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Abstract: In this paper, we describe the requirements for traceable open-source data retrieval in

the context of computation of BRCA1/2 mutation probabilities (mutations in two tumor-suppressor

genes responsible for hereditary BReast or/and ovarian CAncer). We show how such data can be

used to develop a Dempster-Shafer model for computing the probability of BRCA1/2 mutations

enhanced by taking into account the actual age of a patient or a family member in an appropriate

way even if it is not known exactly. The model is compared with PENN II and BOADICEA (based

on undisclosed data), two established platforms for this purpose accessible online, as well as with

our own previous models. A proof-of-concept implementation shows that set-based techniques are

able to provide better information about mutation probabilities, simultaneously highlighting the

necessity for ground truth data of high quality.
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1 Introduction

Pathogenic variants (also known as mutations) in cells are responsible for human dis-
eases, most notably cancer. The majority of cancer cases are caused by the so-called
somatic mutations, that is, changes in the DNA sequence of non-reproductive cells.
However, if such changes occur in the reproductive cells (germline mutations), they can
be inherited/passed on to the next generation, which accounts for a high cancer risk not
only for specific persons but for their entire families. In particular, variants occurring
in BRCA1 and BRCA2 genes are the most well-known mutations leading to hereditary
breast cancer (BC). In comparison to approximately 13% risk of developing BC during
a lifetime in the general female population, the risk of developing BC by 70 – 80 years
of age is increased to 55% – 72% if there are hereditary mutations in BRCA1 and to
45% – 69% if a hereditary BRCA2 mutation is detected1. Additionally, the likelihood
of contracting ovarian cancer (OC) becomes higher. The corresponding phenomenon is
called the hereditary BC and OC (HBOC) syndrome2.

1 https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet
2 To avoid the implication that this syndrome affects only women, scientists also start to name it
King syndrome.
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Since there is a strong correlation between HBOC and BRCA1/2 mutations, a possi-
ble strategy for identifying persons or families at high risk is to take a look at whether
they carry a corresponding pathogenic variant. That is the reason why genetic testing
and counseling for such kinds of mutations gain more and more importance nowadays.
Although actual diagnostic genetic testing for DNA changes is getting cheaper, it still
cannot be recommended for everyone. Therefore, mutation probability prediction soft-
ware is used in genetic counseling (investigating if patients have a hereditary risk of a
disease). Such software attempts to compute mutation probabilities for patients based
on specific indicators (e.g., their family history, ethnicity or origin) without the actual
process of testing. At the moment, there exist several established risk assessment (RA)
tools and questionnaires for the purpose of predicting mutation or cancer risk, some of
them accessible online (e.g., PENN II3 or BOADICEA4). However, such tools are often
based on undisclosed or untraceable data leading to questions about validity areas and
credibility of results. For example, risks computed by PENN II for a BRCA1/2 mutation
are occasionally quite different from BOADICEA for the same person, without the
possibility for non-expert patients to check or understand why or even to decide what
prediction to trust (cf. Section 2.3). In [Auer and Luther 2021], we provided an overview
of the state of the art, HBOC-related (meta)studies, tools and questionnaires and pointed
out further possible problems with their use.

One of the first challenges for a research team trying to develop a new model for
BRCA1/2 based on traceable data is to obtain ground truth information. Medical profes-
sionals with access to large amounts of data from clinical trials publish statistical results,
but the exact composition of the study population or models used for estimates often
remain unclear. Genetic research organizations might disclose the algorithms used to
generate a model, but its factual basis remains inaccessible to outsiders [Guerrini et al.
2017]. Although many publications in the area of medical science are open access (OA),
the relevant source material is not. All this is justified by data protection legislation:
A person’s DNA constitutes sensitive medical information since it is a biometric trait.
Therefore, it must be handled with utmost care to prevent invasion of individuals’ privacy
or identity theft.

This leads to a dilemma within genetic research since the correlation between certain
types of cancer and the genetic profiles of patients is often exactly the subject of interest.
Studying it requires access to confidential records, often obtained in collaboration with
specialized institutions. A few projects dedicated to the collection of anonymized clinical
data are publicly available over the internet. Two such repositories are the GDC5 and
ICGC6 data portals. They allow users to explore data sets on various cancer cases from
all over the world, with supplemental molecular samples including mutations. However,
those projects severely restrict the access to data on germline variants by the requirements
of a rigorous registration process. Simple germline variants (SGVs) differ from simple
somatic mutations (SSMs) in that they appear in every DNA sample of a donor (and
possibly their relatives), which can lead to the identification of the individual in question.
However, for modeling the risk of carrying an inherited pathogenic BRCA1/2 variant, an
opportunity to use SSMs does not suffice.

Aside from the data access hurdle, a big difficulty in devising appropriate risk
assessment tools in the context of HBOC is the uncertainty in the underlying data, its

3 https://pennmodel2.pmacs.upenn.edu/penn2/
4 https://ccge.medschl.cam.ac.uk/boadicea/
5 https://gdc.cancer.gov/
6 https://dcc.icgc.org/
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major (interconnected) sources being data provenance and collection. A good record
of data provenance facilitates reproducibility, validation and belief in the reliability
of scientific results [Pasquier et al. 2017]. This point, especially important in the area
of medical science, is still not implemented to a sufficient degree there. For example,
although GDC contains data base items about the specific history of a family or patient
connected to a certain variant (e.g., ethnicity, origin, age), they are often left empty (at
least, in the publicly accessible somatic case). Frequently, the way of collecting the data
is not documented sufficiently. For example, cohort composition or exact criteria for the
choice of test persons as often as not remain unclear within a survey. Besides, there is
inherent uncertainty present in the data since patients are often unsure about the specifics
of their family history. Although it is difficult to remove this latter cause of uncertainty,
the reduction in the former two can and should be addressed by astute researchers.

Uncertainty is present in practically every kind of real-life application, but it is
especially high in the case of medical studies. In the field of uncertainty quantification,
two main sources are discerned: aleatory (due to randomness) and epistemic (due to
the lack of knowledge). State of the art tools such as PENN II or BOADICEA rely
on crisp data in combination with the classical probability theory to take into account
aleatory uncertainty, working with arithmetic means or medians in the presence of the
epistemic one. In many cases, intervals represent the available, uncertain but bounded
data better than crisp numbers. They can be propagated from inputs to outputs of a
(static or dynamic) model using interval analysis (IA) [Moore et al. 2009]. Moreover, a
way of combining the probabilistic and set-based reasoning is offered by the co-called
imprecise probability [Bradley 2019], in particular, the Dempster-Shafer evidence theory
(DST) [Shafer 1976].

The goals of this paper are, first, to formulate the requirements on the optimal HBOC
database from the viewpoint of risk assessment with a focus on reliability including
traceability and provenance. Second, we propose an interval DST model for computing
BRCA1/2 mutation probabilities based on data from OA publications as a proof of
concept that taking into account epistemic uncertainty explicitly provides improved
quality information for a patient. This model helps to incorporate uncertainty about the
ages of the involved persons better. We compare the results with those from PENN II
and BOADICEA as well as with those from our earlier model that did not differentiate
to the same degree wrt. age. Here, the importance of careful extraction of ground truth
data can be seen: we provide results of the same (old) model from [Auer and Luther
2021] based solely on data from [Frank et al. 2002] versus aggregated data extracted
from several OA publications. The data in the developed database is traceable to the
publication where they were provided.

The paper is structured as follows. First, we provide a short overview of the back-
ground methods and tools we rely on in Section 2. After that, we formulate the require-
ments on the (ideal) HBOC data base and provide a proof-of concept implementation
filled by data from OA publications in Section 3. Next, we present our two-phase DST
model improving that from [Auer and Luther 2022] by taking into account the uncertainty
about age using intervals in Section 4. Conclusions and an outlook on our future work
are in the last section.

2 Background

In this section, interval analysis and the Dempster-Shafer theory are described briefly.
Additionally, we overview the main features of PENN II and BOADICEA, two models
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based on conventional probability theory and available online for computing the BRCA1/2
mutation probability and the risk of breast cancer, respectively.

2.1 Basic concepts of interval analysis

Interval analysis [Moore et al. 2009] is a well-known tool for result verification with ap-
plications in computer-assisted proofs, engineering, computer graphics, medical science
and many others. With the help of IA, it is possible to prove formally, using a suitable
fixed point theorem the assumptions of which can be checked on a computer reliably,
that the result of a computer simulation is correct (given that the underlying code is
correct). This takes into account such factors as rounding, conversion, discretization
or truncation errors. The results are intervals with bounds expressed by floating point
numbers which with certainty contain the exact solution to the formal model. Since
the methods work with sets, they can be used for propagating bounded uncertainty,
usually from the inputs to the outputs, in a deterministic way although there are also
approaches to solve inverse propagation problems [Merheb et al. 2013, Desrochers and
Jaulin 2017]. A common drawback of such rigor-preserving methods, caused by the
dependency problem or the wrapping effect [Lohner 2001], is the possibility of too wide
solution sets – an inherent problem of naive IA that more sophisticated techniques with
result verification (e.g., affine or Taylor model based approaches) address [de Figueiredo
and Stolfi 2004, Neumaier 2003, Makino and Berz 2004].

A real interval [x, x], where x ∈ R is the lower, x ∈ R the upper bound, is defined as

[x, x] = {x ∈ R|x ≤ x ≤ x} ,

usually for x ≤ x. Crisp numbers x ∈ R can be represented by point intervals with
x = x = x. For an operation ◦ = {+,−, ·, /} and two intervals [x, x], [y, y], the
corresponding interval operation can be defined as

[x, x] ◦ [y, y] :={x ◦ y | ∀x ∈ [x, x], y ∈ [y, y]}
=[min(x ◦ y, x ◦ y, x ◦ y, x ◦ y),max(x ◦ y, x ◦ y, x ◦ y, x ◦ y)] ,

that is, the result of an interval operation is also an interval. For normal interval division,
it is assumed that 0 /∈ [y, y] although it is possible to allow divisor intervals to contain

zero in extended interval arithmetics (see, e.g., [Kahan 1968]). The general formula can
be simplified for a given operation ◦ (e.g., [x, x]− [y, y] = [x− y, x− y]). An interval
with floating point numbers as bounds can be obtained for any real interval in a verified
way by using the concept of outward rounding. Based on interval arithmetic described
above, which includes the possibility to evaluate functions over intervals, higher-level
methods, for example, for solving systems of algebraic or differential equations, can be
formulated to provide their error bounds (i.e., result verification) automatically.

2.2 Basic concepts of the Dempster-Shafer theory

The Dempster-Shafer theory [Ayyub and Klir 2006] facilitates synthesis between data
and information and is increasingly used for uncertain data fusion, especially in the
context of AI systems [Tang et al. 2023]. It combines evidence from different sources
and provides a measure of confidence that a certain event occurs. A classical, additive,
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discrete probability density function defines the probability (given by a crisp number)
that a random variable X is equal to its certain realization xi (again, a crisp number, i.e.,
real or point value). The finite DST allows us to assign a (crisp) probability to the event
that a realization of X belongs to a given set (e.g., an interval [xi, xi])

7. The result is
given in terms of the lower and upper limits (belief and plausibility) on the probability of
a subset of the frame of discernment Ω. A random DST variable can be characterized by
its basic probability assignment (BPA)m. If A1, . . . , An are the sets of interest where
each Ai ∈ 2Ω, thenm is defined by

m : 2Ω → [0, 1], m(Ai) = pi, i = 1 . . . n,

m(∅) = 0,

n∑
i=1

m(Ai) = 1 . (1)

The mass of the impossible event ∅ is equal to zero. Every Ai withm(Ai) 6= 0 is called
a focal element. The sum of masses of focal elements should be equal to one. If the
sum is greater than one in BPAs provided by the experts, then a normalization can be

carried out as m̃(Ai) := m(Ai)/

n∑
i=1

m(Ai). If the sum is less than one, then the same

normalization can be used or a new focal element An+1 = Ω can be introduced to
accommodate the missing probability. The latter variant only makes sense for computing
the lower limit Bel(Y ) whereas the former variant could inflate the belief function too
much.

The plausibility (‘worst case’) and belief (‘best case’) functions can be defined with
the help of the BPAs for all i = 1 . . . n and any Y ⊆ Ω as

Pl(Y ) :=
∑

Ai∩Y 6=∅

m(Ai), Bel(Y ) :=
∑

Ai⊆Y

m(Ai). (2)

These two functions represent a possibility to define an upper and a lower non-additive
monotone measure [Ayyub and Klir 2006], respectively, on the true probability.

If there is evidence for the same issue from two or more sources, the BPAs have to be
aggregated. In [Ferson et al. 2003], there is a good overview of the available aggregation
methods, for example, Dempster’s rule

m12(Ai) =

∑
∀Aj∩Ak=Ai

m1(Aj)m2(Ak)

1−
∑

∀Aj∩Ak=∅
m1(Aj)m2(Ak)

(3)

with Ai 6= ∅,m12(∅) = 0 or mixing and averaging:

m1...n(Ai) =

n∑
k=1

wk ·mk(Ai),

n∑
k=1

wk = 1 . (4)

Although Dempster’s rule in (3) is a fair way to combine conflict-free evidence, it cannot
always be applied in the context of automatic data extraction since conflicts cannot be

7 Analogous considerations can be made for continuous random variables
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dismissed a priori there. Recently, a possibility to circumvent this has been proposed
in [Tang et al. 2023].

As described, for example, in [Auer et al. 2010], it is possible to work with interval
BPAs instead of crisp ones. The meaning of such an interval BPA (IBPA) is then as
follows: The probability that a realization of a random variable X belongs to a certain
set is itself uncertain (but bounded). The computation of Pl(Y ), Bel(Y ) and any kind
of aggregation can work in the same way as for crisp BPAs if interval arithmetic is used
instead of floating point arithmetic. Since we cannot define the inverse wrt. addition in
interval arithmetic [Moore et al. 2009], the condition

∑n
i=1 m(Ai) = 1 for intervalm

cannot be fulfilled. It turns into the relaxed property 1 ∈
∑n

i=1 m(Ai). The respective
belief function signifying a lower limit on the strength of evidence is then itself an interval
function having a lower and upper bound. Note that we do not try to countermeasure
the relaxation of the summation property in this paper. It can be done in principle as
shown, for example, in [Piegat and Dobryakova 2020] for linguistic probabilities (not
for the DST) using interval arithmetic type 2. To use such kinds of IBPAs and compare
the results to those presented in this paper is a topic of our future work.

2.3 Two existing web platforms for predicting BRCA1/2 mutation probabilities

With over 8 million articles, PubMed® Central8 is by far the most comprehensive public,
English-language source for life science publications. More than half of the articles are
available as OA. Nonetheless, or precisely because of this information flood, it is quite
difficult for non-experts to find ground truth about the hereditary breast and ovarian
cancer risk in their family.

In an early standard publication that had been used for prediction for many years,
Tables from [Claus et al. 1994] estimate cumulative BC probability based on a survey
considering mainly age-specific risk factors in combination with the family history and
using a Bayesian model (with data on 4730 patients with confirmed BC matched against
4688 control subjects). Another relatively early paper [Frank et al. 2002] provides predic-
tions for mutations in BRCA1/2 correlated with such risk indicators as age of diagnosis,
personal and family history, and ethnicity (also compiled in tables), for the cohort of over-
all 10000 participants (of Ashkenazi-Jewish and non-Ashkenazi-Jewish ethnicity). Frank
tables could be seen as corresponding to ground truth since they contain observed fre-
quencies. However, they are old, occasionally contradictory and consider only relatively
small cohorts. The models PENN II and BOADICEA offer easy, questionnaire-type
online interfaces to their respective models computing (among others) BRCA1/2mutation
probabilities according to the risk indicators they consider important in a more detailed
way. However, the actual data their models are based on are undisclosed.

PENN II [Lindor et al. 2010] is a mathematical model giving predictions about
probabilities of BRCA1 and BRCA2 mutations based on logistic regression derived from
861 family histories of European and North American origin and taking into account
Mendelian logic. The risk of a genetic defect is the same for the proband and the family if
the proband is diagnosed with cancer. If not, the risk of the proband is reduced depending
on the degree of relationship to the family member with a cancer diagnosis according
to the principles of Mendelian genetics. This free tool offered by the University of
Pennsylvania considers the following risk indicators: presence and ages of BC, presence
of OC alone or with BC, bilaterality, diagnosis in both mother and daughter, male BC,
presence of pancreatic and prostate cancers, Ashkenazi-Jewish or non-Ashkenazi-Jewish

8 https://www.ncbi.nlm.nih.gov/pmc/

https://www.ncbi.nlm.nih.gov/pmc/
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ethnicity as well as the degree of relation of the patient to the BC/OC case in the family.
In Figure 1, screenshots of the PENN II questionnaire and result pages are shown for the
web interface of the model.

Figure 1: Screenshot of PENN II web interface from
https://pennmodel2.pmacs.upenn.edu/penn2/ : questions (above) and computed

probabilities (below) for the disease pattern from this subsection

BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Esti-
mation Algorithm) [Lee et al. 2019] is a part of the originally OA CanRisk Tool from
the University of Cambridge which is in the process of being commercialized. Its goal,
in contrast to PENN II, is to compute the risk of breast cancer based on a variety of
genetic and non-genetic indicators. That is, BOADICEA is concerned, more broadly
than PENN II, with general cancer risk and not only HBOC syndrome related BRCA1/2

https://pennmodel2.pmacs.upenn.edu/penn2/
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mutation probabilities. Nonetheless, BOADICEA incorporates indicators based on family
history and computes respective probabilities as a part of its analysis. Its questionnaire
– still available for free at the moment after registration – contains questions about
the following HBOC-related risk factors (cf. Figure 2): presence of BC, contralateral
BC, OC and/or pancreatic cancer; family history including relation degrees and ages
of cancer diagnosis; ancestry (again differentiating only between Ashkenazi-Jewish or
non-Ashkenazi-Jewish). The questionnaire contains many more questions concerning
other (non-genetic) factors. Note that although the ages can be specified as intervals,
arithmetic means are used for further computations.

Figure 2: Screenshot of BOADICEA web interface (a user account needed) from
https:// ccge.medschl.cam.ac.uk/boadicea/ showing only HBOC-related questions for

the disease pattern considered in this subsection

At the moment, such general-purpose AI systems as ChatGPT9 are not able to provide
a differentiated answer about HBOC based on available publications. ChatGPT can be
used to summarize and explain knowledge (with various challenges arising from this in
scientific research and exchange), see [Schäfer 2023], therefore, it is in principle capable
of finding out the appropriate information. For example, a broadly formulated question

9 https://chat.openai.com/, May 3 version, accessed on May 8 2023
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Are you capable of giving predictions on genetic mutation risk?

is answered by ChatGPT as “As an AI language model, I am capable of providing
information and explanations about genetic mutations and their associated risks based
on available scientific data”, with an additional caution to consult a gene specialist.
Confronted with a concrete disease pattern, it answers mostly in general terms as

“The presence of a family history of breast cancer can indicate an increased risk
of developing the disease”.

Only one (partial) pattern out of those we consider in Section 4 elicited actual probabilities
as answers. The answer to the question

What’s the probability of carrying a pathogenic BRCA variant if a woman was
diagnosed with breast cancer under the age of 40?

is

...“The exact probability of carrying a pathogenic BRCA1 or BRCA2 variant can
vary depending on a variety of factors, including personal and family medical
history, ethnicity, and other factors. However, some studies have estimated that
the frequency of BRCA1 or BRCA2 mutations in individuals diagnosed with
breast cancer before the age of 40 ranges from 8% to 17%”,

again with a caution that “Genetic counseling and testing can provide more personalized
information about an individual’s specific risks and can inform decisions about man-
agement and prevention strategies”. ChatGPT does not provide information about the
studies it mentions. As a comparison, PENN II computes the individual risk of BRCA1
mutation as 5%, BRCA2 as 6% (equal to the familial risk in this case), BOADICEA as
3.19% and 2.93%, respectively. As we can see, the probabilities suggested by all of the
tools are different, posing the question of which one to trust.

Obviously, the ChatGPT answers are quite impressive for a general-purpose AI
system. Nonetheless, they still indicate the need for specific data mining (AI based)
strategies in OA publications devoted to reporting BRCA1/2 frequencies from the avail-
able literature (cf. Subsection 3.3, 3.4). They should be combined with mathematical
models taking into account both aleatory and epistemic uncertainty in data for com-
puting probabilities to be used during genetic counseling with a person or a family (cf.
Section 4).

3 Design of an Optimal HBOC Database

The field of BRCA1/2 research is developing rapidly. Recent technological advancements
such as next generation sequencing (NGS) have enabled fast variant discovery in samples
donated by cancer patients. Since not all variants necessarily cause cancer, they first
need to be assessed by experts to classify their pathogenicity [Plon et al. 2008]. There
are numerous databases dedicated to the classification of (BRCA1/2 ) variants available
online: BRCA Exchange10, ARUP BRCA1/2 11, LOVD12, ClinVar13. These data can

10 https://brcaexchange.org/
11 https://arup.utah.edu/database/BRCA/
12 https://www.lovd.nl/
13 https://www.ncbi.nlm.nih.gov/clinvar/

https://brcaexchange.org/
https://arup.utah.edu/database/BRCA/
https://www.lovd.nl/
https://www.ncbi.nlm.nih.gov/clinvar/
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help patients who already underwent genetic testing to understand their test results better.
During genetic counseling, however, this information is not available yet. Therefore,
risk assessment tools have to be able to estimate the mutation probability based only on
knowledge about indicator factors in personal or family history.

While mutation risk can be estimated by relying on different theories (e.g., logistic
regression, Bayesian networks, decision trees, cf. the overview in [Auer and Luther
2021]), the common feature of all strategies is the link between clinical data and variants’
classification. All RA models usually need empirical data (ground truth). To obtain it,
modeling is preceded by an extensive long-term survey in the best case. If this is not
possible, the data from previous studies can be consolidated for the same purpose within
a meta-study [Wang et al. 2021]. However, general standards about how to collect and
report empirical data or record the meta-data about them are mostly missing, making
definite conclusions about ground truth very difficult. As described in the introduction, the
sparse availability of open-access cancer-related medical records for HBOC complicates
the development of new RA models even further.

In this section, we first introduce our understanding of the concepts of data integration
and data fusion (which are often used synonymously in literature but are actually not
exactly the same) along with data provenance in Subsection 3.1. After that we propose a
database design for storing ground truth in the context of the HBOC syndrome which
can be understood as a first step towards a standard in Subsection 3.2. Note that the
existing standards such as FHIR14 or OMOP15 cannot be used as they are, cf. [Bönisch
et al. 2022]. The focus of the design proposed here is on flexibility: the model developers
have to be able to perform the task of data fusion easily depending on the criteria they
need the ground truth data on. Because BRCA1/2 genes are the most researched ones in
connection with breast and ovarian cancer, we consider only them, although the proposed
database scheme can be extended to take into account further genes, for example, CHEK2
or PALB2. In Subsection 3.3, we suggest an approach to extract information from OA
publications into a database. This helps to avoid issues of classified information nature
still present in the suggestion from 3.2. It is also a goodway for making the data accessible
without violating the patients’ privacy. A proof of concept implementation illustrates the
applicability of the data structure within the context of a DST based model for predicting
BRCA1/2 mutation probabilities.

3.1 Extracting data: Integration versus fusion; provenance

If several data sources are to be combined, the most important sub-processes to consider
besides the data cleaning are

– consolidating various data schemata and

– combining the data objects.

If two or more SQL databases are considered as sources, then these sub-processes
correspond roughly to the operations JOIN and MERGE, respectively. If, however, the
data originate from different sources, the operations needed to be carried out are usually
more complex, corresponding to data integration and data fusion. These terms are
sometimes used interchangeably in the literature. However, they are separate, although

14 https://fhir.org/
15 https://www.ohdsi.org/data-standardization/

https://fhir.org/
https://www.ohdsi.org/data-standardization/
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interconnected, processes, with data integration needing to be carried out prior to data
fusion.

Data integration is extension of the structure and content of one data source by that
of another [Li Lee and Ling 1995]. The basis of this operation is the so-called schema
matching that checks the attributes of data sources for the three cases identity, similarity,
newness and generates a global schema based on the findings using a top-down (e.g., by
data harmonization) or a bottom-up approach depending on whether the number of data
sources to combine is known beforehand [Arfaoui and Akaichi 2015].

The task of data integration is to build up a large body of information from many
sources and to reduce it to a common data schema. By contrast, various data about one
object have to be aggregated into a single data item during data fusion, for example, to
combine multiple opinions on a particular issue into one statement. The data set to be
combined is not allowed to contain duplicates, which might make further pre-processing
necessary [Naumann et al. 2006, Dong et al. 2015]. If fusion is to be applied to non-
numeric data, then the strategies of interaction (users decide which data is retained),
selection (only the data from pre-selected sources is retained) and voting (data with
the most frequent occurrence is retained) can be used. When working with numerical
data, data synthesis using, for example, Bayesian networks, DST or fuzzy logic is to be
preferred.

Not infrequently, the operations mentioned above are performed without giving
much thought to the reliability of the data in the global database obtained in such a
way. One part of making data reliable and helping to interpret data better is a record of
their provenance. Similar approaches are being actively developed for intelligent log
management of distributed applications (cf. [Harutyunyan et al. 2019]) and logging of
data in general [Moreau et al. 2008] since many years.

Provenance is defined as “information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments about its
quality, reliability or trustworthiness”16. Moreover, data provenance contributes to repro-
ducibility of scientific results through “both systematic and formal records of the relation-
ships among data sources, processes, datasets, publications and researchers” [Pasquier
et al. 2017]. Provenance means that scientists require for their research not only the data
themselves but also the meta-data about the data. A possible meta-data representation
is through an acyclic directed graph with its vertices reflecting the involved persons/or-
ganizations, data items and data transformations and its edges corresponding to the
interactions between them. This can be the basis for exploiting the provenance involving
the necessary stages of meta-data capture, storage and analysis/visualization. Although
such standards as PROV [Missier 2017] exist, they are still not used widely, especially
while recording or reporting medical data. Standardizing medical science wrt. prove-
nance guidelines is a challenging task, to tackle which is nonetheless important and
necessary as pointed out and partially attempted, for example, in [Martínez-García and
Hernandez-Lemus 2022] (without using the word ‘provenance’, exactly) and [Gierend
et al. 2023].

3.2 Requirements and possible design of a traceable HBOC database

Over the past decades, researchers have agreed on certain factors that act as indicators for
pathogenic BRCA1/2 variants. Aside from a patient’s biological sex, their nationality and
ethnicity can be decisive. As suggested in previous studies [Hall et al. 2009, Ashton-Prolla

16 https://www.w3.org/TR/prov-overview/

https://www.w3.org/TR/prov-overview/
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and Vargas 2014], certain ethnic groups – most prominently people of Ashkenazi-Jewish
ancestry – are at a higher risk of carrying BRCA1/2 mutations, mostly due to endogamy
and geographically contained gene pools (so-called “founder mutations”). Since it is
possible that a person is a mutation carrier but has not developed cancer yet (while other
family members have), the ideal HBOC database should be able to store relationships
between individuals. Moreover, the age of cancer patients at the time of diagnosis, the
primary tumor location and subtype, as well as all variants occurring in BRCA1/2 genes
must be recorded. Registering every variant is necessary because its classification as
pathogenic or non-pathogenic can change over time. It should also be indicated if a
somatic or germline mutation occurred.

There are existing standards for recording and exchanging medical information such
as FHIR or OMOP. However, the common goal of these standards is to keep a reliable
record, for one actual patient, of the development of their disease history with time,
including details on observations, conditions, prescriptions in order to provide best care.
These are not the models on which databases like GDC or BRCA Exchange, relevant
for the research in this paper, are based17. Such details are not necessary for obtaining
information on mutation probabilities and would additionally disclose information openly
violating data privacy legislation which is what we try to avoid as far as possible in
our suggestion for a traceable database. Moreover, it has been demonstrated recently
in [Bönisch et al. 2022] that “none of the data formats include all metadata, which is
required to successfully operate the MeDIC18 for the purpose of reliable data manage-
ment”. Hence, we formulate the requirements specific to the HBOC research which can
be understood as a first step towards a standard in this area. Obviously, there is a need
for automated compression and anonymization of FHIR or OMOP patient data into any
data format suitable for research on HBOC.

In [Auer and Luther 2022], we came to the conclusion based on the extensive analysis
of the available publications that, in order to be able to perform data integration or fusion,
it is necessary to choose studies with clearly described cohorts of large sizes which
classify the included patients and their family members wrt.

– the risk factor single/multiple breast cancer (also, in the same person), bilateral, male
breast cancer and ovarian cancer with the record about the respective first age of
onset;

– standardized selection criteria (disease patterns), the a priori risk class;
– origin/ethnicity of the patient (e.g., the youngest family member with BC), family
history including the degree of relationship and the first occurrence of the disease;

– detected tumor subtypes (e.g., triple negative breast cancer); and, finally,
– the quality and the trustworthiness of the data (e.g., use of public databases with a
disclosed search strategy), ideally, its provenance or lineage.

However, the list of the important risk factors or selection criteria might change with the
new developments in medical research. A future standard should be flexible enough to
incorporate any such changes.

We consider a relational database design consisting of eight tables to be suitable for
the task at hand: four tables for the entities cancer, person, variant and project,
and four relational tables for the connections between them. The corresponding entity-
relationship diagram is shown in Figure 3. This architecture allows multiple cases of

17 See https://gdc.cancer.gov/developers/gdc-data-model, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6324924/

18 Medical Data Integration Center

https://gdc.cancer.gov/developers/gdc-data-model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324924/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324924/
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cancer in the same person, while a set of variants can be assigned to each patient,
describing only the necessary genetic properties in the context of BRCA1/2 genes.

person

ID ethnicity

sex

nationality

variant

ID

description

reference genome

locus

SGV status

cancer

ID

tumor

type

project

ID

name

DB

publication

acquired from

timestamp URI

method

gets diagnosed

age

carries

related todegree

Figure 3: Entity-relationship diagram

By combining oncogenic databases with variant databases using data integration
strategies, the standard HBOC database could be constructed without the need for conduct-
ing new large-scale, long-term surveys while retaining a good degree of data provenance
because all data fusion instances possibly carried out for obtaining concrete values for
risk factors can be traced to the corresponding database items as well as aggregation
strategy be made clear or exchanged. As shown in Figure 3, each personal record should
be associated with a project, to trace back its original study cohort. In well-established
oncogenic databases like GDC and ICGC it is common practice to disclose research
projects’ goals and methodologies to ensure a record’s credibility. Similarly, it must be
transparent how a variant was discovered and classified. Patient records and variants
both originate from third-party sources, so it is essential to document time and method
of acquisition, as well as a unique resource identifier (URI) for online databases. The
umbrella term project is used here for the research project that published a data record
in a public database and possibly summarized its findings in an accompanying publication
referred to by its DOI.

Combining the two types of databases considered in this scenario can be expressed
as a two-way extract-transform-load (ETL) process shown in Figure 4. The ETL process
is standard in data integration/warehousing tasks [Denney et al. 2016] and consists of
the following three steps:

First, relevant subsets are queried from all data sources. Although containing common
domain-specific data, different databases often use distinct technology stacks, which
may require a query be translated. Such a ‘translation’ restructures a single request
to meet the grammatical rules of various other query languages. In our context, this
step applies to both oncogenic and variant databases and is needed to extract all data
on both BRCA1/2 -related cancers and variants, respectively.

Second, the transformation step ensures that all extracted records follow the same global
schema. This can be achieved by either schema matching (finding similar data fields
and rearranging them in a common structure) or schema mapping (fitting similar data
fields into a predefined data model). In our context, schema mapping is preferred,
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Oncogenic Databases Variant Databases

ODB2

ODB1

ODB3

Eo To L Tv Ev

VDB1

VDB2

cancer + patient + variant + pathogenicity

Figure 4: Two-way ETL scheme

since the required tables and fields are already known (cf. Figure 3). Up to this
point, oncogenic and variant databases are handled separately and produce two
homogeneous integrated datasets.

Finally, oncogenic and variant data need to be joined, based on variant names. This
part is probably rather complicated because of synonymous nomenclature used
for a single variant across multiple sources; possible duplicates would have to be
eliminated. Note that the database BRCA Exchange actually stores synonyms for
each registered variant and might be used as a thesaurus in this case. Once oncogenic
patient records, variants and their pathogenicity have been linked, the merged dataset
can be loaded thus providing absolute mutation frequencies as the basis for a new
risk assessment model.

Although this design stores only a minimum amount of personal data, the question
of privacy still arises because of the short DNA excerpts linked to patients, which may
again require that access be restricted. In the next subsection we suggest an alternative
database possibility to circumvent any privacy concerns.

3.3 Construction of an alternative database from scientific literature

The main issue with open access genetic data is the possibility of personal identification,
even though data sources might be used only to calculate relative frequencies of mutation
carriers among a group of patients with similar characteristics. The mentioned frequencies
themselves, however, may in fact be published, because they do not contain any sensitive
data anymore. To make use of this fact, we propose a second database design that does
not depend on the first-hand genetic data at all. Instead, we utilize findings from OA
publications by scientists with access to genetic samples linked to medical information
and build a database upon findings from multiple sources.

Note that the alternative suggested here is a proposal of how to publish classified data
without privacy violation concerns, achieved through aggregation. Although the degree
of trustworthiness diminishes, this would give those developers of new RA models who
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are not linked to big scale medical institutions at least some semblance of traceable data.
The proposal from Subsection 3.2 is to be preferred if researchers are granted access to
sensitive data. The approach from this subsection is an acceptable compromise if not. It
provides data in a standardized form and documents meta-data to a certain degree by
recording all source publications and subsequent aggregation strategies.

While developing the database, we focused primarily on data in the form of tables
from medical publications. Obviously, graphical representations such as histograms
contain valuable information, too, but are much more difficult to translate into exact
data, both manually and automatically. Usually, the prevalence of BRCA1/2 mutations
presented in such research papers is stratified by attributes similar to those described at
the beginning of Subsection 3.2 and is given as absolute frequencies. Because various
publications might focus on different types of cancer, patient’s characteristics or age
intervals, the database used for storing the extracted information must support heteroge-
nous data structures. Therefore, we recommend the use of a NoSQL database. The data
extracted from one publication may be structured in the following way:

[
{

case: {
cancer: 'breast',
type: 'bilateral',
age: { lo: 18, hi: 29 }

},
total: 26236,
genes: [

{ brca1: 4996 },
{ brca2: 2519 }

]
}

]

The flexible nature of NoSQL databases makes using traditional database design
principles to describe their entire structure somewhat difficult. Since records in a NoSQL
database should be considered as linked/related objects of similar appearance rather
than rows in a strictly constrained table, object-oriented modeling paradigms can be
applied. The modeling of NoSQL databases is still a subject of ongoing research, with no
established standard as yet. In Figure 5, we use an extension of the UML class diagram
standard [Sparks 2011] to represent the database structure because of its widespread
familiarity and readability. Its use of symbols has been modified to express an object’s
structure in the following way:

- atomic property; attribute in the classical sense

= multiple instances of the same atomic property

+ composite property; the attribute itself is an object

∗ enumeration of composite properties

~ reference to another object

... anything.
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Note that object nesting, a common operation in object-oriented databases, can also be
represented as a classical relational model. However, such kind of a representation can
be misinterpreted as a system of linked objects, which is not the case in our database.
Objects of nested attributes can still have relations, while nested attributes are usually
entirely private to the parent objects’ scope.

publication
- ID ObjectID
+ key
- author String
- year Integer

- title String
- doi String

cancer
- ID ObjectID
- code String
- description String
= alias String

dataset
- ID ObjectID
~ publication ObjectID
+ position
- page Integer
- number Integer

∗ data
∗ cases
~ cancer ObjectID
+ age
- lo Integer
- hi Integer

- size Integer
- positive Integer
- family Boolean
...

- raw String
...

1..*

1

1..*

1..*

Figure 5: Publication database schema

The proposed database architecture in Figure 5 links tabular data (datasets) to its
corresponding publication object, which in turn references the original source material
by its DOI to keep the data traceable. Every object of type dataset is a single table
with a unique position (page being the relative page number in the linked publication;
number refers to the absolute table count per page). Contextually relevant table cells
are described as data objects, covering the positive rate of a certain type of cancer
(with optional aliases to compensate for synonyms) for a cohort of sample size size in
the age bracket lo to hi, and recording whether or not this sample concerns the family
history. The original raw data should be present for validation.

3.4 Proof of concept literature database for computing BRCA1/2mutation prob-
abilities

We tested the database design proposed in Subsection 3.3 wrt. its practicability by im-
plementing it in the NoSQL database system MongoDB. Its extensive set of aggregation
functions allowed us to performmost computations inside the database itself, for example,
for construction of age intervals for certain risk factors or for retrieval of the relative
frequency of pathogenic variants in every calculated interval. The data fusion of multiple
sources for the same risk factors can be used to produce a general approximation of the
mutation probability depending on different criteria.
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Similar to [Auer and Luther 2021], the general mutation risk was modeled as a
combined Dempster-Shafer structure of the proband’s personal history and their family
history. Partitioned into those two categories, each data source was weighted based on
additional quality criteria. A source was considered more important if its sample size was
sufficiently large with clearly divided age groups and a transparent classification strategy.
For each case of cancer in a specific age group, its mass was set to the weighted average
(cf. Eq. (4)) across all relevant sources, for the personal (mp) and familial (mf ) mutation
risk respectively. Familial and personal mass distributions were combined into a single
Dempster-Shafer structure (mpf ), using Dempster’s rule (cf. Eq. (3)). We used the R
language to combine the aggregated mass assignments, and the mongolite package as
an interface to our database. In Table 1, the obtained BPAs are displayed. A screenshot
of the web application is shown in Figure 6.

Case mp mf mpf

BC<40 0.020 0.043 0.006

BC<50 0.075 0.030 0.015

BC≥50 0.034 0.108 0.024

BCbilateral 0.030 0.088 0.017

BCmale 0.037 0.138 0.033

OC 0.151 0.104 0.103

BC<50, OC 0.058 0.054 0.020

BC≥50, OC 0.119 0.245 0.191

Ω 0.476 0.190 0.591

Table 1: Aggregated BPAs from publications

Due to limited data availability, only few scenarios were covered by this model (cf.
Table 3). Additionally, poor source data quality led to lower weights in some cases,
which in turn reduced the mutation risk significantly in comparison with the existing
models. For example, the risk of a person whose father was diagnosed with breast cancer
before the age of 50 would be calculated asBelmpf

({BC<50,BCmale}) = mpf (BC<50)+
mpf (BCmale) = 4.8%, as compared to 10 – 18% predicted by PENN II. That is, better
data are certainly needed but the frequencies can definitely be obtained as proposed in
Subsection 3.3.

Our limited test data allowed a differentiation per case only between “below the
age of 50” and “above the age of 50” at best. Since the age of onset [Buys et al. 2017]
strongly influences the likelihood of being a carrier of a pathogenic BRCA1/2 variant,
we decided that a more granular approach to handling the overall risk as a function in
dependence of a patient’s age was needed. A model for this is proposed in the following
section.

In this first implementation, data acquisition for testing was performed manually.
We found that there was still a need for more sophisticated AI-based text mining tools if
the process is to be automated. While the problem of table extraction from text (PDF
files in our case) has been solved19, automatic interpretation of extracted data in a certain
context is a challenge yet to be overcome and a topic for future research.

19 cf. https://cran.r-project.org/web/packages/PDE/vignettes/PDE.html

https://cran.r-project.org/web/packages/PDE/vignettes/PDE.html
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Figure 6: Screenshots of the web app based on the data structure from Subsection 3.3
for the disease pattern considered in Subsection 2.3 (left) and a further pattern from this

subsection

4 Modeling the BRCA1/2 Mutation Probabilities as a Function of
Age

As mentioned above, it is necessary to differentiate better in dependence on age in
the developed DST model to obtain more realistic results. Since we were not able
to arrive at ground truth for HBOC risk factors from the databases available on the
internet due to privacy restrictions (cf. Subsection 3.2), we use the manually collected
information from OA publications [Frank et al. 2002, Buys et al. 2017], supplemented
by predictions from PENN II where necessary, directly. In this section, we present a
proof of concept DST approach to assess the probability of BRCA1/2 mutation based
on finer age models. We consider it to be merely a proof of concept since the data we
rely on are selective and possibly do not reflect ground truth yet. Nonetheless, we are
able to achieve good correspondence with the state of the art systems, which are based
on (partially) undisclosed data (cf. Subsection 2.3). Note that better data can be directly
incorporated into the proposed model.

The age at the first cancer diagnosis is one of the most important indicators for the
presence of a BRCA1/2 mutation [Buys et al. 2017]. As suggested in [Auer and Luther
2022], the mutation probability can be modeled by combining age-based cumulative
percentage curves for different risk factors. In this paper, we extend this idea by utilizing
the Dempster-Shafer theory of evidence as the basis for combining multiple risk factors
in dependence on the patient’s age and the age of his/her relatives with a history of
BRCA1/2 -related cancer.

We consider the risk factors BC, male breast cancer (mBC), bilateral breast cancer
(bBC), OC, breast and ovarian cancer (BCOC) in the history, BC and OC cancer in the
same person (BCOCsp), and ethnicity (E) for ages between 60 and 20 in steps of 5 years.
At the moment, we only differentiate between two ethnicities: general and Ashkenazi-
Jewish (AJ). The masses for BPAs at each given age are shown in Table 2. Note that the
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curves for risk indicators BCOC and BCOCsp are obtained by considering the sum of
values for BC and OC and the additive factor sp, respectively. For all ages in the case of
Ashkenazi-Jewish ethnicity, additive factors of 0.05 are used for BC and bBC; of 0.03
for OC; and of 0.01 for sp. For obtaining the cumulative probability curves shown in
Figure 7 (general on the left, AJ on the right), we interpolate linearly between the values
for the ages (as is usually done in statistics). In the same way as in the implementation
from Subsection 3.4, we assume that the focal element Ω containing all the considered
risk factors is assigned the remainder of the probability since we compute only the lower
bound on the risk (which, however, can itself be an interval, cf. Subsection 2.2). All
other subsets of Ω aside from those in Table 2 (and Ω) are supposed to have zero masses.

Age BC bBC mBC OC sp

60 0.04 0.02 0.09 0.03 0.03

55 0.015 0.02 0.09 0.05 0.02

50 0.015 0.02 0.09 0.07 0.02

45 0.02 0.02 0.09 0.09 0.02

40 0.02 0.02 0.09 0.11 0.02

35 0.02 0.02 0.09 0.13 0.02

30 0.03 0.02 0.09 0.15 0.02

25 0.04 0.02 0.09 0.17 0.02

20 0.04 0.02 0.09 0.19 0.02

Table 2: BPAs for the chosen risk factors wrt. age
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Figure 7: Cumulative risk curves for the mutation probabilities: general (left) and AJ
(right) case

In Figure 7, there are two lines showing the threshold values for considered and
recommended gene test referral (at 2.5% and 7.5%, respectively) that are given by a rela-
tively recent meta-study [Pujol et al. 2021]. As the cumulative curves show, practically
all individual mutation probabilities (e.g., as reported in [Buys et al. 2017]) are higher
than those thresholds. In our opinion, it is necessary to reconsider those values, at least,
if such models as PENN II are to be viewed as trustworthy.
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Our model works as follows: For each examined pattern, one BPA is usually con-
structed for the individual (mp) and a further one for the person in her family history (mh)
based on the cumulative curves in dependence on the ages given by a disease pattern and
the risk indicator (mi for i ∈ {BC, bBC, mBC, OC, sp}). In cases where the age of onset
for a family member is not known exactly, we use intervals for the probabilities (IBPAs).
Because of the monotonic properties of the cumulative risk curves, we can assume the
interval interpretation of the mass functionmi(.) for a risk factor i to be [mi(a),mi(a)],
[a, a] being the age interval. If there are more than one individual mentioned in the family
history, it is possible to consider additional BPAs for each mentioned person. At the
moment, all (I)BPAs have the same importance and are merged using Dempster’s rule
of combination (cf. Eq. (3)). However, we plan to implement the possibility to apply
Mendelian logic for aggregating since there is no difficulty to realize it in our model
in principle (e.g., using the mixing and averaging rule, cf. Eq. (4)). In the final step,
the belief function is calculated as given by Eq. (2), on the right, for all applicable risk
factors employing the combined mass assignmentmpf .

We apply our model (“new”) to the example disease patterns described below
and compare them with the results from [Auer and Luther 2022] (“old”), with the
app described in Subsection 3.4 (“app”) where possible and with those from PENN
II, BOADICEA and Frank tables where available (cf. Table 3). The shown intervals are
rounded outwards to three decimal positions; crisp numbers are rounded to three decimal
positions using rounding to the next number where necessary.

Non-Ashkenazi-Jewish

Pattern 1: Father with BC at 42, second degree relative with BC>50

Pattern 2: Patient with BC<40 and mother with BC<50

Pattern 3: Patient with OC<40 and her aunt with BC<50

Pattern 4: Patient aged 22 with BC and OC; mother with bBC>50

Ashkenazi-Jewish

Pattern 5: Patient (30-40 years of age) with BC, aunt with BC>51

Pattern 6: Patient with BC at 45 years of age, sister with OC<50

Pattern 7: Patient with OC<50 and OC and BC>50 in the family history

Pattern 8: Patient with OC and BC at 35 years of age, aunt with bBC over 50

The results for the new model show a good agreement with those from [Frank et al.
2002] and PENN II, which is not surprising: Although the models are different, we still
rely on and incorporate data from those two sources into our model as ground truth. The
results from BOADICEA show a good agreement for Patterns 4 and 5 only (they are
also quite different from PENN II). Note that BOADICEA is designed to assess the
general risk of contracting breast/ovarian cancer from a variety of genetic and non-genetic
indicators, among others due to hereditary factors. That means it is not easy to reflect the
considered disease patterns in exactly the same way as described above since a lot more
questions about the patient need to be answered. Besides, both PENN II and BOADICEA
are very sensitive wrt. the age of onset for the cancer cases (making the need of interval
representations even more important). That is, the values for PENN II and BOADICEA
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Pa. New Old PENN II BOADICEA Frank App
1 [0.251, 0.294] 0.257 0.27 0.059 0.072
2 [0.116, 0.317] 0.198 0.15 – 0.35 0.073 0.297 0.044
3 [0.232, 0.584] 0.358 0.12 – 0.4 0.036 0.137
4 [0.446, 0.549] 0.527 0.54 0.491 0.184
5 [0.149, 0.275] 0.319 0.24 – 0.35 0.298 0.318
6 [0.296, 0.406] 0.313 0.31 0.662 0.415
7 [0.225, 0.410] 0.417 0.41 0.727 0.412
8 [0.459, 0.603] [0.518,0.656] 0.53 0.937

Table 3: BRCA1/2 mutation probabilities for the example disease patterns

from Table 3 are provided as a background reference and reflect the results that might
be obtained by a non-expert patient filling out the respective questionnaires; they might
change if a gene expert operates the interfaces. The results from the app (last column)
show poor agreement systematically underestimating the risk for reasons explained in
Subsection 3.4, although they are based on the same model as in [Auer and Luther 2022]
(Column “old” with a medium to good agreement), demonstrating the importance of
good quality data on ground truth.

The advantage of the new model proposed in this paper is that it now also supplies
the lower (upper) bound on the belief function and not just an average or median value.
Besides, since it can be made to work with the database from Subsection 3.3, it can
incorporate traceable data. In this way, decisions about the computed probabilities can
be explained comprehensively.

5 Conclusions and Future Work

In this paper, we made a first step towards a standard for collecting and storing HBOC-
related data with a focus on its flexibility and reliability through provenance as well as
methods with result verification. In Subsections 3.2 and 3.3, we suggested two database
designs for data on HBOC, one containing classified information and one avoiding the
restrictions due to privacy concerns through aggregation, respectively. The data extraction
approach from 3.2 was designed but not yet implemented for HBOC, exactly because of
privacy legislation restrictions. In Subsection 3.4, we implemented the design from 3.3
to incorporate data from several OA publications. We showed that the proposed database
structure was well suited for obtaining aggregated frequencies for risk indicators needed,
for example, in the context of a DSTmodel for computingBRCA1/2mutation probabilities
first introduced in [Auer and Luther 2021]. Lessons learned fromworking with this model
were that a more graded approach to modeling risk indicators in dependence on the age
of first cancer occurrence was necessary, resulting in the two-stage DST based technique
presented in Section 4. It takes into account epistemic uncertainty by considering intervals
if ages of persons from the family history are not known exactly and employs IA with
result verification for all involved (DST-related) operations.

Although this implementation shows a good agreement with established tools while
providing more information on BRCA1/2 mutation probabilities through working with
interval BPAs, there is still room for improvement. For example, this approach does not
take into account the degree of relationship, that is, individual and family history are
treated as equally relevant at the moment. Future improvements might include possible
redistribution using further combination rules (aside from Dempster’s rule) to account for
inheritance probability. Another interesting topic for future research is to apply interval
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arithmetic type 2 in the context of this DST approach and compare with the ‘normal’ IA
version wrt. both complexity and prediction accuracy.

Yet another point is that the issue of finding ground truth about HBOC syndrome
from OA sources automatically is still largely unresolved due to multiple reasons starting
with privacy issues and ending with the lack of related standards. As a manageable topic
for future research, we will study the possibility of employing customized AI for data
extraction about HBOC from OA papers.
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