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Abstract

Reconstruction of Fingerprints from Minutiae Points

by

Jidnya A. Shah
Master of Science in Electrical Engineering

West Virginia University

Arun A. Ross, Ph.D., Chair

Most fingerprint authentication systems utilize minutiae information to compare fingerprint im-
ages. During enrollment, the minutiae template of a user’s fingerprint is extracted and stored
in the database. In this work, we concern ourselves with the amount of fingerprint information
that can be elicited from the minutiae template of a user’s fingerprint. We demonstrate that
minutiae information can reveal substantial details such as the orientation field and class of the
(unseen) parent fingerprint that can potentially be used to reconstruct the original fingerprint
image.

Given a minutiae template, the proposed method first estimates the orientation map of the
parent fingerprint by constructing minutiae triplets. The estimated orientation map is observed
to be remarkably consistent with the underlying ridge flow of the unseen parent fingerprint. We
also discuss a fingerprint classification technique that utilizes only the minutiae information to
determine the class of the fingerprint (Arch, Left loop, Right loop and Whorl). The proposed
classifier utilizes various properties of the minutiae distribution such as angular histograms,
density, relationship between minutiae pairs, etc. A classification accuracy of 82% is obtained on
a subset of the NIST-4 database. This indicates that the seemingly random minutiae distribution
of a fingerprint can reveal important class information.

Furthermore, contrary to what has been claimed by several minutiae-based fingerprint sys-
tem vendors, we demonstrate that the minutiae template of a user may be used to reconstruct
fingerprint images. Two techniques have been proposed for fingerprint reconstruction. The first
technique utilizes Gabor-like filters, while the second technique employs streamlines and Linear
Integral Convolution (LIC) to generate the ridge structure of the parent fingerprint. The salient
feature of the second method is its ability to generate minutiae at desired locations in the regen-
erated ridge map. Experiments conducted on the minutiae templates of the NIST-4 database
challenge the commonly held notion that minutiae points do not reveal information about the
parent fingerprint.
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Chapter 1

Introduction

1.1 Biometrics

Biometrics refers to the automatic recognition of a person based on his/her physical (e.g.,

fingerprints, face, iris, retina, voice, etc.) or behavioral (e.g., signature, gait, etc.) character-

istics. A biometric system is primarily a pattern recognition system, that uses identifiers like

fingerprints, iris, voice, hand geometry, etc. (Figure 1.1) to establish the identity of a person

[4]. The primary goal of biometrics in authentication systems is to provide identity assurance, or

the capability to accurately recognize individuals, with greater reliability, speed and convenience

at lower costs. In the past few years, there has been an exponential growth in the use of bio-

metrics in user authentication applications because it offers several advantages over traditional

token-based or password-based systems, such as:

1. It uses ‘something you are’ rather than ‘something you have or something you remember’.

Thus, unlike traditional token-based or password-based authentication methods, biometric

identifiers cannot be easily stolen, forgotten or shared. This makes them more reliable.

2. The traditional token-based or password-based authentication methods cannot determine

if the person possessing the token is the same one who is enrolled in the system. As the

biometric identifiers are unique across individuals, this problem can be addressed in case

of biometric systems.

3. They are convenient to use. For example, a face recognition system installed in an ATM

requires just a snap shot of the face to perform a transaction.
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RETINAL VEINS

VEINS

GAIT

FACE

EAR

SIGNATURE

HAND VEIN

FINGERPRINT

HAND
GEOMETRY

VOICE

PALM PRINT

IRIS

DENTAL

Figure 1.1: Various biometric identifiers.
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Biometric authentication can be used to control the security of banking transactions, personal

computers, cell phones, web access, electronic commerce, restricted premises like nuclear plants,

etc. Also it has recently been used at US airports for verifying the identity of the frequently

flying individuals at the time of immigration.

A typical biometric authentication system is illustrated in Figure 3.1. It performs the follow-

ing processing steps:

1. acquires a biometric sample,

2. extracts salient feature set (biometric template) and stores in a database,

3. compares a “live” template to previously stored templates, to calculate a match score [5].

The enrollment stage comprises of storing the template of each user in the database. Depending

on the application, a biometric system can be used for verification or identification. Identification

is also called as “one-to-many” matching. The system identifies an individual by comparing his

feature set with all the templates stored in the database. Verification refers to “one-to-one”

matching. Here an individual claims to be an enrolled user. To verify this claim, his template is

compared with the stored template of the claimed identity.

Biometric
sample

Feature
extraction

Template
Database

Compare

Feature
extraction

Match
Score Decision

Biometric
sample

ENROLLMENT

Biometric
sample

Feature
extraction

Template
Database

Feature
extraction

Feature
Set

Match
Score Decision

Biometric
sample

ENROLLMENT

AUTHENTICATION

Feature
Set

Figure 1.2: A typical biometric system.
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1.2 Fingerprints

Among all known biometrics like iris, face, speech, hand geometry, etc., fingerprint is one of

the oldest and widely recognized biometric trait due to its attractive properties like permanence

and individuality. Fingerprints have been used in law enforcement for many years.

A fingerprint is a smoothly flowing pattern of alternating ridges and valleys. The ridges

present on the skin of the finger which makes contact with an incident surface under normal

touch are called as friction ridges [6]. The unique pattern formed by these friction ridges forms

a fingerprint. These ridges do not flow continuously but rather display various types of imper-

fections known as minutiae (minor details in fingerprints). The various types of minutiae are:

ridge ending, ridge fork, island, dot, broken ridge, bridge, spur, enclosure, delta, double fork,

bifurcation, trifurcation, etc. In all 150 minutiae types have been reported in the literature [7].

Out of all these, bifurcations and ridge endings are the most stable and robust points in fin-

gerprints [4]. The point at which a ridge terminates or, alternatively, begins is called as ridge

ending. A ridge ending is surrounded on three sides by valley. And the point at which a ridge

splits into two ridges or, alternatively, where two separate ridges combine into one is called as

bifurcation (See Figure 1.3 (a)). At the time of enrollment in a fingerprint system, important

minutiae information (typically positions of ridge endings and bifurcations and the associated

orientations) is extracted and stored in the database in the form of a template. A fingerprint

B(x,y)

E(x,y)

Core

Delta

(a) (b)

Figure 1.3: (a) A fingerprint with ridge ending (E) and bifurcation (B) with position (x, y) and
orientation (θ), (b) Core and delta points.

can be also represented using two global features namely core and delta. These are also called

are called singular points. The core point is defined as the highest point on the innermost ridge,
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while, the delta point is defined as the point where ridge flows having three different directions

meet as shown in Figure 1.3 (b). As minutiae representation is stable and comparatively easy,

most of the automatic fingerprints matching systems are only minutiae based. Every minutia-

based fingerprint authentication system stores minutiae information in a template and uses it

for authentication. The simplest template includes minutiae position, their type and respective

orientation. The position of a minutia is given by its x and y coordinates while its orientation,

θ is defined by the angle between the associated ridge and the horizontal axis.

The pattern of minutiae distribution in a fingerprint forms a valid representation of the finger-

print, since it is observed to vary across individuals (and across fingers of the same individual)

[8]. Typically, in a live-scan fingerprint image of good quality, approximately 40-60 minutiae

(500× 500 image size) are obtained [4]. Fingerprint matching is accomplished by comparing the

minutiae distribution of two fingerprints via sophisticated point pattern matching techniques [9].

“Two like fingerprints would be found only once 10 raised to 48 years.” [8]. Although finger-

prints have strong history of being used extensively in forensics since many years, there have not

been any scientific evidence for their distinctiveness, i.e., individuality. It is generally accepted

due to empirical results. By individuality, we mean that given a target population of the finger-

prints, the probability of getting a sufficiently similar fingerprints is very small [10]. Along with

overall ridge flow pattern, ridge frequency and location of singularities, minutiae points have been

used extensively in individuality models. Various properties of minutiae like location, direction,

type, ridge counts between pairs of minutiae, etc., contribute to fingerprint individuality.

Normally, templates will only contain information necessary for comparison. However, it

is not fixed what is necessary for comparison. American National Standard for Information

Technology (ANSI) proposed a standard, “Fingerprint Minutiae Format for Data Interchange”,

ANSI/INCITS 378-2004, that specifies data format for minutiae in fingerprints [6]. The

standard contains definitions of relevant terms, a description of where minutiae shall be defined,

a data format for containing the data, and conformance information. This standard facilitates

inter-operability and efficiency in terms of storage for minutiae-based fingerprint templates. Ac-

cording to this standard, a minutiae template may contain:

1. position of minutiae (x, y),

2. orientation of minutiae (θ),
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3. type of minutia (bifurcation or ridge ending),

4. quality of minutiae,

5. ridge count information for the 8 neighbor-octants surrounding each minutia

6. positions (x, y) and orientations (θ) of core(s) and delta(s).

In this thesis, our goal is to see how much information does the minutiae template reveals

about the parent fingerprint. For our experiments, we assume the template contains minimum

minutiae information (i.e., only minutiae position and orientation). As the minutiae templates

are eventually used for matching, they are assumed to be of good quality.

1.3 Vulnerabilities of a biometric system

Despite having numerous advantages, biometric systems are vulnerable to various types of

attacks that can decrease their security. These attacks have been identified and examined in

[11, 12, 13]. Ratha et al. [1] have identified eight basic sources of attack on a biometric system.

They are illustrated in Figure 1.4. These attacks can be generalized for any biometric system.

1. Spoofing using fake biometric : In this type of attack, the hacker spoofs the biometric

system by providing fake biometric samples to the biometric sensor as shown in Figure 1.4.

Examples include a gummy finger (made from silicon rubber), a face mask, etc.

2. Resubmitting old biometric sample (Replay attack) : In this attack, the hacker bypasses

the biometric sensor and provides an previously acquired copy of biometric signal to the

feature extractor. This is called as a replay attack.

3. Overriding feature extractor : The hacker attacks the feature extractor to make it produce

the desired features.

4. Altering extracted features : Here it is assumed that the hacker knows the representation

of features that are extracted by the feature extractor. He replaces the original feature

set with the synthetic feature set. Uludag and Jain [13] presented such an attack on a

fingerprint based authentication system that uses hill climbing attack to synthesize the

target minutia templates in order to achieve positive identification. This is a very difficult

attack as generally, the feature extractor and matcher are integrated.
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Gummy
finger

Fingerprint
sensor

Feature
extractor

1. Fake finger

2. Replay attack

Old
fingerprint

image

Template
database

Matching

Authentication

Enrollment

Decision

4. Altering features

3.Override feature extractor

5. Artificial match score

6. Attacking templates

7. Transmission
attack

Fingerprint-enabled
ATM

8. Changing
decision

Figure 1.4: Various types of attacks on a biometric system (adapted from [1]).

5. Altering match score: Here, the matcher is attacked to directly produce the artificially high

or low match score.

6. Tampering with stored templates : During enrollment, the biometric templates are stored

in the database. At the time of authentication, this database can be available locally or

remotely. The attacker attacks this template database and modifies the stored templates

which could help him in authorization fraudulently.

7. Transmission attack : This attack occurs during transmission of templates from the database

to the matcher. The hacker can modify the templates during this transmission before they

reach matcher in order to achieve the desired score.

8. Changing decision : Being at the decision level, this can be a very dangerous attack.

Although other components of the biometric system such as scanner, feature extractor,

are performing outstandingly, if the hacker overrides the final decision, the performance of

biometric system fails drastically.



CHAPTER 1. INTRODUCTION 8

1.3.1 Vulnerability of a biometric template

Traditionally, a biometric template is not expected to reveal any significant information about

the original biometric data. Thus it has been always considered to be a non-identifiable data [14].

Several minutiae-based fingerprint systems have denied the possibility that the stored templates

could be used to generate implicit fingerprint information. 1 This is because,

1. the template does not contain the entire biometric sample but has only essential features,

e.g. minutiae in case of fingerprints. The size of template is much smaller than the original

biometric sample,

2. during enrollment procedure, there is loss of information about the acquired biometric

sample due to image scanning, pre-processing, feature extraction, and template creation.

For example, during minutiae extraction from a fingerprint image, a fingerprint image

undergoes finalization and skeletonisation procedures. During this procedure, significant

information of the original fingerprint may be lost, and

3. the storage format of the templates makes it difficult to “hack”.

Thus till recently, biometric template generation algorithms were considered to be one-way

algorithms. But Adler [14], from Ottawa University, demonstrated that the original face images

can be regenerated from face recognition templates using only the match score values. Also, Hill

[15] demonstrated the masquerade attack on a fingerprint matching system by reconstructing

original fingerprints from their stored minutiae templates. The details about both the techniques

are discussed below.

Face image regeneration

Adler proposed a simple algorithm to regenerate face images with the help of a face authen-

tication system. He assumes that the face authentication system releases a match score for each

authentication. His technique begins with a guess of the target face, makes small modifications;

1All web-sites accessed in August 2005.

• http://www.biometricaccess.com/support/bacfaq09.htm: A true fingerprint image cannot be created from
master template..

• http://www.digitalpersona.com/support/faqs/privacy.php: ... fingerprint templates cannot be used to
recreate the fingerprint image.
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keeps modifications which increase the match score. This type of attack is called as hill climbing

attack. A more sophisticated description of hill climbing attacks has been given by Soutar [16].

Adler’s iterative procedure continues until it generates an image that gives a sufficient match

score against the target face image. The main steps in the algorithm are shown in Figure 4.14.

InitialInitial
estimateestimate

StoredStored
templatetemplate

MatchMatch
scorescore

ModifyModify
FaceFace

authenticationauthentication
devicedevice

After 200
iterations

After 600
iterations

After 4000
iterations

Figure 1.5: Block diagram for Adler’s face regeneration algorithm.

The algorithm is a three-step procedure, which consists of preprocessing, initial image se-

lection, and image estimate improvement. Adler demonstrated results using the University of

Aberdeen face recognition database.

1. Preprocessing : The face images from the database are rotated, cropped, and histogram

equalized so that all images have same size and distribution of pixel intensities. The eigen

face decomposition of these images is accomplished.

2. Initial image selection: Using the face authentication system, the match scores for a se-

lection of images from the local database against the target template are observed. The

image giving the highest match score is selected to be the initial estimate.
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3. Image estimate improvement : The initial estimate is modified by the algorithm to better

match the target face image. In each iteration, a constant (heuristically determined) times

Eigen face is added to the initial estimate and an authentication is tried. The match

score against the target image is observed. The modification is kept if the score improves

otherwise a different modification is tried. The iterations are repeated till there is no

significant improvement in the matching score. Within thousands of iterations, a face

image, which gives high match against the target template is regenerated.

This technique cannot only masquerade the target person, but also gives good visual impression

of the persons face as shown in Figure 4.14. Thus these look alike images could be used to

masquerade the target person or to identify him. As the face template contains significantly less

data than the original template, exactly re-creating the target face image is not possible using

this approach.

One interesting aspect of this regeneration procedure is, it is not necessary to know how the

algorithm works but requires only the match score values. It is not sensitive to the choice of

optimization algorithm, the initial image estimate, or the local face database. Also, it does not

require special expertise to ‘fool’ the face authentication system. Any system which allows access

to match scores effectively allows sample images to be regenerated in this way. Adler tested his

algorithm using three recent face recognition products of well-known commercial vendors. Two

of these vendors also participated in the Face Recognition Vendor Test (2002) [17]. Results

show that after about 4000 iterations, a sufficiently large matching score is obtained, which

corresponds to a very high (99.9%) confidence of matching scores. The confidence was calculated

as a sigmoidal function of the matching scores.

As a consequence, BioAPI Consortium [18] recommended that all biometric systems should

use quantized match scores. But Adler [19] also presented a modified hill climbing attack to

prove that images can be regenerated from quantized match scores implying that quantization

of match scores does not prevent the regeneration process. This work suggests that biometric

templates and biometric match scores should no longer be considered to as non-identifiable data.

Although Adler demonstrated the masquerade attack for face recognition systems; this approach

can be readily extensible to other biometric modalities as well [?].
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Fingerprint image regeneration

Unlike Adler, Hill [15] uses only the stored fingerprint templates instead of the match scores

for fingerprint image reconstruction. It regenerates the original fingerprint from the minutiae

information, x, y, θ, and singular points (core and delta) that are stored in the template. Once a

fingerprint template is obtained, the algorithm executes a sequential procedure involving shape

prediction, orientation map creation, and line drawing. The main steps of this algorithm are

described in Figure 1.7.

Shape
prediction

using neural
network

Template
Orientation map
creation using
singularities

Line
drawing

Artefact

Figure 1.6: Block diagram of Hill’s fingerprint regeneration algorithm.

1. Shape Prediction: Hill designed a decision tree for predicting the shape (class) of a finger-

print from stored information about singularities (core and delta) in the template. This

decision tree is based primarily on the number of core points, and the relative positions of a

delta point to a core point. If the singularities are not stored in the template then a neural

network-based approach which uses just the minutiae (x, y ,θ) information is employed.

It consists of 23 input neurons, a single hidden layer of 13 neurons and an output layer

corresponding to the 4 classes of the fingerprint (Arch, Left loop, Right loop and Whorl).

Hill obtained a classification accuracy of 71% for a database of 242 fingerprints.

2. Orientation Map Creation: For fingerprint reconstruction, Hill assumes that the minutiae

template stores information about singularities. Given the number and position of core and

delta, he uses the orientation model proposed by Sherlock and Monro [20]. This technique

relies on the presence of core and/or delta points. Various orientation maps were created

assuming various possibilities of core and delta positions. An orientation map, which best

suits the known minutiae points and predicted fingerprint shape is selected among the

generated ones.

3. Line Drawing : For synthesis of fingerprint images, Hill uses line drawing approach. The

algorithm draws lines from each known minutiae. It is an iterative procedure that continues
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till lines are drawn from all the minutiae points. The direction of the ridge is determined by

consulting the direction map for the current position. Some extra lines of varying widths

are added from the edges of the images for giving it appearance of the real fingerprint.

The results of reconstruction are demonstrated only for Arch class. Also, the regenerated

image do not have an appearance of true fingerprint. The results for reconstruction are

shown in Figure 1.7. He compared 25 reconstructed fingerprints against the original ones

using a fingerprint matching system and obtained a sufficient match score. He mentions

that his regenerated fingerprints visually did not appear like true fingerprints thus the mas-

querade attack will fail for the fingerprint authentication systems where visual inspection

of fingerprints is also employed.

(a) (b)

Figure 1.7: (a) Original Arch, (b) Reconstructed fingerprint from minutiae points using line
drawing.

The implications of Hill’s work was analyzed in a report by the International Biometric Group

[21]. Three types of biometric image recreation were distinguished:

1. feature image (an image that bears little resemblance to the original biometric image but

which still suffices to fool a biometric algorithm, rated achievable),

2. generic image (a rough resemblance to the original, rated very likely achievable), and

3. total image (virtually identical to the original, rated very difficult, though perhaps not

impossible).
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1.4 Problem Statement

Most of the fingerprint-based authentication systems match two fingerprints by comparing

their minutiae distribution. To achieve this, minutiae are stored in a database in the form of

template. In this thesis, we concern ourselves to see how much information does a fingerprint

template reveal about the parent fingerprint. This study will help to

1. understand the role of minutiae in fingerprint individuality models.

2. verify if we can use minutiae for classifying fingerprints.

3. confirm or challenge the traditional belief that it is safe to store minutiae information in

the database.

The purpose of this thesis is not to demonstrate the masquerade attack on fingerprints rather it

is just a consequence.

1.5 Contribution of the Thesis

In this thesis we demonstrate that several levels of information can be elicited from a simple

minutiae template viz. the ridge orientations, class, and the ridge structure of the unseen parent

fingerprint.

We first estimate the ridge orientations using the minutiae orientations to form a discrete

orientation map. We observed that the estimated orientation map is consistent with the true

ridge orientations. Then, using the estimated orientation map and the minutiae distribution, we

designed a classifier to predict the class of the parent fingerprint. To our knowledge, this is the

first time minutiae points have been used for fingerprint classification. Experiments conducted on

the NIST-4 database indicate the efficacy of the proposed algorithm and suggests its potential in

providing insights into the nature of the minutiae distribution for different classes of fingerprint.

Furthermore, we have proposed two techniques for fingerprint reconstruction. First technique

uses Gabor-like space-invariant filters. This method does not have control over number and

type of generated minutiae. Second technique uses two effective tools from flow visualization

field namely streamlines and LIC (Line Integral Convolution). It allows generating minutiae at

desired location in the regenerated fingerprint image. No literature was discovered during this
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research that describes a synthetic fingerprint generation technique to generate fingerprint with

predetermined minutiae points. We further demonstrate that the generated fingerprints can be

used to spoof a minutiae-based fingerprint authentication system.

1.6 Organization of the Thesis

Chapter 2 discusses a generic interpolation scheme for estimating orientations of underlying

ridges based on minutiae information alone. Chapter 3 explains the design of a minutiae-based

fingerprint classifier and illustrates the classification result for the NIST 4 fingerprint database.

The fingerprint reconstruction schemes are discussed in Chapter 4. Finally, Chapter 5 summarizes

the contribution of this thesis and considers the future work in this area.
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Chapter 2

Estimating Ridge Orientations using

Minutiae Points

The ridge-line flow of a fingerprint can be effectively described by an orientation map which

is a discrete matrix whose elements are the orientation of the tangent to the ridge lines. An

example of orientation map for a fingerprint image is shown in Figure 2.1. This orientation

(a) (b)

Figure 2.1: (a) A fingerprint image, (b) Corresponding orientation map.

map can be computed from the fingerprint image 2.1 (a) using various techniques proposed in

the literature [22]. Our goal is to see if we can estimate the orientation map using only the

minutiae points. The orientation of a minutia is an indication of the local ridge direction since

the fingerprint is a smoothly changing oriented texture pattern [23]. Also, Stoney [8] stated that

the minutiae orientations of a fingerprint represent its ridge orientations.

Consider the minutiae plots of four classes shown in Figure 2.2. These plots clearly suggest
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the possibility of deducing the direction of local ridges by examining the orientation of minutiae

points in that region. The only information available in a minutiae template is the positions and

orientations of minutiae points. Thus we utilize this information for estimating ridge orientations

of the parent fingerprint. We consider the orientation of a local group of minutiae, in order to

(a) (b) (c) (d)

Figure 2.2: Minutiae plots of 4 fingerprint classes: (a) A, (b) W, (c) L, and (d) R.

‘interpolate’ the direction of the underlying ridge flow. We have proposed an algorithm that

utilizes minutiae triplets to estimate the orientations of pixels present in the enclosed triangular

regions. A triplet is formed using 3 minutiae as vertices. Kovacs - Vajna [24] have proposed a

fingerprint verification technique that uses minutiae triplets. It was demonstrated that by using

minutiae triplets for fingerprint matching, the relative nonlinear deformation present in the

fingerprint image pairs was overcome. The triangular shape copes with the strong deformation

of fingerprint images due to static friction or finger rolling. Also it saves local regularities and

compensates for global distortion. Also, Germain et al. [25] proposed a fingerprint indexing

technique using minutiae triplets. They proposed a similarity searching algorithm, Flash, akin

to geometric hashing that utilizes minutiae triplets. They found that the minutiae triplets give

some immunity against noise in fingerprints.

2.1 Orientation Estimation Algorithm

The proposed algorithm utilizes a minutiae triplet to estimate the orientation of a triangular

fingerprint region defined by the triplet. If we go for more degrees of freedom (say a quadrilateral),

although it would cover a larger fingerprint area, the estimated orientations may not be reliable

for all the enclosed pixels. Also the triplet formed using minutiae as vertices are rotation and

scale invariant.



CHAPTER 2. ESTIMATING RIDGE ORIENTATIONS USING MINUTIAE POINTS 17

A minutia point can be represented as a three-tuple, (x, y, θ), where (x, y) is its spatial

location and θ 1 its orientation. The main steps of our robust orientation estimation algorithm

are shown in Figure 2.3.

Minutiae
 template

Generating
minutiae
triplets

Selecting triplets
using geometric

constraints

Pruning triplets
using `Q’

Computing
orientation

map

Averaging
orientation

map

Figure 2.3: A block diagram showing main steps of orientation estimation algorithm.

1. Generating minutiae triplets: Consider a minutiae template, M , of a fingerprint con-

taining N minutiae points given by, M = {m1, m2, · · · , mN} where mi = (xi, yi, θi), i

= 1 to N . Figure 2.4 shows a triplet containing 3 minutiae, mi = (xi, yi, θi), i = 1, 2, 3.

The orientations of pixels enclosed by the triangular region can be estimated using the

orientations of minutiae vertices. A set of 3 minutiae points, m1, m2, and m3 is said to

m2

P

m1

.
d1

d2d3

m3

P

1

2 3

Figure 2.4: A minutiae triplet.

constitute a triplet, T , if dist(mi, mj) ≤ 150 (Euclidean distance), and |θi − θj| ≤ 15,

∀ i, j = 1, 2, 3.

Let P (x, y) be a point in the region enclosed by the triplet, and let di be the Euclidean

distance of P from mi such that d1 < d2 < d3. The orientation at point P , θ̂P (x, y), is

1We do not make distinction between opposing angles. i.e. minutiae having 30o and 150o orientations are
treated the same. Thus the range of theta is 90o ≤ θ ≤ 270o
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then estimated by taking the weighted average of the 3 minutiae orientations:

θ̂P (x, y) =
d3

(d1 + d2 + d3)
θ1 +

d2

(d1 + d2 + d3)
θ2 +

d1

(d1 + d2 + d3)
θ3 (2.1)

Here as P is more closer to m1, θ1 will have more influence on θP than θ2 and θ3. So it gets

more weight in equation 2.1. Generally for an image size of 512 × 512, there are 40 − 60

minutiae [4]. Then the number of triplets that are possible can be given by,

(
n

3

)
=

n!

(n− 3)!3!
(2.2)

where, ‘n’ is the number of minutiae in a fingerprint template. To keep the number of

triplets generated within bounds, the algorithm employs certain geometric constraints while

forming the triplets to ensure reliable orientation estimation. A triplet is selected only if

it satisfies the following conditions.

2. Selecting triplets using geometric constraints:

(a) Orientation Difference (θdiff) : The orientation of the fingerprint region inside the

triplet is function of the orientations of minutiae (equation 2.1). Thus, all the minu-

tiae vertices should have comparable orientations. For every triplet, we compute the

orientation difference θdiff , given by,

θdiff = max(θi − θmed), i = 1, 2, 3 (2.3)

where, θmed is the median of three minutiae orientations. It should satisfy the condi-

tion,

θdiff ≤ θtol (2.4)

where, θtol is a predetermined threshold. In our experiments, we used θtol = 30o. This

condition is employed to avoid triplets exhibiting large orientation differences. Such

triplets may occur around core or delta region where there is large ridge activity. If

these triplets are selected, we might get incorrect orientation estimation as shown in

Figure 2.5.

(b) Maximum Length (Lmax) : Let Li be the length of the side of a triplet, then all three

sides of the triplet should satisfy the condition

Lmin ≤ Li ≤ Lmax, i = 1, 2, 3 (2.5)
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m1

m2

m3

Figure 2.5: Example of a minutiae triplet with large θdiff .

where, Lmax is the maximum length that can be allowed for a triplet.

A triplet enclosing a large fingerprint area, might have regions exhibiting changes

in the ridge orientations. Thus, the orientation may not be estimated correctly for

underlying larger fingerprint region. Hence, the triplets enclosing large fingerprint area

need to be avoided. This is ensured by comparing the three side-lengths of minutiae

triplet against a threshold.

Deciding a single value for Lmax across all fingerprint classes is a difficult task. As

shown in Figure 2.6 (a), due to parallel ridge flow in Arch, larger side triplet can

also give reliable orientation estimation but in Whorls, due to the large ridge activity

near core region, this is not always true. In order to have a generic algorithm for

all fingerprint classes, this constraint is important. We used Lmax = 300 for our

experiments.

(c) Interior Angels (φmin) : Minutiae tend to occur in clusters [26]. In a cluster of

minutiae, there may be some triplets that enclose very small fingerprint area as shown

in Figure 2.6 (c). So using these triplets for estimating orientations is computationally

inefficient. To avoid these triplets, the interior angles and side-lengths of the triplet

are observed. A triplet is selected if,

φi > φmin, (2.6)

Li > Lmin, i = 1, 2, 3 (2.7)
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where φi are interior angles of the triplet (Figure 2.6 (c)), φmin = 20o, and Lmin = 20

pixels. All three interior angles of a triplet should be greater than a preset threshold,

φmin, and also the minimum side-length should be greater than Lmin.

m1

m2

m3

m1

m2

m3 m1

m2m3

(a) (b) (c)

Figure 2.6: Example of a triplet with large Lmax for Arch and Whorl, (a) Correct result, (b)
Incorrect result, (c) An example of skinny triple.

3. Pruning triplets using Quality Factor: As mentioned above, fingerprints are charac-

terized by clusters of minutiae in certain regions. For instance, the regions near the core and

delta have dense minutiae activity. In such cases, a triplet may reside inside the triangular

region of another triplet or may overlap with it. This results in multiple triplets enclosing

common fingerprint area. In Figure 2.7 (a) one triplet is completely included in another

(a) (b)

Figure 2.7: (a) Contained triplets, (b) Overlapping triplets.

whereas in Figure 2.7 (b) two triplets are overlapping. Here, rather than consolidating the

orientation information estimated by multiple triplets, we utilize the information estimated

only by a good quality triplet. To do so, a quality factor ‘Q’ is assigned to each triplet.
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The quality, Q, is measured by examining the average length of the sides of the triangle

and the orientations of component minutiae points, and is computed as,

Q = (Lmax − Lavg)w1 + (
θtol − θdiff

θdiff

Lmax)w2. (2.8)

Here, Lavg is the average length of the sides of the triplet, θdiff is the maximum difference

between pairwise minutiae orientations (equation 2.3), and w1, w2 are the weights associ-

ated with each term. We use w1 = 0.4 and w2 = 0.6. This ensures that a triplet having

minutiae of similar orientations and covering a relatively small area is assigned a higher Q

value. Thus in case of a tie, a triplet higher Q value is selected. Examples of the good and

bad quality triplets are shown in Figure 2.8.

(a) (b) (c)

Figure 2.8: (a) Minutiae distribution of a fingerprint, (b) Examples of good (blue), with Lavg
= 112.66, Var = 5, Q = 237.63, and bad (red) with Lavg = 217, Var = 26, Q = 67.55, quality
triplets, (c) Estimated orientation map.

4. Computing orientation map θ̂: Using equation 2.1, orientations of the ridge pixels

enclosed by valid triplets are estimated. An orientation map, θ̂, is a matrix where each cell

of this matrix represents the average orientation of a local window of the parent fingerprint

image. For example, in a 512×512 image, if we take a local window size of 13×13, then an

orientation map of size 39×39 is obtained by assigning the average orientation of the pixels

in the local window to the corresponding cell in the orientation map. Some cells may not

contain any orientation information due to the non-availability of ‘valid’ triplets in those

regions. The estimated orientation map for an Arch fingerprint is as shown in Figure 2.9.
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(a) (b) (c)

Figure 2.9: (a) Original Arch, (b) Triplet formation, (c) Orientation Estimation Result.

5. Averaging orientation map: To obtain a smooth transition in orientations, the esti-

mated orientation map is convolved with a 3× 3 local averaging filter.

Some results for estimated orientation maps for other fingerprint classes are shown in Figure

2.10.

2.2 Validating the estimated orientation map

Visually, we observe that the estimated orientation map is quite consistent with the underlying

ridge flow of the original fingerprint. In order to verify the accuracy of the algorithm, we compare

the true orientation map with the estimated one using a correlation measure. The true orientation

map can be computed using various techniques as described in [4]. We use the least mean

square orientation estimation approach proposed by Ratha et al. [22] for computing the true

orientation maps of fingerprint images. Given a fingerprint image I, the algorithm computes the

ridge orientations at discrete points on the same cartesian grid used to compute θ̂.

1. Divide I into w × w blocks (e.g., 13 × 13); the center of each block corresponds to a grid

point.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: (a), (c) and (e) are original fingerprints of L, R and W whereas (b), (d) and (f) are
their estimated orientation maps.
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2. Compute Sobel gradients Gx and Gy at each pixel in a block and assign the average of

these gradient values to the corresponding grid point. The Sobel masks are given by,

Gx =




1 2 1

0 0 0

−1 −2 −1


, Gy =



−1 0 1

−2 0 2

−1 0 1


.

3. The orientation for a grid point is computed as,

θ(i, j) =
1

2
arctan(

Vy(i, j)

Vx(i, j)
), (2.9)

where,

Vx(i, j) =
i+w∑
u=i

j+w∑
v=j

2Gx(u, v)Gy(u, v), Vy(i, j) =
i+w∑
u=i

j+w∑
v=j

G2
x(u, v)−G2

y(u, v). (2.10)

The estimated and true orientation maps, (θ, θ̂), for different fingerprints in the NIST-4 database

are shown in Figure 2.11.

To determine the similarity between the true and estimated orientation maps, we compute

the correlation coefficient, r(θ, θ̂), given by, r(θ, θ̂) =
∑

m

∑
n(θ−θ̄)(θ̂−¯̂

θ)√
(
∑

m

∑
n(θ−θ̄)2)(

∑
m

∑
n(θ̂−¯̂

θ)2)
, 0 ≤ |r| ≤

1, where, m × n is size of the orientation maps, θ̄ and
¯̂
θ represent the mean of θ and θ̂,

respectively. Figure 2.12 that plots the histogram of correlation coefficients as observed on the

NIST-4 database, validates our technique and indicates that the estimated ridge orientations are

consistent with the underlying (true) ridge flow. Due to the absence of ‘valid’ triplets around

the core region, the estimated orientation map can not capture these regions, e.g., the recurving

back in loops or the concentric pattern in whorls.

To improve the performance of fingerprint matching, the estimated orientation map may

also be used along with the minutiae distribution. The orientation estimation algorithm can be

beneficial in applications like smart cards (where memory is critical), since the orientation field

need not be stored explicitly but can be generated from the template itself.
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(a) (b) (c)

Figure 2.11: Comparing the estimated orientation map (from minutiae) with the true map: (a)
Minutiae plot of a fingerprint, (b) Estimated orientation map, (c) True orientation map. Due to
absence of valid triplets around the core region, the estimated orientation map cannot capture
these regions, e.g., the concentric pattern in whorls.
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79%>0.75

Figure 2.12: Correlation between θ̂ and θ as observed on the NIST 4 database. About 79% of
the orientation pairs have correlation more than 0.75.
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Chapter 3

Fingerprint Classification Using

Minutiae Points

3.1 Fingerprint classification

The ridge flow in the fingerprints constitute a pattern which can be systematically categorized

into a fixed number of non-overlapping classes. Fingerprint classification refers to the problem

of assigning a fingerprint to a class in a consistent and reliable way [4]. This is an important

property of fingerprints since it helps in reducing the search time in identification schemes. The

Galton-Henry [2] classification scheme partitions fingerprints into five classes, namely, arch (A),

tented arch (T), right loop (R), left loop (L) and whorl (W) as shown in Figure 3.1. We treat this

as a four-class problem by combining fingerprints of T and A into a single class (A). The number

(a) Arch (b) Tented Arch (c) Whorl (d) Right Loop (e) Left Loop

Figure 3.1: Five classes of fingerprints according to Galton-Henry classification scheme [2]. Core
is represented by a square whereas the delta by a circle.

of singularities (core and delta points) and the relative positions vary across the 5 fingerprint

classes as summarized in table 3.1. Characteristics of each of these classes are described below:
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Fingerprint class Number and position of singularities
Arch No singularities

Tented Arch One core and one delta, vertically aligned
Leftloop One core and one delta, delta on right side

Rightloop One core and one delta, delta on left side
Whorl One core and two deltas, one delta on each side

Table 3.1: Number and position of singularities in five fingerprint classes.

1. Arch: This is the simplest fingerprint class since it does not have any singularities (core

or delta). Ridges enter from one side of the finger and exit from the other forming a shape

of an arch.

2. Tented Arch: These are similar to (plain) arch, except that it has at least one ridge which

has an up thrust. It has one core and one delta which are vertically aligned.

3. Whorl: The most complex form of fingerprints is the whorl pattern. It has one core, two

delta points, and a whorl-like pattern near the core. The whorl pattern is characterized by

at least one ridge traversing a 360 degree closed path around the core.

4. Left Loop: It is characterized by one core and one delta point. One or more ridges enter

from left of the finger and exit from the same side, thus forming a loop. It has a delta

where the ridges converge or diverge into two branches on the right side.

5. Right loop: Like left loop, it has one core and one delta. One or more ridges enter from

right side of the finger and exit from the same side by forming a loop. It has a delta on

the left side.

3.1.1 Need for fingerprint classification

Generally, the database of a fingerprint authentication system includes millions of fingerprints.

Large volumes of fingerprints are collected and stored every day in a wide range of applications,

including access control (e.g. ATM), law forensics (e.g. FBI database contains more than 200

million fingerprints [4]), driver’s license registration of state, etc.

For the identification, the simplest technique is to scan the entire database in order to retrieve

the top matches. This brute force method is obviously an inefficient and impractical way to
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address the problem due to a very large response time. To alleviate this problem, fingerprints

are partitioned into predefined classes and are stored in separate bins in the database. At the

time of identification, the class of the query fingerprint is determined and it is compared against

the fingerprints of this class alone.

3.1.2 Various approaches for classification

Automated fingerprint classification is a difficult pattern recognition problem. In spite of

substantial research in this field, it is still an active field of research. A detailed discussion

about various methods proposed for fingerprint classification is available in [4]. Most existing

approaches use the following features along with the fingerprint image itself:

1. Orientation image : Most existing classification techniques make use of the orientation

image. If reliably computed, it is alone sufficient for classification. Cappelli and Maltoni

proposed a technique in which the orientation image is divided into homogeneous regions

using a cost function [27]. A prototype model is formed for each class using these regions.

A fingerprint is classified by comparing the relational graphs with the class prototypes.

This technique is rotation and translational invariant and does not involve singularities.

2. Singularities : In this technique, singularities such as core and delta are detected. The

fingerprints are classified based on the number and locations of these singularities [4].

Although it is relatively a simple technique, the performance is highly dependent on the

accuracy of core/delta detection. In case of noisy fingerprints, singularity detection is not

only difficult but can be misleading. Due to the small fingerprint area, dab prints generally

do not contain deltas.

3. Ridge flow : Ridge line flow is nothing but a set of curves running parallel to ridge lines.

These curves do not necessarily coincide with the fingerprint ridges and vallyes, but they

exhibit the same local orientation. It can be traced by drawing lines curves locally oriented

to the orientation image [28]. Jain and Minut [3] form predefined kernels corresponding to

each class using this ridge flow. A fingerprint is assigned a class based on fitting it to one

of these kernels. The best fitting kernel decides the class of the fingerprint.

4. Gabor filter responses : Jain et.al [29] proposed a classification algorithm using a bank

of Gabor filters. The algorithm separates the number of ridges present in four directions



CHAPTER 3. FINGERPRINT CLASSIFICATION USING MINUTIAE POINTS 30

(0o, 45o,90o,135o) by filtering the central part of a fingerprint with the bank of Gabor filters.

This information is quantized to generate a ‘FingerCode’ which is used for classification.

Some classification schemes proposed in literature use more than one feature. For example,

Candela et al. [28] developed PCASYS (Pattern-level Classification Automation SYStem). It is

a probabilistic neural network that is based on features derived from orientation image. It also

contains a ridge tracing module, which traces the ridge flow in the bottom part of the whorl type

fingerprint.

Various features that have been used so far for fingerprint classification are summarized in

Table 3.2.

Authors Features used
Candela et al. 1995 [28], Hong et al. 1999 [30], Chong et al. 1997 [31] Ridge line flow
Cappelli et al. 1999 [27], Senior 2001 [32], Wilson et al. [33] Orientation image
Karu and Jain 1996 [34], Cho et al. 2000 [35] Singularities
Jain et al. [29], Yao et al. 2001 [36] Gabor filters
Ross et al. [37] Minutiae points

Table 3.2: A summary of different fingerprint classification techniques.

3.2 Novel use of minutiae for classification

To best of our knowledge, none of the existing classification schemes use minutiae properties

for classification. Typically, minutiae points have been used only for fingerprint alignment and

matching. We propose a novel idea of using minutiae points alone for classifying fingerprints

(without accessing images).

It is observed in the forensic literature that the minutiae distribution varies from class to class

[38, 39, 8]. The minutiae plots of all four classes are shown in Figure 3.2. A visual glance at these

minutiae plots suggests the possibility of deducing the fingerprint class from the minutiae points.

Our hypothesis is based on observations made by forensic experts in the context of fingerprint

individuality models. Fingerprint minutiae have been the central focus in the study of fingerprint

individuality. Stoney describes 10 different individuality models proposed by various forensic

experts. All these models are based on minutiae properties [8]. Most of the individuality models

are based on heuristic observations and on a limited database. We have demonstrated the results

over larger fingerprint database.
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(a) (b) (c) (d)

Figure 3.2: Minutiae plots of 4 fingerprint classes: (a) A, (b) W, (c) L, and (d) R.

As mentioned earlier, we assume that the stored minutiae template does not give information

about the shape of the fingerprint directly. We studied the relation between minutiae properties

and class of the fingerprints of NIST 4 database. Our observations and the findings listed

by various forensic experts support our hypothesis that the seemingly random distribution of

minutiae in a fingerprint can reveal important information about the class of a fingerprint.

Most forensic experts have invested their efforts in studying fingerprints visually. Our goal is

to imitate the performance of a human fingerprint expert for classification of fingerprint using

minutiae template without access to the fingerprint image itself.

Most commercially available fingerprint authentication systems store minutiae templates

which are later used for matching. We claim that with the proposed classifier, these templates

can be also used for fingerprint classification. This eliminates the need for existing complex image

processing techniques on fingerprint images for classification. We assume that the simplest form

of minutiae template (x, y, θ) is available and the information about the singularity points, class

etc is unknown. (The basic shape of the fingerprint is decided by location and orientation of

singularities. If the minutiae template were to store the position and orientation of singularities

then determining the class of fingerprint is a trivial task.)

3.2.1 Minutiae based classification algorithm

Predicting the class of a fingerprint from its minutiae points alone is not a easy task. This

is due to the fact that the fingerprint can be enrolled in any orientation or translation. So

the individual minutiae points can literally be in any position and orientation for the same

fingerprint. Thus, the features we have chosen for fingerprint classification are translation and
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rotation invariant. The main steps of our minutiae-based classification algorithm are as described

in the block diagram shown in Figure 3.3. We have described the orientation estimation scheme

Forming
minutiae
triplets

Predicting
orientation

map

Detecting
‘salient’

minutiae

Minutiae
template

Forming
feature
vector

K-nearest
neighbor
classifier

class

Figure 3.3: Block diagram showing main steps of minutiae-based classification algorithm.

using minutiae triplets in Chapter 2.

1. Detecting salient minutiae : As mentioned above, the designed classifier is based on

minutiae information and the estimated orientation of the fingerprint to be classified. A

fingerprint can be divided into 3 parts namely base, core and marginal areas. By visually

analyzing fingerprint ridge patterns across classes, it is clear that they have almost the same

ridge structure in the base and marginal area as shown in Figure 3.4. But the irregularities

in the vicinity of the core area are significant for classification, such as a circular ridge

pattern in case of whorls or curving back of ridges in loops. Accordingly, the minutiae

Marginal 
Area 

Core Area 

Base Area 

(a)  (b) 

(c)  (d) 

Figure 3.4: (a) and (b) show L and W fingerprints divided into various areas whereas (c) and
(d) show the corresponding original fingerprints respectively.

present in the vicinity of the core point have important class representative characteristics.

We refer to these as ‘salient’ minutiae and use them for classification. The ridges around
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the core point have high curvature and form a nearly circular pattern across all classes as

shown in Figure 3.2. In order to select the salient minutiae, we first detect a registration

point (R0) using Hough transform (The salient minutiae reside around R0). Our motivation

behind using Hough transform is the inherent circular-like ridge structure of fingerprints

in the vicinity of core region.

The Hough transform is a technique which can be used to isolate features of a particular

shape within an image. The classical Hough transform is most commonly used for the

detection of regular curves such as lines, circles, ellipses, etc [40]. It is particularly useful

for computing a global description given the local (noisy) measurements. In our case, the

local information consists of minutiae coordinates and their orientations. The parametric

equation of a circle is

(x− x0)
2 + (y − y0)

2 = r2, (3.1)

where ‘x0’ and ‘y0’ are the coordinates of the center of the circle and ‘r’ is the radius. The

parameter space consists of three coordinates viz. the position of minutiae point (x, y) and

its orientation θ.

As mentioned above, the orientation of minutiae in the vicinity of the core region define

a circle. Consider a circle formed by minutiae as shown in Figure 3.5. Let ‘L’ be a

perpendicular line to a minutiae orientation. This line passes through the center of the

circle. Our goal here is to detect the center. It can be observed that these minutiae have

r

L

(x, y)R0

r

L

m

(x, y)R0(x, y)R0

L

m (x, y)

Ro

(x, y)

Ro

(x, y)(x, y)

Ro

L L

30o

(a) (b) (c)

Figure 3.5: (a) Circular plot of minutiae, (b) Line ‘L’ is perpendicular to the orientation of
minutiae m, (c) L made nearly perpendicular (± 30o) to the orientation θ.

orientations almost tangential to the circumference of the circle. Using this property, for
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each minutiae ‘m’ we traverse its line ‘L’ perpendicular to the orientation of minutiae θ

at discrete points as illustrated in Figure 3.5 (b). These points (x, y) correspond to the

probable center points of the circle. The radius ‘r’ of each of these circles is nothing but

distance from minutiae to the corresponding center points as the minutiae ‘m’ lies on their

circumferences. A 3D accumulator in Hough space corresponding to the center (x, y) and

radius r is used. Given a minutiae template M = mi, i = 1 to N , the algorithm for detecting

the R0 is as follows.

(a) Initialize the accumulator A(x, y, r) where (x, y) is the center of the potential circle

with radius r.

(b) For each minutiae mi, i = 1 to N , the potential centers (x, y) lie on the line ‘L’.

The accumulator cell A(x, y, r) is incremented if the point (x, y) is at distance r from

minutiae mi.

(c) For a circular minutiae pattern, there will be a well-pronounced peak in the Hough

parameter space for one center (x, y) (point marked with red ‘*’ in Figure 3.5 (a)). This

corresponds to the registration point which is characterized by significant minutiae

activity around it.

We observed that rather than using only the minutiae information, if we use the estimated

orientation map then the performance of Hough transform is improved. As mentioned

earlier, orientation map is a discrete matrix. Each cell of the orientation map represents

the average estimated orientation for that cell. We perform above procedure for all the

starting coordinates of the non-empty cells of the orientation map. Note that the ridge

structure in fingerprints is not exactly circular thus in our experiments, we use lines nearly

perpendicular (± 30o) to the orientation θ as shown in Figure 3.5 (c). The results for Hough

transform using the estimated orientation maps are as shown in Figure 3.6. Note that R0 is

mostly detected in the vicinity of the true core. Once R0 is detected, the minutiae located

in a 300× 300 region about R0, are selected for classification as shown in Figure 3.7.

2. Generating feature vectors : Each fingerprint is represented by a feature vector, set of

characteristic measurements extracted from salient minutiae. These features capture vital

properties of minutiae such as their relation with neighboring minutiae, relation between
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Minutiae plot overlaid on original fingerprint of A, L and W are shown in (a), (c)
and (e) respectively. The corresponding R0 points marked in blue (‘X’) detected using estimated
orientation maps are shown in (b), (d) and (f).
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(a) (b)

Figure 3.7: (a) The orientation map and detected registration point marked in blue (‘*’), (b)
Salient minutiae in a 300× 300 frame about R0.

their coordinates and orientations, their clustering tendencies, etc. Most of these class-

representative minutiae properties were studied by various forensic experts for proposing

individuality models and for understanding the unique nature of fingerprints but not for

classifying the fingerprints [39, 8, 38, 26]. The features we have used are invariant to

rotation, translation and scaling of fingerprint images. The 11-dimensional vector F =

{F1, F2, · · · , F11} is constructed as follows.

(a) Features based on minutiae orientations (F1, F2) : Stoney claims that minutiae

orientations are robust to fingerprint distortions. The direction of ridge flow varies

from one class to other and so do minutiae orientations. For instance, W has at least

one ridge which makes 360 degree closed path in the central region of the fingerprint.

Thus the orientations of these minutiae range from 0− 360 degrees. On the contrary,

the minutiae orientations of A have only two dominant directions. Roxburgh [38] ob-

served correlation between minutiae orientations and class of the fingerprint. In order

to understand the distribution of minutiae orientations for each class, we examined the

rose plots 1 of minutiae orientations (Figure 3.8). It can be noted that the rose plots

for whorl and arches are different. Whorl is characterized by high minutiae density

around the core region. Also due to the circular pattern, the minutiae orientations are

in various directions. So the rose plot for W is distributed in all four quadrants of the

1 The rose plot is a a polar plot showing the histogram of angles.
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rose plot. Arches have comparatively less number of minutiae. Also their orientations

fall in fixed quadrants, hence the rose plot has two dominant peaks. The rose plots

for L and R are mirror images of each other. One feature capturing these variations

in minutiae orientations across classes is the number of empty bins in the rose plot

(F1). This indirectly captures the spread of minutiae orientations. The feature F2 is

the variance in minutiae orientations of a minutiae template.
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Figure 3.8: Rose plots of (a) A, (b) W, (c) L, (d) R.

(b) Features relating minutiae pairs (F3,· · · ,F6) : The fingerprint individuality model

proposed by Stoney and Thornton uses minutiae pairs [8]. They suggest that minutiae

pairs are a fundamental unit for representing variations in fingerprints . They also

found a strong correlation between the spacing and orientations of minutiae pairs. Also

Roxburgh [38] considered correlation between neighboring minutiae and variation in

minutiae position relative to the pattern of fingerprint for proposing his individuality

model. The properties of minutiae in a local neighborhood vary across classes. For

instance, the neighboring minutiae in the central region of W have large orientation

difference where as minutiae neighbors in A have similar orientations. The corre-

lation between spatial location and orientations of minutiae pairs can be examined

by estimating the joint distribution of ‘R’ and ‘Φ’ where R is the distance between

two minutiae and Φ is the orientation difference as shown in equations (3.2) to (3.5).

The first distribution corresponds to minutiae pairs which are spatially close to each

other and having almost similar orientations, and second to the pairs which are close

but having large orientation difference. Similarly, the third joint distribution includes

minutiae pairs away from each other and having similar orientations whereas fourth

includes pairs away from each other but having large orientation differences. Figure
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3.9 shows all the four types of minutiae pairs.

F3 =
∑

0≤R≤R1

∑
0≤Φ≤Φ1

P (R, Φ) dR dΦ, (3.2)

F4 =
∑

0≤R≤R1

∑
Φ1≤Φ≤Φ2

P (R, Φ) dR dΦ, (3.3)

F5 =
∑

R≥R2

∑
0≤Φ≤Φ1

P (R, Φ) dR dΦ, (3.4)

F6 =
∑

R≥R2

∑
Φ1≤Φ≤Φ2

P (R, Φ) dR dΦ, (3.5)

In our experiments, we have taken R1 = 60 pixels, R2 = 180 pixels, Φ1 = 30o and

Φ2 = 180o. It is observed that these distributions are significantly different for all

4 classes. The above probabilities can be computed by finding the number of pairs

satisfying the above mentioned criteria for R and Φ divided by the total number of

minutiae pairs formed in a template. For A, F3 is larger among four features whereas

for whorls, F4 3.9 We observed that for loops, the values for F1, F3 are larger.

F6

F5

F5

F4
F3
F6

Figure 3.9: A whorl minutiae plot showing 4 types of minutiae pairs.

(c) Features representing clustering of minutiae (F7, F8) : It is observed that minu-

tiae tend to cluster. Kingston [26] estimated probability of a particular number
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of minutiae from the minutiae density assuming Poisson distribution. He observed

variations in minutiae density among different-sized regions across different locations

within the fingerprint (minutiae density increases near core and delta regions). Stoney,

Champod and Margot observed that there are variations in minutiae densities due to

different patterns of the ridge flow, for example, in the region of recurving ridges [8].

If an equal number of ridges flow in and out of a region, then for each minutia that

produces a ridge, there must be a minutia which consumes a ridge. An imbalance

in number of minutiae orientations results in converging or diverging ridges. There

exists a fundamental relationship between minutiae and ridge pattern. Also Galton

[39] showed that there is a strong correlation between the class of a fingerprint and

the occurrence of a minutiae at a specific location in the image (Figure 3.10). Whorls

are characterized by high minutiae density near the core region. The clusters of minu-

tiae are obtained in various regions of fingerprint. Champod and Margot observed

that these regions vary from class to class [41]. F7 is the maximum minutiae density

obtained in each fingerprint. This value is relatively maximum for W and least for A.

We sample the local minutiae in a radius of 50 pixels to compute the minutiae density.

The feature F8 is the maximum variance in minutiae orientations in a minutiae cluster

within this radius.
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Figure 3.10: Minutiae density associated with 4 different classes of fingerprints: (a) A, (b) W,
(c) L, and (d) R. These plots were generated using 30 images per class. Blue indicates a low
density region while red indicates a high density region.

(d) Features capturing global ridge information (F9, F10, F11) : Visually (Figure

2.2) it is apparent that features F1 · · ·F8 can distinguish classes A and W but are

not sufficient for reliably resolving ambiguity between the classes (L, R), (A, L, R)

and (L, R, W). It is necessary to include information about global ridge pattern
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along with the local minutiae properties. To capture the global ridge structure of the

fingerprint, we have defined geometric kernels which model the shape of the fingerprint

around the core region for W, Land R classes. In a left loop, the ridges in the core

region form a loop by curving back to the left side of the fingerprint. This is captured

by a kernel formed using two semi-ellipses corresponding to the concave and convex

parts of the loop. The kernel for R is nothing but a mirror image of this kernel. The

circular ridge structure of W is represented using a simple circle. See Figure 3.11.

(a) (b) (c)

Figure 3.11: Kernel for (a) L, (b) R, and (c) W.

Above the core region of every fingerprint has arch-like characteristics (Figure 3.4). We do

not define a kernel for A class as it would fit well for all the classes. The algorithm we have

used is based on hierarchical kernel fitting approach proposed by Jain and Minut [3] for

fingerprint classification with certain modifications to suit our problem. It is a model-based

approach which uses only flow field of ridges for fingerprint classification. In this approach,

the classification is achieved by finding the kernel that best fits to the flow field of a given

fingerprint. The algorithm is presented in this paper is as follows. Consider V to be a

smooth vector field defined over some region in the plane R2 and let β be its argument.

Let γ be a circular kernel curve in R2 as shown in Figure 3.12. Let γ̇ be tangent to γ and

α be its argument. Consider a point γt = (x(t), y(t)) present on the kernel γ. An energy

functional capturing the difference between the direction of γ̇ and that of the vector field

V at point γt is defined by

E(γ) =

∫
γ
sin2(α− β(γ)) dγ∫

γ
dγ

(3.6)
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Figure 3.12: Red Vector: Unit tangent vector to the kernel, Green Vector: Direction of flow
field at point γt [3].

To find how well each kernel fits into an orientation map of the fingerprint, energy values

(Equation 3.6) for various discrete points on the kernel are computed. Then the average of

all the value decides the fit. Lesser average means better fitting kernel. The classification

then becomes a simple energy minimization problem. This algorithm uses the original

fingerprint image for finding the orientation map. In our case, we have only the partial

orientation map estimated from minutiae. We use the kernel fitting approach for finding

features which represent the global ridge pattern of the fingerprint. For each estimated

orientation map, we find three values for energy functionals (Equation 3.6) corresponding

to the L, R, and W kernels which form the features (F9, F10, F11) respectively. The least

value represents the best fitted kernel. So for an orientation map of W, it is expected that

the minimum of three features is F11 where as for L and R, F9 and F10 respectively. We

observed that due to the inherent similarity in ridge structure of loops and A, both L and

R kernels fit well for A. So for A class values for F9 and F10 are almost the same. This

property is useful for resolving ambiguity between loops and A. These class-specific kernels

are defined with respect to the R0 obtained using Hough transform i.e. for W, R0 is the

center of the circle whereas for L and R, a focus of the ellipse kernel.

The rotation and translation of fingerprints are taken into account by subjecting these

kernels for following transformations. In our experiments, for W, we vary the radius of

the kernel from 100 to 160 pixels. The various shapes of ellipse for L and R classes are

obtained by varying the semi-major axis from 120 to 180 and semi-minor axis from 60

to 100 pixels. The angle that ellipse makes with the horizontal is varied from −10 to
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10 degrees. The kernels are moved in a window of 20 × 20 around R0. To compute the

features (F9, F10, F11) for a fingerprint, minimum of the energy functionals of the kernels

corresponding to all these transformations is found out.

3. Classification of fingerprints : A K nearest neighbor classifier that uses the manhattan

distance, is employed to classify the fingerprints. The experiment was performed on NIST-

4 fingerprint database which is considered as a benchmark for fingerprint classification.

Typically a good quality fingerprint consists of 40− 100 minutiae [42] but this is not true

for some fingerprints in NIST database. Since we need sufficient number of minutiae triplets

to compute the orientation map, we reject the fingerprints having less than 25 minutiae.

We used 150 fingerprints (arbitrarily chosen) for training and 550 fingerprints for test-

ing of each class. Each fingerprint is represented a feature vector. We observed that

by reducing the dimensionality of the feature vector using exhaustive feature selection

from 11 to 8 features, the classifier performance is improved. The selected 8 features are

F1, F2, F3, F4, F7, F9, F10, F11.

We tried various values of K and found that the classifier performance is best for K =

5. The 5NN classifier is applied to each feature individually. Based on the error rate,

an appropriate weight is assigned for a particular feature. Thus the feature giving more

error gets less weight. To find the nearest neighbor for a test fingerprint, the difference

between its features with that of training fingerprint is scaled by their corresponding weight.

We observe that by using this ‘weighted distance’, the classifier performance is further

improved. We obtained a classification rate of 82% and the resultant confusion matrix is

shown in table 3.3.

True Assigned Class
Class A L R W

A 467 45 32 6
L 61 464 7 18
R 69 26 448 7
W 4 61 68 417

Table 3.3: Confusion matrix indicating classification performance.
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(a) (b) (c) (d)

Figure 3.13: Small inter-class variability between classes L and T (a) R and W, (b) and large
intra-class variability between two prints of whorl class (c) and (d).

Unlike other classification schemes, our classifier does not require any other image processing

techniques other than minutiae extraction.

3.3 Analyzing classifier performance

Above classification performance gives evidence for an indispensable relation between the class

of the fingerprint and minutiae distribution. This adds an additional insight to individuality of

fingerprints and may alleviate the public concern about the scientific basis for individuality of

fingerprints. Use of minutiae for fingerprint classification can be considered as an example of

super resolution where from bare minimum information about minutiae, we are interpolating

global information of the fingerprint image. Though our classification result is inferior to the

present state-of-the-art classification techniques [4], our intention is to show that it is feasible

to assign a class to the fingerprint using its minutiae template alone. Mostly all the fingerprint

databases are characterized by noisy fingerprints introduced at the time of acquisition. Some

partial fingerprints may be lacking important global features. Fingerprints are non-uniformly

distributed. The natural distribution of fingerprints into 5 classes is highly skewed - arch (3.7%),

tented arch (2.9%), left loop (%33.8), right loop (31.7%), and whorl (27.9%) [33]. Definition of

each fingerprint class is both vague and complex. Even human experts having good experience

cannot classify some ambiguous fingerprints. (About 17% of 4000 images in NIST database 4

have 2 different ground truth tables.) The NIST 4 dataset has quite a few low quality and

partial fingerprints (not capturing delta) Fingerprints have large intra-class variability i.e. prints

of same class may have entirely different characteristics and small intra-class variability i.e. prints

of different classes look similar as shown in Figure 3.13.
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Most of the misclassifications represents the cases where ridges contributing to important

pattern characteristics (e.g., recurving ridges) do not have minutiae. It can be seen visually from

the minutiae plot in Figure 3.14 that it does not capture the curving back of ridges in the core

region of a right loop thus resulting in a classification error. Some of the features like minutiae

Figure 3.14: Atypical minutiae plot of a fingerprint of R class.

density, clusters of minutiae having homogeneous orientations are easily captured by human eye

but it becomes a difficult problem when it comes to machine to do it.
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Chapter 4

Reconstruction of fingerprints

A minutiae template is a compact version of the original fingerprint image. Thus, tradition-

ally, it has always been considered to be secure to store it in the database. In earlier chapters

(Chapters 2, 3), we demonstrated that the minutiae template reveals significant amount of in-

formation such as ridge orientations and class of the parent fingerprint. In this chapter, we

investigate the possibility of reconstructing fingerprints from minutiae. By the term ‘reconstruc-

tion’ of fingerprints, we mean, to regenerate fingerprint from its stored minutiae points. The

reconstructed fingerprints can be used to spoof the authentication system and thus can be used

for fraudulent purposes. This can be referred as masquerade attack on fingerprints. As described

earlier (Chapter 1), Adler [14] has shown that, given access to the match score data, it is pos-

sible to reconstruct the enrolled face image using the face recognition template. Also, Hill [15]

demonstrated that fingerprint like artefact can be generated from its stored minutiae points.

To the best of our knowledge, a technique for reconstructing fingerprint with minutiae points

at desired locations has not been proposed in the literature. But, various approaches have

been proposed for generating synthetic fingerprints. We first review the literature pertaining to

synthetic fingerprint generation before discussing our scheme.

4.1 Synthetic fingerprint generation

Due to extensive use of fingerprint based authentication systems in commercial and civilian

world, significant efforts are being made to design efficient fingerprint recognition algorithms.

Usually these algorithms are evaluated on small proprietary databases. It is crucial to analyze

and evaluate the matching performance of these algorithms on a larger database. Collecting large
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number of fingerprint images is expensive, tedious and time consuming. Also, it involves privacy

issues as people may not be comfortable sharing their personal biometric data. These problems

are alleviated by utilizing synthetic fingerprint generation software. A synthetic fingerprint is

the ridge pattern that exhibits all the characteristics such as uniqueness and permanence as that

of a real fingerprint. Two such commercially available synthetic fingerprint generation softwares

are SFINGE [43] and Optel’s Fingerprint Creator [44].

A detailed discussion of various approaches for synthetic fingerprint generation can be found

in [4]. Three of them are discussed below.

1. Fourier Spectrum: Novikov and Glushchenko [45] proposed a ridge generation technique

that operates in frequency domain. Firstly, an orientation image is artificially generated.

The output image is initialized to a random image. For every pixel (x, y) in the random

image, a 2D Fourier spectrum of local window centered around (x, y) is taken. Then,

from the Fourier spectrum, the highest-energy along the normal to the local ridge direction

at (x, y) (obtained from orientation image) is selected. The highest-energy harmonic in

frequency domain corresponds to a 2D sinusoid in spatial domain. All such sinusoids are

summed and the result is binarized. This procedure is repeated iteratively till a smooth

image is obtained.

2. Fingerprint Creator : A Poland company named ‘Optel’ [44] has developed a software

to generate synthetic fingerprints using a mathematical model based on minutiae and class

information of the ridge pattern. Being a commercial software, no information about their

fingerprint generation algorithm is currently available. The software takes various inputs

such as class type, number of minutiae, density, rotation, translation in x and y direction,

etc, but it does not take positions of minutiae points as input. Thus this method cannot

be used to generate fingerprints having predefined minutiae locations.

3. SFINGE : This is a commercially available software developed by Cappelli et al. [43]. It

consists of a model which characterizes the acquisition of fingerprint through an online-

sensor. Authors claim that, with few changes in the algorithm, fingerprint impressions

using ‘ink-technique’ can also be generated. Their algorithm has 2 main steps. In the first

step, a master fingerprint is generated and in the second step, multiple impressions of the

same fingerprint are generated. Given certain input parameters such as fingerprint class,



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 47

numbers and positions of singularities, ‘seed points’, etc., the algorithm can generate large

fingerprint databases.

• Generation of Master Fingerprint : A master fingerprint is a ridge pattern that

exhibits properties like uniqueness and permanence of a “synthetic finger” [4]. The

generation of a master fingerprint is carried out in 4 steps:

(a) Fingerprint Shape Generation : Authors visually examined shapes of a large

number of fingerprint images and prepared a simple model, based on four elliptical

arcs and a rectangle. Depending upon the shape and size of the finger, the shape

of a fingerprint is generally elliptical or circular. By changing a few parameters

like the lengths of the minor and major axes of the ellipses, most of the shapes

present in the real fingerprint images can be generated using this model.

(b) Orientation Image Generation : The orientation image generation is based on

the technique proposed by Sherlock and Monro [20]. It requires the number and

positions of core and delta points as input. In this model, the orientation image

is represented in a complex plane, i.e., each location of the orientation image is

considered as a complex number. Consider poles and zeros of the complex plane

to be the coordinates where cores and deltas are located. Let Ci, i = 1, 2, ..nc and

Di, i = 1, 2, ..nd be the coordinates of cores and deltas respectively. Consider a

point z = [x, y], then its orientation θ is obtained by,

θ =
1

2
[

nd∑
i=1

arg(z − Ci)−
nc∑
i=1

arg(z −Di)], (4.1)

where, the function arg(x) yields the phase angle of the complex number x. To

generate an orientation image, first a fingerprint class is randomly chosen and

accordingly, the singularity points are randomly selected. Due to absence of

singularities in A class, this method cannot be used to generate arches. Instead,

a simple sinusoidal function is used to generate an arch.

It was observed that this orientation model cannot determine the ridge flow ac-

curately and, hence, SFINGE uses a variant of Sherlock and Monro’s orientation

model proposed by Vizcaya and Gerhardt [46] to provide more variations to the

orientation image. This increases the number of degrees of freedom to cope with

the variability in orientations.
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(c) Frequency image generation : This image decides the ridge frequency (density)

in the generated fingerprint. Cappelli et al. observed a large number of real fin-

gerprints to decide the overall ridge frequency. The overall frequency is chosen

according to the distribution of ridge line frequency in real fingerprints. An av-

erage inter ridge distance of 9 pixels is selected (according to a 500 dpi sensor

[4]). Authors observed that the regions above the northernmost loop and below

southernmost delta have lower ridge line frequency than other regions in finger-

print. Thus the frequency is decreased in these regions. The frequency image is

then randomly perturbed. Next, an averaging filter of a 3 × 3 size is used for

smoothing the frequency image.

(d) Ridge Pattern Generation : SFINGE uses a very simple but powerful algorithm for

generating ridge patterns. It uses space variant Gabor-like filters that are tuned

to local ridge orientations and the frequency image. A white image is initialized

with few random seeds. Then the Gabor filters are iteratively applied this white

image, resulting in ridge-like patterns. Different types of fingerprint minutiae

such as ridge endings, bifurcations, islands, etc. are generated automatically at

random positions. The authors claim that the minutiae are generated from the

ridge line disparity produced by local convergence/divergence of the orientation

field and by frequency changes. Gabor filters have been used as an effective tool

for fingerprint enhancement [47] and fingerprint matching [29]. But the authors

successfully used these filters for fingerprint generation.

• Generation of Synthetic Fingerprint Impressions from Master Fingerprint:

Realistically, different impressions of the same finger captured by the same sensor,

look significantly different. This is due to various factors like translation, rotation,

non-linear distortion produced due to pressure, random noise, cuts, and bruises, etc.

To synthetically generate various impressions of the same master fingerprint, following

factors are varied:

(a) Variation in ridge thickness : The thickness of the ridge varies across various

areas of the same fingerprint. It depends on the skin dampness and pressure

applied when finger is put on a scanner. When the skin is wet or pressure is high,

ridges appear thicker whereas when skin is dry and pressure is low, it appears
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thinner. The morphological operators such as dilation and erosion, are be applied

for changing the thickness of the fingerprint ridges. The erosion operator aids in

simulating low pressure or dry skin whereas the dilation operator in high pressure

or wet skin. The size of the structuring element is varied to modulate the thickness

of the ridge.

(b) Introducing non-linear distortion : The fingerprints are characterized by non-

linear distortions due to the pressure applied by the finger on the sensor surface

during acquisition. Authors use a skin-distortion model to simulate this non-linear

distortion in the generated fingerprint [48]. This model was originally proposed to

re-map the minutiae points to cope with the non-linear distortion for improving

the performance of fingerprint. In SFINGE, this model is applied to the whole

image in order to simulate distorted impressions. Lagrangian interpolation is used

to obtain smoothed gray-scale deformed images.

(c) Translation/Rotation : During fingerprint acquisition, the fingerprint image may

not be centrally aligned. It might be translated and/or rotated. SFINGE gener-

ates various impressions by rotating and translating the master fingerprint.

(d) Addition of Noise : The non-uniform pressure of the finger against the sensor,

the presence of small pores in the ridges, etc. make the fingerprint image noisy

during acquisition. To introduce noise in the master fingerprint, small white blobs

of various sizes and shapes are added.

(e) Background : SFINGE can generate backgrounds similar to that of the impres-

sions captured by capacitive and optical sensors. A statistical model based on

KL transform [49] is used for background generation. It requires a training set of

certain background-only images. SFINGE uses Eigen value analysis for the back-

ground generation. Each background image is represented as a column vector. A

mean vector of these images is computed. Then the mean vector is subtracted

from each background image vector and a covariance matrix of all these vec-

tors is computed. Using the significant eigen values, new background images are

generated.

The process of fingerprint generation using SFINGE software is shown in Figure 4.1.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: The process used by SFINGE to generate fingerprints: (a) Fingerprint shape gen-
eration, (b) Orientation image for a given set of core and delta points, (c) Output white image
initialized with random seeds, (d) Generation of ridge pattern and minutiae initiated from seed
points, (e) Synthetic L fingerprint, (f) Synthetic fingerprint with noise. (All figures are generated
using SFINGE software).
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The fingerprint images generated by SFINGE appear very realistic. These fingerprint images

were used to make a database namely DB4, for Fingerprint Verification Competitions (FVC2000

and FVC2002). In this competition, three other databases (DB1, DB2, and DB3) were obtained

from real fingers. The performance of fingerprint matching algorithms on all four databases was

observed and analyzed. The matching algorithms exhibit similar performance on DB4 as on the

real fingerprint databases. This suggests that the fingerprints generated by SFINGE are realistic

from the point of view of matching.

4.2 Reconstructing fingerprints from minutiae points

We assume that the stored template contains minimum information about the minutiae, i.e.,

their positions and orientations. The stored minutiae points give no direct information about the

overall shape of the fingerprint, the width of the ridges, the inter-ridge distance, etc. Fingerprints

are characterized by complex ridge patterns. Thus, given a minutiae template, a deterministic

generation of fingerprint ridge pattern is certainly not an easy task. During the enrolment

process, the information about the original fingerprint can be lost due to the following factors:.

1. Generally to extract the minutiae points, various pre-processing techniques like image edge

detection, binarization, thinning, etc. are employed. This may lead to significant loss of

fingerprint information.

2. Also, most commercial softwares for minutiae extraction employ techniques to remove

spurious minutiae. This may also result in the removal of some genuine minutiae. So the

minutiae template might not contain all the significant minutiae

3. During acquisition of a fingerprint, due to improper finger placement, all the minutiae

points may not be captured. Thus the stored minutiae template may not correspond to

the entire fingerprint area.

Thus, it is is not feasible to recreate the original fingerprint image entirely using only the stored

minutiae points. However, the template stores all the information required by the software for

fingerprint matching. Therefore, if a digital artefact is recreated from the template, it can be

used to spoof an authentication system.



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 52

Given a minutiae template, we first estimate the orientation map from the minutiae distri-

bution. We next proceed to generate the ridge structure of the parent fingerprint. We propose

two schemes for fingerprint reconstruction. The first scheme uses space-variant Gabor-like filters

based on SFINGE [43]. Although it generates ridge like patterns, it does not have control over

the number and position of minutiae points in the reconstructed fingerprint. The second scheme

uses streamlines and LIC (Line Integral Convolution). It enables us to generate minutiae at

desired locations. The reconstructed fingerprint-like artefact has the appearance of the original

fingerprint.

4.2.1 Reconstructing fingerprints using Gabor-like filters

We use the Gabor-like filter as used in [43] for reconstructing fingerprints. SFINGE uses class

information and positions of cores and deltas to generate an orientation map using Sherlock and

Monro’s model [20]. Unlike SFINGE, we have information about minutiae positions and their

orientations only. We use the estimated orientation map θ̂ obtained using minutiae triplets.

Each cell of this discrete map contains the average estimated orientation of a 13 × 13 local

window of the parent fingerprint image. Note that, as this is a partial orientation map, some of

its cells might not have any orientations. For each non-empty cell of θ̂, ridges in the direction

represented by the cell, are generated using a Gabor-like filter. The Gabor-like filter is tuned to

the orientation contained by each cell. The filter is obtained by taking the product of a Gaussian

by a cosine plane wave. A correction term is included to remove the DC component. The filter

is given by,

f(v) =
1

σ2
e−

||v||2
2σ2 [cos(K.v)− e−

σ||K||2
2 ] (4.2)

where, σ2 is the variance of Gaussian which decides bandwidth of the filter, K = [kx, ky], is the

wave factor of the plane wave. Here ‘v’ is the location (x, y) in the output image where the filter

is to be applied. The parameters σ and K are adjusted using local ridge orientation and density.

Let O(v) be the orientation of the pixel at location (x, y). The parameter ‘D’ decides the ridge

density in the generated fingerprint. The vector K is then found by the solution of following two

equations.

D =
√

k2
x + k2

y (4.3)
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tan (O(v)) = −kx

ky

(4.4)

Our algorithm for fingerprint reconstruction uses a block by block approach. The block diagram

of our reconstruction algorithm is shown in Figure 4.2. The main steps of our algorithm are as

follows.

Estimate
orientation map

Divide
output image

into blocks and initialize
with random seeds

Tune Gabor
filter for each

block

Convolve each
output block with
corresponding

Gabor filter

Ridge
pattern

Minutiae
template

Figure 4.2: Block diagram showing the main stages of our reconstruction algorithm.

1. Compute orientation map : Given a minutiae template, we first estimate the orienta-

tion map θ̂ using minutiae triplets as described in Chapter 2. Each non-empty cell of θ̂

represents the average orientation for all the pixels of the corresponding block of the output

image (Figure 4.2).

2. Initialize output image: Consider an initially white output image, divided into number

of blocks, each of size 13× 13 (same resolution as that of θ̂) as shown in Figure 4.2. Each

block of the output image is initialized with a noisy blob (seeds) at the center. The ridge

pattern for each block of output image is generated using the estimated orientation of the

corresponding cell of the orientation map.

3. Initialize filter parameters : For generating ridge patten for each corresponding block

of the output image, the Gabor filter is tuned to the orientation of the corresponding

cell of θ̂. The parameter O(v) (Equation 4.4) is assigned the value of the orientation. The

parameter K = [Kx, Ky] is computed by simultaneously solving Equations 4.3 and 4.4. The

bandwidth of filter σ and the parameter K decide the ridge-width. For our experiments,

we chose σ = 1.2 and D = 1/σ. The ridge density D is adjusted according to σ so that the

filter does not contain more than 3 effective peaks [43]. It has been observed that the ridge
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width and ridge frequency are not uniform in a fingerprint. The minutiae template does

not give any direct information about the ridge-widths and inter-ridge distances. Hence,

we generate a fingerprint image with a constant ridge width and inter-ridge distance.

4. Ridge pattern generation : The ridge pattern is generated by iteratively convolving the

image block with the Gabor filter. Figure 4.3 (b) and (e) show examples of two Gabor

filters. The first Gabor filter is tuned to 45o (Figure 4.3 (b)). Hence as shown in Figure

4.3 (c), the ridges for the output block are generated in 45o. Similarly, in the second

block, ridges are generated in 191o. This procedure is repeated for all the blocks of the
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Figure 4.3: (a) Image block initialized with seeds, (b) A Gabor filter tuned to 45o, (c) Gener-
ated ridge pattern, (d) Image block initialized with seeds, (e) A Gabor filter tuned to 191o, (f)
Generated ridge pattern.

output image. Figure 4.4 shows results of ridge generation after 1, 10 and 25 iterations.

We observed that the output image does not change significantly after 25 iterations. We

conducted experiments of ridge generation using various values of σ. The ridge pattern

with lower value of σ such as 0.2, (Figure 4.5 (a)) cannot produce sufficient ridge width.

On the other hand, if the value of σ is too high, say 2 (Figure 4.5 (c)), the ridges become

too thick. The optimal value we chose for our experiments was 1.2 (Figure 4.5 (b)). For

all the three cases, the density D was set to 1/σ.
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(a) (b) (c)

(d) (e)

Figure 4.4: Fingerprint reconstruction: (a) Estimated orientation field for a L fingerprint, (b)
Ridge generation after 1 iteration, (c) Ridge generation after 10 iterations, (d) Reconstructed
ridge pattern after 25 iterations, (e) Original L fingerprint.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 4.5: (a) Estimated Orientation Map θ̂, Output of ridge generation with (b) σ = 0.2, (c)
σ = 1.2, (d) σ = 2, (e) Original fingerprint for classes A, L, R and W.



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 57

We observed that for σ = 1.2, if we set D value to be very small such as 0.1 then the convolution

resulted in a black image (Figure 4.6 (a)). If this value is larger say 5, 10 or 15 then the ridge are

generated with larger density (Figure 4.6 (c), (d), (e)). We observed the value D = 1/σ resulted

in the acceptable ridge density. More results of reconstruction for other fingerprint classes are

(a) (b) (c) (d) (e) (f)

Figure 4.6: Output of ridge generation with (a) D = 0.1, (b) D = 0.2, (c) D = 1/σ, (d) D = 5,
(e) D = 10, (f) D = 20.

shown in Figure 4.7. In this method, we do not have control over the minutiae generation.

(a) (b) (c)

(a) (b) (c)

Figure 4.7: (a) Estimated orientation map θ̂ , (b) Reconstructed fingerprint, (c) Original fin-
gerprint of T, R, and W respectively.
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4.2.2 Reconstructing fingerprints using Streamlines and LIC

Streamlines and LIC (Line Integral Convolution) have been widely used for imaging arbitrary

two- and three-dimensional vector fields [50, 51]. Imaging vector fields has applications in science,

engineering, art, image processing, image rendering, animation and special effects. Examples of

vector fields include velocities of wind currents (e.g., for weather forecasting), results of fluid

dynamics simulation, blood flow, components of stress and strain in materials, etc. Hence,

algorithms that can image the directional information have wide application across both scientific

and artistic domains.

Here, we propose a novel application of streamlines and LIC for reconstructing fingerprints.

Given a vector field, streamlines are the curves that are tangential to the vector field at every

point. These are also called as integral curves as they are generated by integrating the vector

field. LIC is basically a texture synthesis technique that is used to visualize 2D data. Cabral

and Leedom [50] proposed LIC for imaging vector fields and to produce novel special effects

such as motion blurring in images. Figure 4.8 shows main steps for visualizing vector filed

using streamlines and LIC. For a given vector field, first the streamlines are generated. Using

streamlines and a spatially uncorrelated white noise image, LIC computes intensity values for

the coordinates of each streamline. It applies a one-dimensional filter to blur the noise image

along the streamlines resulting in a texture image which aids in the clear visualization the vector

field.

A fingerprint is an oriented texture pattern and, therefore, the use of streamlines and LIC for

generating the ridge structure is quiet appropriate; streamlines are used to generate the thinned

ridges whereas LIC is used to impart texture-like appearance to the ensuing ridges. The main

stages regenerating fingerprints are shown in Figure 4.9.

1. Computing orientation map θ̂ : Given a minutiae template, we first obtain the esti-

mated orientation map θ̂ using minutiae triplets described in Chapter 2.

2. Constructing Streamlines Using θ̂ : Consider an estimated orientation map θ̂ : R2 =>

R, (x, y) → θ̂(x, y), where (x, y) is an arbitrary location in θ̂. A streamline is a path in the

orientation map θ̂, whose tangent vectors coincide with θ̂ (Figure 4.10 (a)). Let P be a

point in the orientation map θ̂ and S be a streamline passing through P . Let the curvature



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 59

White
noise

StreamlinesVector field

LIC

Figure 4.8: Block diagram showing visualizing vector field using LIC.
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Figure 4.9: Block diagram showing the main stages of the proposed fingerprint reconstruction
algorithm.
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r(t) r(t+dt)
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(r)

S

(x, y)

(a) (b)

Figure 4.10: (a) A streamline S tangent to orientation field θ̂, (b) Streamline originating from
a seed point (x, y) in the vector field θ̂

at point P be due to a circle of radius r(t). Then the tangent dr at point P is given by,

dr

dt
= θ̂[r(t)], (4.5)

where dt represents the next position. A numerical integration technique or interpolation

techniques can be used to solve this ordinary differential equation (ODE). Integrating

equation 4.5 yields,

r(t) = r(0) +

∫ t

0

θ̂(r(t))dt (4.6)

With the help of equation 4.6, a streamline can be initiated from an initial seed point and

grown using small steps of dt. There are various numerical integration techniques that

can be used to solve 4.6: (a) fixed step size integrators such as Euler; (b) non constant

or adaptive step size integrators such as cubic Hermite-interpolation; and (c) continuous

integration methods such as the fifth order Runge-Kutta integrator with adaptive step size.

In adaptive step size schemes, the value of dt is determined at each step of the integration

in order to keep the relative error within a specified tolerance. The accuracy of the ODE

solver determines the exactness of the resulting streamline. Consider dt = ti − ti−1, then

the error in streamline construction is O(dt)n, where n is the order of the ODE solver.

If we solve the above ODE for θ̂(x, y) with a seed point as (x, y), we get a streamline as

shown in Figure 4.10 (b). In order to generate streamlines for constructing ridge lines, the
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following issues have to be addressed: (a) selection of seed points, (b) criteria for streamline

termination, (c) distance between adjacent streamlines, and (d) generation of minutiae in

pre-determined positions.

(a) Seed point selection : The seed points are the pre-specified points in an orientation

map θ̂ from which the streamlines are originated. Figure 4.10 (b) shows an example

of seed point (x, y) from which a streamline is originated. Here, the seed point can

be considered to be a minutia (ridge ending). Thus, in order to generate minutiae at

desired locations, we use the minutiae locations as seed points. However, using only

minutiae as seed points results in the sparse distribution of streamlines over the image

plane (Figure 4.11 (b)). Thus, we also use the boundary points of θ̂ as seed points.

We observed that streamlines generated using only the border points as seed points

capture the global shape of the parent fingerprint as shown in Figure 4.11 (c). Thus

for fingerprint reconstruction, we use both, minutiae points and border points of θ̂ as

seed points.

The minutiae points in fingerprints tend to occur in clusters [26]. In such high

minutiae-density areas, seed points will occur in close proximity resulting in a clutter

of streamlines in the local region. To solve this problem, we place all the seed points

Si, i = 1. . . k+n (where k and n are the number of border points and minutiae respec-

tively) on a lattice of cell size Ds×Ds such that two seed points are at least Ds = 10

distance apart from each other as shown in Figure 4.12 (a). Due to this mapping,

a single grid point may correspond to multiple minutiae points. This prevents the

excessive proliferation of streamlines in a local region.

(b) Streamline construction : While most particle tracking algorithms (e.g., [52]) use

various numerical integration techniques to solve equation 4.6, we used the ‘stream3c’

function available in the Volume Visualization Toolbox of Matlab(7.0). It uses a linear

interpolation scheme for constructing streamlines. Once a streamline is initiated from

a seed point, the next position is obtained by updating its current position based

on the orientations of the immediate neighbors of the seed point. The streamline is

terminated if (a) it encounters a boundary point in the grid, or (b) if it arrives in the

vicinity of a minutia point. When a streamline is within a predetermined distance from
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.11: (a) Estimated orientation map θ̂ with border points marked in ‘red’ color, (b)
Streamlines generated from minutiae points as seed points, (c) Streamlines generated using border
points as seed points for classes, (d) Original fingerprint for A, R, L, W respectively.
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Figure 4.12: (a) Lattice of seed points (Dseed = 10), (b) Seed points ‘S’ overlaid on the orientation
field, θ̂, of an arch, (c) Streamline terminated near a minutia ‘m’.

a minutia point (in our case, 5 pixels apart), it is terminated as shown in Figure 4.12

(c). So a minutia (ridge ending) is generated if either a streamline initiates from that

point or another streamline appears in its proximity. In the current implementation,

we generate only ridge endings at the desired minutiae locations since it is assumed

that the ‘type’ of the minutia is not stored in the template.

It has been observed in the literature that a constant density of seed points do not nec-

essarily ensure an even distribution of the streamlines [50]. The generated streamlines

may not be evenly distributed, resulting in a frenzy of streamline activity in cer-

tain local regions. While several elegant techniques exist for creating evenly-spaced

streamlines (see [53], for example), we employ a simple technique to control inter-ridge

distances (Dr). We generate ridges with uniform inter-ridge distances over the entire

fingerprint image as we assume that the minutiae template does not give any infor-

mation about the inter-ridge distance of the parent fingerprint. During streamline

construction, if a streamline is in the proximity of another streamline (Dr = 5), then

it is discarded. This avoids the cluttering of streamlines in local regions (Figure 4.13).

Figure 4.14 shows the results of streamline generation for different fingerprint classes.

3. Generating ridge structure using LIC: As described above, using streamlines, thin

ridge lines for the estimated orientation map θ̂ can be generated. The intensity values

of ridge pixels shown in Figure 4.14 (c) are single valued i.e. ‘0’. In order to impart
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 4.13: (a) Estimated orientation map θ̂, (b) Streamlines generated without controlling
Dr, (c) Streamlines generated by controlling Dr = 5, for A, R, L, W.
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 4.14: (a) Minutiae plot, (b) Estimated orientation map θ̂, (c) Streamlines
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texture-like appearance to the ridges, we use Linear Integral Convolution (LIC). Given a

streamline S, the LIC technique involves calculating the intensity of all pixels constituting

the streamline. It locally blurs an uncorrelated input texture image such as white noise,

along the path of the streamlines to impart a dense visualization of the flow field. Consider

a pixel at location x0 = S(p0) on the streamline. Then its intensity is computed using

one-dimensional filtering as,

I(x0) =

∫ p0+L

p0−L

k(p− p0)TS(p)dp (4.7)

where, T is a texture (white noise image). The kernel, k, is a one-dimensional low-pass

filter with L = 25 pixels. The convolution results in the generation of ridge-like patterns

whose orientations correspond to the predicted vector field (Figure 4.15). The filter length

‘L’ determines how much the texture is smeared in the direction of the vector field. Due

(a) (b) (c)

Figure 4.15: Lending texture to a streamline using LIC: (a) White noise image, T, (b) Convolving
T with a streamline, (c) Result of LIC.

to LIC, the binary image generated using streamlines is converted to a gray scale image

(Figure 4.16 (b)).

4. Enhancing the ridge map: Although LIC provides texture-like appearance to the thin

ridges (streamlines), the ridges are still one-pixel thick. In order to increase the ridge width,

we first use a lowpass filter to smooth the texture image generated using LIC and then

perform histogram equalization of the ridge structure for contrast enhancement as shown

in Figure 4.16 (c).

4.2.3 Comparing two reconstruction schemes

Figure ?? compares the two techniques for fingerprint regeneration using: (a) Gabor-filters,

and (b) Streamlines and LIC. Unlike Gabor filters, with streamlines and LIC, the reconstructed
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(a) (b) (c) (d)

Figure 4.16: (a) Estimated orientation map θ̂, (b) Result of applying LIC, (c) Enhanced finger-
print using a 5× 5 lowpass filter, (d) The original fingerprint.

ridge pattern exhibits shape characteristics of the parent fingerprint significantly. It also enables

to place the minutiae at desired locations and with desired orientations in the reconstructed

fingerprint.

The reconstructed fingerprints using minutiae are partial. This is because a minutiae template

may not capture all the global properties of the parent fingerprint. We demonstrated that it is

indeed possible to reconstruct the at least those parts of the fingerprint which are used for

authentication.

(a) (b) (c) (d)

Figure 4.17: (a) Minutiae plot, (b) Estimated orientation map θ̂, (c) Regenerated fingerprint using
Gabor filters, (d) Regenerated fingerprint using LIC
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4.2.4 Spoofing of fingerprint authentication system

Figure 4.18 shows an overlay of original and reconstructed fingerprints of A and L. Visually, it

is evident that the reconstructed fingerprints are consistent with the underlying ridge structures.

We conducted few experiments to verify if the reconstructed ridge structure may be used to

(a) (b)

Figure 4.18: Overlay of original (magenta) and reconstructed (blue) fingerprints for two minutiae
templates.

spoof an authentication system. The authentication system used for fingerprint matching was

VeriFinger 4.1 SDK, developed by Neurotechnologija 1. The software has the ability to process

fingerprint images (apart from the live samples captured by sensor system) supported by the

SDK. Given an input fingerprint image, the software first enhances the image and converts it

into a binary image using certain image processing routines (Figure 4.19), extracts minutiae from

the enhanced images and stores minutiae positions (x, y) and the orientations (θ) in the template.

It is evident from Figure 4.19 (d) that the enhancement algorithm employed by the software also

removes certain parts of the ridges of the reconstructed fingerprint in the regions with low ridge

density. On matching, it releases the match (similarity) score. Being a commercial software much

information about its minutiae extraction and matching algorithm is not available. To spoof the

authentication system, we used NIST-4f and FVC 2002 DB3 databases. NIST-4f contains 2000

fingerprints (500 fingerprints per class) of size (512 × 512) and one fingerprint per individual

whereas DB3 contains 110 users and 8 fingerprints per user. First, the fingerprint images are

given as an input to the software and minutiae templates are created. For each template, the

orientation map, θ̂ is estimated using minutiae triplets. Using streamlines and LIC, the ridge

structure of the parent fingerprint corresponding to each template is created.

1http://www.neurotechnologija.com
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.19: (a) Original fingerprint and its minutiae plot, (b) Estimated orientation map θ̂, (c)
Result of applying LIC, (d) Enhanced ridge structure using COTS.
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We considered two matching scenarios. In the first scenario, each reconstructed fingerprint

was matched against every original fingerprint in the database. In the second scenario, it is

assumed that the class of the parent fingerprint is known. Then, the reconstructed fingerprint is

matched with all the original fingerprints of this class only. For each reconstructed fingerprint, the

top matches are recorded, and the CMC (Cumulative Match Characteristics) curve is generated

to summarize the identification performance. The CMC graph plots the identification rate as

a function of the number of top matches (ranks) [54]. Figure 4.20 (e) shows the CMC curves.

It is evident that W gives lower identification rates. A fingerprint of W class is characterized
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Figure 4.20: CMC curves when class of reconstructed fingerprint is (a) unknown (matched against all
fingerprints of NIST-4f database), (b) known (matched against all fingerprints of the same class only).

by high ridge activity near core and delta region. The orientation estimation algorithm cannot

capture the ridge orientations near the core or delta region correctly. This results in the incorrect

generation of streamlines in this region. Hence, the minutiae points in this region may not match

with that of the original fingerprint resulting in lower identification rate. Also, during streamline

construction, we do not permit a streamline to be generated too close to any other existing

streamline. As the inter-ridge distance is assumed to be absent in the minutiae template, we

use a constant inter-ridge distance for the entire fingerprint. Thus, very few streamlines are

generated in region with high minutiae density resulting in missing minutiae in the reconstructed

fingerprint.

For the DB3 database, we performed matching using the entire database. The CMC curve

for DB3 database (Figure 4.21) indicates very low identification rates. The fingerprints in this



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 71

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

 Ranks

 Id
en

ti
fi

ca
ti

o
n

 R
at

e

 CMC curve for DB3 FVC2002 database

Figure 4.21: CMC curves when reconstructed fingerprint matched against all the fingerprints in
FVC2002 DB3 database).

database are dab prints of size 300 × 300. They contain relatively small number of minutiae

points. Thus the estimated orientation map θ̂ has many empty cells (no estimation porssible)

resulting in short streamlines as shown in Figure 4.22. When the reconstructed output is given

as input to the VeriFinger software, it performs certain preprocessing techniques for enhancing

the fingerprint. In some cases, in reconstructed fingerprint, if the ridge density around a minutia

is low, the software removes certain portion of that ridge on which the minutia resides. This

results in removing genuine minutiae and forming spurious minutiae. Thus, for reconstructed

fingerprints from the DB3 database, very few minutiae are extracted resulting in low matching

scores. But for the rolled prints in the NIST-4f database, due to larger sensing area, they

have more number of minutiae. Thus θ̂ corresponding to these fingerprints contains relatively

more orientations as shown in Figure 4.23 (a). This aids in generating dense streamlines. The

VeriFinger software therefore extracts more minutiae points (Figure 4.23 (c)) resulting in better

match scores.



CHAPTER 4. RECONSTRUCTION OF FINGERPRINTS 72

(a) (b) (c) (d)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 4.22: Estimated orientation map θ̂ [(a), (d), (h)], Reconstructed fingerprint [(b), (e),
(i)], Enhanced image by VeriFinger and its extracted minutiae [(c), (f), (j)], Original fingerprint
[(d), (g), (k)] for 3 fingerprints of DB3 FVC2002 database.

(a) (b) (c) (d)

Figure 4.23: (a) Estimated orientation map θ̂, (b) Reconstructed fingerprint, (c) Enhanced
image by VeriFinger and its extracted minutiae, (d) Original A fingerprint of NIST 4f Database.
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Chapter 5

Summary and Future work

“First of all, it is important to remember that absolute security does not exist: given funding,

willpower and the proper technology, nearly any security system can be compromised.” [55].

Biometrics is a constantly growing industry and fingerprint recognition represents one of the

most advantageous methods for authentication. Most fingerprint authentication systems extract

and store the minutiae template of a finger after the enrollment process. It has been commonly

assumed that the decrypted minutiae template does not reveal significant information about

the parent fingerprint. In this thesis, we dispel this notion by demonstrating that the minutiae

information may be used to derive the ridge structure of the underlying fingerprint. The proposed

scheme first estimates the orientation of ridges at discrete points in a grid by considering minutiae

triplets in local regions. Experiments suggest that the estimated orientations are quite consistent

with the true ridge flow. This observation can be beneficial in applications like smart-cards,

where the generated orientation field can be used in conjunction with the minutiae points to

improve the matching performance. This estimated orientation field is then used to generate the

ridge structure of the parent fingerprint by invoking streamlines and LIC. The use of streamlines

permits us to control the location, type and number of minutiae in the generated ridge map. This

process can also be used as an alternative technique for generating synthetic fingerprints with

minutiae placed at pre-determined locations (unlike SFINGE [43] where minutiae are randomly

generated). The reconstructed ridge structure is observed to be ”visually” similar to that of the

parent fingerprint. It may be used to spoof a fingerprint system. The exact reconstruction of

the target fingerprint image is not possible as the minutiae template may not reveal important

global ridge shapes. We also demonstrated that the class of a fingerprint may be inferred using
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the minutiae information alone. Thus, this research provides an insight into the individuality of

fingerprints based on their minutiae content. Further, it demands the design of effective template

security schemes.

We assume that the template stores minimum information about the minutiae such as x,

y and theta. In practice, along with this basic information, the template may also store other

information such as core and delta points, minutia type, information abut neighboring minutiae,

etc. [56]. Also, the fingerprints reconstructed using minutiae points can be used to masquerade

not only the minutiae based authentication systems but also systems that are based on the ridge

pattern of fingerprints. So proper storage and security of the template is important for the

reliability and robustness of the system, and for users’ trust because the acceptance of biometric

systems will now depend on how securely the biometric template is stored. This research opens

door for investigating methods for securing templates or making them more robust.

Encrypting the biometric template is one possible solution for masquerade attack but de-

crypting a template is not an impossible task. Thus, merely encrypting the template will not

prevent this attack. Various methods for improving security of biometrics and stored biomet-

ric templates have been proposed in literature. Ratha et al. [57] introduced the concept of

“cancellable biometrics”. In this approach, the biometric signal is intentionally distorted before

feature extraction. The biometric signal is distorted in the same fashion at each presentation,

for enrollment and for every authentication. If one variant of the transformed biometric data is

compromised, then the transform function can simply be changed. The distortion transforms are

chosen to be non-invertible. So even if the transform function is known and the resulting trans-

formed biometric data are known, the original biometrics cannot be recovered. Jain and Uludag

[58] proposed a biometric watermarking technique which can increase the security of fingerprint

images by hiding eigen face templates into them. Also, Linnartz and Tuyls [59] demonstrated

the use of delta-contracting and epsilon-revealing functions as preprocessors for constructing

helper data that is used in a way that no information about the biometric templates is leaked to

imposters.

Besides all these approaches, one potential approach to prevent masquerade attack on a

minutiae based fingerprint system, would be to systematically exclude certain salient minutiae

from the template that are critical to image reconstruction without drastically affecting the

matching performance.
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The biometric systems using identifiers other than fingerprints such as iris, hand, voice are

generally template-based, i.e., they store salient features of the biometric sample in the database

and use it later for matching. As Hill points out [15] the masquerade attack is applicable to

many other biometrics other than fingerprints or perhaps all of them.

5.1 Future work

More sophisticated techniques for estimating ridge orientation from minutiae points need to

be explored. Presently, the orientation scheme makes use of minutiae triplets in the local regions.

The relationship between these triplets can be used to get global information about the ridge

orientations. Also, techniques to estimate the orientations in the region where ‘valid’ triplets did

not form, needs to be explored. Presently, the estimated ridge orientations in the core region

can not capture important ridge properties such as circular pattern in W and recurving loops

(L, R). Along with minutiae information, if information about core and delta is also available

then a more sophisticated technique needs to be designed. The information about core and delta

position can give information about class of the fingerprint which might aid in improving the

orientation estimation.

Using the inferred class information from minutiae templates, the streamline construction

process can be moderated since minutiae properties - such as their occurrence and density -

varies across classes. For example, each class can have a different seeding strategy. Verma [60] et

al. discuss a seed placement strategy based on flow features in the data set. The seeds are placed

in the vicinity of critical points in the flow field to capture important flow patterns. To improve

the accuracy of streamline computation, we plan to use more accurate numerical integration

methods like the fifth order Runga-Kutta technique.

In future, to further improve the identification performance, the fingerprints can be recon-

structed using an iterative hill-climbing approach (See Figure 5.1). Here, it is assumed that

the fingerprint matching software releases a match score. After reconstructing fingerprint us-

ing streamlines and LIC, the minutiae template is extracted from reconstructed fingerprint and

matched against the minutiae template stored in the database using the matching software. The

software releases the match score indicating similarity between the two minutiae templates. The

fingerprint reconstruction process can then be modified to increase the match score.
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Figure 5.1: Reconstructing fingerprints using hill-climbing approach.
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