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Abstract 

 

 

 

Remote laser welding is an emerging joining technology to meet the increasing demand of corrosion 

resistance, fast, non-contacted and single sided joining for automotive body-in-white assemblies. 

However, the quality of laser welding has been a critical issue in the popularization of this technology. 

Traditionally, various stochastic detection methods have been developed for in-process weld defect 

detection by monitoring and classifying various weld signals. The main objective of this thesis is to 

develop an in-process welding monitoring system including; (i) a novel defect detection algorithm 

based on a multi-sensor fusion technique, (ii) a new optical sensor configuration to capture in-process 

weld signal, and (iii) an offline weld signal analysis/training module and an user interactive online 

detection module. 

The three weld signals are monitored: weld pool temperature, plasma intensity, and back reflected laser 

intensity. Their nominal trends are identified by estimating a probability distribution function for the 

signals and appropriate thresholds are specified by the standard statistical analysis of the residuals at 

the confidence interval of 95%. We propose a probability assignment function, characterized by shape 

controllability with respect to the extracted thresholds. We can analyze the in-tolerance defect problems 

by the proposed probability assignment function that can deal with the decision uncertainty near the 

thresholds. The individual sensor information is utilized to identify the probability of the normal state. 

The probabilities are aggregated by using the combination rule of the Dempster-Shafer theory. The 

performance of the developed detection method is evaluated by the statistical comparison with 

conventional visual inspection results. 
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I. Introduction 

 

 

1.1 Background 

In the automotive industry, laser welding is an emerging joining technology that aims to meet the 

increasing demand for corrosion-resistant, lightweight and durable auto-body parts. The dynamic 

movement of the scanning head which adjusts the focal position of the laser beam without robot arm' 

maneuver, gives the laser welding process many advantages such as:  

✓ Non-contact and single-sided access welding 

✓ Fast and accurate welding  

✓ Tool flexibility and less energy consumption as compared to conventional spot welding 

✓ Reducing the required floorspace 

Although laser welding with zinc coated steel has many of the advantages above, the requirement 

of tight part-to-part gap control, and thereby creating difficulties in weld quality control have been major 

barriers to the popularization of laser welding in automotive manufacturing due to the lower 

vaporization temperature point(1180K) than steel has 1809K. This tight part-to-part gap requirement is 

even more critical in the laser lap welding of galvanized steel since we should additionally ensure the 

minimum part-to-part gap between two steel sheets so that the vaporized zinc produced by the laser 

energy can be exhausted through the gap. As shown in Figure 1-1 and Figure 1-2, if the gap between 

the galvanized steel sheets is too small, it may cause weld defects such as porosity, spatter, an inter-

metallic brittle phase or discontinuities formed by zinc vapor entrapment into the welding joints. 

 

 

Figure 1-1 A variation of deformed base parts and angles of elevation and depression in a 

simplified side-member (Oh et al., 2016) 
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Figure 1-2 Part-to-part gap requirements with respect to the different base materials 

 

 

 

1.2 Motivation 

In addition to the tight requirement of the part-to-part gap condition, much of the empirical research has 

investigated the importance of the design parameters for laser welding. Some researchers have reported 

that several process parameters (the focal position, laser power, and feed rate) are significantly 

correlated with the weld quality: heat input and weld bead geometry (i.e., penetration depth, widths of 

welded zone, width of a weld seam, and heat-affected zone) (Benyounis and Olabi, 2008, Benyounis et 

al., 2005). They have also validated several destructive tests which had been conducted after welding 

process in the real industry such as investigating a cross-sectional view and testing mechanical 

properties. General off-line destructive tests of weld quality, however, can be costly regarding time, 

material, and productivity. 

To overcome this limitation of traditional off-line destructive tests, there has been a lot of research 

on on-line weld quality monitoring and defect detection by gathering and analyzing the process signals 

of the laser welding as an aspect of the non-destructive test. Various detection and diagnosis methods 

have been applied to online weld defect monitoring, for which the signals during the welding process 

should be monitored and classified quickly. Commercially available monitoring systems usually use 

univariate defect detection methods that require threshold values or reference curves which are 

determined by numerous pre-experiments to distinguish between normal and defect welds. A weld 

defect occurs if the sensor signal is out of the pre-defined permissible value and if the signal area 

exceeds the allowable tolerance. The on-line process monitoring approaches are beneficial for ensuring 

the high product quality at the high production rates and the low cost. 

The real-time monitoring has utilized various sensors to promise the accuracy of defect detection. 

The commercially available laser welding monitoring systems usually use information from various 

0
0.05
0.1

0.15
0.2

0.25
0.3

Aluminium

alloys

Non-galvanized

steel Galvanized steel

G
ap

 r
eq

u
ir

em
en

t(
m

m
)



Introduction 

3 

combinations of multiple sensors to increase the monitoring accuracy because no single sensor can 

reliably monitor the full spectrum of welding states. However, there are still some issues on the on-line 

monitoring systems. Integration of multiple sensors does not always guarantee the high accuracy of the 

detection performance. It creates the problem regarding the uncertainty of decision. We need to specify 

the causes of this uncertainty, especially on the commercially available monitoring systems. It is a main 

focal point of this research thesis. 

First, a comprehensive decision and classification of the target state cannot be simply achieved by 

a multi-sensory monitoring system. There is a possible situation that the individual sensors indicated a 

different decision from the same state. Second, even if all the sensor signals are within the tolerance 

ranges, which implies that the interpretation of all sensors classifies the current state as normal, the 

actual defect might happen in a practical environment. This is called an in-tolerance failure problem. 

Third, specific signal patterns of weld defects may exist. It can be interpreted as a generalized version 

of the multiple thresholds problem. In this case, we need to choose the number of pieces of 

segments(binning problem), to codify the segmented pieces which is called codification(eventization) 

problem, and to interpret the series of codified segments which is related to the pattern recognition and 

process mining problem. 

In this thesis, we focus on the first and the second issues by applying evidence theory and the 

proposed probability assignment function. 

 

 

 

1.3 Objective 

To enhance the accuracy of the defect detection performance, laser welding monitoring systems usually 

use rich information from multiple sensors such as plasma, temperature, and back reflection signals. 

However, interpreting multiple sensor information, each of which may indicate different weld quality 

status, is not straightforward as we discussed in the motivation section. In this regard, this research aims 

to first, develop a novel detection algorithm for weld defects based on multivariate information fusion 

technique. Also, we are further aiming to develop an in-process monitoring system including a new 

optical sensor configuration to capture in-process weld signal. Figure 1-3 illustrates the overall 

framework for a close-loop laser weld process monitoring and control, and which consists of two main 

phases: (i) the off-line analysis and training module for detection of weld defects and (ii) an in-process 

monitoring system for weld defect diagnosis. Further, we will consider the part-to-part gap assessment 

method which aims to realize the optimal process adjustment for the closed-loop process control. 
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Figure 1-3 A framework for the laser welding monitoring system 

 

 

 

1.4 Outline of the thesis 

The paper consists of five chapters. The first chapter introduces the motivation and objectives of this 

paper. In Chapter 2, a literature survey on sensor system and data analysis for the monitoring of laser 

welding process are described. The quality measure of laser welding and relationship between the sensor 

signal and its weld quality for the paper are defined in chapter 3. In chapter 4, we define the problem 

that we focus on, and detailed procedures and methods for weld defect detection are described. A case 

study and the developed in-process monitoring system is described in Chapter 5. As a result, the 

conclusion and future research are described in Chapter 6. 
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II. Literature Survey 

 

 

2.1 Process monitoring for laser welding 

Several sampling tests such as mechanical test and visual inspection after welding process have been 

conducted to meet the demand for the quality level. Due to its characteristics of the non-contact and 

single-sided access, ensuring the quality of the joint assembly is one of the key issues on the realization 

of laser welding in an assembly line. Thus, complete quality inspection for every workpiece is needed 

to guarantee the quality of welded products. If proper and concise monitoring methods are adopted, the 

better productivity and the lower production cost can be achieved by reducing the number of production 

steps which is the sampling test and post-processing. 

Over the past decade, number of research on monitoring the laser welding process have been 

conducted. The monitoring process is categorized by (i)when the monitoring procedure is conducted 

and (ii)which physical phenomenon is captured. 

 

 

2.1.1 In-process monitoring 

In-process monitoring is that process signals or images are gathered and analyzed during the joining 

process. It is also called as a real-time monitoring process. As the types of detectable emissions, we can 

categorize the monitoring system into three types, which are acoustic signal inspection, optical(light) 

signal inspection, and vision inspection. Each process signal contains different information on laser-

material interaction, which can monitor and detect weld defects during the welding process for every 

workpiece. Thus, proper sensors should be used to measure those emissions of the welding process. 

Shao and Yan(Shao and Yan, 2005) reviewed the techniques for on-line monitoring and inspection 

of laser welding. They investigated various types of the signal such as acoustic emission, light emission, 

the intensity of plasma emitted from the welding area and reflected light in order to monitor the process 

condition. 
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Acoustic signal inspection 

Acoustic emissions are induced by changing the internal structures, metal vapor the surface and 

reflected laser beam from the welded parts. Those signals can be gathered a sensor which can convert 

acoustic waves into an electrical signal(e.g. voltage, ampere). A microphone placed nearby weld zone, 

which is generally used to collect the signals, was used to collect a signal of wavelength ranges between 

20Hz and 20kHz. The frequency band contains a sort of diagnostic information on weldment 

morphology, penetration depth, and the heat-affected zone. A study on the range conducted by Gu and  

Duley(Gu and Duley, 1996) developed discriminant function using these spectral components for 

classification on laser weld into three different classes: overheated, full penetration and non-penetration 

or partial penetration. More detailed monitoring of the welding process was achieved through analyzing 

the time-frequency properties of the acoustic emission signals than can be obtained through the 

statistical analysis and simple magnitude measurements. Zeng et al. (Zeng et al., 2001) defined signal 

intensity moving average(IMA) curve via wavelet analysis, and the curve effectively recognized the 

transitions of welding states and identifying defects. 

  

Figure 2-1 Acoustic sensor configuration (Shao and Yan, 2005) 

 

Higher frequency band over 50kHz is usually gathered by piezoelectric transducers mounted on 

workpieces. Li installed ultrasonic piezoelectric sensors on the beam mirrors. Welding process 

conditions varied to verify the response of various acoustic sensors with respect to the heating, melting, 

vaporization, plasma generation and keyhole generation(Li, 2002). 

Due to its low cost for installation and relevance on machining characteristic, the acoustic signal 

was easily applied to monitor and analyze the welding process. Although those benefit above, the 
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limitation of acoustic signal monitoring in harsh environments is evident. The acoustic signal 

monitoring system usually has been hard to implement at the industrial site because of high noise level 

from surroundings (Park, 2012). It has to be contacted with the weld pieces and exposed to high 

temperatures, and it makes piezoelectric sensors be impractical in industrial level also. 

 

Radiation(light) signal inspection 

Photodiodes and spectroscopes are widely used to convert the radiation emission(typically 

ultraviolet(UV) and infrared(IR) ranges) during the laser welding process into an electrical signal. 

Usually, the sensors are installed at the co-axial direction of the laser beam with several filters to confine 

the wavelength ranges of the each sensor. The combination of different photodiodes helped to carry out 

independent detection of plasma radiation, laser reflection, and thermal emission (Olsson et al., 2011). 

 
Figure 2-2 The spectral range of process signal in laser welding (Eriksson et al., 2010) and the 

dichromatic system for splitting the signal 

 

 
Figure 2-3 Typical setups for optical detectors using co-axial and off-axial arrangements (Shao 

and Yan, 2005) 
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Ultraviolet(UV) range 

For laser welding, the generated plasma is known to emit light with a wavelength between 190nm and 

beyond 400nm (Park et al., 2002). This spectral range is directly related to the state of plasma plume. 

Detailed information on keyhole oscillation and penetration depths can be achieved by analyzing the 

signal spectrum. 

Sibillano et al.(Sibillano et al., 2005) investigated the dynamics of the plasma plume through an 

optical spectroscopic approach. They performed a correlation analysis of the optical spectrum using 

covariance mapping technique. Tu et al.(Tu et al., 2002) quantitatively characterized the plasma 

absorption of a laser beam inside the keyhole. 

Zhang et al.(Zhang et al., 2005) insisted that keyhole plasma has effects on energy transfer 

efficiency to the material, a variation of molten pool width, and penetration depth. Bardin et al.(Bardin 

et al., 2005) also concluded the UV frequency range of the signal clearly indicated the presence of a 

fully opened keyhole, thus ensuring a fully penetrated weld. 

 

IR range 

The infrared signal, which is in the wavelength range of 1100~1700 nm typically, is related to the 

information on weld pool temperature and heat affected zone(You et al., 2014). The signal inferred 

width of the surface bead and occurrence of spatters which emits light with a wavelength between 

1000nm and 1600nm. 

Park et al.( Park and Rhee, 1999, Park et al., 2002) monitored the bead shape by a photodiode-

based acquisition system for the infrared emission from weld pool and spatters. A measurement of the 

spectral intensity of the IR radiation from the weld pool gave information on the weld pool temperature 

and occurrence of irregular shape. 

Colombo and Previtiali(Colombo and Previtali, 2009) have investigated the on-line monitoring of 

fiber laser welding performed on Titanium alloy. The author concluded that the time domain features of 

infrared waveband (1150–1800 nm) intensity reflected welding defects such as power decreases, 

shielding gas flow rate decrease, and lack of penetration. 

Jeon et al.(Jeon et al., 1998) analyzed transient heat flow of the surface temperature based on the 

finite element method using an infrared radiation sensor. 
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Reflected laser light range 

In addition, the reflected laser is also gathered to specify the amount of the radiation of the laser source 

which is not absorbed by the material. The signal range is slightly different with respect to the laser 

sources; fiber laser(1064nm) and disc laser(1030nm)(Kim et al., 2008). 

Many types of research have proved that the amount of laser reflection is sensitive to the variation 

of keyhole size(ISO, 1996). A larger amount of reflected signal were detected as the keyhole expands, 

while the less reflected if the keyhole was shrunk(ISO, 2001). 

 

Vision inspection 

On-line vision sensor such as CCD/CMOS and IR camera are widely used to monitor the current status 

of the laser welding process. Unlike the acoustic and photodiode sensors, vision system, which can 

capture the still images, can directly cater of information on monitoring status and further weld defects. 

Beersiek(Beersiek, 2001, Beersiek, 1999) presented a coaxial CMOS-based monitoring system for 

laser beam welding. The system observed the geometrical parameters of keyhole formation. Zhang et 

al. (Zhang et al., 1996) also measured the geometrical appearance of the weld pool using the vision 

camera system. Additionally, they utilized the neural network algorithm to identify the parameters in 

real time. 

Brook et al.(Brock et al., 2013) utilized two high-speed cameras to capture the synchronous vapor 

images. The observation direction of camera-1 and camera-2 was installed at 90° angles each with a 

frame rate of 6000 fps and an exposure time of 2μs. They observed fluctuations of 3D vapor plume 

during overlap welding of steel sheets. Based on the plume position, they analyzed relevant information 

on the process state. 

 

Figure 2-4 Full and partial penetration during laser beam welding with ND-YAG lasers 

(Beersiek, 2001) 
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Figure 2-5 The keyhole images and their corresponding intensity profile (Bardin et al., 2005) 

 

 

Figure 2-6 Trajectory of the vapor plume center relative to the keyhole position and exemplary 

images of the vapor plume recorded by camera (Brock et al., 2013) 

 

 

2.1.2 Post-process monitoring 

The purpose of the post-processing stage is not only to identify and detect the weld defects automatically 

but to visualize the better image information for supporting the decision of human inspectors. Usually, 

the vision based inspection was used to monitor the process status and weld quality right after the 
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completion of the welding process. 

Luo and Chen(Luo and Chen, 2005) used a Meta 3D camera and a Keyence position-sensitive-

detector (PSD) laser displacement sensor to be capable of tracking V-groove, fillet, lap and butt joints 

of welding with the high accuracy of less than 0.4 mm error. 

Huang and Kovacevic (Huang and Kovacevic, 2011, Huang and Kovacevic, 2012) developed a 

similar laser-based vision system for non-destructive weld quality inspection. They used point laser 

generator and the image receiver for capturing the geometry of weld seam and further surface weld 

defects. The point laser was projected onto the surface. The scattered and reflected laser light were 

detected by the image sensor. The vision sensor was designed based on the principle of laser 

triangulation. 

 

 

Figure 2-7 A Laser-Based Vision System for Weld Quality Inspection (Huang and Kovacevic, 

2011) 

 

Other inspection systems and techniques have been investigated by many researchers. Kaftandjian 

et al.(Kaftandjian et al., 2003) used the x-ray images and proposed a fuzzy based algorithm to detect 

weld defects. Nacereddine et al.(Nacereddine et al., 2005) also presented industrial radiography 

approach to investigate internal defects. 

 

Figure 2-8 Typical X-ray image of seam welding (Kaftandjian et al., 2003) 
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Figure 2-9 Application of morphological filtering on radiographic binary images (Nacereddine 

et al., 2005) 

 

Another approach(Kaftandjian et al., 2003) is to utilize ultrasound-based inspection system for 

weld quality by monitoring the weld pool. The ultrasound generated by the laser phased array 

propagated through the weld pool and was gathered by the non-contact electromagnetic acoustic 

transducer(EMAT) receiver. 

 

 

 

2.2 Weld quality monitoring using sensor signals 

As the use of monitoring system for laser welding process has increased, so does the need for reliable 

defect detection methods for process monitoring. Several experimental approaches have been 

undertaken to resolve the accuracy problem. Single sensor approach is relatively easy and fast way to 

detect defects. However, if only the use of the IR range of photodiode, defects caused by fluctuation of 

plasma plume cannot be detected. No single sensor, thus, can reliably monitor all laser welding 

processes. For that reason, two main solutions or stream arose to overcome the drawback. The first is 

to install a series of same sensors to increase signal reliability, and the other is to use heterogeneous 

sensors to get different physical responses. 
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2.2.1 Univariate approaches 

Commercially available monitoring systems usually used univariate defect detection methods that 

require threshold values or reference curves to distinguish between normal and defective status. In 

general, those thresholds are determined by numerous pre-experiments that are costly and time-

consuming. As shown in Figure 2-10, it is possible to consider that weld defect occurs if the sensor 

signal moves out of the pre-defined allowable value, and/or if the signal area exceeds the allowable 

tolerance. Note that the signal area calculation starts when the signal is outside the tolerance band and 

ends when the signal moves into the tolerance band again. 

 

 

Figure 2-10 Several univariate weld defect detection methods embedded in Precitec LWMTM 

 

Lee et.al (Lee et al., 2015, Kim and Lee, 2010) analyzed the RMS value of acoustic emission as 

well as light(plasma) emission as a function of lap clearances with Zn coated thickness. The results 

indicated that RMS values increased depending on the amount of Zn vaporization, and RMS also 

changed abruptly when defects occurred depending on lap joint conditions They found that when the 

frequency value was set to the bandwidth of bandpass filter, the filtered RMS values matched to the 

corresponding weld defects. Thus they have considered that the filtered RMS signals and defects were 

very closely related to the defects. 
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Figure 2-11 Changes in the raw signals and the continuous RMS value (Lee et al., 2015) 

 

Kim et.al(Kim et al., 2013) investigated that the correlation between the plasma electron 

temperature and the presence of weld defects. They decomposed the radiation signal into UV and IR 

ranges captured during the welding. Each signal was converted to wavelet filtered signal using Harr 

wavelet. The generated signals were converted to the spectrogram. They detected weld defect if the 

transformed signal was inside of the pre-defined threshold boundary. 

 

Figure 2-12 UV and IR Haar Wavelet signal and corresponding spectrogram for laser welding 

(Kim et al., 2013) 
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Rodill et al.(Saludes Rodil et al., 2010) calculated electron temperature and compared with defect 

occurrences. The proper settings of the threshold effectively detected the weld defect. The problem was 

to find threshold and parameter settings and to determine which of the abrupt changes in the signal were 

associated. 

 

Figure 2-13 Electron temperature along the seam in which three holes have occurred. The peak 

points illustrated the place the holes appear (Rodill et al., 2010) 

 

Bebiano and Alfaro(Bebiano and Alfaro, 2009) proposed advanced change detection algorithm, 

which was CUSUM LS filter algorithm, to detect defects caused by metallic inclusions, gas disturbance 

and sprayed water. The main advantage was that there was no need in calculating the electron 

temperature which was hard to calculate exactly. 

 

Figure 2-14 A result of experiment with metallic and sand inclusions - analysis with Cusum LS 

filter (Bebiano and Alfaro, 2009) 
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Zeng et al.(Zeng et al., 2001) defined signal intensity moving average(IMA) curve via wavelet 

analysis, and the curve effectively recognized the transitions of welding states and identifying defects. 

Luo et al.(Luo et al., 2005) used back-propagation (BP) neural network with three layers to 

diagnose welding defects such as gap and misalignment using the audible sound from the laser-induced 

plasma plume during keyhole laser welding. They decomposed the acoustic signal into a series of 

approximations and details distributed over different frequency bands. The decomposed levels were 

used for input variables for the neural network. 

Eriksson and Kaplan (Eriksson and Kaplan, 2009) studied a commercial system with three 

detectors for nine different industrial welding applications. Weld defects were analyzed and explained 

by the each signal. They found that the temperature and the plasma sensor had a high correlation to the 

fluctuation of the observed plume above the keyhole. Humping defect was observed by the temperature 

sensor whereas the rapid events of blowouts were concealed by the fluctuations of the plume. They 

concluded that understanding of the signal source facilitated the reliable application of monitoring 

systems. 

 

 

 

2.2.2 Multi-sensor approaches 

 

 

Figure 2-15 A multivariate interpretation of two sensor data; datapoint(a) is classified as defect 

in terms of multivariate approach, and datapoint(b) is classified as normal even the value of 

sensor 2 exceeds the UCL 
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As shown in Figure 2-15, univariate defect detection methods cannot sufficiently explain and reflect 

multi-sensory system and its characteristics. Generally, a laser welding monitoring systems use rich 

information from multiple sensors such as multiple combinations of radiation emission photodiodes and 

vision sensors simultaneously, which are used for detecting defective status. Two main solutions or 

stream arose to capture the rich information. The first is to install a series of same sensors to increase 

signal reliability. The second is to use heterogeneous sensors to get different physical responses. 

Multivariate approaches which can interpret inter-information between sensors are needed to make up 

for the drawback of univariate fault detection to enhance the accuracy and reliability of defect detection 

system. 

Colombo et al.(Colombo et al., 2013) compared different methods to monitor and analyze the 

visible emission. They evaluated the monitoring methods to identify the effects of variable factors, such 

as the gap between the plates and the location of the weld seam at which the variation of the gap occurs, 

on the monitored emission. Multivariate data analysis was used to evaluate different indicators, variance 

analysis is performed, and the statistical significance of the gap value and its location in the weld seam 

were used to compare the performance of the tested methods. 

Li et al.(Li et al., 2010) have researched on the weld bead vision measurement and the defect 

detection by the light-based vision inspection system. They developed an inspection system which can 

monitor weld bead dimensions to detect defects based on the measurements of groove width, weld bead 

width, filling depth, reinforcement height, plate displacement, weld bead misalignment, and undercut. 

Eriksson et al.(Eriksson et al., 2010) investigated on the independent information about the thermal 

condition of the melt (the T signal), the radiation from the plume of a heated gas above the melt (the P 

signal) and the amount of reflected laser light (the R signal). They suggested that the correlation between 

the temperature and plasma signals is so strong that a temperature–plasma signal would be more useful 

than the raw T signal in identifying the fluctuations of the infrared radiation from the melt pool. 

Zhang et al.(Zhang et al., 2008) estimated the welding penetration state by monitoring the infrared, 

ultraviolet and sound emission. They utilized the neural network algorithm as an information fuser for 

estimating the weld penetration. The PSO-BP algorithm was applied to increase the learning speed of 

the coefficients. 

Sun et al.(Sun et al., 2002) have evaluated the feasibility of real-time nondestructive weld 

penetration detection using sensor fusion of IR, ultraviolet (UV), audible sound (AS), and acoustic 

emission (AE) sensors. 

You et al.(You et al., 2014) reviewed the multi-sensor fusion technologies of both laser welding 
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monitoring and adaptive control. They insisted that the online defect detection and monitoring 

technologies were far from perfect, and the detection accuracy for different welding statuses and defects 

was expected to be improved. Moreover, as an aspect of the hardware system for the monitoring such 

as sampling frequency and resolution, the computing speed of intelligent signal processing and 

recognition technology were also restricted. Also, little research has been conducted on adaptive control 

during the welding process, and the controlled variables were mainly confined to the low-power laser 

system. 

 

 

2.2.3 Uncertainty consideration 

Park et al.(Park et al., 2002) developed a real-time evaluation system for the quality of the laser welding. 

They measured the plasma and spatters generated during laser welding are measured using two UV and 

an IR photodiode. To perform real-time evaluations of the weld quality, the system used a fuzzy multi-

feature pattern recognition using the measured signals. The process flow of the system is illustrated in 

Figure 2-16. Kuhl et al.(Kuhl and Neugebauer, 2006) also developed a fuzzy pattern technique where 

the entire welding seam was tested for faults by visual inspection and radioscopy as reference techniques. 

The method resulted in improved prediction of seam irregularities comparing with the conventional 

methods. 

 

Figure 2-16 Process flow of the fuzzy pattern recognition system (Park et al., 2002) 

Basir and Yuan(Basir and Yuan, 2007) investigated the use of Dempster–Shafer evidence theory 
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as a tool for modeling and fusing multi-sensory evidence in fault diagnosis of an automotive engine. 

They introduced two new methods for enhancing the effectiveness of mass functions in modeling and 

combining the evidence. They presented a criterion to evaluate the performance of the proposed 

information fusion system also. 

Kaftandjian et al.(Kaftandjian et al., 2003) presented an approach based on the combination of 

Dempster–Shafer theory and fuzzy sets for improving detection of weld defects. They modeled the 

uncertainty in detecting defects from the visualized weld images. The results obtained in the case of X-

ray weld inspection have shown that up to 80% of defects with a credibility of about 0.55 have been 

detected without any false alarm. 
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III. Laser Welding Quality 

The way of measuring the weld quality is categorized based on two properties. The mechanical 

properties is a conventional testing method for measuring the joint quality. By testing the strength of 

the joint material, one can compare that the current weld joint quality is good or bad. Traditionally, 

tensile strength, which is one of the test joint strengths of the industrial standards, is measured by the 

maximum stress that a material can withstand while being stretched or pulled before breaking. 

Additionally, several visual inspection tests of joint parts have been conducted. 

 

 

 

3.1 Mechanical Properties 

Mechanical properties of welds such as hardness, fatigue, tensile strength, and other important structural 

properties were discussed. 

Ma et al.(Ma et al., 2014) investigated the tensile strength of the hardened zone (fusion zone and 

the grain coarsened heat affected zone (HAZ)), the softened zone (subcritical HAZ), and the base 

material under the condition of high strength dual phase (DP) 980 steel lap joint. They compared the 

experimental result of the numerical prediction of von Mises equivalent strain concentrations with 

failure modes, and the comparison exhibits reasonable agreements. 

Chen et al.(Chen et al., 2009) evaluated the welding of the lap-joint configuration of hot-dip 

galvanized steel sheets through an optical scanning and electron microscopy with the tensile/hardness 

tests. They drilled holes between two sheets to vent zinc vapor effectively. They found that the small 

increase of hardness in “joint gap” and “vent hole” approaches because of the absence of gas porosity. 

The vent holes method led welds to be stronger, more aesthetic, and porosity-free compared to the 

existing “joint gap” method. The welds produced by using “vent holes” configuration also have higher 

tensile strength than the regular configuration of joint gap. 

Mei et al.(Mei et al., 2013) compared two types of laser system as a hardness and tensile strength 

as well as surface formation and cross-sectional weld shape. The hardness of fiber laser welding joint 

(weld zone and heat-affected zone) is slightly higher than that of CO2 laser welding joint without 

exception. With the appropriate technological parameters, the tensile-shear capacity is also better when 

using the fiber laser compared with CO2 laser welding test pieces. 

Mei et al.(Mei et al., 2009) studied the effects of process parameters such as laser power, welding 
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speed, focal position, shielding gas and zinc vaporization on the mechanical weld quality. The 

experimental results indicated that both the tensile strength and microhardness of welding joints were 

higher than those of the base metal under the chosen conditions. 

 

 

 

3.2 Visual Inspection 

The difference of visual inspections compared to the testing the mechanical properties is the way of  

non-destructive tests. The mechanical testing should be followed by the welding process, and thereby 

producing another processing step of the production line. The advantage of the non-destructive test is 

to reduce at least one production step, and thus reducing production time and its corresponding cost. 

 

3.2.1 Destructive test 

The visual inspection can be conducted by destructing the test weld specimen. A cross-sectional view 

provides the visual shape of the weld joint part. From the shape, one can detect weld defects inside of 

the weld bead such as crack, porosity, and depth of penetration. Generally, the weld cross-section 

formed the shape of “Y” (wide at the top and narrow at the bottom) if the CO2 laser is utilized for 

welding. The cross-sectional shape is similar to “I” with almost the same upper and lower part width 

when using fiber laser(Mei et al., 2013). 

 

3.2.2 Non-destructive test 

Westerbaan et al.(Westerbaan et al., 2014) investigated the influence of the amount of concavity on the 

tensile and fatigue properties of the welds in the condition of fiber laser welds. The amount of concavity 

was measured by taking the ratio of the reduction in area from the sheet thickness in the fusion zone 

(FZ) to the initial sheet thickness. They concluded that large concavity of 25 to 35% reduced the tensile 

strength of the DP980 welds. 

The relationship between non-destructive testing and the corresponding mechanical properties 

should be considered. Investigation of seam width, length, and its variation was somewhat related to 

the tensile strengths. Sinha et al.(Sinha et al., 2013) have concluded that relationship between the 

variation of weld seam and tensile shear strengths were correlated in the laser welding of galvanized 

steel in a lap joint configuration. They insisted that the variation of weld seam could be one of the 
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potential joining quality estimators. From the research, the variation of weld seam could be used as an 

indirect measure for estimating the tensile strength. 

Further, Eriksson and Kaplan(Eriksson and Kaplan, 2009) investigated the comparison of the 

surface defect and its radiation signal. Humping can be observed by the temperature range of the 

photodiode sensor. A reflected laser light also can be useful to judge the quality of the weld. 

 

 

 

3.3 The quality measure of laser welding 

Based on the previous studies and researches, a non-destructive test of visual inspection sufficiently is 

the indirect measure of mechanical properties. The visual inspection(weld quality) standard differs from 

the need of industrial level and companies. 

In this paper, we utilized modified version of the laser welding quality index from of an industrial 

standard specification as shown in Figure 3-1. If either partial penetration(lack of penetration), spatter, 

penetration hole, or porosity occurs on a stitch, the stitch is classified as a bad-welded(defect) stitch. 

 

 

Figure 3-1 A standard specification of the laser welding quality index 

Criteria criteria

Spatter No spatter on welding bead

Penetration 

hole
No penetration hole on welding bead

Porosity
No porosity on weld bead

※ undercut along a direction of weld bead

Partial 

penetration

100% full penetration needed (back bead)

※ In case of outer hemming parts for good appearance, larger 

than 10% partial penetration

Porosity

Bead
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IV. Weld Defect Detection via Sensor Fusion under 

Uncertainty 

 

 

 

4.1 Problem statement 

To enhance the accuracy of the defect detection performance, laser welding monitoring systems usually 

use rich information from multiple sensors such as plasma, temperature, and back reflection signals. 

However, it is not straightforward to interpret multiple sensor information as we discussed in Chapter 

1. It ultimately arises the problem regarding uncertainty in defect detection. We need to specify the 

causes of the uncertainty, in particular on the commercially available monitoring system. It is the focus 

point of the thesis. 

First, the final decision or classification of the target state cannot be simply achieved by the 

monitoring system consists of multiple sensors, each of which may indicate different weld quality status. 

It means that the individual sensors decide different decision simultaneously as shown in Figure 4-1. 

For example, plasma detector classifies that current welding state is defective, whereas temperature 

detector decided as a normal state. 

 

 

Figure 4-1 An illustration of conflict decision problem 
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Second, even all the sensor signals are within the tolerance range, and thus, interpretation of each 

decision of the sensors are straightforward to classify or decide it as the same result, the actual defect 

may have happened in a practical environment. It is called in-tolerance failure problem. The single 

hyperplane or threshold is not sufficient to reflect this type of problem in this case. We should consider 

each signal carefully as shown in this Figure 4-2. The temperature signal has bounded the bottom 

threshold, which means that all the data points of the temperature sensor are inside of the thresholds. 

The trend and signal level, however, is highly close to the threshold, which may cause the defects. 

 

 

Figure 4-2 An illustration of in-tolerance failure problem 

 

Third, the specific defect patterns of the signal may exist. It can be interpreted as a generalized 

version of multiple thresholds problem. As shown in this Figure 4-3, specific patterns can be extracted 

from the different sensor signal. How we can divide one signal to several pieces of segments, codify 

the segmented pieces, and interpret the series of the codified segment will be the approaches for the 

solution of this problem. 
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Figure 4-3 An illustration of event pattern classification and the segmentation problem 

 

In this research, we focused on the first and the second issues by applying evidence theory and 

modified probability assignment function for detecting the weld defect from the multiple sensory 

information. 

As shown in Figure 4-4, the defect detection system is divided into two processes. The first is 

training process to derive thresholds of normal status from the training data. The second is a testing 

process to detect or classify the testing event as a normal or abnormal status. This defect detection 

technique that operates in a semi-supervised model assumes that the training data has labeled instances 

for only the normal class. 

Based on the Dempster-Shafer theory of inference, we were able to treat uncertainty of in-tolerance 

failure. The Dempster’s combination rule was used to combine multiple source information to overcome 

the first problem as we mentioned above. 

 

 

Figure 4-4 A process flow of the general fault detection system 

Thresholds 

Training 

Detection 

Training data Test data 

Classification 

results 

Step 1: Training Step 2: Testing 
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4.2 Estimation of a probability distribution function for sensor data 

 

The training process is to generate the threshold using previous training data for the testing hypothesis 

of normal status. In this case, we used three sensor signal data, which were plasma, temperature, and 

back-reflection of normal status. For generating threshold, normal state models of each sensor data were 

predicted. 

Calculating the goodness of fit among the several probability models is compared to fit the best 

probability density function model of each sensor data. The goodness of fit is a degree of fitting between 

hypothesis and probability distribution function extracted from sensor data. It gives us the best-fitted 

probability distribution function with its estimated parameter values corresponding the data histogram 

gathered. In order to extract compatible probability distribution function from the data, criteria for 

degree of fit were needed such as NLogL(Negative of the log likelihood), AIC(Akaike information 

criterion), AICc(AIC with a correction for finite sample sizes), and BIC(Bayesian information 

criterion)(Oh and Kim, 2014). A probability distribution function with the smallest negative log 

likelihood value, among the different probability distribution function, was the best fit to the data. In 

the case of temperature signal, estimation of probability distribution function is shown Figure 4-5.  

 

 

Figure 4-5 An example of PDF estimation result (Gamma distribution) of gathered temperature 

sensor data 

 

The bold curve is Gamma distribution (k=22.6594 and θ=0.8923) which was the best fit for the 

specific sample stitch. The distribution function scored the smallest NLogL value among the value of 

other probability distribution functions. Each sensor had a different estimation of probability 
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distribution function results. Once estimation of probability distribution function for each sensor was 

conducted, the statistical thresholds were generated by the distribution. 

 

Algorithm 1. Estimation of Probability distribution function 

Require: {𝑔1(𝜃|𝑥), 𝑔2(𝜃|𝑥), … , 𝑔𝑛(𝜃|𝑥) is possible set of probability distribution functions 

where 𝑥 is observation vector 

 

1: for i = 1 : n 

2:    compute 𝑁𝐿𝑜𝑔𝐿(𝑔𝑖(𝜃|𝑥)) 

3: endfor 

4: 𝑔𝑓𝑖𝑡(𝑥|𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑔𝑛(𝜃|𝑥)

(𝑁𝐿𝑜𝑔𝐿(𝑔𝑛(𝜃|𝑥)) 

5: 𝐿𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑖𝑚𝑖𝑡 = 𝑎𝑟𝑔
x

(𝑔𝑓𝑖𝑡(𝑥|𝜃) = 0.025), 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 = 𝑎𝑟𝑔
x

(𝑔𝑓𝑖𝑡(𝑥|𝜃) = 0.500), 

6: 𝑈𝑝𝑝𝑒𝑟𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐿𝑖𝑚𝑖𝑡 = 𝑎𝑟𝑔
x

(𝑔𝑓𝑖𝑡(𝑥|𝜃) = 0.975) 

 

 

 

4.3 Proposed probability assignment 

 

4.3.1. The Dempster-Shafer theory 

The Dempster-Shafer theory was introduced by Arthur Dempster and developed by Glenn Shafer. The 

Dempster-Shafer theory(Shafer, 1992) was developed to overcome the limitation of conventional 

probability theory by applying uncertainty in evidence. The limitation of Bayesian inference was that 

we only have focused on only conclusions for inferring a single probability such as p(x|y). As an aspect 

of the Dempster-Shafer theory, whereas, we can assign the distributing support probability to the union 

of proportions as well as to a proportion itself. By doing so, we can deal with the uncertainty of the 

information. In this manner, the Dempster-Shafer theory was considered a generalized Bayesian 

theory(Sentz and Ferson, 2002, Smets, 1993). The principles of the theory are described as follows. 

We set the possible hypothesis which is called frame of discernment. it is the finite set of all 

possible subset of Θ. Once the frame of discernment is determined, we can assign the masses to all the 

power set of Θ, which is called basic probability assignment(BPA). the assignment function is a kind 

of mapping to a probability between 0 and 1 as equation (1). 
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 𝑏𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀: 2Θ → [0,1] (1) 

Each element from the Θ is mutually exclusive. The proportion of all evidence is allocated to 

every subset of Θ. Note that the empty set(∅) should be the probability of 0, which implies that one of 

the conclusions must be true. The mass value of A (𝑚(𝐻)) is proportion of all evidence that supports 

this element of the power set, where A is a member of the power set. 

 𝑀(∅) = 0 (2) 

 ∑ 𝑀(𝐴) = 1

𝐴⊂2Θ

 (3) 

The basic probability value of 𝑀(𝐴)  is related only to the event A. There is no additional 

information on any subsets of A. each subset of A has, by definition, its own mass respectively. It is 

understood to be a measure of the belief that is committed exactly to hypothesis A. 

Assigning the masses to all the possible subsets has advantages comparing with the Bayesian 

approach which is only assigning probabilities to single elements of Θ and not on elements of the 

powerset of the possible states. Dempster-Shafer’s evidence theory can let us deal with the quantitative 

uncertainty of the hypothesis in the case that some sensors can distinguish between normal and defect 

state, while the others might not be able to provide any hints about the states. 

 

The total belief of A represents the total amount of belief of A and is calculated by the sum of the 

masses of elements which are subsets of A. It is represented as a Belief function(Bel), which is defined 

by the equation (4). It gives the total belief committed to A: 𝐵𝑒𝑙(𝐴) . The function signifies a 

quantitative measure of one belief of evidence, which reflects the minimum belief value on A. 

A Bel is a belief measure that maps the power set 2Θ to the unit interval and is defined as follows: 

 𝐵𝑒𝑙(𝐴) =  ∑ 𝑚(𝐵)

𝐵⊂A

 (4) 

 𝐵𝑒𝑙(𝐴) + 𝐵𝑒𝑙(¬𝐴) ≤ 1 (5) 

where ¬𝐴 is the complement of A. 

A Plausibility, which is represented as 𝑃𝑙𝑠(𝐴) reflects the total amount of belief(the maximum 

belief) that could include potential evidence of A. 
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 𝑃𝑙𝑠(𝐴) = ∑ 𝑚(𝐵)
𝐵∩A ≠∅

 (6) 

 𝑃𝑙𝑠(𝐴) = 1 − 𝐵𝑒𝑙(¬𝐴) (7) 

 

The equation (7) implies that the less compatible evidence of A, the more plausible it is. 

The real belief in A lies between 𝐵𝑒𝑙(𝐴) and 𝑃𝑙𝑠(𝐴). As a result, uncertainty, more concretely 

ignorance, regarding A is represented by the difference of the two measures; 𝑃𝑙𝑠(𝐴) − 𝐵𝑒𝑙(𝐴). The 

relationship between two measures are shown as Figure 4-6. 

 

Figure 4-6 The relation between Bel(A) and Pls(A) 

 

 

4.3.2. The thresholds adaptive probability assignment function 

Probability distribution functions were estimated by using good-welded signals. The best-fitted 

probability distribution function was selected in accordance with the lowest value of NlogL(Negative 

log likelihood). The best-fitted probability distribution function is divided into three intervals 

corresponding the probability of 2.5%(lower control limit), 50%(midpoint), 97.5%(upper control limit) 

respectively. 

The probability assignment was conducted based on the generated thresholds from the training 

process. 

0 1 𝐵𝑒𝑙(𝐴) 𝑃𝑙𝑠(𝐴) 

Belief of 𝐴 
(Support interval) 

Belief of ¬𝐴 

(unsupported interval) Uncertain interval 

Plausibility interval 
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Figure 4-7 A best-fitted probability distribution function of plasma intensity signal 

 

We assumed that the value between lower and upper control limit tends to be the normal state 

based on the estimated probability model. If current sensor signal level is larger than the upper control 

limit or smaller than the lower control limit, the probability of being a normal state decreased. Chen 

and Aicklein (Chen and Aickelin, 2006) implemented an anomaly detection system to evidence theory. 

They adopted standard sigmoid function to their anomaly detection algorithm to analyze the Wisconsin 

Breast Cancer Dataset (WBCD), which is widely used dataset for benchmarking of fault detection 

methods (Goldstein and Uchida, 2016). They utilized the function as a basic probability assignment 

function(activation function). 

We defined a modified version of the dual sigmoid function(equation (8) and (9)) to control the 

slope of the probability function for gradual changes around the thresholds. The exact equation of the 

proposed adaptive probability assignment function is: 

 𝑀𝑝𝑎𝑓(𝐻) = {
(1 + ⅇ𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓∗(𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡−𝑈𝐶𝐿))

−1
  ,   𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 ≥ 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

(1 + ⅇ −𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓∗(𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡−𝐿𝐶𝐿))
−1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(8) 

where 

 𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓 =
𝑈𝐶𝐿 + 𝐿𝐶𝐿

𝑈𝐶𝐿 − 𝐿𝐶𝐿
 (9) 

It illustrated that the probability of a hypothesis which is a current state is normal. A slopeCoeff 

controls and adjusts the proposed probability assignment function by changing the slope of the graph 
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near the thresholds. The difference between upper and lower control limit is getting larger, slopeCoeff 

is getting larger, which result in the steeper slope of the probability function nearby the upper and lower 

control limits. A simple comparison of the probability assignment function with respect to the different 

slopeCoeff is illustrated in Figure 4-8. It illustrated how the coefficient adjusts and controls the slope 

of the probability assignment functions. 

 

Figure 4-8 A comparison of proposed probability assignment function with respect to the 

magnitudeCoeff: (a) 1, (b) 3, (c) 5 , (d) 20 

 

Figure 4-9 An example of the adaptive probability assignment function of upper control limit: 

23.4V, lower control limit: 11.7V, and midpoint:17.3V 
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Traditionally, a binary decision approach based on the statistical analysis is shown in the Figure 

4-9 (a). It implies that the decision model classifies the current weld status as a defect state if the current 

voltage is out of the thresholds range between the LCL and UCL. However, the binary categorical 

classification was unable to handle the uncertainty in terms of the in-tolerance failure problem. 

To solve the problem, we defined a new probability assignment function by assigning the gradually 

decreasing probability of normal state nearby the thresholds. A graphical illustration of the probability 

assignment function with thresholds(in this case of the plasma signal, upper control limit: 23.4V, lower 

control limit: 11.7V, and midpoint:17.3V) is shown in Figure 4-9 (b). 

The proposed probability assignment function was quite reasonable to consider the uncertainty 

around the thresholds. We further improved the proposed probability assignment function by adding the 

information of the estimated probability density function from chapter 4.3.1. The weighted summation 

of the two probability information(The estimated probability density function and The proposed 

probability assignment function) was used to assign the probability of the normal state. The weight(α) 

was selected as an arbitrary value from the pre-experiments. The weight decided how much the amount 

of information from the estimated probability density function would be adjusted to the proposed 

probability assignment function. By applying the weight, the probability assignment function contains 

richer information in terms of skewness of the original training data. 

 

Figure 4-10 A comparison of the adjusted probability assignment function with respect to the 

different weights(α): “α=0” implies that there is no further information of the estimated 

probability density function 
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The detailed equation for the adjusted probability assignment function is described as equation 

(10). 

 𝑀𝑠𝑒𝑛𝑠𝑜𝑟(𝐻) = 𝛼 ∗ 𝑔𝑓𝑖𝑡(𝐻) + (1 − 𝛼) ∗ 𝑀𝑝𝑎𝑓(𝐻) (10) 

Further, we have to assign a value to the set {𝐻, ¬𝐻} to express the ignorance of the sensor and 

the possibility that might be uncertain to determine whether the current state is normal or not; 

𝑀(𝐻, ¬𝐻) → [0, 1]. 

 

 

Figure 4-11 A general guideline to define basic probability assignments of dual threshold 

interval(a) and modified probability assignment of 𝑴(𝑯, ¬𝑯) 

 

A general guideline to define the 𝑀(𝐻, ¬𝐻) is shown in Figure 4-11(a)(Siaterlis and Maglaris, 

2004). The intuition behind this ‘general guideline’ is that the decision beliefs should be treated with an 

uncertainty at the transient state even though the thresholds provide a quite certain decision. 

From the Siaterlis and Maglaris research, we also modified the guidelines for assigning the 

ignorance as shown in Figure 4-11(b). The level of uncertainty given by 𝑀(𝐻, ¬𝐻)  gradually 

increases or decreases at the transient state of the graph(see Figure 4-11(b)), denoting the sensor's 

uncertainty related to the value of 𝑀(𝐻).  

We followed the equation that 𝑀(𝐻) + 𝐻(¬𝐻) + 𝐻(𝐻, ¬𝐻) = 1  to assign a probability of 

𝐻(¬𝐻). 
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Algorithm 2. Threshold adaptive probability assignment 

Require: 

𝑢𝑐𝑙𝑆 = 𝑢𝑝𝑝𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝑙𝑐𝑙𝑆 = 𝑙𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝑚𝑝𝑆 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝑥𝑆𝑖 = 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓𝑆 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝛼𝑆 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 

𝑀𝑆𝑖(𝐻) = 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑆 𝑤𝑖𝑡ℎ 

𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑛 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻 𝑖𝑠 𝑡𝑟𝑢𝑒 

 

1: for S = 1 : number of sensors 

2:     for i = 1 : number of data point on a stitch 

3:        if 𝑥𝑆𝑖 ≥ 𝑚𝑝𝑆 then 

4:            𝑀𝑆_𝑝𝑎𝑓_𝑖(𝐻) =
1

1+exp(𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓𝑆∗(𝑥𝑆𝑖−𝑈𝐶𝐿𝑆))
 

5:        else 

6:            𝑀𝑆_𝑝𝑎𝑓_𝑖(𝐻) =
1

1+exp(−𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓𝑆∗(𝑥𝑆𝑖−𝐿𝐶𝐿𝑆))
 

7:        end if 

8:        𝑀𝑆_𝑝𝑎𝑓_𝑖(𝐻) =
1

1+exp(𝑠𝑙𝑜𝑝𝑒𝐶𝑜𝑒𝑓𝑓𝑆∗(𝑥𝑆𝑖−𝑈𝐶𝐿𝑆))
 

9:        𝑀𝑆𝑖(𝐻) = 𝛼𝑆 ∗ 𝑔𝑓𝑖𝑡(𝑥𝑆𝑖|𝜃) + (1 − 𝛼𝑆) ∗ 𝑀𝑆_𝑝𝑎𝑓_𝑖(𝐻) 

8:        if 𝑀𝑆𝑖(𝐻) ≥ 0.5 then 

9:            𝑀𝑆𝑖(𝐻, ¬𝐻) = 1 − 𝑀𝑆𝑖(𝐻) 

10:        else 

11:           𝑀𝑆𝑖(𝐻, ¬𝐻) = 𝑀𝑆𝑖(𝐻) 

12:       end if 

13:        𝑀𝑆𝑖(∅) = 0 

14:        𝑀𝑆𝑖(¬𝐻) = 1 − 𝑀𝑆𝑖(𝐻) − 𝑀𝑆𝑖(𝐻, ¬𝐻) 

15:     end for 

16: end for 
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4.4 Multi-sensor evidence fusion by the Dempster’s combination rule 

 

The data from the several information sources were calculated and allocated by corresponding modified 

probability assignment functions. The probability assignment function from different sensors was fused 

as one criterion by the Dempster’s rule of combination (Shafer, 2016, Shafer, 1976)(also called 

orthogonal sum rule). 

Assume that there are two information sources such as plasma, and temperature sensors. Suppose 

that the plasma detector believes the hypothesis H(Normal) is true with confidence of 𝑀𝑇(𝐻), and 

temperature detector believes the hypothesis H(Normal) is true with confidence of 𝑀𝑃(𝐻). Dempster-

shafer’s combination rule, which is symbolized as ⊕, can combine the two separate beliefs into a single 

belief as formula below: 

 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻) = (𝑀𝑃 ⊕ 𝑀𝑇)(𝐻) =
∑ 𝑀𝑃(𝐵) ∗ 𝑀𝑇(𝐶)𝐵∩𝐶=𝐴

1 − 𝐾
 (11) 

where 

 𝐾 = ∑ 𝑀𝑃(𝐵) ∗ 𝑀𝑇(𝐶)

𝐵∩𝐶=∅

 (12) 

The denominator of equation (11) can be interpreted as a kind of normalization factor for 

combination result of belief 𝑀𝑃 ⊕ 𝑀𝑇(𝐻). K in formula represents a probability value related to th

e measure of conflict between the combining sources when 𝑀𝑃 and 𝑀𝑇 is combined in terms 

of event A. A conflict can appear when, for example, plasma detector has a strong belief on 

𝐻 whereas temperature detector has a strong belief on ¬𝐻. Consequently, The smaller the 

value of denominator is, the more conflict exists between two sources, and the less informative is after 

the fusion. 

 

Table 4-1 Dempster’s combination table for the two basic probability functions 

𝑀𝑃(𝑥) 

𝑀𝑇(𝑥) 
𝐻 ¬𝐻 𝐻, ¬𝐻 

𝐻 
𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻) 

= 𝑀𝑃(𝐻) ∗ 𝑀𝑇(𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(∅) 

= 𝑀𝑃(¬𝐻) ∗ 𝑀𝑇(𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻) 

= 𝑀𝑃(𝐻, ¬𝐻) ∗ 𝑀𝑇(𝐻) 

¬𝐻 
𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(∅) 

= 𝑀𝑃(𝐻) ∗ 𝑀𝑇(¬𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(¬𝐻) 

= 𝑀𝑃(¬𝐻) ∗ 𝑀𝑇(¬𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(¬𝐻) 

= 𝑀𝑃(𝐻, ¬𝐻) ∗ 𝑀𝑇(¬𝐻) 

𝐻, ¬𝐻 
𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻)

= 𝑀𝑃(𝐻) ∗ 𝑀𝑇(𝐻, ¬𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(¬𝐻)

= 𝑀𝑃(¬𝐻) ∗ 𝑀𝑇(𝐻, ¬𝐻) 

𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻, ¬𝐻) 

= 𝑀𝑃(𝐻, ¬𝐻) ∗ 𝑀𝑇(𝐻, ¬𝐻) 
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We can convert the equation (11) to a matrix form for calculating the combination rule. 

The combined belief of normal state is calculated by summation of 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻) . The total 

summation of 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻)  and 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻, ¬𝐻)  denotes the combined probability of 𝑀(𝐻) 

and 𝑀(𝐻, ¬𝐻). 

 𝐵𝑒𝑙(𝐻) = 𝑀𝑃(𝐻) ∗ 𝑀𝑇(𝐻) + 𝑀𝑃(𝐻) ∗ 𝑀𝑇(𝐻, ¬𝐻) + 𝑀𝑃(𝐻, ¬𝐻) ∗ 𝑀𝑇(𝐻) (13) 

 𝑃𝑙𝑠(𝐻) = 𝐵𝑒𝑙(𝐻) + 𝑀𝑃(𝐻, ¬𝐻) ∗ 𝑀𝑇(𝐻, ¬𝐻) (14) 

 

In this case of Θ = {𝐻, ¬𝐻} , all the power set of frame of discernments, which is {∅,

𝐻, ¬𝐻, {𝐻, ¬𝐻}}, are mapped in the form of two binary digits respectively for the bitwise conjunctive 

operation(AND) computation for the combination procedure. The mapped binary values are represented 

as the Table 4-2. A set of all possible subset of assigned basic proabability(mass function) is converted 

to vector form to compute vector inner product computation. 

 

Table 4-2 Boolean truth table for the combination of two basic probability function 

𝑀𝑃(𝑥) 

𝑀𝑇(𝑥) 
𝐻: (01)2 ¬𝐻: (10)2 𝐻, ¬𝐻: (11)2 

𝐻: (01)2 (01)2 (00)2 (01)2 

¬𝐻: (10)2 (00)2 (10)2 (10)2 

𝐻, ¬𝐻: (11)2 (01)2 (10)2 (11)2 

 

The detailed multisensor fusion algorithm in this thesis is as follows: 
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Algorithm 3. Sensor fusion algorithm based on the Dempster’s combination rule 

Require: 

𝑥𝑖 = [∅, 𝐻, ¬𝐻, {𝐻, ¬𝐻}]: 𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑀𝑎𝑝𝑑𝑒𝑐2𝑏𝑖(𝑋) = 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑒𝑥 𝑡𝑜 𝑏𝑖𝑛𝑎𝑟𝑦 𝑑𝑖𝑔𝑖𝑡𝑠 

𝒄𝒐𝒎𝒃𝒊𝑴𝒂𝒕𝒓𝒊𝒙 = Dempster’s combination matrix (dot product of two vectors) 

 

1: 𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐 = 𝑥1 

2: for i = 1 : n-1 

3:    𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐 ∗ 𝑥𝑖+1′ 

4:    𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻) = 𝑠𝑢𝑚(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑀𝑎𝑝𝑑𝑒𝑐2𝑏𝑖(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥) = ”01”) 

5:    𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(¬𝐻) = 𝑠𝑢𝑚(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑀𝑎𝑝𝑑𝑒𝑐2𝑏𝑖(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥) = "10") 

6:    𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻, ¬𝐻) = 𝑠𝑢𝑚(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑀𝑎𝑝𝑑𝑒𝑐2𝑏𝑖(𝑐𝑜𝑚𝑏𝑖𝑀𝑎𝑡𝑟𝑖𝑥) = ”11”) 

7:    𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐 = [0, 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻), 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(¬𝐻), 𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻, ¬𝐻)] 

10: end for 

 

11: 𝐵𝑒𝑙(𝐻) = 𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐[𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻)] 

12: 𝑃𝑙𝑠(𝐻) = 𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐[𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻)] + 𝑐𝑜𝑚𝑏𝑖𝑉𝑒𝑐[𝑀𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝐻, ¬𝐻)] 

 

The combination rule satisfies the law of commutativity and associativity. The combination of 

more than three sources, and thus, can be calculated as follows: 

 𝑀𝑃 ⊕ 𝑀𝑇 ⊕ 𝑀𝑅(𝐻) = ((𝑀𝑃 ⊕ 𝑀𝑇) ⊕ 𝑀𝑅)(𝐻) (15) 

The state of current weld result is classified by testing combined belief is larger than a certain 

threshold(user selected). 

A whole procedure for the defect detection system including the combination of each evidence 

(basic probability mass value) is illustrated as follows in Figure 4-12. The normal state data from three 

sources are pre-processed and trained as a form of a threshold. Based on the thresholds and basic 

probability assignment functions, test data are determined the probability of the normal state. The 

probability vectors came from the different information sources are combined by Dempster’s 

combination rule. 
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Figure 4-12 A procedure of the defect detection system with the sensor fusion of each evidence 
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4.5 Problem sets 

A series of experiments have been conducted to validate and verify the proposed weld defect detection 

method of this thesis. 

 

 

4.5.1 Experimental setup 

We performed coupon tests with the 6-kW disk laser and 2-kW fiber laser welding system to statistically 

verify the proposed defect detection method and the sensor fusion method. 

A Figure 4-13 shows a schematic representation of the experimental setup. As shown in this Figure 

4-13 (a), thickness gauges of 0.2mm and 0.3mm were used to retain the appropriate part-to-part gap 

between two steel sheets for ventilating the zinc vapor. The only difference between the Figure 4-13 (a) 

and (b) is whether the part-to-part gap was inserted at the last stitch or not. The weld defects were caused 

by the intentionally removed part-to-part gap. We used (a) and (b) as a setup for the experiment #1 and 

#2. In the case of the experiment #3 and #4, experimental setup (a) and (c) were utilized. 

The experimental materials used were dual-phase steel, both of which are galvanized with a zinc 

coating layer; 1.4-mm-thick (upper part) SGAFC590DP and 1.8-mm-thick (lower part) SGARC440, 

which have been used in car side-member parts. The amount of zinc coating on the lower and upper 

parts and their chemical compositions and mechanical properties of the tested materials are summarized 

in Table 4-3. 

All the specimens and thickness gauges were cleaned using an alcohol cleaner to remove any dust 

and oil layers, and the specimen was tightly clamped on each side of the stitch to minimize any 

unexpected part-to-part gaps. 

Based upon the experimental data, the proposed weld defect detection and combination rule was 

tested as the performance measure of precision, recall and F-score. 

Table 4-3 Chemical composition of experimental specimen (galvanized steel) 

Material 
Thickness 

(mm) 

C 

(%) 

Si 

(%) 

Mn 

(%) 

P 

(%) 

S 

(%) 

SGAFC 590DP 

lower part 
1.8 0.09 0.26 1.79 0.03 0.003 

SGARC 440 

upper part 
1.4 0.08 0.02 1.38 0.02 0.003 
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Figure 4-13 Experimental setup 

 

Table 4-4 Laser welding process parameter for the experiments 

Experiment 
Stitch length 

(mm) 

Feed rate 

(mm/min) 

Laser power 

(kW) 

Part-to-part gap 

(mm) 

#1 

6.6kW disk laser 
30 3600 5.0 0.2 

#2 

6.6kW disk laser 
30 3600 5.0 0.3 

#3 

2kW fiber laser 
30 900 2.0 0.2 

#4 

2kW fiber laser 
30 900 2.0 0.3 
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4.5.2 Experimental result and discussion 

We conducted the four experiments above. The total dataset of the four experiments were 50, 45, 100, 

105 respectively. The actual defects were classified by the visual inspection rule defined in Chapter 3. 

The number of actual defects occurred and good weld result is summarized in Table 4-5. We then 

analyzed the experimental data and validated the proposed weld defect detection with the sensor fusion 

method(Dempster’s combination rule). The actual defects were compared the result of the proposed 

weld defect detection results. The defect detection accuracy was calculated as the more sensors 

information(data) were fused. 

In the case of weld defect detection regime, the proportion of the actual states (normal and 

abnormal) is highly skewed. This characteristic of dataset makes it hard to determine the performance 

of the proposed detection method. A comparison of accuracy(error rate), which is calculated as a 

proportion of correct detections, is not enough to measure the performance due to the lack of abnormal 

data(Thomas and Balakrishnan, 2008). This traditional performance measure is not adequate while 

dealing with states(classes) which are very rare. In this case, precision, recall, and F-score are suitable 

indexes for the performance of the detection method (Patcha and Park, 2007). 

Precision is a measure of what fraction of the test data detected as normal is actually from the 

normal state. Recall, on the other hand, is a measure of what fraction of the normal state is correctly 

detected. There is a trade-off between the precision and recall. As the detection threshold is getting 

larger, the better precision is. The recall, on the other hand, is being worse. It is, thus, required to 

evaluate how it performs better on both recall and precision. F-score, which can be considered as the 

harmonic mean of recall and precision, is finally used to measure the performance of proposed detection 

method. As shown in the equation (18), a higher value of F-score indicates that the proposed method is 

performing better on recall as well as precision. 

Table 4-5 The number of actual defected samples in the experiment #1 ~ #4 

Experiment Normal Defect 
Total 

number of samples 

#1 

6.6kW disk laser 
45 5 50 

#2 

6.6kW disk laser 
40 5 45 

#3 

2kW fiber laser 
61 39 100 

#4 

2kW fiber laser 
66 39 105 
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Table 4-6 Confusion matrix 

 
Actual defect 

True False 

Predicted 

result 

True True positive False positive 

False False negative True negative 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒
 (16) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (17) 

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (18) 

 

The weld defect detection results of the four experiments are shown in Figure 4-14 ~ Figure 4-17. 

From the experimental results, we observed that the sensor fusion of plasma and temperature signal 

gave the better accuracy regarding the F-score metric rather than just using individual sensors for defect 

detection. 

The sensor fusion, however, did not always provide the better detection accuracy as shown in Table 

4-9 and Table 4-10. As shown in the tables, sensor fusion with reflection signal resulted in the worse 

performance of F-score. The sensor fusion of all three sensors(plasma, temperature, and reflection) also 

decreased the f-score compared to the F-score of sensor fusion of temperature and plasma signal. 

Even though the F-score decreased when reflected signal was fused, the lower bound of accuracy 

increased by fusing other sensors with the reflected signal. The retaining the robustness is one of the 

advantages of sensor fusion. The result provided some evidence that the fusion of qualified information 

sources improved the reliability of weld defect detection accuracy. 
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Figure 4-14 Average probability of normal state and corresponding classification result of 

experiment #1 

 

 
Figure 4-15 Average probability of normal state and corresponding classification result of 

experiment #2 
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Figure 4-16 Average probability of normal state and corresponding classification result of 

experiment #3 

 

 
Figure 4-17 Average probability of normal state and corresponding classification result of 

experiment #4 
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Figure 4-18 A comparison of the F-scores corresponding the number of sources for sensor fusion 

 

Table 4-7 The performance metrics (precision, recall, and F-score) of the experiment #1 

Sources of multisensory fusion Precision Recall F-score 

Plasma signal 0.978 0.917 0.946 

Temperature signal 0.978 1.000 0.989 

Reflection signal 1.000 0.900 0.947 

Plasma + Temperature 0.978 0.936 0.957 

Plasma + Reflection 0.956 0.915 0.935 

Temperature + Reflection 1.000 1.000 1.000 

Plasma + Temperature + Reflection 1.000 0.978 0.989 

 

Table 4-8 The performance metrics (precision, recall, and F-score) of the experiment #2 

Sources of multisensory fusion Precision Recall F-score 

Plasma signal 1.000 0.889 0.941 

Temperature signal 0.975 1.000 0.987 

Reflection signal 1.000 0.889 0.941 

Plasma + Temperature 1.000 1.000 1.000 

Plasma + Reflection 1.000 0.889 0.941 

Temperature + Reflection 1.000 0.976 0.988 

Plasma + Temperature + Reflection 1.000 1.000 1.000 
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Table 4-9 The performance metrics (precision, recall, and F-score) of the experiment #3 

Sources of multisensory fusion Precision Recall F-score 

Plasma signal 0.918 0.757 0.830 

Temperature signal 0.918 0.615 0.737 

Reflection signal 0.410 0.658 0.505 

Plasma + Temperature 0.918 0.727 0.812 

Plasma + Reflection 0.410 0.758 0.532 

Temperature + Reflection 0.377 0.639 0.474 

Plasma + Temperature + Reflection 0.410 0.781 0.538 

 

Table 4-10 The performance metrics (precision, recall, and F-score) of the experiment #4 

Sources of multisensory fusion Precision Recall F-score 

Plasma signal 0.970 0.711 0.821 

Temperature signal 0.985 0.739 0.844 

Reflection signal 0.591 0.709 0.645 

Plasma + Temperature 0.939 0.838 0.886 

Plasma + Reflection 0.591 0.813 0.684 

Temperature + Reflection 0.606 0.816 0.696 

Plasma + Temperature + Reflection 0.621 0.820 0.707 

 

We analyzed that the reason for the accuracy decreased in fusion with reflection signal information. 

As shown in Figure 4-19, We rearranged the gathered signal as an order of experimental time sequence. 

The mean voltage of the reflection signal had a strong time-dependent relation. The reflection signal 

tended to be closely related to the temperature of the laser source. As the experiment was conducted, 

the temperature of laser source itself increased from 20° to 25°. In this manner, the mean value of the 

reflected laser signal gradually increased. Also, the baseline of the reflected signal was different 

depending on the target stitches. It implies that gathering the reflected signal should be treated 

differently by stitches. We need to train the thresholds for defect detection stitch by stitch. If we gathered 

reflected signal of the stitch-1, for example, estimation of the probability distribution should be 

conducted by using the set of stitch-1 signal data. The two factors increased the error rate of the 

proposed defect detection algorithm. 
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Figure 4-19 Mean voltage of reflection signal at each stitch 

 

We further conducted sensitivity analysis by changing the weight value(α) and confidence 

interval(β) from threshold extraction step. The detection threshold for the final decision and 

classification is also one of the essential parameters. 

Even though we increased the weight value(α) from 0 to 0.75, the result of the analysis(see Figure 

4-20) indicates that the weight(α) has no statistically significant effect on the highest F-scores under the 

condition of fixed confidence interval(0.95) for extracting UCL and LCL. As the weight(α) decreased, 

the decision threshold range for ensuring the F-score larger than 0.8 was expanded as shown in Figure 

4-20. It means that the sensitivity of selecting the decision threshold was lessened by decreasing the 

weight(α). 

The Figure 4-21 illustrated the response surface of the highest F-scores with respect to the weight 

and confidence interval. The F-score increased as the confidence interval was increased to 0.95. In the 

case of the confidence interval of 0.6 and 0.7, the F-score increased as the weight was increased to 0.7. 

There was no statistical difference between the different weights where the confidence level was larger 

than 0.8. 

 

 



CHAPTER 4  

50 

 
Figure 4-20 The F-scores with respect to the final decision threshold by changing the weight 

value(α) 

 

Figure 4-21 The highest F-score with respect to the weights and the confidence intervals 
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Table 4-11 The highest F-scores of the sensitivity analysis with respect to the weights and the 

confidence intervals. 

F-score 
Confidence interval 

0.6 0.7 0.8 0.9 0.95 0.99 

Weight 

(alpha) 

0.7 0.752 0.771 0.771 0.810 0.829 0.819 

0.5 0.733 0.762 0.781 0.810 0.829 0.838 

0.3 0.724 0.752 0.790 0.810 0.848 0.838 

0.1 0.724 0.743 0.781 0.819 0.848 0.819 

 

The experimental result and findings are summarized as below. 

✓ We observed that the sensor fusion of plasma and temperature signal gave the better accuracy 

regarding the F-score metric rather than just using individual sensors for defect detection. 

✓ The fusion with the reflection signal resulted in the worse performance of F-score. The sensor 

fusion of all three sensors(plasma, temperature, and reflection) also decreased compared to the 

F-score of sensor fusion of temperature and plasma signal. 

 The reflection signal tended to be closely related to the temperature of the laser source. 

The temperature of laser source itself increased from 20° to 25°. In this manner, the mean 

value of the reflected laser signal gradually increased. 

 The reflection signal was related to the focal position of the laser beam. The baseline of 

the reflected signal was different depending on the target stitches. 

✓ A sensitivity analysis was conducted by changing the weight value(α). 

 The weight(α) has no statistically significant effect on the highest F-score under the 

condition of fixed confidence interval(0.95). 

 As the weigh(α) decreased, the decision threshold range for ensuring the F-score larger 

than 0.8 was expended. It means that the sensitivity of selecting the decision threshold 

was lessened by decreasing the weight(α). 

✓ Further, the response surface of the highest F-score with respect to the weight and confidence 

interval was constructed. 

 The F-score increased as the confidence interval was increased from 0.6 up to 0.95. 

 In the case of the confidence interval of 0.6 and 0.7, the F-score increased as the weight 

was increased to 0.7. 

 The higher weight implies that we used the original probability distribution information 

more. Thus, we are able to use the larger confidence interval for more harsher detection. 
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V. LaserWel: A Defect Detection and Monitoring 

System for Laser Welding 

 

 

 

A framework for the LaserWel system, which is a defect detection and monitoring system for laser 

welding, mainly consists of two phases. The first is an off-line RLW process analysis phase. It is the 

off-line process analysis step which is catered for defect thresholds for each sensor and the defect pattern 

guideline by analyzing pre-experimental result and the signal database. The latter is on-line process 

monitoring phase to detect the weld defects and the size of the part-to-part gap by matching the current 

monitored signal with the off-line analysis result. 

 

 

Figure 5-1 A framework for the defect detection and process monitoring system 

 

Off-line process analysis module deals with sufficient pre-experimental data to build models based 

on the good weld signals. Univariate methods are based on generating the statistical thresholds of each 

sensor signal, while multivariate methods focus on building good weld pattern using multiple sensor 
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data simultaneously. Also, part-to-part gap assessment can be done by the current process parameter 

and corresponding process signals. 

In the case of the on-line process monitoring module, online process signal gathered from radiation 

emission sensors, which are IR range and UV range photodiodes, are analyzed and compared with 

existing threshold(reference curves) or good weld patterns according to the end-user selection. Also, 

current part-to-part gap status can be estimated by the trained regression model. Each probability of 

defect occurrence of the current welding process, and then, will be combined or integrated as one defect 

measure by using information(sensor) fusion method such as Dempster’s rule of combination. 

 

 

 

5.1 Optical system 

Laser source 

The system consists of a 2.5 axis gantry-based automated welding system with a laser beam from IPG 

YLS-2000 fiber laser as a laser source. The laser has a maximum output discharge of 2 kW in the 

TEM01 mode of laser radiation. Table 5-1 lists the technical parameter of the laser source. 

  

Table 5-1 Technical parameters of the laser source (IPG YLS-2000) 

Parameters Unit 
Fiber laser 

YLS-2000 

Max. laser power kW 2.0 

Beam quality mm*mrad 6.0 

Fiber diameter µm 600 

Emission wavelength nm 1070 

Focal length mm 278 

 

Data acquisition module 

National instrument Compact DAQ(data acquisition module) 9215 with four channels of BNC 

connectors was selected to gather the electrical signals from the each of sensors. Each channel 

separately sampled the signal from multiple inputs. 
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Table 5-2 Technical parameters of the data acquisition system (NI cDAQ 9215) 

Parameters Unit NI cDAQ 9215 

Signal level V ± 10 

Number of channels  4 Differential 

Sample rate kS/s/ch 100 

Simultaneous sampling Y/N Yes 

Resolution bit 16 

 

Optical sensor module 

The sensors system was installed at the side of the laser source. The light signal is gathered along the 

laser source which is called co-axial acquisition system. We, first, had composed the prototype of the 

sensor system using the products of Hamamatsu optics. 

 

Figure 5-2 A prototype of the sensor system using Hamamatsu optics products 

 

Based on the first prototype, we have configured the improved version of sensor system by 

utilizing the Thorlab’s products. The schematic design of the sensor system and the 3D assembly design 

is illustrated in Figure 5-3 and Figure 5-4. 
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Figure 5-3 The schematic design of the photodiode sensor system for the process monitoring of 

laser welding 

 

Figure 5-4 3D assembly design for the photodiode sensor system 
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The data acquisition steps are processed as follows: 

(1) The light signal passes through the neutral distribution filters which can regulate the intensity 

of the input light source appropriately. The intensity of the input light source decreased to 25% of 

original one to avoid the clipping effects. 

(2) The light signal is divided into UV range(lower than 650nm wavelengths) and IR range(larger 

than 650nm wavelengths) by the unpolarized beam splitter. The IR range including the reflected 

laser beam can pass through the mirror, whereas the light of UV ranges reflected the angle of 45 

degrees. 

(3) The splitted light of IR ranges includes the reflected laser beam. The reflected laser 

beam(1064nm) which is the same as the wavelength of fiber laser source should be removed to get 

accurate information on weld pool temperature and fluctuation. To do so, we installed the longpass 

filter of 1100nm which can block the wavelengths of back reflected laser(1064nm) in front of the 

IR photodiode sensor. 

(4) The split UV range also is filtered by a shortpass filter of 800nm to get rid of unnecessary 

ranges and assure the UV range information. 

(5) Each of filtered light intensity is converted to the electrical signal which is a range of ± 10V by 

the photodiode sensors. We selected Thorlab’s photodiode sensors (PDA 25K and PDA 50B) 

because of reliability and scalability in term of customization. 

The detailed specification of the sensor system is in Table 5-3 and Table 5-4. 

Table 5-3 Detailed specifications of photodiode sensors 

Sensors 
Wavelength range 

(nm) 
Detector element Image 

Plasma sensor 

(Amplified GaP 

Photodetectors: UV - VIS 

Wavelengths) 

150-550 GaP 

 

Temperature sensor 

(Amplified Ge 

Photodetectors: NIR 

Wavelengths) 

800 - 1800 Ge 
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Table 5-4 Detailed specifications of filters for the sensors system 

Optical parts 

Transmission 

band 

(nm) 

Cutoff 

wavelength 

(nm) 

Graph 

ND filter 350-2700 350 

 

Longpass filter 

(for temperature sensor) 
1100-2200 1100 

 

Beam splitter 685 - 1600 650 

 

Broadband mirror 200-2200 2600 

 
 

 

 

5.2 Software development 

An overview of the developed software is as follows. The main window can provide information on the 

sensor signal gathered from the data acquisition system as well as previous experimental data from the 

database. The current settings such as workspace, reference curves used to detect defects, and selected 

defect detection methods are easily chosen by the end-user preferences. 
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Each stitch is analyzed by selected detection method. Defect detection result, and then, are listed 

in the right bottom table with the different background color of cells(good weld: green, bad weld: red). 

The specific defect detection information on each stitch are shown when the user double clicked the 

specific cell in the table. 

As the software is connected to the main database, the end-user should log on the database using 

“ Login” menu. Basically, all the data is managed by creating a “Project workspace”. The project, first, 

should include the production(experiment) date, part specification. 

Using the previous experimental data, one can conduct the off-line analysis. The previous data can 

be loaded from either database or external CSV files. The signal loaded is visualized on the graph 

window. The signal automatically classifies each stitch. Based on the condition, the off-line analysis 

method is selected among the reference curve(univariate) generation, defect features, or pattern 

model(multivariate) generation. Trained reference curves are overlapped and visualized on the right 

graph window(see Figure 5-6). All the training information and the results belong to the current project 

workspace. The project can have several off-line training results. 

 

 

Figure 5-5 A main panel of the developed monitoring software 
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Figure 5-6 An off-line training panel of the developed monitoring software 

 

Figure 5-7 A reference selection panel for on-line monitoring of the developed monitoring 

software 

Before the on-line monitoring, an end-user can select one of the previous trained off-line analysis 

results. Weld defect method is selected based on which off-line analysis is used for training. If training 

conducted both univariate reference curve generation or thresholds, one could select either of them as 

a defect detection method. Initial welding parameters such as laser power and welding speed(feed rate) 

are used for further gap assessment detection criteria. 
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Figure 5-8 Another version of developed monitoring software for production environment 

 

A compact version of the module is sometimes needed in the case of the production system, even 

though the developed software is well-functioned and user-centric. For the production environment, we 

developed another version of the software which is called LaserWel as shown in Figure 5-8. 

The main function of this software is focusing on the monitoring the current welding process and 

defect detection only. Off-line analysis function, database and project management function are 

removed for compactness and easiness as an aspect of field workers. 

The project and trained off-line analysis results from the main software above can be selected by 

the production software(LaserWel) handler, the total number of the weld, the detected defects, and its 

specific logs are provided. 
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VI. Conclusion and Future Research 

 

As the use of laser welding application increases so does the needs for reliable quality monitoring 

methods. For this purpose, attention should be focused on defect detection on the quality estimation of 

laser welding. Many systems have used statistical approaches for fault detection. There were still 

limitations in applicability on signals which had a trend. The Dempster-Shafer theory based defect 

detection method can be advantageously used to overcome the limitations in laser welding process 

monitoring. 

The weld pool temperature, plasma intensity, and back reflected laser signal were gathered 

regarding the different radiation wavelengths. Their characteristics of nominal trends are estimated by 

probability distribution function estimation to extract thresholds. We proposed a modified probability 

assignment function with respect to the thresholds. The weld defect detection of each information 

source(sensors) was processed respectively. We then aggregated the individual evidence of normal state 

were fused by using the combination rule of the Dempster-Shafer theory. The performance of the 

developed detection method is evaluated by statistical comparison of visual inspection result(real defect) 

and detection result. The result implies that the fusion of the reliable sensors increased the accuracy of 

defect detection. The defect detection method was eventually embedded in the monitoring software 

system. 

 

In this thesis, we developed a process monitoring system for laser welding including (i) a hardware 

configuration of the data acquisition system, (ii) a sensor fusion-based defect detection algorithm for 

laser welding, and (iii) an easy-to-use GUI-based software that is an essential feature for industrial 

usage. 

We defined the problem or challenging issues on the defect detection of the multi-sensory system. 

First, the final decision or classification of the target state cannot be simply achieved by the 

multiple sensor based monitoring system. It is possible that the individual sensors indicated different 

decisions in the same state. We adopted the combination rule of the Dempster-Shafer theory as a sensor 

fuser of the individual defect decisions. 

Second, even if all the sensor signals were within the tolerance ranges, the actual defect may have 

happened in a practical environment. This is an in-tolerance failure problem. We proposed a modified 
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probability assignment function to adopt the in-tolerance defects. By controlling the slope of the 

probability assignment function, we were able to treat and assign the uncertainty to the in-tolerance 

signal at some degree of defect evidence. 

The last problem that we did not focus on this thesis was the specific pattern of defect signal that 

might exist. In this case, we need to model the time-series signal pattern or to choose the number of 

pieces of segments(called as a binning problem). We also need methods to codify the segmented pieces 

called a codification problem and to interpret the series of codified segments which is related to the 

process mining problem. 

 

We further extended the defect detection and monitoring process to the process adjustment. It is a 

concept of a self-resilient control system which can control the quality automatically. The system 

appropriately adjusts the laser welding process parameters such as laser power, welding speed, welding 

direction, in order to recover the current laser welding process from the faulty state. Naturally, statistical 

analysis of welding experiments must be made a priori in a view to constructing a response surface that 

proposes appropriate adjust strategies including (i) identification of laser welding process parameters 

to be adjusted, and (ii) their optimal adjustment magnitudes with respect to the identified welding 

conditions, especially part-to-part gap. To do this, we will develop a part-to-part gap assessment method 

to determine the in-process welding condition in a real-time manner. The pilot experiments for the gap 

assessment model was listed in Appendix. Several regression and classification algorithms such as a 

support vector machine and neural network will be extended to weld signal trend clustering. By using 

the results of the part-to-part gap assessment and the associated adjustment strategies, it is possible to 

expect a better welding quality for the next batches at the same weld part batch of the assembly operation. 

Finally, the defect detection module for laser welding, the constructed response surface, and the 

online part-to-part gap assessment module will be integrated as a closed-loop laser welding process 

controller. Validation and verification of the developed modules and methods will be carried out. 
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Appendix 

 

A. Experiments for the part-to-part gap size 

 

 

 

Figure A-1 A trend of the plasma signal and temperature signal on the part-to-part gap size 
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Figure A-2 A simple regression model (light intensity vs. part-to-part gap) 

 

Table A-1 Partial fraction factorial design including center points with three process parameters 

at two-levels 

Code unit Experimental factors 

Laser power (W) Welding speed 

(mm/min) 

Part-to-part gap (mm) 

-1 1600 700 0.05 

1 2000 1100 0.25 

Center point: Laser power = 1800W, Welding speed = 900mm/min, Part-to-part gap = 0.15mm 

 

Table A-2 The experimental data for experiment of part-to-part gap assessment 

Experimental factors Responses 

Laser power 

(W) 

Welding 

speed 

(mm/min) 

Part-to-part gap  

(mm) 

Plasma 

(V) 

Temperature 

(V) 

Reflection 

(V) 

2000 700 0.05 6.348 6.479 2.266 

2000 1100 0.25 3.925 13.258 2.278 

1600 1100 0.05 3.520 3.989 1.810 

2000 700 0.05 6.648 7.065 2.271 

1800 900 0.15 3.809 11.256 2.048 

1800 900 0.15 3.591 12.373 2.045 

1600 1100 0.05 3.658 4.090 1.807 

1600 700 0.25 4.082 10.658 1.810 

2000 1100 0.25 4.269 13.572 2.273 

Plasma = -31.943*Gap + 25.404

R² = 0.6825

Temperature = -19.727*Gap + 17.625

R² = 0.9809
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2000 700 0.05 6.337 7.531 2.270 

1800 900 0.15 3.417 11.119 2.051 

1800 900 0.15 3.643 11.597 2.055 

1600 700 0.25 3.460 10.798 1.811 

2000 1100 0.25 4.985 11.388 2.272 

1800 900 0.15 4.552 11.122 2.052 

1600 700 0.25 4.697 10.451 1.809 

1600 1100 0.05 3.723 4.211 1.808 

2000 700 0.05 6.348 6.479 2.266 

2000 1100 0.25 3.925 13.258 2.278 

1600 1100 0.05 3.520 3.989 1.810 

2000 700 0.05 6.648 7.065 2.271 

 

Table A-3 ANOVA table of response surface regression for the experiment of part-to-part gap 

assessment 

Source 
Degree of 

freedom 

Sum of 

squares 

Mean 

square 
F-ratio P-value 

Laser power 1 25.047 25.047 80.03 0 

Welding speed 1 0.373 0.373 1.19 0.291 

Part-to-part gap 1 151.479 151.479 483.98 0 

Laser power * Laser power 1 31.107 31.107 99.39 0 

Error 16 5.008 0.313   

Total 20 222.419    

R-square = 0.97775 

 

Temperature(V) = -236.3 + 0.2646ⅹ Laser power(W) + 31.28ⅹPart-to-part gap(mm) 

- 0.000072ⅹLaser power(V)ⅹLaser power(V) 

 

 

Figure A-3 The estimated part-to-part gap size by the response surface model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Gap 0.05 0.25 0.05 0.05 0.15 0.15 0.05 0.25 0.25 0.05 0.15 0.15 0.25 0.25 0.15 0.25 0.05

Estimated_gap 0.0320.2670.0460.0510.1420.179 0.05 0.2510.2770.0670.1380.1530.2550.2060.1380.2440.054
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B. Software registration 

레이저 용접 결함분석 시스템(RLW Navigator Process Controller - Fault Analysis Module) 

C-2014-000393-2 (published at 07 / 01 / 2014) 
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