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ABSTRACT

Software Quality and Reliability Prediction Using Dempster-Shafer Theory

Lan Guo

As software systems are increasingly deployed in mission critical applications, accurate
quality and reliability predictions are becoming a necessity. Most accurate prediction models
require extensive testing effort, implying increased cost and slowing down the development
life cycle. We developed two novel statistical models based on Dempster-Shafer theory, which
provide accurate predictions from relatively small data sets of direct and indirect software
reliability and quality predictors. The models are flexible enough to incorporate information
generated throughout the development life-cycle to improve the prediction accuracy.

Our first contribution is an original algorithm for building Dempster-Shafer Belief Net-
works using prediction logic. This model has been applied to software quality prediction.
We demonstrated that the prediction accuracy of Dempster-Shafer Belief Networks is higher
than that achieved by logistic regression, discriminant analysis, random forests, as well as
the algorithms in two machine learning software packages, See5 and WEKA. The differ-
ence in the performance of the Dempster-Shafer Belief Networks over the other methods is
statistically significant.

Our second contribution is also based on a practical extension of Dempster-Shafer theory.
The major limitation of the Dempsters rule and other known rules of evidence combination
is the inability to handle information coming from correlated sources. Motivated by inher-
ently high correlations between early life-cycle predictors of software reliability, we extended
Murphys rule of combination to account for these correlations. When used as a part of the
methodology that fuses various software reliability prediction systems, this rule provided
more accurate predictions than previously reported methods. In addition, we proposed an
algorithm, which defines the upper and lower bounds of the belief function of the combination
results. To demonstrate its generality, we successfully applied it in the design of the Online
Safety Monitor, which fuses multiple correlated time varying estimations of convergence of
neural network learning in an intelligent flight control system.
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Chapter 1

Introduction

As software systems are being increasingly deployed in mission critical applications, it has

become imperative to accurately predict software quality and reliability before their deploy-

ments. Most accurate prediction models, however, require extensive testing effort, implying

increasing cost and slowing down of the development life-cycle. There are many indirect

assessment models, which can provide reliability prediction without extensive testing. How-

ever, these models are mostly inaccurate, and many of their predictions are statistically

correlated. There remains a problem to combine these indirect reliability models for a more

accurate prediction, and meanwhile, take correlation into account.

Accurate software quality and reliability prediction relies on good statistical models.

Current models are mainly focused on two areas: evidence combination and probability

reasoning under uncertainty. There are two important statistical theories for evidence com-

bination: Bayesian theory and Dempster-Shafer (D-S) theory. Based on these two theories,

two probability reasoning methodologies were developed: Bayesian Belief Networks (BBNs)

and Dempster-Shafer Belief Networks (DSBNs). Both methodologies can be used to make

predictions about unobserved variables based on observed ones by inference propagation

through belief networks.

Bayesian inference methods have been widely applied in various application domains,

especially in software engineering. However, as pointed out by Shafer [136], the way that the

Bayesian theory handles complete ignorance is problematic. In addition, the Bayseian theory

requires a solid subjective prior, which is often unobtainable. Rooted from the Bayesian

theory, the Bayesian Belief Networks also suffer from such limitations. Additionally, the

structure of the BBNs is difficult to build with missing data.

On the other hand, the D-S theory uses an uncertainty factor to represent ignorance,

and does not require any prior for inference. Furthermore, Shafer proved that the Bayes’

1
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rule of conditioning is a restricted special case of the Demspter’s rule of combination. Later,

the Dempster-Shafer Belief Networks (DSBNs) were developed [94], which can be inducted

from a relatively small data set in a more flexible and dynamic way compared to the BBNs.

However, this promising probability reasoning methodology has not been applied to software

engineering.

Another open problem in this research area is that both the Bayesian theory and the

D-S theory cope with independent evidence. This assumption of “evidence independence”

is restrictive and admittedly unrealistic in many applications, for instance when sources of

evidence are correlated with each other.

Our research goal is to develop a reasoning methodology which is objective, flexible and

dynamic, such that it overcomes the limitations of the Bayesian Belief Networks which are

subjective and difficult to build. In addition, we would like to develop a general methodology

that can combine evidence in general, including both correlated and uncorrelated evidence.

We have developed two novel statistical models based on Dempster-Shafer theory, and

applied them to software quality and reliability prediction. Specifically, we developed a

novel induction algorithm to build the Dempster-Shafer (D-S) networks. In addition, we

developed a general methodology for evidence combination, which is based on the Murphy’s

rule of combination and fuzzy logic. This methodology can combine both correlated and

uncorrelated evidence.

This dissertation first introduces a probability reasoning methodology based on the

Dempster-Shafer (D-S) belief networks. We applied the methodology to predicting fault

prone modules. It consists of three major parts: First, building the Dempster-Shafer net-

work from an existing data set by the induction algorithm; Second, choosing the predictors

(attributes) by feature selection; Third, feeding the predictors describing the modules of

the current project into the inducted Dempster-Shafer network and identifying fault prone

modules. We applied this methodology in two case studies based on NASA data sets. The

prediction accuracy of our methodology is higher than that achieved by logistic regression,

discriminant analysis, random forests, as well as the algorithms in two machine learning soft-

ware packages See5 and WEKA on the same data sets. The difference in the performance

of the proposed methodology over other methods is statistically significant.

The second methodology introduced focuses on information fusion, an important area of

evidence combination. It is an extension of the Dempster-Shafer framework, which can com-

bine both correlated and uncorrelated evidence. This framework is based on the Murphy’s

rule of combination and fuzzy logic. We applied it to the fusion of various software reliability

prediction systems for a more precise prediction of software reliability. The prediction result
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is more accurate than previously reported methods. The proposed methodology was also ap-

plied in a realtime intelligent flight control system. The Online Safety Monitor constructed

based on this methodology can accurately detect off-nominal behavior in the flight pattern

data. This general framework can be applied to combining evidence for prediction in many

other research areas.

This dissertation is organized as follows. Chapter 2 presents related work. It focuses

on comparisons of the Bayesian theory and the D-S theory, as well as the Bayesian Belief

Networks and the Dempster-Shafer Belief Networks. In addition, it overviews research in

software quality and reliability prediction. Chapter 3 introduces our induction algorithm and

the modifications made in the belief revision algorithm for the Dempster-Shafer networks.

Chapter 4 applies the first methodology to predicting fault-prone modules in software en-

gineering. Chapter 5 outlines the second methodology for information fusion of correlated

evidence. Chapter 6 describes two applications of the proposed information fusion method-

ology. Finally, Chapter 7 summarizes our contributions and future work.



Chapter 2

Related Work

Statistical theories are very important in building various prediction models, which have

been widely applied in software engineering, medical diagnosis, and recently bioinformatics.

These models can be categorized into two areas: evidence combination, and probability

reasoning under uncertainty. Evidence combination refers to combining available evidence

to evaluate certain proposition(s), for instance to judge whether or not a coin is biased based

on the frequencies of its head and tail during tossing. A good example for reasoning under

uncertainty is medical diagnosis, where doctors make inference of a patient’s possible disease

based on the observable symptoms.

There are two most important statistical theories for evidence combination: Bayesian

theory and Dempster-Shafer (D-S) theory. Based on these two theories, two inference

methodologies were developed for reasoning under uncertainty: Bayesian Belief Networks

and Dempster-Shafer Belief Networks.

The Bayesian theory is a very popular theory and has been extensively applied in many

applications. However, it has also been questioned for its “subjectiveness” and its way

of handling complete ignorance. In this chapter, we will introduce an alternative theory,

Dempster-Shafer theory, and discuss why many researchers consider it more general and

robust than the Bayesian theory.

The Bayesian Belief Networks (BBNs) have been deemed as the most promising inference

methodology by many researchers and thus employed in numerous prediction applications.

However, the Bayesian networks have drawbacks rooted in the Bayesian theory, and are

difficult to build with missing data. On the other hand, the Dempster-Shafer Belief Networks

(DSBN) were recently developed [94] and are more flexible than the BBNs. However, they

have not been applied in software engineering.

As mentioned before, statistical models and machine learning algorithms are important

4
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for software quality and reliability prediction. Software engineers need accurate quality

assessment of the software under development. Early prediction of fault prone components

is of particular interest for software developers to quickly find defects and deliver more reliable

software products. Software quality prediction focuses on identifying fault prone modules

(procedures), while software reliability prediction aims at quantifying the probability that

a program will execute without failure since its start time. Models have been developed to

incorporate product and process metrics for software quality and reliability prediction.

Software quality models aim at predicting critical software components prior to testing.

They are generally built from metrics collected in past projects or releases, and are used

to identify fault prone modules in the current project/release and subject them to more

rigorous verification activities. Successful models are characterized by high prediction accu-

racy, thus allowing software developers to quickly identify defects early in the software life

cycle. Automated detection of fault prone modules during software development process is

an important prerequisite for developing reliable large systems.

Software reliability is a statistical measure of how well software operates with respect to

its requirements. There are two related software engineering research issues about reliability

requirements. The first issue is achieving the necessary reliability, i.e., choosing and employ-

ing appropriate software engineering techniques in system design and implementation. The

second issue is the assessment of reliability as a method of assurance that precedes system

deployment. We are interested in the second issue in this dissertation.

Currently, there are many indirect software reliability assessment approaches, aiming

at predicting software reliability in early life cycle. Most of them are, however, not accu-

rate enough for reliable predictions. In addition, many of them are statistically dependent.

Therefore, there is an urgent need for such an evidence combination framework that can

integrate them for a more precise prediction, and take correlation into account.

In this chapter, we first introduce the two statistical theories for evidence combination

(§2.1), the Bayesian theory and the D-S theory, and illustrate why Bayes’ theorem is con-

tained in the D-S scheme. Secondly, we discuss the two inference methodology for reasoning

under uncertainty (§2.2), the Bayesian belief networks and the Dempster-Shafer belief net-

works. Thirdly, we introduce related work in software quality prediction (§2.3), and then

software reliability assessment (§2.4). Finally, we summarize the chapter (§2.5).



Lan Guo Chapter 2. Related Work 6

2.1 Evidence Combination

The fundamental operation of probability reasoning is the combination of evidence. Infor-

mation fusion is a very important area of evidence combination. The goal is to fuse different

sources of information for a more precise probabilistic assessment of real-world representa-

tions. A variety of approaches have been presented in the literature, including Bayesian

methods [56] [123] [125] [129] [142], Dempster-Shafer Theory [51] [95] [113], Artificial Neural

Networks [15] [49] [100], Fuzzy reasoning [49] [114] [120] [131], Classifier Fusion Strate-

gies (average, minimum, maximum, median, majority vote, and oracle) [77] [84], rule-based

expert systems [151], Independent Component Analysis [50], Principal Component Analy-

sis [32], Correspondence Factorial Analysis [32], Minimum Entropy fusion approach [162],

Kalman filtering [61], weighted Boolean models [106], and Ordered Weighted Averaging

(OWA) operator [161].

Most fusion techniques share a common assumption that different sources of information

are independent from each other, which is restrictive and unrealistic in many situations. For

instance, it is recognized that “independently built” classifiers exhibit positive correlation,

and hence conceptualizing and quantifying diversity between classifier outputs is a challeng-

ing task on its own and will add a whole new dimension to classifier fusion [84]. Similar

observation is also reported in applying Bayesian methods [142]. Research has been con-

ducted to exploit the dependencies in information fusion. A method based on the Bayesian

inference and the maximum entropy principle was proposed to tackle tightly-coupled fusion

case [123]. Its solution happens to be equivalent to Canonical Correlation Analysis (CCA),

which is similar to the Principal Component Analysis (PCA) method. Both CCA and PCA

involve a mathematical procedure that transforms a number of (possibly) correlated vari-

ables into a (smaller) number of uncorrelated variables. The reduced number of uncorrelated

variables can then be used by various statistical methods for prediction.

The Murphy’s rule of combination was proposed for the Dempster-Shafer framework

[113], when the evidence is from the same source. However, there are other situations where

sources of information are not distinct, but is not from the same source, either. Correlated

evidence is one such example. Currently, no framework exists to combine evidence and take

correaltion into account.

This section introduces two theories for evidence combination: the Bayesian theory

(§2.1.1) and the Dempster-Shafer theory (§2.1.2). In §2.1.3, we illustrate Shafer’s proof

that Bayes’ theorem is a special case of the Dempster’s rule of combination [136].
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2.1.1 Bayesian Theory

The Bayesian theory is a very popular theory of partial belief. It adopts the three basic

rules of the frequentist approach as rules for one’s degree of belief based on a given source

of evidence, and it adopts the rule of conditioning as a general rule for updating one’s belief

when that evidence is augmented by the knowledge of a particular proposition.

The three basic rules of the frequentist approach are listed below. P (A) represents the

probability of an uncertain event A, which is defined by the frequency of that event based

on previous observations:

1. P (A)→ [0, 1].

2. If A represents a certain event, then P (A) = 1.

3. If A and B are mutually exclusive events, then P (A ∪B) = P (A) + P (B).

Based on the third rule, it is derived that P (A) = 1− P (¬A). This is also called Bayes’

rule of additivity.

In the Bayesian theory, a subjective prior is first assigned to a proposition. Upcoming

evidence is then incorporated to update the prior for a posterior probability. When we are

totally ignorant about the proposition, each possible outcome is assigned a uniform prior.

Bayes’ theorem can be represented as:

P (A | B) =
P (A)P (B | A)

P (B)
(2.1)

where A is the vector of parameters we are interested in and B is the vector of sample

observations. It is also called Bayes’ rule of conditioning. In Equation 2.1, P (A | B) is the

posterior density function for A summarizing all the information about B, P (B | A) is the

sample information algebraically equivalent to the likelihood for A, and P (A) is the prior

representing the expert opinion about A. Therefore, Equation 2.1 can be presented as [28]:

P (A | B) ∝ P (A)l(A | B) (2.2)

In words, Equation 2.2 means:

Posterior ∝ Prior × Sample

While Bayes’ theorem is unanimously agreed as correct when such prior is a valid one,

there is no guarantee that a subjective belief always represents the reality. Thus, Bayes’
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theorem is argued for its “subjectiveness” by many researchers. Bayes’ theorem has an

additional weakness in its way of representing complete ignorance: in this case, each possible

outcome is assigned a uniform prior. Firstly, it might be confusing for people to interpret

uniform priors: do all possible outcomes actually have the same probability, or we just don’t

have any clue about them? Secondly, the opponents of Bayes’ theorem consider it logically

inconsistent as it assigns uniform priors to represent complete ignorance. Here is a counter

example: suppose we would like to predict whether or not the system has any defects. We

have two possible outcomes for the proposition: the system has a defect and the system has

no defects. Without any information, we should assign uniform priors to these two possible

outcomes according to Bayes’ theorem. Therefore, each possible outcome has probability

of 0.5. Now, suppose we have a more refined set of possible outcomes: the system has a

software defect but no hardware defects, the system has a hardware defect but no software

defects, the system has both software and hardware defects, and the system has no defects.

We notice that the first three outcomes of the more refined set can be combined as the system

has a defect. With conventional uniform priors, we have 0.25 probability for each possible

outcome. Combining the first three outcomes, we have 0.75 probability for the system has a

defect and 0.25 probability for the system has no defects. A self-contradiction is evident in

this case.

2.1.2 Dempster-Shafer Theory

Dempster-Shafer (D-S) theory is a complete formalism of evidential reasoning for computing

and propagating evidential support (either confirming or disconfirming). It is considered a

more general and robust theory than Bayes’ theorem by its proponents [136]. Shafer demon-

strated that the Bayesian theory is contained in the D-S theory as a restrictive special case,

because Bayes’ rule of conditioning is a special case of Dempster’s rule of combination [136].

The difference between these two theoretical frameworks lies in that the D-S theory, unlike

Bayes’ theorem, does not require any priors. More importantly, it uses an uncertainty factor

to represent ignorance. In the D-S theory, the belief for the proposition starts from zero. At

this point, the uncertainty factor (representing the ignorance) is 1. Based on upcoming evi-

dence, the belief for the proposition is updated by the Dempster’s rule of combination [136].

The more we believe in the proposition, the less the uncertainty factor. In this way, the

assessment for the proposition is very clear.

In the D-S theory, parameters such as events in probability theory are called propositions

{θ1, θ2, · · · , θn}, and they must be mutually exclusive. The set of finite parameters Θ = {θi}
is called the frame of discernment. If 2Θ denotes the power set of Θ, then 2Θ includes all
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possible propositions of interest. In order to express the belief assigned to a proposition, we

call function: m : 2Θ → [0, 1] a basic probability assignment, which satisfies:

1. m(Ø) = 0.

2.
∑

A⊂Θ m(A) = 1.

The quantity m(A) is called A’s basic probability number. It is interpreted as the measure

of the belief that is committed exactly to A and to no smaller subset.

The D-S theory defines belief function over the frame of discernment Θ as Bel. For each

subset A of Θ, the number Bel(A) can be understood as one’s degree of belief that A is true.

A subset A of Θ is called a focal element of a belief function Bel over Θ if m(A) > 0. While

the quantity m(A) measures the belief that one commits exactly to A, not the total belief

that one commits to A, one must add to m(A) the quantities m(B) for all proper subsets B

of A to obtain the measure of the total belief committed to A:

Bel(A) =
∑

B⊆A

m(B) (2.3)

In the D-S theory, belief functions do not have additivity as Bayes’ theorem (described

in §2.1.1). It means that Bel(A) + Bel(A) does not have to be 1. This is the fundamental

difference from the Bayesian theory. The D-S theory defines ignorance (the uncertainty

factor) as 1−Bel(A)−Bel(A).

Dempster’s rule of combination is defined as follows:

m(C) =

∑

Ai

⋂

Bj=C;C 6=Ø m1(Ai)m2(Bj)
∑

Ai

⋂

Bj 6=Ø m1(Ai)m2(Bj)
(2.4)

The belief function given by m is called the orthogonal sum of m1 and m2. This rule means

that to combine two bodies of evidence, we get intersection Ai

⋂

Bj for each pair of focal

elements A and B, and the combined probability for subset C is the sum of intersections

that are subset of C divided by the sum of all nonempty intersections. In the Dempster’s

rule, if the information given by different sources conflicts, it must be ignored.

Another important measurement is plausibility, which is also referred to as upper proba-

bility : Pl(A) = 1−Bel(A).

The Dempster-Shafer (D-S) framework is considered more natural for many application

domains [113] [65], since it explicitly represents ignorance, and can incorporate domain

knowledge about the inference process via belief functions. As mentioned earlier, the D-

S theory is also considered more general and robust than Bayes’ theorem. Not only does
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the Dempster’s rule of combination contain the Bayes’ rule of conditioning (described in

the next section), but also the D-S theory allows different combination rules to fit in this

framework [152].

Originally, the D-S theory is a framework that allows combining distinct sources of ev-

idence and predicting under uncertainty. Here, a distinct source of evidence means an in-

dependence source of evidence. There are many combination rules for the D-S framework.

Two traditional approaches are the Dempster’s rule [136] and the Yager’s rule [158]. In the

Dempster’s rule (Equation 2.4), if the information given by different sources conflicts, it

must be ignored. On the other hand, Yager proposed that if the information by different

sources conflicts, there is no way to tell which information is true. In this case, the conflicted

portion is treated as uncertainty and is assigned to the ignorance factor (m(Θ)←− m(Ø)):

m(C) =

∑

Ai

⋂

Bj=C;C 6=Ø m1(Ai)m2(Bj)
∑

Ai

⋂

Bj∈2Θ m1(Ai)m2(Bj)
, C 6= Θ (2.5)

m(D) =

∑

Ai

⋂

Bj=D m1(Ai)m2(Bj)
∑

Ai

⋂

Bj∈2Θ m1(Ai)m2(Bj)
, D = Θ or D = Ø (2.6)

Both the Dempster’s rule and the Yager’s rule assign basic probability to all subsets

including the empty set. They use orthogonal sum (sum of product of two sources of evi-

dence) to perform evidence combination. The only difference is the way they treat conflicting

information, which results in empty set during combination. In the Dempster’s rule, the con-

flicting information is ignored during combination; while in the Yager’s rule, it contributes

to the uncertainty factor. Therefore, the combination of contradicting information by the

Dempster’s rule results in “averaged” belief values assigned to the elements in the frame of

discernment, which means that contradictory evidence cancels out; while the combination

by the Yager’s rule results in small belief values assigned to the elements in the frame of

discernment, and a big uncertainty factor representing ignorance.

Later, Matsuyama et al. proposed an integration method based on the mean of basic

probability [101]:

m(C) =
∑

Ai

⋂

Bj=C;C 6=Ø

m(Ai) + m(Bj)

2
(2.7)

This rule is very different from the previous two combination rules (the Dempster’s rule

or the Yager’s rule). Instead of using product of two sources of evidence during combina-

tion, Matsuyama’s rule uses the mean of two sources of evidence. During the combination,

conflicting information is assigned zero probability.



Lan Guo Chapter 2. Related Work 11

Similar to the Matsuyama’s rule, Horiuchi proposed a weighted integration method to

give different source a different weight during combination [65]:

m(C) =
∑

Ai

⋂

Bj=C

wim(Ai) + wjm(Bj), (wi + wj = 1) (2.8)

This rule also uses the sum, instead of product, to combine evidence. The difference between

the Horiuchi’s rule and the Matsuyama’s rule is that, the Horiuchi’s rule adds a weight factor

to each source of evidence, and conflicting information is not assigned zero probability; while

the Matsuyama’s rule treats different sources of evidence equally, and conflicting information

is assigned zero probability.

All the methods mentioned above assume that the sources of evidence are independent

from each other. However, some evidence could come from the same source. The Murphy’s

rule of combination was proposed to accommodate this situation.

Murphy proposed an alternative rule of combination for the D-S framework [113]. The

Murphy’s rule is a general form of the Dempster’s rule. It can be applied to the situations

where the sources of evidence are either dependent or independent.

The Murphy’s rule rewrites the Dempster’s rule as:

m(C) =

∑

Ai

⋂

Bj=C;C 6=Ø f(m1(Ai)m2(Bj))
∑

Ai

⋂

Bj 6=Ø f(m1(Ai)m2(Bj))
, (2.9)

where

f(m1(Ai)m2(Bj)) = [m1(Ai)m2(Bj)]
n, (0.0 < n ≤ 1.0) (2.10)

Function f can be referred to as belief revision function. If n = 1, it is the Dempster’s rule

(Equation 2.4) that is applicable for independent evidence.

According to Murphy, n > 0.5 means that the rule of combination should be optimistic.

In this case, the new evidence is given more credit and has more weight during the integration.

On the other hand, n < 0.5 means that the combination rule should be pessimistic, which

results in a less weight of the new evidence during the integration. There are also values of n

that produce neither optimistic nor pessimistic revision of belief. These values are referred

to as being neutral and center around n = 0.5.

When n < 1, the Murphy’s rule of combination is non-commutative. Unlike the Demp-

ster’s rule of combination which is commutative, the order of the presentation of evidence in

the Murphy’s rule entails different combination results.

The Murphy’s rule of combination is suitable for the situation where the information is

from the same source. However, it still does not solve the problem where information comes

from correlated sources.
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The D-S theory was first applied in AI community and spawned a wide interest [160]. It

was introduced into software engineering to interpret inconsistencies in software requirement

specifications [145]. It was also applied to pattern classification [65], when it was recog-

nized that the Bayesian theory is not general and robust enough to cope with incomplete

information.

2.1.3 Bayes’ Theorem within the D-S Framework

Dempster’s rule of combination permits a simple description of how the assimilation of new

evidence should change our belief: our initial belief can be combined with the new evidence

by their orthogonal sum. As discussed in §2.1.1, Bayes’ rule of conditioning combines the

new evidence with a Bayesian prior. As Shafer pointed out [136]: as long as the Bayesian

prior is a valid one, the D-S scheme does not conflict with the Bayesian solution to the

problem. In particular, he demonstrated that Bayes’ rule of conditioning is a special case of

the Demspter’s rule of combination, where the new evidence is treated as certainty (which

is essential to the Bayesian theory). In this case, the Bayes’ rule of conditioning can be

expressed by the orthogonal sum of the Bayesian prior and the new evidence according to

the Dempster’s rule of combination. The proof is as follows [136].

Suppose our initial belief is Bel1 over the frame of discernment Θ. The effect of the new

evidence Bel2 on Θ is to establish a particular subset B ⊂ Θ with certainty. Then Bel2 will

give a degree of belief one to the proposition corresponding to B and to every proposition

implied by it:

Bel2(A) =

{

1 if B ⊂ A

0 if B * A
(2.11)

(The subset B is the only focal element of Bel2, and its basic probability number is 1).

Bel1 and Bel2 are combinable if and only if Bel1(B) < 1. If Bel1 and Bel2 are combinable,

let Bel1(·|B) denote Bel1 ⊕ Bel2 (combination of Bel1 and Bel2), and let P1 and P1(·|B)

denote the upper probability functions for Bel1 and Bel1 ⊕Bel2, respectively. Then

Bel1(A|B) =
Bel1(A ∪B)−Bel1(B)

1−Bel1(B)

and

P1(A|B) =
P1(A ∩B)

P1(B)
(2.12)

for all A ⊂ Θ.



Lan Guo Chapter 2. Related Work 13

Note the similarity of Equation 2.1.3 to Bayes’ rule of conditioning (Equation 2.1). They

are essentially the same. Shafer demonstrated in greater details of how the Bayesian theory

can be contained in Dempster-Shafer theory in [136].

2.2 Reasoning under Uncertainty

Belief networks are computational structures composed of clusters of nodes representing

propositions interrelated by links signifying the independence relationships among the nodes.

Some belief networks, such as Bayesian Belief Networks (BBNs), represent real world prob-

abilistic knowledge with joint probability distributions and conditionals, while others, such

as Dempster-Shafer Belief Networks (DSBNs), focus on the evidence propagation by belief-

function measures of the nodes [94].

2.2.1 Bayesian Belief Networks

Bayesian Belief Networks (also known as Belief Networks, Causal Probabilistic Networks,

Causal Nets, Graphical Probability Networks, Probabilistic Cause-Effect Models, and Prob-

abilistic Influence Diagrams) have emerged as a promising solution for assessment reasoning

under uncertainty. BBNs provide an intuitive graphical user interface (GUI) based on a

sound mathematical theory of Bayesian probability. They have been proven useful in prac-

tical applications such as medical diagnosis, oil price forecasting and diagnosis of copier

machine faults [119]. The most celebrated recent use is the Answer wizard in Microsofts

Office 95 products for customer-tailored automated learning.

A BBN is a directed acyclic graph that represents probabilistic relationships among un-

certain variables. The graph is made of nodes and arcs where the nodes represent uncertain

variables and the arcs the causal/relevance relationships between the variables. Each node is

associated with a node probability table (NPT). The NPT captures the conditional probabil-

ities of a node given the value of its parent nodes. For nodes without parents, the NPTs are

simply the marginal probabilities or prior distributions. There are several ways to determine

the probabilities for the NPTs. We can accommodate both subjective probabilities elicited

from domain experts and probabilities based on objective data. Each uncertain variable

represents an event or a proposition. For instance, Figure 2.1 is a causal graph for reliabil-

ity prediction and Table 2.1 is the NPT for the node “Reliability” [45]. In Figure 2.1, “#

of latent faults ” and “Operational usage” are the causal factors of “Reliability”; “Coder’s

performance” is the causal factor of “# of latent faults ” and “Code complexity”; while



Lan Guo Chapter 2. Related Work 14

“Experience of staff”, “Problem complexity” and “Use of IEC 1508” are the causal factors

of “Coder’s performance”. “Reliability” can be predicted by the probability distributions

of “Operational usage” and (number of) “faults” shown in Table 2.1, as well as conditional

probabilities (which are not given in the paper). Each of these three nodes has three discrete

values in Table 2.1: low, med, or high.

Figure 2.1: “Reliability prediction” BBN example [45]

The BBN directed acyclic graph with its NPTs specifies a joint marginal distribution of

all events. When the actual state of a node is observed, the probabilities of all event states

are updated by propagating the new evidence along the arcs in the graph. In this way, the

probabilities change as the uncertainty and evidence change.

There have been many implementations of BBNs. The most notable one is the HUGIN

tool [70] based on the award winning theoretical work of Lauritzen and Spiegelhalter [86].

The major benefit of Bayesian belief networks is that they explicitly predict the proba-

bility of unobserved events with some preexisting information of them. By using BBNs, an

observer can justifiably hold that a certain statement of fact is true (subject probability);

after observing new evidence, the observer can update the former belief (“prior probability”)

and obtain a “posterior probability”. For example, in the reliability prediction BBN shown



Lan Guo Chapter 2. Related Work 15

Table 2.1: Node Probability Table (NPT) for the Node “Reliability” [45]

in Figure 2.1, we can assign our personal belief to the “operational usage” and the process

nodes such as “experience of staff” and “problem complexity” as the prior distribution. Af-

ter we obtain the evidence of the “operational usage” or the process information, we can

update the probability distribution for each node in this BBN and obtain the prediction

for reliability. However, the prior belief, which is required to fill in the relevant NPTs in a

sensible way, is not always easy to obtain even from domain experts. When there is no prior

belief available, the general approach is to assign a uniform prior.

Bayesian belief networks have been recognized as one of the most promising methodolo-

gies for prediction under uncertainty [2] [45] [37] [22] [108] [30] [31]. However, the important

shortcoming in Bayesian theory we discussed above (the representation of complete igno-

rance) has not been taken seriously in BBN applications. Let’s look at the reliability predic-

tion example in Figure 2.1, which was once demonstrated in detail in [1]. In this example,

the BBN was constructed to predict software reliability based on the product and process

information. In the initial state, experience of staff, problem complexity and operational

usage all have uniform priors. Operational usage has three discrete values, low, med, and

high, with 33.33% each (see Figure 2.2), while the other two, experience of staff and problem

complexity have two discrete values (Yes/No and high/low, respectively) with 50.00% each.

Then, they update the BBN with the evidence of best process: 100% experience of staff,

100% low problem complexity and use of IEC 1508. The updated reliability is then favoring

high value compared to that of the initial state, which is of course a reasonable result.

However, the updated belief of “operational usage” remains the same as the prior belief, as

shown in Figure 2.2, since it is conditionally independent of the process information (this

node is not connected with any other nodes in Figure 2.1 except for reliability).

In this case, the posterior belief of “operational usage” will be solely determined by the
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Figure 2.2: Operational usage distribution 1

Figure 2.3: Operational usage distribution 2

Figure 2.4: Operational usage distribution 3
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prior assigned to this node. Therefore, the drawback with the uniform prior in Bayesian

theory discussed in §2.1.1 is manifested here. Suppose we have six discrete values, instead of

three, for operational usage: extremely low, very low, medium low, low, medium, and high.

With uniform prior, it is now 16.67% probability assigned to each, and the distribution is

shown in Figure 2.3. Notice that we can combine extremely low, very low, medium low, low

as low, therefore, the combined distribution is 66.67% low, 16.67 medium, and 16.67% high

shown in Figure 2.4. Figure 2.3 and Figure 2.4 are the same. However, they are inconsistent

with the distribution in Figure 2.2. With this inconsistency between the distributions (as

shown in Figure 2.2 and Figure 2.4) of operational usage, the predicted reliability will also

be inconsistent.

We demonstrated in §2.1.1 that Bayes’ theorem can be interpreted as:

Posterior ∝ Prior × Sample

indicating that given sample information, the posterior belief is directly impacted by the

prior. If the prior is a problematic one, the resulted posterior belief is also problematic.

As discussed above, with complete ignorance, the uniform prior assigned according to the

Bayesian theory is problematic, because the distribution is subjective to human opinions.

Consequently, the self-contradictory situation of uniform prior will also impact the updated

posterior belief. While in the real-word applications where data is scarce and incomplete, it

is common to profess ignorance of the prior about some parameter(s). In such situations, we

could not rely on BBNs or any implementations directly operating on the Bayesian theory,

and have to seek for a more general and robust framework, for instance Dempster-Shafer

theory. One possible solution is the Dempster-Shafer belief networks, which will be described

in the next section.

Besides the drawback rooted from the Bayesian theory, the Bayesian belief networks are

difficult to build with missing data. Originally, the Bayesian networks were constructed

based on human heuristics [60] and, thus, have been subject to human biases. Later, learn-

ing methods were designed to extract BBNs directly from application databases, replacing

the insight gained by human domain experts [126] [134]. A common (mis)assumption made

by most learning methods is that the database is complete, because exact Bayesian learning

is intractable when data is missing. Unfortunately, real-world databases are rarely complete.

Therefore, techniques to learn conditional probabilities from missing data were developed and

explored: Sequential updating [157], the EM algorithm [35], and the Gibbs Sampling [143].

Solutions obtained from above methods are based on a common (mis)assumption that the

unreported data is Missing at Random (MAR) so that the incomplete database is a represen-

tative sample of the complete one. Obviously, this assumption is unrealistic as the missing
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data may not always be uniformly distributed. In this case, bound and collapse (BC) method

works better to derive the BBN structure from the incomplete database. Still, the results

do not guarantee a correct BBN structure with missing data, as described in [127].

2.2.2 Dempster-Shafer Belief Networks

Dempster-Shafer belief networks form the basis for another inference methodology. The

Dempster-Shafer networks can be induced automatically and dynamically from a data set.

The structure of the D-S network does not represent causal relationship as in the Bayesian

network. Instead, it represents implication relationship among the nodes. Unlike the

Bayesian networks that need the complete knowledge of the real-world in order to build

the correct causal model once and for all, the D-S networks can be constructed dynamically

and efficiently based on available data. Therefore, the D-S network construction is more

flexible than that of the Bayesian networks. The first induction algorithm for the Dempster-

Shafer networks was proposed by Liu et al. [94] [96], based on binomial distribution. We

developed an alternative induction algorithm [57], based on prediction logic [64], which is

applicable for implication rules in general. This algorithm is presented in Chapter 3.

The induced D-S network is a directed graph. Each node represents an individual variable

or hypothesis. Each arc in the graph signifies the existence of a direct implication (e.g.,

influence) rule between two adjacent nodes. The value of one variable is dependent on the

values of all variables that influence it. When evidence from distinct sources is observed

for certain nodes, it is combined by the Dempster-Shafer scheme [136]. Thus, beliefs for

the corresponding nodes are updated and propagated to the neighboring nodes through

the network. Dempster-Shafer networks are a promising methodology for prediction under

uncertainty. However, they have not been applied in software engineering yet.

D-S Network Induction by Liu et al. [94]

Dempster-Shafer belief networks were first proposed by Liu et al. [94] [96]. The relationship

between each pair of nodes in the D-S networks were induced based on binomial distribution.

In Figure 2.5, each table is a contingency table for the corresponding implication relation.

The shaded cells are the errors for the corresponding implication rule. For example, A∧¬B

is the error cell for the implication rule A ⇒ B. NA∧¬B represents the number of error

occurrences. Ideally, if there is an implication rule A ⇒ B, we would never expect to find

co-occurrences A ∧ ¬B. In reality, however, due to domain uncertainty or sampling errors,

the error occurrences may not be zero. Therefore, they use a significance level αc and a
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minimal conditional probability pmin to test whether the probability of the errors as in the

contingency table (based on the lower tails of binomial distributions) is less than a threshold,

αc. The logically equivalent implication relations, for instance A ⇒ B and ¬B ⇒ ¬A, are

derived at the same time (called modus ponens and modus tollens, respectively). The detailed

algorithm is shown in Figure 2.6. A numerical example of this algorithm is provided in [94].

Figure 2.5: Six proposition types relating two dichotomous variables

Inference Propagation in D-S Networks

In D-S belief networks, the set of all possible outcomes of a node is called the frame of

discernment, Θ, which must be exhaustive and disjoint. D-S theory allows a basic probability

assignment to the subsets of a conclusion, which satisfies: m : 2Θ → [0, 1],m(∅) = 0, and
∑

θ⊆Θ m(θ) = 1. A belief function, Bel(B) is defined as the total belief committed to all

subsets of B, i.e., Bel(B) =
∑

b⊆B m(b).

Without loss of generality, suppose our frame of discernment Θ contains only two out-

comes for proposition A, {a,¬a}. Unlike the Bayesian theory, the uncertainty factor (igno-
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The Implication Induction Algorithm by Liu et al. [94]
Begin
Set a significance level αc and a minimal conditional probability pmin

for nodei, i ∈ [0, nmax − 1] and nodej, j ∈ [i + 1, nmax]
for all empirical case samples N

Compute a contingency table

Where N11, N12, N21, N22 are the numbers of occurrences with respect
to the following combinations:

N11 : nodei = TRUE ∧ nodej = TRUE
N12 : nodei = TRUE ∧ nodej = FALSE
N21 : nodei = FALSE ∧ nodej = TRUE
N22 : nodei = FALSE ∧ nodej = FALSE

for each relation type k test the following inequality

P (x ≤ Nerror occurrences) < αc

based on the lower tails of binomial distributions Bin(N,Pmin) and Bin(N ′, Pmin), where
N and N ′ denote the occurrences of antecedent satisfactions in the two inferences using
a type k implication relation, i.e., in modus ponens and modus tollens, respectively.
αc is the alpha error of the conditional probability test.

if the test succeeds, then return a type k relation
End

Figure 2.6: The Induction Algorithm for Building D-S Networks by Liu et al. [94]

rance) is represented by m(Θ) = 1 −m(a) −m(¬a). Furthermore, Bel(a) + Bel(¬a) does

not have to be 1. This is a fundamental difference from Bayes’ theorem. The direct impli-

cation is that in the D-S theory, when we assign belief Bel(a) to proposition a, we do not

automatically have belief 1−Bel(a) assigned to its negation ¬a. The belief assigned to each

proposition is only based on the evidence supporting it. When no evidence is available (com-

plete ignorance), the belief assigned to each proposition is 0. In this case, the uncertainty

factor m(Θ) equals 1.

The Dempster-Shafer scheme provides a means to combine evidence from distinct sources.

By the Dempster’s rule of combination [136], we can combine two independent sources of

evidence by using Equation 2.4.
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The Belief Revision Algorithm by Liu et al. [94]
{Initially, all the observed nodes (the predictors) are stored in a linked list, linkobserv. insert

and get next node are standard queuing functions. Updated belief function computes the be-
lief values based on Equation 2.4. ∆Bel() denotes the net change in beliefs before and after
updating.}
Begin
for each observed node, xi, in linkobserv do

insert(xi, queue);
while queue is not empty, do
node ← get next node(queue);
if node = TRUE, then
for each rule: node ⇒ xj; node ⇒ ¬xj;

xj ⇒ ¬ node; ¬xj ⇒ ¬ node do
Bel(xj) = update belief (node, xj);
if ∆Bel(xj) > threshold θ, then insert(xj, queue);

if node = FALSE, then
for each rule: ¬node ⇒ xj; ¬node ⇒ ¬xj;

xj ⇒ node; ¬xj ⇒ node do
Bel(xj) = update belief (node, xj);
if ∆Bel(xj) > threshold θ, then insert(xj, queue);

End

Figure 2.7: The Algorithm for Inference Propagation in D-S Networks [94]

Due to the node connectivity, the updated belief can be propagated throughout the

network by the Belief Revision Algorithm [94] (see Figure 2.7). Belief revision starts from

each observed node (the predictor), xi, and propagates belief to its neighboring nodes based

on the implication rules and the weight functions. During the propagation, it maintains a

queue of next items from which the beliefs are to be propagated. The branching of a process

stops whenever the path is terminated or the change in the belief value after updating is less

than a threshold, θ (e.g. 0.1 percent). However, this algorithm does not make it clear when

a node is considered as true or false.

Dempster-Shafer networks may not be singly connected. In order to prevent circular

traversal of the graph, each node in the network is updated only once when an observation

is made. Therefore, different order of the observations may result in different results, since

different paths might be traversed [94] [96]. The complexity of the Belief Revision Algorithm

is O(Nn2), where N is the number of the implication rules, and n is the number of the nodes

in the network. Since there is only one implication rule between each pair of nodes, Nmax is
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O(n2). Hence, the complexity of the belief revision algorithm is O(n4).

2.3 Modeling Software Quality from Product and Pro-

cess Metrics

Software developers have a keen interest in software quality models, which automatically

predict fault prone modules and subject them to more rigorous verification activities. Ac-

curate predictions enable verification experts to concentrate their attention and resources at

problem areas in the system under development.

2.3.1 Software Quality Models

Many modeling techniques have been developed and applied for software quality prediction.

These include, logistic regression [10], discriminant analysis [78] [112], the discriminative

power techniques [132], Optimized Set Reduction [17], artificial neural network [81], fuzzy

classification [40], Bayesian Belief Networks (BBNs) [46] , genetic algorithms [9], and clas-

sification trees [53] [135] [148] [82]. The prediction accuracy of these models does not vary

significantly. A tradeoff can be achieved by having a higher defect detection rate and com-

promising the overall prediction accuracy, or vise versa. Thus, a performance comparison of

various models, if based on only one criterion (either the defect detection rate or the overall

accuracy), may render the comparison only partially relevant. A model can be considered su-

perior over its counterparts if it has both a higher defect detection rate, and a higher overall

accuracy. About 65-75% of critical modules and non-fault prone modules were correctly pre-

dicted in [69] [78] [82]. The decision tree [135] correctly predicted 79.3% of high development

effort or fault prone modules, while the trees generated from the best parameter combina-

tions correctly identified 88.4% of those modules on the average. The discriminative power

techniques correctly classified 75 of 81 fault free modules, and 21 of 31 faulty modules [132].

In one case study, within five common classification techniques: Pareto classification, clas-

sification trees, factor-based discriminant analysis, fuzzy classification, and neural network,

fuzzy classification appears to yield best results with a defect detection rate of 86% [41].

Since most of these studies have been performed using different data sets, reflecting differ-

ent software development environments and processes, the final judgement on “the best”

fault-prone module prediction method is difficult to make. In addition, some papers do not

report associated overall prediction accuracy, which makes objective comparisons even more

difficult.
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In addition, BBN models have been developed for predicting software safety [118], soft-

ware dependability argumentation [119], defect prevention [117], decision-support and risk

analysis [47] [46] [48], Fenton and Ohlsson used a BBN model [46] to explain their

counter-intuitive empirical results: those modules which are the most fault-prone pre-release

are among the least fault-prone post-release, while conversely, the modules which are most

fault-prone post-release are among the least fault-prone pre-release [121]. Their observation

shows that the commonly used fault density measure is misleading and flawed and challenges

a commonly believed software engineering principle.

2.3.2 Metrics Used in Software Quality Prediction

Software size metrics predicted by component based method [72], object-oriented metrics

[26], as well as many process and product metrics such as testability and communication

metrics of a process [38], are candidate metrics to be included in software quality prediction.

In addition to some well known software metrics such as McCabe metrics [104] [105]

and Halstead metrics [59], design-level metrics such as cohesion and coupling have also been

used for software quality prediction [63] [122]. Bieman and Kang defined the design-level

cohesion measures formally in [12], and used them to predict properties of implementations

created from a given design. Their design-level cohesion (DLC) measure is similar to that

used by Stevens et al. [144]. Later, Briand et al. introduced and compared various high-level

design and measures for object-based software systems, which were derived based on an ex-

perimental goal, identifying fault-prone software parts, and several experimental hypotheses

arising from the development of some high assurance systems [18]. Specifically, they defined

a set of measures for cohesion and coupling and investigated the measures’ relationship to

fault-proneness.

Software ages have been a focus of software quality prediction. Graves et al. proposed

their best model, the weighted time damp model, to predict fault potential by using a sum

of contributions from all the changes to the model in its history [55]. The best generalized

linear model they found uses numbers of changes to the module in the past together with a

measure of the module’s age. They found a model which can predict numbers of future faults

from the numbers of past faults. Their most successful model measures the fault potential

of a module as the sum of contributions from all of the times the module has been changed,

with large, recent changes carrying the most weight.
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2.4 Software Reliability Assessment

Software Reliability is formally defined as the conditional probability that a software failure

which causes deviation from required output by more than specified tolerances, in a specified

environment, does not occur during a specified exposure period, given that the software has

not failed at time 0.

There are two general schemes for demonstrating that required software reliability have

been achieved, formal verification and statistical testing. Different approaches to estimating

software reliability by statistical testing will be reviewed in this section. As mentioned

earlier, there are many indirect software reliability assessment approaches. However, there

is no such an evidence combination framework that can integrate them for a more precise

prediction of the software reliability.

2.4.1 Different Approaches to Software Reliability Estimation

There are following approaches to modeling software reliability:

• Reliability growth models [7] [91] [76] have been developed [98] and applied in

software reliability prediction [74]. During the software development, the program

implementation is repeatedly tested and repaired. A sequence of inter-failure times

(usually measured in number of inputs) is recorded as the results. The goal is to

construct a mathematical model to predict the reliability of the final program based

on the observed inter-failure data.

• Coverage-based models establish the relationship between coverage metrics, such as

branch coverage and block coverage, and defect coverage as well as software reliability.

• Component-based models targets reliability estimation of each component, and assess

the system reliability based on the estimated component reliability. Component-based

software reliability assessment models incorporate structural characteristics of software.

They are especially valuable for reusable software such as Commercial-Off-The-Shelf

(COTS)-based systems [54] and large software systems [138] [29].

The software reliability estimation models described above all assume that failure in-

formation available, i.e. inter-failure time (reliability growth models), failure probability

of individual components (component-based models), as well as failure intensity and defect

coverage (coverage-based models). However, there might be no failure observed during test-

ing [8], for example, in some high assurance systems [21] [87] [11] [85] such as NASA
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projets and nuclear plant monitoring. In such cases, reliability growth models are incapable

of overcoming the need for excessive amounts of testing [21]. Therefore, software reliability

are modelled without failure information by following approaches:

• Estimating software reliability without failure history [13] [14] [25] [92] [102] [111].

• Predicting software reliability from process and product metrics.

• Estimating software reliability by software testability, which is the likelihood that de-

fects can hide during software testing. Software testability could be estimated before

testing takes place by static analysis of programs [149] [90] [80]. Therefore, it could

help predict those programs that would reveal less defects during testing even if they

contained defects. Voas and Miller believed that if software has high testability, a

higher confidence could be assigned to the estimated reliability [149]. Bertolino and

Strigini proposed an alternative exposition of testability measurement and pointed out

that a higher testability does not always give higher confidence of estimated reliability.

• Stopping rule answers a question for all software testers: how much testing is enough

to demonstrate that the required reliability has been achieved? Littlewood and Wright

addressed the problem of specifying the numbers of test cases (or time periods) required

for a test when the previous test has terminated as a result of failure, and proposed

several novel Bayesian stopping rules [93]. Chávez provided a rigorous Bayesian frame-

work to decide when to release a commercial software [24] based on the cost factors

and the rate of bugs.

There are other software reliability models not belonging to the categories described

above, such as connectionist models by using neural networks, training regimes, and data

representation methods [75], analogy models and regression models [116] [137], as well

as a model [20] to estimate the relationship between the predicted reliability and the true

reliability. In this review, We will focus on related work in coverage-based models (§2.4.2),

and predicting software reliability from process and product metrics (§2.4.3).

2.4.2 Coverage-Based Software Reliability Models

Code coverage metrics, such as branch coverage and block coverage, have been investigated

for the relation to software reliability. Malaiya modelled the relation among software re-

liability, defect coverage, and code coverage in [99]. First, failure intensity λ is defined

as:
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λ =
K

TLN
(2.13)

where K is fault exposure ratio during the nth demand; TL is the linear execution time; N

is the number of defects remaining in the software. These parameters can be measured or

estimated during testing. The determination of K will be further discussed later.

The number of remaining defects N can be obtained by:

N =
N0

C0
(2.14)

where N0 is the number of defects found by the test cases; C0 is the defect coverage.

The relationship between the defect coverage C0 and code coverage is:

C0 = a0 ln[1 + a1(e
a2C1 − 1)] (2.15)

where C1 is the code coverage achieved by the test cases; a0, a1, a2 are coefficients. The

coefficients can be estimated from data, or from previous projects [140].

Reliability Ps(n) is calculated by:

Ps(n) = e−λT (n) (2.16)

T (n) = τ ∗ n (the duration of n demands)

τ = 1
ρ

(the average execution time per demand)

If we substitute T (n) and λ (from Equation 2.13) in Equation 2.16, we obtain:

Ps(n) = e
− K

TL
Nτn

(2.17)

Suppose the fault exposure ratio K is constant for all defects. Then the additional,

unknown defects determined by Equation 2.14 have the same fault exposure ratio K as

the known defects. From the testing results, when n = 1, N is the discovered defects, and

Ps = 1 − Pf , from Equation 2.17 we can obtain K. Pf is the probability of failure per

demand corresponding to the known defects, which can be estimated from the state machine

in an application from [140]. A detailed case study will be described in §6.2.2.

Vouk [150] proposed a coverage growth model for non-operational testing with the fol-

lowing assumptions:

• Test cases are similar to sampling without replacement.

• The fault detection rate with respect to coverage is proportional to the coverage, also

proportional to the number of residue faults.
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• For each test case set there is a minimal Cmin and a maximum coverage Cmax (0 ≤
Cmin ≤ C ≤ Cmax ≤ 1).

• Fault correction is instantaneous and perfect.

From assumption it follows that the fault detection rate with respect to coverage is:

dεd

dC
= kεr(C − Cmin) (2.18)

where εd is the effective number (or density) of detected faults.

Under another simplifying assumption that fault correction is instantaneous and perfect,

the effective number of corrected faults, εc, is equal to the effective number of detected faults

εd. So the effective number (or density) of residual faults is:

εr = εT − εc (2.19)

Where εT is the total number of faults in the program at coverage C = 0.

Therefore, the derived fault removal growth model is a variant of Raileigh distribution,

i.e. a special case of Weibull distribution:

εc = εT [1− e−β(C−Cmin)2 ] (2.20)

where β is the coefficient.

Later, Rivers and Vouk [130] introduced Testing Efficiency function gi to the coverage

growth model. If gi = a, the cumulative failure model is:

Ei = N − (N − Emin)(
G− C(i)

G− Cmin

)a (2.21)

where N is the total number of defects; G is the total constructs; i the the number of test

cases.

Piwowarski et al [124] developed a coverage growth model with the following assump-

tions:

• The program has G code constructs.

• Per test case, p constructs are sensitized (covered) on average.

• Test cases are sampling with replacement.
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The relation between the coverage C(i) and the test case i is similar to that in the

Jelinski-Moranda model and the Geol-Okumoto model:

C(i) = 1− e−
p
G

i (2.22)

The differences between the Piwowarski et al. model and the Rivers-Vouk model are:

1. The Rivers-Vouk model assumes that the test cases are not repeated as in the Pi-

wowarski et al. model , i.e. (note the difference from Equation 2.22)

C(i) =
p

G
i (2.23)

2. The Rivers-Vouk model is for systematic testing, which aim is to cover as many code

constructs as possible.

3. The Piwowarski model is for operational testing, where test cases are repeated accord-

ing to the distributions in the operational usage.

Therefore, a model is needed to map the gap between these two types of testing models.

The Grottke model is such a model to generalize these two models [52]. The Grottke model

is a vector Markov model with the following assumptions:

• At beginning, u0 of G constructs are faulty.

• Per test case, p constructs are executed on average.

• A constant fraction r (0 ≤ r ≤ 1) of those constructs may be tested again.

• The fault causes a failure with constant activation probability s (0 < s ≤ 1).

• The fault is removed instantaneously and perfectly.

The expected failure occurrences the the Grottke model is:

u(i) = u0
s

1− r + rs
× [1− (1− p

G
(1− r)i)

1−r+rs
1−r ] (2.24)

For r = 1, it is the Piwowarski model for operational testing:

u(i) = u0[1− e−
p
G

si] (2.25)

For r = 0, it is the Rivers-Vouk model for systematic testing with testing efficiency gi = 1:
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Table 2.2: Relationship between CMM Levels and Delivered Defects Mulivariate Approaches

[73]

SEI CMM Defect Removal Delivered Defects

Levels Potentials Efficiency (%) (per KLOC)

1 5 85 0.75

2 4 89 0.44

3 3 91 0.27

4 2 93 0.14

5 1 95 0.05

u(i) = u0 · s ·
p

G
i = u0 · s · C(i)

While many researchers strived to model a causal relationship between test coverage and

defect coverage, Briand and Pfahl revealed that their study outcomes do not support a causal

dependency between test coverage (including block, c-use, decision, and p-use coverage) and

defect coverage [19]. Their observation contradicts the conclusion of other work described

above. From their results, it is possible that we can’t model defect coverage or software

reliability from code coverage.

2.4.3 Predicting Software Reliability from Process and Product

Metrics

Many researchers have been striving to incorporate product and process information to

quantitatively predict software reliability. Hence, reliability estimation will not solely depend

on the failure information collected during testing.

Attempts to predict software product reliability based on the quality of software process

are not rare. Jones hypothesized the relationship between CMM levels and defect potentials

as well as delivered defects [73] (See table 2.2). Fenton and Neil demonstrated that the use

of a standard is likely either to deliver reliable and safe systems at an accepted cost or help

predict reliability and safety accurately [44]. They examined a specific standard for safety

critical systems (namely IEC 1508) and showed how it can be improved by applying their

strategy.

Musa advocated to use an operational profile for software-reliability engineering and

showed how to develop one step in step in [115]. He defined the operational profile as
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a quantitative characterization of how a system will be used that shows how to increase

productivity and reliability and speed development by allocating development resources to

function on the basis of use. Helander et al. presented modeling frameworks for distributing

development effort among software components to facilitate cost-effective progress toward

a system reliability goal [62]. Their approach, based on reliability allocation, uses the

operational profiles to quantify the usage environment and uses a utilization matrix to link

usage with system structure.

Schneidewind investigated an important facet of process capability, stability (how well

a software operates without deterioration), as defined and evaluated by trend, change, and

shape metrics, across release and within a release [133]. Their approach to integrating

product and process measurement was illustrated to serve the dual purpose of using metrics

to assess and predict reliability and risk and to evaluate process stability.

It is indicated that scenario based analysis according to ISO 9241-11 can be exploited for

validation purposes [39] and requirement engineering [146]. Another standard, ISO/IEC

15504, becomes an emerging international standard on software process assessment. It de-

fines numbers of software engineering processes and a scale for measuring their capability,

one of which is software requirements analysis (SRA). EI Emam and Birk provided strong

evidence of predictive validity for the SRA process capability measure used in ISO/IEC

15504 [42].

Fenton and Neil gave a critical review of previous software reliability prediction models

and proposed Bayesian Belief Networks (BBNs) as the future research avenue [45]. Ac-

cording to them, defect counts cannot be used to predict reliability because it does not

measure the software quality according to its operational usage. Despite the reported high

correlations between design complexity and defects, the relationship is not entirely causal.

The same problem exists when size and complexity metrics are used as predictors of defect.

Interestingly, BBN enables managing the causal relationship between software product and

process information and defects in the software. BBN was also applied to software reliability

engineering self-assessment [36].

Cukic and Chakravarthy presented practical problems and challenges encountered in an

effort to assess and quantify software reliability of a NASA’s system [33]. They outlined a

probabilistic Bayesian framework that allows accounting of rigorous verification and valida-

tion activities performed prior to system’s deployment into the reliability assessment.
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2.5 Summary

In this section, we gave a review on statistical models on evidence combination (information

fusion) and probability reasoning under uncertainty. We also introduced software quality

prediction and software reliability assessment. Having analyzed current techniques and open

problems in these research areas, we developed two novel statistical methodologies based

on Dempster-Shafer theory, and applied them to software quality and reliability prediction.

Specifically, we developed a new induction algorithm for the Dempster-Shafer belief networks,

which will be presented in Chapter 3. In addition, we propose a novel probability reasoning

methodology based on D-S networks and apply it to software quality prediction in Chapter

4. The second proposed methodology focuses on information fusion. It extends the Mur-

phy’s rule of combination described in §2.1.2 to accommodate correlated information. This

methodology was applied to software reliability prediction, which combines coverage-based

reliability method (§2.4.2) and reliability methods based on product and process metrics

(§2.4.3).



Chapter 3

A New Induction Algorithm for

Dempster-Shafer Belief Networks

Dempster-Shafer belief network is an inference methodology for prediction under uncertainty.

The network structure can be inducted automatically and dynamically from a relatively small

data set. Based on upcoming evidence, the inducted belief network can be updated by the

Dempster-Shafer scheme. The first induction algorithm for the Dempster-Shafer networks

was proposed by Liu et al. [94] [96], based on binomial distribution. We developed an

alternative induction algorithm [57], based on prediction logic [64], which is applicable for

implication rules in general. We also develop a classification scheme by the Belief Revision

Algorithm for updating the Dempster-Shafer networks, which is modified from [94].

3.1 A Novel Algorithm for D-S Belief Network Induc-

tion

We use prediction logic based on a contingency table of probabilities [64] to induce the D-S

belief networks. There are six most important implication rules relating two dichotomous

variables (see Figure 2.5). In Figure 2.5, each table is a contingency table. The shaded

cells are the errors for the corresponding implication rule. For example, A∧¬B is the error

cell for the implication rule A⇒ B. NA∧¬B represents the number of error occurrences. We

use an optimality method to seek the most precise proposition that meets a required level of

prediction success, modified from [64], to derive the implication relation between each pair

of attributes in the data set. The implication induction algorithm is shown in Figure 3.1.

In the Implication Induction Algorithm, Up is the scope of an implication rule, represent-

32
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The Implication Induction Algorithm
Begin
Set a significance level 5min and a minimal Umin

for nodei, i ∈ [0, nmax − 1] and nodej, j ∈ [i + 1, nmax]
(Note: nmax is the total number of attributes)

for all empirical case samples N
Compute a contingency table

for each relation type k find the solution to

Max Up

Subject to Max Up ≥ Umin

5p ≥ 5min

ωij = 1 or 0 (if Nij corresponds to an error cell, ωij = 1; otherwise, ωij = 0)

5(b) > 5(b′) if ω(b) = 1 and ω(b′) = 0

if the solution exists, then return a type k relation
End

Figure 3.1: The Induction Algorithm for Building D-S Networks

ing the portion of the data set covered by the implication rule. 5p is the precision of an

implication rule. An implication rule has high precision, if the number of error occurrences

is only a small portion of the data covered by the implication rule. Umin and 5min are the

minimum scope and precision required for the formation of an implication rule. They must

be positive for a valid implication relation. Users can set thresholds for these two parame-

ters according to their own requirements. They are also the tuning parameters of the D-S

networks.

For a single error cell, if Nij is the number of error occurrences, we have:

Up = Uij =
Ni. ∗N.j

N2
(3.1)



Lan Guo Chapter 3. A New Induction Algorithm for Dempster-Shafer Belief Networks 34

5p = 5ij = 1− Nij

N ∗ Up

(3.2)

For multiple error cells,

Up =
∑

i

∑

j

ωij ∗ Uij (3.3)

(ωij = 1 for error cells; otherwise, ωij = 0)

5p =
∑

i

∑

j

(
ωijUij

Up

)5ij (3.4)

Our induction algorithm derives an implication rule if it has the maximum Up value,

and satisfies that its Up and 5p are greater than the required minimum Umin and 5min,

respectively, and the 5 values of all non-error cells are greater than those of the error cells

for the corresponding implication rule. The difference between our implication induction

algorithm and that of Hildebrand et al. [64] is that we set minimum requirements for both

scope (Up) and precision (5p), instead of just precision. The complexity of the induction

algorithm is O(Nn2), where N is the sample size and n is the number of the attributes (i.e.,

nodes in the D-S networks).

For binary data sets, the logically equivalent relations are derived at the same time and

carry different weight, represented by weight functions WI and W ′
I . For instance, the weight

associated with A⇒ B can be represented as WI = NA∧B

NA∧B+NA∧¬B
, while the weight associated

with its logical equivalence ¬B ⇒ ¬A can be represented as W ′
I = N¬A∧¬B

N¬A∧¬B+NA∧¬B
. We use a

quintuple to represent each implication rule I:

I ∈ Ï , I =< R,Nant, Ncon,WI ,W
′
I >

where Ï is the set of implication rules; WI and W ′
I are weight functions mapping the

antecedent-consequent nodes, i.e., Nant and Ncon, and their negations to a real number

between 0 and 1, respectively. That is,

WI : Nant ×Ncon → [0, 1]

W ′
I : ¬Ncon × ¬Nant → [0, 1]

One way to define the weight functions is illustrated in the previous example. A numerical

example of the induction algorithm is demonstrated in the following subsection.
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3.1.1 A Numerical Example of the Induction Algorithm

Suppose from a data set, we can form a contingency table for attributes A and B as in Ta-

ble 3.1. Each number in the table represents the number of occurrences of the corresponding

event. For example, the number of the occurrences of A is true and B is true is 10, while

the number of the occurrences of A is true and B is false is 790. We can calculate the Up

and 5p values for each proposition as follows:

Table 3.1: A Contingency Table

B B

A 10 790

A 190 10

1. For proposition A→ B,

UA→B =
NANB

N2
=

800× 800

10002
= 0.64

5A→B = 1− NAB

NANB

N

= 1− 790

800× 800
× 1000 = −0.234

2. Similarly, for proposition A→ B,

UA→B = 0.16

5A→B = 0.938

3. For proposition A→ B,

UA→B = 0.16

5A→B = 0.938
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4. For proposition A→ B,

UA→B = 0.04

5A→B = −3.75

5. For proposition A 
 B,

UA
B =
NANB + NANB

N2
= 0.68

5A
B = 1− NAB + NAB

NANB + NANB

N = −0.442

6. For proposition A 
 B,

UA
B =
NANB + NANB

N2
= 0.32

5A
B = 1− NAB + NAB

NANB + NANB

N = 0.938

For a valid implication rule, Umin and 5min must be positive. If we set Umin = 0.25 and

5min = 0.6, the derived implication rule is A 
 B. It not only satisfies following criteria:

UA
B > Umin, 5A
B > 5min, as well as 5(b) > 5(b′) if 5(b) represents the precision

measure for every error cell contained in the error set and 5(b′) represents the precision

measure for every cell not in the error set (In this case, 5A→B > 5A→B, 5A→B > 5A→B,

5A→B > 5A→B, and 5A→B > 5A→B), but also has the maximum Up value among all those

implication rules that satisfy above criteria.

For proposition types 1 – 4, a quintuple is used to represent the corresponding implication

rule. For proposition types 5 and 6, two quintuples are used to represent the corresponding

implication rule. In this example, the induced implication relation is A 
 B, which is

the double implication rule of A → B and B → A. The weight function associated with

A→ B is WI =
N

A∧B

NA
= 790

800
= 0.988, while the weight associated with its logical equivalence

B → A is W ′
I =

N
A∧B

NB
= 190

200
= 0.95. Similarly, the weight associated with B → A and its

logical equivalence is 0.95 and 0.988, respectively. Hence, I1 and I2 are used to represent the

implication rule derived in this numerical example:



Lan Guo Chapter 3. A New Induction Algorithm for Dempster-Shafer Belief Networks 37

I1 =< 2, A,B, 0.988, 0.95 >

I2 =< 3, A,B, 0.95, 0.988 >

3.2 Modifications of the Belief Revision Algorithm

As introduced in §2.2.2, due to the node connectivity, the updated belief can be propagated

throughout the network by the Belief Revision Algorithm [94] (see Figure 2.7). Belief revision

starts from each observed node (the predictor), and propagates belief to its neighboring

nodes based on the implication rules and the weight functions. The branching of an inference

process stops whenever the path is terminated or the change in the belief value after updating

is less than a threshold, θ (e.g. 0.1 percent). However, this algorithm does not make it clear

when a node is considered as true or false.

We modified the belief revision algorithm from Liu et al. [94] by adding the domain specific

factor τ to decide if a proposition is true or false. For each node’s frame of discernment,

for instance {a,¬a}, if Bel(a) > τ (τ > 0.5), it is considered true; if Bel(¬a) > τ , it is

considered false. Once the belief updating process is finished, the node to be predicted,

y, is classified as true if Bel(y) > τ , false if Bel(¬y) > τ , or no prediction if neither of

the criteria is satisfied. In this way, the D-S networks can also be applied as classifiers. A

numerical example of applying the modified Belief Revision Algorithm is presented below.

3.2.1 A Numerical Example of the Modified Belief Revision Al-

gorithm

At the beginning of the program, each belief function of the nodes is initialized as Bel(A) =

0.0001, which is negligible during the computation.

Suppose a D-S network has only two nodes, x1 and x2, connected by the implication rule

x1 → x2, and the quintuple for the implication rule is I =< 1, x1, x2, 0.95, 0.9 >. For each

node, proposition a is x = 1, and proposition ¬a is x = 0. When x1 = 1 is observed from the

data set, the initial beliefs are assigned as Belx1
(a) = 0.9 and Belx1

(¬a) = 0.1. The belief

revision algorithm works as follows.

First, these two belief functions are combined for x1 by the Dempster’s rule of combination

as Equation 2.4:

Belx1
(a)′ =

Belx1
(a)(1−Belx1

(¬a))

1−Belx1
(a)Belx1

(¬a)
= 0.89
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Belx1
(¬a)′ =

Belx1
(¬a)(1−Belx1

(a))

1−Belx1
(a)Belx1

(¬a)
= 0.01

If the Domain Specific Factor τ = 0.65, since Bel(a) > τ , proposition a is considered true

for x1. Therefore, the belief is propagated through the implication rule I. Since WI = Px2|x1
,

the belief propagated to x2 is:

Belx2
(a) = Belx1

(a)′WI = 0.89× 0.95 = 0.85

For this simple D-S network, the belief propagation process stops here. Now x2 = 1 is

classified as true, since Belx2
(a) > τ .



Chapter 4

Predicting Fault Prone Modules in

Software Engineering

Automated detection of fault prone modules during software development process is an

important prerequisite for successful verification of large systems. Models, built from metrics

collected in past projects or releases, are used to identify fault prone module (a module is

equivalent to a C function) candidates in the current project/release and subject them to

more rigorous verification activities. Successful models are characterized by high prediction

accuracy, thus allowing verification experts to concentrate their attention and resources at

problem areas in the system under development.

This chapter describes an original methodology for predicting fault prone modules. This

methodology is based on Dempster-Shafer (D-S) belief networks. Our approach has the

following characteristics: (1) the methodology is general and not restricted to particular

metrics or research objectives. (2) It is objective, highly automatic and computationally

efficient. It consists of three major parts: First, building the Dempster-Shafer network

from an existing data set by the induction algorithm; Second, selecting the predictors for the

Dempster-Shafer network; Third, feeding the predictors describing the modules of the current

project into the inducted Dempster-Shafer network and identifying fault prone modules. We

applied this methodology in two case studies based on NASA data sets. The prediction

accuracy of the proposed methodology is higher than that achieved by logistic regression,

discriminant analysis, random forests as well as the algorithms in two machine learning

software packages WEKA [153] and See5 [6] for the same data sets. The difference in the

performance of the proposed methodology over other methods is statistically significant.

39
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4.1 Introduction to Software Quality Prediction

Software developers have a keen interest in software quality models, which automatically

predict fault prone modules and subject them to more rigorous verification activities. Ac-

curate predictions enable verification experts to concentrate their attention and resources at

problem areas of the system in early software life cycle.

As reviewed in §2.3.1, many modeling techniques have been developed and applied for

software quality prediction. Since most of these studies have been performed using different

data sets, reflecting different software development environments and processes, the final

judgement on “the best” fault-prone module prediction method is difficult to make. In

addition, some papers do not report associated overall prediction accuracy, which makes

objective comparisons even more difficult.

In this chapter, we introduce a novel software quality prediction methodology based on

the Dempster-Shafer (D-S) belief networks. We compare the proposed methodology with

many existing approaches using the same data sets. Our approach to predicting fault prone

modules has the following characteristics. (1) The methodology is general and not restricted

to particular metrics or research objectives. (2) It is objective and highly automated. Each

step of the methodology is performed by custom made computer programs or commercial

software. Little human interaction is involved during the experimental procedure. (3) It is

computationally efficient. The algorithms, D-S network induction and belief updating, are

polynomial in time complexity. The methodology consists of three major parts. First, a

Dempster-Shafer network is built by the induction algorithm. Next, predictors are chosen

after performing feature selection. Finally, the predictors are fed to the inducted Dempster-

Shafer network to make a prediction. The prediction accuracy of the proposed methodology

is higher as compared to logistic regression, discriminant analysis, or the algorithms employed

in two data ming software packages, WEKA and See5 for the same data sets obtained from

NASA. In addition, the proposed methodology entails lower effort for software inspection as

compared to another defect module detector, ROCKY [110]. The difference in the perfor-

mance of the proposed methodology over other methods is statistically significant.

This chapter illustrates a set of experiments performed by the D-S networks with case-

based reasoning on data sets obtained from NASA. The information from the previous project

was used in making a prediction for the current project. The methodology is useful for

large scale projects or projects with multiple releases, since it is impossible to collect the

information on all modules early in the software life cycle. The basic hypothesis is that a

module currently under development is fault prone, if a module with the similar product or
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process metrics in an earlier project (or release) was fault prone [79].

The remainder of this chapter is organized as follows. Section 4.2 introduces the pro-

posed methodology. Section 4.3 introduces the data sets used in the case studies, and the

measurement parameters used in the experiments. Section 4.4 outlines the major steps of the

experiments. Section 4.5 and 4.6 presents two case studies. Section 4.7 provides a compar-

ison of the results obtained from the proposed methodology over related work, i.e. logistic

regression, discriminant analysis, random forests, two machine learning software packages,

See5 [6] and WEKA [153], and NASA’s ROCKY toolset [110] for the same data sets. Finally,

Section 7 summarizes the unique aspects and advantages of the proposed methodology.

4.2 Methodology

We developed an inference methodology based on Dempster-Shafer belief networks. As

illustrated in Chapter 3, the Implication Induction Algorithm is first applied to a data set

to build the D-S network. The inducted D-S network is then updated based on upcoming

evidence by the Belief Revision Algorithm. Finally, when the inference propagation stops,

we can make a prediction based on the final values of the nodes in the D-S network. The

mechanism of Dempster-Shafer Networks is depicted in Figure 4.1.

Figure 4.1: The mechanism of Dempster-Shafer Belief Networks

Specifically, our methodology contains three steps:

• building the D-S belief network by the Implication Induction algorithm;
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• selecting predictors by feature selection. As Hall and Holmes suggest [58], including

irrelevant, redundant or noisy features can lead to data mining algorithms with poor

predictive performance. Attribute subset selection is the process of identifying and

removing as much of the irrelevant and redundant information as possible. Attribute

selection techniques can be categorized into two areas: those which rank individual

attributes such as the attribute selection algorithms in WEKA [153], and those which

rank subsets of attributes for instance the logistic procedure in SAS [5];

• feeding the selected predictors into the inducted D-S network and make a prediction.

Now the selected predictors are treated as upcoming evidence for the Belief Revision

Algorithm, which is used to update the inducted D-S network. After all the predictors

are incorporated into the D-S network, we can make the prediction based on the final

values of the nodes in the network.

Dempster-Shafer belief networks have not been applied in software engineering since its

introduction by Liu et al. In this study, we apply it to predicting fault prone modules in

software engineering.

4.3 Data sets and Measurement Parameters

4.3.1 Projects KC2 and JM1

The data sets used in the case studies are two C++ NASA projects, referred to as KC2

and JM1 [109]. KC2 contains over 3, 000 modules (a module is equivalent to a C function).

520 modules are of research interest as they were built by NASA software developers. The

remaining modules are COTS software. Of these 520 modules, 106 were found to have

between 1 and 13 faults, while the remaining 414 were fault free. KC2 modules have the

average size of 37 lines of code (LOC), while the largest module has 1, 275 LOC. JM1 is a

much larger software with 10, 883 modules, of which 2, 105 modules have between 1 and 26

faults. The remaining 8, 778 modules are fault free. JM1 modules have the average size of

42 lines of code (LOC), while the largest module has 3, 442 LOC.

Each data set contains 21 software metrics, including McCabe [103] [104] [105], Halstead

[59], Line Count, and Branch Count. Metric descriptions are listed in Table 4.1. KC2 data

set contains additional three attributes: Error Rate (number of defects in the module),

Defect (whether or not the module has any defects), and Defect Density (number of defects

per LOC). JM1 contains only two of these attributes: Error Rate and Defect.
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Table 4.1: Metric Descriptions of KC2 and JM1
Metric Type Metric Definition

McCabe v(G) Cyclomatic Complexity

ev(G) Essential Complexity

iv(G) Design Complexity

LOC Lines of Code

Derived N Length

Halstead V Volume

L Level

D Difficulty

I Intelligent Count

E Effort

B Effort Estimate

T Programming Time

Line LOCode Lines of Code

Count LOComment Lines of Comment

LOBlank Lines of Blank

LOCodeAndComment Lines of Code and Comment

Basic UniqOp Unique Operators

Halstead UniqOpnd Unique Operands

TotalOp Total Operators

TotalOpnd Total Operands

Branch BranchCount Total Branch Count

4.3.2 Measurement Parameters

In this study we are interested in predicting whether or not the module contains any defects,

instead of how many defects it contains. Software metrics serve as predictors. The predicted

variable is Defect. Figure 4.2 presents a defect prediction sheet.

Specificity is used to define the rate of the defect module detection. In the literature, it

is also referred to as Probability of Detection (PD) [110]:

Specificity(PD) =
TP

FN + TP + NP2

(4.1)

Similarly, Sensitivity is defined as the portion of the correct classification of non-fault

prone modules:

Sensitivity =
TN

TN + FP + NP1

(4.2)



Lan Guo Chapter 4. Predicting Fault Prone Modules in Software Engineering 44

Figure 4.2: A defect prediction sheet

The overall prediction accuracy is measured by Acc:

Acc =
TN + TP

TN + FN + FP + TP + NP1 + NP2

(4.3)

Another parameter is Probability of False alarm (PF). It represents the ratio of non-fault

prone modules predicted as fault prone modules:

PF =
FP

TN + FP + NP1

(4.4)

Effort is defined to represent the resources required for the inspection of faulty mod-

ules [110]. In our case, we define Effort as the percentage of the lines of code of all the

modules predicted as fault prone or no prediction:

Effort =
LOCFP + LOCTP + LOCNP

LOCTN + LOCFN + LOCFP + LOCTP + LOCNP

, (4.5)

where LOCNP = LOCNP1
+ LOCNP2

.

4.4 Description of the Experiments

4.4.1 Primary Data Treatment

KC2 and JM1 are numerical continuous data sets. Since Dempster-Shafer networks deal

with discrete data sets, we discretized the continuous data sets into binary ones by AWK

programs. We partition the data sets using the mean value or the median of each attribute.

If the data value is greater than the mean (median) of the corresponding attribute, it is

assigned 1; otherwise, it is 0. The predicted variable, Defect, is 1 if the module contains

fault(s), or 0 if it is fault free.
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4.4.2 Selecting the Predictors

There are 21 predictors in the project data. Some of them are highly correlated. Therefore,

using all of them as predictors may not result in optimal prediction. We select predictors

by performing feature selection. As discussed in §4.2, attribute selection techniques can be

categorized into two areas: those which rank individual attributes, and those which rank

subsets of attributes. We apply both kinds of attribute selection algorithm in our study.

WEKA provides many attribute selection algorithms which rank individual attributes.

There are six standard methods used in the Hall and Holmes study [58]. We applied them

to our discretized data sets and selected the top ranked attributes as predictors.

• Information Gain Attribute Ranking : It gives the average merit and average rank of

each attribute. The attributes with highest merit are selected as predictors.

• Relief : This algorithm also gives the average merit and average rank of each attribute.

The attributes with highest merit are selected as predictors.

• CFS (Correlation-based Feature Selection): It lists how many times each attribute is

selected during 10-fold cross validation. The attributes appearing in 10 folds are chosen

as predictors.

• Consistency-based Subset Evaluation: It also lists how many times each attribute is

selected during 10-fold cross validation. Different from CFS, it selects more attributes

than required. For discretized JM1 data sets, for example, every attribute except two

appears in 4 folds during 10-fold cross validation. We select the attributes with most

frequent appearance during 10-fold cross validation as predictors.

• PCA (Principle Component Analysis): It returns eigenvectors of weighted attributes.

The selected attributes by this algorithm are used as predictors.

• Wrapper : This algorithm does not produce any results for our data sets, due to the

enormous computing resources needed by the algorithm.

The five WEKA attribute selection algorithms can produce ranked individual attributes

within several seconds for KC2 data set, and within a couple of minutes for JM1 data set.

The selected predictors constitute the input to the Dempster-Shafer networks.

The logistic regression procedure in SAS (a commercial statistical software) [5] is an

attribute selection algorithm that selects subsets of attributes. We also used this method to



Lan Guo Chapter 4. Predicting Fault Prone Modules in Software Engineering 46

select predictors. The transformed discrete data sets are input files to the logistic regression

procedure.

The logistic regression procedure in SAS generated 20 score tables of the candidate pre-

dictors for each input file in a second. It ranks the Chi-Square scores for each combination

of the predictors. The number of the predictors in the score tables increases from 1 to 20.

Each score table contains best combinations with the same number of predictors. For exam-

ple, score table 1 contains best single predictors; score table 2 contains best combinations

of 2 predictors, etc. The top 5 combinations from each score table were chosen as the can-

didate predictor sets to the Dempster-Shafer networks. The predictors are input into the

Dempster-Shafer networks incrementally. If increasing the number of predictors results in

reduced prediction accuracy, we stop trying subsets with more predictors. Therefore, the

best subsets of predictors are selected.

4.4.3 Empirical Validation

We used 10-fold cross-validation to evaluate our prediction of fault prone modules for KC2

project. The data set was randomly partitioned into 10 folds of equal size. The D-S network

was trained and tested 10 times. Each time 9 folds are picked to build the Dempster-

Shafer network by the induction algorithm, while the remaining fold is validated by the

belief revision algorithm. The experiment is complete when all the 10 folds are validated.

The cross-validation was run for at least 60 times in each experiment. The result with

the least variance was chosen as the final result. In this way, we are confident that the

accuracy estimation has low bias and low variance [83]. For JM1 project, we randomly

picked some data for learning, and used the remaining data for validation. Each experiment

was performed 10 times. The average of 10 consecutive runs was used as the final result.

The details are explained in the next section.

During the validation, the predictors picked in Section IV.B were used by the inducted

Dempster-Shafer networks as the observations. Since the order of the observations matters,

different sequences of the predictors were tried, and the best sequences were recorded. In

addition to the sequence of the predictors, there are five other tuning parameters in the D-S

networks: Umin and 5min in the induction algorithm, the domain specific parameter τ in the

belief revision algorithm, and the initial beliefs assigned to the observed nodes based on their

values in the data set. Different tuning of these parameters results in different prediction.

According to different real-world requirements, for example, to achieve maximal Specificity

(PD) and Accuracy (Acc), or to use minimal Effort while achieving maximal PD, the system

can be tuned to output the optimal results that meet these criteria. The optimal results for
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each set of criteria are selected by dominant rule, which first sorts the results in order and

then discards the results dominated by others. For example, if the measurement parameters

of interest are Acc and PD, we use r =< Acc, PD > to represent each result. Suppose we

have r1 =< 0.6, 0.7 >, r2 =< 0.5, 0.8 >, r3 =< 0.6, 0.6 >. Since r3 is dominated by r1, it is

discarded. Therefore, the optimal results are r1 and r2.

4.5 Case Study 1

The original KC2 data set was transformed into two binary data sets, KC2a and KC2b.

KC2a was generated by partitioning with the mean value of each attribute. If the data

value is greater than the mean value of the corresponding attribute, it is assigned value 1;

otherwise, it is 0. KC2b was obtained by stratifying with the median of each attribute. If

the data value is greater than the median of the corresponding attribute, it is 1; otherwise,

it is 0. For both data sets, the predicted variable, Defect, is 1 if the module contains any

fault(s), or 0 if it is fault free.

Each transformed data set served as input to the WEKA attribute selectors and the

LOGISTIC procedure in SAS, which generated candidate predictors. We tuned the system to

meet two sets of real-world requirements: one is to maximize Accuracy (Acc) and Specificity

(PD); the other is to minimize Effort and maximize PD.

The prediction results tuned for maximal Acc and Specificity are depicted in Figure 4.3.

Experiments 1–10 are the results from KC2a and 11–13 are the results from KC2b. Figure 4.3

indicates that different data treatments give different ranges of prediction accuracy. Data

partitioned by the mean values have higher overall accuracy (Acc), while data partitioned

by the median tend to give higher rate of defect detection (Specificity), up to 91.5%.

The prediction tuned for minimal Effort and maximal PD are depicted in Figure 4.4 for

KC2a, and in Figure 4.5 for KC2b. Both figures demonstrate that the required percentage

of code that is recommended for inspection is below the percentage of detected fault-prone

modules. The results from KC2b indicates that we could, for example, detect 91.5% of

defects by reading 71.8% of the source code. On the average, PD is higher than Effort by

18.2% on KC2b.

From the record of the best sequences of the predictors, we found that, generally, using

2 to 4 predictors results in optimal prediction for KC2 project, and the best combinations

generally come from the top three candidates from the score tables produced by the logistic

procedure. The CFS algorithm in WEKA generates the same predictors as the logistic

procedure for KC2b. The predictors selected by the rest of the WEKA attribute selection
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Figure 4.3: Prediction of fault-prone modules by the D-S networks on KC2

algorithms are unable to give optimal performance. The tuning parameters for Figure 4.3

are listed in Table 4.2. From Table 4.2, we can observe that E(Effort), V (Volume), and

LOComment (Lines of comment) are good defect predictors for KC2, which are selected

most frequently in the tuning process.

4.6 Case Study 2

JM1 is a very large project containing 10,883 modules. The practical way to make early

prediction of defect modules in a large project is to learn from the previous project and/or a

small part of the current one. Therefore, in some of our experiments, we used KC2 project

as the library for case-based reasoning rules and devised the experiments for JM1 as follows.

First, the JM1 data set was transformed into two binary data sets, JM1a and JM1b.

JM1a was generated by partitioning with the mean value of the corresponding attribute

from KC2a. If the data value is greater than the KC2a mean value, it is assigned value 1;

otherwise, it is 0. JM1b was obtained by stratifying with the median of the corresponding

attribute from KC2b. If the data value is greater than the KC2b median, it is 1; otherwise,

it is 0. For both data sets, the predicted variable, Defect, is 1 if the module contains any

fault(s), or 0 if it is fault free.

JM1a and JM1b were input into the WEKA attribute selectors as well as the LOGIS-



Lan Guo Chapter 4. Predicting Fault Prone Modules in Software Engineering 49

Figure 4.4: Prediction of fault-prone modules by the D-S networks on KC2a

Figure 4.5: Prediction of fault-prone modules by the D-S networks on KC2b
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Table 4.2: Tuning parameters of the D-S networks on KC2 (for Figure 4.3)

Experi- Predictors File Umin 5min Domain Belx(1) Belx(0) Belx(1) Belx(0)

ment No. (in order) Factor τ (x = 1) (x = 1) (x = 0) (x = 0)

1 E, UniqOp, V KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

2 V,UniqOpnd,LOComment,T KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

3 E,UniqOpnd,LOComment,V KC2a 0.04 0.25 0.65 0.9 0.1 0.1 0.7

4 E,UniqOpnd,LOComment,V KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

5 UniqOpnd,t,LOComment,V KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

6 UniqOpnd,V,T,LOComment KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

7 UniqOpnd,E,V KC2a 0.04 0.25 0.65 0.9 0.1 0.1 0.7

8 UniqOpnd,E,V KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

9 I,D,UniqOpnd,v(G),iv(G), KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

V,T,BranchCount,

LOComment

10 I,V,E,D KC2a 0.05 0.25 0.65 0.9 0.1 0.1 0.7

11 ev(G),LOComment,I KC2b 0.02 0.25 0.65 0.9 0.1 0.1 0.7

12 ev(G),I,LOComment KC2b 0.02 0.25 0.65 0.9 0.1 0.1 0.7

13 ev(G),TotalOpnd KC2b 0.02 0.25 0.65 0.9 0.1 0.1 0.7

TIC procedure in SAS to generate the candidate predictors. We conducted three different

experiments, organized as follows:

1. Randomly pick 0 or 300 data points from JM1a, plus all data from KC2a to build the

D-S networks. Use the remaining data of JM1a for validation.

2. Randomly choose 9,795 data points from the transformed JM1 data sets to induce the

D-S networks. Use the remaining data for validation.

3. Randomly pick 0, 300, or 1,000 data points from JM1b, plus all data from KC2b to

build the D-S networks. Use the remaining data of JM1b for validation.

In JM1, the optimal results for maximal Acc and PD, as well as minimal Effort and max-

imal PD have been achieved by the tuning parameters shown in Table 4.3. Figure 4.6 shows

the prediction results of the D-S networks on JM1. Experiments 1–3 followed experimental

procedure 1 on JM1a. Experiments 4 and 5 followed the procedure 2 on JM1a. Experiments

6–13 followed the procedure 3 on JM1b. It is worth noticing that Experiments 1 and 2 used

only KC2a data for building the D-S networks, and achieved above 75% of overall prediction

accuracy Acc; Experiments 10–13 used only KC2b data for the D-S network induction, and

achieved 89.5% to 94.8% of PD on JM1.

All the tuning parameters are listed in Table 4.3. For JM1 project, we need more than

9 predictors to make good prediction. The reason might be that for a large project like
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Figure 4.6: Prediction of fault-prone modules by the D-S networks on JM1

JM1, the information needed for overall accurate prediction is more intricate than that

for a relatively small project like KC2. Again, the best predictors come from the logistic

procedure. The Information Gain Attribute Ranking algorithm in WEKA produces similar

results as the logistic procedure on JM1b; while the predictors selected by the rest of WEKA

attribute selection algorithms do not result in optimal prediction on JM1.

4.7 Evaluation

In this section, we compare the performance of D-S networks with that of other statistical

methods. In §4.7.1 through §4.7.5 and §4.7.6, the comparison criteria are overall accuracy

(Acc) and defect detection rate (PD). The D-S results are chosen for comparison by the

following rules. For a pair of results, the predictions by the D-S network and the compared

method, if one prediction is dominant over the other (see §4.4.3 for dominant rule), this pair

of results is selected for evaluation. Otherwise, the pair with the closest distance between the

compared criterion, either Acc or PD, is selected. For clarity, we use < AccDS, PDDS > to

represent a result from D-S prediction, and < Accother, PDother > to represent a result from

other methods compared. We define DistanceAcc, DistancePD, and Distance as follows:

DistanceAcc = |AccDS − Accother|
DistancePD = |PDDS − PDother|

Distance = min(DistanceAcc, DistancePD)
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Table 4.3: Tuning parameters of the D-S networks on JM1 (for Figure 4.6)

Exp. Predictors File Learning Umin 5min τ Belx(1) Belx(0) Belx(1) Belx(0)

No. (in order) Data (x = 1) (x = 1) (x = 0) (x = 0)

1 iv(G),LOC,I,LOCodeAndComment, JM1a 520KC2a 0.03 0.35 0.6 0.65 0.1 0.1 0.9

LOCode,L,D,ev(G),T,LOBlank

2 LOC,iv(G),I,LOCodeAndComment, JM1a 520KC2a 0.03 0.35 0.6 0.65 0.1 0.1 0.9

LOCode,L,D,ev(G),T,LOBlank

3 LOC,iv(G),LOBlank,LOCodeAnd- JM1a 520KC2a 0.03 0.35 0.6 0.9 0.1 0.1 0.65

Comment,LOCode,L,D,ev(G),T,I +300JM1a

4 LOC,v(G),ev(G),iv(G),L,D,E,T, JM1a 9,795 0.01 0.1 0.65 0.9 0.1 0.1 0.7

LOCode,LOBlank,LOCodeAnd- JM1a

Comment,I,UniqOp,UniqOpnd

5 LOC,v(G),ev(G),iv(G),L,D,E,T, JM1a 9,795 0.01 0.11 0.65 0.9 0.1 0.1 0.7

LOCode,LOBlank,LOCodeAnd- JM1a

Comment,I,UniqOp,UniqOpnd

6 LOBlank,iv(G),LOC,ev(G),I, JM1b 1,000 0.02 0.1 0.55 0.85 0.15 0.15 0.6

TotalOpnd,LOCode,LOCodeAnd- JM1b +

Comment,LOComment 520KC2b

7 LOBlank,iv(G),LOC,ev(G),I, JM1b 1,000 0.05 0.16 0.6 0.9 0.1 0.1 0.65

TotalOpnd,LOCode,LOCodeAnd- JM1b +

Comment,LOComment 520KC2b

8 LOBlank,iv(G),LOC,ev(G),I, JM1b 1,000 0.055 0.16 0.6 0.9 0.1 0.1 0.65

TotalOpnd,LOCode,LOCodeAnd- JM1b +

Comment,LOComment 520KC2b

9 LOC,v(G),iv(G),ev(G),V,N,L,B, JM1b 300 0.055 0.16 0.6 0.9 0.1 0.1 0.65

LOBlank,E,I,D,LOCode,LO- JM1b +

Comment,T,LOCodeAndComment, 520KC2b

UniqOp, UniqOpnd,TotalOp,

TotalOpnd,BranchCount

10 LOC,v(G),iv(G),ev(G),V,N,L,B, JM1b 520KC2b 0.055 0.16 0.6 0.9 0.1 0.1 0.65

LOBlank,E,I,D,LOCode,LO-

Comment,T,LOCodeAndComment,

UniqOp, UniqOpnd,TotalOp,

TotalOpnd,BranchCount

11 iv(G),LOBlank,LOCodeAnd- JM1b 520KC2b 0.055 0.16 0.6 0.9 0.1 0.1 0.65

Comment,LOC,LOCode,N,I,

TotalOpnd,LOComment,L,D,

BranchCount,TotalOp,ev(G)

12 iv(G),LOCodeAndComment, JM1b 520KC2b 0.055 0.16 0.6 0.9 0.1 0.1 0.65

LOBlank,LOC,UniqOp,N,TotalOp,

TotalOpnd,LOComment,L,D,

BranchCount,I,ev(G),LOCode

13 LOBlank,iv(G),LOC,ev(G),I, JM1b 520KC2b 0.055 0.16 0.6 0.9 0.1 0.1 0.65

TotalOpnd,LOCode,LOCodeAnd-

Comment,LOComment,E,v(G),D,N,

V,T,B,UniqOp,UniqOpnd,TotalOp,

L,BranchCount
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The pair of results that have minimal Distance are chosen for evaluation.

In §4.7.5, we compare D-S predictions with the results of ROCKY toolset based on three

criteria: Acc, PD, and Effort. The two results are chosen for comparison at operational

points where D-S and ROCKY yield the same PD.

4.7.1 D-S Networks vs. Logistic Regression

Logistic regression [107] [66] is useful to predict a dependent variable on the basis of indepen-

dents (predictors). Logistic regression first transforms the dependent into a logit variable

(the natural log of the odds of the dependent occurring or not), and then applies maxi-

mum likelihood estimation to determine logit coefficients in the model. In this way, logistic

regression estimates the probability of a certain even occurring.

For comparison, The LOGISTIC procedure in SAS was used as a classifier to predict

fault prone modules for KC2 and JM1. The original KC2 and JM1 data sets were input

into the statistical software. The prediction results are shown in Figure 4.7 and Figure 4.8.

The comparison of software quality prediction by D-S networks and logistic regression is

illustrated in Figure 4.9 and Figure 4.10 on KC2 and JM1, respectively.

For KC2 (see Figure 4.9), the prediction by the D-S network has higher overall accuracy

than that of logistic regression. The defect detection rate (PD) of the D-S networks is 1.9%

to 5.7% higher than that of logistic regression. On the average, the defect detection rate of

the D-S networks is 4.0% higher than that of logistic regression, while the overall accuracy

(Acc) is 2.3% higher.

For JM1 (see Figure 4.10), the prediction accuracy of the D-S networks is generally higher

than that of logistic regression. The defect detection rate (PD) of the D-S networks is 0.3%

to 1.8% higher than that of logistic regression, while Acc is 0.5% to 0.9% higher. Considering

the scale of JM1 project, the D-S networks correctly predict almost a hundred modules more

than logistic regression.

4.7.2 D-S Networks vs. Discriminant Analysis

Discriminant analysis [68] is a very useful tool to determine which variables discriminant

between two or more naturally occurring groups. It can also be used to classify cases into

two or more groups with a better than chance accuracy. The basic idea is to determine

whether groups differ with regard to the mean of a variable, and then to use that variable

to predict group membership.
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Figure 4.7: Prediction of fault-prone modules by logistic regression on

KC2

Figure 4.8: Prediction of fault-prone modules by logistic regression on

JM1
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Figure 4.9: Prediction by the D-S networks vs. logistic regression on

KC2

Figure 4.10: Prediction by the D-S networks vs. logistic regression on

JM1
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The DISCRIM procedure in SAS (linear discriminant function) was employed as a classi-

fier on the original KC2 and JM1 data sets. The STEPDISC procedure in SAS was first used

to perform stepwise discriminant analysis to pick the best predictors. Based on the predictors

selected, the DISCRIM procedure gave the best prediction by discriminant analysis.

The optimal prediction of discriminant analysis on KC2 is compared with that of the D-S

networks in Figure 4.11. These two methods have the same Acc 83.1%. However, the defect

detection rate (Specificity) of the D-S networks is 4.7% higher than that of discriminant

analysis.

The optimal prediction of discriminant analysis on JM1 is compared with that of the D-S

networks in Figure 4.12. While Acc of discriminant analysis is slightly (1.6%) higher than

that of the D-S networks, the defect detection rate (Specificity) of the D-S networks is 7.3%

higher than that of discriminant analysis.

Assuming that the cost to release a defect into the later phase of the software life cycle

caused by imprecise prediction of fault-prone modules is higher than the cost of software

inspection, the D-S networks do have an advantage over discriminant analysis.

4.7.3 D-S Networks vs. See5/C5

See5/C5 is a commercial machine learning software [6]. Its earlier version is called C4.5.

There are three classifiers in See5: DecisionTree, RuleSet, and Boosting. When See5 is

invoked with the default values of all options, it constructs a decision tree for classification.

Decision trees can sometimes be quite difficult to understand. An important feature of

See5 is its ability to generate classifiers called RuleSets that consist of unordered collections

of (relatively) simple if-then rules, derived from the constructed decision trees. Another

innovation incorporated in See5 is adaptive boosting. The idea is to generate several classifiers

(either decision trees or rulesets) rather than just one. When a new case is to be classified,

each classifier votes for its predicted class and the votes are counted to determine the final

class.

The three classifiers of See5 were used to predict fault prone modules for KC2 and JM1.

The original KC2 and JM1 data sets were input to See5 software. The prediction results are

compared with D-S predictions in Figure 4.13 on KC2 and Figure 4.14 on JM1.

For KC2 project, D-S prediction has higher overall accuracy Acc (1.2%) and higher defect

detection rate PD (17%) than the Decision Tree classifier of See5. The overall accuracy of

D-S prediction (Acc) is comparable to that of Rule Set and Boosting classifiers of See5.

However, the defect detection rate PD of the D-S network is 21.7% and 28.3% higher than

the Rules Set and Boosting classifiers, respectively.



Lan Guo Chapter 4. Predicting Fault Prone Modules in Software Engineering 57

Figure 4.11: Prediction by the D-S networks vs. discriminant analysis on KC2

Figure 4.12: Prediction by the D-S networks vs. discriminant analysis on JM1
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Figure 4.13: Prediction by the D-S networks vs. See5 Classifiers on

KC2

Figure 4.14: Prediction by the D-S networks vs. See5 Classifiers on

JM1
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For JM1 project, the overall accuracy of D-S prediction (Acc) is 5.6% less than See5

classifiers on the average. However, the defect detection rate (PD) of the D-S network is

31.8% higher than See5 classifiers on the average. In contrast to the See5 classifiers that

learn from 9/10 of JM1 data, the D-S network is built from KC2 data only, which is more

meaningful in practical applications.

4.7.4 D-S Networks vs. WEKA Learners

Table 4.4: WEKA Classifiers
Applied WEKA Classifiers Generally Best in (*)

Recommended Our Study

DecisionStump X X

DecisionTable X

HyperPipes X

IB1 X

IBk X XX

j48.J48 X X

j48.PART X

KernelDensity X

KStar

Logistic X

NaiveBayesSimple

NaiveBayes X X

ZeroR X

OneR X

SMO X

VotedPerceptron XX

VF1 XX

LogitBoost X

NeuralNetwork

ADTree

(*) X: among the best on one project; XX: among the best on two projects

WEKA is a collection of machine learning algorithms for solving real-world data mining

problems [153]. It contains 41 algorithms for classification and numeric prediction (the most

important ones are explained in [154]). We applied all the 41 classifiers to KC2 and JM1. 20

classifiers are applicable to our data sets. For each data set, the best classifiers are selected
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according to < Acc, PD > pair by the domination rule. The applied WEKA classifiers, and

the recommended important ones [154], as well as the best performers in our case studies

are listed in Table 4.4. It can be observed from Table 4.4 that, although not recommended as

the most reliable classifiers in [154], some algorithms such as VotedPerceptron and VF1 turn

out to be the best performers on our data sets. The best classifiers of WEKA are compared

with D-S predictions in Figure 4.15 on KC2 and Figure 4.16 on JM1.

For KC2 project, compared with the LogitBoost classifier of WEKA, the overall prediction

accuracy of the D-S network is 2% lower. However, the defect detection rate (PD) of D-S

prediction is 36% higher. For the rest of the selected WEKA classifiers, D-S predictions have

both higher Acc and PD.

For JM1 project, compared with the Logistic, KernelDensity, NaiveBayesSimple, and

J48 classifiers, the overall prediction accuracy Acc of the D-S prediction is 5.3% lower,

and the defect detection rate PD is 25% higher, on the average. The D-S prediction has

comparable overall accuracy as the IBk and IB1 classifiers. However, the defect detection

rate of D-S predictions is 6.3% and 7% higher, respectively. The D-S networks have higher

overall prediction accuracy and defect detection rate than the VotedPerceptron and VF1

classifiers. It is striking that the HyperPipes classifier detects 100% of defect modules. The

D-S network detects about 5% less defect modules than HyperPipes, but the overall accuracy

is 21% higher. In conclusion, D-S networks can achieve better predictions than most WEKA

classifiers by learning from another project, KC2, only. D-S predictions are not outperformed

by any of the WEKA classifiers.

4.7.5 D-S Networks vs. ROCKY

ROCKY is a defect detector toolset used in experimental selection of modules for software

inspection at NASA IV&V facility in Fairmont, West Virginia [110]. The main aim of

ROCKY is to facilitate minimal inspection effort (recommend inspecting the minimal number

of code lines) while achieving as good as possible defect detection rate PD. ROCKY detectors

are built by exhaustively exploring all singleton rules of the form:

attribute ≥ threshold

where attribute is every numeric attribute present in a data set, and threshold is certain

percentile value of the corresponding attribute [110]. ROCKY was applied to predicting

fault prone modules in KC2 and JM1 data sets with all McCabe and Halstead metrics.

There is no observation derived concerning which metrics perform better than the others, in
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Figure 4.15: Prediction by the D-S networks vs. WEKA Classifiers on

KC2

Figure 4.16: Prediction by the D-S networks vs. WEKA Classifiers on

JM1
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general. Predictions based on individual metrics were presented in [110].

Compared with the optimal performance of ROCKY on KC2 project, we notice several

advantages of D-S networks. First of all, D-S predictions have higher overall accuracy Acc

than ROCKY in entire data range, to achieve the same defect detection rate PD. Secondly,

Effort is generally higher than PD, except for one or two data points for ROCKY [110]. On

the other hand, Effort is generally lower than PD for the entire data range for D-S networks.

Especially significant advantage of D-S networks can be seen in Figure 4.5 depicting the

effort on KC2b. There, Effort is 18.2% lower than PD on the average in the high PD

region (86.8% to 91.5%). In other words, as mentioned earlier, inspecting approximately

72% of the code (LOC) would expose over 91% of the fault prone modules. In contrast,

ROCKY recommended reading 94% of the code to discover 91% of fault prone models. The

comparison of the Effort resulting from D-S predictions and ROCKY toolset predictions is

shown in Figure 4.17. Based on the available data [110], ROCKY predictions lead to higher

levels of effort than D-S network predictions.

For JM1 project, ROCKY used all information available for building models, which is a

different scenario from ours. The overall accuracy Acc of the D-S networks is higher than

that of ROCKY to achieve the same defect detection rate PD. The Effort of the D-S

networks is comparable to that of ROCKY for the same PD. Detailed comparison is shown

in Figure 4.18. The optimal performance of ROCKY was selected for comparison.

4.7.6 D-S Networks vs. Random Forests

Random forests, proposed by Breiman in 2001 [16] [4], are a recent extension of decision tree

learning. Instead of generating one decision tree, this methodology generates hundreds or

even thousands of trees using subset of the training data. Classification decision is obtained

by voting. Specifically, the random forest classifies a new object from an input vector by

examining the input vector down each of the trees in the forest. Each tree casts a unit vote

at the input vector by giving a classification. The forest selects the classification having the

most votes over all the trees in the forest.

Each tree is grown as follows:

• If the number of cases in the training set is N , sample N cases at random, with

replacement from the original data. This sample will be the training set for growing

the tree.

• At each node, m predictors are randomly selected out of the M input variables (m�
M) and the best split on these m predictors is used to split the node. The value of
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Figure 4.17: Prediction by the D-S networks vs. ROCKY on KC2

(performance of ROCKY taken from [110])

Figure 4.18: Prediction by the D-S networks vs. ROCKY on JM1

(performance of ROCKY taken from [110])
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m is held constant during the forest growing. By default, m =
√

M (to achieve near

optimal results).

• Each tree is grown to the largest extent possible. There is no pruning.

When the training set for the current tree is drawn by sampling with replacement, about

one-third of the cases are left out of the sample. This oob (out-of-bag) data is used to get

a running unbiased estimate of the classification error as trees are added to the forest. In

random forests, there is no need for cross-validation or a separate test set to get an unbiased

estimate of the test set error. The out-of-bag estimates are unbiased [16].

We applied the random forest classifier to predicting fault prone modules. In our case

studies, the two NASA data sets are mission critical projects. The fault-prone modules con-

stitute only a small portion in the data sets. As mentioned earlier, there is a tradeoff between

the overall accuracy and the defect detection rate. Random forests, trying to minimize over-

all error rate, will keep the error rate low on the large class while letting the smaller classes

have a large error rate. This will obviously impose problems for software quality prediction,

because many fault-prone modules will be misclassified as non-fault prone ones and hence

might be released into the later phase of the software life cycle.

We solve this problem by changing the default cutoff value of random forests. As a

result, different weights are setting for the classes and the prediction errors can be balanced

toward the way it is preferred. In this way, random forests can be tuned to achieve a wide

range of overall accuracy and defect detection rate, and to obtain optimal results.

In our study, we first generate a two dimensional vector for cutoff values, and then

apply the random forest classifier with the individual cutoff value to predicting fault prone

modules. Each tree in the forest is built from randomly selected two-thirds of the data set,

and the remaining one-third of the data are the test set for validation.

For each available data set, we generated 45 cutoff vectors in the form of 45× 2 matrix.

All values in the matrix are of the form k ∗ 0.1, where k ∈ {1, 2, ..., 9}. The sum of the

two cutoff values in the same row can be no greater than 1, to meet the requirement for

cutoff values in random forests. Each row in the matrix represents a pair of thresholds for

one classification result. In this way, we get combinations of cutoff values that result in

different classifications by the random forest. Through experimentation, we determined that

additional cutoff vectors (with smaller increment values) give us redundant results.

By using 45 rows of the cutoff vector as the cutoff values for random forests, we get 45

experimental results for each data set. Each result is generated by a random forest with 500

trees (the default value in random forests). During the classification, 5 variables (also the
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default value) were randomly selected to split each node in the tree.

Random Forests in R [3] (a statistical software) was applied to KC2 and JM1 as a

classifier. The comparison of the performance of D-S Networks vs. Random Forests are

depicted in Figure 4.19 and Figure 4.20 for KC2 and JM1, respectively.

For KC2 project (in Figure 4.19), we can observe that, in the whole range, D-S networks

detect more fault-prone modules than Random Forests with the same overall accuracy Acc.

The defect detection rate PD of D-S networks is 16% to 51% higher than that of Random

Forests. On the average, D-S networks achieves 29.5% higher defect detection rate PD than

Random Forests with the same overall accuracy Acc.

For JM1 project(in Figure 4.20), D-S networks detect 3% more fault-prone modules

than Random Forests, while Random Forests achieve 6% higher overall accuracy Acc. The

highest defect detection rate (Specificity or PD) that Random Forests can achieve is 80.4%.

In contrast, D-S networks can reach up to 94.8% defect detection rate.

4.8 Discussion

An analysis of several recent projects revealed that 20% of the modules are responsible for

80% of the malfunctions of the whole project [40]. The two data sets in our case studies

demonstrate interesting extension of this rule to static artifacts, code defects. The goal of

software quality prediction is to identify these critical modules as early as possible.

This chapter compares the performance of machine learning algorithms on software qual-

ity data sets. Some of them are not suitable for software quality prediction because of their

low defect detection rate PD. Others, able to achieve over 60% defect detection rate, are can-

didate methods for software quality prediction. These methods include: logistic regression

and discriminant analysis of SAS, as well as the DecisionStump, VotedPerceptron, VF1, and

HyperPipes classifiers of WEKA, and Random Forests of R. Compared with these methods,

D-S networks can achieve higher overall prediction accuracy Acc and defect detection rate

PD (Specificity). D-S predictions are not outperformed by any of the methods discussed in

this chapter. we are also not aware of any other methods that outperform D-S networks. The

results of statistical significant difference test (normal distribution test) of D-S predictions

vs. other methods using 0.05 level of significance are listed in Table 4.5 for KC2 project and

Table 4.6 for JM1 project. In each table, a (+) sign means the D-S prediction is significantly

better than the compared method; a (−) sign means that the D-S prediction is significantly

worse than the compared method. From the results, D-S predictions have significantly higher

Acc and/or PD than almost all the other methods. Actually, the difference between D-S
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Figure 4.19: Prediction by the D-S networks vs. Random Forests on

KC2

Figure 4.20: Prediction by the D-S networks vs. Random Forests on

JM1
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Table 4.5: Statistical Significant Difference Test of D-S vs. Other Methods
Using 0.05 Level of Significance on KC2

Method Software Acc AccDS |ZAcc| ZAcc PD PDDS |ZPD| ZPD

Compared Significant? Significant?

Logistic SAS 0.762 0.802 1.56 No (+)† 0.811 0.811 0.00 No

Discriminant SAS 0.831 0.831 0.00 No 0.670 0.717 0.74 No

DecisionTree See5 0.819 0.831 0.51 No 0.547 0.717 2.57 Yes (+)

RuleSet See5 0.836 0.831 0.22 No 0.500 0.717 3.24 Yes (+)

Boosting See5 0.835 0.831 0.17 No 0.434 0.717 4.17 Yes (+)

LogitBoost WEKA 0.852 0.831 0.93 No 0.500 0.860 5.62 Yes (+)

IBk WEKA 0.812 0.821 0.37 No 0.509 0.833 5.01 Yes (+)

DecisionStump WEKA 0.808 0.808 0.00 No 0.642 0.816 2.86 Yes (+)

VotedPerceptron WEKA 0.367 0.708 11.02 Yes (+) 0.849 0.868 0.40 No

VF1 WEKA 0.586 0.702 3.89 Yes (+) 0.887 0.906 0.45 No

ROCKY ROCKY 0.832 0.831 0.04 No 0.556 0.717 2.44 Yes (+)

ROCKY ROCKY 0.576 0.658 2.72 Yes (+) 0.917 0.915 0.05 No

Random Forests R 0.831 0.831 0.00 No 0.245 0.717 6.88 Yes (+)

(†) statistical significant at 0.05 level of significance

predictions and that of the other methods is very large in many cases, indicated by the

large Z values (|Z| ≥ 1.96 corresponds to statistical significant difference at 0.05 level of

significance). D-S predictions are not outperformed by any other methods (no double (−)

signs).

The work presented in this chapter is the first attempt to apply Dempster-Shafer belief

networks to software quality prediction. This novel methodology has following unique aspects

and advantages:

1. It can be tuned to meet different optimization requirements, such as maximizing Acc

and PD, or minimizing Effort while maximizing PD. Other methods mentioned in this

chapter cannot be tuned in such a way.

2. It can be tuned to output a wide spectrum of overall accuracy Acc and defect detection

rate PD. The defect detection rate can reach over 90%. It allows software testers to

choose their preferable range according to their time and budget constraints.

3. It is highly efficient. It takes several milliseconds to build a D-S network and perform

10-fold cross validation, even on a large data set like JM1. On the contrary, some

algorithms in WEKA software need much more computing time to perform 10-fold

cross validation on JM1. For example, the IB1 classifier of WEKA needs 20 minutes,

IBk 19 minutes, KernelDensity 31 minutes, and Neural Network over 90 minutes on
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Table 4.6: Statistical Significant Difference Test of D-S vs. Other Methods
Using 0.05 level of Significance on JM1

Method Software Acc AccDS |ZAcc| ZAcc PD PDDS |ZPD| ZPD Exp.

Compared Significant? Significant? No.*

Logistic SAS 0.658 0.666 1.25 No (+)† 0.654 0.672 1.24 No (+)† 5

Discriminant SAS 0.736 0.720 2.65 Yes (−) 0.509 0.582 4.76 Yes (+) 3

DecisionTree See5 0.811 0.754 10.19 Yes (−) 0.131 0.439 22.14 Yes (+) 1

RuleSet See5 0.810 0.754 10.00 Yes (−) 0.115 0.439 23.49 Yes (+) 1

Boosting See5 0.808 0.754 9.63 Yes (−) 0.118 0.439 23.23 Yes (+) 1

Logistic WEKA 0.813 0.754 10.57 Yes (−) 0.117 0.439 23.32 Yes (+) 1

KernelDensity WEKA 0.810 0.754 10.00 Yes (−) 0.194 0.439 17.09 Yes (+) 1

NaiveBayes WEKA 0.803 0.754 8.70 Yes (−) 0.197 0.439 16.86 Yes (+) 1

j48.J48 WEKA 0.802 0.754 8.52 Yes (−) 0.247 0.439 13.12 Yes (+) 1

IBk WEKA 0.761 0.754 1.20 No 0.369 0.439 4.63 Yes (+) 1

IB1 WEKA 0.756 0.754 0.34 No 0.376 0.439 4.16 Yes (+) 1

VotedPerceptron WEKA 0.560 0.666 16.05 Yes (+) 0.604 0.672 4.59 Yes (+) 5

VF1 WEKA 0.418 0.429 1.64 No (+)‡ 0.868 0.894 2.61 Yes (+) 9

HyperPipes WEKA 0.195 0.310 19.53 Yes (+) 1.000 0.948 10.60 Yes (+) 13

ROCKY ROCKY 0.752 0.752 0.00 No 0.338 0.453 7.63 Yes (+) 2

ROCKY ROCKY 0.540 0.666 19.00 Yes (+) 0.671 0.672 0.07 No 5

Random Forests R 0.570 0.504 8.77 Yes (−) 0.804 0.836 2.70 Yes (+) 8

(*) in Table 4.3
(†) statistical significant at 0.2 level of significance; (‡)statistical significant at 0.1 level of significance

a Windows XP machine with a 1.60 GHz Pentium 4 processor and 256 MB of RAM.

Random Forests of R can not even run on this Windows XP machine. We ran the JM1

experiments on a server with a 248MHz Sun Microsystem’s Ultra SPARC-II sun4u

processor and 2 GB of RAM.

4. It has higher overall prediction accuracy Acc and defect detection rate PD than logistic

regression, discriminant analysis, as well as the algorithms in two machine learning

software packages WEKA and See5.

5. When applied with case-based reasoning, the implication network can be constructed

by learning from a smaller project’s data set and achieve higher overall prediction

accuracy and/or defect detection rate than most of other methods, which learn from

9/10 of the data describing the same project. From Table 4.6, we can observe that

only two comparisons used the result from Experiment 5, which learned D-S networks

from JM1 data. Other comparisons used results from experiments that learned D-S

networks from KC2 data only (except Experiment 9 that used additional 300 JM1

data). These results are presented in §4.6.



Lan Guo Chapter 4. Predicting Fault Prone Modules in Software Engineering 69

6. It is more effort economic when recommending fault prone modules for software in-

spection than NASA’s toolset ROCKY.

It is a common practice to use categorized data sets to predict software quality and

reliability by belief networks such as the Bayesian networks [45]. D-S networks deal with

discrete data sets. The case studies in this chapter used two different ways to discretize a

continuous data set: partition by mean, and partition by median. The experiment results

indicate that data partitioned by mean have higher overall accuracy Acc, while data stratified

by median have higher defect detection rate PD for software quality prediction. Currently,

we do not have an explanation for it. However, if this phenomenon is observed on other

data sets in future studies, its possible explanation will provide a useful guidance for data

set treatment, aiming at meeting different real world requirements (overall Acc or PD).

As illustrated earlier, when the D-S networks were applied to the transformed data sets,

they generally achieved higher prediction accuracy and defect detection rate than the other

methods in our experiments. This indicates the great potential of the D-S belief networks.

The logistic procedure was used to select subsets of attributes. The results demonstrate

that the predictors selected by the logistic procedure have better predictive performance than

those selected by the attribute selection algorithms in WEKA, which rank the individual

attributes. A possible explanation is that highest ranked single attributes together may not

result in the best prediction, while the subsets of attributes selected by the logistic procedure

result in the best combination for the optimal prediction.

The selected software metrics are generally different from project to project. In KC2,

the selected good predictors for fault prone modules are: E (Effort), V (Volume), and LO-

Comment (Lines of Comment). These three software metrics are also among those selected

in JM1. We need more software metrics to make good predictions for JM1, which might be

an indictor that JM1 is a more complicated project than KC2 (at least much larger in size).

There may also exist differences between these two projects in the software development life

cycle, which are not represented by the software metrics collected in the case studies.

Our methodology is distinguished by its ability of tuning to meet different requirements.

We observed that the sequence of the predictors taken into the D-S networks has effect on

optimal network inference, which is consistent with the observation presented in [96]. We

found that the first four or five predictors have the greatest impact on the prediction accuracy.

Currently, we do not have an algorithm to identify the “magic” sequence. For projects like

KC2, where 2-5 predictors yield the optimal prediction, identifying the ”magic” sequence is

not a serious problem. However, for projects like JM1, where at least nine predictors are

needed for the optimal prediction, we could only rely on experience and intuition to find out
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the best predictors sequence. One possible research direction is to explore the relationship

between the sequence of the predictors and the entropy (the measure of uncertainty) of the

inducted D-S network. If each time the predictor taken into the D-S network is the one

that is most likely to reduce the entropy of the entire network, the algorithm to decide the

sequence of the predictors is then an optimization algorithm discussed in [96].



Chapter 5

Information Fusion of Correlated

Evidence

5.1 Introduction

Information fusion is a very important area of evidence combination. The goal is to fuse

different sources of information for a more precise probabilistic assessment of real-world

representations. Most fusion techniques share a common assumption that different sources

of information are independent from each other, which is restrictive and unrealistic in many

situations. As mentioned earlier, the Murphy’s rule of combination is suitable for situations

where the evidence is from the same source. However, there are other situations where

sources of information are not distinct, but is not from the same source, either. Correlated

evidence is one such example. Currently, no framework exists to combine evidence and take

correlation in to account.

In this chapter, we propose a methodology based on the Murphy’s rule of combination

and fuzzy logic to combine correlated information. It is a general methodology for combining

evidence, either correlated or distinct. Our approach contains following steps: (1) deciding

which sources of information are correlated with each other; (2) calculating correlation co-

efficient between possibly correlated information; (3) ranking the importance of each source

of information; (4) developing a fuzzy rule set for the contextual weighting parameter of the

Murphy’s rule of combination, based on the importance and correlation of each source of

information; (5) applying the Murphy’s rule to combine available information.

We also provide an algorithm and proof for the upper and lower bound of the belief

function of the combination results for the Murphy’s rule, when the contextual weighting

71
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parameter remains constant for each source of information (meaning that each source of

information carries the same weight during the fusion). To the best of our knowledge, this is

the first attempt to provide such an algorithm or a proof. This theoretical aspect is applied

to constructing an Online safety Monitor for adaptive intelligent flight control systems, which

will be introduced in Chapter 6 .

The reminder of the chapter is organized as follows. The preliminaries of the D-S frame-

work is introduced in §5.2. The proposed methodology is described in §5.3. The algorithm

to obtain the upper and lower bound of combination results and its proof are provided in

§5.4. Finally, §5.5 summarizes the chapter.

5.2 Methodology

Currently, no framework exists to combine evidence and take correlation in to account.

However, such a framework is needed in many applications. For instance, there are many

available software reliability assessment methods. There is, however, no methodology to

combine them for a more precise prediction, because many reliability assessment methods

are correlated with each other. In this section, we propose a methodology based on the

Murphy’s rule and fuzzy logic to combine evidence, including correlated information. We

choose the Murphy’s rule of combination because:

• It is a general form of the Dempster’s rule of combination. It can combine both

dependent and independent sources of evidence.

• It allows to control how much a new source of evidence should influence the total belief,

based on whether the new evidence is more informed than the previously observed

evidence.

• Same as the Dempster’s rule of combination, contradictory evidence cancels out in the

Murphy’s rule, which is advantageous in many applications because it smoothes out

the noise.

• The non-commutativity of the Murphy’s rule of combination is especially suitable for

many applications, for instance realtime applications where the order of the obser-

vations should affect the outcome [113]. In addition, the non-commutativity of the

Murphy’s rule can give the upper and lower bound of the belief function in evidence

combination, which is beneficial in many applications. One such application is dis-

cussed in our case studies.
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Specifically, our approach contains following steps:

1. Deciding whether or not the sources of information to be combined are correlated with

each other : It requires the analysis based on domain knowledge. For example, if the

sources of information are different reliability estimation methods, we need to explore

how each method is developed and what factors are involved, and thus decide whether

or not is dependent on other methods.

2. Calculating the correlation coefficient between possibly correlated sources of informa-

tion: In this step, either field data or data from simulation can be used to calculate

correlation coefficient. Pearson’s correlational method is used in our study.

3. Ranking the importance of each source of information: Credibility of each source of

information is a prior consideration of information fusion. Highly credible information

source should carry more weight then less credible ones.

4. Developing a fuzzy rule set to determine the contextual weighting parameter n for the

belief revision function (Equation 2.10) of the Murphy’s rule of combination, based on

the importance and correlation of each source of information. Note that if none of the

available sources of information are correlated with each other and they are equally

important, we simply assign n = 1 in the belief revision function. In this case, it is

the same as using the Dempster’s rule of combination to combine independent sources

of information. In other cases, the general rules are (1) the more important (credible)

an information source, the larger the n value; (2) the more independent (distinct) an

information source, the larger the n value.

5. Applying the Murphy’s rule of combination based on the fuzzy rule set to combining

available sources of information, uncorrelated or correlated : Based on the value of the

contextual weighting parameter n defined from the previous step, the Murphy’s rule of

combination can be readily applied to fusing various information sources, and giving

each source its corresponding weight during the combination.

This is a very general outline of the proposed methodology. We will illustrate two ap-

plications of our methodology in the following chapter. As mentioned above, the Murphy’s

rule of combination is non-commutative with n < 1. Different order of evidence combination

results differently. We will give an algorithm to find the upper and lower bound of the belief

function in the combination results.
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5.3 Upper and Lower Bound of the Combination Belief

Function

In applications where available sources of information are equally important and correlated

with each other, we need to treat these sources of evidence equally. In these cases, the

contextual weighting parameter n of the belief revision function should be held constant, as

each source of evidence is taken into the combination. As mentioned in the previous section,

the Murphy’s rule of combination is non-commutative. Therefore, different order of evidence

combination has different result. We develop an algorithm to obtain the upper and lower

bound of the combination results if the contextual weighting parameter of the belief revision

function, n, is constant. Our algorithm has following assumptions:

• Since the number of all possible combination forms is exponential of the number of

evidence sources, we restrict to one combination form: each source of evidence is taken

into the combination one at a time. In other words, available sources of evidence are

combined as (((Beli ⊕ Belj) ⊕ Belk) ⊕ Bell) · · · ⊕ Beln. We do not consider other

combination forms for instance ((Beli ⊕Belj)⊕ (Belk ⊕Bell)) · · · ⊕ (Belm ⊕Beln).

• Available sources of evidence are given equal credit, which means that the n parameter

in the Murphy’s rule of combination (Equation 2.10) is constant.

• The evidence combination process in Dempster-Shafer theory is exponential of the

number of the elements in the frame of discernment. In order to simplify the situation,

we restrict ourselves to the situation where the frame of discernment has only two

elements, Θ = {A,B}, and each source of evidence assigns m(A) + m(B) = 1 as the

basic probability function.

Based on above assumptions, our algorithm states that if we sort basic probability assign-

ments mi(A) = ai in increasing order, i.e., a1 < a2 < a3 < a4 · · · < an, and combine them in

this order, i.e., (((m1 ⊕m2)⊕m3)⊕m4) · · · ⊕mn, then the combination result m(A) gives

the maximum value of the belief function m(A); if we sort basic probability assignments

mi(A) = ai in decreasing order, i.e., a1 > a2 > a3 · · · > an, and combine them in this order,

i.e., (((m1 ⊕m2)⊕m3)⊕m4) · · · ⊕mn, then the combination result m(A) is minimum. For

two sources of evidence with mi(A) = mj(A), the order of these two sources of evidence

during the combination does not matter.

The proof is provided as follows. We use mathematical induction in the following proof.
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Theorem 1. In the Murphy’s rule of combination, if the contextual weighting parameter

in the belief revision function is a constant not equal to 1, and the evidence combination

is conducted as (((m1 ⊕ m2) ⊕ m3) ⊕ m4) · · · ⊕ mn, for all sources of evidence that assign

m(A) + m(B) = 1 for the frame of discernment Θ = {A,B}, the combination in the order

of m1(A) < m2(A) < m3(A) · · · < mn(A) leads to the maximum combined probability m(A)

assigned to A, and the combination in the order of m1(A) > m2(A) > m3(A) · · · > mn(A)

leads to the minimum combined probability m(A) assigned to A.

Proof. For the Murphy’s rule of combination, if the n parameter is constant in the belief

revision function, then the combination order of two sources of evidence does not matter.

Basically, m1⊕m2 is the same as m2⊕m1. The combination order only matters if there are

at least three sources of evidence. So we start the induction with three sources of evidence,

m1,m2,m3.

1. Initial Step.

For three sources of evidence, suppose mi(A) = ai is sorted in increasing order, rep-

resented by a1 < a2 < a3. Let m12 represent the combination result of m1 and m2,

m1 ⊕m2. According to the Murphy’s rule of combination (see Table 5.1),

Table 5.1: Combination of two sources of evidence m1 and m2

m2/m1 {A} {B}
a1 1− a1

{A} {A} {Ø}
a2 a1a2 a2(1− a1)

{B} {Ø} {B}
1− a2 a1(1− a2) (1− a1)(1− a2)

m12(A) =
(a1a2)

n

(a1a2)n + (1− a1)n(1− a2)n

m12(B) =
(1− a1)

n(1− a2)
n

(a1a2)n + (1− a1)n(1− a2)n

Let m123 represent the combination result of m12 and m3, representing (m1⊕m2)⊕m3.

According to the Murphy’s rule of combination,
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m123(A) =
(an

1a
n
2a3)

n

(an
1a

n
2a3)n + ((1− a1)n(1− a2)n(1− a3))n

Similarly, if we combine m1 with m3 first and then combine m2, representing (m1 ⊕
m3)⊕m2, we have m132 representing the combination result:

m132(A) =
(an

1a
n
3a2)

n

(an
1a

n
3a2)n + ((1− a1)n(1− a3)n(1− a2))n

.

Note that
1

m123(A)
= 1 +

((1− a1)
n(1− a2)

n(1− a3))
n

(an
1a

n
2a3)n

,

1

m132(A)
= 1 +

((1− a1)
n(1− a3)

n(1− a2))
n

(an
1a

n
3a2)n

.

Let

C1 =
(1− a1)

n(1− a2)
n(1− a3)

an
1a

n
2a3

,

C2 =
(1− a1)

n(1− a3)
n(1− a2)

an
1a

n
3a2

,

Then
1

m123(A)
= 1 + Cn

1 ,

1

m132(A)
= 1 + Cn

2 .

We can get

C1

C2

=
(1− a2)

n−1an−1
3

an−1
2 (1− a3)n−1

=
(1−a2

a2
)n−1

(1−a3

a3
)n−1

=
(

1
a2
− 1

1
a3
− 1

)n−1
=

(

1
a3
− 1

1
a2
− 1

)1−n

Since a2 < a3 < 1, we have
1

a2

>
1

a3

> 1.

With 1− n > 0 and 1
a2
− 1 > 1

a3
− 1 > 0, we get

C1

C2

< 1.

So
1

m123(A)
<

1

m132(A)
,
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and

m123(A) > m132(A).

Similarly, we can prove that

m312(A) > m321(A).

Note that m132(A) = m312(A), so we have

m123(A) > m132(A) > m321(A)

Thus, we proved that for three sources of evidence, if we sort them in increasing order

m1(A) < m2(A) < m3(A) and combine them, the result m123 is the maximum com-

bination result for the belief function mA. Meanwhile, we proved that the decreasing

order m321 results in the minimum combination result for the belief function mA.

It is easy to derive from the above proof that for three sources of evidence, if m2(A) >

m1(A), then combining them in the order of (m3(A) ⊕m1(A)) ⊕m2(A) > (m3(A) ⊕
m2(A))⊕m1(A), no matter what value m3(A) has.

2. Inductive Step.

Based on the proof on three sources of evidence, we postulate that for k (k ≥ 3)

sources of evidence m1(A) · · ·mk(A), if we sort them in the increasing order of m1(A) <

m2(A) · · · < mk(A) and combine them in this order, then we obtain the maximum

combination result for m(A). If we sort them in the decreasing order of m1(A) >

m2(A) · · · > mk(A) and combine them in this order, then we obtain the minimum

combination result for m(A).

Now we need to prove that if we have one new source of evidence mk+1(A), the inductive

step holds.

For k+1 sources of evidence, we can sort them in increasing order, and obtain m′
1(A) <

m′
2(A) · · · < m′

k(A) < m′
k+1(A). Now suppose we can use a combination order to

integrate k + 1 sources of evidence, which results in the maximum combination result

for m′
1···k+1(A). There are two cases for this combination order: either m′

k+1(A) is

the last one (k + 1)th to be combined, or m′
k+1(A) is not the last one (k + 1)th to be

combined.

In the first case that m′
k+1(A) is the last one (k + 1)th to be combined, we know that

the first k sources of evidence should be combined in the increasing order of m′
1(A) <

m′
2(A) · · · < m′

k(A) to get the maximum result for m′
1···k(A). So the combination
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order for k + 1 sources of evidence should be the same as the increasing order of

m′
1(A) < m′

2(A) · · · < m′
k(A) < m′

k+1(A), to achieve the maximum combination result

for m′
1···k+1(A).

In the second case that m′
k+1(A) is not the last one (k + 1)th to be combined, then the

position of m′
k+1(A) in the combination should be within [1, k], and there is a source

of evidence m′
i(A) with i within [1, k] should be the last to be combined. In this case,

for the first k sources of evidence to be combined, m′
k+1(A) is the largest, so it should

occupy the kth position during the combination; while m′
i(A) occupies the (k + 1)th

position since it is the last one to be combined. After we combine the first k−1 sources

of evidence, we have m′
1···k−1(A), m′

k+1(A), and m′
i(A) to be combined in such order,

which would lead to the maximum combination result for m′
1···k+1(A). However, we

know from Step 1 that, if m′
k+1(A) > m′

i(A), then (m′
1···k−1(A)⊕m′

k+1(A))⊕m′
i(A) <

(m′
1···k−1(A) ⊕ m′

i(A)) ⊕ m′
k+1(A). Therefore, the second case will never lead to the

maximum combination result for m′
1···k+1(A).

Hence, we prove that for k + 1 (k ≥ 3) sources of evidence m1(A) · · ·mk+1(A), if

we sort them in the increasing order of m1(A) < m2(A) · · · < mk+1(A) and combine

them in this order, we obtain the maximum combination result for the belief func-

tion m(A). Similarly, we can prove that if we sort them in the decreasing order of

m1(A) > m2(A) · · · > mk+1(A) and combine them in this order, we obtain the mini-

mum combination result for the belief function m(A).

5.4 Summary

In this chapter, we proposed a general methodology for information fusion, which can take

into account the correlation and importance of each source of information during the fusion.

It is based on the Murphy’s rule of combination and fuzzy logic. This framework is flexible

and is able to cope with situations where different sources of information carry the same

weight or different weight, correlated or uncorrelated. This general methodology is an ex-

tension to the D-S framework and has a great potential to be applied in many application

domains. We will introduce two applications of the proposed methodology in the next chap-

ter. One is a in realtime intelligent flight control system; the other is in software reliability

prediction.

We also provided an algorithm and a proof for the upper and lower bound of the be-

lief function of combination results for the Murphy’s rule, when the contextual weighting
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parameter remains constant for each source of information (meaning that each source of

information carries the same weight during the fusion). To the best of our knowledge, this

is the first such algorithm for the Murphy’s rule of combination. This theoretical aspect

is applied in constructing an Online safety Monitor for adaptive intelligent flight control

systems in Chapter 6.



Chapter 6

Software Engineering Applications of

the Dempster-Shafer Information

Fusion Methodology

Information fusion technologies have been widely applied in sensor fusion [128] [162] [114] [123]

[156], event or object detection [49] [50] [56] [71] [120] [147], information retrieval [32] [97] [106]

[151] [161], computation of the absolute orientation [61], classifier fusion [77] [84] [129], image

analysis [27] [125] [131] [142], multimodal (multimedia) systems [15] [23] [155], and medical

applications [43] [95] [155].

In Chapter 5, we proposed a methodology based on the Murphy’s rule of combination

and fuzzy logic to combine correlated information. It is a general methodology for combining

evidence, either correlated or distinct. Our approach contains following steps: (1) deciding

correlated sources of information; (2) calculating correlation coefficient between possibly cor-

related information; (3) ranking the importance of each source of information; (4) developing

a fuzzy rule set for the contextual weighting parameter, based on the importance and cor-

relation of each source of information; (5) applying the Murphy’s rule to combine available

information. We also provided an algorithm and proof for the upper and lower bound of

combination results for the Murphy’s rule, when the contextual weighting parameter remains

constant for each source of information (meaning that each source of information carries the

same weight during the fusion).

In this chapter, we apply the proposed information fusion methodology to two applica-

tions: (1) constructing an Online safety Monitor for adaptive intelligent flight control systems

to detect abnormal events; (2) fusion of various software reliability prediction systems for a

more precise prediction of software reliability. These two case studies are introduced in §6.1

80
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and §6.2, respectively. §6.3 summarizes the chapter.

6.1 Constructing an Online Safety Monitor for Intelli-

gent Flight Control Systems

In this case study, we apply the proposed methodology in an adaptive intelligent flight control

system. Specifically, we construct an Online Safety Monitor to detect deviations of state that

could lead to unsafe behavior.

6.1.1 Project Introduction

An adaptive flight control system that is capable of sensing its environment, processing in-

formation, reducing uncertainty, planning, generating and executing control actions is con-

sidered an Intelligent Flight Control System (IFCS). The goal of IFCS is to develop and

evaluate flight control concepts that incorporate emerging algorithms and techniques to pro-

vide an extremely robust system capable of handling multiple accident and off-nominal flight

scenarios. Adaptive control is the latest trend in the application of Neural Networks (NN)

in realtime automation. Figure 6.1 shows the architectural overview of an IFCS consisting

of an Online Learning Neural Network (OLNN) that accounts for dramatic changes of the

aircraft exceeding robustness limits [159].

The performance of the Online Neural Network within the dotted box in Figure 6.1

is monitored by an Online Stability Monitor. It is important to understand if the neural

network adaptation converges, meaning that learning trajectories converge to a stationary

state. In other words, if the Online Neural Network encounters unusual data patterns that

force the state of the system to deviate away from the its current pattern, monitors will

ensure that it always converges back to a stable equilibrium within a finite amount of time.

Figure 6.2 shows the behavior of an Online Stability Monitor in an off-nominal (failure)

mode. In contrast, Figure 6.3 shows the behavior of the Online Stability Monitor in a

normal mode.

Currently, there are four Online Stability Monitors used simultaneously in the project,

monitoring different parameters. The goal of this project is to integrate all the Online

Stability Monitors into an Online Safety Monitor, which can detect safety violations. The

objective of the Online Safety Monitor is to detect deviations of state that could lead to

unstable behavior by monitoring the behavior of all Online Stability Monitors [159]. We

apply the proposed D-S fusion methodology to this application.
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Figure 6.1: IFCS Architecture

6.1.2 Experimental Procedure

In our experiment, we first calculated the correlation coefficient between each pair of Online

Stability Monitors. Based on the correlation coefficient and domain knowledge, we developed

an algorithm to construct the Online Safety Monitor based on the Murphy’s rule of com-

bination. The experiments were performed on nine simulations that simulate seven failure

modes and two normal modes, reflecting different flight data patterns. Each simulation has

200 data points, representing 200 time frames. The experimental procedure is detailed as

below.

Calculating Correlation Coefficient

The correlation coefficient between each pair of Online Stability Monitors is calculated from

the seven simulations for failure modes. As mentioned before, each Online Stability Monitor

observes the learning of the Online Neural Network. The behavior of each neural network is

consistent in normal modes and stable equilibria. Therefore, each Online Stability Monitor



Lan Guo Chapter 6. SE Applications of the D-S Information Fusion Methodology 83

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9
x 10

−3

time

er
ro

r

Figure 6.2: Online Stability Monitor in failure mode (the failure occurs at time

100)
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Figure 6.3: Online Stability Monitor in normal mode
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is correlated with others in these states. Our focus is the behavior of each Online Stability

Monitor when it is encountering a failure (before it converges to a stable equilibrium) as

observed in the flight data patterns. Thus, the time period of reacting to a failure in each

Online Stability Monitor is taken for the computation of correlation coefficients. As such,

in each failure simulation data set, the period starting from 10 time frames before a failure

occurrence to 80 time frames after the failure occurrence is used in the computation of

correlation coefficients.

For each data set, the correlation coefficient between each pair of Online Stability Moni-

tors is greater than 0.99, indicating that all Online Stability Monitors are highly correlated

with each other. The correlation coefficients in two surface failure modes and five control fail-

ure modes are listed in tables 6.1 through 6.7. The average correlation coefficient between

each pair of monitors in seven tables is computed as shown in Table 6.8. From Table 6.8, it

can be observed that each pair of Online stability Monitors are highly correlated with each

other with an average correlation coefficient greater than 0.99 in the failure modes.

Constructing Online Safety Monitor

We combine the four Online Stability Monitors into an Online Safety Monitor by applying

the proposed methodology illustrated in §5.3. In this case, each source of evidence is an

Online Stability Monitor. The output of each Online Stability Monitor is an error measure

by the corresponding neural network in time series. The output from different monitors have

different scales. Therefore, in order to combine them, the output of each Online Stability

Monitor is first normalized into a real number within the [0.0, 1.0] interval, by dividing the

current error measure by the maximum error measure up to this time frame of this Online

Stability Monitor. The Online Safety Monitor is constructed by combining the outputs

from all Online Stability Monitors. In this case, the frame of discernment Θ is {Error (E),

Confidence (C)}, with m(E) + m(C) = 1. In other words, we define the belief value of

Confidence, m(C), as 1−m(E), where m(E) is the normalized error output from the Online

Stability Monitor. The output of the Online Safety Monitor is the confidence interval. The

scheme for constructing the Online Safety Monitor is shown in Figure 6.4.

According to the methodology, the value of the n parameter in the Murphy’s rule of

combination (Equation 2.10) needs to be defined, such that each Online Stability Monitor

is given its corresponding credit during the combination. The n value for each monitor is

determined based on two factors: its correlation with other monitors, and its importance as

a stability monitor. We know that all the Online Stability Monitors are highly correlated

with each other from the previous computation. In addition, we know that all these Online
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Table 6.1: Correlation Coefficients in Surface Failure Mode 1
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9994 0.9985 0.9997
Monitor 2 0.9994 0.9994
Monitor 3 0.9984
Monitor 4

Table 6.2: Correlation Coefficients in Surface Failure Mode 2
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9989 0.9979 0.9998
Monitor 2 0.9996 0.9990
Monitor 3 0.9979
Monitor 4

Table 6.3: Correlation Coefficients in Control Failure Mode 1
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9979 0.9961 0.9996
Monitor 2 0.9995 0.9981
Monitor 3 0.9965
Monitor 4

Table 6.4: Correlation Coefficients in Control Failure Mode 2
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9992 0.9982 0.9996
Monitor 2 0.9994 0.9992
Monitor 3 0.9982
Monitor 4

Table 6.5: Correlation Coefficients in Control Failure Mode 3
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9985 0.9970 0.9997
Monitor 2 0.9996 0.9984
Monitor 3 0.9970
Monitor 4

Table 6.6: Correlation Coefficients in Control Failure Mode 4
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9983 0.9971 0.9997
Monitor 2 0.9995 0.9986
Monitor 3 0.9973
Monitor 4

Table 6.7: Correlation Coefficients in Control Failure Mode 5
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9985 0.9978 0.9997
Monitor 2 0.9997 0.9987
Monitor 3 0.9980
Monitor 4
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Table 6.8: Averaged Correlation Coefficients in All Failure Modes
Monitor 1 Monitor 2 Monitor 3 Monitor 4

Monitor 1 0.9987 0.9975 0.9997
Monitor 2 0.9995 0.9988
Monitor 3 0.9976
Monitor 4

Figure 6.4: Constructing an Online Safety Monitor

Stability Monitors are equally important based on domain knowledge. Therefore, when each

Online Stability Monitor is taken into the combination, it is treated equally and thus n = 0.5.

The Murphy’s rule of combination is non-commutative. Different order of combination

has different result. As demonstrated in §5.4, in the case of constant contextual weighting

parameter, when sources of evidence are sorted in increasing and decreasing order, we can

get the upper and lower bound for the combination results, respectively. Confidence interval

can be obtained from the upper and lower bound of the combination results, which will be

the output from the Online Safety Monitor. The algorithm of constructing the Online Safety

Monitor is described in Figure 6.5.

Each data set from the nine simulations is input to the Online Safety Monitor according

to the algorithm in Figure 6.5. The outputs from the Online Safety Monitor are discussed

in the following section.
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Constructing the Online Safety Monitor

Begin

At each time frame

for each Online Stability Monitor i, i in 1 · · ·n (n is the number of Online Stability Monitors)

Current Max Errori = max(Errori up to this time frame);

mi(E) = Errori

Current Max Errori
;

mi(C) = 1−mi(E);

sort mi(C) (i in 1 · · ·n) in order;

Upper confidence m′(C)← combine mi(C) in increasing order;

Lower confidence m′′(C)← combine mi(C) in decreasing order;

Confidence difference = m′′(C)−m′(C);

output Upper confidence, Lower confidence, Confidence difference;

End

Figure 6.5: The Algorithm for Constructing the Online Safety Monitor

6.1.3 Results

We performed the above described experiments for nine flight simulations. The four Online

Stability Monitors were used as inputs to the algorithm in Figure 6.5. The constructed Online

Safety Monitor is able to discriminate failure modes from normal modes in all simulations.

For instance, in one of the simulations for a failure mode, the output from the Online Safety

Monitor is depicted in Figure 6.6. In contrast, in one of simulations for a normal mode, the

output from the Online Safety Monitor is depicted in Figure 6.7.

The Online Safety Monitor generates output from the four Online Stability Monitors,

which are constructed from the Online Neural Network. The error output of the neural

network is high when it is in the learning phase. Our methodology can differentiate be-

tween learning phase and failure phase by monitoring the confidence difference. When the

confidence difference is high, it indicates that the neural network is in its learning phase.

When the confidence difference becomes close to zero, it indicates that the neural network is

providing reliable results. In this case, if confidence remains high, it means that the system

is in normal mode; otherwise, if the confidence suddenly decrease, the Online Safety Monitor

should give a “red light” and issue a warning that the system is in a failure mode.

The Online Safety Monitor can differentiate between failure modes and normal modes,

as well as failure modes and learning phase of the Online Stability Monitors by following

rules:
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Figure 6.6: Online Safety Monitor in failure mode
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Figure 6.7: Online Safety Monitor in normal mode
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• If Confidence difference is high, and confidence (lower bound) is low, then it is the

learning phase of the Online Stability Monitors. In this case, the Online Safety Monitor

issues a yellow light to represent the potentially unsafe system state;

• If Confidence difference remains low, and confidence (both upper bound and lower

bound) remains high, then it is in the normal mode. In this case, the Online Safety

Monitor issues a green light to represent a safe system state;

• If Confidence difference dramatically increases, and confidence (both upper bound and

lower bound) dramatically decreases, then it is in failure mode. In this case, the Online

Safety Monitor issues a red light to represent the unsafe system state.

6.1.4 Discussion

We applied the proposed methodology to the adaptive intelligent flight control system. We

constructed an Online Safety Monitor by combining four Online Stability Monitors. In nine

simulations for seven failure modes and two normal modes, the constructed Online Safety

Monitor is able to issue a warning when the system is actually in a failure mode.

This study is the first attempt to apply the Murphy’s rule of combination in adaptive

intelligent control flight systems. We proposed and proved that, when all sources of evidence

are treated equally, there is an upper bound and lower bound of the combination results

obtained by the Murphy’s rule of combination. This aspect is applied in the Online Safety

Monitor to differentiate between failure modes and non-failure modes of the Online Stability

Monitors.

6.2 Fusion of Software Reliability Prediction Systems

Software reliability is a quantitative measure of software quality. It is defined as a probability

of failure free execution given a specific environment and a fixed time interval. Currently

there are many software reliability estimation models aimed at predicting the reliability of

software products. It remains a problem to integrate the results of various software reliability

estimation methods, for a more precise prediction. There are two important statistical

theories for evidence combination: the Bayesian theory and Dempster-Shafer (D-S) theory.

The Bayesian theory needs a complete knowledge of the probability laws to combine evidence

and perform prediction. However, we do not have enough data to come up with a solid prior

or conditional probability as required by the Bayesian theory in many cases. On the other
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hand, the D-S theory is a general form of the Bayesian theory, as discussed in Chapter 2,

and does not require any subjective prior or conditional probability.

Some software reliability estimation models are built from software quality measures

[140] [89]. If two software reliability estimation models share some software quality mea-

sures, these two software reliability models are correlated. In this case, the results of the

software reliability models are also correlated, and the combination of such results amounts

to correlated evidence combination. As discussed in the previous chapter, the proposed

methodology is able to combine evidence in general, either correlated or uncorrelated. In

this section, we will introduce a case study where we apply the proposed D-S fusion method-

ology to integrating software reliability prediction systems, some of which are correlated with

each other.

6.2.1 Project Introduction

Software reliability models built from process and product measures are very useful in pre-

diction of software quality in early software life cycle. However, reliability prediction models

based on process and product measures alone may not be sufficiently accurate [45] [141].

These predictions need corroboration. If predictions by several software reliability models

can be combined for a more accurate prediction, we can assume a limited belief in the ac-

curacy of this refined prediction. This refined prediction can be employed in a theoretical

framework of software reliability corroboration for the certification testing, such that the

main drawback of input domain reliability assessment models, the impractically large num-

ber of statistical tests, disappears [139]. The project overview is depicted in Figure 6.8.

This project is aimed at making software certification of high assurance systems practical.

Currently, the approach to building Reliability prediction Systems (RPS) has been de-

veloped by the research group from the University of Maryland at College Park [140] [89].

In a study carried out for the U.S. Nuclear Regulatory Commission, 40 software engineering

measures were ranked with respect to their ability to predict reliability. The theoretical

framework of software reliability corroboration have been established by the research group

from west Virginia University [34]. The unresolved problem in the project shown in Fig-

ure 6.8 is the middle part, which is to combine Reliability Prediction Systems (RPS) for a

more accurate prediction. The main issue is that, if two RPSs share same Software Qual-

ity Measures (SQM) or SQMs (for building the RPSs) are correlated, these two RPSs are

correlated with each other. In this case, combining correlated RPSs amounts to combining

correlated evidence.

The application studied in the reliability prediction experiment is a simplified version
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Figure 6.8: Project Overview of Software Reliability Corroboration

of an automated personnel entry access system (gate) used to provide privileged access

to rooms/buildings. The study involved the following Software Quality Measures (SQM):

requirement traceability, function points, bugs per line of code (Gaffney estimate), fault

density, and test coverage. Estimates of reliability were built based on these measures. The

validation study was limited to the testing phase, and the estimates were used to predict

reliability in operation. The ranking of each RPS and the corresponding estimate are listed

in Table 6.9. The actual failure rate obtained from testing is 0.09.

Table 6.9: The Value of Relevance to Reliability and Estimated Reliability
Meaure Relevance to Predicted Failure

Reliability r Probability Pf

Code Defect Density 0.85 0.078

Test Coverage 0.83 0.092

Requirements Traceability 0.45 0.078

Function Point Analysis 0.00 0.0020

Bugs Per Lines of Code 0.00 0.000028

Weighted sum based on Relevance to Reliability r was first used to combine PRSs. It is

designed as follows:
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Pf =

∑n

i=1 ri(Pf )i
∑n

i=1 ri

=
0.85× 0.078 + 0.83× 0.092 + 0.45× 0.078

0.85 + 0.83 + 0.45
= 0.084

This method takes into consideration of relevance to reliability of each RPS. However, it

cannot handle the correlation among the RPSs. We apply the proposed methodology in

§5.3 in this application to combine several RPSs based on their Relevance to reliability and

possible correlation with each other. The experimental procedure is explained in the next

section.

6.2.2 Experimental Steps

We apply the proposed methodology to combining Reliability Prediction Systems (RPSs).

According to the methodology, we need to first decide which RPSs are mutually correlated.

Secondly, we calculate the correlation coefficient between the correlated RPSs. Thirdly, we

need to develop a fuzzy rule set for the belief revision function of the Murphy’s rule of

combination. Finally, the Murphy’s rule of combination is applied to combining RPSs. The

detailed experiments are illustrated as follows.

Deciding Correlated RPSs

According to our general methodology for evidence combination, we need to first decide

which sources of evidence are correlated. In this case, the sources of evidence are Reliability

Prediction Systems (RPSs) build on code defect density, test coverage, and requirements

traceability. RPSs based on function point and bugs per lines of code are ignored, because

their relevance to reliability is estimated to be close to zero.

Defect density is defined as the number of defects unresolved at the testing stage divided

by the number of lines of code in the software. Defects detected from requirements inspection,

design inspection, and source code inspection will be used to predict software reliability. RPS

based on defect density consists of three steps: (1) construction of a finite state machine

representing the user’s requirements and embedding user’s profile information. (2) mapping

of the defects to this model and actual tagging of the states and transitions. (3) execution

of the model to evaluate the impact of the defects [140].

Requirements traceability identifies requirements implemented in source code that are

either missing from, or in addition to, the original requirements. Each missing function

or additional function in the requirements is a defect. As such, a finite machine model

representing the requirements can be used to predict the failure probability. The approach is

the same as that in defect density. However, the defects mapped into the finite state machine
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are not identical in these two RPSs. Therefore, the RPSs based on requirements traceability

and defect density are not correlated.

Test coverage in [140] is defined as statement coverage. The RPS based on test coverage

uses the information from the RPS based on defect density. Therefore, the RPSs based on

test coverage and defect density are correlated. Detailed explanation is given in the following

section.

Calculating Correlation Coefficient

The second step of the methodology is to calculate the correlation coefficient between possibly

correlated evidence. In this case study, we need to obtain the correlation coefficient between

two RPSs constructed from Test Coverage and Defect Density.

First, predicted software reliability Ps(n) of RPS constructed from Test Coverage is

calculated as (as described in $2.4.2):

Ps(n) = e
− K

TL
Nτn

(6.1)

where K is fault exposure ratio during the nth demand; TL is the linear execution time; N is

the number of defects remaining in the software; τ is the average execution time per demand.

The number of remaining defects N can be obtained by:

N =
N0

C0
(6.2)

where N0 is the number of defects found by the test cases; C0 is the defect coverage.

The relationship between the defect coverage C0 and code coverage is [99]:

C0 = a0 ln[1 + a1(e
a2C1 − 1)] (6.3)

where C1 is the code coverage achieved by the test cases; a0, a1, a2 are coefficients. The

coefficients can be estimated from data, or from previous projects. In [140], two sets of

coefficients a0, a1, a2 (calculated from the Data Set 3 and Data Set 4 in [99]) are used to

calculate defect coverage. Statement coverage during the testing of PACS is 94.6%. The

defect coverage and the total number of defects remaining in PACS given the parameters

in [99] are shown in Table 6.10.

Suppose the fault exposure ratio K is constant for all defects. Then the additional,

unknown defects determined by Equation 6.2 have the same fault exposure ratio K as the

known defects. The fault exposure ratio K is calculated from the RPS based on defect

density in [140].
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Table 6.10: Defects Remaining vs. Test Coverage [140]

Data Set 3 [99] Data Set 4 [99]

Statement Coverage C1 94.6% 94.6%

Defect Coverage C0 84.9% 81.1%

Number of Defects Found through Test N0 N0

Number of Remaining Defects N N0

84.9%
N0

81.1%

From the RPS based on defect density, when n = 1, N0 is the number of discovered

defects, and P ′
s = 1−P ′

f , from Equation 6.1 we can obtain K. P ′
f is the probability of failure

predicted by the RPS based on defect density when N0 defects are detected [140]:

K =
− ln(1− P ′

f )

τ ∗N0
TL (6.4)

The fault exposure ratio K is used by the RPS based on test coverage to predict the

reliability. By substituting Equation 6.4 into Equation 6.1, the predicted software reliability

by the RPS based on test coverage is:

Ps = e
N

N0 ln(1−P ′

f
) = P

′ N

N0

s = P
′ N0

N0C0

s = P
′ 1

C0

s (6.5)

P ′
s is the predicted reliability by the RPS based on defect density, when N0 defects are

detected during the inspection process.

Strictly speaking, the number of remaining defects is an integer. Thus, Equation 6.2

should be:

N = ceiling(
N0

C0
)

As a result, Equation 6.5 should be:

Ps = (P ′
s)

ceiling(N0

C0 ) 1

N0 (6.6)

There are two scenarios for the defects detected in Defect Density and Test Coverage:

• If the same inspection process is used, the defects detected for Test Coverage and

Defect Density are the same. In this case, P ′
s is the predicted reliability by the RPS

based on Defect Density. If we ignore the ceiling effect of the remaining defects, based

on Equation 6.5, we have

Ps(Test Coverage) = (Ps(Defect Density))
1

C0
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It indicates that if the same defects are used for the defect density measure and the

test coverage measure, the RPSs based on these two measures are highly correlated.

In fact, we can derive one from the other. Based on the testing information collected

for PACS, the correlation coefficient between these two RPSs can be calculated from

the simulation of possible Ps(Defect Density) values. Two different defect coverage values

from Table 6.10 are used in the computation. The correlation coefficient between the

RPSs based on Test Coverage and Defect Density is computed for each defect coverage

value. The results listed in Table 6.11 are based on 1,000 simulations.

Table 6.11: Correlation between RPSs Based on Test Coverage and Defect
Density (1)

Defect Coverage C0 = 84.9% C0 = 81.1%

Number of Simulations 1000 1000

Correlation coefficient 0.9985 0.9975

If we want to be more accurate by taking into account the ceiling effect of the remaining

defects, based on Equation 6.6, we have

Ps(Test Coverage) = (Ps(Defect Density))
ceiling(N0

C0 ) 1

N0

In this case, we need to simulate defects detected during the inspection process. During

the simulation, defects are randomly injected to the finite state machine used in the

Defect Density approach. The reliability of PACS is predicted correspondingly by the

Defect Density approach. The information is used to predict the reliability by the

RPS based on Test Coverage. Based on 1,000 simulations, we obtain the correlation

coefficient between the RPSs constructed from Test Coverage and Defect Density as

in Table 6.12.

Table 6.12: Correlation between RPSs Based on Test Coverage and Defect
Density (2)

Defect Coverage C0 = 84.9% C0 = 81.1%

Simulations 1000 1000

Correlation coefficient 0.9997 0.9995
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• If different inspection processes are used for Test Coverage and Defect Density, we

can simulate the defects detected and the corresponding predicted reliability for this

scenario. Normally, a more rigorous inspection is employed for Defect Density than Test

Coverage. Therefore, it is reasonable to assume that there are more defects detected

in Defect Density than Test Coverage [88].

Two different inspection processes are simulated, one for Defect Density, the other

for Test Coverage. N ′ and N0 represent the number of detected defects in Defect

Density and Test Coverage, respectively. By assuming that the number of defects in

Defect Density is more than that in Test Coverage, we have N ′ > N0. During the

simulation, N ′ and N0 number of defects are randomly injected to the finite state

machine used in the Defect Density approach, separately. The reliability of PACS

is obtained correspondingly by using the Defect Density approach for each inspection

process. The predicted reliability corresponding to N ′ detected defects is the prediction

result by the RPS based on Defect Density, represented by Ps(Defect Density); while the

predicted reliability corresponding to N0 detected defects, represented by P ′
s, is used

to predict the reliability by the RPS based on Test Coverage, Ps(Test Coverage), by using

Equation 6.6:

Ps(Test Coverage) = (P ′
s)

ceiling(N0

C0 ) 1

N0

The correlation coefficient between the RPSs based on Defect Density and Test Cover-

age, namely Ps(Defect Density) and Ps(Test Coverage), is calculated based on the simulations.

The results are listed in Table 6.13.

Table 6.13: Correlation between RPSs Based on Test Coverage and Defect
Density (3)

Defect Coverage C0 = 84.9% C0 = 81.1%

min(N ′ −N0) 1 1

max(N ′ −N0) 8 8

average(N ′ −N0) 4 (3.60) 4 (3.60)

Number of simulations 989 989

Correlation coefficient 0.9953 0.9951

Based on above results, we can conclude that the RPSs based on Defect Density and

Test Coverage are highly correlated with each other; while RPS based on Requirement

Traceability is uncorrelated with these two RPSs.
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Developing a Fuzzy Rule Set

The next step in the methodology is to develop a fuzzy rule set for the belief revision function

of the Murphy’s rule of combination (Equation 2.9). More specifically, we need to define the

value for the contextual weighting parameter, n, in Equation 2.10. In this case study, the

value of n depends on each RPS’s relevance to reliability r and whether it is correlated with

other RPSs to be combined. The fuzzy rules are as follows:

• If relevance to reliability r is high, and uncorrelated, then n > 0.5

• If relevance to reliability r is high and correlated, then n < 0.5

• If relevance to reliability r is low, then n < 0.5

A more refined fuzzy rule set is developed. The applicable rules to this case study are

listed in Table 6.14.

Table 6.14: Fuzzy Rules for Combining PRSs

Rule No. If Then n =

1 r ∈ [0.8, 1.0] and uncorrelated 0.55

2 r ∈ [0.8, 1.0] and correlated 0.50

3 r ∈ [0.6, 0.8) and uncorrelated 0.49

4 r ∈ [0.6, 0.8) and correlated 0.45

5 r ∈ [0.4, 0.6) and uncorrelated 0.48

6 r ∈ [0.4, 0.6) and correlated 0.43

7 r ∈ [0.0, 0.4) Not combining

Applying the Murphy’s Rule of Combination

Based on Table 6.14, we can apply the Murphy’s rule of combination to fusing Reliability

Prediction Systems (RPS). In this case, the fame of discernment Θ is {reliability (R), prob-

ability of failure (F)}. The RPSs based on Defect Density and Test Coverage are correlated

and have close value of relevance to reliability. The Rule No. 1 from Table 6.14 is applica-

ble to combining these two RPSs. The integration mapping of these two RPSs is shown in

Table 6.15.

According to the Murphy’s rule of combination (Equation 2.9 and 2.10), These two RPSs

can be combined as:
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Table 6.15: Integration mapping of RPSs (1)

m2/m1 {R} (0.912) {F} (0.078)

{R} (0.908) {R} (0.828) {Ø} (0.0708)

{F} (0.092) {Ø} (0.0839) {F} (0.00718)

m(R)′ =
0.8280.5

0.8280.5 + 0.007180.5
= 0.915

m(F )′ =
0.007180.5

0.8280.5 + 0.007180.5
= 0.085

The RPS based on Requirements Traceability is taken into the combination following the

Rule No. 5. The integration mapping of this combination is shown in Table 6.16.

Table 6.16: Integration mapping of RPSs (2)

m3/m
′ {R} (0.915) {F} (0.085)

{R} (0.912) {R} (0.834) {Ø} (0.0775)

{F} (0.078) {Ø} (0.0714) {F} (0.00663)

The RPS based on Requirements Traceability is combined according to the Murphy’s

rule as:

m(R)′ =
0.8340.48

0.8340.48 + 0.006630.48
= 0.911

m(F )′ =
0.006630.48

0.8340.48 + 0.006630.48
= 0.089

Hence, the predicted reliability of PACS is 0.911, and the probability of failure is 0.089,

after we combine the RPSs by the proposed methodology.

6.2.3 Evaluation

We applied the proposed methodology to combining Reliability Prediction Systems (RPS).

As shown in Table 6.17, our prediction is very precise compared with the actual reliability

of PACS. It is more accurate than the result given by the weighted sum method. What’s

more, as a combination technique, the weighted sum method cannot take into account the
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correlation among RPSs; while the proposed methodology can evaluate the credit given to

each RPS in the combination based on its relevance to reliability prediction and its correlation

with other RPSs.

Table 6.17: Evaluation of Our Result
Reliability Failure Probability

Actual Result 0.910 0.090

Weighted Sum 0.916 0.084

Our Result 0.911 0.089

6.2.4 Discussion

Currently there are many indirect software reliability prediction methods available. Some

are highly relevant to reliability prediction, while others are not. In addition, the results of

some reliability prediction methods are correlated with each other. It remains a problem

to integrate available reliability prediction methods for a more precise prediction, by taking

into account the predictive power of each method and the correlation effect during the

combination. Current combination techniques, for instance weighted sum, only considers

the relevance to reliability of each method, while the correlation effect is merely ignored. To

the best of our knowledge, this study is the first attempt to integrate reliability prediction

methods by evaluating the credit given to each method based on its predictive power and

its correlation with other methods.

The proposed methodology is based on the Murphy’s rule of combination and fuzzy rule

sets. When applied to software reliability prediction, this general methodology proves to be

feasible and yields accurate results. We believe that the proposed methodology provides a

flexible and robust framework for combining available software reliability prediction methods

for a more precise prediction. It fills the gap in the software reliability corroboration projet,

aiming at making software certification of high assurance systems practical.

6.3 Summary

In this chapter, we applied the proposed information fusion methodology in two areas: a

realtime intelligent flight control system and software reliability prediction. In the first case

study, the constructed Online Safety Monitor can accurately detect failure modes in the
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flight control system. In the second case study, the predicted software reliability by the

proposed methodology is higher than that by the weighted sum method.

The proposed methodology is proved applicable to both time-series applications and

point estimate applications. This framework is flexible and is able to cope with situations

where different sources of information carry the same weight or different weight. This general

methodology is an extension to the D-S framework and has great potential to be applied in

many other application domains.



Chapter 7

Contributions and Future Work

7.1 Contributions

Good statistical models are vital to provide accurate predictions in various application do-

mains. The Bayesian theory and Dempster-Shafer (D-S) theory are two important statistical

theories for probability reasoning. However, both the Bayesian theory and the D-S theory

cope with independent evidence. This assumption of “evidence independence” is restrictive

and unrealistic in many applications, for instance when sources of evidence are correlated

with each other. In addition, the Bayesian theory is not robust enough to cope with in-

complete information. Rooted from the Bayesian theory, the Bayesian Belief Networks also

suffer from such limitations.

Our research has solved two open problems in this research area. First of all, we developed

a novel induction algorithm for the Dempster-Shafer networks, and a probability reasoning

methodology based on the D-S networks. The proposed methodology is automatic, objective,

flexible and dynamic, such that it overcomes the limitations of the Bayesian Belief Networks

which are subjective and difficult to build. In addition, we developed a general methodology

that can combine evidence in general, including both correlated and uncorrelated evidence.

To the best of our knowledge, this is the first such framework to combine evidence and take

correlation into account. This general framework is an extension to Dempster-Shafer theory.

We also provided an algorithm and a proof for the upper and lower bound of the combination

belief function, which has not been presented before. Both proposed methodologies prove

to be applicable to complex real-life applications. We applied these two methodologies to

software quality and reliability prediction.

The first proposed methodology, based on the Dempster-Shafer (D-S) belief networks, is a

101
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novel contribution to the theoretical framework of software quality prediction. The proposed

methodology is meaningful for real-world applications in software quality prediction. Firstly,

it can be tuned to meet different real-wold optimization criteria. Secondly, we illustrated a

set of experiments of case-based reasoning performed on existing data sets. The practical

meaning is that we can reuse the information from a similar project for early prediction in

the project currently under development. Thirdly, the prediction accuracy of our proposed

methodology is higher than that achieved by logistic regression, discriminant analysis, ran-

dom forests, as well as the algorithms in two machine learning software packages, See5 and

WEKA. The difference in the performance of the proposed methodology over other methods

is statistically significant. This general framework can be applied to other research areas.

The second proposed methodology focuses on information fusion, which can combine

both correlated and uncorrelated evidence. This framework is based on the Murphy’s rule of

combination and fuzzy logic. We also provided an algorithm and a proof for the upper and

lower bound of the belief function of the combination results for the Murphy’s rule, when

each source of information carries the same weight during the combination. The proposed

methodology was applied in a realtime intelligent flight control system. The Online Safety

Monitor constructed based on this methodology can accurately detect unsafe behavior in

the flight pattern data. The proposed methodology was also applied to the fusion of various

software reliability prediction systems for a more precise prediction of software reliability.

The prediction result is more accurate than the previously used weighted sum method.

This general framework can be applied to combining evidence for prediction in many other

research areas.

7.2 Future Work

It is a common practice to use categorized data sets by belief networks such as the Bayesian

networks [45]. In our study, the D-S networks deal with discrete data sets. The case studies

in Chapter 4 discretize continuous data sets into binary ones. A future research direction for

improving Dempster-Shafer belief networks is to generalize important implication rules relat-

ing two multichotomous variables. Therefore, we can discretize data sets into multinomial,

rather than binary, data sets. It is worth mentioning that our induction algorithm based

on prediction logic makes this potential improvement possible, while the previous induction

algorithm by Liu et al. [94], based on binomial distribution, can only deal with binary data

sets.

Our methodology based on Dempster-Shafer networks is distinguished by its ability of
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tuning to meet different requirements. We observed that the sequence of the predictors taken

into the D-S networks has effect on optimal network inference, which is consistent with the

observation presented in [96]. We found that the first four or five predictors have the greatest

impact on the prediction accuracy in our study. Currently, we do not have an algorithm to

identify the “magic” sequence. Therefore, another future research direction is to develop

such an algorithm for optimal inference on the D-S networks. This problem is defined as

NP-hard [96]. One possible solution is to explore the relationship between the sequence of

the predictors and the entropy (the measure of uncertainty) of the inducted D-S network. If

each time the predictor taken into the D-S network is the one that is most likely to reduce

the entropy of the entire network, the algorithm to decide the sequence of the predictors is

then an optimization algorithm discussed in [96].

In the study of software quality prediction, the software metrics collected in KC2 and

JM1 projects are mainly the McCabe Metrics and the Halstead Metrics. Many other software

metrics such as process metrics and design metrics were proved important in software quality

prediction [135], so we hope to improve the performance of our methodology if information

of such metrics is available in a future study.

We applied two proposed methodologies to software quality and reliability prediction, as

well as in a realtime intelligent flight control system for unsafe event detection. We would

like to apply these two general frameworks to other research areas in future studies.
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