7,177 research outputs found

    Molecular access to multi-dimensionally encoded information

    Get PDF
    Polymer scientist have only recently realized that information storage on the molecular level is not only restricted to DNA-based systems. Similar encoding and decoding of data have been demonstrated on synthetic polymers that could overcome some of the drawbacks associated with DNA, such as the ability to make use of a larger monomer alphabet. This feature article describes some of the recent data storage strategies that were investigated, ranging from writing information on linear sequence-defined macromolecules up to layer-by-layer casted surfaces and QR codes. In addition, some strategies to increase storage density are elaborated and some trends regarding future perspectives on molecular data storage from the literature are critically evaluated. This work ends with highlighting the demand for new strategies setting up reliable solutions for future data management technologies

    Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease

    Get PDF
    Capillary electrophoresis coupled with mass spectrometry (CE-MS) has been used as a platform for discovery and validation of urinary peptides associated with chronic kidney disease (CKD). CKD affects ∼ 10% of the population, with high associated costs for treatments. A urinary proteome-based classifier (CKD273) has been discovered and validated in cross-sectional and longitudinal studies to assess and predict the progression of CKD. It has been implemented in studies employing cohorts of > 1000 patients. CKD273 is commercially available as an in vitro diagnostic test for early detection of CKD and is currently being used for patient stratification in a multicentre randomized clinical trial (PRIORITY). The validity of the CKD273 classifier has recently been evaluated applying the Oxford Evidence-Based Medicine and Southampton Oxford Retrieval Team guidelines and a letter of support for CKD273 was issued by the US Food and Drug Administration. In this article we review the current evidence published on CKD273 and the challenges associated with implementation. Definition of a possible surrogate early endpoint combined with CKD273 as a biomarker for patient stratification currently appears as the most promising strategy to enable the development of effective drugs to be used at an early time point when intervention can still be effective

    MALDI Imaging Mass Spectrometry (MALDI-IMS)—Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis

    Get PDF
    MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Genomic and proteomic profiling for cancer diagnosis in dogs

    Get PDF
    Global gene expression, whereby tumours are classified according to similar gene expression patterns or ‘signatures’ regardless of cell morphology or tissue characteristics, is being increasingly used in both the human and veterinary fields to assist in cancer diagnosis and prognosis. Many studies on canine tumours have focussed on RNA expression using techniques such as microarrays or next generation sequencing. However, proteomic studies combining two-dimensional polyacrylamide gel electrophoresis or two-dimensional differential gel electrophoresis with mass spectrometry have also provided a wealth of data on gene expression in tumour tissues. In addition, proteomics has been instrumental in the search for tumour biomarkers in blood and other body fluids

    The Applicability of Remote Sensing in the Field of Air Pollution

    Get PDF
    This report prepared by KNMI and JRC is the final result of a study on the applicability of remote sensing in the field of air pollution requested by the DG Environment. The objectives of this study were to: Have an assessment of presently available scientific information on the feasibility of utilising remote sensing techniques in the implementation of existing legislation, and describe opportunities for realistic streamlining of monitoring in air quality and emissions, based on greater use of remote sensing. Have recommendations for the next policy cycle on the use of remote sensing through development of appropriate provisions and new concepts, including, if appropriate, new environmental objectives, more suited to the use of remote sensing. Have guidance on how to effectively engage with GMES and other initiatives in the air policy field projects Satellite remote sensing of the troposphere is a rapidly developing field. Today several satellite sensors are in orbit that measure trace gases and aerosol properties relevant to air quality. Satellite remote sensing data have the following unique properties: Near-simultaneous view over a large area; Global coverage; Good spatial resolution. The properties of satellite data are highly complementary to ground-based in-situ networks, which provide detailed measurements at specific locations with a high temporal resolution. Although satellite data have distinct benefits, the interpretation is often less straightforward as compared to traditional in-situ measurements. Maps of air pollution measured from space are widespread in the scientific community as well as in the media, and have had a strong impact on the general public and the policy makers. The next step is to make use of satellite data in a quantitative way. Applications based solely on satellite data are foreseen, however an integrated approach using satellite data, ground-based data and models combined with data assimilation, will make the best use of the satellite remote-sensing potential, as well as of the synergy with ground-based observations.JRC.H.4-Transport and air qualit

    MetFrag relaunched: incorporating strategies beyond in silico fragmentation

    Get PDF
    Background: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining compound database searching and fragmentation prediction for small molecule identification from tandem mass spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest developments to MetFrag and its use in small molecule identification since the original publication.Results: MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of reference, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called “suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate ranking. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolution tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combining with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.Conclusions: In many cases additional information is available from the experimental context to add to small molecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this additional information. The new functions greatly enhance the chance of identification success and have been incorporated into a command line interface in a flexible way designed to be integrated into high throughput workflows. Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome

    LDEF: A bibliography with abstracts

    Get PDF
    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication
    corecore