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Abstract

Automatic music transcription is the process of converting an audio recording
into a symbolic representation using musical notation. It has numerous ap-
plications in music information retrieval, computational musicology, and the
creation of interactive systems. Even for expert musicians, transcribing poly-
phonic pieces of music is not a trivial task, and while the problem of automatic
pitch estimation for monophonic signals is considered to be solved, the creation
of an automated system able to transcribe polyphonic music without setting
restrictions on the degree of polyphony and the instrument type still remains
open.

In this thesis, research on automatic transcription is performed by explicitly
incorporating information on the temporal evolution of sounds. First efforts ad-
dress the problem by focusing on signal processing techniques and by proposing
audio features utilising temporal characteristics. Techniques for note onset and
offset detection are also utilised for improving transcription performance. Sub-
sequent approaches propose transcription models based on shift-invariant prob-
abilistic latent component analysis (SI-PLCA), modeling the temporal evolution
of notes in a multiple-instrument case and supporting frequency modulations in
produced notes. Datasets and annotations for transcription research have also
been created during this work. Proposed systems have been privately as well as
publicly evaluated within the Music Information Retrieval Evaluation eXchange
(MIREX) framework. Proposed systems have been shown to outperform several
state-of-the-art transcription approaches.

Developed techniques have also been employed for other tasks related to mu-
sic technology, such as for key modulation detection, temperament estimation,
and automatic piano tutoring. Finally, proposed music transcription models

have also been utilized in a wider context, namely for modeling acoustic scenes.
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Chapter 1

Introduction

The topic of this thesis is automatic transcription of polyphonic music exploiting
temporal evolution. This chapter explains the motivations and aim (Section [[T])
of this work. Also, the structure of the thesis is provided (Section [[2]) along
with the main contributions of this work (Section [L3)). Finally, publications
associated with the thesis are listed in Section [[.41

1.1 Motivation and aim

Automatic music transcription (AMT) is the process of converting an audio
recording into a symbolic representation using some form of musical notation.
Even for expert musicians, transcribing polyphonic pieces of music is not a trivial
task [KDOG6], and while the problem of automatically transcribing monophonic
signals is considered to be a solved problem, the creation of an automated system
able to transcribe polyphonic music without setting restrictions on the degree
of polyphony and the instrument type still remains open. The most immediate
application of automatic music transcription is for allowing musicians to store
and reproduce a recorded performance [Kla04b|. In the past years, the problem
of automatic music transcription has gained considerable research interest due
to the numerous applications associated with the area, such as automatic search
and annotation of musical information, interactive music systems (e.g. computer
participation in live human performances, score following, and rhythm tracking),
as well as musicological analysis [Bel03) [Got04] [KDOG].

The AMT problem can be divided into several subtasks, which include: pitch



estimation, onset/offset detection, loudness estimation, instrument recognition,
and extraction of rhythmic information. The core problem in automatic tran-
scription is the estimation of concurrent pitches in a time frame, also called
multiple-FO or multi-pitch estimation. As mentioned in [Cem04], automatic mu-
sic transcription in the research literature is defined as the process of converting
an audio recording into piano-roll notation, while the process of converting a
piano-roll into a human readable score is viewed as a separate problem. The 1st
process involves tasks such as pitch estimation, note tracking, and instrument
identification, while the 2nd process involves tasks such as rhythmic parsing,
key induction, and note grouping.

For an overview of transcription approaches, the reader is referred to [KDOQ6],
while in [dC06] a review of multiple fundamental frequency estimation systems
is given. A more recent overview of multi-pitch estimation and transcription
is given in [MEKRII], while [BDG™12] presents future directions in AMT re-
search. A basic example of automatic music transcription is given in Fig. [Tl

We identify two main motivations for research in automatic music transcrip-
tion. Firstly, multi-pitch estimation methods (and thus, automatic transcription
systems) can benefit from exploiting information on the temporal evolution of
sounds, rather than analyzing each time frame or segment independently. Sec-
ondly, many applications in the broad field of music technology can benefit from
automatic music transcription systems, although there are limited examples of
such uses. Examples of transcription applications include the use of automatic
transcription for improving music genre classification [LRPI07] and a karaoke
application using melody transcription [RVPKOS].

The aim of this work is to propose and develop methods for automatic music
transcription which explicitly incorporate information on the temporal evolution
of sounds, in an effort to improve transcription performance. The main focus
of the thesis will be on transcribing Western classical and jazz music, excluding
unpitched percussion and vocals. To that end, we utilize and propose techniques
from music signal processing and analysis, aiming to develop a system which
is able to transcribe music with a high level of polyphony and is not limited
to pitched percussive instruments such as piano, but can accurately transcribe
music produced by bowed string and wind instruments. Finally, we aim to
exploit proposed automatic music transcription systems in various applications
in computational musicology, music information retrieval, and audio processing,
demonstrating the potential of automatic music transcription research in music

and audio technology.
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Figure 1.1: An automatic music transcription example. The top part of the
figure contains a waveform segment from a recording of J.S. Bach’s Prelude in
D major from the Well-Tempered Clavier Book I, performed on a piano. In the
middle figure, a time-frequency representation of the signal can be seen, with
detected pitches in rectangles (using the transcription method of [DCL10]). The
bottom part of the figure shows the corresponding score.

1.2 Thesis structure

Chapter [2] presents an overview of related work on automatic music transcrip-
tion. It begins with a presentation of basic concepts from music terminol-
ogy. Afterwards the problem of automatic music transcription is defined,
followed by related work on single-pitch detection. Finally, a detailed sur-
vey on state-of-the-art automatic transcription methods for polyphonic

music is presented.

Chapter [3] presents proposed methods for audio feature-based automatic mu-
sic transcription. Preliminary work on multiple-F0O estimation on isolated

piano chords is described, followed by an automatic music transcription



system for polyphonic music. The latter system utilizes audio features
exploiting temporal evolution. Finally, a transcription system which also
incorporates information on note onsets and offsets is given. Private and

public evaluation results using the proposed methods are given.

Chapter [ presents proposed methods for automatic music transcription which
are based on spectrogram factorization techniques. More specifically, a
transcription model which is based on shift-invariant probabilistic latent
component analysis (SI-PLCA) is presented. Further work focuses on
modeling the temporal evolution of sounds within the SI-PLCA frame-
work, where a single-pitch model is presented followed by a multi-pitch,
multi-instrument model for music transcription. Private and public eval-

uation results using the proposed methods are given.

Chapter [Bl presents applications of proposed transcription systems. Proposed
systems have been utilized in computational musicology applications, in-
cluding key modulation detection in J.S. Bach chorales and temperament
estimation in harpsichord recordings. A system for score-informed tran-
scription has also been proposed, applied to automatic piano tutoring.
Proposed transcription models have also been modified in order to be

utilized for acoustic scene characterisation.

Chapter [6] concludes the thesis, summarizing the contributions of the thesis
and providing future perspectives on further improving proposed tran-
scription systems and on potential applications of transcription systems

in music technology and audio processing.

1.3 Contributions

The principal contributions of this thesis are:

e Chapter B} a pitch salience function in the log-frequency domain which

supports inharmonicity and tuning changes.

e Chapter Bt A spectral irregularity feature which supports overlapping

partials.

e ChapterBl A common amplitude modulation (CAM) feature for suppress-

ing harmonic errors.



Chapter [3F A noise suppression algorithm based on a pink noise assump-

tion.

Chapter Bt Overlapping partial treatment procedure using harmonic en-

velopes of pitch candidates.

Chapter Bt A pitch set score function incorporating spectral and temporal

features.

Chapter B} An algorithm for log-frequency spectral envelope estimation

based on the discrete cepstrum.
Chapter Bl Note tracking using conditional random fields (CRF's).

Chapter Note onset detection which incorporates tuning and pitch

information from the salience function.

Chapter Bl Note offset detection using pitch-wise hidden Markov models
(HMMs).

Chapter [ A convolutive probabilistic model for automatic music tran-
scription which utilizes multiple-pitch and multiple-instrument templates

and supports frequency modulations.

Chapter @t A convolutive probabilistic model for single-pitch detection

which models the temporal evolution of notes.

Chapter @ A convolutive probabilistic model for multiple-instrument
polyphonic music transcription which models the temporal evolution of

notes.

Chapter[B The use of an automatic transcription system for the automatic

detection of key modulations.

Chapter The use of a conservative transcription system for tempera-

ment estimation in harpsichord recordings.

Chapter[Bl A proposed algorithm for score-informed transcription, applied

to automatic piano tutoring.

Chapter Bt The application of techniques developed for automatic music

transcription to acoustic scene characterisation.



1.4 Associated publications

This thesis covers work for automatic transcription which was carried out by
the author between September 2009 and August 2012 at Queen Mary Univer-

sity of London. Work on acoustic scene characterisation (detailed in Chapter B

was performed during a one-month visit to IRCAM, France in November 2011.

The majority of the of the work presented in this thesis has been presented in
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2011.

E. Benetos and S. Dixon, “A shift-invariant latent variable model for au-
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E. Benetos and S. Dixon, “Multiple fundamental frequency estimation
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It should be noted that for [vii] the author contributed in the collection of
the dataset, the transcription experiments using the system of [vi], and the im-
plementation of the HMMs for key detection. For [x], the author proposed and
implemented a harpsichord-specific transcription system and performed tran-
scription experiments. For [xiii], the author proposed a model for acoustic
scene characterisation based on an existing evaluation framework by the second
author. Finally in [iv, xiv], the author contributed information on state-of-the-
art transcription, score-informed transcription, and insights on the creation of
a complete transcription system. In all other cases, the author was the main

contributor to the publications, under supervision by Dr Simon Dixon.

Finally, portions of this work have been linked to Industry-related projects:

1. A feasibility study on score-informed transcription technology for a piano
tutor tablet application, in collaboration with AllegrolQ Lt (January
and August 2011).

2. Several demos on automatic music transcription, for an automatic scor-
ing/typesetting tool, in collaboration with DoReMIR Music Research A
(March 2012 - today).

Thttp://www.allegroiq.com/
%http://www.doremir. com/
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Chapter 2

Background

In this chapter, state-of-the-art methods on automatic transcription of poly-
phonic music are described. Firstly, some terms from music theory will be
introduced, which will be used throughout the paper (Section 21]). Afterwards,
methods for single-pitch estimation will be presented along with monophonic
transcription approaches (Section 2.2]). The core of this chapter consists of a
detailed review of polyphonic music transcription systems (Section23)), followed
by a review of note tracking approaches (Section 24]), commonly used evalua-
tion metrics in the transcription literature (Section 2.H), and details on public
evaluations of automatic music transcription methods (Section 2.6]). Finally, a
discussion on assumptions and design considerations made in creating automatic
music transcription systems is made in Section 27 It should be noted that part
of the discussion section has been published by the author in [BDGT12).

2.1 Terminology

2.1.1 Music Signals

A signal is called periodic if it repeats itself at regular time intervals, which is
called the period [Yeh08]. The fundamental frequency (denoted fp) of a signal
is defined as the reciprocal of that period. Thus, the fundamental frequency is
an attribute of periodic signals in the time domain (e.g. audio signals).

A music signal is a specific case of an audio signal, which is usually pro-
duced by a combination of several concurrent sounds, generated by different

sources, where these sources are typically musical instruments or the singing



voice [Perl0, [Hai03]. The instrument sources can be broadly classified into
two categories, which produce either pitched or unpitched sounds. Pitched in-
struments produce sounds with easily controlled and locally stable fundamental
periods [MEKR11]. Pitched sounds can be described by a series of sinusoids
(called harmonics or partials) which are harmonically-related, i.e. in the fre-
quency domain the partials appear at integer multiples of the fundamental fre-
quency. Thus, if the fundamental frequency of a certain harmonic sound is fy,
energy is expected to appear at frequencies hfy, where h € N.

This fundamental frequency gives the perception of a musical note at a
clearly defined pitch. A formal definition of pitch is given in [KDOQG], stating
that “pitch is a perceptual attribute which allows the ordering of sounds on a
frequency-related scale extending from low to high”. As an example, Fig. 2.1
shows the waveform and spectrogram of a D3 piano note. In the spectrogram,
the partials can be seen as occurring at integer multiples of the fundamental
frequency (in this case it is 146.8 Hz).

It should be noted however that sounds produced by musical instruments
are not strictly harmonic due to the very nature of the sources (e.g. a stiff
string produces an inharmonic sound [JVV08| [AS05]). Thus, a common as-
sumption made for pitched instruments is that they are quasi-periodic. There
are also cases of pitched instruments where the produced sound is completely
inharmonic, where in practice the partials are not integer multiples of a funda-
mental frequency, such as idiophones (e.g. marimba, vibraphone) [Per10]. An
example of an inharmonic sound is given in Fig. 2.2] where the spectrogram of
a Marimba A3 note can be seen.

Finally, a musical instrument might also exhibit frequency modulations such
as wvibrato. In practice this means that the fundamental frequency changes
slightly. One such example of frequency modulations can be seen in Fig. 2.3
where the spectrogram of a violin glissando followed by a vibrato is shown.
At around 3 sec, the vibrato occurs and the fundamental frequency (with its
corresponding partials) oscillates periodically over time. Whereas a vibrato
denotes oscillations in the fundamental frequency, a tremolo refers to a periodic
amplitude modulation, and can take place in woodwinds (e.g. flute) or in vocal
sounds [FRIS].

Notes produced by musical instruments typically can be decomposed into
several temporal stages, denoting the temporal evolution of the sound. Pitched
percussive instruments (e.g. piano, guitar) have an attack stage, followed by

decay and release [BDAT05|. Bowed string or woodwind instruments have a
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Figure 2.1: A D3 piano note (146.8 Hz). (a) The waveform of the signal. (b)
The spectrogram of the signal. Harmonics occur at integer multiples of the
fundamental frequency.

long sustain state [Perl(]. Formally, the attack stage of a tone is the time
interval during which the amplitude envelope increases [BDAT05]. An example
of the attack and release states of a piano sound can be seen in Fig. 2.1l where
at 0.7sec an attack region can be seen, whereas from 2-4 sec the tone decays
before being released. It should finally be noted that the focus of the thesis is on
transcribing music produced by pitched instruments, thus excluding percussion
or audio effects. Human voice transcription is also not considered, although a
transcription experiment using a singing voice excerpt is presented in the thesis
(recording 12 in Table 3.

2.1.2 Tonality

Music typically contains combinations of notes organized in a way so that they

please human listeners. The term harmony is used to the combination of concur-

11



8000 - -

7000 —

6000 - —

5000 |- -

4000 |- B

frequency (Hz)

3000 |- B

2000 + .

1000 + B

1 1 1
0.25 0.5 0.75
time (sec)

Figure 2.2: The spectrogram of an A3 marimba note.

rent pitches and the evolution of these note combinations over time. A melodic
interval refers to the pitch relationship between two consecutive notes while a
melody refers to a series of notes arranged in a musically meaningful succession
[Sch1I].

Research on auditory perception has shown that humans perceive as conso-

nant musical notes whose ratio of fundamental frequencies (also called harmonic
n+1

interval) is of the form =, where n < 5 [Ter77]. The most consonant harmonic
intervals are %, which is called an octave, and %, which is called a perfect fifth.
For the case of the octave, the partials of the higher note (which has a funda-
mental frequency of 2fy, where fy is the fundamental frequency of the lower
note) appear at the same frequencies with the even partials of the lower note.
Likewise, in the case of a perfect fifth, notes with fundamental frequencies fy
and % will have in common every 3rd partial of fy (e.g. 3f0,6f0). These
partials which appear in two or several concurrent notes are called overlapping
partials.

In Western music, an octave corresponds to an interval of 12 semitones, while
a perfect fifth to 7 semitones. A tone is an interval of two semitones. A note
can be identified using a letter (A,B,C,D,E,F,G) and an octave number. Thus,
A3 refers to note A in the 3rd octave. Also used are accidentals, which consist

of sharps (f) and flats (b), shifting each note one semitone higher or lower,

12
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Figure 2.3: The spectrogram of a violin glissando. A vibrato can be seen around
the 3 sec marker.

respectively. Although a succession of 7 octaves should result to the same note
as a succession of 12 fifths, the ratio (%)12 : 27 is approximately 1.0136, which
is called a Pythagorean comma. Thus, some of the fifth intervals need to be
adjusted accordingly. Temperament refers to the various methods of adjusting
some or all of the fifth intervals (octaves are always kept pure) with the aim
of reducing the dissonance in the most commonly used intervals in a piece of
music [Bar51, [Ver09].

One way of representing temperament is by the distribution of the Pythagorean
comma around the cycle of fifths, as seen in Fig[Z4l The most common tem-
perament is equal temperament, where each semitone is equal to one twelfth of
an octave. Thus, all fifths are diminished by 11—2 of a comma relative to the pure
ratio of % Typically, equal temperament is tuned using note A4 as a reference
note with a fundamental frequency of 440 Hz.

A scale is a sequence of notes in ascending order which forms a perceptually
natural set [HMO03]. The major scale follows the following pattern with respect
to semitones: 2-2-1-2-2-2-1. An example of a C major scale using Western
notation can be seen in Fig. The natural minor scale has the pattern 2-1-2-
2-1-2-2 and the harmonic minor scale has the pattern 2-1-2-2-1-3-1. The key of

13
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Figure 2.5: A C major scale, starting from C4 and finishing at C5.

a section of music is the scale which best fits the notes present. Using Western
harmony rules, a set of concurrent notes which sound pleasant to most people is
defined as a chord. A simple chord is the major triad (i.e. a three-note chord),
which in equal temperament has a fundamental frequency ratio of 4:5:6. The

consonance stems from the fact that these notes share many partials.

2.1.3 Rhythm

Rhythm describes the timing relationships between musical events within a piece
[CM60]. A main rhythmic concept is the metrical structure, which consists of
pulse sensations at different levels. Klapuri et al. [KEAQG] consider three levels,
namely the tactus, tatum, and measure.

The tatum is the lowest level, considering the shortest durational values
which are commonly encountered in a piece. The tactus level consists of beats,

which are basic time units referring to the individual elements that make up a
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Figure 2.6: The opening bars of J.S. Bach’s menuet in G major (BWV Anh.
114) illustrating the three metrical levels.

pulse. The tempo indicates the rate of the tactus. A pulse is a regularly spaced
sequence of accents. Finally, the measure level consists of bars, which refers
to the harmonic change rate or to the length of a rhythmic pattern [KEAQG].
The three metrical levels are illustrated in Fig. using J.S. Bach’s menuet
in G major. It should also be noted that in Western music notation rhythm
is specified using a time signature, which specifies the number of beats in each
measure (e.g. in Fig. the time signature is 3/4, which means that each bar

consists of 3 beats, with each beat corresponding to a crotchet).

2.1.4 MIDI Notation

A musical score can be stored in a computer in many different ways, however the
most common computer music notation framework is the Musical Instrument
Digital Interface (MIDI) protocol [MID]. Using the MIDI protocol, the specific
pitch, onset, offset, and intensity of a note can be stored, along with additional
parameters such as instrument type, key, and tempo.

In the MIDI protocol, each pitch is assigned a number (e.g. A3=69). The
equations which relate the fundamental frequency fo in Hz with the MIDI num-

ber nppr are as follows:

NyIipr = 12~10g2 [%]4‘69
fo = 440274 (2.1)
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Figure 2.7: The piano-roll representation of J.S. Bach’s prelude in C major from
the Well-tempered Clavier, Book 1.

Although MIDI has certain advantages regarding accessibility and simplic-
ity, it has certain limitations, such as the storage of proper musical notation or
expressive features. To that end, there are numerous protocols used for music
notation in computers, such as MusicXM or Lilyponcﬂ. Automatic transcrip-
tion systems proposed in the literature usually convert an input recording into
a MIDI file or a MIDI-like representation (returning a pitch, onset, offset).

One useful way to represent a MIDI score is a piano-roll representation,
which depicts pitch in the vertical axis and time in the horizontal axis. An
example of a piano-roll is given in Fig. 27 for J.S. Bach’s prelude in C major,
from the Well-tempered Clavier Book I.

2.2 Single-pitch Estimation

In this subsection, work on single-pitch and single-F0 detection for speech and
music signals will be presented. Algorithms on single-F0 estimation assume that

only one harmonic source is present in a specific instant within a signal. The

Thttp://www.makemusic.com/musicxml
%http://1lilypond.org/
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Figure 2.8: The spectrum of a C4 piano note (sample from MAPS database

[EBD10]).

single-F0 estimation problem is largely considered to be solved in the literature,
and a review on related methods can be found in [dC06]. In order to describe
single-F0 estimation methods we will use the same categorization, i.e. separate
approaches into spectral, temporal and spectrotemporal ones.

2.2.1 Spectral Methods

As mentioned in Section 2.1} the partials of a harmonic sound occur at integer
multiples of the fundamental frequency of that sound. Thus, a decision on
the pitch of a sound can be made by studying its spectrum. In Fig. 2.8l the
spectrum of a C4 piano note is shown, where the regular spacing of harmonics
can be observed.

The autocorrelation function can be used for detecting repetitive patterns
in signals, since the maximum of the autocorrelation function for a harmonic
spectrum corresponds to its fundamental frequency. Lahat et al. in [LNK87]
propose a method for pitch detection which is based on flattening the spectrum
of the signal and estimating the fundamental frequency from autocorrelation
functions. A subsequent smoothing procedure using median filtering is also
applied in order to further improve pitch detection accuracy.

In [Bro92], Brown computes the constant-Q spectrum [BP92] of an input
sound, resulting in a log-frequency representation. Pitch is subsequently de-

tected by computing the cross-correlation between the log-frequency spectrum
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Figure 2.9: The constant-Q transform spectrum of a C4 piano note (sample
from MAPS database [EBD10]). The lowest bin corresponds to 27.5 Hz and the

frequency resolution is 60 bins/octave.

and an ideal spectral pattern, which consists of ones placed at the positions
of harmonic partials. The maximum of the cross-correlation function indicates
the pitch for the specific time frame. The advantage of using a harmonic pat-
tern in log-frequency stems from the fact that the spacing between harmonics is
constant for all pitches, compared to a linear frequency representation (e.g. the
short-time Fourier transform). An example of a constant-Q transform spectrum
of a C4 piano note (the same as in Fig. [22§)) can be seen in Fig.

Doval and Rodet [DR93] proposed a maximum likelihood (ML) approach for
fundamental frequency estimation which is based on a representation of an input
spectrum as a set of sinusoidal partials. To better estimate the fy afterwards,
a tracking step using hidden Markov models (HMMs) is also proposed.

Another subset of single-pitch detection methods uses cepstral analysis. The
cepstrum is defined as the inverse Fourier transform of the logarithm of a signal
spectrum. Noll in [Nol67] proposed using the cepstrum for pitch estimation,
since peaks in the cepstrum indicate the fundamental period of a signal.

Finally, Kawahara et al. [KdCP98] proposed a spectrum-based F0 estimation
algorithm called “TEMPQO”, which measures the instantaneous frequency at the

output of a filterbank.
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2.2.2 Temporal Methods

The most basic approach for time domain-based single-pitch detection is the
use of the autocorrelation function using the input waveform [Rab77]. The

autocorrelation function is defined as:

N—-v—1
A(JF[V]:% > znlan+ v (2.2)

n=0

where z[n] is the input waveform, N is the length of the waveform, and v denotes
the time lag. For a periodic waveform, the first major peak in the autocorre-
lation function indicates the fundamental period of the waveform. However it
should be noted that peaks also occur at multiples of the period (also called
subharmonic errors). Another advantage of the autocorrelation function is that
it can be efficiently implemented using the discrete Fourier transform (DFT).
Several variants and extensions of the autocorrelation function have been
proposed in the literature, such as the average magnitude difference function
[IRSC™74], which computes the city-block distance between a signal chunk and
another chunk shifted by v. Another variant is the squared-difference function
[dC98], which replaced the city-block distance with the Euclidean distance:
N—v—1

SDF[] = % S (afn] - afn + 1)) (2.3)

n=0

A normalized form of the squared-difference function was proposed by de
Cheveigné and Kawahara for the YIN pitch estimation algorithm [dCK02]. The
main improvement is that the proposed function avoids any spurious peaks near
zero lag, thus avoiding any harmonic errors. YIN has been shown to outperform
several pitch detection algorithms [dCKO02] and is generally considered robust
and reliable for fundamental frequency estimation [dC06| [KIa04bl, [Yeh08| [Per10,
KDOG].

2.2.3 Spectrotemporal Methods

It has been noted that spectrum-based pitch estimation methods have a ten-
dency to introduce errors which appear in integer multiples of the fundamental
frequency (harmonic errors), while time-based pitch estimation methods typ-
ically exhibit errors at submultiples of the fy (subharmonic errors) [Kla03].

Thus, it has been argued that a tradeoff between spectral and temporal meth-
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to the summary autocorrelation function.

ods [dC06] could potentially improve upon pitch estimation accuracy.

Such a tradeoff can be formulated by splitting the input signal using a fil-
terbank, where each channel gives emphasis to a range of frequencies. Such a
filterbank is the unitary model by Meddis and Hewitt [MH92] which was utilized
by the same authors for pitch detection [MO97]. This model has links to human

auditory models. The unitary model consists of the following steps:
1. The input signal is passed into a logarithmically-spaced filterbank.
2. The output of each filter is half-wave rectified.
3. Compression and lowpass filtering is performed to each channel.

the output of the model can be used for pitch detection by computing the auto-
correlation for each channel and summing the results (summary autocorrelation
function). A diagram showing the pitch detection procedure using the unitary
model can be seen in Fig. It should be noted however that harmonic
errors might be introduced by the half-wave rectification [Kla04b]. A similar
pitch detection model based on human perception theory which computes the

autocorrelation for each channel was also proposed by Slaney and Lyon [SLI0].

2.3 Multi-pitch Estimation and Polyphonic Mu-

sic Transcription

In the polyphonic music transcription problem, we are interested in detecting

notes which might occur concurrently and could be produced by several instru-
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ment sources. The core problem for creating a system for polyphonic music tran-
scription is thus multi-pitch estimation. For an overview on polyphonic tran-
scription approaches, the reader is referred to [KDOQG6], while in [dC06] a review of
multiple-FO estimation systems is given. A more recent overview on multi-pitch
estimation and polyphonic music transcription is given in [MEKR11].

As far as the categorization of the proposed methods is concerned, in [dC06]
multiple-FO estimation methods are organized into three groups: temporal,
spectral, and spectrotemporal methods. However, the majority of multiple-FO
estimation methods employ a variant of a spectral method; even the system by
Tolonen [TKO00] which depends on the summary autocorrelation function uses
the FFT for computational efficiency. Thus, in this section, two different clas-
sifications of polyphonic music transcription approaches will be made; firstly,
according to the time-frequency representation used and secondly according to
various techniques or models employed for multi-pitch detection.

In Table 21l approaches for multi-pitch detection and polyphonic music
transcription are organized according to the time-frequency representation em-
ployed. It can be clearly seen that most approaches use the short-time Fourier
transform (STFT) as a front-end, while a number of approaches use filter-
bank methods, such as the equivalent rectangular bandwidth (ERB) gamma-
tone filterbank, the constant-Q transform (CQT) [Bro91], the wavelet transform
[Chu92], and the resonator time-frequency image [Zho06]. The gammatone fil-
terbank with ERB channels is part of the unitary pitch perception model of
Meddis and Hewitt and its refinement by Meddis and O’Mard [MH92, MO97],
which compresses the dynamic level of each band, performs a non-linear pro-
cessing such as half-wave rectification, and performs low-pass filtering. Another
time-frequency representation that was proposed is specmurt [SKTT08|, which
is produced by the inverse Fourier transform of a log-frequency spectrum.

Another categorization was proposed by Yeh in [Yeh0§], separating systems
according to their estimation type as joint or iterative. The iterative estimation
approach extracts the most prominent pitch in each iteration, until no addi-
tional FOs can be estimated. Generally, iterative estimation models tend to
accumulate errors at each iteration step, but are computationally inexpensive.
In the contrary, joint estimation methods evaluate FO combinations, leading to
more accurate estimates but with increased computational cost. However, re-
cent developments in the automatic music transcription field show that the vast
majority of proposed approaches now falls within the ‘joint’ category.

Thus, the classification that will be presented in this thesis organises auto-
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Time-Frequency Representation Citation
Short-Time Fourier Transform [Abd02! [AP04, [AP0G, [BJ05, BED09a, BBJT04, BBFTI0, BBSTLI|
[BKTBI2, [Bel03, [BDS06, [BMS00, BERO7, [BD04, BST2, [Bro06)
[BG10, BG11, [CLLY07, [OCRT08, [OCRT 09D, (OCRT09a]
[OCQRI0, [OVCF11] [CKB03, [Cemd, (CKB0S, [CSY*08]
[CTAJ04, [C1.J06, [CTJ07, [CSTI07, [CSTI08, [Con06, [DGO3], [DGI0G6]
[DCLI0, Dix00, DRI3, DZZS07, [DHPOY, [DHP10, [DPZ10]
[DDRIT [EBDO7, [EBDOS, [EBDI0, [FHABIO, [FK1T] [FCCO5)

[Fon08, [FF09, [GBHLOY, [GS07al [GD02] [GEQ)

[GEI0, [GE1T, [Gro08, [GS07a) [Toh03, KIa01l, Kla03, Kla04h), [KIa06]
[Kla09al, Kla09b, [KT11), LYLCT0, LY CIT), LYCI2, LW07, [CWB0G6|
[Lu06, [MSHOS, NRK*10, NRK*11} NLRK¥11]
[NNLSTIL INRO7, [Nie08, [OKST12, [OPTT, [ONP12|
[0S03, OBBCTOL BQO7, [QRCT10, [CRV*10, PLGO7)
[PCGI0, [PGT1] [Pee06, [PI08, [Per10, [PT04]

[PI05, [PI07, [PI08, [Per10, [PI12, PAB¥02)

[PEE07 PEOT, [PEOT [QCR 08, QCR 09)
[QCRO09, [QRCT10}, [CRVF10, [CQRSVCT 10, ROSN94]
mmmm
[SC10, [SCT1] [SB0O3, [Smalll [Sun00, [TT.05, VK02

[YSWIT0, WLO6G, Wel04, TWS05]
ERB Filterbank [BBV0J, BBVI0, KT99, Kla04b, Kla05] K108, [RK05, Ryy0§]
[RK08, [TK00, VR04, VBB(7, VBB0S, VBBI0, [ZLLX08|
Constant-Q Transform [Bro92] [CJ02] [CPT09, [CTS11, [FBR11, [KDK12]
[Mar12, [MS09, [ROSQ07, Sma09, [Wag03, m
Wavelet Transform [ECCO05, [KNS04, [KNS07, |MK.T_(LZl NEOS09]
[PHC06, [STOOT2, WRK*10, YGI0, [YG12a]
Constant-Q Bispectral Analysis ﬂ.ANRlﬂ INPAQ9]
Resonator Time-Frequency Image [ZR07, [ZR08| [ZRMZ09, [Zho06, BD10D, [BD10a]
Multirate Filterbank [CQI8l [Got00], [Got04]
Reassignment Spectrum [HMO03] [Hai03, [Pee06]
Modulation Spectrum [CDWO7]
Matching Pursuit Decomposition [Dex06]
Multiresolution Fourier Transform [PGSMRI12, [KCZ09, Drell]
Adaptive Oscillator Networks [Mar(04]
Modified Discrete Cosine Transform [SC09|
Specmurt [SKTT08]
High-resolution spectrum [BLWOT]
Quasi-Periodic Signal Extraction [IS509]

Table 2.1: Multiple-F0 estimation approaches organized according to the time-
frequency representation employed.

matic music transcription systems according to the core techniques or models
employed for multi-pitch detection, as can be seen in Table The majority
of these systems employ signal processing techniques, usually for audio feature
extraction, without resorting to any supervised or unsupervised learning pro-
cedures or classifiers for pitch estimation. Several approaches for note tracking
have been proposed using spectrogram factorisation techniques, most notably
non-negative matrix factorisation (NMF) [LS99]. NMF is a subspace analysis
method able to decompose an input time-frequency representation into a basis
matrix containing spectral templates for each component and a component ac-

tivity matrix over time. Maximum likelihood (ML) approaches, usually employ-
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ing the expectation-maximization (EM) algorithm [DLR77, [SS04], have been
also proposed in order to estimate the spectral envelope of candidate pitches
or to estimate the likelihood of a set of pitch candidates. Other probabilis-
tic methods include Bayesian models and networks, employing Markov Chain
Monte Carlo (MCMC) methods for reducing the computational cost. Hidden
Markov models (HMMs) [Rab89] are frequently used in a postprocessing stage
for note tracking, due to the sequential structure offered by the models. Su-
pervised training methods for multiple FO estimation include support vector
machines (SVMs) [CST00], artificial neural networks, and Gaussian mixture
models (GMMs). Sparse decomposition techniques are also utilised, such as
the K-SVD algorithm [AEBOQ5], non-negative sparse coding, and multiple signal
classification (MUSIC) [Sch86]. Least squares (LS) and alternating least squares
(ALS) models have also been proposed. Finally, probabilistic latent component
analysis (PLCA) [Sma04a] is a probabilistic variant of NMF which is also used

in spectrogram factorization models for automatic transcription.

2.3.1 Signal Processing Methods

Most multiple-F0 estimation and note tracking systems employ methods derived
from signal processing; a specific model is not employed, and notes are detected
using audio features derived from the input time-frequency representation either
in a joint or in an iterative fashion. Typically, multiple-FO estimation occurs
using a pitch salience function (also called pitch strength function) or a pitch
candidate set score function [Kla06, [PTI08, [YRR10]. In the following, signal
processing-based methods related to the current work will be presented in detail.

In [KIa03], Klapuri proposed an iterative spectral subtraction method with
polyphony inference, based on the principle that the envelope of harmonic
sounds tends to be smooth. A magnitude-warped power spectrum is used as
a data representation and a moving average filter is employed for noise sup-
pression. The predominant pitch is estimated using a bandwise pitch salience
function, which is able to handle inharmonicity [FR98, [BQGBO04, [AS05]. After-
wards, the spectrum of the detected sound is estimated and smoothed before it
is subtracted from the input signal spectrum. A polyphony inference method
stops the iteration. A diagram showing the iterative spectral subtraction sys-
tem of [KIa03|] can be seen in Fig. XTIl This method was expanded in [Kla08§],
where a variant of the unitary pitch model of [MO97] is used as a front-end,

and the summary autocorrelation function is used for detecting the predomi-
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Technique Citation
Signal Processing Techniques [ANP11, BBJT04, BBFT10, BBST11l, BKTB12, BLW07, Bro06, Bro92]
[CLLY07, [OCRF08, [OCRT09b, [OCRF 094 [Dix00, [I:ml
[DZZS07, FHABIO, [CQ98, [Em [Gro08, IPGSMR12, [HMO3]
[Hai03, [Toh03, KT99, KIa01l [KIa03)]
[KIa04b), [K1a08, [KIa06, [LRPIO7, [NPAQY]
[BQO7, [PHCOG, [PT07, [PT08, [Per10, [PTT2)
QCRT09, CQRSVC™10, ISKTT08, [SCO9, [TK00]
[Wag03| m m [WT.06, WS05, [YR04, YRRO5)]
Maximum Likelihood [BEDO9al, [DHPO9, IDEZJ.QI, [EBDO7, [EBD08, [EBDI0, [FHABI0, [GGot00]
MKT*07, [NEOS09, NR07)

Spectrogram Factorization [BBRO7, BBV09, BBV10, [OVCT11] [Con06, [CDWOT, [CTS11]

[OKS12, ROS07, ROS09al, ROS09E), [SMO06, [SB03), [Sma04b]
[Sma09, [Smalll VBB0O7, VBB0S, VBBI10, VMROS]

Hidden Markov Models [BJ05, [CSY*08] [EP06, [EBDOS, [EBD10, LW07, [0S03, PE07a, PEOTH)]

[QRCT10} [CRV™10, [Rap02, Ryy08, RK0S, [SCT0, §CI1l VR04]

Sparse Decomposition [ALd02] [AP04, [AP06] [BD04, [CK11] Der06, [GB03]
[LYLCIO, LYCTT, CYCT2, MSHOS, [OP11, [ONP12, [PAB*02, [QCR08
Multiple Signal Classification [CJAJ04, ICJJ06! [CSJJ07, [CTJ07, [CSJJ08| [ZCIMIO|
Support Vector Machines [CI02] ICPT09, [EP06, [GBHLO09, [PE07al, [PEOTH,
Dynamic Bayesian Network [CKB03, [Cem04,, [CKB06, KNKT98, ROS09b, RVBSI0]
Neural Networks [BS12, [GS07a, Mar04, NNLS11l, [(OBBCI0, [PI04] [PI05]
Bayesian Model + MCMC [BG10, BG11l, DGIOG, [GD02, PLG07, [PCG10, [PG11}, [TLO5]
Genetic Algorithms [Fon08, [EF09, [Lu06, REIVEOS|, [REEL1]
Blackboard System [BMS00, [BDS06, Bel03), McK03]
Subspace Analysis Methods [ECCO5, VR04, Wel04]
Temporal Additive Model [BDS06. [Bel03]
Gaussian Mixture Models [KIa09al, Mar(7]
Least Squares [KIa09bl, [KCZ09]

Table 2.2: Multiple-FO and note tracking techniques organised according to the
employed technique.

nant pitch. In [RK05] the system of [KIa03] was combined with a musicological
model for estimating musical key and note transition probabilities. Note events
are described using 3-state hidden Markov models (HMMs), which denote the
attack, sustain, and noise/silence state of each sound. Also incorporated was
information from an onset detection function. The system of [RK05] was also
publicly evaluated in the MIREX 2008 multiple-F0 estimation and note track-
ing task [MIR] where competitive results were reported. Also, in [BKTB12],
the system of [KIa08] was utilised for transcribing guitar recordings and also
for extracting fingering configurations. An HMM was incorporated in order to
model different fingering configurations, which was combined with the salience
function of [KIa08]. Fingering transitions are controlled using a musicological
model which was trained on guitar chord sequences.

Yeh et al. [YRRI10] present a joint pitch estimation algorithm based on a
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Figure 2.11: The iterative spectral subtraction system of Klapuri (figure from
[Kla03]).

pitch candidate set score function. The front-end of the algorithm consists of a
short-time Fourier transform (STFT) computation followed by an adaptive noise
level estimation method based on the assumption that the noise amplitude fol-
lows a Rayleigh distribution. Given a set of pitch candidates, the overlapping
partials are detected and smoothed according to the spectral smoothness prin-
ciple [Kla03]. The weighted score function for the pitch candidate set consists of
4 features: harmonicity, mean bandwidth, spectral centroid, and synchronicity.
A polyphony inference mechanism based on the score function increase selects
the optimal pitch candidate set. The automatic transcription methods proposed
by Yeh et al. [YRRO05, [YehO8, YRR10] have been publicly evaluated in several
MIREX competitions [MIR], where they rank first or amongst the first ones.

Pertusa and Ifesta [PI08| [Perl0), [PT12] propose a computationally inexpen-
sive method similar to Yeh’s. The STFT of the input signal is computed, and
a simple pitch salience function is computed. For each possible combination in
the pitch candidate set, an overlapping partial treatment procedure is applied.
Each harmonic partial sequence (HPS) is further smoothed using a truncated
normalised Gaussian window, and a measure between the HPS and the smooth
HPS is computed, which indicates the salience of the pitch hypothesis. The
pitch candidate set with the greatest salience is selected for the specific time
frame. In a postprocessing stage, minimum duration pruning is applied in order
to eliminate local errors. In Fig. 212 an example of the Gaussian smoothing
of [PI0§] is given, where the original HPS can be seen along with the smoothed
HPS.

Zhou et al. [ZRMZ09] proposed an iterative method for polyphonic pitch esti-
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Figure 2.12: Example of the Gaussian smoothing procedure of [PI08] for a
harmonic partial sequence.

mation using a complex resonator filterbank as a front-end, called the resonator
time-frequency image (RTFI) [Zho0O6]. An example of the RTFI spectrum is
given in Fig. A mid-level representation is computed, called the pitch
energy spectrum and pitch candidates are selected. Additional pitch candidates
are selected from the RTFI using harmonic component extraction. These candi-
dates are then eliminated in an iterative fashion using a set of rules based on fea-
tures of the HPS. These rules are based on the number of harmonic components
detected for each pitch and the spectral irregularity measure, which measures
the concentrated energy around possibly overlapped partials from harmonically-
related F0s. This method has been implemented as a real-time polyphonic mu-
sic transcription system and has also been evaluated in the MIREX framework
[MIR].

A mid-level representation along with a respective method for multi-pitch
estimation was proposed by Saito et al. in [SKTT08|, by using the inverse
Fourier transform of the linear power spectrum with log-scale frequency, which
was called specmurt (an anagram of cepstrum). The input spectrum (generated
by a wavelet transform) is considered to be generated by a convolution of a
common harmonic structure with a pitch indicator function. The deconvolution
of the spectrum by the harmonic pattern results in the estimated pitch indicator

function, which can be achieved through the concept of specmurt analysis. This
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Figure 2.13: The RFTI spectrum of a C4 piano note (sample from MAPS
databse [EBD10]). The lowest frequency is 27.5 Hz and the spectral resolution
is 120 bins/octave.

process is analogous to deconvolution in the log-frequency domain with a con-
stant harmonic pattern (see e.g. [Sma09]). Notes are detected by an iterative
method which helps in estimating the optimal harmonic pattern and the pitch
indicator function.

A system that uses a constant-Q and a bispectral analysis of the input au-
dio signal was proposed by Argenti et al. in [ANP11l [NPAO9]. The processed
input signal is compared with a two-dimensional pattern derived from the bis-
pectral analysis, instead of the more common one-dimensional spectra, leading
to improved transcription accuracy, as demonstrated by the lead ranking of the
proposed system in the MIREX 2009 piano note tracking contest [MIR].

Caniadas-Quesada et al. in [QRCT10| propose a frame-based multiple-F0
estimation algorithm which searches for FO candidates using significant peaks
in the spectrum. The HPS of pitch candidate combinations is extracted and a
spectral distance measure between the observed spectrum and Gaussians cen-
tered at the positions of harmonics for the specific combination is computed.
The candidate set that minimises the distance metric is finally selected. A post-
processing step is also applied, using pitch-wise two-state hidden Markov models
(HMMs), in a similar way to the method in [PE07a].

More recently, Grosche et al. [PGSMR12] proposed a method for automatic
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transcription based on a mid-level representation derived from a multiresolu-
tion Fourier transform combined with an instantaneous frequency estimation.
The system also combines onset detection and tuning estimation for computing
frame-based estimates. Note events are afterwards detected using 2 HMMs per

pitch, one for the on state and one for the off state.

2.3.2 Statistical Modelling Methods

Many approaches in the literature formulate the multiple-F0 estimation problem
within a statistical framework. Given an observed frame v and a set C of
all possible fundamental frequency combinations, the frame-based multiple-FO
estimation problem can then be viewed as a maximum a posteriori (MAP)
estimation problem [EBD10]:

C = argmax P(Clv) (2.4)

cec
where C is the estimated set of fundamental frequencies and P(-) denotes prob-
ability. If no prior information on the mixtures is specified, the problem can be

expressed as a maximum likelihood (ML) estimation problem using Bayes’ rule
[CKBO06, [DPZ10, [EBD10]:

C = arg max PLIOPEC) = argmax P(v|C) (2.5)
cec P(v) cec

Goto in [Got00, [Got04] proposed an algorithm for predominant-F0 estima-
tion of melody and bass line based on MAP estimation, called PreFEst. The
input time-frequency representation (which is in log-frequency and is computed
using instantaneous frequency estimation) is modelled using a weighted mixture
of adapted tone models, which exhibit a harmonic structure. In these tone mod-
els, a Gaussian is placed in the position of each harmonic over the log-frequency
axis. MAP estimation is performed using the expectation-maximization (EM)
algorithm. In order to track the melody and bass-line FOs over time, a multiple-
agent architecture is used, which selects the most stable FO trajectory. An

example of the tone model used in [Got04] is given in Fig. 214
A Bayesian harmonic model was proposed by Davy and Godsill in [DGO03],
which models the spectrum as a sum of Gabor atoms with time-varying am-
plitudes with non-white residual noise, while inharmonicity is also considered.

The unknown model parameters are estimated using a Markov chain Monte
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Figure 2.14: An example of the tone model of [Got04]. Each partial in the
log-frequency domain is modelled by a Gaussian probability density function
(PDF). The log-frequency resolution is 120 bins/octave.

Carlo (MCMC) method. The model was expanded in [DGI06], also including
the extraction of dynamics, timbre, and instrument type.

An expansion of Goto’s method from [Got04] was proposed by Kameoka
et al. [KNS04|, [KNS07], called harmonic temporal structured clustering (HTC),
which jointly estimates multiple fundamental frequencies, onsets, offsets, and
dynamics. The input time-frequency representation is a wavelet spectrogram.
Partials are modelled using Gaussians placed in the positions of partials in the
log-frequency domain and the synchronous evolution of partials belonging to
the same source is modelled by Gaussian mixtures. Time-evolving partials from
the same source are then clustered. Model parameters are learned using the
EM algorithm. The HTC algorithm was also used for automatic transcription
in [MKT™07], where rthythm and tempo are also extracted using note duration
models with HMMs. A variant of the HT'C algorithm was publicly evaluated for
the MIREX competition [NEOSQ9], where an iterative version of the algorithm
was used and penalty factors for the maximum number of active sources were
incorporated into the HTC likelihood.

The HTC algorithm was also utilised in [WRK™10] for instrument identifica-
tion in polyphonic music, where for each detected note event harmonic temporal
timbre features are computed and a support vector machine (SVM) classifier is
used for instrument identification. The HTC algorithm was further extended
by Wu et al. in [WVR™11a], where each note event is separated into an attack
and sustain state. For the attack states, an inharmonic model is used which
is characterised by a spectral envelope and a respective power. For the sustain

states, a harmonic model similar to [KNSOT7] is used. Instrument identification
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is also performed using an SVM classifier, in a similar way to [WRK™10).

A maximum likelihood approach for multiple-F0 estimation which models
spectral peaks and non-peak regions was proposed by Duan et al. in [DHP09,
DPZ10]. The likelihood function of the model is composed of the peak region
likelihood (probability that a peak is detected in the spectrum given a pitch)
and the non-peak region likelihood (probability of not detecting any partials in a
non-peak region), which are complementary. An iterative greedy F0 estimation
procedure is proposed and priors are learned from monophonic and polyphonic
training data. Polyphony inference, in order to control the number of itera-
tions, is achieved by a threshold-based method using the likelihood function. A
post-processing stage is performed using neighboring frames. Experiments were
performed on the newly released Bach10 datasetH, which contains multi-track
recordings of Bach chorales. The methods in [DHP09, [DPZ10] were also pub-
licly evaluated in the MIREX 2009 and 2010 contests and ranked second best
in the multiple-FO estimation task.

Badeau et al. in [BED09a] proposed a maximum likelihood approach for
multiple-pitch estimation which performs successive single-pitch and spectral
envelope estimations. Inference is achieved using the expectation-maximization
(EM) algorithm. As a continuation of the work of [BED(09a], Emiya et al. in
[EBD10] proposed a joint estimation method for piano notes using a likelihood
function which models the spectral envelope of overtones using a smooth au-
toregressive (AR) model and models the residual noise using a low-order moving
average (MA) model. The likelihood function is able to handle inharmonicity
and the amplitudes of overtones are considered to be generated by a complex
Gaussian random variable. The authors of [EBD10] also created a large database
for piano transcription called MAPS, which was used for experiments. MAPS
contains isolated notes and music pieces from synthesised and real pianos in
different recording setups.

Raczynski et al. in [RVBS10] developed a probabilistic model for multiple
pitch transcription based on dynamic Bayesian networks (DBNs) that takes
into account temporal dependencies between musical notes and between the
underlying chords, as well as the instantaneous dependencies between chords,
notes and the observed note saliences. In addition, a front-end for obtaining
initial note estimates was also used, which relied on the non-negative matrix
factorization (NMF) algorithm.

3http://music.cs.northwestern.edu
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Peeling and Godsill [PCG10,[PG11] proposed a likelihood function for multiple-
FO estimation where for a given time frame, the occurrence of peaks in the fre-
quency domain is assumed to follow an inhomogeneous Poisson process. This
method was updated in [BGI0l BGI11], where in order to link detected pitches
between adjacent frames, a model is proposed using Bayesian filtering and in-
ference is achieved using the sequential MCMC algorithm. It should be noted
however that the proposed likelihood function takes only into account the posi-
tion of partials in fy candidates and not their amplitudes.

An extension of the PreFFEst algorithm in [Got04] was proposed in [YGI0]
YG12al, where a statistical method called Infinite Latent Harmonic Allocation
(iLHA) was proposed for detecting multiple fundamental frequencies in poly-
phonic audio signals, eliminating the problem of fixed system parameters. The
proposed method assumes that the observed spectra are superpositions of a
stochastically-distributed unbounded (theoretically infinite) number of bases.
For inference, a modified version of the variational Bayes (VB) algorithm was
used. In [YGI2D], the method of [YG12a] was also used for unsupervised mu-
sic understanding, where musicological models are also learned from the input
signals. Finally, the iLHA method was improved by Sakaue et al. [SIOO12],
where a corpus of overtone structures of musical instruments taken from a MIDI
synthesizer was used instead of the prior distributions of the original iLHA al-
gorithm.

Koretz and Tabrikian [KT11] proposed an iterative method for multi-pitch
estimation, which combines MAP and ML criteria. The predominant source
is expressed using a harmonic model while the remaining harmonic signals are
modelled as Gaussian interference sources. After estimating the predominant
source, it is removed from the spectrogram and the process is iterated, in a
similar manner to the spectral subtraction method of [KIa03]. It should also be
noted that the algorithm was also tested on speech signals in addition to music

signals.

2.3.3 Spectrogram Factorization Methods

A large subset of recent automatic music transcription approaches employ spec-
trogram factorization techniques. These techniques are mainly non-negative
matrix factorization (NMF) [LS99] and its probabilistic counterpart, proba-
bilistic latent component analysis (PLCA) [SRS06]. Both of these algorithms

will be presented in detail, since a large set of proposed automatic transcription
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methods in this thesis are based on PLCA and NMF.

Non-negative Matrix Factorization

Subspace analysis seeks to find low dimensional structures of patterns within
high-dimensional spaces. Non-negative matrix factorization (NMF) [LS99] is
a subspace method able to obtain a parts-based representation of objects by
imposing non-negative constraints. In music signal analysis, it has been shown
to be useful in representing a spectrogram as a parts-based representation of
sources or notes [MEKR11], thus the use of the term spectrogram factorization.
NMF was first introduced as a tool for music transcription by Smaragdis
and Brown [SB03]. In NMF, an input matrix V € RSZXT can be decomposed

as:
V ~ WH (2.6)

where H € RZ*7" is the atom activity matrix across 7 and W € RY*Z is the
atom basis matrix. In (26, Z is chosen as min(§2,T"), as to reduce the data
dimension. In order to achieve the factorization, a distance measure between
the input V and the reconstruction WH is employed, with the most common
being the Kullback-Leibler (KL) divergence or the Euclidean distance.

Thus, in the case of an input magnitude or power spectrogram V, H is the
atom activity matrix across time and W is the atom spectral basis matrix. In
that case also, t = 1,...,T is the time index and w = 1,..., is the frequency
bin index, while z = 1,...,Z is the atom/component index. An example of
the NMF algorithm applied to a music signal is shown in Fig. 215 where the
spectrogram of the opening bars of J.S. Bach’s English Suite No. 5 is decomposed
into note atoms W and atom activations H.

In addition to [SB03], the standard NMF algorithm was also employed by
Bertin et al. in [BBRO7] where an additional post-processing step was presented,
in order to associate atoms with pitch classes and to accurately detect note
onsets and offsets.

Several extensions of NMF have been used for solving the automatic tran-
scription problem. In [Con06], Cont has added sparseness constraints into the
NMF update rules, in an effort to find meaningful transcriptions using a min-
imum number of non-zero elements in H. In order to formulate the sparse-
ness constraint into the NMF cost function, the [, norm is employed, which
is approximated by the tanh function. An extension of the work in [Con06]

was proposed in [CDWOT], where the input time-frequency representation was
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Figure 2.15: The NMF algorithm with Z = 5 applied to the opening bars of
J.S. Bach’s English Suite No. 5 (BWV 810 - recording from [Mar04]). (a) The
STFT spectrogram of the recording using a 46ms Hanning window. (b) The
computed spectral bases W (each basis corresponds to a different note). (c)
The activation H for each basis.

a modulation spectrogram. The 2D representation of a time frame using the
modulation spectrogram contains additional information which was also used
for instrument identification.

Raczyniski et al. in [ROS07] presented a harmonically-constrained variant
of non-negative matrix approximation (which is a generalized version of NMF
which supports different cost functions) for multipitch analysis, called harmonic
non-negative matrix approximation (HNNMA). The spectral basis matrix W is
initialized to have non-zero values in the overtone positions of each pitch and
its structure is enforced with each iteration. Additional penalties in HNNMA
include a sparsity constraint on H using the /; norm and a correlation measure
for the rows of H, in order to reduce the inter-row crosstalk. In [ROS09al,
additional regularizations are incorporated into the NNMA model, for enforcing

harmonicity and sparsity over the resulting activations.
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Niedermayer in [Nie08| introduced a method aiming to incorporate prior
knowledge about the pitch dictionary into the NMF algorithm. His approach
was called non-negative matrix division, and it included a step for tone model
learning before using a modified version of the unconstrained NMF with Eu-
clidean distance in order to extract the transcription. As an input, the magnitude-
warped power spectrum of [Kla03| was used.

Vincent et al. [VBB07, [VBBO0S] incorporated harmonicity constraints in the
NMF model, resulting in two algorithms; harmonic and inharmonic NMF. The
model additionally constrains each basis spectrum to be expressed as a weighted
sum of narrowband spectra, in order to preserve a smooth spectral envelope for
the resulting basis functions. The inharmonic version of the algorithm is also
able to support inharmonic spectra and tuning deviations. An ERB-scale time-
frequency representation is used as input and a threshold-based onset/offset
detection is performed in a post-processing step. The harmonic constraints and
the post-processing procedure for note identification and onset/offset detection
were further refined in [VBBI0].

A model for automatic transcription of multiple-instrument recordings was
proposed in [GEQ9], which extends the NMF algorithm to incorporate con-
straints on the basis vectors. Instrument models are incorporated using a group-
ing of spectral bases, called eigeninstruments.

Bertin et al. [BBV09, [BBV10] expanded upon the work of [VBBOS§|, propos-
ing a Bayesian framework for NMF, which considers each pitch as a model of
Gaussian components in harmonic positions. Spectral smoothness constraints
are incorporated into the likelihood function and for parameter estimation the
space alternating generalized EM algorithm (SAGE) is employed. Temporal
smoothness of the detected notes is also enforced by using a Markov chain prior
structure.

Nakano et al. [NRK™10] propose an NMF algorithm with Markov-chained
basis for modelling the temporal evolution of music sounds. The goal of the
system is to learn the time-varying sound states of musical instruments, such
as attack, sustain, and decay, without any prior information. The proposed
method is linked to the Viterbi algorithm using Factorial HMMs [GJ9T].

In [DCL10], the NMF algorithm with 5-divergence is utilised for piano tran-
scription. S-divergence is a parametric family of distortion functions which can
be used in the NMF cost function to influence the NMF update rules for W
and H. Essentially, 5 = 0 equally penalizes a bad fit of factorization for small

and large coefficients while when 3 > 0, emphasis is given to components with
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Figure 2.16: The activation matrix of the NMF algorithm with S-divergence
applied to the monophonic melody of Fig. ZI8 (a) 8 =0 (b) 8 = 0.5 (¢)
8 =1

greater energy. A tradeoff between an equal penalization and a penalization of
coeflicients with high energy only has been shown to produce improved results
for harmonic sounds (which typically have a strong fundamental and weaker
harmonics). It should also be mentioned that the method of was pub-
licly evaluated in the MIREX contest, giving good results in the piano-only note
tracking task. An example of the use of parameter [ for the transcription of
the opening bars of J.S. Bach’s English Suite No. 5 can be seen in Fig.
Costantini et al. in [CTST1] employed a variant of the NMF algorithm with
sparsity constraints for the activation matrix, using the constant-Q transform
as a time-frequency representation. The system also incorporated an onset

detector for splitting the input spectrogram into segments.
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Hennequin et al. [HBD10, [HBD11a] proposed an NMF-based algorithm for
music signal analysis in order to model non-stationary note events. Since in a
tone each harmonic decays with a different rate, the proposed model extends the
NMEF algorithm by including time-frequency activations based on autoregressive
moving average (ARMA) modeling,.

Carabias-Orti et al. [OVCT11] proposed a spectrogram factorization tech-
nique for automatic transcription as well as for musical instrument identification
in polyphonic music. A harmonic comb-based excitation-filter model was incor-
porated into the NMF framework in order to model the excitation of different
musical instruments.

Durrieu et al. [DDRI11] proposed a mid-level representation which com-
bines a source-filter model with the NMF algorithm in order to produce a pitch
track which also contains timbral information. This mid-level representation
was shown to be useful not only for multi-pitch detection, but also for melody
extraction and lead instrument/accompaniment separation.

Marolt [Mar12] proposed a system for automatically transcribing bell chim-
ing recordings using a modified version of the k-means algorithm for estimating
the number of bells in the recording and the NMF algorithm for estimating the
basis spectra of each bell. This system also incorporates an onset detector for
improving transcription performance.

Ochiai et al. [OKS12] propose an algorithm for multi-pitch detection and
beat structure analysis. The NMF objective function is constrained using in-
formation from the rhythmic structure of the recording, which helps improve

transcription accuracy in highly repetitive recordings.

Non-negative Matrix Deconvolution

Another variant of the NMF algorithm changes the model from a linear to
a convolutive one. Thus, two-dimensional bases can be learned from a time-
frequency representation, where the 2-D atoms are convolved with atom ac-
tivations. In [Sma04al [Sma04b], non-negative matrix deconvolution (NMD) is
proposed, where V is considered to be the result of a convolution of time-varying

spectra with their activity matrices. The NMD model can be formulated as:

T-1
VY W, H (2.7)
7=0
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where W, € R**Z H ¢ R?*T and ﬁT denotes shifting the columns of H by
T spots to the right.

Schmidt and Mgrup in [MS06, [SMO0G] proposed an extension of NMD with
sparsity constraints, called sparse non-negative matrix factor 2-D deconvolution
(SNMF2D) for automatic transcription of polyphonic music. The method oper-
ates in the log-frequency domain, considering a constant shifted 2-D harmonic
structure as a basis. In this case, the [ 1 norm of H was used in order to control
the sparseness, while non-negativity constraints on W, and H are explicitly
enforced for each iteration. It should also be noted that in [CSS11], an alterna-
tive formulation of the NMD models is made, called probabilistic latent tensor
factorization (PLTF).

In [KDK12], a method for semi-automatic music transcription is proposed
which is based on a proposed model for shift-invariant NMD. The algorithm op-
erates in the log-frequency domain and extracts a different instrument spectrum
for each fundamental frequency under analysis. The term semi-automatic tran-
scription refers to the user providing prior information about the polyphonic

mixture or user transcribing some notes for each instrument in the mixture.

Probabilistic Latent Component Analysis

An alternative formulation of NMF was proposed by Smaragdis in [SRS06],
called probabilistic latent component analysis (PLCA). It can be viewed as a
probabilistic extension of the non-negative matrix factorization (NMF) algo-
rithm [LS99] using the Kullback-Leibler cost function, providing a framework
that is easy to generalize and interpret. PLCA can also offer a convenient way to
incorporate priors over the parameters and control the resulting decomposition,
for example using entropic priors [SRS08a]. In PLCA, the input spectrogram
Vit (w denotes frequency, and ¢ time), which must be scaled to have integer
entries, is modeled as the histogram of the draw of N independent random
variables (wp,t,) which are distributed according to P(w,t). P(w,t) can be
expressed by the product of a spectral basis matrix and a component activity
matrix.

The asymmetric form of the PLCA model is expressed as:
Pi(w) =Y P(w|2)Pi(2) (2.8)

where z is the component index, P(w|z) is the spectral template that corre-
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sponds to the z-th component, and P;(z) is the activation of the z-th compo-
nent.

The generative model for PLCA as presented in [Sha07] is as follows:
1. Choose z according to Pi(z).

2. Choose w according to P(w|z).

3. Repeat the above steps V; times (Vi = > Vi, ¢).

In order to estimate the unknown parameters P(w|z) and P:(z), iterative
update rules are applied, using the Expectation-Maximization (EM) algorithm
[DLR77,[SS04]. For the E-step, the a posteriori probability for the latent variable
is derived using Bayes’ theorem:

P(wl|z) Py (2)
P(zlw) = =——"FF"— 2.9
M) = S Pl R G) 29)

For the M-step, the expected complete data log-likelihood is maximised. The

expected log-likelihood is given by [Sha07]:

where @, Z represent the set of all observations for w, z and A = {P(w|z), P:(z)}.

The complete data likelihood P(w, z) can be written as:
P(@,2) = [[ Pu(2)) P(w]z;) (2.11)
gt

where wj, z; are the values of w, z in their j-th draw. Thus, £ can be written

L= Z P(z|wj)log P(2) + Z P(z|w,;)log P(w;|2) (2.12)

Jst,z Itz

By introducing Lagrange multipliers in (Z.12) and maximising with respect to
P(w|z) and P,(z) leads to the following M-step equations:

P(wlz) g:‘?‘;:i;faﬂ) (2.13)
2w Vo bi(z|w)
Pt (Z) Zz)w watPt (Z|w) (214)

The update rules of (Z9)-(2I4) are guaranteed to converge to a local min-
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Figure 2.17: (a) The log-frequency spectrogram P(w,t) of a C4 piano note (b)
Approximation of the spectrogram using PLCA with z = 1 component (¢) The
spectral template P(w|z) (d) The gain P;(z).

imum. In Fig. 217 an example of the application of the PLCA method to a
log-frequency spectrogram of a piano note can be seen.

An extension of the asymmetric PLCA algorithm was used for multiple-
instrument transcription in [GEI0L [GE11], where a system was proposed which
supported multiple spectral templates for each pitch and instrument source.
The notion of eigeninstruments was again utilised (as in [GE09]), by modeling
the fixed spectral templates as a linear combination of basic instrument models

in a training step. The model was expressed as:
P(w,t) = P(1) Y > > P(wlp, z,5)P(zs,p,t)P(s|p, t) P(p|t) (2.15)
s p z

In (ZT3)), p corresponds to pitch, s to the instrument source, and z to the index
of pitch components per instrument. Thus, P(w|p, z, s) is the spectral template
that corresponds to the p-th pitch, s-th source, and z-th component. P(p|t)
is the transcription output and P(t) is the signal energy (known quantity).
Sparsity was enforced on the pitch activity matrix and the source contribution
matrix by modifying the model update equations. Experiments were performed
on J.S. Bach duets and on pairs of tracks from the multi-track MIREX multi-FO0
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woodwind recording [MIR], which is also used in this thesis.

Shift-Invariant Probabilistic Latent Component Analysis

Incorporating a shift-invariant model into the PLCA framework is practical
since the sum of two random variables corresponds to a convolution of their
distribution. Shift-invariant PLCA [SRS08b| was proposed for extracting shifted
structures in non-negative data. It has been used in music signal processing
applications using a normalized log-frequency spectrogram as an input, since a
shift over log-frequency corresponds to a pitch change.

The shift-invariant PLCA (SI-PLCA) model can be defined as:

P(w,t) = Y P(2)P(wl|z) % P(f,t]2)

> P()Y Plw—fl2)P(ft]2) (2.16)

f

where w is the log-frequency index, z the component index, and f the shifting
factor. P(w — f|z) = P(u|f) denotes the spectral template for the z-th compo-
nent, P(f,t|z) the time-varying pitch shifting, and P(z) the component prior.

Again, the EM algorithm can be used for deriving update rules for the unknown

parameters:
PR ()P = P
_ P(z)P(w— flz)P(f,t]2)
Pl = pope—rmptras &1
e M Step

Zw,t,f Vw,tp(f, Z|w7 t)
Zz,w,t,f Vw,tp(f, le, t)

_ Zf,t vatp(fvz|w7t)
P(ulz) = S Vor P 2w 0) (2.19)

_ Zw watp(fv Z|w7 t)
P(f,t]2) = ST IEPR) (2.20)

P(z) (2.18)

An example of SI-PLCA applied to a music signal is given in Fig. 218 where
the input log-frequency spectrogram of a cello melody is decomposed into a
spectral template and a pitch impulse distribution.

Regarding applications of SI-PLCA, in [Sma09] the SI-PLCA model was used
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Figure 2.18: (a) The log-frequency spectrogram P(w,t) of a cello melody (RWC-
MDB-C-2001 No. 12 [GHNOO03|) (b) Approximation of the spectrogram using
SI-PLCA with z = 1 (¢) The spectral template P(w|z) (d) The pitch distribution

P(f,t]2).

for relative pitch tracking, where sparsity was enforced on the unknown matrices
using an entropic prior. Mysore and Smaragdis [MS09] used the SI-PLCA model
for multiple-instrument relative pitch tracking, tested on the MIREX multi-FO
recording [MIR]. For eliminating octave errors, a sliding-Gaussian Dirichlet
prior was used in the model, while a temporal continuity constraint using a
Kalman filter type smoothing was applied to P(f,t|z) in order to extract a
smooth pitch track.

More recently, an extension of the SI-PLCA algorithm was proposed for har-
monic signals by Fuentes et al. [FBRI11]. Each note is modeled as a weighted
sum of narrowband log-spectra which are also shifted across log-frequency. This
approach is a convolutive probabilistic formulation of the harmonic NMF al-
gorithm proposed by Vincent [VBBI10], with added time-dependence for the
weights of the narrowband spectra. The harmonic SI-PLCA method was tested
for single-pitch detection on isolated note samples and a model was proposed
for multi-pitch detection. An asymmetric minimum variance prior was also in-
corporated into the parameter update rules in order to eliminate or reduce any
harmonic errors.

Finally, a variant of PLCA was proposed for extracted scale-invariant struc-
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tures from linear frequency spectrograms in [HBDI11b], which is equivalent to
extracting shift-invariant structures in log-frequency spectrograms. This scale-
invariant PLCA is useful for detecting frequency shifts when a linear frequency
representation such as the STFT is used. This can be useful for reconstructing
individual sources, which might not be possible when a log-frequency represen-

tation is utilised.

Non-negative Hidden Markov Model

NMF and PLCA are not able to handle non-stationarity in signals. Their convo-
lutive counterparts, NMD and SI-PLCA are able to extract 2-D structures from
a time-frequency representation, which could assist in detecting non-stationary
events. However, the dimensions of these 2-D structures are fixed, making the
models not suitable for music signal analysis, where notes do not have a fixed
duration. To that end, Mysore in [Mys10, MSR10] introduced temporal con-
straints into the PLCA model for music signal analysis and source separation.
This non-negative hidden Markov model (NHMM) expressed each component
using a set of spectral templates linked to a hidden state in an HMM. Thus,
temporal constraints can be introduced in the NMF framework for modeling
non-stationary events.

In the non-negative hidden Markov model, the input spectrogram V, ; is
decomposed into a series of spectral templates per component and state, with
corresponding time-varying mixture weights for the components. The model in

terms of the observations is formulated as:

Py(wilar) = Y Pil(zila0) Plwil e, ) (2.21)

where P(w¢|zt,q:) denotes the spectral template for component z and state g,
and P;(z¢|q:) are the time-varying mixture weights. The use of subscript ¢ in
P,(-) means that there is a separate distribution for each time frame. The sub-
script ¢ in random variables z;, wy, ¢; refers to the value of the random variable
for the specific time frame. P;(w¢|q:) is the time-varying observation probabil-
ity used in the HMM. Thus, the normalized spectrum of each time frame is

approximated by:
Py(w) = Z Py(wilqe) Pi(qr) (2.22)

qt

where P;(q:) is the state activation, which can be computed using the HMM
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Figure 2.19: An example of a non-negative hidden Markov model using a left-
to-right HMM with 3 states.

forward-backward procedure [Rab89]. Again, iterative update rules can be de-
rived using the EM algorithm [DLRT77]. An diagram of the NHMM using 3
states is shown in Fig.

An extension of the NHMM for two sources was also proposed by Mysore
[Mys10], which employed factorial HMMs [GJ97]. Factorial HMMs are used to
model multiple time series data using a common observation. Thus, each source
has its own transition matrix and state prior, but the observation probability is

joint for all sources.

2.3.4 Sparse Methods

The basic concept of sparse coding [OF97] is similar to the aforementioned NMF
model: we wish to express the observation V as a linear mixture of the matrices
W (denoting the spectral basis) and H (the source weights). In sparse coding
though, the sources are assumed to be non-active most of the time, resulting in
a sparse H; in order to derive the basis, ML estimation is performed.

In 2004, Blumensath and Davies [BD04] proposed an iterative reweighted
least squares solution to the sparse coding problem for learning the basis func-
tions in polyphonic piano music. Abdallah and Plumbley [AP04, [AP06] used
an ML approach for dictionary learning using non-negative sparse coding. Dic-
tionary learning occurs directly from polyphonic samples, without requiring

training on monophonic data, while the magnitude spectrum was used as input.
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Convolutive sparse coding for sound source separation was presented by
Virtanen in [Vir04], which is linked to non-negative matrix deconvolution pre-
sented in subsection As in NMD, the resulting spectrum is considered to
be produced by a convolution of source basis spectrograms and onset vectors. In
addition, instead of a Euclidean distance-based cost function, a model fitting cri-
terion based on loudness perception is proposed. Shift-invariant sparse coding,
which is equivalent to convolutive sparse coding, was proposed in [MSHOS8] for
automatic transcription in multi-instrument mixtures. In that case, the model
extracts a spectral template per instrument source, which is shifted across log-
frequency, as in SI-PLCA.

Derrien et al. [Der06] proposed a method for the decomposition of music
spectrograms, based on the matching pursuit (MP) algorithm. A dictionary of
atoms in the log-frequency scale was used and comparisons were made with the
constant-(Q spectrogram using a piano piece by Mozart.

Bertin et al. [BBR07] compared NMF with non-negative K-SVD, which is
a sparse coding-like algorithm for image coding. The [y norm was used as a
sparsity measure, and the algorithms’ performance was found similar, although
NMF is preferred due to its lower computational cost (even though in NMF
sparsity is an uncontrolled side-effect).

Canadas-Quesada et al. [QCR™08] proposed a note detection approach based
on the harmonic matching pursuit (HMP) algorithm. The obtained atoms are
further processed using an algorithm based on the spectral smoothness princi-
ple. Also, Carabias-Orti et al. [OCQR10] proposed an unsupervised process for
learning spectral patterns of notes using the matching pursuit (MP) algorithm.
Spectral patterns are learned using additional constraints on harmonicity, enve-
lope smoothness, temporal continuity, and stability. The learned patterns are
used in a note-event detection system, where the harmonic atoms are clustered
according to the amplitude distribution of their spectral envelopes.

Sparse coding of Fourier coefficients was also used in [LYCII] for piano
transcription. The sparse representation is solved by /3 minimization, while a
postprocessing step for note tracking is applied using pitch-wise hidden Markov
models. This method was also publicly evaluated in [LYLCIO] for the MIREX

piano note tracking task. The model can be formulated as:
h, = argmin ||hy||;, s.t. v, = Wh (2.23)

where v; is the input spectral vector at frame ¢, W is the dictionary matrix,
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and h; is the activation of the dictionary atoms. || -||; refers to the I; norm. A
method for automatic transcription using exemplar-based sparse representations
was also proposed by the same authors in [LYCI2]. In this method, a piano
music segment is expressed as a linear combination of a small number of note
exemplars from a dictionary. The drawback of this method is that it requires
note samples from the same source as the recording (although it does not require
as many samples as the note range of the instrument).

In [OP11] a method for structure-aware dictionary learning is proposed and
applied to piano transcription, which takes into account harmonicity in mu-
sic spectra. Modifications on the NMF and K-SVD algorithms were made by
incorporating structure-awareness. More recently in [ONP12], structured spar-
sity (also called group sparsity) was applied to piano transcription. In group
sparsity, groups of atoms tend to be active at the same time.

Finally in [Small], the notion of exemplars was also utilised for polyphonic
pitch tracking. The method is formulated as a nearest subspace search problem.
The input time-frequency representation is a normalized magnitude spectro-
gram, which as in the PLCA case, can exploit the I3 norm for enforcing sparsity
on the atom activations. The problem requires the minimization of the following

cost function:
D[vi|W - h;] — PZ hi, (2.24)

where W is the dictionary matrix, v; the spectrum of the input signal, h, is the
atom activation for the ¢-th frame, h; ; the activation value for the i-th atom, and
p is the sparsity parameter. In [Smalll], D[-] was set to be the Kullback-Leibler

divergence.

2.3.5 Machine Learning Methods

A limited number of methods in the literature use standard machine learning
techniques in order to estimate multiple FOs in frame-based systems. Chien
and Jeng in [CJ02] proposed a signal processing-based system which solved the
octave detection problem using a support vector machine (SVM) classifier. The
constant-Q transform was used as input and the features used to train the SVM
classifiers (one classifier for each pitch) were the partial amplitudes within a
short period of time following an onset.

Marolt in [Mar(04] performed a comparison of neural networks for note recog-

nition, using as input features the output values of oscillator networks. A net-
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work of adaptive oscillators was used for tracking the partials of each pitch. The
best performance was reported for the time-delay neural networks (TDNNs).

Pertusa and Ifiesta in [PI04, [PI05] also used TDNNs for polyphonic music
transcription, where the input consisted of pre-processed STEFT bins. Poliner
and Ellis [PE07a, [PEO7D|] also used STFT bins for frame-level piano note clas-
sification using one-versus-all SVMs. In order to improve transcription per-
formance, the classification output of the SVMs was fed as input to a hidden
Markov model (HMM) for post-processing.

Giubin and Sheng [GS07a] proposed a transcription method which used a
backpropagation neural network for classification. The input features were de-
rived from an adaptive comb filter using an FFT as input. The system also
supported the detection of onsets, repeated notes, as well as note duration and
loudness estimation.

Zhou [Zho06] also used two-class SVMs for a comparative system for multiple-
FO estimation, using as features spectral peak amplitudes extracted from the
RTFI representation. Gang et al. [GBHL09] employed a max-margin classifier
for polyphonic music transcription, where features derived from partial ampli-
tudes were used.

Costantini et al [CPT09] also employed SVMs for note classification and off-
set detection in piano recordings. The input time-frequency representation was
the constant-Q transform (CQT). The CQT bins were used as features for the
SVM classifier. It should be mentioned that this system performs classification
at the time instants of each note onset, estimated from an onset detector.

Ortiz et al. [OBBCI0] proposed a lightweight pitch detector to be used in
embedded systems. A multilayer perceptron was used for classification, while
the Goertzel Algorithm was employed for computing the frequency components
of the signal on a log-frequency scale, which are used as features.

Nam et al. [NNLSTI] employed deep belief networks for polyphonic piano
transcription. Training was made using spectrogram bins as features and using
both single notes and note combinations. For note tracking, the pitch-wise
HMMs from [PEQ7a] were used.

Finally, Bock and Schedl [BS12] used recurrent neural networks for poly-
phonic piano transcription. Features consist of the output of two semitone
filterbanks, one with short and one with a long window frame. A bidirectional
long short-term memory (BLSTM) neural network is used for note classification
and onset detection. In Fig. 220 the system diagram of the method proposed
by [BS12] can be seen.
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Figure 2.20: System diagram of the piano transcription method in [BS12].

2.3.6 Genetic Algorithm Methods

A radically different approach for automatic music transcription is the use of
genetic algorithms. Essentially, a transcription is estimated which is mutated
using a genetic algorithm until it matches some criterion. In the case of pro-
posed approaches for transcription using genetic algorithms, this criterion is
the similarity between the original signal and the synthesized signal from the
estimated transcription.

In [FonO8| [FF09], a possible piano-roll transcription is estimated from frag-
ments defined by note onsets, is synthesized, and is compared with the original
spectrogram. The procedure is iterated by mutating the piano-roll, until conver-
gence is observed. In [Lu06], the same basic procedure is employed, although the
features used for synthesizing the transcription are pitch, timbre and dynamics.
Mutations employed by the proposed method in [Lu06] include a random note
change, a change in note duration, note split, note reclassification, and note
assimilation.

Finally, in [REAVFO0S8] a hybrid genetic algorithm based on gene fragment
competition was proposed for polyphonic music transcription. The proposed
method performs a quasi-global/quasi-local search by means of gene fragment
evaluation and selection using as feature the STFT peaks of the original signal.
A similar method was also publicly evaluated in the MIREX multiple-FO and
note tracking task by the same authors in [RFFTI], where the current fitness
function for the genetic algorithm is based on the log-spectral distance between

the spectra of the original and synthesized recordings.

2.4 Note Tracking

Typically automatic transcription algorithms compute a time-pitch representa-
tion such as a pitch activation matrix, which needs to be further processed in

order to detect note events (i.e. with note onsets and offsets). This procedure is
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called note tracking or note smoothing. Most spectrogram factorization methods
estimate the binary piano-roll representation from the pitch activation matrix
using simple thresholding [GE11l Nie08| VBBO§|. In [GEILI] is is shown that
the proposed PLCA-based algorithm is fairly robust to the choice of threshold.

One simple and fast solution for note tracking is minimum duration pruning
[DCL10], which is applied after thresholding. Essentially, note events which
have a duration smaller than a predefined value are removed from the final
piano-roll. This method was also used in [BDS06], where more complex rules
for note tracking were used, such as in the case where a small gap exists between
two note events.

In [PEQ7a], a computationally inexpensive note tracking method was pro-
posed, in order to post-process the non-binary posteriogram of SVM classi-
fiers which were used for multi-pitch estimation. In this approach, pitch-wise
hidden Markov models were used, where each HMM has two states, denot-
ing note activity and inactivity. The HMM parameters (state transitions and
priors) were learned directly from a ground-truth training set, while the ob-
servation probability is given by the posteriogram output for a specific pitch.
The Viterbi algorithm [Rab89] is used for computing the optimal state se-

quence for each pitch, thus producing the final piano-roll. Given a pitch-

wise state sequence Q) = {qu)},t =1,...,T and a sequence of observations
oW = {o§p>}, t=1,...,T, the optimal state sequence is achieved by maximiz-
ing:
[1Pei1ai”) PG ai)) (2.25)
¢

where p = 1,..., P denotes pitch, P(qip) |q£11)1) is the state transition matrix for
a given pitch, and P(ogp )|q§p )) is the pitch-wise observation probability. The
graphical structure of the pitch-wise HMM proposed in [PEQTa] can be seen in
Fig. 22Tl An example of the note tracking procedure of [PE07a] can be seen in
Fig. 2221 where the pitch activation output of an NMF-based algorithm with
B-divergence is used for HMM-based note tracking. This method has also been
employed for other transcription systems, e.g. |QRCT10], where P(oip)|q§p))
was computed using the pitch salience as input to an exponential probability
density function (PDF). The note tracking method of [PEQ07a] was also used in
[ILYLC10].

A more complex HMM architecture was proposed in [EBDO§| for note track-

ing, where each HMM state corresponds to note combinations (more specifically,
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Figure 2.21: Graphical structure of the pitch-wise HMM of [PE07a].

chords). As in [PEQ7a], note combination transitions and priors were learned
from MIDI data. However, it should be noted that the number of states is large:
ZZL:O (J\ic), where L is the maximum polyphony level and N, is the set of pitch
candidates.

Finally in [ROS09b], dynamic Bayesian networks (DBNs) were proposed for
note tracking using as input the pitch activation of an NMF-based multipitch
detection algorithm. The DBN has a note layer in the lowest level, followed by
a note combination layer. Model parameters were learned using MIDI files from

F. Chopin piano pieces.

2.5 Evaluation metrics

Evaluation of automatic transcription systems is typically done in two ways:

frame-based evaluation and note-based evaluation.

2.5.1 Frame-based Evaluation

Frame-based evaluations are made by comparing the transcribed output and
the ground-truth frame by frame typically using a 10 ms step, as in the MIREX
multiple-F0 estimation task [MIR]. A commonly employed metric is the overall

accuracy, defined by Dixon in [Dix00]:

At = SNl + Npaln] + Noplrl]

where Nyp[n] is the number of correctly detected pitches at frame n, Nyy,[n]

denotes the number of false negatives, and Ny, [n] the number of false positives.
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Figure 2.22: An example of the mnote tracking procedure of [PE(07a).
(a) The NMF-based pitch activation of the first 30 sec of ‘MAPS MUS-
alb_se2 ENSTDKC!’ from the MAPS database [EBD10]. (b) The output of
the HMM-based note tracking step.

In the MIREX task, a variant of Accy is also used, called ‘Chroma Accuracy’
(Accye), where the reference ground-truth and transcribed output are warped
to one octave.

A second accuracy metric is also used for evaluation, proposed in [KNS07],

which also takes into account pitch substitutions:

Accy — 2o Nrer (1] = Nyn[n] = Nyp[n] + Nowss[1]
Zn Nref [TL]

(2.27)

where Nyef[n] is the number of ground-truth pitches at frame n and Ngyps[n] is
the number of pitch substitutions, given by Ngyps[n] = min(Ny, [n], Np[n]).

The frame-wise precision, recall, and F-measure metrics are also used for
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evaluating transcription systems, defined in [VBBI10] as:

N N 2-Rec- P
Pre = 2 Nopln] Rec = 2 Nipln] Fe e (2.28)
Do Nays[n] > Nre 0] Rec + Pre
where Ngys[n] is the number of detected pitches for the n-th frame.
From the aforementioned definitions, several error metrics have been defined
in [PEQ7al that measure the substitution errors (Esyps), missed detection errors

(Ep,), false alarm errors (Ejp), and the total error (Eyy;):

> min(Nyer[n], Noys[n]) — Neorr[n]

Esu s =
’ Zn Nies [n]
I _ , Max(0, Nyer[n] — Ngys[n])
" 3 Nrer [
E, = >, max(0, Ngys[n] — Nyer[n])
8 > Nrer[n]
Eiot = FEsups + Efn + Efp (229)

It should be noted that the aforementioned error metrics can exceed 100% if

the number of false alarms is very high [PEQ7a].

2.5.2 Note-based Evaluation

For note-based evaluation, the output of a transcription system is typically
in MIDI-like format, stating for each note event an onset, an offset, and the
respective pitch. In this case, the evaluation is more straightforward. There
are two ways of evaluating transcription algorithms using note-based metrics:
firstly, by only utilizing information from note onsets and secondly by using
information from onsets and offsets.

For onset-only evaluation, according to the MIREX [MIR] specifications, a
note event is assumed to be correct if its onset is within a £50 ms range of a
ground-truth onset and its FO is within + a quarter tone (3%) of the ground-
truth pitch. For this case, metrics are defined in a similar way to ([2.28)), resulting
in the onset-only note-based precision, recall, and F-measure, denoted as Pre,,,
Recon, and F,,, respectively.

For onset-offset evaluation, the same rules apply as in the onset-only evalua-
tion, plus the offset of each note needs to be within 20% of ground-truth note’s
duration around the ground-truth note’s offset value, or within 50 milliseconds

of the ground-truth notes offset, whichever is larger [BEDQ9D]. Again, preci-
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sion, recall, and F-measure metrics are defined in a similar way to ([2.28]), being

Pre,g, Recogr, and Fopr, respectively.

2.6 Public Evaluation

Public evaluations of various multiple-FO estimation and note tracking ap-
proaches are carried out as part of the Music Information Retrieval Evaluation
eXchange (MIREX) framework [MIR]. Multiple-F0 estimation is evaluated in a
frame-based manner, while the note tracking task performs evaluation for note-
based events. For note tracking, two separate evaluations are made, one for
multiple-instrument transcription and one for piano-only transcription. Results
for the note tracking task are given using onset-only information, and using
both note onsets and offsets.

Currently, the dataset used for evaluation consists of 30 recordings of 30 sec
duration taken from a woodwind quintet recording of L. van Beethoven’s Vari-
ations for String Quartet, Op.18 No. 5 and synthesized pieces from the RWC
database [GHNOOQ3]. The dataset also includes ten 30 sec recordings recorded
from a Disklavier piano [PE07a]. A 5-track woodwind recording is used as a de-
velopment datasetld, which was annotated by the author and Graham Grindlay.

An overview of the results for the MIREX multiple-F0 estimation and note
tracking tasks for 2007-2008 was made in [BEDQ9b|. For these years, 16 algo-
rithms from 12 labs and 11 algorithms from 7 labs were tested, respectively. For
the multiple FO estimation task, the best results were reported by the methods
proposed by Yeh [Yeh(8], Pertusa and Ifesta [PI08], Ryynénen and Klapuri
[IRKO05], and Zhou and Reiss [ZR08|. All of the aforementioned approaches em-
ploy signal processing techniques for multiple-FO estimation without any learn-
ing procedures or statistical models (Ryynénen’s method employs HMMs in a
post-processing step). For the note tracking task, the best results were also
reported by the methods proposed by Yeh, Ryynénen and Klapuri, and Zhou
and Reiss, followed by the SVM-based approach by Poliner and Ellis [PE07a].
As far as runtimes were concerned, the most efficient algorithm was the one by
Zhou [ZRO07], followed by the algorithm by Pertusa [PI0§].

Best results for the multiple-FO estimation task for years 2009-2011 are pre-
sented in Table[2.3l In 2009, the best results for the multiple-F0 estimation task
were also reported by Yeh [Yeh08], followed by the statistical modelling method

4http://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/| (password required)
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Participants Metric | 2009 | 2010 | 2011
.. Accy 0.69 | 0.69 | 0.68
Yeh and Robel Accre | 071 1 0.71 | 0.70

Acc, _ - 0.63
Dressler Acey, _ - 0.66
N Accy - 049 | -

Cafiadas-Quesada et al. Accr, } 054 | -
Benetos and Dixon Acey i i
Accie

- 0.55 | 0.63
Aceqy 0.57 | 0.55 | -

Duan, Han, and Pardo |, /| 61 | 059 | -

Table 2.3: Best results for the MIREX Multi-FO estimation task [MIR], from
2009-2011, using the accuracy and chroma accuracy metrics.

of Duan et al. [DHPQ9]. For the note tracking task, the best F-measure was
reported by the system by Nakano et al. [NEOSQ9], which is based on the HTC
algorithm by Kameoka et al. [KNS07]. The same rankings were reported for
the piano-only note tracking task.

For 2010, the best multiple-FO estimation results were reported by Yeh and
Robel [YehOg], followed by Duan et al. [DHP09] and Canadas-Quesada et al.
IQRC™10]. The same rankings were reported for the note tracking task.

For 2011, again the best results were reported by Yeh and Rébel [YehO§],
followed by Dressler [Drell] and Benetos and Dixon [BD11b]. For note tracking,
the best results were reported by Yeh and Robel [YehO§| followed by Benetos
and Dixon [BD11b]. It should also be noted that the method by Dressler [Drell]
was by far the most computationally efficient.

It should be noted that results for the note tracking task are much inferior
compared to the multiple-FO estimation task, being in the range of 0.2-0.35
average F-measure with onset-offset detection and 0.4-0.55 average F-measure

for onset-only evaluation.

2.7 Discussion

2.7.1 Assumptions

Most of the proposed methods for automatic transcription rely on several as-
sumptions in order to solve the multiple-F0 estimation problem. The most basic

assumption is harmonicity, which states that the frequency of partials of a har-
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monic sequence are placed at integer multiples of the fundamental. In practice
though, in certain instruments (e.g. piano) partials are slightly shifted upwards
in frequency due to the inharmonicity phenomenon which needs to be taken
into account [Kla04a]. Inharmonicity occurs due to string stiffness, where all
partials of an inharmonic instrument have a frequency that is higher than their
expected harmonic value [BQGB04].

A commonly used model for automatic transcription which supports inhar-
monicity considers a pitch p of a musical instrument sound with fundamental

frequency f, o and inharmonicity coefficient b,. The partials for that sound are

Joon = hfpoy/1+ (R? = 1)b, (2.30)

where h > 1 is the partial index [KDO06].

One of the most common assumptions used is spectral smoothness [BJ05,
Cau99, [EBD10, [K1a03| [PI08| [Yeh08], which assumes that the spectral envelope
of a pitched sound is smooth, although that assumption frequently does not

located at frequencies:

appear to be valid. An example of that case can be seen in Figure .23, where
the envelope of a trumpet sound forms a smooth contour, unlike the envelope
of a clarinet sound, where even partials have lower amplitude compared to the
odd ones.

Another assumption, which is implied for the spectral smoothness principle
and is employed in subspace-based additive models is power summation [dC06],
where it is assumed that the amplitude of two coinciding partials equals the
sum of their respective amplitudes. In fact though, considering two coincid-
ing partials with amplitudes a; and as, the resulting amplitude is given by
a = |a; + age’™?|, where A¢ is their phase difference [KIa01]. This assump-
tion can lead to estimation problems in the presence of harmonically-related
pitches (pitches whose fundamental frequencies are in a rational number rela-
tion), which are frequently found in Western music. Also, when used explicitly
in iterative approaches for multiple-FO estimation (like [Kla03]), it can lead to
signal corruption. In practice, the resulting amplitude is often considered to
be the maximum of the two [dC06]. The power summation assumption is also
implied in all spectrogram factorization approaches for automatic transcription,
which use an additive model for representing a spectrum.

Other assumptions frequently encountered in multiple-F0 estimation systems

include a constant spectral template for all pitches, as in [SKTT08|. Spectro-
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Figure 2.23: Trumpet (a) and clarinet (b) spectra of a C4 tone (261Hz). Over-
tones occur in positions determined by integer multiples of the fundamental
frequency. In the trumpet case, the partial envelope produces a smooth con-
tour, which is not the case for the clarinet.

gram factorization-based approaches usually consider one spectral template per
pitch, which is however not sufficient for characterizing sounds produced by
different instrument types, or even sounds produced by the same instrument
at different conditions (instrument model, dynamics, articulation). These ap-
proaches also consider a similar decay model for all partials using a constant
spectral template, when in fact higher partials decay more rapidly compared
to lower partials. The problem of using a constant spectral template was ad-
dressed using non-negative matrix deconvolution [Sma04al [Sma04b| and convo-
lutive sparse coding [Vir04], but a different issue arises because these algorithms

use constant 2D templates with fixed note lengths, which is not the case in real-

world music where notes have arbitrary durations.
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2.7.2 Design Considerations

An overview of the design considerations that go into the development of a
multiple-FO estimation system will be given. The first decision to be made is
selecting the time-frequency representation that will be used for the subsequent
analysis. As shown in Section [2.3] most approaches use the short-time Fourier
transform, due to its strong theoretic background and computational efficiency.
There are however several drawbacks using the STFT, such as the constant
frequency resolution which can create problems in detecting lower pitches. Us-
ing a log-frequency representation like the wavelet transform or the constant-Q
representation of sounds has the advantage that the spacing between individ-
ual harmonics is the same for all pitches [Sma09], unlike the STFT. To that
end, filterbank methods have been employed in the literature, trying to use
an auditory front-end in an effort to produce improved estimation performance.
The unitary model proposed by Meddis in [MH92l, MO97| performs a non-linear
transform into each filterbank input, which can assist pitch detection in the case
of suppressed fundamentals, but can also create false spectral peaks in chord
roots [TK00] due to the half-wave rectification, making the model useful for
the monophonic case but problematic in the case of polyphonic western music,
where harmonic relations are quite common. Another approach for comput-
ing a T/F representation for transcription is to increase the FFT resolution,
using quadratic interpolation, parametric methods, or using non-stationary si-
nusoidal modelling techniques, such as the reassignment spectrum [Hai03], with
the drawback of increased computational cost.

Another choice concerns the algorithm for multiple-FO estimation. Signal
processing methods for transcription (e.g. [Kla03, [PI08, [YRR10]) have proved
to be quite robust and computationally inexpensive. However, they are diffi-
cult to generalize and to control, since their performance is mostly based on a
combination of audio features and ad-hoc models. Spectrogram factorization
models and sparse decomposition approaches ([VBBOS, [GE11l LYC12]) seem
more appropriate for multi-pitch estimation, since they are based on a sim-
ple and transparent model which is easy to control and generalize. However,
most spectrogram factorization-based approaches are computationally expen-
sive and the results are sometimes not as high compared to signal processing-
based approaches. Furthermore, spectrogram factorization-based approaches
for multi-pitch detection are mostly based on the magnitude of the frequency or

log-frequency bins of a spectrogram, thus ignoring any additional features from
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audio processing which might improve transcription performance. Although
machine learning methods have been shown to be appropriate for classification
problems, problems have been reported regarding their generalization perfor-
mance for the automatic transcription task (e.g. [PEQT7a]).

A third choice would be whether to perform multiple-FO estimation on a
frame-by-frame basis and afterwards form the notes using the frame-based pitch
estimates or to jointly perform multipitch tracking. Only a few methods in the
literature perform multiple-FO estimation and note tracking in a joint fashion,
due to the complexity of the problem. Such methods include the HTC algo-
rithm by Kameoka [KNS07], the HMM-based model by Chang |[CSYT08], the
constrained clustering model proposed by Duan [DHPQ9], and the Poisson point
process model for multi-pitch detection combined with a dynamical model for
note transitions proposed by Bunch and Godsill [BGII]. Finally, another de-
sign consideration is whether the developed system is able to perform instrument

identification along with multi-pitch detection (e.g. [GELI]).

2.7.3 Towards a Complete Transcription

Most of the aforementioned transcription approaches tackle the problems of
multiple-FO estimation and note onset and offset detection. However, in order
to fully solve the AMT problem and have a system that provides an output
that is equivalent to sheet music, additional issues need to be addressed, such as
metre induction, rhythm parsing, key finding, note spelling, dynamics, fingering,
expression, articulation and typesetting. Although there are approaches that
address many of these individual problems, there exists no ‘complete’ AMT
system to date.

Regarding typesetting, current tools produce readable scores from MIDI
data only (e.g. Lilypond?), ignoring cues from the music signal which could also
assist in incorporating additional information into the final score (e.g. expres-
sive features for note phrasing). As far as dynamics are concerned, in [EM11]
a method was proposed for estimating note intensities in a score-informed sce-
nario. However, estimating note dynamics in an unsupervised way has not been
tackled. Another issue would be the fact that most existing ground-truth does
not include note intensities, which is difficult to annotate manually, except for
datasets created using reproducing pianos (e.g. [PEQ7a]), which automatically

contain intensity information such as MIDI note velocities.

Shttp://lilypond.org/
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Recent work [BKTBI2] addresses the problem of automatically extract-
ing the fingering configurations for guitar recordings in an AMT framework.
For computing fingering, information from the transcribed signal as well as
instrument-specific knowledge is needed. Thus, a robust instrument identifica-
tion system would need to be incorporated for computing fingerings in multi-
instrument recordings.

For extracting expressive features, some work has been done in the past,
mostly in the score-informed case. In |[GBLT11] a framework for extracting
expressive features both from a score-informed and an uninformed perspective
is proposed. In the latter case, an AMT system is used prior to the extraction of
expressive features. It should be mentioned though that the extracted features
(e.g. auditory loudness, attack, pitch deviation) do not necessarily correspond to
expressive notation. Thus, additional work needs to be done in order to provide
a mapping between mid-level expressive features and the expressive markings

in a final transcribed music score.
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Chapter 3

Audio Feature-based
Automatic Music

Transcription

3.1 Introduction

This chapter presents proposed methods for multiple-FO estimation of isolated
sounds as well as for complete recordings using techniques from signal processing
theory. Audio features are proposed which exploit the spectral structure and
temporal evolution of notes. Firstly, an iterative multiple-F0 estimation method
for isolated piano sounds is presented, which was published in [BDI0a]. This
method is also converted into a system for automatic music transcription, which
was publicly evaluated in [BD10D].

Afterwards, a method for joint multiple-FO estimation is proposed, which is
based on a novel algorithm for spectral envelope estimation in the log-frequency
domain. This method was published in [BD11a]. For this method, a novel
note tracking procedure was also utilized using conditional random fields. An
extension of the aforementioned system is also presented, which applies late
fusion-based onset detection and hidden Markov model-based offset detection,
which was published in [BDI11d]. Finally, evaluation results are presented in

this chapter for all proposed methods.
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Figure 3.1: Diagram for the proposed multiple-F0 estimation system for isolated
piano sounds.

3.2 Multiple-F0 Estimation of Piano Sounds

Initial research consists of a system for multiple-F0 estimation of isolated piano
sounds which uses candidate selection and several rule-based refinement steps.
The resonator time-frequency image (RTFI) is used as a data representation
[ZRMZ09], and preprocessing steps for noise suppression, spectral whitening,
and onset detection are utilized in order to make the estimation system robust
to noise and recording conditions. A pitch salience function that is able to
function in the log-frequency domain and utilizes tuning and inharmonicity
estimation procedures is proposed and pitch candidates are selected according
to their salience value. The set of candidates is refined using rules regarding the
harmonic partial sequence of the selected pitches and the temporal evolution of
the partials, in order to minimize errors occurring at multiples and sub-multiples
of the actual FOs. For the spectral structure rules, a more robust formulation
of the spectral irregularity measure [ZRMZ09] is proposed, taking into account
overlapping partials. For the temporal evolution rules, a novel feature based on
the common amplitude modulation (CAM) assumption [LWWQ9] is proposed
in order to suppress estimation errors in harmonically-related FO candidates. A

diagram showing the stages of the proposed system is displayed in Figure Bl
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3.2.1 Preprocessing
Resonator Time-Frequency Image

As a time-frequency representation, the resonator time-frequency image (RTFI)
is used [ZRMZ09]. The RTFI selects a first-order complex resonator filter
bank to implement a frequency-dependent time-frequency analysis. For the
specific experiments, a RTFI with constant-Q resolution is selected for the time-
frequency analysis, due to its suitability for music signal processing techniques,
because the inter-harmonic spacing is the same for all pitches. The time interval
between two successive frames is set to 40ms, which is typical for multiple-FO
estimation approaches [KDO06]. The centre frequency difference between two
neighbouring filters is set to 10 cents (the number of bins per octave is set to
120). The frequency range is set from 27.5Hz (A0) to 12.5kHz (which reaches
up to the 3rd harmonic of C8). The employed absolute value of the RTFI will

be denoted as X|w,t], where t is the time frame and w the log-frequency bin.

Spectral Whitening and Noise Suppression

Spectral whitening (or flattening) is a key preprocessing step applied in multiple-
FO estimation systems, in order to suppress timbral information and make the
following analysis more robust to different sound sources. When viewed from
an auditory perspective, it can be interpreted as the normalization of the hair
cell activity level [TKO00].

Here, a modified version of the real-time adaptive whitening method pro-
posed in [SPO7] is applied. Each band is scaled, taking into account the tem-
poral evolution of the signal, while the scaling factor is dependent only on past
frame values and the peak scaling value is exponentially decaying. The following

iterative algorithm is applied:

Yo = max(X[w,t],0, oY [w,t —1]), t>0
o max(X|w, t],6), t=0
X[w, 1] ‘;([[:jf]] (3.1)

where ¢ < 1 is the peak scaling value and 6 is a floor parameter.
In addition, a noise suppression approach similar to the one in [Kla09b] is em-
ployed, due to its computational efficiency. A half-octave span (60 bin) moving

median filter is computed for Y|w, t], resulting in noise estimate N|w,t]. After-
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wards, an additional moving median filter N'[w, ] of the same span is applied,
but only including the RTFI bins whose amplitude is less than the respective
amplitude of N[w,¢]. This results in making the noise estimate N’[w,] robust

in the presence of spectral peaks that could affect the noise estimate N|w,t].

Onset Detection

In order to select the steady-state area of the piano tone (or tones), a spectral
flux-based onset detection procedure is applied. The spectral fluz measures the
positive magnitude changes in each frequency bin, which indicate the attack
parts of new notes [BDAT05|. Tt can be used effectively for onset detection of
notes produced by percussive instruments such as the piano, but its performance
decreases for the detection of soft onsets [Bel03]. For the RTFI, the spectral

flux using the /1 norm can be defined as:

SFt] = HW(|Y [w,t]| — [Y]w,t - 1]) (3.2)

where HW (-) = % is a half-wave rectifier. The resulting onset strength signal
is smoothed using a median filter with a 3 sample span (120ms length), in
order to remove spurious peaks. Onsets are subsequently selected from SFt]
by a selection of local maxima, with a minimum inter-peak distance of 120 ms.
Afterwards, the frames located between 100-300 ms after the onset are selected
as the steady-state region of the signal and are averaged over time, in order to

produce a robust spectral representation of the tones.

3.2.2 Multiple-F0 Estimation
Salience Function

In the linear frequency domain, considering a pitch p of a piano sound with

fundamental frequency f, o and inharmonicity coefficient b, partials are located

fp.n = hfpor/1+ (B2 =1)b, (3.3)

where h > 1 is the partial index [KD06, [BQGB04]. Consequently in the log-

frequency domain, considering a pitch p at bin wy, g, overtones are located at

at frequencies:

bins:
Wph = Wpo + {u -logy(h) + glog2 <1 + (h2 - l)bp)J (3.4)
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where u = 120 refers to the number of bins per octave and [-] to the rounding
operator.
A pitch salience function S[p, d,, by] operating in the log-frequency domain

is proposed, which indicates the strength of pitch candidates:

S[p, 8,,b,) = iqﬁx{ \/Y [wpﬁ + 6, + {umh + %bgz(l +(h? - 1)bP)H }
h=1 (3.5)

where Y [w] is the log-frequency spectrum for a specific time frame, 6, € [—4,...,4]
is the tuning deviation for each pitch, and my, specifies a search range around

overtone positions, belonging to the interval (m!, m¥), where:

l FogQ(h— 1) + (M — 1)10g2(h)J

m;, = A
mi = [(M — l)logQ(iﬁ—l- logy(h + 1)J (3.6)

M is a factor controlling the width of the interval, which after experimentation
was set to 60.

While the employed salience functions in the linear frequency domain (e.g.
[Kla09b]) used a constant search space for each overtone, the proposed log-
frequency salience function sets the search range around each partial to be
inversely proportional to the partial index. The number of considered overtones
H is set to 11 at maximum. A tuning search space of 50 cents is set around
the ideal tuning frequency. The range of the inharmonicity coefficient b, is set
between 0 and 5 - 10~%, which is typical for piano notes [BQGB04].

In order to accurately estimate the tuning factor and the inharmonicity
coefficient for each pitch, a two-dimensional maximization procedure using ex-
haustive search is applied to S[p, d,, b, for each pitch p € [21,...,108] in the
MIDI scale (corresponding to a note range of A0-C8). This results in a pitch
salience function estimate S’[p], a tuning deviation vector and an inharmonicity
coefficient vector. Using the information extracted from the tuning and inhar-
monicity estimation, a harmonic partial sequence HPS|[p, h] for each candidate
pitch and its harmonics (which contains the RTFI values at certain bin) is also
stored for further processing.

An example of the salience function generation is given in Fig. B2l where
the RTFI spectrum of an isolated F#3 note played by a piano is seen, along
with its corresponding salience S'[p]. The highest peak in S&’[p] corresponds to
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Figure 3.2: (a) The RTFI slice Y [w] of an F§3 piano sound. (b) The correspond-
ing pitch salience function S’[p].

p = 54, thus F43.

Spectral Structure Rules

A set of rules examining the harmonic partial sequence structure of each pitch
candidate is applied, which is inspired by work from [Bel03, [ZhoO6]. These rules
aim to suppress peaks in the salience function that occur at multiples and sub-
multiples of the actual fundamental frequencies. In the semitone space, these
peaks occur at +{12,19,24,28, ...} semitones from the actual pitch. The set-
tings for the rules were made using a development set from the MAPS database
, as described in subsection [3.5.1]

A first rule for suppressing salience function peaks is setting a minimum
number for partial detection in HPS|[p, h], similar to [Bel03, [Zho06]. If p < 47,
at least three partials out of the first six need to be present in the harmonic
partial sequence (allowing for cases such as a missing fundamental). If p > 47,
at least four partials out of the first six should be detected. A second rule
concerns the salience value, which expresses the sum of the square root of the
partial sequence amplitudes. If the salience value is below a minimum threshold
(set to 0.2 using the development set explained in Section [B.), this peak is
suppressed. Another processing step in order to reduce processing time is the
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reduction of the number of pitch candidates [EBD10], by selecting only the
pitches with the greater salience values. In the current experiments, up to 10
candidate pitches are selected from S'[p].

Spectral flatness is another descriptor that can be used for the elimination
of errors occurring in subharmonic positions [EBD10]. In the proposed system,

the flatness of the first 6 partials of a harmonic sequence is used:

P = y1ln—y HPS[p, 1] (3.7)

S _, HPS[p,h]
6

The ratio of the geometric mean of HPS[p] to its arithmetic mean gives a mea-
sure of smoothness; a high value of Fl[p] indicates a partial sequence with a
smooth envelope, while a lower value indicates fluctuations in the partial val-
ues, which could indicate the presence of a falsely detected pitch occurring in a
sub-harmonic position. For the current experiments, the lower FI[p] threshold
for suppressing pitch candidates was set to 0.1 after experimentation using the
development set (described in Section B.3).

In order to suppress candidate pitches occurring at multiples of the true
fundamental frequency, a modified version of the spectral irreqularity measure
formulated in [ZRMZ09] is proposed. Considering a pitch candidate with fun-
damental frequency fy and another candidate with fundamental frequency [ fo,

[ > 1, spectral irregularity is defined as:

HPS[p, hl — 1] + HPS[p, hl + 1]
2

3
SIp,1] = > HPS[p, hi] — (3.8)
h=1

The spectral irregularity is tested on pairs of harmonically-related candidate
FOs. A high value of SI[p,] indicates the presence of the higher pitch with
fundamental frequency [ fo, which is attributed to the higher energy of the shared
partials between the two pitches compared to the energy of the neighbouring
partials of fj.

In this work, the ST is modified in order to make it more robust against
overlapping partials that are caused by non-harmonically related FOs. Given
the current set of candidate pitches from S’[p], the overlapping partials from
non-harmonically related FOs are detected as in [Yeh08] and smoothed according
to the spectral smoothness assumption, which states that the spectral envelope

of harmonic sounds should form a smooth contour [Kla03]. For each overlap-
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ping partial HPS[p, h], an interpolated value HPS;yierp[p, h] is estimated by
performing linear interpolation using its neighbouring partials. Afterwards, the
smoothed partial amplitude HPS'[p, h] is given by min(HPS[p, h], HPS interp[p, h]),
as in [Kla03]. The proposed spectral irregularity measure, which now takes the
form of a ratio in order to take into account the decreasing amplitude of higher

partials, is thus formed as:

3

2. HPS'[p, hl]
SI'[p,1] = : 3.9
p.1] ,; HPS'[p, hl — 1] + HPS'[p, hl + 1] (8.9)

For each pair of harmonically-related FOs (candidate pitches that have a pitch
distance of +{12,19,24,28,...}) that are present in S’[p] , the existence of the
higher pitch is determined by the value of SI’ (for the current experiments, a

threshold of 1.2 was set using the development set).

Temporal Evolution Rules

Although the SI and the spectral smoothness assumption are able to suppress
some harmonic errors, additional information needs to be exploited in order to
produce more accurate estimates in the case of harmonically-related F0s. In
[YehO08], temporal information was employed for multiple-FO estimation using
the synchronicity criterion as a part of the FO hypothesis score function. There,
it is stated that the temporal centroid for a harmonic partial sequence should
be the same for all partials. Thus, partials deviating from their global temporal
centroid indicates an invalid FO hypothesis. Here, we use the common amplitude
modulation (CAM) assumption [GSO7b, [LWWQ9] in order to test the presence
of a higher pitch in the case of harmonically-related F0s. CAM assumes that
the partial amplitudes of a harmonic source are correlated over time and has
been used in the past for note separation given a ground truth of FO estimates
[LWWO09]. Thus, the presence of an additional source that overlaps certain
partials (e.g. in the case of an octave where even partials are overlapped) causes
the correlation between non-overlapped partials and the overlapped partials to
decrease.

To that end, tests are performed for each harmonically-related FO pair that
is still present in &’[p], comparing partials that are not overlapped by any non-

harmonically related FO candidate with the partial of the fundamental. The
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Figure 3.3: Salience function stages for an Eb4-G4-Bb4-C5-D5 piano chord.
From top to bottom, the figures represent (i) The raw salience function (ii)
The salience function after the spectral structure rules have been applied (iii)
The salience function after the temporal evolution tests have been applied.

correlation coefficient is formed as:

Cov(Y[wp1,t], Y [wp,ni, t])
/ Cov(Ywp,1,t]) Cov(Y [wp ni, t])

Corrlp, h,1] = (3.10)

where wy, j, indicates the frequency bin corresponding to the h-th harmonic of
pitch p, ! the harmonic relation (eg. for octaves ! = 2), and Cov(-) stands for the
covariance measure. Tests are made for each pitch p and harmonics hl, using
the same steady-state area used in subsection [3.2.]] as a frame range. If there is
at least one harmonic where the correlation coefficient for a pitch is lower than
a given value (in the experiments it was set to 0.8), then the hypothesis for the
higher pitch presence is satisfied. In order to demonstrate the various refinement
steps used in the salience function, Figure [3.3] shows the three basic stages of
the multiple-FO estimation system for a synthesized Eb4-G4-Bb4-C5-D5 piano
chord.
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Figure 3.4: Diagram for the proposed joint multiple-F0 estimation system for
automatic music transcription.

3.3 Joint Multiple-F0 Estimation for AMT

This automatic transcription system is an extension of the multiple-FO estima-
tion system of Section 3.2] but the estimation procedure is now joint instead
of iterative, followed by note tracking. The constant-Q RTFI is used as a suit-
able time-frequency representation for music signals and a noise suppression
method based on cepstral smoothing and pink noise assumption is proposed.
For the multiple-FO estimation step, a salience function is proposed for pitch
candidate selection that incorporates tuning and inharmonicity estimation. For
each possible pitch combination, an overlapping partial treatment procedure is
proposed that is based on a novel method for spectral envelope estimation in
the log-frequency domain, used for computing the harmonic envelope of candi-
date pitches. A score function which combines spectral and temporal features
is proposed in order to select the optimal pitch set. Note smoothing is also ap-
plied in a postprocessing stage, employing HMMs and conditional random fields
(CRFs) [LMPOI] - the latter have not been used in the past for transcription
approaches. A diagram of the proposed joint multiple-F0 estimation system can
be seen in Fig. B4

3.3.1 Preprocessing
Resonator Time-Frequency Image

As in the system of Section 3.2 the resonator time-frequency image was used as

a time-frequency representation. The same settings were used, and the resulting
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absolute value of the RTFT is denoted as X|w, t].

Spectral Whitening

In this system, we employ a spectral whitening method similar to the one in
[KDO06], but modified for log-frequency spectra instead of linear frequency ones.
For each frequency bin, the power within a subband of % octave span multiplied
by a Hann-window Wj,qpn [w] is computed. The square root of the power within

each subband is:

w+Q/2

1/2
ol = (g X WhamllX0P) (3.11)

l=w—Q/2

where = u/3 = 40 bins and X[w] is an RTFT spectrum. Afterwards, each bin
is scaled according to:
Y[w] = (o))’ 7' X[w] (3.12)

where j is a parameter which determines the amount of spectral whitening
applied and X [w] is the absolute value of the RTFT for a single time frame, and
Y[w] is the final whitened RTFI slice. As in [KDO06], j was set to 0.33.

Noise Suppression

In [Yeh08], an algorithm for noise level estimation was proposed, based on the as-
sumption that noise peaks are generated from a white Gaussian process, and the
resulting spectral amplitudes obey a Rayleigh distribution. Here, an approach
based on a pink noise assumption (elsewhere called 1/ f noise or equal-loudness
noise) is proposed. In pink noise, each octave carries an equal amount of energy,
which corresponds well to the approximately logarithmic frequency scale of hu-
man auditory perception. Additionally, it occurs widely in nature, contrary to
white noise and is also suitable for the employed time-frequency representation
used in this work.

The proposed signal-dependent noise estimation algorithm is as follows:

1. Perform a two-stage median filtering procedure on Y[w], in a similar way to
[K1a09b], where a moving median average is calculated using the whitened
spectrum. A second moving median average is calculated, including only
the spectral bins that fall below the magnitude of the first moving average.
The span of the filter is set to % octave. The resulting noise representation

N[w] gives a rough estimate of the noise level.
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2. Using the noise estimate, a transformation from the log-frequency spectral

coefficients to cepstral coefficients is performed [Bro99]:

ce = :i/llog(N[w]) cos (5 (w - %) Qi) (3.13)

where Q' = 1043 is the total number of log-frequency bins in the RTFI

and = is the number of cepstral coefficients employed, £ =0,...,= — 1.

3. A smooth curve in the log-magnitude, log-frequency domain is recon-

structed from the first D cepstral coefficients:

D-1

log | N.(&)| ~ exp <co +2) e ~cos(§c€;)) (3.14)
¢=1

4. The resulting smooth curve is mapped from @ into w. Assuming that the
noise amplitude follows an exponential distribution, the expected value of
the noise log amplitudes E{log(|N.(®)|)} is equal to log(A™1) — v, where
v is the Euler constant (= 0.5772). Since the mean of an exponential
distribution is equal to %, the noise level in the linear amplitude scale can

be described as:
Ln(@) = No(@) - e (3.15)

The analytic derivation of E{log(|N.(@)|)} can be found in Appendix [Al

In this work, the number of cepstral coefficients used was set to D = 50. Let
Zw] stand for the whitened and noise-suppressed RTFI representation.

3.3.2 Multiple-F0 Estimation

In this subsection, multiple-F0 estimation, being the core of the proposed tran-
scription system, is described. Performed on a frame-by-frame basis, a pitch
salience function is generated, tuning and inharmonicity parameters are ex-
tracted, candidate pitches are selected, and for each possible pitch combination

an overlapping partial treatment is performed and a score function is computed.

Salience Function

The same salience function that is proposed in the multiple-FO estimation sys-

tem of Section is employed in this system. The final result of the salience
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function computation stage is the pitch salience function estimate S’[p], a tuning
deviation vector and an inharmonicity coefficient vector. Also, using the infor-
mation extracted from the tuning and inharmonicity estimation, a harmonic
partial sequence (HPS) HPS|p, h], which contains magnitude information from
Y|w] for each harmonic of each candidate pitch, is also stored for further pro-

cessing.

Pitch Candidate Selection

As in the multiple-FO estimation system of Section B.2] a set of conservative
rules examining the harmonic partial sequence structure of each pitch candi-
date is applied, which is inspired by work from [Bel03| [PI08]. For the present
system, these rules aim to reduce the pitch candidate set for computational
speed purposes.

A first rule for suppressing salience function peaks is setting a minimum num-
ber for partial detection in HPS|[p, h|, similar to [Bel03]. At least three partials
out of the first six need to be present in the harmonic partial sequence. A second
rule discards pitch candidates with a salience value less than 0.1 max(S’[p]), as
in [PI0§].

Finally, after spurious peaks in S’[p] have been eliminated, Cy = 10 candi-
date pitches are selected from the highest amplitudes of §'[p] [EBD10]. The set
of selected pitch candidates will be denoted as C. Thus, the maximum number of

210

possible pitch candidate combinations that will be considered is , compared

to 288 if the aforementioned procedures were not employed.

Overlapping Partial Treatment

Current approaches in the literature rely on certain assumptions in order to re-
cover the amplitude of overlapped harmonics. In [KIa03], it is assumed that har-
monic amplitudes decay smoothly over frequency (spectral smoothness). Thus,
the amplitude of an overlapped harmonic can be estimated from the ampli-
tudes of neighboring non-overlapped harmonics. In [VK02], the amplitude of
the overlapped harmonic is estimated through non-linear interpolation on the
neighboring harmonics. In [ES06], each set of harmonics is filtered from the
spectrum and in the case of overlapping harmonics, linear interpolation is em-
ployed.

In this system, an overlapping partial treatment procedure based on spec-

tral envelope estimation of candidate pitches is proposed. The proposed spec-
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tral envelope estimation algorithm for the log-frequency domain is presented in
Appendix [Bl For each possible pitch combination C C C, overlapping partial
treatment is performed, in order to accurately estimate the partial amplitudes.

The proposed overlapping partial treatment procedure is as follows:
1. Given a set C of pitch candidates, estimate a partial collision list.

2. For a given harmonic partial sequence, if the number of overlapped partials
is less than Nyyer, then estimate the harmonic envelope SE,[w] of the
candidate pitch using only amplitude information from non-overlapped

partials.

3. For a given harmonic partial sequence, if the number of overlapped partials
is equal to or greater than N,,.,, estimate the harmonic envelope using

information from the complete harmonic partial sequence.

4. For each overlapped partial, estimate its amplitude using the harmonic

envelope parameters of the corresponding pitch candidate (see Appendix

B).

The output of the overlapping partial treatment procedure is the updated

harmonic partial sequence HPS|[p, h| for each pitch set combination.

Pitch set score function

Having selected a set of possible pitch candidates and performed overlapping
partial treatment on each possible combination, the goal is to select the optimal
pitch combination for a specific time frame. In [Yeh0§], Yeh proposed a score
function which combined four criteria for each pitch: harmonicity, bandwidth,
spectral centroid, and synchronicity. Also, in [PI08], a simple score function
was proposed for pitch set selection, based on the smoothness of the pitch set.
Finally, in [EBD10] a multipitch detection function was proposed, which em-
ployed the spectral flatness of pitch candidates along with the spectral flatness
of the noise residual.

Here, a weighted pitch set score function is proposed, which combines spec-
tral and temporal characteristics of the candidate F0Os, and also attempts to
minimize the noise residual to avoid any missed detections. Also, features which
concern harmonically-related F0Os are included in the score function, in order to

suppress any harmonic errors. Given a candidate pitch set C C C with size |C|,
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the proposed pitch set score function is:

Il
‘C(C) = Z(ﬁp(z)) + Lres (316)

i=1

where L,;) is the score function for each candidate pitch p(i) € C, and L, is

the score for the residual spectrum. £, and L,.s are defined as:

L, = w1 Fl[p] + w2 Smp] — w3 SCp] + ws PR[p] — ws AM [p]
Lres = wg Fl[Res] (3.17)

Features Fl, Sr,SC, PR, AM have been weighted by the salience function
of the candidate pitch and divided by the sum of the salience function of the
candidate pitch set, for normalization purposes. In order to train the weight
parameters w;,i = 1,...,6 of the features in ([B.I7), we used the Nelder-Mead
search algorithm for parameter estimation [NM65]. The training set employed
for experiments is described in Section 3.5l The pitch candidate set that maxi-
mizes the score function:

C = argmax L(C) (3.18)
cce

is selected as the pitch estimate for the current frame.

Fl[p] denotes the spectral flatness of the harmonic partial sequence:

S log(HPS[p.h])]/ H

e = s

(3.19)

The spectral flatness is a measure of the ‘whiteness’ of the spectrum. Its values
lie between 0 and 1 and it is maximized when the input sequence is smooth,
which is the ideal case for an HPS. It has been used previously for multiple-FO
estimation in [PI0O8, [EBD10]. Compared with B.7), in (319) the definition is
the one adapted by the MPEG-7 framework, which can be seen in [ULI10].
Sm[p] is the smoothness measure of a harmonic partial sequence, which
was proposed in [PI08]. The definition of smoothness stems from the spectral

smoothness principle and its definition stems from the definition of sharpness:

H
Srlpl = (SEylwp.n] — HPS[p, h]) (3.20)
h=1
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Here, instead of a low-pass filtered HPS using a Gaussian window as in [PI0S],
the estimated harmonic envelope SE), of each candidate pitch is employed for
the smoothness computation. Sr[p] is normalized into Sr[p] and the smoothness
measure Sm[p| is defined as: Sm[p] = 1 — Sr[p]. A high value of Sm[p] indicates
a smooth HPS.

SC|p] is the spectral centroid for a given HPS and has been used for the

score function in [YehO08]:

5. Shey b |HPS[p. b
Shei [ HPS[p, h]]?

SC[p| = (3.21)

It indicates the center of gravity of an HPS; for pitched percussive instruments
it is positioned at lower partials. A typical value for a piano note would be
1.5 denoting that the center of gravity of its HPS is between the 1st and 2nd
harmonic.

PR[p] is a novel feature, which stands for the harmonically-related pitch
ratio. Here, harmonically-related pitches [YehO8] are candidate pitches in C
that have a semitone difference of [12 - log,(I)] = {12,19,24,28,...}, where
1> 1,1l € N. PR[p] is applied only in cases of harmonically-related pitches, in
an attempt to estimate the ratio of the energy of the smoothed partials of the
higher pitch compared to the energy of the smoothed partials of the lower pitch.

It is formulated as follows:

(3.22)

°. HPS 12 -log, (1) ], h

where p stands for the lower pitch and p+[12-log,(1)] for the higher harmonically-
related pitch. [ stands for the harmonic relation between the two pitches
(frigh = Ufiow)- In case of more than one harmonic relation between the can-
didate pitches, a mean value is computed: PR[p] = IN—lhr\ > ien,, PRulp], where
Np, is the set of harmonic relations. A high value of PR indicates the presence
of a pitch in the higher harmonically-related position.

Another novel feature applied in the case of harmonically-related FOs, mea-
suring the amplitude modulation similarity between an overlapped partial and
a non-overlapped partial frequency region, is proposed. The feature is based
on the common amplitude modulation (CAM) assumption [LWW0Q9] as in the

temporal evolution rules of Section Here, an extra assumption is made
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that frequency deviations are also correlated over time. The time-frequency re-
gion of a non-overlapped partial is compared with the time-frequency region of
the fundamental. In order to compare 2-D time-frequency partial regions, the

normalized tensor scalar product [dL97] is used:

3 h
. By; Bl
AM[p] = Eﬁ/J / : (3.23)
h=1 \/Zi,j Bi; By - \/Ei,j Bi;Bij
where
B = Z[pr —4: Wp,1 +4, ng: nl]
B" = Zlwpm —4:wpm+4, no:n (3.24)

where i,j denote the indexes of matrices B and B", and ng and n; = ng + 5
denote the frame boundaries of the time-frame region selected for consideration.
The normalized tensor scalar product is a generalization of the cosine similarity
measure, which compares two vectors, finding the cosine of the angle between
them.

Res denotes the residual spectrum, which can be expressed in a similar way

to the linear frequency version in [EBD10]:

sz{mq/wwm

where Z[w] is the whitened and noise-suppressed RTFI representation and A,

W — Wp,h

>%§} (3.25)

denotes the mainlobe width of the employed window w. In order to find a
measure of the ‘whiteness’ of the residual, 1— FI[Res], which denotes the residual

smoothness, is used.

3.3.3 Postprocessing

Although temporal information has been included in the frame-based multiple-
FO0 estimation system through the use of the CAM feature in the score function,
additional postprocessing is needed in order to track notes over time, and elim-
inate any single-frame errors. In this system, two postprocessing methods were
employed: the first using HMMSs and the second using conditional random fields
(CRFs), which to the author’s knowledge have not been used before in music

transcription research.
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Figure 3.5: Transcription output of an excerpt of ‘RWC MDB-J-2001 No. 2’
(jazz piano) in a 10 ms time scale (a) Output of the multiple-F0O estimation
system (b) Piano-roll transcription after HMM postprocessing.

HMM Postprocessing

In this work, each pitch p = 1,...,88 is modeled by a two-state HMM, denoting
pitch activity/inactivity, as in [PEQ7al, (QRC™10]. The observation sequence is
given by the output of the frame-based multiple-FO estimation step for each
pitch p: O®) = {UEP)}, t =1,...,T, while the state sequence is given by Q) =
{qu )}. Essentially, in the HMM post-processing step, pitches from the multiple-
FO estimation step are tracked over time and their note activation boundaries
are estimated using information from the salience function. In order to estimate
the state priors P(q{") and the state transition matrix P(q{”’[q\);), MIDI files
from the RWC database [GHNOO3| from the classic and jazz subgenres were
employed, as in [QRCT10]. For each pitch, the most likely state sequence is

given by:
Q" = argmax [ | P(a;”lai”y) P(oi" lai”) (3.26)
q(®) +
In order to estimate the observation probabilities P(ogp )|q§p )), we employ a

sigmoid curve which has as input the salience function of an active pitch from
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the output of the multiple-F0 estimation step:

1

P(o”|a” = 1) = 17w D

(3.27)
where S'[p,t] denotes the salience function value at frame ¢. The output of
the HMM-based postprocessing step is generated using the Viterbi algorithm.
The transcription output of an example recording at the multiple-F0 estimation
stage and after the HMM postprocessing is depicted in Fig. In addition, in
Fig. B6l(a) the decoding process of the pitch-wise HMM is shown.

CRF Postprocessing

Although the HMMs have repeatedly proved to be an invaluable tool for smooth-
ing sequential data, they suffer from the limitation that the observation at a
given time frame depends only on the current state. In addition, the current
state depends only on its immediate predecessor. In order to alleviate these as-
sumptions, conditional random fields (CRFs) [LMPO1] can be employed. CRFs
are undirected graphical models that directly model the conditional distribution
P(Q|0O) instead of the joint probability distribution P(Q, O) as in the HMMs.
Thus, HMMs belong to the class of generative models, while the undirected
CRFs are discriminative models. The assumptions concerning the state inde-
pendence and the observation dependence on the current state which are posed
for the HMMs are relaxed.

In this work, 88 linear-chain CRFs are employed (one for each pitch p),

where the current state qu ) is dependent not only on the current observation

o? ), but also on oﬁ )1, in order to exploit information not only from the current
state, but from the past one as well. For learning, we used the same note priors
and state transitions from the RWC database which were also utilized for the
HMM post-processing. For inference, the most likely state sequence for each

pitch is computed using a Viterbi-like recursion which estimates:

Q'®) = argmax P(Q®|0®) (3.28)
Qp)

where P(Q®P|OW) = T], P(qu)|(9(p)) and the observation probability for a

given state is given as a sum of two potential functions:

@1, _ 1y _ 1 1
POPla:” =) =1 —@pan T Tre@riTD (3.29)

T



Figure 3.6: Graphical structure of the postprocessing decoding process for (a)
HMM (b) Linear chain CRF networks.

It should be noted that in our employed CRF model we assume that each note
state depends only on its immediate predecessor (like in the HMMs), while the
relaxed assumption over the HMMs concerns the observation potentials. The
graphical structure of the linear-chain CRF which was used in our experiments
is presented in Fig. B.6IDb).

3.4 AMT using Note Onset and Offset Detec-
tion

The final system presented in this chapter is an extension of the joint multiple-
FO estimation system of Section .3 which explicitly incorporates information
on note onsets and offsets. For onset detection, two novel descriptors are pro-
posed which exploit information from the transcription preprocessing steps. The
multiple-FO estimation step is made using the same score function as in Section
B3 Finally, a novel hidden Markov model-based offset detection procedure is
proposed.
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3.4.1 Preprocessing
Resonator Time-Frequency Image

As in the systems of Sections and [3.3] the resonator time-frequency image
was used as a time-frequency representation. The same settings were used, and
the resulting absolute value of the RTFI is denoted as X|w,t] while an RTFI

slice is denoted as X|w].

Spectral Whitening and Noise Suppression

In order to suppress timbral information and make the following analysis more
robust to different sound sources, spectral whitening is performed using the same
method described in Section[3:3] resulting in the whitened representation Y|w, ¢].
Afterwards, an algorithm for noise suppression is applied to the whitened RTFT,
using the two-stage median filtering procedure presented in subsection[3.3.11 The

result is a whitened and noise-suppressed RTFI representation Z[w].

Salience Function

Using Z[w], the log-frequency pitch salience function S[p] proposed in Section
is extracted, where p € [21,...,108] denotes MIDI pitch. Tuning and in-
harmonicity coefficients are also extracted. Using the extracted information, a
harmonic partial sequence (HPS) HPS|[p, h] for each candidate pitch p and its

harmonics h = 1,...,13 is also stored for further processing.

3.4.2 Omnset Detection

In order to accurately detect onsets in polyphonic music, two onset descriptors
which exploit information from the transcription preprocessing steps are pro-
posed and combined using late fusion. Firstly, a novel spectral flux-based feature
is defined, which incorporates pitch tuning information. Although spectral flux
has been successfully used in the past for detecting hard onsets [BDAT05|, false
alarms may be detected for instruments that produce frequency modulations
such as vibrato or portamento. Thus, a semitone-resolution filterbank is cre-
ated from Z[w,t], where each filter is centered at the estimated tuning position

of each pitch:

wp,0+0p+4 .

W1 = ( AL me) (3.30)

l:wp,0+6p—4
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where wp, o is the bin that ideally corresponds to pitch p and W), is a 80 cent-
span Hanning window centered at the pitch tuning position. Using the output

of the filterbank, the novel spectral flux-based descriptor is defined as:

108
SFlt] = > HW (@lp,t] — vlp,t — 1]) (331)

p=21
where HW (+) = % is a half-wave rectifier. Afterwards, onsets can be detected

by performing peak picking on SF[t].

In order to detect soft onsets, which may not be indicated by a change in
signal energy [BDAT05], a pitch-based descriptor is proposed which is based on
the extracted salience function. The salience function Sp, ] is smoothed using a
moving median filter with 120 ms span, in order to reduce any fluctuations that
might be attributed to amplitude modulations (e.g. tremolo). The smoothed

salience function S[p,t] is then warped into a chroma-like representation:
6 —
Chrlp,t] = S[12- i+ p +20,1] (3.32)
i=0

where p = 1,...,12 represents the pitch classes C, Cf,...,B. Afterwards, the
half-wave rectified first-order difference of Chr[p,t] is used as a pitch-based onset

detection function (denoted as salience difference SD):

SD[t] = > HW(Chrli,t] — Chrli,t — 1]) (3.33)

i=1

Accordingly, soft onsets are detected by peak picking on SD[t].

In order to combine the onsets produced by the two aforementioned descrip-
tors, late fusion is applied, as in [HS10]. From each of the two descriptors an
onset strength signal is created, which contains either the value one at the in-
stant of the detected onset or zero otherwise. The fused onset strength signal
is created by summing and smoothing these two signals using a moving median
filter of 40 ms length. Onsets are detected by performing peak picking on the
fused signal by selecting peaks with a minimum 80 ms distance. For tuning
onset detection parameters, a development set containing ten 30 sec classical
recordings from the meter analysis data from Ghent University [VMO07] was

employed.
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3.4.3 Multiple-FO Estimation

We perform the same multiple-F0 estimation procedure described in subsection
3.4.3] using segments defined by two consecutive onsets instead of performing

multiple-FO estimation for each time frame.

Overlapping Partial Treatment

We extract segments defined by two consecutive onsets by using the mean 7w, t]
of the first 3 frames after the onset. Using each segment, a salience function
and HPS are extracted. A set of Cy candidate pitches is selected, based on
the maximum values of the salience function S[p] (here, Cy is set to 10 as in
[EBDT0]). The pitch candidate set will be denoted as C.

In order to recover the amplitude of overlapped harmonics, we employ the
proposed discrete cepstrum-based spectral envelope estimation algorithm de-
scribed in subsection and detailed in Appendix [Bl Firstly, given a subset
C of pitch candidates, a partial collision list is computed. For a given HPS, if
the number of overlapped partials is less than N,ye., then the amplitudes of
the overlapped partials are estimated from the spectral envelope SE,[w] of the
candidate pitch using only amplitude information from non-overlapped partials.
If the number of overlapped partials is equal or greater than N, the partial
amplitudes are estimated using spectral envelope information from the complete
HPS.

Pitch set score function

Having selected a set of possible pitch candidates and performed overlapping
partial treatment on each possible combination, the goal is to select the optimal
pitch combination for a specific time frame. A modified version of the pitch
set score function presented in subsection is employed, which combines
spectral and temporal characteristics of the candidate FOs, and also attempts
to minimize the noise residual to avoid any missed detections.

Given a candidate pitch set C C C with size |C|, the proposed pitch set score
function is given by ([B.I6), where in this case £, is defined as:

L, = w1 Fl[p] + waSmp] — w3 SC[p] + wa PR[p] (3.34)

where Fl[p], Sm[p], SC[p], PR[p] are defined in subsection
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In order to train the weight parameters w;,i = 1,...,4 of the features in
B34) as well as for the residual weight in (817, training was performed using
the Nelder-Mead search algorithm for parameter estimation [NM65] with 100
classic, jazz, and random piano chords from the MAPS database [EBDI10] as
a training set. Trained weight parameters w; were {1.3,1.4,0.6,0.5,25}. The
pitch candidate set C that maximizes the score function is selected as the pitch

estimate for the current frame.

3.4.4 Offset Detection

In order to accurately detect note offsets we employ hidden Markov models
(HMMs). HMMs have been used in the past for smoothing transcription results
(e.g. |[QRCT10]) but to the author’s knowledge they have not been utilized for
offset detection. As in the note tracking procedure of Subsection B.3.1] each
pitch is modeled by a two-state HMM, denoting pitch activity/inactivity. The
observation sequence O is given by the output of the multiple-FO estimation
step for each pitch, while the state sequence is given by Q® . In order to
estimate state priors P(qu)) and the state transition matrix P(qu) |q§f)1), MIDI
files from the RWC database [GHNOOQ3] from the classic and jazz genres were
used.

In order to estimate the observation probabilities P(ogp )|q§p )), we employ a
sigmoid curve which has as input the salience function of an active pitch from

the output of the multiple-FO estimation step:

1

P(in)lqip) =1)= 1+ e Sha-1)

(3.35)
where S[p, t] denotes the salience function value at frame ¢. The output of the
HMM-based offset detection step is generated using the Viterbi algorithm. The
note offset is detected as the time frame when an active pitch between two
consecutive onsets changes from an active to an inactive state for the first time.
Thus, the main difference between the present system and the system of Section
in terms of postprocessing is that for each active note event between two
onsets, only one offset must be present; in the system of Section B3] a note
event in an “off” state might move to an “on” state in the next frame. Thus,
the present system explicitly models note offsets. An example for the complete
transcription system, from preprocessing to offset detection, is given in Fig. 3.1]

for a guitar recording from the RWC database.
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Figure 3.7: The transcription system of Section B4 applied to an excerpt from
‘RWC MDB-J-2001 No. 9’ (guitar). Black rectangles correspond to correctly
detected pitches, gray rectangles to false alarms, and empty rectangles to missed
detections.

3.5 Evaluation

3.5.1 Datasets
MAPS Database

The proposed multiple-F0 estimation system for isolated piano sounds of Sec-
tionB.2lis tested on the MIDI Aligned Piano Sounds (MAPS) database [EBDT0].
MAPS contains real and synthesized recordings of isolated notes, musical chords,
random chords, and music pieces, produced by 9 real and synthesized pianos in
different recording conditions, containing around 10000 sounds in total. Record-
ings are stereo, sampled at 44100Hz, while MIDI files are provided as ground
truth. For the current experiments, classic, jazz, and randomly generated chords
(without any note progression) of polyphony levels between 1 and 6 are em-
ployed, while the note range is C2-B6, in order to match the experiments per-
formed in [EBDI10]. Each recording lasts about 4 seconds. A development set
using 2 pianos (consisting of 1952 samples) is selected while the other 7 pianos
(consisting of 6832 samples) are used as a test set.

For training the weight parameters for the score function in the transcription
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systems of Sections [3.3] and B4l samples from the MAPS database are also
used. Here, 103 samples from two piano types are employed for traininéﬂ.
For comparative experiments on isolated piano sounds using the transcription
system of Section [3.3] it should be noted that the postprocessing stage was not
employed for the MAPS dataset.

RWC Dataset

For the transcription experiments of systems presented in Sections and [3.4]
we use 12 excerpts from the RWC database [GHNOO03], which have been used
in the past to evaluate polyphonic music transcription approaches in [KNSOT,
SKTT08, (QRC™T10]. A list of the employed recordings along with the instru-
ments present in each one is shown in the top half of Table[3.Il The recordings
containing ‘MDB-J’ in their RWC ID belong to the jazz genre, while those that
contain ‘MDB-C’ belong to the classic genre. For the recording titles and com-
poser, the reader can refer to [SKTT08|. Five additional pieces are also selected
from the RWC database, which have not yet been evaluated in the literature.
These pieces are described in the bottom half of Table Bl (data 13-17).

As far as ground-truth for the RWC data 1-12 shown in Table Bl non-
aligned MIDI files are provided along with the original 44.1 kHz recordings.
However, these MIDI files contain several note errors and omissions, as well
as unrealistic note durations, thus making them unsuitable for transcription
evaluation. As in [KNSO07,ISKTT08, | QRCT10], aligned ground-truth MIDI data
has been created for the first 23s of each recording, using Sonic Visualiser [Son|
for spectrogram visualization and MIDI editing. For the RWC data 13-17 in
Table Bl the newly-released syncRWC ground truth annotations are utilizeca

Disklavier Dataset

The test dataset developed by Poliner and Ellis [PEQ7a] is also used for tran-
scription experiments. It contains 10 one-minute recordings from a Yamaha
Disklavier grand piano, sampled at 8 kHz. Aligned MIDI ground truth using
the Disklavier is also provided with the recordings. The list of music pieces that
are contained in this dataset is shown in Table

I Trained weight parameters for the system of SectionB.3are w; = {1.3,1.4,0.6,0.5,0.2, 25}.
%http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC/
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| | RWC ID | Instruments
RWC-MDB-J-2001 No. 1
RWC-MDB-J-2001 No. 2 Piano
RWC-MDB-J-2001 No. 6 Guitar
RWC-MDB-J-2001 No. 7 Guitar
8
9

Piano

RWC-MDB-J-2001 No. Guitar
RWC-MDB-J-2001 No. Guitar
RWC-MDB-C-2001 No. 30 | Piano
RWC-MDB-C-2001 No. 35 | Piano

9 | RWC-MDB-J-2001 No. 12 Flute 4+ Piano

10 | RWC-MDB-C-2001 No. 12 | Flute 4+ String Quartet
11 | RWC-MDB-C-2001 No. 42 | Cello 4+ Piano

12 | RWC-MDB-C-2001 No. 49 Tenor + Piano

13 | RWC-MDB-C-2001 No. 13 | String Quartet

14 | RWC-MDB-C-2001 No. 16 | Clarinet + String Quartet
15 | RWC-MDB-C-2001 No. 24a | Harpsichord

16 | RWC-MDB-C-2001 No. 36 | Violin (polyphonic)

17 | RWC-MDB-C-2001 No. 38 | Violin

O | OO =W DN+~

Table 3.1: The RWC data used for transcription experiments.

MIREX MultiF0 Development Dataset

Finally, the full wind quintet recording from the MIREX multi-F0O development
set is also used for experiments [MIR]. This recording is the fifth variation
from L. van Beethoven’s Variations from String Quartet Op.18 No.5. It consists
of 5 individual instrument tracks (for bassoon, clarinet, flute, horn, and oboe)
and a final mix, all sampled at 44.1 kHz. The multi-track recording has been
evaluated in the literature in shorter segments [VBBI0, PGT11, [GETT,IOVC™11],
or in pairs of tracks [MS09]. MIDI annotations for each instrument track have
been created by the author and Graham Grindlay (the latter from LabROSA,
Columbia University). The recording and the corresponding annotations can be

found online@.

Shttp://www.music-ir.org/evaluation/MIREX/data/2007/multiF0/index.htm| (MIREX
credentials required)
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Composer

Title

J. S. Bach

Prelude BWV 847

L. van Beethoven

Fur Elise WoO 59

L. van Beethoven

Sonata Op 13(3)

J. Brahms Fantasia Op 116, No 6
F. Chopin Etude Op 10, No 1

J. Haydn Sonata XVI:40(2)

W. A. Mozart Sonata KV 333(1)

F. Schubert Fantasia D 760(4)

R. Schumann
0 | P. I. Tchaikovsky

Scenes from Childhood, Op 15(4)
The Seasons, Op 37a(1)

=[O 0O || O x| W DN —

Table 3.2: The piano dataset created in [PE07a], which is used for transcription
experiments.

3.5.2 Results
MAPS Database

For the experiments performed on the isolated piano chords from the MAPS
database [EBD10], we employed the precision, recall, and F-measure metrics for
a single frame, as defined in (Z28). A comparison is made between the system
presented in Section B.2] the system of Section B.3] using CRF postprocessing,
the system by Emiya et al. [EBD10], as well as results found in [EBD10] for the
system of Klapuri [Kla03]. We do not perform experiments using the system of
Section B.4] as the multiple-FO estimation stage is the same as in the system
B3l and the only difference is for the treatment of note onsets and offsets which
does not apply in this specific experiment.

The performance of the proposed multiple-F0 estimation systems along with
the systems in the literature is shown in Fig. B.8] organized according to the
polyphony level of the ground truth (experiments are performed with unknown
polyphony).

For the system of Section[3.2] the mean F for polyphony levels L = 1,...,6is
87.84%, 87.44%, 90.62%, 88.76%, 87.52%, and 72.96% respectively. It should be
noted that the subset of polyphony level 6 consists only of 350 samples of random
notes and not of classical and jazz chords. As far as precision is concerned,
reported rates are high for polyphony levels 2-6, ranging from 91.11% to 95.83%.
The lowest precision rate is 84.25% for L = 1, where some overtones were

erroneously considered as pitches. Recall displays the opposite performance,
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Figure 3.8: Multiple-FO estimation results for the MAPS database (in F-
measure) with unknown polyphony, organized according to the ground truth
polyphony level L.

reaching 96.42% for one-note polyphony, and decreasing with the polyphony
level, reaching 87.31%, 88.46%, 85.45%, and 82.35%, and 62.11% for levels 2-6.

For the system of Section using CRF postprocessing, the mean F for
polyphony levels L = 1,...,6 is 91.86%, 88.61%, 91.30%, 88.83%, 88.14%, and
69.55% respectively. As far as precision is concerned, reported rates are high for
all polyphony levels, ranging from 89.88% to 96.19%, with the lowest precision
rate reported for L = 1. Recall displays the opposite performance, reaching
96.40% for one-note polyphony, and decreasing with the polyphony level, reach-
ing 86.53%, 88.65%, 85.00%, and 83.14%, and 57.44% for levels 2-6.

In terms of a general comparison between all systems, the global F-measure
for all sounds is used, where the system of Section [3.3] outperforms all other
approaches, reaching 88.54%. The system of Section reports 87.47%, the
system in [EBD10] 83.70%, and finally the algorithm of [Kla03] reaches 85.25%.

Concerning the statistical significance of the proposed methods’ performance
compared to the methods in [EBD10, [Kla03], the recognizer comparison tech-
nique described in [GMSV9S§] is employed. The number of pitch estimation er-

rors of the two methods is assumed to be distributed according to the binomial
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law and the errors are assumed to be independent and identically distributed
(i.i.d.). Although the independence assumption does not necessarily hold, the
samples present in the test set do belong from different piano models and the
employed statistical significance test gives an indication of what recogniser dif-
ference could be considered to be significant. It should be noted that a discussion
on the importance of statistical significance tests in MIR research was made in
[UDMS12], where it was suggested that indicators of statistical significance are
eventually of secondary importance. The error rate of the method of Section
B2is é; = 0.1252; for Section B3it is é; = 0.1146; for [EBDI0) it is é5 = 0.1630
and for [Kla03] it is €4 = 0.1475. Taking into account that the test set size
Niest = 6832 and considering 95% confidence (o, = 0.05), it can be seen that
€i—&; > 20,1/26/Niest, where i € {1,2}, j € {3,4}, z,, can be determined from
tables of the Normal law (zg.05 = 1.65), and € = % This indicates that the
performance of the proposed multiple-F0O systems is significantly better when
compared with the methods in [EBDI0| [Kla03|]. Likewise, it can be shown that
the method of Section B3] is significantly better compared to the method of
Section with 95% confidence.

Another issue for comparison is the matter of computational speed, where
the algorithm in [EBDI10] requires a processing time of about 150xreal time,
while the system of Section is able to estimate pitches faster than real time
(implemented in Matlab), with the bottleneck being the RTFI computation; all
other processes are almost negligible regarding computation time. This makes
the proposed approach attractive as a potential application for automatic poly-
phonic music transcription. The system of Section B3] requires a processing
time of about 40xreal time, with the bottleneck being the computation of the

score function for all possible pitch candidate combinations.

RWC Dataset

Transcription results using the RWC recordings 1-12 for the proposed system
of Section B.2] the system of Section B3] using CRF postprocessing and the one
in Section B4 can be found in Table A comparison is made using several
reported results in the literature for the same files [QRCT 10, ISKTT08, [KNS07],
where the proposed methods from Sections [B.3] and B.4] report improved mean
Acca. Tt should be noted that for the system in Section [3.3] results using the
CRF postprocessing technique are displayed in Table B3l It should also be

noted that the systems in Sections [3.3] and [3.4] demonstrate impressive results
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5.4 8.3 8.2 [ [QRCT10] [ [SKTF08] | [KNSO7]

1 60.0% | 60.2% | 61.0% 63.5% 59.0% 64.2%
2 73.6% | 75.0% | 64.9% 72.1% 63.9% 62.2%
3 62.5% | 57.9% | 53.8% 58.6% 51.3% 63.8%
4 65.2% | 66.8% | 51.8% 79.4% 68.1% 77.9%
5 53.4% | 54.8% | 46.3% 55.6% 67.0% 75.2%
6 76.1% | 74.4% | 54.6% 70.3% 77.5% 81.2%
7 68.5% | 64.0% | 62.3% 49.3% 57.0% 70.9%
8 60.1% | 58.9% | 48.4% 64.3% 63.6% 63.2%
9 50.3% | 53.9% | 47.2% 50.6% 44.9% 43.2%
10 72.4% | 741% | 66.2% 55.9% 48.9% 48.1%
11 56.2% | 50.0% | 43.0% 51.1% 37.0% 37.6%
12 33.0% | 35.7% | 31.0% 38.0% 35.8% 27.5%
Mean | 61.2% | 60.5% | 52.5% | 59.1% 56.2% | 59.6%
Std. | 11.2% | 11.5% | 10.2% 11.5% 12.9% 16.9%

Table 3.3: Transcription results (Accz) for the RWC recordings 1-12.

for some recordings compared to the state-of-the-art (e.g. in file 11, which is
a cello-piano duet) while in other cases they fall behind. In file 4 for example,
results are inferior compared to state-of-the-art, which could be attributed to the
digital effects applied in the recording (the present system was created mostly
for transcribing classical and jazz music). As far as the standard deviation of
the Acco metric is concerned, the systems in Sections and 3.4 reports 11.5%
and 11.2% respectively, which is comparable to the state-of-the-art approaches
in Table B3l although it is worth noting that the lowest standard deviation is
reported for the method of Section B2

For the RWC recordings 13-17, transcription results comparing all proposed
methods from Sections[3.4] [3.3] and B.2] can be found in Table 3.4l It should be
noted that no results have been published in the literature for these recordings.
In general, it can be seen that bowed string transcriptions are more accurate
than woodwind transcriptions. Compared to RWC recordings 1-12, the system
in Section B3] performs better compared to the one in Section [3.4] which can be
attributed to the soft onsets found in the pitched non-percussive sounds found
in recordings 13-17.

Additional insight into the proposed systems’ performance for all 17 RWC
recordings is given in Table 3.5 where the error metrics of Section are pre-
sented. Results using three different configurations are shown for the system

of Section 3.3} without any note smoothing, with HMM-based note smoothing,
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$B.4 | §33 | §2
13 ] 60.3% | 482% | 37.7%

14 47.7% | 41.8% | 41.0%
15 57.8% | 66.8% | 50.6%
16 60.1% | 70.7% | 61.7%
17 52.0% | 75.2% | 58.3%
Mean | 55.5% | 60.5% | 49.9%
Std. 5.5% 14.7% | 10.5%

Table 3.4: Transcription results (Accy) for RWC recordings 13-17.

and with CRF-based note smoothing. For the system of Section B.4] two differ-
ent configurations are evaluated, using the complete system for onset and offset
detection, as well as a variant of the system performing only onset detection
for each segment defined by two onsets. It can be seen that for the system of
Section B3] there is a significant accuracy improvement when a postprocessing
technique is employed. In specific, the note postprocessing procedures mainly
decrease the number of false alarms (as can be seen in Ep,), at the expense
however of missed detections (Ey,). Especially for the HMM postprocessing, a
large number of missed detections have impaired the system’s performance.

As for the MAPS dataset, the recognizer comparison technique described
in [GMSV98] was employed. Even though the independence assumption does
not necessarily hold for time frames within a recording, it can be argued that
performing statistical significance tests between multi-pitch detection rates on
entire pieces (as in the MIREX evaluations) is an over-simplification, especially
given that the problem of detecting multiple pitches out of 88 classes makes the
problem space quite big. This is one of the reasons why to the author’s knowl-
edge no statistical significance tests take place in the transcription literature.
Thus, considering 95% confidence, the performan