acoustic event detection for content analysis in most cases relies
on a lot of labeled data. However, manually annotating data is a
time-consuming task, which thus makes few annotated resources
available so far. Unlike audio event detection, automatic audio tag-
ging, a multi-label acoustic event classification task, only relies on
weakly labeled data. This is highly desirable to some practical ap-
plications using audio analysis. In this paper we propose to use a
fully deep neural network (DNN) framework to handle the multi-
label classification task in a regression way. Considering that only
chunk-level rather than frame-level labels are available, the whole
or almost whole frames of the chunk were fed into the DNN to per-
form a multi-label regression for the expected tags. The fully DNN,
which is regarded as an encoding function, can well map the audio
features sequence to a multi-tag vector. A deep pyramid structure
was also designed to extract more robust high-level features related
to the target tags. Further improved methods were adopted, such
as the Dropout and background noise aware training, to enhance its
generalization capability for new audio recordings in mismatched
environments. Compared with the conventional Gaussian Mixture
Model (GMM) and support vector machine (SVM) methods, the
proposed fully DNN-based method could well utilize the long-term
temporal information with the whole chunk as the input. The re-
sults show that our approach obtained a 15% relative improvement
compared with the official GMM-based method of DCASE 2016
challenge.

Index Terms— Audio tagging, deep neural networks, multi-
label regression, dropout, DCASE 2016

1. INTRODUCTION

Due to the use of smart mobile devices in recent years, huge
amounts of multimedia data are generated and uploaded to the in-
ternet everyday. These data, such as music, field sounds, broadcast
news, and television shows, contain sounds from a wide variety of
sources. The need for analyzing these sounds has been now in-
creased as it is useful, e.g., for automatic tagging in audio indexing,
automatic sound analysis for audio segmentation or audio context
classification. Although supervised approaches have proved to be
effective in many applications, their effectiveness relies heavily on
the quantity and quality of the training data. Moreover, manually
labeling a large amount of data is very time-consuming. To handle
this problem, two types of methods have been developed. One is to
convert low-level acoustic features into “bag of audio words” using
unsupervised learning methods [1, 2, 3, 4, 5]. The second type of

∗This work was supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) of the UK under the grant EP/N014111/1.
†The first author and the second author have equal contribution for this

paper.

methods is based on only weakly labeled data [6], e.g. audio tag-
ging. It is clear that tagging audio chunks needs much less time
compared to precisely locating event boundaries within recordings.
This will certainly improve tractability of obtaining manual annota-
tions for large databases. In this paper, we will focus on the audio
tagging task.

To overcome the lack of annotated training data, Multiple In-
stance Learning (MIL) is proposed in [7] as a variation of super-
vised learning for problems with incomplete knowledge about la-
bels of training examples. It aims to classify sets of instances
instead of recognizing single instances. Following this work,
Andrews et al. [8] proposed a new formulation of MIL as a
maximum margin problem, which had led to some further work
[9, 10, 11, 12, 13] in audio and video processing using weakly la-
beled data. Mandel and Ellis in [9] used clip-level tags to derive tags
at the track, album, and artist granularities by formulating a num-
ber of music information related multiple-instance learning tasks
and evaluated two MIL based algorithms on them. In [14], Phan
et al. used event-driven MIL to learn the key evidences for event
detection. Recently, [6] also presented a SVM based MIL system
for audio tagging and event detection. GMM, as a common model,
was used as the official baseline method in DCASE 2016 for audio
tagging. More details can be found in [15].

Although the methods mentioned above have led to some use-
ful results in detection and analysis of audio data, most of them ig-
nored possible relationships of any contextual information and only
focused on training the model for each single event class indepen-
dently. To better use the data with weak labels, our work will utilize
the whole or almost whole frames of the observed chunk as the in-
put of a fully deep neural network to make a mapping from an audio
feature sequence to a multi-tag vector.

Recently, deep learning technologies have obtained great suc-
cesses in speech, image and video fields [16, 17, 18, 19] since Hin-
ton and Salakhutdinov showed the insights using a greedy layer-
wise unsupervised learning procedure to train a deep model in 2006
[20]. The deep learning methods were also investigated for relat-
ed tasks, like acoustic scene classification [21] and acoustic event
detection [22]. And better performance could be obtained in these
tasks. For music tagging task, [23, 24] have also demonstrated the
superiority of deep learning methods. However, to the best of our
knowledge, the deep learning based methods have not been used
for environmental audio tagging which is a newly proposed task in
DCASE 2016 challenge based on the CHiME-home dataset [25].
For the audio tagging task, only the chunk-level instead of frame-
level labels were available. Furthermore, multiple instances could
happen simultaneously, for example, the child speech could exist
with TV sound for several seconds. Hence, a good way is to feed
the DNN with the whole frames of the chunk to predict the multiple
tags in the output.

In this paper, we propose a fully DNN-based method, which can
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well utilize the long-term temporary information, to map the whole
sequence of audio features into a multi-tag vector. The fully neural
network structure was also successfully used in image segmenta-
tion [26]. To get a better prediction of the tags, a deep pyramid
structure is designed with gradually shrinked size of layers. This
deep pyramid structure can reduce the non-correlated interferences
in the whole audio features while focusing on extracting the robust
high-level features related to the target tags. Dropout [27] and back-
ground noise aware training [28] are adopted to further improve the
tagging performance in the DNN-based framework.

The rest of the paper is organized as follows. In section 2, we
will introduce the related work using GMM and SVM based MIL
in detail, and depict our DNN based framework in section 3. The
data description and experimental setup will be given in section 4.
We will show the related results and discussions in section 5, and
finally draw a conclusion in section 6.

2. RELATED WORK

Two baseline methods compared in our work are briefly summa-
rized below.

2.1. Audio Tagging using Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a commonly used generative
classifier. A GMM is parametrized in Θ = {ωm, µm,Σm},m =
{1, · · · ,M}, where M is the number of mixtures and wm is the
weight of the m-th mixture component.

To implement multi-label classification with simple event tags,
a binary classifier is built associating with each audio event class in
the training step. For a specific event class, all audio frames in an
audio chunk labeled with this event are categorized into a positive
class, whereas the remaining features are categorized into a neg-
ative class. On the classification stage, given an audio chunk Ci,
the likelihoods of each audio frame xij , (j ∈ {1 · · ·LCi}) are cal-
culated for the two class models, respectively. Given audio event
class k and chunk Ci, the classification score SCik is obtained as
log-likelihood ratio:

SCik =
∑
j

log(f(xij ,Θpos))−
∑
j

log(f(xij ,Θneg)) (1)

2.2. Audio Tagging using Multiple Instance SVM

Multiple instance learning is described in terms of bags B. The
jth instance in the ith bag, Bi, is defined as xij where j ∈ I =
{1 · · · li}, and li is the number of instances in Bi. Bi’s label is
Yi ∈ {−1, 1}. If Yi = −1, then xij = −1 for all j. If Yi = 1,
then at least one instance xij ∈ Bi is a positive example of the
underlying concept [8].

As MI-SVM is the bag-level MIL support vector machine to
maximize the bag margin, we define the functional margin of a bag
with respect to a hyper-plane as:

γi = Yi max
j∈I

(〈w, xij〉+ b) (2)

Using the above notion, MI-SVM can be defined as:

min
w,b,ξ

1

2
‖w2‖+A

∑
i

ξi (3)

subject to: ∀i : γi ≥ 1− ξi, ξi ≥ 0

……

……

……

The whole or almost whole audio features of the chunk

7

500

1000

99*24

Multi-label encoding (e.g., 0101001)

Figure 1: Fully DNN-based audio tagging framework using the
deep pyramid structure.

where w is weight vector, b is bias, ξ is margin violation, andA
is a regularization parameter.

Classification with MI-SVM proceeds in two steps. In the first
step, xi is initialized as the centroid for every positive bag Bi as
follows

xi =
∑
j∈I

xij/li (4)

The second step is an iterative procedure in order to optimize the
parameters.

Firstly, w and b are computed for the data set with positive sam-
ples {xI : Yi = 1}.

Secondly, we compute
fij = 〈w, xij〉+ b, xij ∈ Bi

Thirdly, we change xi by
xi = xj
j = arg maxj∈I fij , ∀I, YI = 1

The iteration in this step will stop when there is no change of
xi, The optimized parameters will be used for test.

3. PROPOSED FULLY DNN-BASED AUDIO TAGGING

DNN is a non-linear multi-layer model for extracting robust features
related to a specific classification [18] or regression [17] task. The
objective of the audio tagging task is to perform multi-label classifi-
cation on audio chunks (i.e. assign zero or more labels to each audio
chunk of a length e.g. four seconds in our experiments). This chunk
only has utterance-level labels without frame-level labels. Multi-
ple events happen at many particular frames. Hence, the common
frame-level cross entropy based loss function can not be adopted.
We propose a method to encode the whole or almost whole chunk.

3.1. Fully DNN-based multi-label regression using sequence to
sequence mapping

Fig. 1 shows the proposed fully DNN-based audio tagging frame-
work using the deep pyramid structure. With the proposed frame-
work, the whole or almost whole audio features of the chunk are
encoded into a vector with values {0, 1} in a regression way. Sig-
moid was used as the activation function of the output layer to learn
the presence probability of certain events. Minimum mean squared
error (MMSE) was adopted as the objective function. A stochastic
gradient descent algorithm is performed in mini-batches with mul-
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tiple epochs to improve learning convergence as follows,

Er =
1

N

N∑
n=1

‖X̂n(Yn+τn−τ ,W, b)− Xn‖22 (5)

where Er is the mean squared error, X̂n(Yn+τn−τ ,W, b) and Xn de-
note the estimated and reference tag vector at sample index n, re-
spectively, with N representing the mini-batch size, Yn+τn−τ being
the input audio feature vector where the window size of context is
2∗τ+1. It should be noted that the input window size should cover
the whole or almost whole of the chunk considering that the refer-
ence tags are in chunk-level rather than frame-level labels. How-
ever, slightly relaxing the window size without covering all of the
chunk frames could increase the total training samples for DNN. It
can improve the performance in our experiments. (W, b) denoting
the weight and bias parameters to be learned. The updated estimate
of W` and b` in the `-th layer, with a learning rate λ, can be com-
puted iteratively as follows:

(W`, b`) ← (W`, b`)− λ ∂Er

∂(W`, b`)
, 1 ≤ ` ≤ L+ 1 (6)

where L denotes the total number of hidden layers and L + 1 rep-
resents the output layer.

During the learning process where the DNN can be regarded
as an encoding function, the audio tags are automatically predicted.
Hence the multi-label regression rather than classification can be
conducted. Two additional methods are given below to improve the
DNN-based audio tagging performance.

3.2. Dropout for the over-fitting problem

Deep learning architectures have a natural tendency towards over-
fitting especially when there is little training data. This audio tag-
ging task only has about four hours training data with imbalanced
training data distribution for each type of tag. Dropout is a simple
but effective way to alleviate this problem [27]. In each training
iteration, the feature value of every input unit and the activation of
every hidden unit are randomly removed with a predefined proba-
bility (e.g., ρ). These random perturbations effectively prevent the
DNN from learning spurious dependencies. At the decoding stage,
the DNN discounts all of the weights involved in the dropout train-
ing by (1− ρ), regarded as a model averaging process [29].

A mismatch problem may also exist in this task, and testing au-
dio segments could be totally different from existed training audio
segments due to the presence of lots of background noise. Thus
Dropout should be adopted to improve its robustness to generalize
to variation in testing segments.

3.3. Background noise aware training

Different types of background noise in different recording envi-
ronments could lead to the mismatch problem between the testing
chunks and the training chunks. To alleviate this, we propose a sim-
ple background noise aware training (or background noise adap-
tation method). To enable this noise awareness, the DNN is fed
with the primary audio features augmented with an estimate of the
background noise. In this way, the DNN can use additional on-line
background noise information to better predict the expected tags.
The background noise is estimated as follows:

Vn = [Yn−τ , ...,Yn−1,Yn,Yn+1, ...,Yn+τ , Ẑn] (7)

Ẑn =
1

T

T∑
t=1

Yt (8)

where the background noise Ẑn is fixed over the utterance and esti-
mated using the first T frames. Although this noise estimator is sim-
ple, a similar idea was shown to be effective in DNN-based speech
enhancement [17, 28].

4. EXPERIMENTAL SETUP AND RESULTS

4.1. DCASE2016 data set for audio tagging

The data that we used for evaluation is the dataset of Task4 of
DCASE 2016 [15]. The audio recordings are made in a domes-
tic environment. The audio data are provided as 4-second chunks
at two sampling rates (48kHz and 16kHz) with the 48kHz data
in stereo and with the 16kHz data in mono. The 16kHz record-
ings were obtained by downsampling the right-hand channel of the
48kHz recordings. Each audio file corresponds to a single chunk
[15].

For each chunk, multi-label annotations were first obtained
from each of the 3 annotators. The annotations are based on a set of
7 label classes. A detailed description of the annotation procedure
is provided in [25]. To reduce uncertainty of the test data, the eval-
uation is based on those chunks where 2 or more annotators agreed
about label presence across label classes. Moreover, with the aim
of approximating typical recording capabilities of commodity hard-
ware, only the monophonic audio data sampled at 16kHz are used
for test.

4.2. Experimental Setup

In our experiments, following the original configuration of Task4 of
DCASE 2016 [15], we use the same five folds as the evaluation set
from the given development dataset, and use the remain of the audio
recordings for training.

We pre-process each audio chunk by segmenting them using a
(80ms) sliding window with a 40ms hop size, and converting each
segment into 24-D MFCCs. For each 4-second chunk, 99 frames of
MFCCs are obtained. A 91-frame expansion as the input instead of
the total frames were found better because this relaxed input scheme
can increase the total training samples. Hence the input size of DNN
was 2208 with 91-frame MFCCs and also the appended noise vec-
tor. One hidden layer with 1000 units and the second hidden layer
with 500 units were used to construct a pyramid structure. Seven
sigmoid outputs were adopted to predict the seven tags. The learn-
ing rate was 0.005. Momentum was set to be 0.9. The dropout rates
for input layer and hidden layer were 0.1 and 0.2, respectively. The
mini-batch size was 3. T in Equation 8 was 6. It should be noted
that the remaining 2432 chunks without ‘strongly agreement’ labels
in the development dataset were also added into the DNN training
considering that DNN has a better fault-tolerant capability. Mean-
while, these 2432 chunks without ‘strongly agreement’ labels were
also added into the training data for GMM and SVM training.

For a comparison, we also ran two baselines using GMM-
s and the MI-SVM mentioned in Section 2. For the GMM based
method, the number of mixture components is 8. Since the GMM
based baseline focuses on computing frame-level likelihoods and
MI-SVM prefers to instance-level scores, the sliding window and
hop size set for the two baselines are different. The GMM based
baseline uses a 20ms sliding window with 10ms hop size, while
the sliding window and hop size for MI-SVM are set to be 400ms
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Figure 2: Equal error rates obtained using the proposed fully DNN
based approach and the two baselines, namely GMM and MI-SVM
across five evaluations folds of the development set.

and 200ms, respectively. To handle audio tagging with MI-SVM,
each audio recording will be viewed as a bag and its shorter seg-
ments obtained by a sliding window can be treated as an instance.
To accelerate computation, we use linear function kernel in our ex-
periments.

To evaluate the effectiveness of our approach, as compared
with the two baselines, we use equal error rate (EER) as a metric.
EER is defined as the point of the graph of false negative rate
(FNR) versus false positive rate (FPR) [30]

FNR =
#false negative

#positive

FPR =
#false positive

#negative
EERs are computed individually for each evaluation, and we then
average the obtained EERs across the five evaluations to get the final
performance.

5. RESULTS AND DISCUSSIONS

Figure 2 shows the results obtained using our approach and two
baselines. Fully DNN-based approach outperforms the two base-
lines across the five-fold evaluations. This may be because of the
following two main reasons: First, our proposed approach can well
utilize the long-term temporary information instead of treating those
information independently. Second, it can map the whole audio fea-
tures sequence into a multi-tag vector by working as an encoding
function. However, GMM and SVM based methods build the mod-
els only on single instances. The contextual information and the
potential relationship among different tags were not well utilized.

The GMM based method yields a close performance to the pro-
posed method only in the third evaluation. We find that two of the
audio event classes, namely adult male’s speech (label ‘m’) and oth-
er identifiable sounds (label ‘o’), are well identified in this fold e-
valuation. This case is probably because the acoustic characteristics
and their variations of the two event classes in the evaluation data
can match with the trained models. The use of MI-SVM does not
yield competitive performances in comparison with our proposed
approach and the GMM-based baseline. This is because MI-SVM,
actually working as a discriminative learning, is more sensitive to
the quantity and quality of the used training data. Furthermore, MI-

Table 1: Average EER among the proposed fully DNN method,
GMM and MI-SVM methods, for each event across five-fold eval-
uations of the development set.

Various tag Proposed DNN GMM MI-SVM
b 0.0868 0.0755 0.1672
c 0.1686 0.2107 0.6466
f 0.2409 0.3037 0.7626
m 0.1943 0.2847 0.7046
o 0.2867 0.2903 0.7303
p 0.2197 0.2613 0.6724
v 0.0530 0.0484 0.1481

Average 0.1785 0.21 0.5474

SVM does not use the long contextual information.
For a further comparison, Table 1 shows the detailed perfor-

mances obtained using our approach and the two baselines on each
audio tag. We can easily find that the use of the fully-DNN based
approach yields great improvements over the two baselines across
all of the seven audio tags. Compared with the GMM method, the
proposed fully DNN method could get similar performance on tag
‘b’ and ‘v’, but it can significantly outperform the competing coun-
terparts on some difficult tags. On average, the proposed DNN
method could get a relative 15% improvement by contrasting with
the GMM baseline.

System Proposed method DCASE2016 Baseline
EER 19.0% 20.9%

Table 2: EER (%) for the final evaluation set.

Table 2 presents the final EER for the evaluation set. The final
DNN model was trained with the whole segments of the develop-
ment set. Note that the proposed method achieve only 19.5% EER
if the DNN was trained on Fold1 only (as on the DCASE2016 Task4
website).

6. CONCLUSIONS

In this paper we have presented to use a fully-DNN based approach
to handle audio tagging with weak labels, in the sense that on-
ly the chunk-level instead of the frame-level labels are available.
This fully DNN is regarded as an encoding function to map the
audio features sequence to a multi-tag vector in a regression way.
To extract robust high-level features, a deep pyramid structure was
designed to reduce most of the non-correlated interfering features
while keeping the highly related features. The dropout and back-
ground noise aware training methods were adopted to further im-
prove its generalization capacity for new recordings in unseen en-
vironments. We tested our approach on the dataset of the Task4
of the DCASE 2016 challenge, and obtained significant improve-
ments over two baselines, namely GMM and MI-SVM. Compared
with the official GMM-based baseline system given in the DCASE
2016 challenge, the proposed DNN system could reduce the EER
from 0.21 to 0.1785 on average. For the future work, we will use
fully convolutional neural network (CNN) to extract more robust
high-level features for the audio tagging task.
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ABSTRACT

We present two resource efficient frameworks for acoustic scene
classification and acoustic event detection. In particular, we com-
bine gated recurrent neural networks (GRNNs) and linear discrimi-
nant analysis (LDA) for efficiently classifying environmental sound
scenes of the IEEE Detection and Classification of Acoustic Scenes
and Events challenge (DCASE2016). Our system reaches an over-
all accuracy of 79.1% on DCASE 2016 task 1 development data,
resulting in a relative improvement of 8.34% compared to the base-
line GMM system. By applying GRNNs on DCASE2016 real event
detection data using a MSE objective, we obtain a segment-based
error rate (ER) score of 0.73 – which is a relative improvement of
19.8% compared to the baseline GMM system. We further inves-
tigate semi-supervised learning applied to acoustic scene analysis.
In particular, we evaluate the effects of a hybrid, i.e. generative-
discriminative, objective function.

Index Terms— Acoustic Scene Labeling, Gated Recurrent
Networks, Deep Linear Discriminant Analysis, Semi-Supervised
Learning

1. INTRODUCTION

In acoustic scene classification the acoustic environment is la-
beled. Many different features, representing the scene, and models
have been suggested in a recent acoustic scene classification chal-
lenge, summarized in [1]. One of the most popular baseline mod-
els are Gaussian mixture models (GMMs) [2] or hidden Markov
models (HMMs) [3, 4] using mel-frequency cepstral coefficients
(MFCCs). Interestingly, various deep architectures have not been
applied in [1]. Recent work however, shows that deep neural net-
works (DNNs) boost the classification accuracy when applied to
audio data [5]. In particular, Cakir et al. [6, 7] proposed a DNN
architecture for acoustic scene classification. In [8], long-short-
term memory networks (LSTMs), i.e. DNNs capable of modeling
temporal dependencies, were applied to acoustic keyword spotting.
Performance in recognition comes at the expense of computational
complexity and the size of labeled data available. LSTMs have a
relatively high model complexity. Furthermore, parameter tuning
for LSTMs is not always simple.

This work was supported by the Austrian Science Fund (FWF) under
the project number P27803-N15 and the K-Project ASD. The K-Project
ASD is funded in the context of COMET Competence Centers for Excel-
lent Technologies by BMVIT, BMWFJ, Styrian Business Promotion Agency
(SFG), the Province of Styria - Government of Styria and the Technology
Agency of the City of Vienna (ZIT). The program COMET is conducted by
Austrian Research Promotion Agency (FFG). Furthermore, we acknowledge
NVIDIA for providing GPU computing resources.

Due to the great success of deep recurrent networks for
sequence modeling [9, 10], we advocate gated recurrent neural
networks (GRNNs) [11, 12, 13] for acoustic scene and event
classification. GRNNs are a temporal deep neural network with
reduced computational complexity compared to LSTMs. We
evaluate GRNNs on environmental sound scenes of the IEEE De-
tection and Classification of Acoustic Scenes and Events challenge
(DCASE2016) [14]. GRNNs proof themselves in practice through
fast and stable convergence rates. We obtain an overall accuracy of
79.1% on development data, i.e. a relative improvement of 8.34%
compared to the baseline GMM system, using GRNNs and linear
discriminant analysis (LDA). Furthermore, we used GRNNs for
acoustic event detection, i.e. task 3 in DCASE2016. For this task
we obtain a segment-based error rate (ER) of 0.82 and 0.63 for the
scene categories home and residential area, respectively.

This work is structured as follows: Firstly, we introduce
GRNNs in Section 3. In Section 4 we discuss various regularizers
for GRNNs. Finally, we show experimental results for the challenge
data in Section 7 and draw a conclusion in Section 8, respectively.

2. ACOUSTIC ANALYSIS FRAMEWORKS

2.1. Scene Classification Framework

Figure 1 shows the processing pipeline of our acoustic scene analy-
sis framework. We extract sequences of features frames xf , where
xf ∈ RD . In particular, we derive MFCCs or log-magnitude spec-
trograms, given the raw audio data xt. We feed frequency domain
features into the GRNN and estimate a class label for every frame
f . Finally, we compute a histogram over all classified frames of
the audio segment, where the maximum value determines the final
scene class.

Figure 1: DCASE2016 task 1: GRNN scene classification system.

2.2. Event Detection Framework

Figure 2 shows the processing pipeline of our acoustic event detec-
tion framework. Similar as above, we extract sequences of feature
frames xf of MFCCs or log-magnitude spectrograms, given the raw
audio data xt. These feature frames are processed by a GRNN and
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class labels are determined by applying individual thresholds on the
real-valued output of the GRNN. Similar as in [14], we post-process
the events by detecting contiguous regions neglecting events smaller
than 0.1 seconds as well as ignoring consecutive events with a gap
smaller than 0.1 seconds.

Figure 2: DCASE2016 task 1: GRNN event detection system.

3. DISCRIMINATIVE GRNNS

GRNNs are recurrent neural networks (RNNs) using blocks of
gated recurrent units. GRNNs are a simple alternative to LSTMs,
reaching comparable performance, but having fewer parameters.
They only use reset- and update-gates. These switches couple
static and temporal information allowing the network to learn
temporal information. In particular, the update-gate z decides to
re-new the current state of the model, whenever an important event
is happening, i.e. some relevant information is fed into the model
at step f . The reset-gate r is able to delete the current state of the
model, allowing the network to forget the previously computed
information. Figure 3 shows the corresponding flow diagram of a
GRNN layer, respectively. It gives a visual interpretation how the
update- and reset-gates, i.e. z and r, govern the information in the
network.

Figure 3: Flow graph of one GRNN layer [12].

The Equations (1-4) model the network behavior, mathemati-
cally. Starting at the output state hlf of layer l, the network uses
the update-state zlf to compute a linear interpolation between past
state hlf−1 and current information h̃lf in (1). In particular, the
update-state zlf decides how much the unit updates its content; zlf is
computed as sigmoid function of input xlf and the past hidden state
hlf−1 in Equation (2). The weights and bias terms in the model are
denoted as W and b, respectively.

hlf = (1− zlf )hlf−1 + zlf h̃
l
f (1)

zlf = σ(W l
zx
l
f +W l

hzh
l
f−1 + blz) (2)

h̃lf = g(W l
xx

l
f +W l

hh(rlf · hlf−1) + blh) (3)

rlf = σ(W l
rx
l
f +W l

hrh
l
f−1 + blr) (4)

The state h̃lf of the network is computed by applying a non-
linear function g to the affine transformed input and previous hidden
state hlf−1 in (3). This is similar to vanilla RNNs. However, an

additional reset-state, i.e. rlf , is introduced in GRNNs. In particular,
an element-wise multiplication is applied between rlf and hlf−1. In
(4), the reset state is computed based on the current input frame xf
and the provided hidden state hlf−1. Multiple GRNN layers can be
stacked, forming a deep neural network.

4. DISCRIMINATIVE-GENERATIVE GRNNS

Recent advances in the field of semi-supervised learning com-
bines discriminative learning objectives with generative cost terms
[15, 16, 17, 18]. In particular, by modeling the data frame xf us-
ing unlabeled examples, discriminative training objectives are reg-
ularized to prevent overfitting. These so called hybrid architectures
outperform pure discriminative models if little labeled information
is available. In order to exploit this regularization constraint, a re-
construction x̃f of the input frame xf is computed by routing the
network’s output ỹf back to the bottom layer. This is done in any
auto-encoder network by default [19], but could be also achieved
via a separate decoder-network, visualized in Figure 4.

Figure 4: Flow graph of 2-layer hybrid GRNN network.

Following the idea of [15], we add an additional GRNN de-
coder network to the model. In particular, we use a noisy version of
the input, i.e. xf+N (µ=0, σ=1), compute the output activation and
feed the network’s output ỹf back into the decoder network, which
passes the information layer-by-layer down to the bottom and com-
pute a reconstruction x̃f of the input. Next, the MSE between every
hidden states hl of a clean encoder and noisy decoder is computed.
Adding this generative regularization term to the network’s objec-
tive leads to the following hybrid objective function:

C = C1(ỹf , yf )︸ ︷︷ ︸
discriminative

+λ · 1

L

L∑
l=0

Cl2(hle, h
l
d)︸ ︷︷ ︸

generative

, (5)

where C1 and C2 are specific cost functions, such as the MSE cri-
teria. The variable ỹf is the network’s output and yf is the current
target label. The states hle denote the hidden states of the encoder
and hld the hidden states of the decoder, respectively. The variable
λ determines the tradeoff between the generative and discriminative
objective.

5. VIRTUAL ADVERSARIAL TRAINING

Virtual adversarial training (VAT) [20, 17, 21] regularizes discrimi-
native learners by generating adversarial training examples. Given
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a clean training example xf , an input noise pattern ñ is gen-
erated by maximizing the KL-divergence between P (yf |xf ) and
P (yf |xf + n) using a softmax output layer, where the noise n is
limited to ||n||2 < ε, i.e. to the sphere of radius ε located around xf .
This means that the perturbed xf + ñ maximally changes the KL
divergence between the posterior distributions, i.e the virtual adver-
sarial example is most sensitive with respect to the KL-divergence.
The newly obtained adversarial sample x̃f = xf + ñ is used as
additional training example. VAT can be used as a semi-supervised
learning criteria. In this case a contractive cost term is applied on
unlabeled data, scaled by a parameter λ. Further details can be
found in [20].

6. DEEP LINEAR DISCRIMINANT ANALYSIS

Deep linear discriminant analysis (DLDA) [22] combines neural
networks with the linear discriminant analysis (LDA). LDA is a dis-
criminative learning criterion minimizing the inner class variance
and maximizing the between class variance. Due to the lack of rep-
resentational power the LDA criterion is usually not applied to high
dimensional data. However, if combined with a non-linear system
acting as a frontend, the LDA boosts classification performance to a
certain extend. Following [22], we aim to maximize the eigenvalues
vi of the generalized eigenvalue problem:

Sbei = vi(Sw + λI)ei, (6)

where I is the identity matrix, Sb is the between class scatter matrix
and Sw is the within class scatter matrix extracted from the net-
work’s output given the target labels, respectively. Details are in
[22]. The eigenvalues {vi, ..., vk} reflect the separation in the cor-
responding eigenvector space {e1, ..., ek}. In [22], they propose to
optimize the smallest of all C − 1 eigenvalues. This leads to the
following discriminative optimization criterion:

argmax
θ

1

k

k∑
i=1

vi, (7)

where {v1, ..., vk} = {vi|vi < min{v1, ..., vC−1}+ ε}, and ε acts
as a threshold pushing variance to all C − 1 feature dimensions.
This prevents the network from maximizing the distance to classes
where good separation have already been found, and forces the
model to concentrate on potentially non-separated examples
instead. The cost function is differentiable, therefore, any neural
network trainable with backpropagation can act as a frontend. The
parameters θ are the network’s weights and bias, respectively.

7. EXPERIMENTS

7.1. Experimental Setup: Acoustic Scene Classification

We pre-processed all DCASE2016 utterances with a STFT using a
hamming window with window-size 40ms and 50% overlap. Next,
MFCCs including ∆- and ∆2-features were computed. All features
were normalized to zero-mean unit variance using the training cor-
pus. For the experiments we used either MFCCs + ∆ + ∆2 features,
resulting in a 60-bin vector per frame as in [14], or raw 1025-bin log
magnitude spectrograms. In order to guarantee a stable stochastic
optimization, all observations need to be randomized. We imple-
mented a variant of on-the-fly shuffling proposed in [23]. In partic-
ular, we processed batches of 500 randomly indexed, time-aligned

utterance-chunks, cropped to a fixed length of 100 frames, in each
optimization step. By doing so, we ensure proper randomization,
preserving the sequential ordering of each utterance. The final clas-
sification score was obtained by computing a majority vote over all
classified frames of the acoustic scene signal.

We put much effort in designing a solid machine learning
framework which is also runnable on an embedded system. There-
fore, we did not make use of ensemble or boosting methods [24],
which usually, increases the classification performance. We built
a single multi-label classification system instead. In particular, we
used 3-layer GRNNs initialized with orthogonal weights [25] and
rectifier activation functions. A linear output gate was used as a top
layer. All networks have 200 neurons per layer. ADAM [26] was
used for optimizing either the MSE or LDA objective.

7.2. Experimental Database: Acoustic Scene Classification

The DCASE2016 task 1 scene dataset is divided into a training and
test set consisting of 1170 and 290 scene recordings, respectively.
K-fold cross-validation was used for training all networks. In par-
ticular, we split the training corpus into 4 folds including 880 train-
ing utterances and 290 validation scenes, respectively. We report
the average classification accuracy for all 4-folds of the training set.
The labels of the test set are not published yet. More details about
the data and the evaluation setup are in [14].

7.3. Experimental Results: Acoustic Scene Classification

Table 1 shows the overall scores of the DCASE2016 task 1, i.e.
acoustic scene classification. We compared different feature repre-
sentation using a 3-layer GRNN. Feeding raw spectrograms into the
network slightly improves the classification performance, compared
to MFCCs. This is consistent with the findings of [27].

Model Features Objective Accuracy

baseline MFCC MLE 72.5%
GRNN MFCC MSE 74.0%
GRNN spectrogram MSE 76.1%

GRNN MFCC LDA 78.2%
GRNN spectrogram LDA 79.1%

Table 1: DCASE2016 task 1: Comparing MSE and LDA objectives
using a 3-layer GRNN on different input feature representations.

The use of a temporal model boosts recognition results in general.
Most interestingly, the use of the LDA criterion achieved the best
overall result, i.e. 79.1%, which leads to a relative improvement of
8.34% compared to the GMM baseline.

Table 2 shows the overall accuracy of GRNNs using a VAT
regularized objective including the evaluation and test data as a
semi-supervised data set. Furthermore, results for semi-supervised
discriminative-generative GRNNs using the MSE objective are
reported. VAT slightly improves the classification performance
when using MFCC features. However, the result is slightly worse
compared to the LDA criterion. The use of an additional generative
cost function slightly improves the results. In particular, the hybrid
learning criterion, i.e. Equation 5, achieves a relative improvement
of 3.8% compared to the baseline system. However, VAT still
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Model Regularizer Features Objective Accuracy

GRNN VAT MFCC MSE 77.8%
GRNN VAT spectrogram MSE 77.4%

GRNN MSE (Eq. 5) MFCC MSE 75.4%
GRNN MSE (Eq. 5) spectrogram MSE 76.7%

Table 2: DCASE2016 task 1: Semi-supervised training with a 3-
layer GRNN using a VAT regularizer (λ = 0.1, ε = 0.25, Ip = 1)
and hybrid MSE objective (λ =1e-4).

outperformed the hybrid MSE objective.

(a) supervised (MSE) (b) semi-supervised (MSE)

(c) semi-supervised (MSE+VAT) (d) supervised (LDA)

Figure 5: Juxtaposition of supervised and semi-supervised training
using a 3-layer GRNN and a subset of DCASE2016 scene spectro-
grams. Figure 5a-5d show the 1st and 2nd principal component of
the activations generated from the last hidden layer using different
optimization criteria.

Visual interpretations of the hidden activations provide some
insights into neural networks, which are treated as blackbox mod-
els. Figure 5 shows the first two principal components of the acti-
vations the last hidden layer of a 3-layer GRNN, using a subset of
DCASE2016 task 1 data. Starting with a pure discriminative learn-
ing criterion in Figure 5a, we see that a non-regularized MSE objec-
tive produces slightly overlapping clusters. By adding a generative
cost function, i.e. hybrid MSE optimization criterion in (5), as well
as a VAT regularizer (see Section 5) the inner class variance is low-
ered, improving the overall class margins in the end. In both, MSE
and VAT objectives, the between class variance is not maximized.
In Figure 5d however, we clearly see that the LDA criterion in (6)
produces more separated class projections. In this case, the within
class variance is minimized, whereas the between class variance is
maximized.

7.4. Experimental Database: Acoustic Event Detection

The DCASE2016 task 3 acoustic event dataset is divided into a
training and test set containing 22 recordings. The dataset has two
scene categories, i.e. home and residential area. The home training
corpus contains 7 event classes with 563 events, whereas the resi-
dential area training corpus contains 11 event classes including 906
events. Similar as in Section 7.2 K-fold cross validation, using 4
folds, was applied. More details about the data and the evaluation
setup are in [14].

7.5. Experimental Setup: Acoustic Event Detection

We applied the same pre-processing routines, i.e. STFT calculation,
MFCC and log-magnitude spectrogram extraction, as in Section
7.1 using data of the DCASE2016 sound event detection in real
life audio challenge (task 3). Regarding the training procedure,
we extended the on-the-fly shuffling routine in two ways: We
drop frames with a probability of 50% and use smaller permuted
sequence batches. By doing so, we increase the data size by
introducing slight permutations and variations of the training
sequences. Frames with multiple event labels were removed in the
training corpus, forcing the model to extract class specific features.
Apart from that, an additional blank label was introduced. The
model sizes and configuration parameters are kept the same as in
Section 7.1.

7.6. Experimental Results: Acoustic Event Detection

Model Features Objective ER F [%]

baseline MFCC MLE 0.90 37.3

GRNN MFCC MSE 0.74 42.3
GRNN spectrogram MSE 0.73 47.6

Table 3: DCASE2016 task 3: Classification results GRNNs using
MFCCs or log-magnitude spectrograms and a MSE objective.

Model Acoustic Scene Segment-based Event-based
ER F [%] ER F [%]

GRNN home 0.82 37.3 1.55 2.9
GRNN residential area 0.63 57.9 4.64 0.9
GRNN average 0.73 47.6 3.9 1.9

Table 4: DCASE2016 task 3: Detailed classification results with a
3-layer GRNN using a MSE objective and log-magnitude spectro-
grams.

Table 3 shows the results of the DCASE2016 task3 real audio
event detection task using GRNNs. We did not apply a LDA due to
overlapping events in the test set. GRNNs trained on log-magnitude
spectrograms achieved an overall segment-based error rate (ER) of
0.73 and an F-score of 47.6%. This results in a relative improvement
of 19.8% and 51.1% compared to the baseline GMM model for the
ER- and F-scores, respectively. The error measures are specified in
detail in [14]. In Table 4 detailed segment- and event-based results
for both, home and residential area are reported.
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8. CONCLUSION

We applied gated recurrent neural networks (GRNNs) to acoustic
scene and event classification. In particular, we trained a 3-layer
GRNN on environmental sounds of the IEEE Detection and Clas-
sification of Acoustic Scenes and Events challenge (DCASE2016)
(task 1 and task 3). The use of virtual adversarial training (VAT)
slightly improves the model performance using MFCC features. For
scene classification, models trained with a deep linear discriminant
objective (LDA) using log-magnitude spectrogram representations
outperformed VAT regularized networks. For acoustic event detec-
tion we use a multi-label GRNN. For both tasks we outperform the
GMM baseline system significantly.
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