253 research outputs found

    Software quality and reliability prediction using Dempster -Shafer theory

    Get PDF
    As software systems are increasingly deployed in mission critical applications, accurate quality and reliability predictions are becoming a necessity. Most accurate prediction models require extensive testing effort, implying increased cost and slowing down the development life cycle. We developed two novel statistical models based on Dempster-Shafer theory, which provide accurate predictions from relatively small data sets of direct and indirect software reliability and quality predictors. The models are flexible enough to incorporate information generated throughout the development life-cycle to improve the prediction accuracy.;Our first contribution is an original algorithm for building Dempster-Shafer Belief Networks using prediction logic. This model has been applied to software quality prediction. We demonstrated that the prediction accuracy of Dempster-Shafer Belief Networks is higher than that achieved by logistic regression, discriminant analysis, random forests, as well as the algorithms in two machine learning software packages, See5 and WEKA. The difference in the performance of the Dempster-Shafer Belief Networks over the other methods is statistically significant.;Our second contribution is also based on a practical extension of Dempster-Shafer theory. The major limitation of the Dempsters rule and other known rules of evidence combination is the inability to handle information coming from correlated sources. Motivated by inherently high correlations between early life-cycle predictors of software reliability, we extended Murphy\u27s rule of combination to account for these correlations. When used as a part of the methodology that fuses various software reliability prediction systems, this rule provided more accurate predictions than previously reported methods. In addition, we proposed an algorithm, which defines the upper and lower bounds of the belief function of the combination results. To demonstrate its generality, we successfully applied it in the design of the Online Safety Monitor, which fuses multiple correlated time varying estimations of convergence of neural network learning in an intelligent flight control system

    A novel multi-classifier information fusion based on Dempster-Shafer theory: application to vibration-based fault detection

    Full text link
    Achieving a high prediction rate is a crucial task in fault detection. Although various classification procedures are available, none of them can give high accuracy in all applications. Therefore, in this paper, a novel multi-classifier fusion approach is developed to boost the performance of the individual classifiers. This is acquired by using Dempster-Shafer theory (DST). However, in cases with conflicting evidences, the DST may give counter-intuitive results. In this regard, a preprocessing technique based on a new metric is devised in order to measure and mitigate the conflict between the evidences. To evaluate and validate the effectiveness of the proposed approach, the method is applied to 15 benchmarks datasets from UCI and KEEL. Further, it is applied for classifying polycrystalline Nickel alloy first-stage turbine blades based on their broadband vibrational response. Through statistical analysis with different noise levels, and by comparing with four state-of-the-art fusion techniques, it is shown that that the proposed method improves the classification accuracy and outperforms the individual classifiers.Comment: arXiv admin note: text overlap with arXiv:2007.0878

    In-Process Laser Welding Monitoring by Fusing the Uncertain Signal Information of Multi-Photodiode Sensors

    Get PDF
    Department of System Design & Control EngineeringRemote laser welding is an emerging joining technology to meet the increasing demand of corrosion resistance, fast, non-contacted and single sided joining for automotive body-in-white assemblies. However, the quality of laser welding has been a critical issue in the popularization of this technology. Traditionally, various stochastic detection methods have been developed for in-process weld defect detection by monitoring and classifying various weld signals. The main objective of this thesis is to develop an in-process welding monitoring system including(i) a novel defect detection algorithm based on a multi-sensor fusion technique, (ii) a new optical sensor configuration to capture in-process weld signal, and (iii) an offline weld signal analysis/training module and an user interactive online detection module. The three weld signals are monitored: weld pool temperature, plasma intensity, and back reflected laser intensity. Their nominal trends are identified by estimating a probability distribution function for the signals and appropriate thresholds are specified by the standard statistical analysis of the residuals at the confidence interval of 95%. We propose a probability assignment function, characterized by shape controllability with respect to the extracted thresholds. We can analyze the in-tolerance defect problems by the proposed probability assignment function that can deal with the decision uncertainty near the thresholds. The individual sensor information is utilized to identify the probability of the normal state. The probabilities are aggregated by using the combination rule of the Dempster-Shafer theory. The performance of the developed detection method is evaluated by the statistical comparison with conventional visual inspection results.clos

    Identification of Biometric-Based Continuous user Authentication and Intrusion Detection System for Cluster Based Manet

    Get PDF
    Mobile ad hoc is an infrastructure less dynamic network used in many applications; it has been targets of various attacks and makes security problems. This work aims to provide an enhanced level of security by using the prevention based and detection based approaches such as authentication and intrusion detection. The multi-model biometric technology is used for continuous authentication and intrusion detection in high security cluster based MANET. In this paper, an attempt has been made to combine continuous authentication and intrusion detection. In this proposed scheme, Dempster-Shafer theory is used for data fusion because more than one device needs to be chosen and their observation can be used to increase observation accuracy

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    Towards a Traceable Data Model Accommodating Bounded Uncertainty for DST Based Computation of BRCA1/2 Mutation Probability With Age

    Get PDF
    In this paper, we describe the requirements for traceable open-source data retrieval in the context of computation of BRCA1/2 mutation probabilities (mutations in two tumor-suppressor genes responsible for hereditary BReast or/and ovarian CAncer). We show how such data can be used to develop a Dempster-Shafer model for computing the probability of BRCA1/2 mutations enhanced by taking into account the actual age of a patient or a family member in an appropriate way even if it is not known exactly. The model is compared with PENN II and BOADICEA (based on undisclosed data), two established platforms for this purpose accessible online, as well as with our own previous models. A proof-of-concept implementation shows that set-based techniques are able to provide better information about mutation probabilities, simultaneously highlighting the necessity for ground truth data of high quality

    Smart Sustainable Manufacturing Systems

    Get PDF
    With the advent of disruptive digital technologies, companies are facing unprecedented challenges and opportunities. Advanced manufacturing systems are of paramount importance in making key enabling technologies and new products more competitive, affordable, and accessible, as well as for fostering their economic and social impact. The manufacturing industry also serves as an innovator for sustainability since automation coupled with advanced manufacturing technologies have helped manufacturing practices transition into the circular economy. To that end, this Special Issue of the journal Applied Sciences, devoted to the broad field of Smart Sustainable Manufacturing Systems, explores recent research into the concepts, methods, tools, and applications for smart sustainable manufacturing, in order to advance and promote the development of modern and intelligent manufacturing systems. In light of the above, this Special Issue is a collection of the latest research on relevant topics and addresses the current challenging issues associated with the introduction of smart sustainable manufacturing systems. Various topics have been addressed in this Special Issue, which focuses on the design of sustainable production systems and factories; industrial big data analytics and cyberphysical systems; intelligent maintenance approaches and technologies for increased operating life of production systems; zero-defect manufacturing strategies, tools and methods towards online production management; and connected smart factories

    Network Anomaly Detection System with Optimized DS Evidence Theory

    Get PDF
    Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network—complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each senor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor’s regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly
    corecore