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Abstract. Contemporary agriculture is shifting from a
single-goal to a multi-goal strategy, which in turn requires
choosing best management practice (BMP) based on an as-
sessment of the biogeochemical effects of management al-
ternatives. The bottleneck is the capacity of predicting the
simultaneous effects of different management practice sce-
narios on multiple goals and choosing BMP among scenar-
ios. The denitrification–decomposition (DNDC) model may
provide an opportunity to solve this problem. We validated
the DNDC model (version 95) using the observations of soil
moisture and temperature, crop yields, aboveground biomass
and fluxes of net ecosystem exchange of carbon dioxide,
methane, nitrous oxide (N2O), nitric oxide (NO) and am-
monia (NH3) from a wheat–maize cropping site in north-
ern China. The model performed well for these variables.
Then we used this model to simulate the effects of man-
agement practices on the goal variables of crop yields, NO
emission, nitrate leaching, NH3 volatilization and net emis-
sion of greenhouse gases in the ecosystem (NEGE). Results
showed that no-till and straw-incorporated practices had ben-
eficial effects on crop yields and NEGE. Use of nitrification
inhibitors decreased nitrate leaching and N2O and NO emis-
sions, but they significantly increased NH3 volatilization. Ir-
rigation based on crop demand significantly increased crop
yield and decreased nitrate leaching and NH3 volatilization.
Crop yields were hardly decreased if nitrogen dose was re-
duced by 15 % or irrigation water amount was reduced by
25 %. Two methods were used to identify BMP and resulted
in the same BMP, which adopted the current crop cultivar,
field operation schedules and full straw incorporation and ap-
plied nitrogen and irrigation water at 15 and 25 % lower rates,

respectively, than the current use. Our study indicates that the
DNDC model can be used as a tool to assess biogeochemical
effects of management alternatives and identify BMP.

1 Introduction

In recent decades, maximum crop yield has been the single
target used to assess agricultural success in response to rapid
population increase in China. Nitrogen fertilizer(s) have been
intensively applied to enhance crop yields (e.g., Ju et al.,
2009), leading to severe environmental degradation (Liu and
Diamond, 2005, 2008). Environmental degradation is closely
linked to the present environmental and climate changes, be-
cause fertilized croplands are significant sources or sinks of
greenhouse gases, such as, carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O). Additionally, these fields are
important sources of nitrogen pollutants, such as, nitric ox-
ide (NO), ammonia (NH3) and nitrate in water (e.g., IPCC,
2007). In addition to fertilization, other crop production ac-
tivities, including irrigation, tillage and crop residue man-
agement, can also influence the sources and sinks of gases
and hydrological nitrogen losses and thus contribute to envi-
ronmental degradation as well. To produce food in a highly
efficient manner with the lowest possible environmental haz-
ards, contemporary agriculture is shifting from a single-goal
to a multi-goal strategy. A multi-goal management of an
agricultural ecosystem is expected to simultaneously aim for
the following four goals: (a) sustaining/enhancing produc-
tivity (crop yields) to ensure food security; (b) mitigating
net emission of greenhouse gases in the ecosystem (NEGE)
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to combat climate warming; (c) reducing reactive nitroge-
nous gas emissions, mainly NH3 and NO to protect the air
quality and the climate; and (d) mitigating hydrological ni-
trogen losses (mainly nitrate leaching) to secure water qual-
ity. For an ecosystem with annual vegetation, the net CO2
emission can be referred as the opposite change in soil or-
ganic carbon (−1SOC) that is resistant to decomposition
and thus remains relatively stable in soils for longer than
decade. It is regarded as a source of atmospheric CO2 when
1SOC is negative and a sink when1SOC is positive. Crop-
lands with submerged soils such as paddy rice fields are usu-
ally the sources of atmospheric CH4, while uplands such
as wheat and maize fields are often sinks (Dutaur and Ver-
chot, 2007; IPCC, 2007). Nitrogen-fertilized croplands are
important sources of atmospheric N2O (IPCC, 2007). For an
ecosystem with annual vegetation, the quantities of−1SOC
and net CH4 and N2O emissions for a given timescale are
usually converted to CO2 equivalents using the global warm-
ing potentials (1 for CO2, 25 for CH4 and 298 for N2O at
the 100-year time horizon; IPCC, 2007). The equivalents are
then added together to express the NEGE. Fertilized crop-
lands are also important sources of atmospheric NH3 and
NO and nitrogen in aquatic ecosystems. Nitrogen-fertilizer
losses by NH3 volatilization and nitrate leaching also lead to
a reduction in nitrogen use efficiency (Zhu and Chen, 2002;
Yan et al., 2003). The conversion of NOx (NO and nitrogen
dioxide) to nitric acid vapor that reacts further with NH3 can
form secondary aerosols (eg., ammonium nitrate particles,
organic aerosol particles if VOC is involved) (EPA, 2004),
which in turn can affect human health and climate forcing
(IPCC, 2007). Besides, NOx and NH3 also greatly contribute
to atmospheric nitrogen deposition, which in turn can influ-
ence biodiversity and nitrogen cycling in natural ecosystems
(Galloway et al., 1994; Aneja et al., 2001). Nitrogen load-
ing into aquatic ecosystems can damage water quality and
cause eutrophication (Tilman et al., 2002; Seitzinger, 2008).
As a consequence, other goals in addition to crop yields must
simultaneously be taken into account during assessments of
agricultural management practices (Tilman et al., 2002).

In China, winter wheat and summer maize have been com-
monly cultivated in rotation (with both crops harvested in
the same year) for decades in regions characterized by north-
ern subtropical and southern temperate climates (Tong et al.,
2003; Liu et al., 2012). Single-goal (i.e., yield) management
is being adopted for wheat and maize production in the south-
ern temperate region (northern China); consequently, the cur-
rent crop yields are obtained mostly by high rates of nitro-
gen application coupled with high water input from irriga-
tion (Wang et al., 2008; Ju et al., 2009). However, single-goal
management is obviously not environmentally friendly and
thus unsustainable because of low nitrogen use efficiencies
(Zhao et al., 2006; Jia et al., 2004) and very limited water re-
sources for irrigation (Liu et al., 2001). Therefore, it is very
important to convert the single-goal management to multi-
goal management for wheat and maize cultivation in northern

China. Best management practice (BMP) is required, which
include the assessment of biogeochemical effects of differ-
ent alternatives, i.e., fertilization, tillage, irrigation and crop
residue treatment.

There are two challenges of identifying a BMP. One is how
to quantify the biogeochemical effects of various manage-
ment alternatives on the multiple goals stated above, and the
other is how to identify the BMP from these management
alternatives. Field experiments have played a key role in de-
termining management practice effects. These experiments
have indicated that no-till and crop residue applications are
usually favorable for carbon sequestration, i.e., as a CO2 sink
(Schlesinger, 1999; Grandy et al., 2006). However, the ef-
fects of these practices on N2O and NO emissions are con-
tradictory. Some experimental studies have reported positive
effects for tillage on the emissions of N2O (Estavillo et al.,
2002) and NO (Yao et al., 2009), while others have found
inhibitory or no obvious effects (Grandy et al., 2006). The
effects of crop straw incorporation on N2O and NO emis-
sions have been found to be dependent on the use of chem-
ical fertilizers as well as straw quantity and quality (Baggs
et al., 2003; Liu et al., 2011; Yao et al., 2009). Ammonia
volatilization has been observed at much lower levels when
urea is deeply buried in soils or used together with a urease
inhibitor in comparison with surface broadcasting or with-
out a urease inhibitor (Roelcke et al., 2002; Cai et al., 2002).
Ammonia volatilization may have also been influenced by
fertilizer types and crop residue applications (Roelcke et al.,
2002; Francisco et al., 2011). Irrigation methods, as well as
rates and times of fertilizer application, have been reported
to affect nitrate leaching (Goulding, 2000; Di and Cameron,
2002). Researchers have observed stimulatory, inhibitory or
no obvious effects of nitrogen application rates on CH4 up-
take by upland agricultural soils (Bodelier and Laanbroek,
2004; Aronson and Helliker, 2010). To date, however, field
experiments such as those reviewed above have focused on
single or very few of our goals, or they have focused on these
effects over very short periods for many reasons, such as re-
source limitations. This suggests that field experiments alone
are hard to quantify the biogeochemical effects of different
management alternatives on multiple goals. In order to over-
come this, process-based models can be used, such as DNDC
(Li et al., 1992; Li, 2000), DAYCENT (Parton et al., 1994)
and WNMM (Li et al., 2007). Because the DNDC model has
been widely tested and applied to various croplands in China
to simulate greenhouse gas emissions (e.g., Li et al., 2010),
SOC dynamics (e.g., Zhang et al., 2006) and crop yields (e.g.,
Liang et al., 2011), in this study we choose it as an attempt
to quantify the biogeochemical effects for the wheat–maize
cropping system in northern China.

To identify a BMP from management scenarios is also
difficult because it is hard to evaluate the comprehensive
effects of the multiple goal variables. Farahbakhshazad et
al. (2008) reported a subjective method by combining the
single-factorial practices with the maximum benefits (as
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compared to the baseline scenario) in terms of the goal vari-
ables they concerned. This method can be applicable for rela-
tively simple situations involving a small number of manage-
ment scenarios, with consistently positive or negative effects
for most of the goal variables. Otherwise, such a subjective
method can be hardly applied. Therefore, it is necessary to
develop an objective method that is expected to be applica-
ble for complicate cases with, for example, more goal vari-
ables, a much larger number of scenarios and more complex
responses of the goal variable to alternation of management
practices.

The DNDC model links ecological drivers (e.g., climate,
soil properties, vegetation and anthropogenic activities) to
soil environmental variables (e.g., temperature and mois-
ture). These variables in turn regulate carbon and nitrogen
transformation processes by which the variables of our mul-
tiple goals (i.e., crop yield,1SOC, nitrate leaching and emis-
sions of NH3, CH4, N2O and NO) were simulated. Although
the DNDC has been used widely for both croplands and
grasslands under a broad range of conditions (e.g., Brown
et al., 2002; Cai et al., 2003; Kesik et al., 2005; Babu et al.,
2006; Wang et., 2012), validation data were usually limited
to single or very few goals that relate to our goals (Giltrap et
al., 2010a). An ideal application of this model in establish-
ing BMP should include validation against observations of
the following: (a) crop growth or yield, (b) soil climate, (c)
1SOC and/or carbon fluxes, (d) nitrogen fluxes and (e) water
balance (Tonitto et al., 2010). In reality, few observations can
simultaneously include these five aspects.

To identify BMP for the wheat–maize cropping system in
northern China, we conducted a modeling case study at a
wheat–maize rotation field site in the Shanxi province, where
simultaneous observations of soil climate, crop growth and
yields, net ecosystem exchange of CO2 (NEE), and CH4,
NH3, N2O and NO fluxes were available. Our objectives
were to (a) validate the DNDC model (version 95) using si-
multaneous observations, (b) use model simulation to eval-
uate the biogeochemical effects of alternative management
practices, and (c) identify the BMP aiming at our four goals
stated above.

2 Materials and methods

2.1 Description of the field site

The field site (34◦55.51′ N, 110◦42.59′ E) for this modeling
case study is located at Dongcun farm, Shanxi province in
northern China. This region has a temperate continental cli-
mate. Winter wheat and summer maize ration dominates the
crop cultivation systems of this farm and its nearby areas.
The mean annual air temperature and precipitation in 1986–
2010 at the Yuncheng meteorological station (approximately
60 km away from the field site) were 14.4◦C and 580 mm,
respectively (National Climate Data,ftp://ftp.ncdc.noaa.gov/

pub/data/gsod/). The soil at the study site has a clay loam
texture with 31.8± 0.9 % clay (< 0.002 mm), 38.9± 0.6 %
silt (0.002–0.02 mm) and 29.3± 1.4 % sand (0.02–2 mm) in
the uppermost 10 cm layer (Liu et al., 2011, 2012). The soil
(0–10 cm) contains organic carbon of 11.3± 0.6 g kg−1, to-
tal nitrogen of 1.12± 0.05 g kg−1, pH (H2O) of 8.7 and has a
bulk density (0–6 cm) of 1.17± 0.04 g cm−3 (Liu et al., 2011,
2012).

2.2 Description of the DNDC model

The DNDC model (version 95), downloaded from web (http:
//www.globaldndc.net/) in April 2012, is a process-based
model, which was originally developed to estimate the N2O
emissions from U.S. agricultural fields (Li et al., 1992) and
later extended to estimate other carbon and nitrogen pro-
cesses such as NO, CH4 and NH3 emissions, SOC dynam-
ics and crop yields (Li et al., 1996; Li, 2000). This model is
composed of two components. One consists of the climate,
crop and decomposition submodels and calculates the states
of the soil–plant system such as soil chemical and phys-
ical status, vegetation growth and organic carbon mineral-
ization. This calculation is driven by environmental and an-
thropogenic drivers (daily weather, soil properties and farm
management practices). The other component consists of ni-
trification, denitrification and fermentation submodels. The
DNDC model predicts NO, N2O, CH4 and NH3 fluxes that
are regulated by soil environmental variables and substrates,
which are calculated by the former component. Li (2000) de-
tailed the structures, equations and parameters of this model.
This model can perform simulations at the site or regional
scale, and simulations with the site mode enable comparison
against field observations.

To carry out simulations at the site scale, the model
requires inputs of daily meteorological data (e.g., maxi-
mum/minimum temperatures and precipitation), soil proper-
ties (e.g., texture, SOC content, pH and bulk density) and
management practices (e.g., crop information, tillage, fertil-
ization and irrigation). Although the model provides default
values for these parameters in relation to the inputs, it is
better to substitute them with measured data or to calibrate
them using other easily obtained data. Any change in either
the natural conditions or the farming management practices
can alter the soil environmental status and substrate contents
and thus the biogeochemical reactions, thereby altering crop
growth, carbon balance, carbon and nitrogen gas emissions
and nitrate leaching. Therefore, the model can simultane-
ously simulate yield,1SOC, CH4, N2O and NO emissions,
NH3 volatilization and nitrate leaching under different man-
agement practices.

2.3 Data for model validation

Two groups of data were prepared to validate the model.
One was for the model simulation inputs and included daily
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meteorological data (maximum/minimum temperature and
precipitation), soil properties (texture, clay fraction, bulk
density, pH, SOC content, field capacity and wilting point),
crop parameters (accumulated temperature, mass fractions
of plant organs and carbon to nitrogen ratios of plant or-
gans) and data for management operation (tillage, fertiliza-
tion and irrigation). The other group was used to validate the
model outputs for variables of interest. This group included
data about the soil climate (soil temperature and moisture),
biomass dynamics and crop yields, NEE fluxes, CH4, N2O,
NH3 and NO emissions and others. We used daily meteo-
rological data during 2003–2010 to drive model simulations
for validation purposes, of which those from 2008 to 2010
were measured at the field site and the others were obtained
at the Yuncheng meteorological station (ftp://ftp.ncdc.noaa.
gov/pub/data/gsod/). All soil property data, excluding field
capacity and wilting point, were measured at the field site
and are given in Sect. 2.1. The model provides default val-
ues for field capacity and wilting point once the soil tex-
ture is determined. We calibrated these values with our mea-
sured soil moisture data from January 2008 to October 2008
(Table 1, Fig. 1), which resulted in 0.65 and 0.20, respec-
tively. The model also provides defaults for crop parame-
ters. Because these parameters are usually cultivar- or site
specific (Ludwig et al., 2011) and they are crucial for simu-
lating crop growth, we substituted them with field site ob-
servations or values from literature. Specifically, the root
mass fraction was set as 0.10 for both wheat and maize ac-
cording to Huang et al. (2009), while the mass fractions of
grain (wheat, 0.38; maize, 0.40) and leaf + stem (wheat, 0.52;
maize, 0.50) were given as the field observation averages (un-
published data from the authors). Carbon to nitrogen ratios
for grain and leaf + stem were set as 20 and 80 for wheat and
30 and 50 for maize according to observations from multi-
ple field treatments listed in Table 1 (unpublished data from
the authors). The carbon to nitrogen ratios of the roots were
assumed to be the same with those of leaf + stem for both
crops. Unpublished data of grain and leaf + stem and their
carbon to nitrogen ratios were measured at harvest, using
the method described by Liu et al. (2012). The model de-
fault values for the accumulated temperature (thermal de-
gree days) from seeding to maturity were substituted with
1800◦C (> 9.5◦C d−1) and 2900◦C (> 0◦C d−1) for wheat
and maize, respectively, using 10 yr averages from temper-
atures measured from 2001 to 2010 at the Yuncheng me-
teorological station (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/).
We directly used the model default values for those soil and
crop parameters if not specifically mentioned above. To sim-
ulate the effects of nitrification inhibitors, the efficiency and
the effective duration was set as 0.6 and 30 days for dicyandi-
amide, and 0.9 and 30 days for 3, 4-dimethyl pyrazole phos-
phate according to model validation using measured data of
N2O and NO emissions.

To validate the model outputs, we used the measured data
of soil (5 cm) temperature and topsoil (0–6 cm) moisture

Fig. 1. Observed and simulated daily mean soil (5 cm) tempera-
ture and soil (0–6 cm) moisture contents in water-filled pore space
(WFPS) from October 2007 to October 2010. Measurements (mois-
ture) from January 2008 to October 2008 were used for parameter
calibration and the remaining observations were used for validation.
The observed data were adapted from Liu et al. (2011, 2012).

from 2007 to 2010 (Liu et al., 2011, 2013), grain yields
from 2005 to 2010 (Liu et al., 2011, 2012, 2013), above-
ground biomass dynamics from 2008 to 2010 (unpublished
data from the authors), NEE from April 2009 to April 2010
(Wang et al., 2013; unpublished data from the authors), CH4
fluxes from 2009 to 2010 (Liu et al., 2012), and emissions of
N2O (Liu et al., 2011, 2012, 2013) and NO (Liu et al., 2011:
2008–2009; others were unpublished data from the authors)
from 2008 to 2010 from different treatments at the wheat–
maize rotation field (Table 1). Unpublished data of above-
ground biomass dynamics that were weekly measured since
winter wheat reviving or summer maize germination were
measured at harvest, using the method described by Liu et
al. (2012). The NEE data during the non-maize period were
cited from Wang et al. (2013), and those during the maize
growing period were measured with the eddy covariance
technique as described by Wang et al. (2013). The unpub-
lished NO data were measured by the static opaque cham-
ber/chemoluminescence method as described in previous
studies (Liu et al., 2011; Cui et al., 2012; Mei et al., 2009).
In addition to data listed in Table1, fluxes of NH3 volatiliza-
tion following a nitrogen fertilization event in the field ad-
jacent to the experimental plot of the conventional manage-
ment treatment (CT) were adapted from Yang et al. (2011)
and used to validate the model as well. From 2005 to 2008,
observations were available for CT and improved manage-
ment treatment (IT). In addition to the different nitrogen ad-
dition rates between the two treatments, flooding irrigation
was adapted for CT and sprinkler irrigation for IT. From
2008 to 2009, the data were collected from with-straw (WS)
and no-straw (NS) incorporation treatments. From 2009 to
2010, observations were performed for the treatments with
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Table 1.Details of observational cases with different management practices used for model validation.

Period Treatmenta N Variables involved in model validation Data source

Oct 2005–Oct 2006 CT 430 Yield (1)
IT 360 Yield (1)

Oct 2006–Oct 2007 CT 430 Yield (1)
IT 360 Yield (1)

Oct 2007–Oct 2008 CT 295 Yield,Ts, Ms (1)
IT 240 Yield (1)

Oct 2008–Oct 2009 WS 390 Yield, N2O, NO, NEEb,Ts, Ms, AB (1), (2), (3)
NS 390 Yield, N2O, NO (1), (2),

Oct 2009–Oct 2010 U 430 Yield, N2O, NO, NEEb, Ts, Ms AB, (2), (4)
DCD 430 Yield, N2O, NO (2), (4)
DMPP 430 Yield, N2O, NO (2), (4)
N135 430 Yield, N2O, NO, CH4 (2), (5)
N270 430 Yield, N2O, NO, CH4 (2), (5)
N430 430 Yield, N2O, NO, CH4 (2), (5)
N650 430 Yield, N2O, NO, CH4 (2), (5)
N850 430 Yield, N2O, NO, CH4 (2), (5)

a Treatment code definitions are found in the text.
b Observations are from April 2009 to April 2010, spanning WS and U treatments.
N, nitrogen fertilizer application rates (kg N ha−1 yr−1); Ts, soil temperature;Ms, soil moisture; AB, aboveground biomass; (1),
Liu et al. (2011); (2), unpublished data from the authors; (3), Wang et al. (2013); (4), Liu et al. (2013); (5), Liu et al. (2012).

nitrification inhibitor (DCD and DMPP), without inhibitor
(U) and with different nitrogen addition rates (N135, N270,
N430, N650 and N850). The abbreviations U, DCD and
DMPP represented urea alone, urea plus dicyandiamide and
urea plus 3, 4-dimethyl pyrazole phosphate, respectively. The
abbreviations N135, N270, N430, N650 and N850 stood for
the nitrogen application rates of 135, 270, 430, 650 and
850 kg N ha−1 yr−1, respectively. Management practices de-
tails (dates of operation, tillage methods, fertilizer types and
application methods, water amount and methods of irriga-
tion) for each treatment are presented in the online supple-
mentary material (Table 1S).

To reduce the residual effects of initial conditions, we con-
ducted simulations of the treatments (Table 1) for seven con-
secutive years from October 2003 to October 2010 and ex-
tracted the results during the periods with observations for
validation. Management practices for CT treatment from Oc-
tober 2005 to October 2006 were used to implement the sim-
ulation for the first two years (October 2003–October 2005)
when detailed information of management practice informa-
tion was unavailable.

2.4 Management practice scenarios

To assess the biogeochemical effects of alternative manage-
ment practices and thereby identify the BMP, model simula-
tions of possible scenarios must be conducted. We designed
two groups of management practice scenarios for this pur-
pose (Table 2). One included 12 single-factor scenarios, each
of which varied a single management practice while keeping
others consistent with the baseline scenario. The other in-

cluded two improved scenarios, each of which was set by re-
ferring to the results of the single-factor scenarios and simul-
taneously considering multiple types of management prac-
tices. More details about the settings for improved scenarios
are given in Sect. 4.3, and the single-factor scenarios are de-
tailed in this section.

With respect to crop residue management, we set no-straw
incorporation (NSI) and all-straw incorporation (ASI) sce-
narios because these two treatments are commonly applied
in northern China, with the former being dominant in the
past and the latter encouraged by the current policy (Jiang
et al., 2012). After harvest, the straws were cut into small
pieces and then returned back to the field for the ASI sce-
nario, or removed from the field for the NSI scenario. The
operations for the NSI and ASI scenarios other than crop
straw management were set by referring to the WS and U
treatments (Tables 1 and 1S) and described as follows. The
seeding and harvest dates for wheat were 21 October and 3
June, respectively, and those for maize were 6 June and 14
October, respectively. Tillage with a depth of approximately
20 cm occurs immediately before seeding for each crop. Ni-
trogen fertilizers are applied at 430 kg N ha−1, with fertilizer
type(s) and the application schedule following those of the U
treatment (Tables 1 and 1S). Five times of irrigation (on 22
March, 4 May, 18 June, 8 August, and 18 December) occur
annually, with 80 mm (as the average value of the U treat-
ment) for each time.

We set the ASI as the baseline scenario in this study con-
sidering that straw incorporation for the wheat–maize crop-
ping system in northern China has been required recently by
policy and that the nitrogen application rate of approximately

www.biogeosciences.net/11/91/2014/ Biogeosciences, 11, 91–107, 2014
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Table 2.Detailed management practices for each scenario.

Scenariosa N NI SI Tillage Irrigation

Single factor∗

ASI 430 ×
√ √

5 times, 80 mm for eachb

NSI 430 × ×
√

Same as ASI
NT 430 ×

√
× Same as ASI

DCDI 430
√ √ √

Same as ASI
DMPPI 430

√ √ √
Same as ASI

N301 301 ×
√ √

Same as ASI
N366 366 ×

√ √
Same as ASI

N495 495 ×
√ √

Same as ASI
N559 559 ×

√ √
Same as ASI

IRRindex 430 ×
√ √

Many timesc

IRR300 430 ×
√ √

5 times, 60 mm for eachb

IRR500 430 ×
√ √

5 times, 100 mm for eachb

Improved#

Imp1 366 ×
√

× Many timesc

Imp2 366 ×
√ √

Same as IRR300

N, nitrogen application rate (unit: kg N ha−1 yr−1); NI, nitrification inhibitor (
√

for yes and
× for no); SI, straw incorporation (

√
for yes and× for no); Tillage,

√
for yes and× for no.

a The management practices other than those listed in this table were the same for all the
scenarios and were described in the text.
b Irrigation occurred on March 22, May 4, June 18, August 8, and December 18 of each year.
c Irrigation happened whenever there was a water deficit for the crop demands, with irrigation
indexes of 0.3 and 0.25 for IRRindex and Imp1, respectively.
∗ Single factors of straw management, tillage, inhibitor use, nitrogen dose and irrigation were
separately considered to set the scenarios.
# Multiple factors were considered to set the scenarios for improved management alternatives.

430 kg N ha−1 yr−1 was commonly adopted by the farmers in
the region of our field site (Zhao et al., 2009).

The other single-factor scenarios other than NSI and ASI
included NT (no tillage), DCDI and DMPPI (use of nitrifi-
cation inhibitors), N301, N366, N495 and N559 (different
nitrogen addition rates) as well as IRRindex, IRR300 and
IRR500 (irrigation). These scenarios were designed by al-
tering one of the ASI management settings at a time. The
management setting differences between these scenarios and
ASI are listed in Table 2 and briefly described as follows. For
NT, crop residues are left at the soil surface with the soil un-
tilled. For DCDI and DMPPI, the nitrification inhibitors di-
cyandiamide and 3, 4-dimethyl pyrazole phosphate are used
with urea, respectively. In comparison to the ASI, the N301
and N366 scenarios receive nitrogen fertilizer applications
at 30 % and 15 % lower rates, respectively, while N495 and
N559 at 15 % and 30 % higher rates, respectively. For the
IRRindex, irrigation occurs whenever crop growth is limited
with the soil water supply, and the amount of irrigation water
each time is determined by multiplying the input parame-
ter irrigation index by the deficit of available soil water for
plant uptake. In this scenario, the irrigation index was equal
to 0.3 to ensure the same annual irrigation amounts as that
of ASI (400 mm yr−1). Relative to ASI, the annual irrigation
amounts are 25 % lower and higher for IRR300 and IRR500,
respectively. To assess the effects of different management
practices at the decadal scale, we performed the model sim-
ulation for each scenario for 20 yr. As this was supposed
to represent the actual rainfall situation, we did not con-

sider using rainfall data set generated randomly or using ex-
treme weather years. The simulations were driven by actual
daily meteorological data at Yuncheng station from 1991 to
2010 (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/). We recorded
the annual outputs for grain yields, NEE, SOC content, ni-
trate leaching, NH3 volatilization and emissions of CH4,
N2O and NO, thereby calculating the 20 yr averages for indi-
vidual scenarios. These average values were further used for
managerial assessments.

2.5 Statistics and data analysis

To quantify the discrepancy between simulated and observed
results, the statistical criteria of the root mean square er-
ror (RMSE), relative mean deviation (RMD) and model ef-
ficiency (ME) were calculated (Loague and Green, 1991;
Smith et al., 1997). The RMSE (Eq. 1) was calculated to
measure the coincidence between observed and simulated
values, while the RMD (Eq. 2) was calculated to evaluate the
systematic bias of the model. The ME (Eq. 3) was a measure
of the improvement in model predictions relative to the mean
of the measurements. A positive ME value indicates that the
simulated values would describe the trend in the measured
data better than the mean of the observations, while a nega-
tive value indicates that the simulated values would describe
the data worse than the mean of the observations (Smith et
al., 1997; Miehle et al., 2006). The RMSE and RMD equaled
0 and the ME equaled 1 for an ideal fitting (Miehle et al.,
2006). In addition, a zero-intercept linear regression between
simulations and observations was also used to evaluate model
performance. The slope of the linear regression indicates a
bias extent. The determination coefficient (R2) of the linear
regression would evaluate how well the simulations match
the observed data.

RMSE=
100

O

√√√√√ n∑
i=1

(Pi − Oi)2

n
(1)

RMD =
100

O

n∑
i=1

Pi − Oi

n
(2)

ME = 1−

n∑
i=1

(Pi − Oi)
2

n∑
i=1

(Oi − O)2
(3)

In Eqs. (1)–(3)Oi is the observed (measured) values,Pi

is the predicted values,O and P are the mean of the ob-
served and simulated data, respectively, andn is the number
of paired values.

2.6 Methods for identifying the best management
practices

We used two methods to identify the BMP. One is a subjec-
tive method by combining the single-factorial practices with
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the maximum benefits (as compared to the baseline scenario)
in terms of enhancing crop yields while reducing NEGE,
NH3 and NO emissions and nitrate leaching (Farahbakhs-
hazad et al., 2008). And the other is an objective method we
attempt to establish in this study. This objective method uses
quantitative criteria in conjunction with given constraints to
identify the BMP from scenarios. Assessment index (I ) is the
quantitative criteria, which is a price-based proxy that is de-
termined by the values of goal variables and the price-based
coefficient for each goal variable. It is calculated with the
formula of Eq. (4). As the higherI value the better, the BMP
should potentially be the scenario with the highestI value.
However, as the assessment index only include the effects
of goal variables, constraints were also set to help choosing
BMP for specific local conditions. Constraints can be a num-
ber of limits in light of policies, local resource availability
and/or technical feasibility.

I =

n∑
i=1

(ai · Pi) − b · NEGE− c · NH3 − d · NL (4)

− e · NO− f · N2O(ODM)

In Eq. (4),I (unit: $ ha−1) is an index regarded as a measure
of the comprehensive effects of productivity (P ), NEGE,
NH3 volatilization, nitrate leaching (NL), NO release and
emission of N2O(ODM) as an ozone layer depletion matter.
The productivity item was specified to wheat yield (P1) and
maize yield (P2), with n = 2, for our case of winter wheat-
summer maize cropping system. The coefficientsa, b, c, d,
e and f are price-based proxies ofP , NEGE, NH3, NL,
NO and N2O(ODE), respectively. The values ofa1 and a2
are set as USD 891 Mg−1 C (http://www.czce.com.cn/portal/
index.htm) and USD 938 Mg−1 C (http://www.pvc123.com/
b-daliantrade/), respectively, by referring to the recent mar-
ket prices. Theb value is set as USD 7.00 Mg−1 CO2-eq by
referring to the recent price of the carbon trade market (https:
//www.theice.com/ccx.jhtml). The coefficientsc, d, e andf

are determined according to the costs of N-related impacts
or mitigation, with values of USD 5.02 kg−1 N (Birch et al.,
2011), USD 1.92 kg−1 N (Dodds et al., 2009; van Grinsven
et al., 2010; Compton et al., 2011), USD 25.78 kg−1 N (Birch
et al. 2011) and USD 1.33 kg−1 N (Compton et al., 2011), re-
spectively.

3 Results

3.1 Model validation

3.1.1 Soil temperature and moisture

Figure 1a shows the predictions and observations of daily
mean soil (5 cm) temperature from October 2007 to Oc-
tober 2010. The temporal pattern and magnitudes of the
modeled values were in agreement with the observations.

The zero-intercept linear regression of simulated against ob-
served daily mean soil temperatures yielded anR2 of 0.97
and a slope of 1.00 (n = 1045,P < 0.01). Values of RMSE,
RMD and ME were 10.13 % m 1.30 % and 0.98, respectively
(Table 3).

As Fig. 1b shows, the model prediction generally cap-
tured the temporal variation and magnitude of the measured
soil (0–6 cm) moisture (WFPS, i.e., water-filled pore space)
most of the time, although discrepancy existed on some val-
ues. The zero-intercept linear regression of simulated vs. ob-
served daily mean soil moisture showed anR2 of 0.29 and
a slope of 1.04 (n = 877,P < 0.01). The RMSE, RMD and
ME were calculated as 34.57 %, 68.17 % and 0.05 (Table 3).

3.1.2 Aboveground biomass dynamics and grain yield

The simulated dynamic aboveground biomass for wheat and
maize were generally close to the field observations (Fig. 2a).
As the observations show, the aboveground biomass of win-
ter wheat was quite low in winter and began to increase dra-
matically after reviving in the spring. The model successfully
simulated this dynamic. The zero-intercept linear regression
of simulated aboveground biomass against the observations
yielded anR2 of 0.92 and a slope of 1.06 (n = 72,P < 0.01;
Table 3), indicating a good agreement. The simulation re-
sulted in RMSE, RMD and ME values of 28.81 %, 13.00 %
and 0.92, respectively (Table 3).

Figure 2b compares the simulated and observed yields of
wheat and maize in all treatments from October 2005 to Oc-
tober 2010 (data are presented in Table 2S). As the zero-
intercept linear regression illustrates, there was a good agree-
ment between simulations and observations of the yields,
with a slope of 0.96 andR2 of 0.65 (n = 32, P < 0.01,
Table 3). Values of RMSE, RMD and ME were 9.51 %,
−2.76 % and 0.70, respectively (Table 3). As the observa-
tions demonstrated, crop yields did not significantly increase
in response to further application rates of nitrogen fertilizers
above a certain level (Liu et al., 2012; Table 2S). This feature
was properly reflected by the model simulation as well (Ta-
ble 2S), which confirmed the ability of the model to simulate
the effects of fertilizer nitrogen addition on crop yields.

3.1.3 Net ecosystem exchange of carbon dioxide

Figure 3a displays simulated and observed daily NEE fluxes.
These data suggest that the model generally captured sea-
sonal fluctuations of the NEE fluxes in the involved wheat–
maize rotation. In general, negative NEE fluxes were ob-
served from March to May and July to September when the
cops were growing quickly. However, on cloudy or rainy
days, the abrupt increases of NEE fluxes up to above zero
were not well reflected by the model. Nevertheless, a zero-
intercept linear relationship between the simulated (S) and
observed (O) daily NEE fluxes was found (S = 0.91O, R2

=

0.55, n = 365,P < 0.01; Table 3). The simulation gave an
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Table 3.Statistics of DNDC simulations versus observations with regards to concerned variables.

Linear regression RMSE RMD

Concerned variables Intercept SlopeR2 P (%) (%) ME n

Soil temperaturea 0 1.00 0.97 < 0.01 10.13 1.30 0.98 1045
Soil moistureb 0 1.04 0.29 < 0.01 34.57 8.17 0.05 877
Aboveground biomassc 0 1.06 0.92 < 0.01 28.81 13.00 0.92 72
Yieldc 0 0.96 0.65 < 0.01 9.51 -2.76 0.70 32
Daily NEEd 0 0.92 0.58 < 0.01 – – 0.40 365
Daily NH3 volatilizatione 0 1.22 0.77 < 0.01 77.73 4.17 0.21 11
Annual N2O emissionf 0 1.09 0.78 < 0.01 19.45 8.74 0.57 10
Annual NO emissionf 0 1.07 0.88 < 0.01 27.45 0.32 0.53 10

a ◦C; b, WFPS;c Mg C ha−1; d kg C ha−1 d−1; e kg N ha−1 d−1; f kg N ha−1 yr−1; – not calculated.

Fig. 2. Simulated and observed aboveground biomass(a) and grain
yields (b) of the wheat–maize rotations. Aboveground biomass of
wheat–maize rotation was for the WS treatment in 2008–2009 and
the U treatment in 2009–2010, with the vertical bars indicating
the standard errors of 3 replicates (unpublished data of the au-
thors, which were weekly measured since winter reviving or sum-
mer maize germination using the method described by Liu et al.,
2011, 2012). Grain yields of individual crop season for all treat-
ments described in Table 1, with horizontal bars indicating the stan-
dard errors of 3 replicates, were cited from Liu et al. (2011, 2012,
2013).∗∗ indicates a significance level ofP < 0.01.

ME of 4.28 % and 0.36 (Table 3). We did not calculate the
RMSE and RMD here because the criteria did not apply to
our NEE data with a small mean value of observation due to
frequent positive and negative fluxes.

Although the cumulative NEE resulting from the model
simulation and observations were periodically inconsis-

Fig. 3. Observed and simulated daily(a) and cumulative(b) net
ecosystem exchange of carbon dioxide (NEE) in the wheat–maize
rotation during 2009–2010. The observed data during the non-maize
period were cited from Wang et al. (2013) and those during the
maize growing period were unpublished data from the authors,
which were measured with the eddy covariance technique as de-
scribed by Wang et al. (2013).

tent with each other (Fig. 3b), their values over the
year-round period (365 days) were very close (−7.16 and
−6.86 Mg C ha−1 yr−1, respectively, with a difference of ap-
proximately of 4 % of the observation).

3.1.4 Ammonia volatilization

We plotted the simulated and observed daily and cumula-
tive NH3 volatilization in Fig. 4. As the figure demonstrates,
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Fig. 4. Observed and simulated daily(a) and cumulative(b) am-
monium volatilization due to one fertilizer application event in the
wheat–maize field during July of 2008. The Observed data were
adapted from Yang et al. (2011).

the temporal variation pattern given by the simulated fluxes
generally followed that of the observed fluxes, though the
model simulation overestimated the peak flux on the fifth
day after fertilizer amendment and slightly underestimated
the fluxes on the last three days. Despite these differences,
the model simulation yielded a cumulative NH3 emission of
3.76 kg N ha−1 as a consequence of the fertilization event,
which was approximately 4 % higher than the observed value
(3.60 kg N ha−1). The zero-intercept regression of simulated
vs. observed daily NH3 volatilization yielded anR2 of 0.77
and a slope of 1.22 (n = 11, P < 0.01). The simulation re-
sulted in RMSE, RMD and ME values of 77.73 %, 4.17 %
and 0.21, respectively (Table 3).

3.1.5 Methane emission

Figure 5a illustrates the simulated and observed daily CH4
fluxes from October 2009 to October 2010 for the N430 treat-
ment. Similar results for the other treatments were also ob-
tained (data not shown). As shown in Fig. 5a, the observed
CH4 fluxes were generally negative, with stronger fluxes dur-
ing the period from May to July than those during other peri-
ods. The model successfully simulated this temporal pattern,
although the simulated values were slightly lower than the
observed ones in the last two months. The simulated annual
amounts of net CH4 emission showed no significant response
to the different fertilizer application rates (Fig. 5b), which

Fig. 5. Observed and simulated daily methane (CH4) fluxes for
treatment N430(a), and cumulative CH4 emissions(b) for treat-
ments N135, N270, N430, N650 and N850 from 2009 to 2010.
Treatment code definitions can be found in Table 1 and in the text.
The observed data were adapted from Liu et al. (2012).

was consistent with the experimental results reported by Liu
et al. (2012).

3.1.6 Nitrous oxide and nitric oxide

Figure 6a and b illustrates the simulated and observed daily
N2O fluxes from October 2008 to October 2009 for the WS
and NS treatments (the simulated and observed fluxes of N2O
during October 2009 to October 2010 for other treatments
were available but not shown here). The observed daily N2O
fluxes were highly variable within each year. High peaks usu-
ally appeared following fertilization, irrigation (especially
those occurred after fertilizer application) and heavy rainfall.
Compared with the observed fluxes, the DNDC model gen-
erally captured the temporal pattern of daily N2O emissions,
although discrepancies existed in the magnitudes of some
peak emissions (e.g., the model underestimated N2O fluxes
caused by irrigation following fertilization in July 2009 for
both treatments).

Of the 10 involved treatments with different manage-
ment practices (Table 1), the observed annual N2O emis-
sions ranged from 2.09 to 5.57 kg N ha−1, with an average
of 3.70 kg N ha−1 (Fig. 6c). In consonance with observations,
the model simulations for these treatments resulted in annual
N2O emissions of 2.67 to 6.95 kg N ha−1, with an average
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Fig. 6. Observed and simulated daily fluxes of N2O and NO from
the WS(a, b) and NS(d, e) treatments in 2008–2009, comparison
of the observed and simulated annually cumulative N2O (c) and NO
(f) emissions from the wheat–maize rotations with different man-
agement practices. The arrows with capital letterF indicate the fer-
tilization time. Error bars indicate the standard errors of 3 replicates.
∗∗ indicates a significance level ofP < 0.01. The observed data for
N2O and daily fluxes of NO (b ande) were adapted from Liu et
al. (2011, 2012, 2013) and remaining data for annual NO emission
(f) were unpublished data of the authors, which were measured with
the same method described by Liu et al. (2011).

value of 4.02 kg N ha−1. Comparison between the computed
and observed annual N2O emissions across different treat-
ments yielded anR2 of 0.78 and a slope of 1.09 for a sig-
nificant zero-intercept linear regression (n = 10, P < 0.01;
Table 3). The model simulation resulted in RMSE, RMD
and ME values of 19.45 %, 8.74 % and 0.57, respectively, in
terms of annual N2O emission (Table 3).

Figure 6d and e shows the simulated and observed daily
NO fluxes from WS and NS treatments from October 2008 to
October 2009. The simulated and observed fluxes of NO for
other treatments from October 2009 to October 2010 were
also available but not shown here. The observed daily NO
fluxes remained stable at a low level most of the time and
were obviously higher during the three periods following fer-
tilization events. The model well captured the temporal pat-
tern and magnitudes of NO fluxes.

With regards to the annual NO emissions from the 10 in-
volved treatments under different management practices (Ta-
ble 1), the observed and simulated values were statistically
comparable (Fig. 6f). The observed values ranged from 0.82
to 2.64 kg N ha−1, with an average of 1.76 kg N ha−1, while

the simulated values ranged from 0.88 to 3.18 kg N ha−1,
with an average of 1.96 kg N ha−1. A zero-intercept linear
regression between the simulated and observed annual NO
emissions yielded anR2 of 0.88 and a slope of 1.07 (n = 10,
P < 0.01, Table 3). The values of RMSE, RMD and ME
were 27.45 %, 0.32 % and 0.53, respectively (Table 3).

As the above results demonstrate, the simulated and ob-
served annual N2O and NO emissions showed consistency
in spite of the wide range of management practices (Fig. 6c
and f). This indicates that the model simulation was able to
reflect the effects of different management practices on the
emission of both gases. In particular, the stimulatory effects
of wheat straw incorporation on the cumulative N2O and NO
emissions in the following maize season were well simu-
lated by the model (Fig. 6a–b and d–e). Following the pre-
vious study that proved the ability of the model to simulate
the effects of nitrification inhibitor dicyandiamide on N2O
emission from urine-amended pasture (Giltrap et al., 2010b),
our results further proved the model’s ability to simulate the
N2O and NO emissions which were significantly inhibited
by either dicyandiamide or 3, 4-dimethyl pyrazole phosphate
(P < 0.01) from the wheat–maize cropland.

3.2 Biogeochemical effects of single-factor management
practices

The results of goal variables from consecutive simulations
over 20 yr for the ASI and NSI scenarios are displayed in
Fig. 7 (results for the other scenarios were available but not
shown). The annual averages of individual goal variables re-
sulting from the 20 yr simulations are presented in Fig. 8 for
all scenarios listed in Table 2.

As Figs. 7a, b and 8a illustrate, the modeled results showed
that straw incorporation could slightly increase grain yields
of both crops as compared to the no-straw incorporation
practice (wheat: 2.28 versus 2.24 Mg C ha−1 on average;
maize: 3.14 versus 3.06 Mg C ha−1 on average). The1SOC
values of NSI were near zero, indicating a relatively stable
SOC content. Meanwhile, the1SOC values of ASI were al-
ways positive over 20 yr, implying an increase in carbon sink
(Figs. 7c and 8b). The annual amounts of nitrate leaching for
the ASI scenario were higher than those for the NSI scenario
in the thirteenth and seventeenth year, while no obvious dif-
ference between the two scenarios in other years (Fig. 7d).
As a result, the annual average of the ASI was higher than
that of NSI (59 versus 43 kg N ha−1 yr−1 on average). The
straw incorporation seemed to greatly enhance CH4 uptake,
with annual averages of 2.27 and 1.01 kg C ha−1 yr−1 for
ASI and NSI, respectively (Figs. 7f and 8d). The N2O and
NO emissions of ASI were consistently higher than those
of NSI (Fig. 7g and h), with annual averages of 4.41 versus
2.45 kg N ha−1 yr−1 for N2O and 1.95 and 1.38 kg N ha−1

yr−1 for NO (Fig. 8d). Meanwhile, the annual emissions
of both gases for either scenario showed large inter-annual
variations (Fig. 7g and h), with coefficient of variation of
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Fig. 7. Modeled yields of wheat and maize, soil organic car-
bon change (1SOC), nitrate (NO−3 ) leaching, ammonia (NH3)
volatilization, emissions of nitrous oxide (N2O) and nitric oxide
(NO) over a 20-year period for the scenarios with all straw incorpo-
ration (ASI) and no straw incorporation (NSI). The simulation was
driven by the observed daily temperature (maximum and minimum)
and precipitation from 1991–2010.

24–29 % and 11–12 % for N2O and NO, respectively. The
annual NEGE was positive (0.87 Mg CO2-eq ha−1 yr−1) for
the NSI scenario but negative (−1.47 Mg CO2-eq ha−1 yr−1)
for the ASI scenario (Fig. 8e).

As Fig. 8a–c and e show, no-till practice (the NT sce-
nario) slightly increased grain yields (2–3 %) and enlarge
1SOC (15 %) while reducing NH3 volatilization (−24 %)
and NEGE (−40 %) in comparison to the ASI scenario.
Meanwhile, the NT scenario showed no obvious effects on
nitrate leaching or NO emission.

In comparison with the baseline scenario (ASI) in which
urea was alone as a nitrogen fertilizer, as Fig. 8a and c–
e demonstrate, use of nitrification inhibitors (DCDI and
DMPPI) did not affect the wheat and maize yields, and de-
creased nitrate leaching (−48 % and−64 %, respectively),
emissions of N2O (−24 and−28 %, respectively) and NO

Fig. 8. Averages of the crop yields, soil organic carbon change
(SOC), nitrate leaching (NL), ammonia (NH3) volatilization, emis-
sions of nitrous oxide (N2O), nitric oxide (NO) and methane (CH4),
and net emission of greenhouse gases in the ecosystem (NEGE)
simulated over a 20 yr period for different management scenarios.
The definitions of each scenario can be found in Table 2. NEGE is
defined as CH4 + N2O− SOC and expressed as a CO2 equivalent
based on the 100 yr global warming potentials, i.e., 25 for CH4 and
298 for N2O (IPCC, 2007).

(−51% and−52 %, respectively), and the NEGE (−34 and
−40 %, respectively), but greatly stimulated NH3 volatiliza-
tion (66 and 86 %, respectively). According the results
in Fig. 8c, the fertilizer nitrogen loss rates due to NH3
volatilization were 16, 26 and 29 %, for the ASI, DCDI and
DMPPI scenarios, respectively.

Reducing the nitrogen addition rate from 430 (ASI) to 366
(N366) kg N ha−1 yr−1 had no obvious effects on crop yield
(reduction of 0.05–1 %). When the nitrogen addition rate was
further decreased to 301 kg N ha−1 yr−1 (N301), grain yields
were decreased (−5 %). Increasing the nitrogen addition rate
to 495 (N495) or 559 (N559) kg N ha−1 yr−1 did not further
increase wheat or maize yield any more, as compared to the
ASI scenario (Fig. 8a). The annual1SOC of scenarios with
different nitrogen application rates (ASI, N301, N366, N495
and N559) showed no obvious differences from each other.
However, the NEGE and nitrogen losses via NH3 volatiliza-
tion, nitrate leaching and NO emission increased with the in-
crease of nitrogen addition rate (Fig. 8c–e).
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Changing the irrigation method adopted in the ASI to that
based on irrigation index (IRRindex) increased the wheat and
maize yields to a large extent (26 and 21 %, respectively).
When compared with ASI, the IRRindex scenario greatly
enhanced1SOC (27 %) while greatly reducing the nitro-
gen losses via NH3 volatilization and nitrate leaching (−39
and−89 %, respectively). However, it also stimulated N2O
and NO emissions (30 and 19 %, respectively). Nevertheless,
the increase in1SOC offset the increase in N2O emission,
thereby reducing the NEGE by 23 %. An increase (IRR500)
or decrease (IRR300) in water amounts for individual irriga-
tion events relative to those of ASI showed no obvious effects
on the crop yield,1SOC, NH3 volatilization, or emissions of
N2O and NO, while increasing (22 %) or decreasing (−17 %)
the nitrate leaching.

3.3 The best management practice

In order to achieve the BMP scenario with the subjective
method adopted by Farahbakhshazad et al. (2008), we sum-
marized the results of single-factor scenarios and determined
the following impacts: changing no straw incorporation to
straw incorporation practice significantly decreased NEGE;
shifting till to no-till practice benefits crop yield and NEGE;
reducing nitrogen fertilizer use by 15 % or irrigation wa-
ter by 25 % did not decrease crop yields while benefit-
ing other goal variables; splitting irrigation into more times
based on crop demand increased crop yield, decreased ni-
trate leaching, NH3 volatilization and NEGE. We composed
a new improved management scenario (Imp1) by combin-
ing the practices described above. Details of management
practices are shown in Table 2. In comparison to the base-
line scenario (ASI), results show that the Imp1 scenario sig-
nificantly decreased the NEGE (−82 %), nitrate leaching
(−96 %) and NH3 volatilization (−61 %) while slightly in-
creased NO emission (6 %, Figs. 8c–e). At the same time,
the wheat and maize yields were increased by 16 and 2 %,
respectively (Fig. 8a). As the Imp1 is obtained according to
the method described by Farahbakhshazad et al. (2008) and
results showed significant benefits on environment and crop
yields, it can be regarded as BMP. However, the Imp1 will not
be widely applicable in the near future, because no-till prac-
tice requires extra money on seeding equipment and the fre-
quent irrigation according to crop demands is still impractical
due to technical difficulties in northern China. Accordingly,
we substituted management practices of no-till and irrigation
based on crop demand from Imp1 scenario with deep tillage
and regular irrigation based on fixed times, and thereby ob-
tained another improved alternative management scenario
(Imp2, Table 2). As Fig. 8 shows, in comparison to the ASI
scenario, the Imp2 scenario decreased the NEGE (−3 %), ni-
trate leaching (−62 %), NH3 volatilization (−18 %) and NO
emission (−6 %). Meanwhile, the crop yields were sustained
while less nitrogen and irrigation were used. Although the
comprehensive benefits of Imp2 system were not as good as

those of Imp1 system, the benefits were still obvious. There-
fore, the Imp1 can be recommended as potential BMP which
showed us a direction on future management practices, while
Imp1 can be recommended as the practical BMP which can
be adopted nowadays for a wheat–maize rotation field at the
study region.

We also exemplified application of this newly established
method, using all the single-factor and the improved scenar-
ios described above and their simulated annual values (20-
year averages) of goal variables including grain yield, NEGE,
NH3 volatilization, NO emission and nitrate leaching. Ta-
ble 4 lists the values of the goal variables andI for individual
scenario. TheI values varied from USD 4196 to 5833 ha−1

(Table 4). The IRRindex scenario obtained the highestI

value; while the N559 scenario obtained the lowestI value.
According to local conditions, the order of constraints we
considered in our case was technical feasibility, yield reduc-
tion tolerance (5 %) and decrease of water and nitrogen fer-
tilizer use. Considering primary constraint, IRRindex, Imp1
and NT with the topmostI values cannot be chosen as BMP
nowadays due to technical difficulties of irrigation based on
crop demand and tillage in the region. Regarding the con-
straint of less irrigation water relative to the baseline scenario
(ASI), we rejected N366 as the BMP though it has the highest
I value excluding IRRindex, Imp1 and NT. Then we came to
the scenario Imp2 according to the sequence of I value. Imp2
scenario meets all the constraints and thus be chosen as BMP.

The practices for the Imp2 were designed to use the cur-
rent crop cultivars, follow the present schedules of plant-
ing/harvest, tillage and irrigation, incorporate residues fully
at harvest, adopt the sprinkler irrigation with the 25 % reduc-
tion of current irrigation water amount, apply urea alone at a
15 % lower rate than the current operation and exclude nitri-
fication inhibitors (Tables 2 and 2S, Sect. 2.4).

4 Discussion

4.1 Model performance

The DNDC model has been widely tested and applied to the
agricultural systems of many countries, and it is based on val-
idation with observations of limited variables (Giltrap et al.,
2010a). However, there have been very few reports to vali-
date this process-oriented model with simultaneously mea-
sured data of soil environments and multiple goal variables
so far with the intention of developing BMP (Farahbakhs-
hazad et al., 2008). In this study, before we attempted to
identify the BMPs via model simulation, we made a more
complete validation by using the measurements at the same
wheat–maize cropping site on soil temperature and mois-
ture, crop growth and yields and fluxes of NEE, NH3, CH4,
N2O and NO under different field management treatments.
Our validation results indicate that the model performed well
in simulating the soil environments and the multiple goal
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Table 4. Modeled goal variables (annual averages over 20 yr sim-
ulation) and values of assessment index (I ) for each management
practice scenario.

Scenarios WY MY NEGE NH3 NO NL N2O I

IRRindex 2.87 3.79 −1.81 41 2.31 7 5.73 5833
Imp1 2.62 3.19 −2.68 26 1.83 2 3.71 5150
NT 2.33 3.23 −2.06 51 1.95 60 4.33 4687
N366 2.28 3.11 −1.53 55 1.78 26 4.27 4582
Imp2 2.26 3.03 −1.52 56 1.75 22 4.13 4496
N301 2.16 2.99 −1.78 41 1.50 7 3.36 4484
ASI 2.28 3.14 −1.47 68 1.95 59 4.41 4476
IRR500 2.29 3.16 −1.46 68 1.97 72 4.47 4474
IRR300 2.26 3.04 −1.43 69 1.94 49 4.30 4377
DCD 2.28 3.14 −1.98 113 0.95 30 3.33 4337
N459 2.28 3.14 −1.39 82 2.17 93 4.58 4335
NSI 2.24 3.06 0.87 80 1.38 43 2.45 4333
DMPP 2.28 3.13 −2.06 126 0.93 21 3.14 4278
N559 2.28 3.14 −1.27 95 2.39 126 4.83 4196

WY, Wheat yield (Mg C ha−1 yr−1); MY, Maize yield (Mg C ha−1 yr−1); NEGE, net emission of
greenhouse gases in the ecosystem (Mg CO2-eq ha−1 yr−1); NH3, NO, N2O and NL, ammonia
volatilization, nitric oxide emission, nitrous oxide emission and nitrate leaching, respectively
(kg N ha−1 yr−1). Ivalues ($ ha−1) were calculated using Eq. (4) in the text. The description of
each scenario can be found in Table 2 and in the text.

variables, although it still showed a few discrepancies on a
daily basis. For instance, the abrupt increases of NEE fluxes
up to above zero were not well simulated by the model on
cloudy or rainy days (Fig. 3). This was caused by the NEE
calculation principle of the model, in which a daily NEE flux
was determined as the difference between soil heterotrophic
respiration and net primary productivity, i.e., the daily plant
growth. In this model, the daily plant growth was mainly
driven by the accumulated temperature, which did not re-
flect the reduction of photosynthesis that was induced by the
reduction of radiation during cloudy and rainy conditions.
Nevertheless, the total simulated NEE (−7.16 Mg C ha−1)
approached the observed value (−6.86 Mg C ha−1) over the
entire observational period (Fig. 3b). We also compared the
modeled conversion coefficient of input carbon with other
studies and obtained satisfactory results. Conversion coeffi-
cient is defined at the annual scale as a ratio of1SOC to
carbon input (Huang et al., 2007). The modeled1SOC for
all the straw incorporation scenarios (Table 2) resulted in
conversion coefficient values of 10.2–12.2 % (given as av-
erages over the 20 yr period). These values fell in the range
of 6–31 % (mean: 15 %) from worldwide measurements in
uplands with diverse climate, soil texture and SOC contents
(Huang et al., 2007; and references therein). Meanwhile, they
were particularly consistent with the conversion coefficient
values (10.2–12.5 %) from the long-term field experiments
at other field sites with similar climate, soil properties and
management practices (adapted from Han et al., 2003 and
Meng et al., 2005). The consistence suggests that our model
simulation of1SOC in this study was reliable.

Uncertainties relating to the simulation on NH3 volatiliza-
tion and nitrate leaching may exist because the validation of
NH3 volatilization was only based on a single fertilization

event due to absence of year-round measurement and no val-
idation of nitrate leaching due to no measurement. Neverthe-
less, the results of the NH3 volatilization and nitrate leach-
ing from different management scenarios were comparable
with previous studies. Specifically, the results from these sce-
narios excluding DCDI and DMPPI showed that 7–19 % of
applied nitrogen were lost as NH3, which was comparable
to the results of 0.6–18 % from other field sites with sim-
ilar climate, soil properties and fertilizer application meth-
ods (deep placement or surface broadcast followed by irriga-
tion) in northern China (Zhang et al., 1992; Cai et al., 2002).
The ratios of NH3 volatilization to applied nitrogen (26 and
29 %) for scenarios with nitrification inhibitors (DCDI and
DMPPI) also fell within the range of 4–60 % from laboratory
and field measurements worldwide (Kim et al., 2012; and
references therein). Nitrate leaching was calculated to lose
10± 7 % (mean± standard deviation) of applied nitrogen
from all scenarios, which was close to the value of 9± 8 %
(mean± standard deviation) from an irrigated wheat–maize
rotation field in northern China (adapted from Zhang et al.,
2005). These comparable results give us more confidence in
simulating the two goal variables.

There are three aspects we should pay attention to while
using the model. The first one is how to deal with the input
of tillage and fertilization if they occur on the same day. In
northern China, like our case, basal fertilization and tillage
usually occur on the same day with fertilizer surface broad-
cast immediately followed by tillage. DNDC model runs at a
daily time step and tillage is supposed to occur before fertil-
ization, which means that the fertilizer will not be incorpo-
rated into the soil by tillage if tillage and fertilization were
set to occur on the same day. This will greatly influence
NH3 volatilization and thus other nitrogen process (Cai et
al., 2002). In order to solve this problem, we can simply set
the tillage date one day later than fertilization (adopted in
this study) or change the occurrence order of tillage and fer-
tilization in the model. The second one is the soil moisture in
winter. The output of soil moisture only include the unfrozen
water, while the measurement of soil moisture include both
the unfrozen water and ice, so we should add the modeled
ice and unfrozen water to be the soil moisture and compare
it with field measurement. The third one is the component of
SOC in the model. The modeled SOC includes all the car-
bon pools, i.e., residues, microbes, humads and humus (Li,
2000). However, the undecomposed residues are excluded
when measuring SOC content in field experiments because
they are not resistant to decomposition and thus cannot be
regarded as SOC. So we only considered carbon pools of mi-
crobes, humads and humus as SOC in this study, and the an-
nual change is1SOC. The original output of1SOC is actu-
ally net ecosystem carbon balance (NECB), which is usually
used as an estimate of1SOC. However, our model result
showed that there is a big difference between the NECB and
1SOC during the first several years of straw incorporation
(Fig. 9), which implicates that the NECB does not equal to
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Fig. 9. Simulated net ecosystem carbon balance (NECB) and
change in soil organic carbon (1SOC) over 20 yr following the ini-
tiation of full residue incorporation. The given data points are means
of the 13 scenarios (Table 2), excluding the one without crop straw
incorporation, with vertical bars indicating the standard deviations.

1SOC under some circumstances. These three modifications
are accessible to other sites and regions.

4.2 Effects of alternative management practices on the
goal variables

Field experiment showed that straw incorporation increased
N2O and NO emissions (Liu et al., 2011), while lack of si-
multaneous measurement for1SOC and CH4 emission pre-
vented us from judging whether straw incorporation should
be popularized or not in the future. However, model result
showed that increase of1SOC compensated the increase of
N2O emission and displayed a significant decrease of the
NEGE (Fig. 8e), indicating a beneficial effect of straw in-
corporation in terms of greenhouse gas balance. Deep tillage
is popularly adopted in the study area, but the fraction of the
area with no-till practices in croplands increased from 3 %
in 2002 to 9 % in 2009 in China (Yi, 2010). So a scenario
of no tillage was set and the result showed that no-till prac-
tice gained the beneficial effects on most of the goal vari-
ables (Fig. 8). Although no-till practice had the beneficial ef-
fects, it is still hard to implement in the study region because
no tillage requires specialized seeding equipment designed
to plant seeds into undisturbed crop residues and soil, and
purchasing new equipment (seed drills for example) is ex-
pensive. Besides, as with any production system, yields can
drop if no-till isn’t done correctly, so a combination of tech-
nique, equipment, pesticides, crop rotation, fertilization, and
irrigation have to be used for specific local conditions (Raper
et al., 2000). Use of nitrification inhibitors is demonstrated to
have effectiveness in increasing crop nitrogen uptake, soil in-
organic nitrogen stock and reducing N2O and NO emissions,
with the effect of nitrification inhibitors on NH3 volatiliza-
tion still unknown in our field experiment (Liu et al., 2013).
The model result showed a great increase of NH3 volatiliza-
tion (66 and 86 % for DCDI and DMPPI, respectively) when
nitrification inhibitors were used. These results imply that
farmers should be cautious when using nitrification inhibitors

in calcareous soils, although this practice can gain beneficial
effects by reducing nitrogen losses from nitrate leaching and
N2O and NO emissions.

Studies have showed that the measured nitrogen con-
tent in aboveground crop organs at harvest amounted to
404 kg N ha−1 yr−1 (Liu et al., 2013) to 427 kg N ha−1 yr−1

(Liu et al., 2012). Assuming 10 % of nitrogen uptake by the
crop remained in the roots (e.g., Huang et al., 2007), the
total nitrogen needed to maintain the yields would be 448–
474 kg N ha−1 yr−1, which are very close to the locally con-
ventional fertilizer dose of 430 kg N ha−1 yr−1 (ASI). This
indicates the nitrogen application rate for ASI scenario is
at a reasonable level. Increasing nitrogen application rate is
usually regarded as an effective way to increase crop yield,
however, when fertilizer application rate reached a thresh-
old, further increase of nitrogen application rate will not in-
crease crop yield any more (Jensen and Schjoerring, 2011).
In order to know this threshold in our study, we set sce-
narios of increasing or decreasing nitrogen application rate
from that of ASI, therefore we had nitrogen application lev-
els ranging from 301 to 559 kg N ha−1 yr−1 (Table 2). Model
result showed a threshold of approximately 366 kg N ha yr−1,
which is 15 % lower than the current level. Nitrogen losses
via nitrate leaching, NH3 volatilization and N2O and NO
emissions increased with the increase of nitrogen fertilizer
application rate (Fig. 8c–e), which implies that the lower ni-
trogen application rate the better as long as crop yield can be
sustained. No further increase of crop yield in response to in-
crease of nitrogen application rate was due to water limitation
in our study, which was proven by the significant increase
of crop yield for IRRindex scenario in comparison with ASI
scenario. Although the annual irrigation amount was approx-
imately the same for IRRindex and ASI scenarios, irrigation
occurred many times according to crop demand for IRRindex
scenario but with fixed times for ASI scenario. This suggests
that the bottleneck of increasing crop yield in the study area
is how to effectively irrigate the field rather than blindly in-
crease nitrogen fertilizer use.

4.3 Uncertainties of the best management practice

With regard to the newly established method (the objective
method) for identifying BMP, as Eq. (4) shows, the parame-
ters (c–f) which were determined according to the costs of
N-related impacts or mitigation in USA may be different
in China. This can cause uncertainties ofI value and thus
BMP. However, the costs of N-related impacts or mitigation
in China is yet unavailable, so we have to use the results in
USA temporarily. The Assessment index (I ) only includes
the comprehensive effects of the goal variables; while other
factors (e.g., cost of operating management practices, tech-
nical feasibility, the acceptability of the management prac-
tices by local farmers) are not included. Considering the
complexity and difficulty of incorporating these factors into
the assessment index (I ), we decided to set constraints in

Biogeosciences, 11, 91–107, 2014 www.biogeosciences.net/11/91/2014/



F. Cui et al.: Assessing biogeochemical effects and BMP for a wheat–maize cropping system 105

conjunction withI value to identify BMP. The constraints
were set according to specific local conditions. Uncertainties
of BMP can arise if constraints are not set properly. There-
fore, one should be quite cautious of determining the con-
straints. The BMP chosen by this objective method, i.e., the
Imp2, was the same as that by the subjective method. In com-
parison however, the new approach can be more easily pro-
grammed, automatically implemented and is expected to ap-
ply for more complex cases at site or regional scales, as long
as the process-oriented model performs well for simulating
the goal variables.

5 Conclusions

The denitrification–decomposition (DNDC) model was
firstly validated with the simultaneous observations at a
wheat–maize cropping site in northern China and then used
to assess the biogeochemical effects of different manage-
ment practices on multiple goals of crop yields, net emis-
sion of greenhouse gases in the ecosystem (NEGE), nitric
oxide (NO) emission, ammonia (NH3) volatilization and ni-
trate leaching. Observations used for model validation in-
cluded soil moisture and temperature, crop yields, above-
ground biomass and fluxes of net ecosystem exchange of car-
bon dioxide, methane, nitrous oxide (N2O), NO and NH3.
The consistence between the simulated and observed results
implies that the DNDC model simulation result is reliable.
Simulated results from different management practice sce-
narios suggest that cautiousness about the use of nitrifica-
tion inhibitors in calcareous soils must be warranted due to
its stimulatory effect on NH3 volatilization. Nitrate leaching,
NH3 volatilization, N2O and NO emissions increased with
the increase of nitrogen application rate, implying that the
lower nitrogen dose the better as long as crop yield can be
sustained. A 15 % reduction of nitrogen dose from the cur-
rent use (430 kg N ha−1) will not decrease crop yield in our
study. The bottleneck of increasing crop yield in the study
area is how to effectively irrigate the field rather than blindly
increase nitrogen fertilizer use. To determine the best man-
agement practice (BMP) from the simulated results of man-
agement practice scenarios, two methods were used. Both
methods got the same BMP. The BMP followed the man-
agement practices of the current crop cultivar and field oper-
ation schedules, full straw incorporation, reduction of nitro-
gen dose and irrigation water by 15 and 25 %, respectively,
than the current use.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/91/
2014/bg-11-91-2014-supplement.pdf.
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