3,985 research outputs found

    Information properties of boundary line models for N2O emissions from agricultural soils

    Get PDF
    Boundary line models for N2O emissions from agricultural soils provide a means of estimating emissions within defined ranges. Boundary line models partition a two-dimensional region of parameter space into sub-regions by means of thresholds based on relationships between N2O emissions and explanatory variables, typically using soil data available from laboratory or field studies. Such models are intermediate in complexity between the use of IPCC emission factors and complex process-based models. Model calibration involves characterizing the extent to which observed data are correctly forecast. Writing the numerical results from graphical two-threshold boundary line models as 3×3 prediction-realization tables facilitates calculation of expected mutual information, a measure of the amount of information about the observations contained in the forecasts. Whereas mutual information characterizes the performance of a forecaster averaged over all forecast categories, specific information and relative entropy both characterize aspects of the amount of information contained in particular forecasts. We calculate and interpret these information quantities for experimental N2O emissions data

    Boundary line analysis of the effect of water-filled pore space on nitrous oxide emission from cores of arable soil

    Get PDF
    The boundary line has been proposed as a model of the effects of a variable on a biological response, when this variable might limit the response in only some of a set of observations. It is proposed that the upper boundary (in some circumstances the lower boundary) represents the response function of interest. Boundary-line analysis is a method for estimating this response function from data. The approach has been used to model the emission of N2O from soil in response to various soil properties. However, the methods that have been used to identify the boundary are based on somewhat ad hoc partitions of the data. A statistical model that we have presented previously has not been applied to this problem in soil science, and we do so here to represent how the water-filled pore space (WFPS) of the soil affects the rate of N2O emission. We derive a boundary-line response that can be shown to be a better model for the data than an unbounded alternative by statistical criteria. Furthermore, the fitted boundary-response model is consistent with past empirical observations and modelling studies with respect to both the WFPS at which the potential emission rate is largest and the measurement error for the emission rates themselves. We show how the fitted model might be used to interpret data on soil volumetric water content with respect to seasonal changes in potential emissions, and to compare potential emissions between soil series that have contrasting physical properties

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 ÎŒg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 ÎŒg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 ÎŒg NO3-N g-1 in soil slurries. The addition of PO4 (5 ÎŒg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes

    Get PDF
    Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges

    Assessing biogeochemical effects and best management practice for a wheat–maize cropping system using the DNDC model

    Get PDF
    Contemporary agriculture is shifting from a single-goal to a multi-goal strategy, which in turn requires choosing best management practice (BMP) based on an assessment of the biogeochemical effects of management alternatives. The bottleneck is the capacity of predicting the simultaneous effects of different management practice scenarios on multiple goals and choosing BMP among scenarios. The denitrification–decomposition (DNDC) model may provide an opportunity to solve this problem. We validated the DNDC model (version 95) using the observations of soil moisture and temperature, crop yields, aboveground biomass and fluxes of net ecosystem exchange of carbon dioxide, methane, nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from a wheat–maize cropping site in northern China. The model performed well for these variables. Then we used this model to simulate the effects of management practices on the goal variables of crop yields, NO emission, nitrate leaching, NH3 volatilization and net emission of greenhouse gases in the ecosystem (NEGE). Results showed that no-till and straw-incorporated practices had beneficial effects on crop yields and NEGE. Use of nitrification inhibitors decreased nitrate leaching and N2O and NO emissions, but they significantly increased NH3 volatilization. Irrigation based on crop demand significantly increased crop yield and decreased nitrate leaching and NH3 volatilization. Crop yields were hardly decreased if nitrogen dose was reduced by 15% or irrigation water amount was reduced by 25%. Two methods were used to identify BMP and resulted in the same BMP, which adopted the current crop cultivar, field operation schedules and full straw incorporation and applied nitrogen and irrigation water at 15 and 25% lower rates, respectively, than the current use. Our study indicates that the DNDC model can be used as a tool to assess biogeochemical effects of management alternatives and identify BMP

    Source-tracking cadmium in New Zealand agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a toxic heavy metal, which is accumulated by plants and animals and therefore enters the human food chain. In New Zealand (NZ), where Cd mainly originates from the application of phosphate fertilisers, stable isotopes can be used to trace the fate of Cd in soils and potentially the wider environment due to the limited number of sources in this setting. Prior to 1997, extraneous Cd added to soils in P fertilisers was essentially limited to a single source, the small pacific island of Nauru. Analysis of Cd isotope ratios (ɛ114/110Cd) in Nauru rock phosphate, pre-1997 superphosphate fertilisers, and Canterbury (Lismore Stony Silt Loam) topsoils (Winchmore Research Farm) has demonstrated their close similarity with respect to ɛ114/110Cd. We report a consistent ɛ114/110Cd signature in fertiliser-derived Cd throughout the latter twentieth century. This finding is useful because it allows the application of mixing models to determine the proportions of fertiliser-derived Cd in the wider environment. We believe this approach has good potential because we also found the ɛ114/110Cd in fertilisers to be distinct from unfertilised Canterbury subsoils. In our analysis of the Winchmore topsoil series (1949-2015), the ɛ114/110Cd remained quite constant following the change from Nauru to other rock phosphate sources in 1997, despite a corresponding shift in fertiliser ɛ114/110Cd at this time. We can conclude that to the present day, the Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers. One implication of this finding is that the current applications of P fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country

    ECOSSE: Estimating Carbon in Organic Soils - Sequestration and Emissions: Final Report

    Get PDF
    Background Climate change, caused by greenhouse gas ( GHG) emissions, is one of the most serious threats facing our planet, and is of concern at both UK and devolved administration levels. Accurate predictions for the effects of changes in climate and land use on GHG emissions are vital for informing land use policy. Models which are currently used to predict differences in soil carbon (C) and nitrogen (N) caused by these changes, have been derived from those based on mineral soils or deep peat. None of these models is entirely satisfactory for describing what happens to organic soils following land-use change. Reports of Scottish GHG emissions have revealed that approximately 15% of Scotland's total emissions come from land use changes on Scotland's high carbon soils; the figure is much lower for Wales. It is therefore important to reduce the major uncertainty in assessing the carbon store and flux from land use change on organic soils, especially those which are too shallow to be deep peats but still contain a large reserve of C. In order to predict the response of organic soils to external change we need to develop a model that reflects more accurately the conditions of these soils. The development of a model for organic soils will help to provide more accurate values of net change to soil C and N in response to changes in land use and climate and may be used to inform reporting to UKGHG inventories. Whilst a few models have been developed to describe deep peat formation and turnover, none have so far been developed suitable for examining the impacts of land-use and climate change on the types of organic soils often subject to land-use change in Scotland and Wales. Organic soils subject to land-use change are often (but not exclusively) characterised by a shallower organic horizon than deep peats (e.g. organo-mineral soils such as peaty podzols and peaty gleys). The main aim of the model developed in this project was to simulate the impacts of land-use and climate change in these types of soils. The model is, a) be driven by commonly available meteorological data and soil descriptions, b) able to simulate and predict C and N turnover in organic soils, c) able to predict the impacts of land-use change and climate change on C and N stores in organic soils in Scotland and Wales. In addition to developing the model, we have undertaken a number of other modelling exercises, literature searches, desk studies, data base exercises, and experimentation to answer a range of other questions associated with the responses of organic soils in Scotland and Wales to climate and land-use change. Aims of the ECOSSE project The aims of the study were: To develop a new model of C and N dynamics that reflects conditions in organic soils in Scotland and Wales and predicts their likely responses to external factors To identify the extent of soils that can be considered organic in Scotland and Wales and provide an estimate of the carbon contained within them To predict the contribution of CO 2, nitrous oxide and methane emissions from organic soils in Scotland and Wales, and provide advice on how changes in land use and climate will affect the C and N balance In order to fulfil these aims, the project was broken down into modules based on these objectives and the report uses that structure. The first aim is covered by module 2, the second aim by module 1, and the third aim by modules 3 to 8. Many of the modules are inter-linked. Objectives of the ECOSSE project The main objectives of the project were to: Describe the distribution of organic soils in Scotland and Wales and provide an estimate of the C contained in them Develop a model to simulate C and N cycling in organic soils and provide predictions as to how they will respond to land-use, management and climate change using elements of existing peat, mineral and forest soil models Provide predictive statements on the effects of land-use and climate change on organic soils and the relationships to GHG emissions, including CO 2, nitrous oxide and methane. Provide predictions on the effects of land use change and climate change on the release of Dissolved Organic Matter from organic soils Provide estimates of C loss from scenarios of accelerated erosion of organic soils Suggest best options for mitigating C and N loss from organic soils Provide guidelines on the likely effects of changing land-use from grazing or semi-natural vegetation to forestry on C and N in organic soils Use the land-use change data derived from the Countryside Surveys of Scotland and Wales to provide predictive estimates for changes to C and N balance in organic soils over time

    Nitrous oxide emission sources from a mixed livestock farm

    Get PDF
    The primary aim of this study was to identify and compare the most significant sources of nitrous oxide (N2O) emissions from soils within a typical mixed livestock farm in Scotland. The farm area can be considered as representative of agricultural soils in this region where outdoor grazing forms an important part of the animal husbandry. A high temporal resolution dynamic chamber method was used to measure N2O fluxes from the featureless, general areas of the arable and pasture fields (general) and from those areas where large nitrogen additions are highly likely, such as animal feeding areas, manure heaps, animal barns (features). Individual N2O flux measurements varied by four orders of magnitude, with values ranging from −5.5 to 80,000 ÎŒg N2O-N m−2 h−1. The log-normal distribution of the fluxes required the use of more complex statistics to quantify uncertainty, including a Bayesian approach which provided a robust and transparent method for “upscaling” i.e. translating small-scale observations to larger scales, with appropriate propagation of uncertainty. Mean N2O fluxes associated with the features were typically one to four orders of magnitude larger than those measured on the general areas of the arable and pasture fields. During warmer months, when widespread grazing takes place across the farm, the smaller N2O fluxes of the largest area source – the general field (99.7% of total area) – dominated the overall N2O emissions. The contribution from the features should still be considered important, given that up to 91% of the fluxes may come from only 0.3% of the area under certain conditions, especially in the colder winter months when manure heaps and animal barns continue to produce emissions while soils reach temperatures unfavourable for microbial activity (<5 °C)

    Ireland’s Rural Environment: Research Highlights from Johnstown Castle

    Get PDF
    ReportThis booklet gives a flavour of the current research in Teagasc Johnstown Castle Research Centre and introduces you to the staff involved. It covers the areas of Nutrient Efficiency, Gaseous emissions, Agricultural Ecology, Soils and Water quality
    • 

    corecore