728,327 research outputs found

    Accurate derivation of stem curve and volume using backpack mobile laser scanning

    Get PDF
    Forest inventories rely on field plots, the measurement of which is costly and time consuming by manual means. Thus, there is a need to automate plot-level field data collection. Mobile laser scanning has yet to be demonstrated for deriving stem curve and volume from standing trees with sufficient accuracy for supporting forest inventory needs. We tested a new approach based on pulse-based backpack mobile laser scanner (Riegl VUX-1HA) combined with in-house developed SLAM (Simultaneous Localization and Mapping), and a novel post-processing algorithm chain that allows one to extract stem curves from scan-line arcs corresponding to individual standing trees. The post-processing step included, among others, an algorithm for scan-line arc extraction, a stem inclination angle correction and an arc matching algorithm correcting for the drifts that are still present in the stem points after applying the SLAM algorithm. By using the stem curves defined by the detected arcs and tree heights provided by the pulse-based scanner, stem volume estimates for standing trees in easy (n = 40) and medium (n = 37) difficult boreal forest were calculated. In the easy and medium plots, 100% of pine and birch stems were correctly detected. The total RMSE of the extracted stem curves was 1.2 cm (5.1%) and 1.7 cm (6.7%) for the easy and medium plots, respectively. The RMSE were 1.8 m (8.7%) and 1.1 m (4.9%) for the estimated tree heights, and 9.7% and 10.9% for the stem volumes for the easy and medium plots, correspondingly. Thus, our processing chain provided stem volume estimates with a better accuracy than previous methods based on mobile laser scanning data. Importantly, the accuracy of stem volume estimation was comparable to that provided by terrestrial laser scanning approaches in similar forest conditions. To further demonstrate the performance of the proposed method, we compared our results against stem volumes calculated using the standard Finnish allometric volume model, and found that our method provided more accurate volume estimates for the two test sites. The findings are important steps towards future individual-tree-based airborne laser scanning inventories which currently lack cost-efficient and accurate field reference data collection techniques. The tree geometry defined by the stem curve is also an important input parameter for deriving quality-related information from trees. Forest management decision making will benefit from improvements to the efficiency and quality of individual tree reference information.</p

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    A European perspective on auditory processing disorder-current knowledge and future research focus

    Get PDF
    Current notions of \u201chearing impairment,\u201d as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as \u201cAuditory Processing Disorder\u201d (APD) or \u201cCentral Auditory Processing Disorder\u201d is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimumdiagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus

    Wood Products and Carbon Storage: Can Increased Production Help Solve the Climate Crisis?

    Get PDF
    This report draws on a variety of sources to illuminate the greenhouse gas impacts of wood products and wood biomass fuels throughout their life-cycles. While detailed analyses are rare, the picture is complete enough to show the variability of the processing path followed by different types of trees in various parts of the country. Taking the entire life-cycle of these products into account, it becomes clear that an increased use of wood fuels and lumber will have very little net effect on climate change. To the contrary, the impact is as likely to be negative as positive.The report also takes a closer look at the use of forest-carbon offsets in voluntary or regulatory programs. Because such offsets are expected to balance emissions from other sources, it is important that the additional carbon sequestration be real. This document outlines several criteria for carbon offset standards to account for the full effects of harvested wood carbon

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline.

    Get PDF
    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges--management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu
    corecore