1,546 research outputs found

    Information hiding through variance of the parametric orientation underlying a B-rep face

    Get PDF
    Watermarking technologies have been proposed for many different,types of digital media. However, to this date, no viable watermarking techniques have yet emerged for the high value B-rep (i.e. Boundary Representation) models used in 3D mechanical CAD systems. In this paper, the authors propose a new approach (PO-Watermarking) that subtly changes a model's geometric representation to incorporate a 'transparent' signature. This scheme enables software applications to create fragile, or robust watermarks without changing the size of the file, or shape of the CAD model. Also discussed is the amount of information the proposed method could transparently embed into a B-rep model. The results presented demonstrate the embedding and retrieval of text strings and investigate the robustness of the approach after a variety of transformation and modifications have been carried out on the data

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems

    Reconstruction of fingerprints from minutiae points

    Get PDF
    Most fingerprint authentication systems utilize minutiae information to compare fingerprint images. During enrollment, the minutiae template of a user\u27s fingerprint is extracted and stored in the database. In this work, we concern ourselves with the amount of fingerprint information that can be elicited from the minutiae template of a user\u27s fingerprint. We demonstrate that minutiae information can reveal substantial details such as the orientation field and class of the (unseen) parent fingerprint that can potentially be used to reconstruct the original fingerprint image.;Given a minutiae template, the proposed method first estimates the orientation map of the parent fingerprint by constructing minutiae triplets. The estimated orientation map is observed to be remarkably consistent with the underlying ridge flow of the unseen parent fingerprint. We also discuss a fingerprint classification technique that utilizes only the minutiae information to determine the class of the fingerprint (Arch, Left loop, Right loop and Whorl). The proposed classifier utilizes various properties of the minutiae distribution such as angular histograms, density, relationship between minutiae pairs, etc. A classification accuracy of 82% is obtained on a subset of the NIST-4 database. This indicates that the seemingly random minutiae distribution of a fingerprint can reveal important class information. (Abstract shortened by UMI.)

    3D Face Recognition

    Get PDF

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Design operators

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2004.Includes bibliographical references (leaves 58-61).Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in design are traced and their quantitative and qualitative characteristics are identified. The thesis hints for an emerging design mentality delineated by the implementation, documentation and critical evaluation of a series of experimental projects in computational design.by Stylianos Dritsas.S.M

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Equivalence testing for identity authentication using pulse waves from photoplethysmograph

    Get PDF
    Doctor of PhilosophyDepartment of StatisticsSuzanne DubnickaChristopher VahlPhotoplethysmograph sensors use a light-based technology to sense the rate of blood flow as controlled by the heart’s pumping action. This allows for a graphical display of a patient’s pulse wave form and the description of its key features. A person’s pulse wave has been proposed as a tool in a wide variety of applications. For example, it could be used to diagnose the cause of coldness felt in the extremities or to measure stress levels while performing certain tasks. It could also be applied to quantify the risk of heart disease in the general population. In the present work, we explore its use for identity authentication. First, we visualize the pulse waves from individual patients using functional boxplots which assess the overall behavior and identify unusual observations. Functional boxplots are also shown to be helpful in preprocessing the data by shifting individual pulse waves to a proper starting point. We then employ functional analysis of variance (FANOVA) and permutation tests to demonstrate that the identities of a group of subjects could be differentiated and compared by their pulse wave forms. One of the primary tasks of the project is to confirm the identity of a person, i.e., we must decide if a given person is whom they claim to be. We used an equivalence test to determine whether the pulse wave of the person under verification and the actual person were close enough to be considered equivalent. A nonparametric bootstrap functional equivalence test was applied to evaluate equivalence by constructing point-wise confidence intervals for the metric of identity assurance. We also proposed new testing procedures, including the way of building the equivalence hypothesis and test statistics, determination of evaluation range and equivalence bands, to authenticate the identity

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore