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ABSTRACT 

MODELING SMALL OBJECTS UNDER UNCERTAINTIES: 

NOVEL ALGORTHMS AND APPLICATIONS 

Amal A. Farag 

April 23 rd
, 2012 

Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor 

Models (ATM) are common approaches to model elastic (deformable) objects. These 

models require an ensemble of shapes and textures, annotated by human experts, in order 

identify the model order and parameters. A candidate object may be represented by a 

weighted sum of basis generated by an optimization process. These methods have been 

very effective for modeling deformable objects in biomedical imaging, biometrics, 

computer vision and graphics. They have been tried mainly on objects with known 

features that are amenable to manual (expert) annotation. They have not been examined 

on objects with severe ambiguities to be uniquely characterized by experts. 

This dissertation presents a unified approach for modeling, detecting, segmenting and 

categorizing small objects under uncertainty, with focus on lung nodules that may appear 

in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the A TM 

approaches are used for the first time on this application. A new formulation to object 

detection by template matching, as an energy optimization, is introduced. 
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Nine similarity measures of matching have been quantitatively evaluated for detecting 

nodules less than 1 em in diameter. 

Statistical methods that combine intensity, shape and spatial interaction are examined 

for segmentation of small size objects. Extensions of the intensity model using the linear 

combination of Gaussians (LCG) approach are introduced, in order to estimate the 

number of modes in the LCG equation. The classical maximum a posteriori (MAP) 

segmentation approach has been adapted to handle segmentation of small size lung 

nodules that are randomly located in the lung tissue. A novel empirical approach has been 

devised to simultaneously detect and segment the lung nodules in LDCT scans. The level 

sets methods approach was also applied for lung nodule segmentation. A new 

formulation for the energy function controlling the level set propagation has been 

introduced taking into account the specific properties of the nodules. 

Finally, a novel approach for classification of the segmented nodules into categories 

has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and 

LBP have been used for feature extraction and matching of small size lung nodules; the 

LBP has been found to be the most robust. Categorization implies classification of 

detected and segmented objects into classes or types. The object descriptors have been 

deployed in the detection step for false positive reduction, and in the categorization stage 

to assign a class and type for the nodules. The AAMI ASMI A TM models have been used 

for the categorization stage. The front-end processes of lung nodule modeling, 

detection, segmentation and classification/categorization are model-based and data­

driven. This dissertation is the first attempt in the literature at creating an entirely model­

based approach for lung nodule analysis. 
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CHAPTER I 

INTRODUCTION 

Modeling entails a mathematical description to enable object recognition, for the 

purpose of identification and decision making. In lung screening using Computed 

Tomography (CT), the purpose is to detect and classify lung nodules and associate a 

specific pathology to them, if possible. In landfill surveillance, the purpose is to track 

illegal dumping and abuses of public sites such as forests , parks and highways. In deep 

space imaging, the purpose may be tracking space debris, planetary exploration and the 

status of communication satellites. In Facial Recognition at a Distance (FRAD), the 

purpose may include detecting and recognizing a particular individual from a faraway 

distance. As technology improves, the capability of sensors to obtain better images, i.e. 

better resolution, contrast, and tolerance to motion/noise that affect the image quality, 

enhances researchers ' capabilities. In aerial photography and remote sensing, sensors 

involve more than one frequency of the spectrum, in order to provide better specificity of 

targets and enhancement of contrast between image contents, and better reaction to 

atmospheric conditions. 

In biomedical imaging, the latest generation CT scanners provide faster image 

acquisition and better image quality. For example, it enables a full body scan in less than 

one breath. MRI scanners provide both structural and functional imaging at impressive 

specificity and sensitivity with no risk of 101llzmg radiations. 



Ultrasound imaging is improving in terms of resolution and specificity and has no risk to 

the patients due to exposure. Optical imaging at a distance is possible using telescopes 

and various magnifying lenses. A target may be tracked and imaged at hundreds of 

meters with impressive image quality. Despite these impressive advances, one problem 

persists: how to detect and recognize small objects - that occupy only few pixels in the 

spatial support of an image? These scenarios are abundant and provide a real challenge to 

computational image analysis, which, in biomedical imaging, attempts to mimic the 

human expert. 

A typical image analysis approach follows basic steps of image processing (or 

conditioning) that removes spurious details and motion artifacts. It may also provide 

extrapolation to resolve bias fields in MRI and partial volume effects in MRI and CT. 

The basic steps of image analysis are: object detection, to localize candidate targets or 

objects in the image; segmentation, to isolate the detected objects from the background; 

and classification of segmented objects into identifiable classes or categories. In these 

steps, attributes of shape, texture and a-priori information are sought in order to reach the 

desired conclusion. Small size objects provide a challenge in defining these attributes, 

and many image analysis algorithms fail due to size limitations, which limit precise 

description of the objects. Small size objects may also suffer from the uncertainties 

associated with the environment, such as occlusion, contrast and close similarity to 

background objects or constituents. These circumstances are indeed challenging for the 

human expert as well. 

In the past several decades, image analysis algorithms have matured and reached 

a level of rigor that enables quantitative evaluation of performance and figures of merits 
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may be drawn on the confidence of the decisions made based on these algorithms. 

Unfortunately, small size targets which occupy a tiny portion of the spatial support still 

defy this progress and are still illusive to robust and automatic evaluation. Another 

difficulty with these scenarios is that algorithms developed for one problem does not hold 

to another; indeed, many image analysis tools are problem specific, which frustrates the 

point of view of mathematical modeling. 

The common tradition is to try vanous approaches and adjust them to the 

specifics of the problem at hand and an integration of techniques may hold the best 

promise for a solution. This provides yet another challenge of how to compare with other 

researchers? The image analysis literature is aware of these difficulties; it is now 

common to have the so-called " [sp ecific problem] challenge" in the workshops and 

scientific meetings, where the organizers of the "challenge" provide the imaging scenario 

and protocol and invite researchers to apply their algorithms and document their progress. 

Indeed, standard data sets from various imaging modalities are now available to test new 

image analysis algorithms. 

Yet, there are still problems (too many unfortunately) that are not specific at the 

imaging protocol level, and differ at the definition levels. For example, in detecting 

nodules in the human lungs from low dose CT (LDCT) scans, there is a lack of precise 

definition of LDCT protocol, and human experts differ in the definition of the nodules, 

especially when they are less than few millimeters and are camouflaged with the tissue 

details. In image discoveries, it is often the case that "objects" have not been seen before; 

hence, defining the characteristics of the "unseen" is an unattainable task! This 

dissertation does not consider "discovery" since reasonable statistics can be obtained 
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about the objects from clinical studies, and phantom may be constructed based on 

plausible resemblance to the real world. In other words, uncertainty, in this case, does not 

mean complete lack or absence of information. The source of "uncertainties" in this work 

is limited to levels of human abilities and common imaging sensors; i.e. , discovering 

"unknown" objects is not of concern, rather to attempt at mimicking human experts in 

reading the same images used in real life to make decisions is the objective . 

Automatic approaches for image analysis require precise quantification of object 

attributes such as shape and texture. These concepts have precise definitions, but their 

descriptors vary so much from one application to another. A shape is defmed to be the 

information attributed to an object that is invariant to scale, origin and orientation [1 ][2]. 

A texture may be defined as the prevalence pattern of the interior of an object [3]. 

Geometric descriptors identify "features" that are "unique" about an object. Shape, 

texture and geometric descriptors are major concepts in this work; they will be defmed 

and used in the context of modeling small size objects under uncertainties [4]. 

A. Problem Motivation 

Doctors use X-Ray, CT, MRI, US and other charts or screen prints or videos to 

diagnose lesions and highlight their spatial support with respect to the anatomical 

structures of the body. Doctors may use enhancing tools in order to enable them to 

distinguish the lesions from anatomical structures; for example, they may use 

backlighting, display enhancements, image enhancements tools, and they visualize 

forward and backward slices (in a CT or MRI scan) to decipher the pattern of the lesion 

and its extent. Uncertainties may develop due to resolution of the imaging protocol, size 
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of the lesion, motion and noise artifacts, scanner artifacts such MRI bias field, occlusion 

of lesions due to proximity or similarity to anatomical structures, and also due to the 

stress of over work on the part of the physician. 

Computer assisted diagnosis (CAD) systems attempt to mimic the human expert 

using the same source of data; i.e., the visible information in an image. The uncertainties 

that may affect the performance of CAD systems are similar to those of the human 

expert. Human vs. machine vision may be judged fairly if objects have unique features. 

Three examples are provided below to highlight the common difficulties in human and 

machine vision - if the object cannot be properly described by humans, it is doubtful that 

the machine will be able to do so! 

Figure 1 is a typical eye chart used to quantify/qualify human vision. Abilities of a 

person to recognize a letter 20 feet far, where most normal people can do, means "20/20" 

vision. If the person can read the big E at the top but none of the letters lower than that, 

the person ' s vision is considered 20/200; i.e. , the person can read at 20 feet a letter that 

people with "normal" vision can read at 200 feet - hence, a 201200, denotes vision (visual 

acuity) is very poor. Based on the status of the eye, people use lenses and other means to 

enhance their vision [5]. 

To measure the human vision, a person is asked to recognize something known (a 

letter from the alphabet or a letter from the Arabic numerals) ; hence, the object to be 

seen/recognized is well-described - that is has distinct features. Computer algorithms 

can be developed to automatically interpret the vision charts as well by translating the 

letters or numerals features into an algorithm. The distance issue can be translated as how 

much the object occupies in the field of view (FoV) of the eye/camera. 
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FIGURE 1: The Eye Chart demonstrating levels of vision based on abilities of letter 
recognition at a distance - Adopted from [5]. 

Figure 2 is a face recognition example. The companson between humans and 

machines can be based on variable constraints. The above example of recognizing a letter 

at a distance can be simulated to measure the vIsual acuity or strength of eye vision, 

through recognizing a human face within a constant background as the area in which the 

face occupies in the field of view (FOV) changes. The face begins by occupying the 

entire FOV and then begins to change by variable percentages of that FOV. For the time 

being, consider that detection and recognition are simultaneous - it is one face in the 

FOV, and if it is detected then it is also recognized. Human and computer face detection 

are tested with respect to the following uncertainties: i) size only; ii) size + additive noise 

with variable signal to noise ratio (SNR); iii) size + blur; iv) size + focus; v) size + 

6 



occlusion. Of course ii-v could be combined as well. Cornputer face detection is 

performed using the Viola and Jones algorithm [6]. Figures 2-7 illustrate these scenarios. 

FIGURE 2 - Face detection under a clear imaging condition and change of size. 

FIGURE 3 - Face detection with variable size and SNR (0, 1, 10, 100 dB - upper to lower 
rows); SNR = 10 log (Contrast) [20]. The third row shows a false positive. 

As shown in Figure 4, severe motion artifacts smear the features of the face which 

destroys the algorithm ability to perform. While human can still detect something in the 

middle of the image, one cannot say that it is a human face. Similarly, defocusing (Figure 

5) and occlusions (Figure 6) affect the performance of the algorithm. The Viola-Jones 
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approach [6] is very popular method of face detection; many other approaches exist in the 

vast literature of face recognition (for a survey see [7]). A number of approaches in the 

image processing literature exist for simulating these effects. The occlusion was 

simulated based on psychology literature (e.g., [8]). 

FIGURE 4 - Face detection with variable linear camera motion measured by number of 
pixels (20, 35 respectively). Top two rows represent horizontal direction motion; middle 
rows represent vertical direction motion, and bottom two rows represent 45° direction. 

8 



Note that motion artifacts are common in biomedical imaging due to breathing, heart 

contractions and uncontrolled patients movements. LDCT acquisition within one breath 

can minimize the impact of breathing on Lung nodules. 

FIGURE 5 - Face detection with variable defocusing using a Gaussian filter with 
standard deviation of30 pixels and window widths of21 (upper) and 51 (lower). 

In order to further motivate the research problem considered in this dissertation, the 

problem of chest tomography and the visible characteristics of lung CT scans, which the 

radiologists use in order to perform a diagnosis, are discussed below. The problem of 

lung nodules is chosen due to its importance and availably of clinical data that may 

enable front-end evaluation of a cohesive image analysis study. Also considered is the 

potential impact on healthcare cost, given that lung cancer is the leading cause of cancer-

related deaths in the US and various parts of the world [9]. In this work a number of data 

sources are used: a) the ELCAP clinical database; b) the LIDC clinical database; c) 

Jewish Hospital, Louisville, KY, lung screening data; and d) Mansoura University, 

Mansoura, Egypt CT data from the EI-Mogy Scan Center. Each of these data contains 

unique characteristics and challenges for the approach presented. 
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FIGURE 6 - Face detection with variable occlusion using a strip to hide a portion of the 
face. Removal of the forehead or chin (1 sl and 2nd rows) did not preclude 
detection/recognition unlike occluding the nose (3 rd row) or an eye (bottom row) [20] . 

Described below are the characteristics of lung nodules as depicted in LDCT scans. 

The end goal, in this application, is to provide assistance for early detection of lung 

cancer; hence, the nodules are characteristically small. 

Despite the wide range of nodule classifications among radiologists, the nodule 

classification of Kostis et al. [10] is found to be particularly useful in the algorithmic 

evaluation presented in this dissertation. Nodules in Kostis ' s work are grouped into four 

categories: i) well-circumscribed where the nodule is located centrally in the lung without 

being connected to vasculature; ii) vascularized where the nodule has significant 

connection(s) to the neighboring vessels while located centrally in the lung; iii) pleural 
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tail where the nodule is near the pleural surface, connected by a thin structure; and iv) 

juxta-pleural where a significant portion of the nodule is connected to the pleural surface. 

Figure 7 shows examples of small size nodules (less than 10 mm in diameter) from 

the four categories. The upper and lower rows show zoomed images of these nodules. 

Notice the ambiguities associated with shape definition, location in the lung tissues, and 

lack of crisp discriminatory features. 

Modeling aims at representing the objects with mathematical formulation that 

captures their characteristics such as shape, texture and other salient features . The 

histogram of the object' s image provides some information about its texture - the modes 

of the histogram indicate the complexity of the texture of the object. Figure 8 shows 

sample of nodules and their histograms. These histograms are essentially bi-modal, for 

the nodule and background regions, and may be sharpened if the region of interest (ROI) 

is limited to be around the spatial support of the nodules. 

Another difficulty of small objects lies with inabilities of exact boundary 

definition. For example, radiologists may differ in outlining the lung nodules spatial 

support as shown in Figure 9. Difference in manual annotation is common of small 

objects that have not well-defined description. This adds another dimension of difficulty 

for automatic approaches, as they are supposed to provide outputs that mimic human 

experts. In other words, human experts differ among themselves, how would they judge 

a computer output? Validation of automatic approaches for lung nodule detection, 

segmentation and classification - using only the visible information in an image - is an 

order of magnitude more difficult than that of automatic face recognition. 
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Well-Circumscribed Juxta Pleural Pleural Tail Vascular 

FIGURE 7 - Examples of lung nodules of size below 10 mm from two clinical studies. 
The upper and lower rows show zoomed pictures of the nodules. 
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FIGURE 8 - Sample of nodules and their gray level (Hounsfield Units) histograms. 

12 



Doctor Well Circumscribed Vascular 

Docl 

Doc 2 

Doc 3 

Doc 4 

Doctor Juxta-Pleural Pleural Tail 

Docl 

Doc 2 

Doc 3 

Doc 4 

FI GURE 9 - Manual annotation of the main portion of the spatial support of lung nodules 
by four radiologists. Note the difference in size and shape of the annotations. 

Farag, 2009 studied the behavior of the intensity vs. the radial distance of the nodule 

centroids [11]. The intensity vs. radial distance distribution for small nodules was shown 

to decay almost exponentially. An empirical measure of the region of support of the 

nodules was derived based on this distribution. This approach has been tested further on 

three additional clinical studies in this dissertation and has shown to hold true. The 

summation of the intensities of Hounsfield Units (HU) in concentric circles (or ellipses) 

beginning from the centroid of the nodule, decays in a nearly exponential manner with 

the distance from the centroid. 
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Figure 10 shows the radial distances for four nodule types from the ELCAP and the 

LIDC clinical studies [12][13]. This behavior provided a clue for empirically deciding the 

spatial support (ROI) of the nodules - which is used for auto cropping of the detected 

nodules. Of course a refinement step is needed to precisely define the exact ROI of the 

nodule - this is carried out in nodule segmentation. 

Object segmentation is a traditional task in image analysis. Real world objects are 

hard to model precisely; hence the segmentation process is never an easy task. It is more 

difficult with the lung nodules due to the size constraints. 

Figure 11 shows the average intensity (HU) histograms of the manually cropped 

nodules in the ELCAP and LIDC screening studies. The histograms are distinctly 

bimodal and a binary classifier (thresholding) may be used for separating the nodules and 

non-nodules regions. The decision boundary (threshold) may be selected by various 

techniques, including fitting one-dimensional Gaussian density for the nodule and non­

nodule regions and using the expectation-maximization approach (EM) to estimate the 

parameters (e.g. , [11]). Unfortunately, this approach does not work well due to the 

uncertainties associated with the physical nodules as previously described. 

There is a vast literature on object modeling and considerably larger literature on the 

subsequent steps of modeling; e.g. , synthesis, enhancements, detection, segmentation, 

recognition, and categorization. Farag, 2009 considered a five-step system for modeling 

of small lung nodules: i) Acquisition and Enhancement; ii) Parametric Modeling; iii) 

Detection; iv) Segmentation; and v) Categorization (Classification) [11]. By constructing 

a front-end system of image analysis (CAD system) for lung nodule screening, all of 

these steps must be considered. 
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FIGURE 10 - Distribution of the nodule intensity (HU) for four nodule types manually 
cropped from the ELCAP (319 nodules) and LIDC (over 2000 nodules). For nodules less 
than 10 mm in diameter, an ROI of size 21 x 21 pixels may be used. 
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FIGURE .11 - The intensity (HU) histograms of the manually cropped nodules from the 
ELCAP and LIDC screening studies. These histograms are bio-modal showing the nodule 
and non-nodule regions in the ROI. These histograms are used as estimates of the 
probability density functions in the nodule segmentation process. 

As the literature on lung nodule analysis is vast, the review will be limited to a sample 

of the references that bear adequate benefit to the problem of this dissertation. Once 

again, the focus is to examine the "data-driven" approach. Figure 12 encapsulates the 

overall focus of this research and the most pertinent tools and sample literature. 

Activities in the past few years have led to the following discoveries: 1) Feature 

definitions on small size objects are hard to pin point, and correspondences, among 

populations, is very tough to obtain automatically; 2) Classical approaches for image 

segmentation based on statistical maximum a posteriori (MAP) estimation and the 

variational level sets approaches do not perform well on small size objects due to 

unspecific object characteristics; 3) Prior information is essential to guide the 
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segmentation and object detection algorithms - the more inclusive the a-priori knowledge, 

the better the performance of the automated algorithms; 4) An integration of attributes is 

essential for robust algorithmic performance; in particular shape, texture, and 

approximate size of desired objects are needed for proper defInition of the energy 

functions outlining the MAP or the level sets approaches. These factors playa major 

motivational role of this dissertation. 

Figure 12 summarizes the literature and the major mathematical and algorithmic tools 

deployed for small object modeling in this dissertation. It is by no means a 

comprehensive list, and many other tools are not included since they were not fully 

examined or because their performance was not particularly satisfactory. 

B. Problem Statement 

The problem that this dissertation is concerned with may be stated as follows: Given 

an ensemble of realizations of small objects that have, albeit ambiguous, shape and 

texture attributes, how to generate appropriate models for these objects that can be used 

for analysis and decision making. 

The theoretical development in this dissertation falls under the modern approaches of 

shape and appearance modeling. These models assume the availability of an ensemble of 

objects annotated by experts - the ensemble includes variations in the imaging conditions 

and objects attributes to enable building a meaningful statistical database. Active shape 

models (ASM) and active appearance models (AAM) have been powerful tools of 

statistical analysis of objects (e.g. , [14]-[18]). Similarly, tensor modeling (TM) allow for 

including various variations on the object to build a more comprehensive model (e.g. , 

[19]). This dissertation builds on the attempt of Farag, 2009 [11 ] at using these models in 
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objects that are hard to annotate by experts. An overview of ASM, AAM and TM may be 

found in the CVIP Lab Technical Report [20]. 
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Approaches and Sample Literature 

Acquisition: CT imaging [12][13] 
No Contrast 
Contrast-Enhanced Imaging 

Image Processing [1 1] 
Motion Artifacts removal 
Noise removal by Anisotropic 
Filtering 
Contrast enhancements 

Image-Based [11][14][18][20] 
Active Appearance 
(AAM) 
Tensor Models 

Contour-Based [87] 
Fourier Descriptors 
Bezier Descriptors 

Parametric Models 
Fourier Transform 
Wavelet Transform 

Template Matching[27] [28][37] 

Models 

Parametric Templates 
Non-Parametric Templates 
Exhaustive and Non-Exhaustive 
Search 

Matched Filtering 
Rotation -invariant 
Texture Features - LBP [82] 

Simultaneous Detection and Segmentation 
Elastic re istration 

Level Sets Method (LSM) [19][73][76] 
Shape-based segmentation 
Incorporation of shape and texture 
Statistical methods of level sets 

Markov Random Field (MRF) [60][72] 
Energy-based methods 
Simulated annealing 
Graph Cuts 

Intensity-Based Methods [41][42] [67] 
Multimodal Histogram modeling 
Mathematical mor holo 



Geometric Feature Extraction [85][88][89] 
Four Data Sources are Considered in this - SIFT [32][89] 
dissertation: - ASIFT [33] 

s:: - Surface Point Signature (SPS) .S? 
TS - SURF [84][88] 

I. ELCAP .;: - LBP [82][93] 
0 

Gabor Wavelets 01) -II) 

2. Jewish Hospital ~ 
U .... Object Matching u 

3. Mansoura University . II) - Rigid/Elastic registration [79][80] B 
0 - Feature-based correspondence 

4. LIDC - Simultaneous Segmentation and 
Categorization 

- Evaluation of segmentations 

FIGURE 12 - Summary of approaches and sample literature for the approaches in this 
dissertation pertaining to image analysis of small objects. 

The practical domain of the dissertation is the lung nodule that shows visibly in 

LDCT scans. Figures 7-11 demonstrate the physical characteristics of the data to be 

considered in this dissertation. The nodule data decomposition may be considered based 

on strict data collection protocol, e.g. , ELCAP in which no contrast was used in imaging, 

and the nodule _ variability will be mainly orientation (pose) per nodule type. 

Consideration of relaxed data collection protocols can also be used (e.g., LIDC), in which 

both intravenous (IV) contrast and no contrast imaging were used and was collected at 

multiple scanning sites using different hardware and settings. 

C. Dissertation Contributions 

The image analysis work devised in this dissertation focused on small nodules in 

LDCT for the purpose of early detection and classification of lung cancer from chest CT 

scans. The main contributions of the dissertation are the following: 

1. Examined the lung nodule modeling approach using active appearance introduced 

in the master of engineering research of the author in 2009 [11], and tested it on 

four data sets. This approach has l~d to nodule models that possess the shape and 
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appearance of real nodules, which enables a) enhancement of detection 

performance in terms of sensitivity and specificity over parametric nodule 

models; b) application of a rotation-invariant matched filtering method for 

simultaneous detection and segmentation of the nodules; and c) application of 

registration-based approach for simultaneous detection, segmentation and 

categorization of nodules . 

2. Proposed a new formulation to the detection approach, template matching. The 

approach is formulated as an energy optimization problem that allows for 

computation of a transformation that includes the weighting coefficients and 

rotation/scale parameters used in the generation of the models. 

3. Constructed the probability density functions (PDF) for the HU of the lung 

nodules based on empirical evaluations of the region of supports of nodules below 

10 mrn in diameter. These PDFs have been crucial for successful model-based 

segmentation of the lung nodules. 

4. Formulated and tested a variational level set approach for lung nodule 

segmentation using the shape and texture models of real nodules. 

5. Formulated a statistical approach for lung nodule segmentation, following the 

traditional random field methods, and used the graph cuts method to optimize the 

resulting energy function. 

6. Created an approach for lung nodule categorization based on geometric feature 

descriptors. 

7. Developed a complete CAD system for lung nodule detection, segmentation and 

classification and evaluated it on several lung CT databases. 
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D. Dissertation Outline 

This dissertation aims at creating a theory for modeling of small-size objects under 

uncertainties. The theory will examine the effects of object size constraints (and the 

uncertainties of imaging and the environment) on the estimation of parameters in three 

approaches for image modeling: statistical, variational and geometric modeling methods. 

These tools are useful for various classes of small objects under uncertainties, yet the 

application domain of the dissertation will be limited to the problem of lung nodule 

analysis from LDCT scans intended for early detection of lung cancer. The work 

reported here is divided as follows: 

• Chapter II: Provides an overview of terminologies and definitions and the basic 

mathematical descriptions used in the work; The chapter also describes the 

concepts of shape, texture, active appearance models and the overall framework 

for statistical shape models; 

• Chapter III: Considers lung nodule detection as a case study of small objects. The 

data-driven approach for lung nodule modeling using active shape models is 

detailed. A new template matching detection formulation is evaluated using these 

models on nine similarity measures. 

• Chapter IV: Considers lung nodule segmentation as a case study of small objects. 

Three approaches for lung nodule segmentation are examined: a statistical 

method, where optimization is carried out by the graph cuts approach; a 

variational method where shape information is included in the energy 

minimization; and a novel method is devised using variational calculus (level 

sets) for lung nodule segmentation. Basic lung nOQule segmentation is also 
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considered by a two-class classification, where the decision threshold is based 

upon two-normal classes with parameters estimated by the EM algorithm. 

• Chapter V: Considers lung nodule classification as a case study of small objects. 

Various view-based object modeling approaches are detailed that extract texture 

and shape information to describe the nodules as feature vectors. The K-nearest 

neighbor approach for nodule classification of types is used for evaluation. 

• Chapter VI: Provides a summary, conclusions and possible extensions 
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CHAPTER II 

BASICS OF OBJECT MODELING 

In this chapter two approaches are reviewed for statistical object modeling based on 

the shape and the texture (appearance) of the object in an image or volume. Active Shape 

Models (ASM) and Active Appearance Models (AAM) are among the most powerful 

tools for object analysis and are very popular in the computer vision and the biomedical 

imaging analysis literature. These models are based on ensemble or realizations of shape 

and texture of an object annotated by experts and analyzed to remove the redundancies in 

between the features of the annotations. The resulting co-registered ensemble is used to 

derive the parameters of the ASM and the AAM models. These models can be used 

separately or jointly, based on the application. This work reviews the basic foundation of 

the two approaches and provides illustrative examples to their effectiveness in object 

modeling. The two approaches depend on availability of distinct features in shape and 

texture. The major problems associated with using ASM and AAM for small object 

modeling are demonstrated. 

A. Active Shape Models (ASM) 

The field of statistical shape analysis deals with describing shapes of populations that 

are not deterministic. Similar to the concepts of random variables and random processes, 

shapes from a specific experiment are random. 
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A real-valued random variable is a mapping from the experiment's sample space to the 

real line such that the reverse mapping is an event. A random process is an indexed set of 

random variables. Probability distribution functions (PDF) are the most comprehensive 

form of describing random variables and random processes. The theory of random 

variables and random processes is an established one, and forms the foundation of signal 

analysis, data analysis and prediction [21]. Statistical shape analysis follows nearly the 

same style of building a cohesive description of shapes based on axioms, definitions and 

theorems [1-4]. 

A shape process may be established to generate shapes; similarly an appearance 

process may be established to generate appearances. Parameters of the shape and 

appearance processes will determine the details of the realizations, similar to random 

variables and random processes. Generative random processes are abundant in statistical 

theory, including Autoregressive (AR), Moving Average (MA), and combined 

Autoregressive Moving Average (ARMA) Models. Realizations can be generated from 

AR, MA and ARMA models [21] . Likewise, construction of generative shape and 

appearance models by linear representations of modes that can be constructed from an 

ensemble of shape and appearance processes may be possible. 

Figure 13 illustrates a sample of small nodules, less than 1 em diameter, from the 

LIDC clinical study showing the variations that can be captured by shape and appearance 

models for the purpose of detection, segmentation and classification. These nodules may 

appear in various locations in the lung tissue, and may also be occluded by the anatomical 

structures in the lung. These nodules may be analyzed as one category, or may be 

subdivided into several categories based on particular shape characteristics. 
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This chapter aims at reviewing some of the basic results of statistical shape analysis. 

The concept of shape is defined and the tools for shape representation, modeling and 

analysis are studied- with focus on the tools that lend benefits for modeling small objects 

under uncertainty. 

Figure 13 - An ensemble of small size lung nodules, less than 1 em diameter, from the 
LIDC clinical study. 

1. Basic Definitions 

Adopting Kendall ' s definition [1][2] , shape is formally defined as: 

Definition 1: A Shape resembles all the geometrical information that remains when 
location, scale and rotational effects are filtered out from an object. 

Shapes may be represented by various methods, mostly starting from certain landmarks 

that best describe the object. A landmark can be formally defmed as: 
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Definition 2: A landmark is a point of correspondence on each object that matches 
between and within populations. 

Real world objects may take various forms of details, and may be linear, planar or 

three dimensional. In [4], Dryden and Marida, define anatomical landmarks as points 

assigned by an expert that corresponds between organisms in some biologically 

meaningful way; mathematical landmarks as points located on an object according to 

some mathematical or geometrical property, i.e. high curvature or an extremum point; 

and pseudo-landmarks as constructed points on an object either on the outline or between 

landmarks. The computer vision literature is rich in approaches and techniques to extract 

features for object modeling, from various data representations. The focus here is limited 

to a few basic concepts from the vast literature of statistical shape analysis. The two 

papers of Cootes, 2000 [15], Stegmann and Gomez, 2002 [17] provides an adequate 

survey for the steps used in building an ASM model. 

A shape is considered to be a set of n -vertices x E Rk; for the two-dimensional 

case: 

(1) 

The shape ensemble (realizations of the shape process of a certain object) is to be 

adjusted (aligned) on same reference to enable filtering of scale, orientation and 

translation among the ensemble, per the shape definition. This alignment generates the 

so-called shape space, which is the set of all possible shapes of the object in question; 

formally, defined as follows: 

Definition 3: The shape space is the orbit shape of the non-coincident n point set 
configurations in Rk under the action of the Euclidean similarity transformations. 
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It can be noted that the translation and rotation processes associated with alignments 

of the shapes in the ensemble reduces the. dimensions of the shape space from kn to 

kn - k - 1 - k(k - 1)/2. Therefore, an ensemble of 100 vertices two-dimensional 

shape realizations would have a shape space of 197 instead of 200. This reduction would 

be significant with higher values of n and k . 

To align the shapes in an ensemble, various procedures may be used. The Procrustes 

procedure, which is most common in rigid shape alignments, is discussed below. The 

alignment process removes the redundancies of scale , translation and rotation using a 

similarity measure that provides the minimum Procrustes distance. Suppose an ensemble 

of shapes (e.g. , Figure 14) with one-to-one point (feature) correspondence is provided. 

FIGURE 14 - A shape ensemble of size N with correspondence. 

The alignment may be accomplished by the following steps [17] : 

A General Shape Alignment procedure ... 
1. Compute the centroid of each shape in the ensemble 
2. Re-scale each shape to have equal size 
3. Align the shapes, pair-wise, with respect to position at their centroids 
4. Align the shapes, pair-wise, with respect to orientation by rotation. 

The Procrustes distance between two shapes 51 and 52 is the sum squared distance (SSD) 

(2) 
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The centroid (x, y) of the shape is its center of mass and is calculated by averaging the 

coordinates of the vertices; i.e., (x,y) = (~'LJ=lXj,~ 'LJ=lYj). 

Definition 4: The shape-size metric Sex) is a positive real-valued function of the shape 
representation x such that: S(ax) = as(x) , where a is real number. 

Common scale metrics are the Frobenius norm or the centroid size defined as: 

Frobenius norm = Sex) = J'LJ=l(Xj - X)2 + (Yj - y)2 (3) 

Centriod size = Sex) = 'LJ=l ~(Xj - X)2 + (Yj - y)2 (4) 

Shape alignment with respect to the centroid may be performed by the singular value 

decomposition (SVD) approach, using the following steps: 

1) Arrange the size- and position-aligned shapes Sl and S2 as n x k matrices. 
2) Calculate the SVD, UDVT of the two shapes vertices XiX2 ; in order to maximize 

the correlation between the set of landmarks. 
3) The rotation matrix needed to optimally superimpose Xl on x 2 IS 

VuT =[c?s8 - Sin8]. 
sm8 cos8 

An iterative approach for alignment of a set of planar shapes may be performed by the 
following algorithm: 

Shape Alignment Algorithm: 
1. Chose an. initial estimate of the mean shape - one may use the first shape in the 

ensemble 
2. Align all the remaining shapes to the mean shape - The mean shape for an 

ensemble of size N may is the average or Procrustes mean, x = ; 'LJ=l Xj. 
3. Re-calculate the estimate of the mean from the aligned shapes 
4. If the mean changes return to step 2. 

Experience has shown that the above algorithm converges in a few iterations. 

Various methods may be deployed for shape alignment besides the above algorithm. 

With rigid transformations the estimation of the translation, scale and rotation is straight 

forward. 
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2. Data Reduction by Principal Component Analysis (PCA) 

Annotated data of an ensemble of shapes of a certain object carries redundancies due 

imprecise definitions of landmarks, and due to errors in the annotations. To perform 

proper shape alignment these redundancies may be reduced by a transformation step that 

flags the important features and filters out the highly correlated ones. PCA is a technique 

for data reduction that has been widely used due to its computational efficiency and 

theoretical appeal. In a nutshell, PCA involves linearly transforming the original data 

such that the important features may be weighted high with respect to the eigen vectors of 

the transformation. In PCA, the original shape vector x is linearly transformed by a 

mapping M such that Z = M x has less correlated and highly separable features . The 

mapping M is derived for an ensemble of N shapes as follows: 

- _ 1 "N d ~ _ 1 "N ( -) ( -X)T 
X - N L..i=l X i an L..x- N L..i=l Xi - X xi- (5) 

are the mean and covariance of x. Therefore, the mean and covariance of z would be: 

- - 1 "N d ~ - 1 "N ( -) ( -)T - M~ MT Z - N L..j=l Zj an L..z- N L..i=l Zi - Z Zi - Z - L.. x (6) 

If the linear transformation M is chosen to be orthogonal; i.e., M-1 = MT , and selecting 

it as the eigen vectors of the symmetric matrix LXI this would make Lz to be a diagonal 

matrix of the eigen values of Lx. The eigen vectors corresponding to the small eigen 

values can be eliminated, which provides the desired reduction. Therefore, x may be 

expressed as: 

x=x+Pb (7) 

where P = (PllPzl ... IPm) matrix of m largest eigen vectors of Lx and b is m x 1 

vector given by 
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(8) 

By varying the elements of b one can vary the synthesized shape x in Eq. (7). The 

variance of the ith parameter hi E b can be shown across the training set to be equal to 

the eigen value Ai [15] . The distribution of the PCA reduction is optimal if the training 

shapes have a Gaussian distribution - the modes of the hi E b may be limited to within 

seven times the standard deviation; i.e., ±3A, which will provide an adequate 

synthesized shape model. Of course, all of these modes may not be needed to generate a 

synthesized shape model; based on the complexity of the shape ensemble at hand, 

perhaps only a few modes will be enough. Visible inspection or SSD error measure may 

be used to select the adequate modes. The fact that the generated (synthesized) shape is 

mode dependent makes it deformable. 

3. Example 

The Procrustes shape alignment and the usefulness of the PCA method through an 

ensemble of shape contours from the LIDC study is demonstrated. In order to distinguish 

each nodule type a parametric model for each nodule type is used: the well-circumscribed 

nodule is an ellipse; the vascular nodule is a rectangle; the juxta-pleural is an outward 

open ellipse; and the pleural-tail is composition of a vascular plus a well-circumscribed 

nodule, as shown in Figure 15. 
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FIGURE 15 - Illustration of shape ensembles from four nodule types. 151 column 
represents the well-circumscribed nodule, 2nd column the vascular, 3rd column the juxta­
pleural and 4th column represents the pleural-tail nodules. Features are defined from each 
nodule and used for annotation. 

In the image, x t can be related to x in the modeling space at a single pixel location 

(x, y) by the transformation: 

T (X) = (Xt ) + (S cosS 
Xt'yt,S,O y Yt S sinS 

- S SinS) (X) 
S cosS Y 

(11) 

The parameters of Txt ,Yt ,s,() may be obtained by optimizing a similarity measure such as 

the SSD distance; i.e, the mapping between X t and x would be such that: 

(12) 

is minimum. An iterative algorithm to perform the optimization is as follows [15]: 
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Algorithm: Matching model points to target points 

1. Initialize the shape parameters, b , to zero (the mean shape). 

2. Generate the model point positions using x = x + P b 

3. Find the pose parameters (X t , Yt , S, 8) which best align the model points x to the 

current found points xt 

4. Project X t into the model co-ordinate frame by inverting the transformation T: 

y = T-1 xt,Yt,s,e(xt ) 

5. Proj ect y into the tangent plane to x by scaling: y' = y / (y. x ). 

6. Update the model parameters to match to y' 

b = p T(y' - x) 

7. Return to step 2 if not converged. 

(13) 

(14) 

Using the above procedure to fit a model shape to a target one in the image plane requires 

better initialization and an optimization procedure (e.g., the gradient descent). 

Initialization is best accomplished if one selects the important features that describe the 

shape. Detecting these features automatically is never an easy task. For small objects in 

particular, it is a very formidable one since the classic edge detectors and geometric 

feature descriptors do not perform well. A related approach is to model the full 

appearance of the object, including the internal texture. This is known as active 

appearance modeling (AAM). The quality of fit of such an appearance model can be 

assessed by measuring the difference between the target image and a synthetic image 

generated from the model. The AAM approach is considered next. 

B. Active Appearance Models 

Active appearance models (AAM) textures of images using an ensemble of test 

images. The test images are generated around labeled landmarks in the images; hence, 

AAM and ASM are tightly related. Following the approach of Cootes, Edwards and 
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Taylor, 1998 [14], the ASM results above are extended to highlight the basics of ASM. It 

should be pointed out that other developments of the AAM exist in the literature; in 

particular, the work of Mathews and Baker, 2004 [18]. 

To construct an ASM from image intensity, the test images in the ensemble are 

warped so that the feature points (control points) match the mean shape, using a 

triangulation algorithm. The region contained in the mean shape is then sampled and 

normalized to reduce the image variations effects. The notations in Cootes et al. [14] , are 

continued to be used. Let the region from the ensemble members covered by the mean 

shape be gim , the normalized image regions g will be 

g = (gim - {3l)la (15) 

The values a, {3 are chosen match members of the ensembles within the mean shape 

regions to the their average, g; i.e ., 

a = gim. g and {3 = gim· lin (16) 

where n, is the number of the elements in the vectors (size of the region within the mean 

shape). To remove redundancies within the normalized members of the image ensembles 

the PCA approach is used; hence, obtaining a linear model for intensity 

(17) 

where g is the mean normalized intensity vector, Pg (eigen matrix) is a set of orthogonal 

modes of variation and the bg is a set of intensity parameters (eigen intensity) . One may 

combine the ASM and AAM equations above. Let bs (Eq. 8) and bg represent the shape 

and intensity vectors. The two representations may be concatenated as follows : 

(18) 
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where Ws is a diagonal matrix of weights for each shape parameters, allowing for the 

difference in units between the shape and intensity models [14]. 

Further application of the PCA on the concatenated representation may reduce the 

redundancies. The results would be the following model: 

b = Qc (19) 

where Q are the eigen vectors and c are the vector of appearance parameters controlling 

both the shape and intensity of the model [14]. The shape and intensity models can still 

be expressed, i.e. , 

(20) 

where 

(21) 

The above representation can be used to synthesize an image for a given appearance 

parameters c by generating the shape free intensity image vector g and warping it using 

the features or control points described by x. 

Example: 

AAM and ASM are widely applicable in face modeling research. The lung nodule 

example is used as an illustration of the AAM algorithm described above. Unlike the 

faces, the nodules have no distinct control points or features within the boundaries; 

hence, the output of the ASM will be easier to judge than the AAM since nodules may 

possess a distinct shape boundary. 

Indeed, Farag, 2009 [11] used empirical models of appearance (nodule intensity) to 

fill out the interior of a shape model starting from its centroid. In the following example, 

both the geometric models of the nodule ' s shape (Figure 16) as well as annotations of 
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two concentric circles starting from the centroid are used. The ASM and the AAM 

approaches are applied. It is noted that the AAM and ASM capture the appearance and 

shapes of the nodules. 

These models are used later In the dissertation for detection, segmentation and 

classification of nodules. 
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FIGURE 16: Data-driven nodule models by AAM and Level Sets. The templates carry 
the salient features of real nodules; resulting in higher sensitivity and specificity in 
detection 
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C. Tensor Modeling Approach 

Another approach for appearance and shape modeling is based on the use of tensor 

algebra. The same work introduced by Vasilescu and Terzopoulos, 2007 for face 

recognition [19] is followed. Tensors allow the incorporation of various geometric 

properties of the nodules and the effects of imaging conditions as well. In the face 

recognition, the tensor approach incorporates illumination, pose and expressions and 

multiple individuals (e.g., Figure 17(A)). The lung nodules may be arranged in a similar 

fashion as shown in Figure 17(B). 

FIGURE 17(A) - Data arrangements for PCA (upper) and Tensor Analysis (lower) in 
face recognition (Adopted from Vasilescu and Terzopoulos [19]). 
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Figure 17(B) - A generic nodule data decomposition based on orientation (pose), and 
imaging parameters (intensity) for various nodule shape classifications. 

FIGURE 17: Data arrangement for Active Tensor Modeling for face and nodule data. 

Tensor analysis has been shown to provide significant improvement in face 

recognition compared to Principal Component Analysis (PCA) and Independent 

components Analysis (lCA) [16]. The nodule variability is not as much, but a tensor 

decomposition of nodules incorporating: a) nodule types; b) scanning protocol specifics, 

e.g. , rnA; c) vendor of imaging scanner - (one can expect slight variability in imaging 

using GE, Phillips and Siemens hardware) ; d) nodule size; e) use of contrast or lack of 

during imaging, etc. may be constructed. The LIDC enables tensor decomposition using 

some of these variables. In [20], experimentation with various arrangements of the 

nodules was conducted. Below, an example is shown representing one type nodule using . 

PCA and Tenors, for illustration purposes. Of course, the objective is to be able to 
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synthesize a nodule by the least number of parameters, while maintaining the closest 

possible shape to the original image. 

Figure 18 illustrates the performance of the AAM and A TM methods for sample 

nodules from the LIDC clinical study. 

Well-Circumscribed 

(a) AAM models of a well-circumscribed nodule, showing the average and 5 
eigen nodules. 
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(b) ATM models of two well-circumscribed nodules, showing average and 
several tensors. 

FIGURE 18 - AAM and A TM (small number of variations were used in the nodule 
acquisition) for sample nodules from the LIDC clinical study. 

D. Summary 

This chapter discussed a few of the mathematical concepts related to object 

modeling, which will be detailed in the following chapters. The concept of shape was 

defined. The basics of active appearance modeling approach were outlined. This chapter 

did not review the stochastic approaches of object modeling nor the variational methods. 

Chapter III is dedicated to the statistical approaches whereas Chapter V, nodule 

segmentation, considers the variational modeling approach. 
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CHAPTER III 

DETECTION OF SMALL SIZE LUNG NODULES 

Since the mid-eighties object detection has been an area of massive research, where 

an object is modeled by scale-space representations, affine image blobs, Active 

Appearance models (AAM), etc. [18, 22-25, 26]. The detection approaches in general are 

categorized as model-based or view-based methods depending on the representation of 

the models used [27, 28-30]. Detection is usually performed through matching a template 

or model with candidates in an image. The model-based template representations are 

used in numerous detection approaches including the widely used template matching 

approach. The object template is swept across the image in a raster fashion, then using a 

similarity measure, the intensity differences between the template and image region of 

the data underneath is calculated. If the result of the matching process between an 

unknown object (candidate target) in the image data and the template is sufficiently high, 

the unknown object is labeled as resembling the template. Other techniques use the view­

based representations to generate the feature vector descriptions of an object and the 

image [31]. A matching technique is used to find the correspondence between the image 

feature description and the object feature vector description [32] . To perform tl1is 

matching process, an affine transformation is used, which includes translation, rotation, 

scaling (and in some applications skew) effects, in order to project the object template 

information back into the lmage domain from the feature vector space. 
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The result is a transformed box around the object of interest found in the image [33]. 

In medical imaging applications template matching techniques are widely used, 

especially for lung nodule detection [27-28, 31 , 34]. We focus a great deal of efforts in 

this chapter towards the problem of lung nodule detection as a most adequate example of 

small objects. A preliminary process of lung segmentation (e.g., [11]) is assumed to have 

been conducted, in order to isolate the lung tissues from CT imaging of the human chest. 

The detection of nodules is performed on the segmented lungs. The prime goal of lung 

nodule detection is of course early detection of lung cancer; hence, the emphasis on 

small-size lung nodules, which, clinically have been determined to be less than 1 em in 

diameter. 

Survival of lung cancer is strongly dependent on accurate and early diagnosis [35]. In 

the past two decades numerous screening protocols and studies have been conducted 

worldwide for the purpose of studying early indications of lung cancer. Low-dose 

computed tomography (LDCT) scans has lower radiation risk, hence became abundant in 

lung screening research. In the literature various approaches and methodologies can be 

found to model the lung nodules, exploiting geometric and texture attributes of the 

nodules (e.g., [34], [36-38]). In general, there are three key steps for precise candidate 

nodule detection: 1) a realistic model (template) of lung nodules; 2) an efficient detection 

methodology; and 3) ability to reduce or eliminate the false positives in the detected 

candidates. 

In this chapter, a lung nodule modeling process that resemble the characteristic shape 

and texture information of real nodules will be investigated in detail , using Active Shape 

Modeling (ASM) and Active Appearance Modeling (AAM) approaches. These models 
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are then used for detection of candidate lung nodules via a formulated template matching 

technique using several correlation measures known in statistics. After candidate nodule 

detection, feature vector descriptors using various view-based approaches are constructed 

for false positive reduction to obtain the final candidate nodules. The first two steps will 

be explored in detail in this chapter. 

A. Lung Nodule Modeling 

Farag, 2009 and Farag et aI. , 2009 and 2010 [11][28][37] used the AAM and ASM 

methods for modeling the lung nodules, which produced superior results in terms of 

resembling actual nodule characteristics, and in the sensitivity and specificity of lung 

nodule detection than parametric methods. This section will examine the process of 

nodule modeling and simulation using an ensemble of nodules identified by radiologists. 

1. Pulmonary Nodule Definitions 

The definition of a lung nodule as a small lump of irregular or rounded shape is 

ambiguous from the perspectives of computer vision and machine learning. In the 

template design process of data-driven templates, the characteristic shape and texture 

information are essential in defining and distinguishing the various nodule types from one 

another. These characteristics must be utilized to extract the most information possible in 

order to obtain well-defined model representations that are robust to various deformations 

due to scale, noise, contrast, and local geometric distortion and acquisition artifacts. 

Samala et ai. [38] defined nine feature descriptors that describe the nodule characteristics 

that were used in assessments by radiologists. These descriptors are: 1) subtlety; 2) 
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internal structure; 3) calcification; 4) sphericity; 5) margin; 6) lobulation; 7) speculation; 

8) texture; and 9) malignancy. 

The classification of Kostis et al. ([ 1 OJ) is adopted in this dissertation, which groups 

the lung nodules into four classes: vascularized, where the nodule has significant 

connection(s) to the neighboring vessels while located centrally in the lung; juxta-pleural, 

where a significant portion of the nodule is connected to the pleural surface; well­

circumscribed, where the nodule is located centrally in the lung without being connected 

to vasculature; and pleural-tail, where the nodule is near the pleural surface, connected by 

a thin structure; In all of these types there is no limitations on size or distribution in the 

lung tissue. 

2. Lung Nodule Model Simulation: Generation of Data-Driven Templates 

The goal of the modeling process is twofold: generate a template for each nodule type to 

be used in the detection process, and establish a procedure for simulation of nodules to be 

used for nodule classification (i.e. Chapter IV). A database of nodules was constructed 

using the Early Lung Cancer Action Program (ELCAP) [12] database of low-dose lung 

CT (LDCT) images, where radiologists provided location points corresponding to the 

nodule locations. The estimated probability density function of the Hounsfield (HU) vs. 

radial distance distribution of the nodules was examined in [11][37] . A nodule size 

representation of 10 pixels or about 5 mm from the centroid described the lung nodules 

in this database. Thus, automatic cropping of a bounding box of size 21 x 21 pixels was 

performed to extract the lung nodules from the surrounding tissue. These nodules where 

then classified into one of the four corresponding categories, described above, 

constructing a nodule database that contains variations in intensity distribution, 
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shape/structural information and directional variability which the cropped regions within 

the determined bounding-box maintain. Two different sub-databases of 96 nodules (24 

nodules per type) are used in constructing the data-driven nodule templates using the 

AAM and ASM approaches (Figures 19 and 20). Note: the model databases are referred 

to as MB 1 and MB2, respectively. Similar approach may be used with any other 

ensemble; the LIDC database has larger size nodule population [13]. 

3. Object Alignment for lung nodule modeling 

In Chapter II the AAM approach was described in terms of the computer vision field. 

This approach commonly known in face recognition systems is manipulated and used to 

construct simultaneous shape and texture based data-driven lung nodule templates. The 

databases of nodules per' type were annotated to highlight the basic geometric and 

structural features of the nodules. The Procrustes registration technique was employed to 

obtain co-registered nodules [14,18] 

• a •• 

~ COii • '2.~ ~ 

I :r • ' l ". 
.. ~ U 

-"\ ~ r . '1 I , 7 

•• • ..a •• 
•• a •• 

FIGURE 19 - An ensemble of 24 nodules from the ELCAP Clinical Study; Vascular 
(upper left) ; well-circumscribed (upper right); pleural-tail (lower left); and juxta-pleural 
(lower right). 
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FIGURE 20 - A second ensemble of 24 nodules from the ELCAP Clinical Study; 
Vascular (upper left) ; well-circumscribed (upper right); pleural-tail (lower left) ; and 
juxta-pleural (lower right). 

Let the annotated database of n nodule types be represented as T = {Gv G2, ... , Gn } 

where each Gn = {sr, sr, ... , sn, where sr: R2 -t R represents the sample nodule 

annotated image. In the analysis performed, n = 4 and k = 24. These images are aligned 

by employing the Procrustes approach [26], thus, producing n sets of aligned images 

where, f = {Gv G2 , ... , Gn }. The average nodule image for each Gn is computed as 

sn = G) LCSr)· For any set of nodule images indexed by i, its image deviations from 

. {G- i - -i -i G- i - -i -i G- i - -i - i} h h . . f Its mean are, 1 - Sl - S, 2 - S2 - S , .. . , k - Sk - S , were eac Image IS 0 

size N1 x N2 . Each image is converted into a column vector by taking row by row and 

setting them together as a one dimensional matrix , ::: , forming the matrices Si = 

An eigenvalue decomposition is employed to factor the matrix lJl as lJl = U L UT
, 

where U is an N x k matrix in which N = N1 X N2 . Each column vector ofthe matrix U 

indexed by j , is converted into a two dimensional image, sf. From these -eigen images, 
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one can formulate an active appearance model of the nodule set images I, AAMi = Si + 

L~l Wj 5J where wj ER . The number m is the number of modes to consider. From this 

model nodule training images can be built as, IJ = Si + 5J . The number of modes can be 

computed from the relation: L~l Az 2:: l~O L~=l Az , in this dissertation r = 90%, 95% and 

97% are considered, and Az are the non zero eigen values. This will result in an average 

of m = 2, 3 and 5 eigen images, i.e. eigen nodules, per nodule type to be generated. 

Figure 21 shows the average nodule templates and sample generated eigen nodule 

templates obtained from using MB 1. The average shape and texture AAM models 

generated using MB 1 and MB2 are shown in Figure 22. Variations in the developed 

average models can be seen, since the templates are depictive of the data information 

provided. The template(s) used for detection can be the average or the average plus a 

weighted sum of the eigen nodules, resulting in the usage of multiple models per type. 

Nodule Type Average l SI Eigen 2nd Eigen 3 rd Eigen 41h Eigen 51h Eigen 

Nodule Nodule Nodule Nodule Nodule Nodule 

Juxta 

Well 

Vascular 

Pleural- Tail 

FIGURE 21 - Generated average nodule templates per nodule type are depicted in 
column two, while sample eigen nodules per type are shown in columns three thru seven. 
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FIGURE 22 - Data-Driven Nodule Template using MB 1 top row and MB2 bottom row­
From left to right: well-circumscribed, juxta-pleural, pleural tai l and vascular nodule 
types. 

4. Variational level sets for lung nodule modeling 

The ASM approach using variational Level sets [39] in this dissertation replaces the step 

of manual annotation performed in the AAM method by a semi-automatic approach that 

generates the contours of the lung nodules depicting the shape information. These 

contours are then co-registered using the Proct;Istes method; the contour boundary points 

are obtained and used for registration. The Level sets approach (e.g., [40]) eliminates 

sources of errors that can arise with manual annotation in which only placing the seed 

point or points in the region of the nodule centroid is/are manually performed. Also, the 

elasticity of this variational approach addresses the issue of shape variations that can arise 

and handles these changes accordingly. A block diagram of the level sets process is 

depicted in Figure 23 . 

Given two shapes represented by the vector functions <1>1 and <1>2 , a transformation, 

A, with scales, rotation and translation is to be calculated to transform the first object to 

the second. 
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FIGURE 23 - Block diagram of the Level sets process used to generate the mean shapes_ 

The following dissimilarity, measures the difference between the vector and the other 

scaled vector function: 

(22) 

The following energy is formulated as a sum of squared differences 

E = f D rT r dfl n E (23) 

where DE is an indicator function with value 1 inside the shape and zero otherwise. The 

two shapes are aligned by minimizing the energy function using various approaches 

including the gradient descent method. The training shapes, in this work, the contours of 

the lung nodules, are jointly registered with an evolving mean shape to find the 

corresponding global transformations Av .. . , An' The dissimilarity measure is used as 

follows: 

(24) 

The energy function will be: 

The shape model, <PM' is a function of the registered training shapes: 
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(26) 

The shape parameters w, need also to minimize the energy function to process the 

registration. This results in the mean shape contours of the lung nodules. Since texture 

information is also needed for the template models, a synthetic texture modeling 

approach, typically used in the generation of parametric templates (e.g. , [37]) , ( i.e. 

models generated using geometric equations such as a circle), was implemented. The 

probability density distributions of the nodules intensities found in the ELCAP database 

was obtained for each nodule type. The intensity distributions were used to estimate the 

texture model to be filled into the generated ASM average shape contour templates, by 

the following equations (e.g., [37]): 

(27) 

_ ( )-1/2 P - R In(qmax) - In(qmin) (28) 

where R is the radius of the circle interior to the bounding box containing the nodule 

model (mean shape). The parameters qmin and qmax are the lower and upper bounds of 

the intensity (Hounsfield Units) in the probability density ·function of each nodule type; 

which is estimated from the ensemble of nodules [11] [37]. 

Figure 24 shows the contour mean shape templates generated and the final 

models with texture information produced using Equations 27 and 28. In the literature 

parametric templates, which are generally circular and semi-circular contour shapes with 

different radii and orientation are used as nodule models. The empirical forms of the 

intensity (Eq. 27 and 28) are used to fill these templates as performed in the Level sets 

approach. Figure 25 depicts samples of generated parametric templates. 
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FIGURE 24 - Average shape of the nodules generated from the ASM approach, level sets 
(Top row). The nodule templates resulting from the intensity equations (lower row). 
From left to right: Well-circumscribed, vascular, juxta-pleural, and pleural-tail nodule 
types shape modeling process. 

FIGURE 25 - An ensemble of generated circular and semi-circular templates with various 
orientations (e.g., [11][37]). 

5. Lung Nodule Modeling Summary 

In this section three approaches for generating lung nodule models or templates was 

examined. Of these methods two are non-parametric and data-driven while the other 

approach uses definitions of circular and semi-circular templates to generate parametric 

models that are filled with texture information. The ASM Level sets method of 

constructing the nodule models used the same Procrustes registration method 

implemented in the AAM approach [28] with the difference of the ensemble object being 

registered. In the level sets approach nodule contours were obtained and registered 

together to acquire templates containing shape information only, while the AAM 

approach had both shape and texture information in the resultant templates. The overall 

mean shapes of each nodule type from the two approaches showed extraordinary 
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resemblance as seen for MB 1 in Figure 22 and Figure 24. In the ASM approach, once the 

mean shape contours were generated, gray level texture information was needed to fill the 

hollow shells, thus a technique used in [11][37] for filling parametric templates was 

conducted and the overall shape and texture nodule templates depicted in Figure 24 were 

produced. The overall bounding box size used for all three approaches was 21 x 21 

pixels which was obtained by analyzing the Hounsfield (HU) vs. radial distance 

distribution. 

B. Lung Nodule Detection: Template Matching 

Template matching refers to the process of detecting an object with known prior 

information such as size, shape and orientation, where detection can be achieved by 

applying a filter, known as a template, having positive weights in a region that resembles 

the object to be detected and zero weights in other areas. If the result of the matching 

process between an unknown object and the template is sufficiently high, the unknown 

object is labeled as resembling the template, however due to image noise, spatial, 

amplitude quantization effects, and a priori uncertainty of the exact shape and structure of 

the object to be detected, an exact match rarely occurs. Hence, a similarity correlation is 

used, where the maximum or minimum value of unity that occurs if and only if the image 

function under the template exactly matches the template. Various similarity measures 

may be used, and various approaches may be taken to execute the matching process as 

well. Lee et al. 2001 [27] , for example, used Genetic Algorithms for " executing the 

matching process on parametric templates. Farag et aI. , 2009 and 2010 used the 

normalized cross-correlation (NCC) in evaluating the effectiveness of parametric and 

non-parametric templates for detection of lung nodules [11] [28] [37]. 
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1. Similarity Measures for Template Matching 

In this dissertation nine similarity measures are considered: 

NCC = 
L (i,j)EW ltCi,j) * li(X + i,y + j) 

Normalized Cross 
2 L (i.j)EW I; (i,j) * L(i,j)EW I[ (x + i, y + j) 

Correlation (NCC) 

ZNCC = 
l,(i ,j)EW(itCi,j) - ~Ci,j)) * (ii(X + i, y + j) - r:(x + i, y + j)) 

Zero-mean 2 ( -)2 ( - / 
Normalized Cross 

l, (i.j)EW ftCi,j) -ftCi,j) * l,(i.j)EW fi(x + i,y + j) -fleX + i,y + j) 

Correlation (ZNCC) 

SSD = L (ItCi ,j) - Ii (X + i,y + j)) 2 
Sum of Squared (i.j)EW 
Distance (SSD) 

Zero-mean Sum of ZSSD = L (ItCi,j ) - 4(i,j) - li(X + i,y + j) + 7;(x + i,y + j)/ 
Squared Distance 
(ZSSD) 

(i.j)EW 

Locally scaled Sum 
LSSD ~ I (I,CI, j) - C 4(i,j) ') I,Cx + l,y + j))' of Squared 

Differences (LSSD) It x+t,y +} (i,j)EW 

SAD = L I/tCi, j) - li(X + i,y + j)1 
Sum of Absolute (i,j)EW 
Differences (SAD) 

ZSAD = L IltCi,j) - 4(i,j) - li(X + i,y + j) + 7;(x + i,y + j)1 
Zero-Mean Sum of (i,j)EW 
Absolute Differences 
(ZSAD) 

Locally scaled Sum 
LSAD = L . . 4(i,j ) .. 

of Absolute I/t(t, }) - ( . .) Ii (X + t, y + })I 
It x+t,y+} 

Differences (LSAD) (i ,j)EW 

Sum of Hamming SHD = L ItCi,j) bitwise XOR Ii (X + i,y + j) 
Distances (SHD) 

(i.j)EW 
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where It (i, j) represents the template, Ii (X, y) is the image slice or input image, W is the 

region of interest on which the similarity measure is evaluated, Ic(.) is the mean of the 

template image, and r: (.) Is the mean of the input image slice. Below we derive the 

equations of the ZNCC similarity measure, the rest of the measures in the above table can 

be derived in a similar fashion . 

2. Zero-mean Normalized Cross Correlation (ZNCC) 

Assuming a template image It :!1t c R2 ~ R and an input image Ii:!1i ~ R the ZNCC 

between the CT image slices and nodule template images is defined as: 

Where Xi E !1i, Xt E !1v the template image average is I1t = In It (Xt)d!1t / In d!1 t , 
t " t 

and the corresponding space intensity average in the input image is defined as: 

l1i = Ini h(Xt + Xad!1t / Int d!1 t· Assuming the functional cp: R2 ~ R such that for 

any two images 11 and 12 , the function is written as: 

cp = (Iv 12) = f (Il (Xl) - 111) (I2 (Xl + X2) - 112)d!11 
n l 

where the average parameters and image domains are defmed in Section 2. 

The similarity measure can be written as: 

The goal is to maximize such a similarity measure over the whole domain of the input 

image !1i' Using the template image as is will have limited results on that measure 

especially when "the problem encounters rotations and scale variations. However, one can 

incorporate a ge<?metric transformation process on the template image such that the 
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parameters of that transformation are selected to maximize the similarity (i' Assume a 

geometric transformation function A(Xt ) = SRXt where S and R are the scales and 

rotation matrices. For each point, Xi, there exists a geometric transformation Ai that 

maximizes the ZNCC similarity measure. The similarity measure is re-written after 

incorporating the transformation as: 

(31 ) 

Using, for example, the AAM eigen shapes as the models, It , the template function is 

expressed in terms of the weighted eigen shapes It = T + L~l wjIj . The transformation 

parameters as well as N-weighting coefficients are required to maximize the similarity 

measure. The gradient descent approach is used in this optimization problem. The 

transformation parameters will then be computed as follows : 

ap _ qJ(lt,l aqJ(It,(VI aTvpA)-eqJ(ltJt)qJ(It,(VI i)TVpA ) 

at (qJ(It,laqJ(ft ,ft) 
(32) 

where p is the scale or rotation parameter of the transformation A i> It = It(Xt), and 

Ii = Ii(Ai + Xi)' Also, the weighting coefficients will change through the following 

PDE: 

aWn _ qJ(It,li)qJ(lj ,la-eqJ(Ii,li)qJ(lt,lj) 

at (qJ(ft,laqJ(It,lt) 
(33) 

These parameters change from an initial position and iteratively reach a steady state 

solution where a maxima is achieved. 

Summarizing the above approach: for every point in the input image domain, a ZNCC 

similarity measure is computed after finding the corresponding weighting coefficients 

and transformation parameters that maximizes such a criteria. Local maxima points are 

53 



determined by a thresholding criterion to find the best matches. The above formulation 

was derived for all similarity measures (ZSSD, NCC, etc.) in a straightforward manner. 

c. Experimental Results 

1. Nodule Modeling Evaluation 

This first study is based primarily on the Early Lung Cancer Action Program (ELCAP) 

public database which was used in this dissertation for nodule modeling, classification 

and detection. The database contains 50 sets of low-dose CT lung scans taken at a single 

breath-hold with slice thickness 1.25 mm. The locations of 397 nodules are provided by 

radiologists, where 39.12% are juxta-pleural nodules, 13.95% are vascularized nodules, 

31.29% are well-circumscribed nodules and 15.65% are pleural-tail nodules. Of the 397 

nodules 291 identified and categorized nodules are used in the detection process. 

In the first set of experiments the sensitivity of the data-driven nodule templates 

constructed versus parametric templates are examined. The NCC behavior with the data­

driven nodule models takes the same general shape as with the parametric nodules except 

the distribution function decays faster as a value of 0.5 is approached. Setting a suitable 

threshold for the NCC is important as lower thresholds will increase detection rate but 

increases the false positives, and vice versa. Various methods can be used for an optimal 

threshold including modeling the normalized histogram as two classes, nodules and non­

nodules; and a Bayesian approach which may be devised to select an optimal threshold. 

In this experiment the threshold of the NCC is set to 0.5. 

Results using only the average (mean) template models generated from the data­

driven approaches are examined in this first set of experiments. The overall sensitivity 

and specificity was computed using equations 34 and 35: 
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S 
... - . True Positives 

ensltwlty - . . . 
True PosltLVes+False Negatlves 

S 
.. t True Negatives 

peCl! lC y = --------='-----­
True Negatives+False positives 

(34) 

(35) 

True positive rate refers to the number of actual nodules that are detected as nodules 

while false negatives are the number of nodules that were not detected as nodules. Thus 

sensitivity depicts how well the detection was able to recognize nodules from other lung 

features using the desired designed templates (parametric and data-driven). True 

negatives are the number of nodules that are truly not nodules, while false positives are 

the number of non-nodules that were detected as nodules. Specificity rate is more 

subjective in its computation since it depends on how the true negatives and false positive 

rates are computed during detection. The specificity represents the negative rate that is 

correctly identified. 

Table 1 shows the results with the templates centered with respect to the x-axis (i.e. , 

zero orientation). The performance of the AAM approach is much more robust than the 

parametric templates and level sets method. The sensitivity of the well-circumscribed 

nodule types, which are nearly isotropic, shows improvements for both the Levels sets 

and AAM approach. Overall the Level sets approach was comparable to the parametric 

template method. 

Experimentation on template orientation effect on the detection process was also 

examined. Table 2 shows the sensitivity and specificity of the non-parametric templates 

as compared with the parametric templates for orientation change (i.e. rotation 

transformation of the templates from 0° to 360° with step-size 90°). Overall in the case of 

parametric templates sensitivity increased for all nodule types. The Level sets sensitivity 

also increased overall for each nodule type while specificity decreased with the addition 
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of orientation, the general results when compared to the parametric show the level sets 

approach more specific with orientation. Both sensitivity and specificity decreases were 

observed from the AAM approach when orientation was applied, yet, sensitivity and 

specificity rate were still much improved over the other two methods. 

TABLE 1- Overall sensitivity and specificity analysis using ASM average templates, 
parametric models and AAM average templates, without accounting for orientation. 

Algorithm Sensitivity Specificity 

Parametric Approach with template radius 10 72.16% 97.12% 
and single orientation for semi-circular template 

Level Sets Approach using nodule contours 72.16% 98.11 % 
from MB 1 and no orientation 

AAM Approach using MB 1 and no orientation 85 .22% 97.81% 

AAM Approach using MB2 and no orientation 83.51% 98 .36% 

TABLE 2 - Overall sensitivity and specificity of level sets, parametric, and AAM average 
templates averaging a number of orientations for the templates. 

Algorithm Sensitivity Specificity 

Parametric Approach with template radius 10 78.01% 96.41 % 
and orientation 0°_ 360° with step-size 90° 
for semi-circular template 

Level Sets Approach using nodule contours 76.98% 97.63% 
from dataset land orientation 0°_ 360° with 
step-size 90° 

AAM Approach using MB 1 and orientation 86.94% 96.51% 
0°_ 360° with step-size 90° 

AAM Approach MB2 and orientation 0°_ 83 .51% 97.40% 
360° with step-size 90° 
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The AAM approach using the mean templates from MB 1 provided better results than 

the parametric, level sets method and the AAM mean templates from MB2. Overall, the 

AAM algoritlun using either set of mean templates generated from sub-database 1 or 2 

yielded better results in terms of both sensitivity and specificity. Thus, data-driven 

models are more robust and an enhanced method of lung nodule modeling over the use of 

parametric templates since the actual data is used in modeling and generating mean 

templates to represent each nodule type. 

Also, shape and texture based approaches gIve a more accurate and preCIse 

representation to the true nodule that provides improved detection results. So, shape 

information alone does not suffice, both shape and texture information is required. 

Further studies were conducted using the AAM based approach on both sub-datasets used 

for template modeling (i.e. MB 1 and MB2). The number of annotation points necessary 

for proper registration was found to be a function of how many were necessary to depict 

the main discriminatory shape information that withholds substantial texture information 

commonly found in each nodule for that particular type (i.e. the 24 nodules used per 

type). Also, in the modeling process 24 nodules per type were used, but what would be 

the effect of using fewer nodules in generating the mean templates and these templates be 

used in the detection process? This question was also examined using the AAM approach 

and MB 1 and MB2 to generate average nodule representations with different sub­

database sizes (i.e. 24 and less nodules per type). 

Table 3 depicts the results obtained when the first 16 and 8 nodules from each of the 

sub-databases are used. From the table it is seen that overall sensitivity and specificity 

using half or one-third of the nodules from MB 1 results in overall similar sensitivity and 
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specificity results; while in the case of using MB2, the results reduced in sensitivity as the 

number of nodules used for modeling "decreased. 

TABLE 3 - Overall sensitivity and specificity of the AAM approach using 8 and 16 
nodules per type for nodule modeling instead of24 nodules per type, respectively. 

I 

Algorithm Sensitivity Specificity 
I 

AAM Approach using 16 nodules from MB 1 85.57% 97.84% 
for modeling and no orientation 

AAM Approach using 8 nodules from MB 1 84.88% 97.99% 
for modeling and no orientation 

AAM Approach using 16 nodules from MB2 83.16% 98.42% 
for modeling and no orientation 

AAM Approach using 8 nodules from MB2 77.32% 98.57% 
for modeling and no orientation 

Overall the findings are dependent on how well the lung nodules are annotated and 

which nodules represented in the sub-database affected the generation of the mean 

templates per type; i.e. if the reference image used for alignment depicted a majority of 

the nodules in the larger database and all nodules were well annotated, then the overall 

mean templates generated yielded improved sensitivity and specificity results. If the 

nodules were not adequately annotated or the reference nodule did not represent the 

overall model database of lung nodules, then the mean templates generated did not 

always provide improvements in sensitivity and/or specificity. The results are expected to 

be further enhanced using larger ensemble sizes than the 24 per nodule types used in the 

experiments in this dissertation. Likewise, involvement of several radiologists to create 

the ensemble may also lead to further improvements. These results in this set of 

experiments are also based from only using the NCC similarity measure at a single 
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threshold; results can vary when usmg other similarity measures, thresholds and 

transformation parameters (i.e. rotation and scale). 

2.Clinical Evaluation 

This work is based on three lung CT database scans. The first is the ELCAP which as 

stated before, contains 50 sets of low-dose CT lung scans (tube current 30-40 rnA) taken 

at a single breath-hold with slice thickness 1.25 mm and resolution 0.5xO.5mm. The 

locations of the 397 nodules are provided by the radiologists, where 39.12% are juxta­

pleural nodules, 13 .95% are vascularized nodules, 31.29% are well-circumscribed 

nodules and 15.65% are pleural-tail nodules. Database 2 is the Lung Imaging Data 

Consortium (LIDC)[13] , which contains 1018 helical thoracic CT scans from 1010 

different patients. The tube current ranged from 40 to 627 rnA with slice thickness range 

0.6mm to 5.0 mm. The data consisted of CT lung images taken after intravenous (IV) dye 

contrast was administered to the patients, but most scans where imaged without any dye 

enhancing agents given to the patients. From the first database 291 nodules in the size 

range of 2-5 mm representing the four types of nodule categories specified were 

considered in the detection testing, while 316 nodules from database 2 in the range of 3-4 

mm were considered for testing in this set of experiments. Database 3 contains 8 sets of 

LDCT lung scans with slice thickness 1.25 mm and 2.5 mm, with a small set of lung 

nodules provided by radiologists. 

The average and eigen nodule templates generated using the AAM approach are used 

to test the effectiveness of the templates in respect to each other by implementing a 

decision fusion template matching approach where the four average nodule templates 

were one set of models. The 90% PCA criterion eigen nodules were a second set of 
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templates. The third set of models were the 95% PCA criterion elgen nodule 

representation, and finally the 97% PCA criterion eigen nodule templates. In the eigen 

nodule cases multiple images per type represented the nodules (i.e. if 90% PCA criterion 

resulted in two templates per type then eight total models were used in detection). The 

templates were used in a serial fashion and the final decision is the XOR of the binary 

outputs. 

The Receiver Operating Curves (ROC) depicting true positive versus false positive 

rates were obtained using the different template models and nine similarity measures. 

True positives refers to the candidate nodule detected as correctly identified when the 

distance between the detected point and the closest ground truth point is smaller than the 

template radius, while all other incorrectly detected points are considered false positives. 

Table 4 depicts the detection results for the all three databases. The first database is 

also correlated to the ROC curves shown in Figure 26 using the average templates 

(Figure 26a), 90% PCA criterion generated eigen nodule templates (Figure 26b), 95% 

PCA criterion generated eigen nodule templates (Figure 26c) and 97% PCA criterion 

generated eigen nodule templates (Figure 26d). The area under curve (AVC) was 

computed for each similarity measure. 

Analyzing the results from the first database the detection process provided several 

conclusions. First, comparing the eigen nodule experiments to each other the overall 

conclusion can be made that more nodule templates does not provide a very large 

increase variation in the detection process except when using the SSD ' and ZSAD 

similarities. In the SSD case the 97% PCA criterion provided 0.10 increase in the 

detection AVC computation which is one of the largest increases seen. Thus, considering 
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additional eigen nodule template models per nodule type did not result in significant 

increases in the detection process and as such considering only 90% PCA criterion to 

produce the eigen nodule templates is sufficient. 
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FIGURE 26 - ROC curves for template matching detection on Database 1 using nine 
similarity measures and a) the average nodule templates (4 templates one per type) ; b) 
eigen nodule templates generated using 90% PCA criterion; c) eigen nodule templates 
generated using 95% PCA criterion and d) eigen nodule templates generated using 97% 
PCA criterion. 
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Comparing the average and 90% eigen nodules for all similarity measures shows 

overall similar results; variations in AUC computation were less than 0.05. The top four 

similarity measures that provided the highest detection rates when testing on database 1 

were the ZSSD, ZSAD, SSD and NCC. The NCC out-performed its zero-mean 

counterpart, ZNCC, in the four experiments conducted on database 1. Since the nodule 

models produced in this dissertation considered only training data from the first database 

and the results in Figure 26 test on the same low-dose CT datasets, it can be validated 

why the ZSSD and SSD provides better results . The ZSSD computation relies on the 

squared differences followed by the aggregation between the pixels within a square 

neighborhood between the template image and the image slice. 

The results using database 2 showed the average nodule templates using the NCC and 

ZNCC 90% PCA nodule templates, were of the best detection rates. Overall the detection 

process for this database required more nodule model variations. As can be seen from the 

table, the 95% eigen nodule experiments provided better detection results using six out of 

the nine similarity measures. 

Final detection results shown for database 3 are similar to that seen from database 1. 

When comparing the eigen nodule experiment cases, the 90% PCA criterion eigen nodule 

templates generated resulted in better detection rate over its 95% and 97% nodule 

template models counter-parts. The ZNCC and NCC similarity measures provided the 

best detection rates which were slightly higher in the average nodule template experiment 

then the 90% eigen nodule case. 

Comparing the area under curve (AUC) results in Table 4 for all databases allows a 

very important conclusion to be made between the CT databases used in this dissertation: 
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databases 1 and 3 (DBl and DB3) have CT data information that do not have very large 

distinctions in the scanning parameters among them. Thus, the nodule templates 

generated from DB 1 where able to provide acceptable detection results on both studies. 

This is not the case with database 2 (DB2), where AUC showed values that do not exceed 

the mid-0.80 (mid 80%) range for all similarity measures and variations of nodule 

templates. In addition, since the image slices in DB2 were from both pre and post IV CT 

lung images, and the models where only generated from pre non-dye administered slices; 

this could further explain the discrepancies in the results as compared to DBl. 

TABLE 4 - Computed AUC for the template matching detection process with nine 
similarity measures on databases 1, 2, and 3. 

Database 1 Database 2 Database 3 

Measure 
Average 90% 95% 97% Average 90% 95% 97% Average 90% 95% 

NCC 0.82 0.87 0.91 0.87 0.8 1 0.76 0.74 0.79 0.9 1 0.90 0.88 

ZNCC 0.71 0.72 0.7 1 0.7 1 0.78 0.80 0.75 0.76 0.93 0.92 0.90 

SSD 0.87 0.83 0.86 0.93 0.63 0.73 0.75 0.69 0.81 0.88 0.94 

ZSSD 0.92 0.91 0.82 0.92 0.72 0.76 0.78 0.74 0.79 0.95 0.79 

LSSD 0.59 0.55 0.57 0.55 0.53 0.54 0.55 0.54 0.56 0.5\ 0.48 

SAD 0.84 0.82 0.87 0.86 0.74 0.68 0.74 0.69 0.74 0.87 0.77 

ZSAD 0.90 0.82 0.88 0.9 1 0.76 0.68 0.79 0.74 0.68 0.93 0.86 

LSAD 0.83 0.80 0.75 0.77 0.78 0.77 0.71 0.84 0.86 0.83 0.82 

SHD 0.79 0.84 0.85 0.78 0.73 0.68 0.76 0.69 0.72 0.83 0.79 

97% 

0.84 

0.91 

0.87 

0.85 

0.5\ 

0.74 

0.82 

0.78 

0.78 

The LSSD similarity provided the worst results in all experiments for each database 

and can thus be deemed not adequate for use in lung nodule detection. The NCC and 
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ZNCC correlation similarity measures showed their benefits in the 2nd and 3rd databases 

where the CT data did nothave weight in generating the template models. In Table 4, the 

results are shown for the four sets of generated nodule template variations. Highlighted 

values represent the best computed AUC obtained when using the model described in the 

top row for the similarity measures in the first columns. 

D. Conclusions 

In this chapter the detection process was investigated. The design of data-driven 

templates for lung nodule detection were constructed using ASM and AAM models that 

provided realistic shape and texture representations of four types of lung nodules, found 

in CT images. The new templates were used for detection of candidate nodules via 

template matching, where sensitivity and specificity performance analysis was conducted 

using these templates and parametric templates generally known in the lung detection 

literature. 

The effect of template shape on detection of different nodules types was studied. It is 

concluded from extensive experimentation in this dissertation t.hat the data-driven AAM 

algorithm for template matching yielded an overall higher sensitivity and specificity rate, 

yet, the Level sets approach showed instances of improvement for specificity and/or 

sensitivity over the usage of parametric templates. In the parametric case where all radii 

sizes between 1 and 20 pixels were tested the sensitivity was higher but the specificity in 

comparison to the data driven nodule templates was still lower. 

The overall performance depended upon template shape and nodule type. The well­

circumscribed nodule was the least sensitive nodule yet it emphasized the greatest 

improvement as shown in the above tables. The pleural tail in both the parametric and 
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data-driven templates yielded the greatest sensitivity. Overall, the Level sets approach is 

comparable to the parametric templates in terms of sensitivity and specificity for all 

nodule types using the ELCAP database. 

In the second set of experiments the average nodules per type generated by the AAM 

approach and the eigen nodules using 90% PCA criterion, 95% and 97% PCA criterion 

were used for detection. The eigen nodule representations produced multiple models per 

nodule type. The effectiveness of the generated templates was tested for detection via a 

formulated weighted template matching approach using nine different similarity 

measures. Validation of the generated templates robustness for nodule detection was 

tested by implementing the detection process on three lung CT databases. The results 

showed that the LSSD similarity measure provided the worst detection results for all 

experiments conducted on each database. The NCC and ZNCC similarity measures when 

used in the experimentations on the 2nd and 3rd databases showed among the best 

detection performances. 
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CHAPTER IV 

STATISTICAL AND VARIATIONAL OBJECT SEGMENTATION WITH 
APPLICATION TO NODULAR REGION SEGMENTATION 

This chapter describes the segmentation process USlllg statistical as well as 

variational approaches. This is one of the most challenging processes under the umbrella 

of computer vision. It is important for modeling and a basic step in object visualization. 

The chapter handles the intensity modeling process to describe region segmentation using 

a linear combination of Gaussians for probability density functions. Also, neighborhood 

pixels interaction will be take in consideration. Also, variational level set segmentation 

will be illustrated to handle the issue of adding prior shape information to the problem. 

Several experimental results will be demonstrated for segmenting lung nodules of 

different sizes ranging from small to large. 

A. Introduction 

Figure 27 provides illustrative examples to images with varying complexity. The 

first row is a star object inside a fixed background. The features of the object (i.e. , comers 

ofthe star) are well-defined, and the gray level histogram (shown in the middle) contains 

only two peaks; hence, segmentation is straightforward, and can be accomplished by 

using a threshold in between these peaks (the binary image is shown in the right). The 

second row shows the star lmage with additive white nOlse. 
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FIGURE 27 - Illustrative examples of multimodal images.(a) A star object with binary 
histogram; (b) The star object with added white Gaussian noise; (c) A slice from a low 
dose CT (LDCT) scan of the lung; (d) Lung nodule segmented by three different 
methods; yellow circles are inserted over the region of interests (ROJ). 
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The uncertainties about the gray level distribution of the star shows in the disappearance 

of the sharp peaks in the histogram (middle) and, subsequently, a threshold-based 

segmentation won't be as accurate as the noise free case. Still, the corners of the star are 

apparent, and inclusion of a priori shape information about the star may be used to 

enhance the segmentation. The image in the third row is a CT slice of the human chest. 

As the image contains chest (ribs), heart, fluids and lung tissues with different X-ray 

absorption in the CT scanning, the gray level histogram will be multimodal , yet the peaks 

are defmed within modes corresponding to the major image constituents; lung tissue and 

others. The multimodal nature of the image histograms may suggest, at a first look, that a 

straight forward segmentation, such as thresholding or deterministic region growing, is 

possible (e.g. , [41][42]). Unfortunately, this is not the case and a more elaborate scheme 

is required to segment the lung tissues from the rest of the chest (e.g. , [43][73]) 

A severe complication comes into play when the ROI in the CT scan is the nodules 

within the lung tissue or attached to the pleural surface. Such nodules are random in 

shape, size and may be located anywhere in the lung tissue. Straight forward 

segmentation of these nodules will not be possible; indeed a series of steps are usually 

used for that purpose, and a different casting of the problem is used. In segmenting lung 

nodules, a detection step is used to narrow down candidate ROIs where these nodules 

may fall , then a false positive step is performed to reduce the number of candidate 

nodules, and finally, an elaborate operation (which in itself may involve several steps) is 

used to segment (produce an outline) of the candidate nodules (e.g. , [74]). Bottom row of 

Figure 27 shows nodules detected and segmented in the CT slice of the third row. 
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For more than two decades, several research projects have been investigating the 

efficiency of lung cancer screening with low dose CT on asymptomatic people at high 

risk [44]. The main feature for the characterization of indeterminate small « lcm) 

screening detected lung nodules is the growth of size [45-46]. Nodule size is an 

important factor in volumetric analysis of lung nodules [47]. It has been shown clinically 

that size is linked to nodule malignancy, with non-calcified nodules larger than 2cm in 

diameter having a higher rate of malignancy than smaller nodules [48] . Size computation 

through a 3D measurement is usually performed by applying volumetric methods to a 

segmentation result. However, lung nodules segmentation in CT imaging is a complex 

and challenging process; one of the most important problems arises from the frequent 

attachments of the nodules to other anatomical objects. 

The lungs are a complex organ which includes several structures, such as vessels, 

fissures, bronchi or pleura that can be located close to lung nodules. Also, the main 

"head" of the nodule is what radiologists consider when computing the size. In the case 

of detached nodules (i.e. well-circumscribed nodules) the whole segmented nodule is 

considered in size computations and growth analysis, while in detached nodules (i.e. 

juxta-pleural, vascularized and pleural-tail) the "head" is required to be extracted from 

the anatomical surrounds. For example, in the juxta-pleural case the main shape 

information attached to the pleural-wall is the "head" of the nodule and is used in size 

and growth follow-up computations which can aid in deciding malignancy. 

Intensity-based segmentation [4-9-50] has been successfully applied to the nodule 

segmentation problem using local density maximum and thresholding algorithms. These 

classes of algorithms are primarily effective for solitary nodules (well-circumscribed), 
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however, fail in separating nodules from juxtaposed surrounding structures, such as the 

pleural wall (i.e. Juxta-Pleural and Pleural-Tail nodules) and vessels (Vascular), due to 

their similar intensities. More sophisticated approaches have been proposed to 

incorporate nodule-specific geometrical and morphological constraints to address this 

issue (e.g. [10][51-53]). However, juxta-pleural, or wall-attached, nodules still remain a 

challenge because they can violate geometrical assumptions and appear frequently. 

In CT slices the rib areas tend to appear with high intensity values, which cause other 

difficulties when using only intensity-based segmentation approaches. These high­

intensity regions near a given marker can bias the semi-automatic nodule center estimator 

resulting in inaccurate computations of size. 

Robust segmentation of the juxta-pleural cases can be addressed in two approaches: 

a) global lung or rib segmentation (e.g., [54]) and b) local non-target removal or 

avoidance [50]. The first can be effective but also computationally complex and 

dependent on the accuracy of the whole-lung segmentation. The second is more efficient 

than the former but more difficult to achieve high performance due to the limited amount 

of information available for the non-target structures. Another set of approaches have 

been proposed in the literature but require excessive user interaction to obtain acceptable 

results (e.g. [44][55]). Some approaches assumed predefined lung walls before 

segmenting the juxta-pleural nodules but in cases where wall movement occurs, due to 

breath motion, the approach fails [56]. 

The rest of this chapter demonstrates statistical image modeling in addition to 

geometric image segmentation including shape priors. This work shows in detail the 

probability density function estimation as a linear combination of Gaussians and its use in 
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image segmentation. This approach works very well for homogeneous regions or when 

the image has little in-homogeneities. Beyond these circumstances, bad results are 

expected. Thus an approach that allows the use of shape priors is required. The level set 

segmentation helps include prior shape models to enhance the segmentation results 

especially with lung nodules which have many challenges as listed above. The intensity 

as well as prior shape segmentation using level sets will be demonstrated. Exhaustive 

experimental validation will show the efficiency of the proposed technique. 

B. Image Modeling 

The goal of image modeling is to describe the visual characteristics of the image. 

Stochastic approaches, particularly random field models, have been used with impressive 

success to model various types of images. These models have been incorporated in 

various image processing and image analysis tasks, including filtering, coding and 

segmentation, in the past three decades (e.g. , [57-62]). Objects-of-interest in an image 

are characterized by geometric shapes and visual appearance, although it is very difficult 

to formally define these notions. 

A priori information about the objects in the image is very crucial for robust 

performance of various tasks in image understanding. As a simple illustration, Figure 

27(b) shows a star object in which an additive Gaussian noise would frustrate the 

segmentation process. A priori information about the objects' shape (i .e., star) will 

provide a clue for the segmentation process. Modeling the appearance (intensity 

information), spatial inter-dependence (spatial interaction), and a priori information is an 

active research area, and a number of issues related to incorporating these models into 
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image understanding have not been resolved due to the ill-posed nature of the specific 

problems, e.g. , segmentation. 

1. Modeling for Segmentation 

The strategy followed in modeling images for the purpose of segmentation hinges on: a) 

proper estimation of the joint and marginal probability densities from the intensity 

information, b) proper modeling of the spatial inter-dependence of pixel intensities with 

respect to neighboring pixels, and c) formulating the segmentation process in terms of a 

sequential set of components that govern the objects characteristics in an image; e.g. , 

intensity, texture, and shape, which may be implemented in an iterative, yet cooperative 

fashion. Of particular interest to the development in this work are approaches for 

modeling the intensity, spatial interaction and shape information, which enable a generic 

formulation of image segmentation as a minimization of an "energy" function. The 

segmentation approach in this chapter is unsupervised, and aims at obtaining a maximum 

a posteriori (MAP) estimate for the spatial support (labels) of the classes in the image 

through incorporation of region processes (low level) and class spatial support (high 

level), and a priori information about the shape of the objects. 

The conventional approach for model-based image segmentation describes the 

input image and the desired map (labeled image) by a joint Markov-Gibbs random field 

(MGRF) model of independent image signals and interdependent region labels. Let 

G = {O, ... , Q - I} and L = {I, ... , K} denote sets of gray levels 9 and region labels l , 

respectively. Here, Q is the number of gray levels, and K is the number of image modes, 

i.e. peaks in the gray level frequency distribution. Assume that each dominant image 

mode corresponds to a particular class of objects to be found in the image. Let P be the 
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set of image pixels, then one can define the gray level image I: P -7 G and its desired 

map t: P -7 L. A two-level probability model ofthe original image and its desired map is 

given by ajoint distribution 

P(I, t) = [P(t)P(IIt)] (36) 

where P (I If) is a conditional distribution of the original image given the map and P (f) 

is an unconditional probability distribution of the map. The Bayesian maximum-a­

posteriori (MAP) estimate the map t, given the image I: 

f ' = arg maxfEF L(I, t) (37) 

where F is the set of all region maps with labels l E L on P, maximizes the log-likelihood 

function: 

L(I, t) = log P(I It) + log P( t) (38) 

To fmd this log-likelihood function, one needs to estimate the conditional P(II!) and the 

unconditional P (f) image models, and identify their parameters. The following section 

considers modeling the two components ofEq. 38 separately before embarking on the 

techniques of segmentation. The first comonent is denoted as representing the texture or 

appearnce of the region (sometimes this is referred to as the low level process in the 

literature) and the second component the labeling (or the high level process). 

2. Density Estimation as a Linear Model 

This section examines parametric density estimation using a variable weighted sum of 

Gaussian kernels, where the weights may take positive and negative values. Various 

statistical properties of the estimator are studied as well as its extensions to 

multidimensional probability density estimation. Identification of the estimator 
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parameters are computed by a modified EM algorithm and the number of kernels are 

estimated by information theoretic approach, using the Akiake Information Criterion 

(AIC). Empirical evaluation of the estimator is provided with respect to window-based 

estimators and the classical linear combinations of Gaussian estimator that uses only 

positive weights, showing its robustness (in terms of accuracy and speed) for various 

applications in image and signal analysis and machine learning. Numerical methods for 

estimating the probability density function (PDF) of a random variable X (random vector 

in general) are important in various signal and image analysis applications. Such 

estimates form the basis of optimal filtering, synthesis and segmentation of an image or a 

signal. Indeed, PDF estimation is foundational in Bayesian statistics and huge number of 

machine learning applications [63]. 

Given a random sample D = {XI, X2, X3 . .. XN } from a particular distribution with 

PDF fx(x) that is assumed to be continuous over a domain E [a, b] c R. Hence, the 

modes of fxCx) (i.e., the minima and maxima) are in the closed interval [a, b]. The 

estimate ICx) of the PDF could be obtained by a number of methods, including the naIve 

estimator, the k-NN and variable (generalized) kernel estimator [63] ; a kernel estimator 

has the following form: ICx) = :h Lf=l K(~Xi) where KC.) is a symmetric PDF and h 

is the "window" width. There are various kernels (windows) that have been studied in the 

literature including the uniform and Gaussian PDFs [63-64]. In particular, the 

differentiability, integrability and tail properties of the kernel-based estimator are well­

studied in the statistical literature [63]. In addition, the quality of the estimator is 

examined in terms of various statistical properties such as the consistency and the effect 
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of samples size. An alternative to the kernel estimator is the so-called mixture model, 

where the underlying density is assumed to have the form: 

(39) 

where 0(xI8j ) is the /h kernel function, Wj is the corresponding weight and C is the 

number of components of the mixture. Unlike kernel estimator where the number of 

components N is number of data points, in a mixture the number of components C can be 

pre-specified based on some a priori knowledge about the nature of the sUbpopulations in 

the data (dominant modes of the data). The Gaussian function is amongst the most used 

kernels in the above model; the resulting PDF estimate is known as linear combination of 

Gaussian (LCG). 

The LCG possesses various computational and mathematical characteristics that 

makes it attractive, in particular its integrability, continuity, and the fact that a well-

established suboptimal approach for estimation of the parameters 8j ,j E [1, C] exists via 

the Expectation-Maximization (EM) algorithm (e.g. , [65-66]). To provide a better fitting 

for the empirical density, Farag et aI, 2006, [43] , introduced a modification to the 

standard linear model above, in which the weights were allowed to take positive and 

negative values. The new LCG model (will be denoted by LCG2, whereas the model in 

Eq. 39 will be denoted by LCG l ) has the following form: 

(40) 

Where, Cp and Cn are the number of positive and negative kernels used in the linear 

model, and wp,i and Wn,j are the corresponding weights. In order for the LCG2 estimate to 

be a real density model (i.e. , positive and integrates to one), a condition on the weights is 

imposed such that: 
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~Cp ~Cn - 1 
L..i=l wp,i - L..j=l Wn,j - . (41) 

It has been proven that the new model provides a better fitting for the empirical density 

[43] . 

This section examines various statistical properties of the new LCG2 model. In 

particular the validity of the condition in Eq. 41 is studied by: evaluating the robustness 

of the model with respect to mode resolutions in the empirical PDF, extensions to higher 

dimensions are introduced, and the performance of the LCG2 model with respect to other 

traditional kernel-based PDF estimators are compared. 

3. Generalized Linear Combinations of Gaussian PDF Estimator 

As the models in Eq. 39 and Eq. 40 have been used for both marginal and joint PDFs, 

below a clear distinction is shown for the two scenarios. 

a. Marginal PDF Estimation 

Let the sample D = {Xflxfl··· , X~} be drawn from a single distribution; random 

variable Xk with PDF f Xk (x)- or tk (x) . The LCG2 model in Eq. 40 may be rewritten as: 

(42) 

b. Composite Density Modeling (set of mar gina Is) 

Suppose there is a composite density function of m random variable. A common 

scenario, the histogram of realizations represents weighted marginal densities of a 

number of classes. The goal would be to separate the marginal densities, each may be 

modeled by LCG1 or LCG2, in order to obtain segmentation threshold , for example. 

Using LCG2, this composite density model will be written as: 
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(43) 

In this case, one can relate Eq. 40 and Eq. 43 by defIning Cp = L~=l Cp,k and Cn = 

Integrability: As both sides in Eq. 40 must integrate to 1; hence, L~!: wp,i -

L~:·~ Wn,j = 1 is immediate since 0(x[Od is a PDF; however, the integration should be 

conducted over the entire real line. In practice, the ensemble D is fInite-length, i.e. , fk(x) 

has a fInite domain; xf E [a, b] c R; hence, the integrability of A (x)will be assured 

over the domain [a, b] , which provides further credence for the condition imposed on the 

set of weights. 

Convergence: A weak form of convergence (in distribution) may be obtained through 

evaluating the distribution function of the LCG2 which minimizes the Levy distance from 

the empirical distribution function [43]. Indeed, a stronger form of convergence may be 

obtained and can be shown to provide least square error from the empirical density at the 

optimum set of weights . One way to look at this is the fact that the model is a regression 

to the empirical density Ix (x). 

Minimum variance: Either form of the LCG satisfIes the consistency requirements as 

the number of samples in D becomes large, and there exist an integer number of kernels 

and a set of weights that provides minimum variance estimation. The effect of the 

number of samples will be discussed in the next section. 

Model Identification: For either the marginal or the joint density models, to estimate the 

parameters of the LCG2 model, the modifIed EM algorithm [43] is used to deal with the 
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positive and negative components. However, most shortcomings in that approach are the 

lack of an optimal approach to select the number of dominant modes C (number of 

random variables), and the inability to resolve modes of the empirical density that are 

close to each other. Also, the performance of the algorithm depends on the initialization; 

a typical problem with the EM algorithm. To overcome these problems, an information 

theoretic approach based on the Akiake Information Criterion (AIC) was used in order to 

estimate these values (C and the required initial parameters) [67], which enabled 

automatic estimation of the number of kernels in the LCG2 model (Eq. 40) by 

optimization of a likelihood function incorporating the Akaike Information Criterion 

(AI C). The approach may be summarized as follows : Suppose one has a joint density 

function of C random variable; i.e. , fxJxzfx3 ••• fxc' of random sample D = 

{XVX2' ... ,XNl The AIC criterion may be written as: 

(44) 

where 5U is model component penalty and I1j is the posterior probability of the mode j 

given x. The component penalty 5U of the model can be selected greater than the increase 

in the likelihood when a Gaussian distribution is iteratively added to the model. This 

criterion can be used for higher dimensions as well. 

4. Gibbs-Markov Modelling of the RegionlLabeling Process 

In order to estimate the region map unconditional probability distribution P(f) , the 

region map f = {tv ... , fp}, is presented as realizations of random variables, and the 

probability measure representing the joint distribution of all pixel labels on an image grid 

is presented as a Markov-Gibbs Random Field (MGRF) with respect to a neighborhood 

system N. Fitting an Markov Random Field (MRF) model to an image requires 
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estimating its parameters from a sample of the image. The literature is rich with works 

that propose different Markov-Gibbs Random Field (MGRF) models, which are suitable 

for a specific system behavior. Let e be a vector of potential parameters (e.g. in a 

second order neighborhood system) for a homogeneous anisotropic Potts model with 

pairwise c1iques l :e = [Yv h, Y3, Y4] ' The Gibbs probability distribution is represented as 

a function of e as follows: 

P(f) = i exp( - L{p,q}EN V(f, e)), (45) 

where Z is a normalizing factor, V is the potential function, and f is a realization of the 

MGRF. Thus, the MLE ofe is defined by 

e * = arg maXe ~p~ (L{P,q}EN V(f, e) + 10g(Z(e))) , (46) 

Equation (46) cannot be solved by the differentiation of the log-likelihood because the 

second term 10g(Z(e)) is intractable. Thus, numerical techniques are usually used to find 

a solution for this problem. Coding Method (CM); method-3 and Least Square Error 

(LSQR) method-6 are of the most popular MRF parameters' estimators. However, CM's 

performance varies widely for different data and CM's estimations sometimes need 

adjustment. Also, to estimate the model parameters using LSQR, one needs to solve an 

overdetermined system of linear equations. This is not practical in the case of realizations 

with many colors, where the overdetermined system of equations has up to # colors to 

the power of 8 equations. Empirical approaches similar to those Picardet aI., 1992 [69] 

and the Gibbs energy histogram (e.g., EI-Baz and Farag, 2006 [70]) may be possible for 

IA clique is defined as a set of sites (e.g. image pixels) such that all pairs of sites are mutual neighbors in 
accord with a given neighborhood system N [68]. 
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incorporation into the MAP segmentation framework; here the estimation may be 

conducted off line. 

5. Maximum A posteriori (MAP) Segmentation 

Once the image models are estimated, the goal is to find the desired map f by 

maximizing the likelihood in Eq. 38. Unfortunately, this problem has no analytical 

solution. However, using Eq. 39 and 40, and considering pairwise Gibbs potential, it can 

easily be proven that maximizing the likelihood in Eq. 38 is equivalent to minimizing the 

following energy function: 

(47) 

The energy function may be optimized by various approaches, including Simulated 

Annealing, Dymanic Programming and Graph-cuts [71]. Ali et aI. , [72][75] and Farag et 

aI. [73 -74] evaluated some of these approaches for biomodal image segmentation. 

c. Variational Image Segmentation 

1. Intensity Region Modeling by level sets 

The level set function as a signed distance map is able to capture complicated topological 

deformations. A level set function 0: n c R2 ~ R can be defmed as the minimum 

Euclidean distance between the point X E n and the shape boundary points. A curve can 

be initialized inside an object, and then evolves to cover the region guided by image 

information. The evolving curve within the level set formulation is a propagating front 

embedded as the zero level of a 3D scalar function o (X, t). It should be pointed out that 

there is a slight change of notation in this section from the previous; X represents a 
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location in space here, whereas in the prevIOUS section it represents Image intensity 

values. 

To formulate the intensity segmentation problem, it is necessary to involve the 

contour representation. Given an image 1: n c R2 ~ R, the segmentation process aims to 

partition the image into two regions: object (inside the contour denoted by 0) and 

background (outside the contour denoted by b). An error term can be computed by 

counting the number of correctly classified pixels and then measuring the difference with 

respect to the total number of pixels. This can be done by summing up the probabilities of 

the internal pixels to be object and the external pixels probabilities to be classified as 

background. This is measured by the term: 

(48) 

where Po and Pb are the probabilities of the object and background according to the 

intensity values (Gaussian distributions are used to model these regions). Prior 

probabilities of regions (7fo and 7fb) are involved in the formulation as well. Minimizing 

this error term is equivalent to minimizing the energy functional: 

where H is the Heaviside step function and E E R+ . represents the narrow band region 

width. An extra term is added to the energy function to represent the contour arc-length 

(L) which also needs to be minimal to guarantee a smooth evolution. The new energy will 

be: 
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where A E R+. The level set function evolves to minimize such a functional using the 

Euler-Lagrange formulation with the gradient descent optimization: 

(51 ) 

where 8 is the derivative of the Heaviside function and K is the curvature. Thus, the 

evolution depends on the local geometric properties (local curvature) of the front and the 

external parameters related to the input data 1. The function 0 deforms iteratively 

according to the above equation, while solving 0CX, t) = 0 gives the position of the 2D 

front iteratively. Let 0 9 denote the intensity segmented region function representation. 

The Gaussian distribution and prior probabilistic parameters are computed according to 

the method in [76]. 

2. Shape Alignment 

This process aims to compute a transformation A that moves a source shape (a) to its 

target ({J). The in-homogeneous scaling matching criteria from [76-77] is adopted, where 

the source and target shapes are represented by the signed distance functions 0 a and 0 f3, 

respectively. The transformation function is assumed to have scaling components: 

S = diag( SX' Sy), rotation angle, () (associated with a rotation matrix R) and translations: 

T = [Tx, Ty y. A dissimilarity measure to overcome the scale variance issue is formulated 

by assuming that the signed distance function can be expressed in terms of its projections 

in the coordinate directions as: da = [dx , dyY at any point in the domain of the shape a. 

Applying a global transformation A on 0a results in a change of the distance projections 

to d' a = RSda which allows the magnitude to be defmed as: 0' a = II Sda II which 

implies that 0' a :::; max( SX' Sy) 0. Thus, a dissimilarity measure to compute the 
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difference between the transformed shape and its target representation can be directly 

formulated as : 

reX) = II RSda (X) II - f/J P (A) (52) 

by summmg-up the squared difference between the two representations, an energy 

function can be formulated as: 

(53) 

where 8' E reduces the complexity of the problem and E is the width parameter of the 

band around the shape contour. The given measure r, from the shown derivations, satisfy 

the relation r:::; sf/Ja(X) - f/Jp(A), where s = max(sx,sy). Thus, an energy function can 

be obtained where £ :::; £1; 

(54) 

The above functional better describes the registration since it incorporates a scaled 

version of the source shape representation. In this dissertation, the gradient descent 

optimization is used to solve the problem, which requires the involved functions to be 

differentiable. A smeared version of, s( sx, Sy) = max( sx, Sy) , is used at the line (sx = 

Sy) since, the function is not differentiable there, which is based on its original definition: 

which will return Sx if Sx - Sy 2:: 0, otherwise Sy . The smeared Heaviside step function H 

is used to obtain a smooth transition around the line Sx = Sy allowing the function to be 

differentiable everywhere. The function derivatives will be calculated as 

(56) 
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(57) 

The parameters {sx' Sy' 8, Tx, Ty } are required to minimize the energy functional E. 

3. Level Set Segmentation Algorithm with Shape Prior 

The above steps have resulted in an algorithm whose input are LDCT scans and output 

are segmented lung nodules. The algorithm can be summarized as follows: 

Lung Nodule Segmentation: 

1. Segment the Lungs from their surroundings - Lung tissue segmentation 

2. Train the lung nodule modeling step on a portion of the data at hand - Lung Nodule 

Modeling 

3. Apply the lung nodule detection approach discussed in Chapter IV to compute the 

positions of the candidate nodules and hence crop them for classification. Cropping 

here means setting a box around the nodule center and extracts its neighbor area from 

the surroundings; i.e., a region of interest, ROI, is cropped around the detected 

nodules - Nodule detection and ROI determination 

4. Based on the input image size, construct the initial prior shape circle and its shape 

model representation 0p . 

5. Solve Eq. 50 to compute the intensity segmentation reglOn representation 0g . 

Solution is iterative until the function converges - reaches a certain state. Note the 

function keeps the sign distance property by following the approach in [76]. 

6. Initialize the transformation parameters to Sx = 1, Sy = 1 and 8 = O. At this moment 

the nodule center location is manually selected which initializes the translation 

parameters tx and ty . 

7. Solve the gradient descent approach to minimize the energy in Eq. 53 . Parameters 

converge to their steady state values and hence the final boundaries of the ellipse are 

computed. 

8. Threshold the region inside the ellipse to accurately mark the nodule pixels. The 

resulting region may under-go a median filter smoothing step to remove noisy pixels. 
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D. Experimental Results 

1. Datasets 

This work is validated using four different databases. The first is the ELCAP [12] public 

database, DB 1, described in Chapter III. This database has nodules of diameter ranging 

from 2mm to Smm. The second database (DB2) contains 108 nodules from LDCT scans 

of slice thickness 2.5mm and a pixel-spacing of 0.72461mm x 0.72461mm (diameter 

from 2.9mm to 6mm). The third database (DB3) has 28 nodules, 1.25mm and 2.5mm 

slice thickness, and nodules diameter ranging from tmm to 20mm. The fourth dataset is 

the LIDC (DB4) which contains nodules ranging in sizes. The slices are both low-dose 

and high-dose CT images [13]. 

2. Comparative Study 

The discussed segmentation approaches in this chapter were examined on all four 

databases described. A small sample of results from DB4 with various nodule sizes, 

positions and segmentation challenges are depicted in Figure 28. The figure aids in 

identifying the benefits of using intensity with shape-based approaches versus intensity­

based only segmentation methods. 

Figure 28 demonstrates that the EM, variational intensity-based level sets, and graph 

cuts approaches kept the pleural surface for connected nodules. Since the focus of the 

nodule segmentation in this chapter is for size computation and, when applicable, growth 

rate measurements for malignancy, the pleural surface is considered undesired 

information. Figure 28 (b) and (d) are exanlples of nodule cases with visible noise 

artifacts and non-nodule infomlation (i.e. anatomical structures). These illustrate further 
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some of the difficulties discussed before about small objects, and how such challenges 

affect the ability for proper segmentation. 

Overall the variational shape-based level set method provided the best segmentation 

results for obtaining the "head" of the nodule region. A post segmentation step was 

conducted on the elliptical region extracted, (Note to re-iterate: the shape model defined 

was an ellipse since the "head", as previously described, can be encompassed in a circular 

region of interest.) to obtain a well-defined shape of the main nodule "head". 
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FIGURE 28 - An LIDC Nodule: a) centrally located in the lung tissue; b) connected to 
the pleural surface; c) connected to the pleural surface and d) lung nodule located in the 
peripheral lung region. The first column is the cropped regions of interests. Column two 
depicts the EM segmentation followed by morphological operations. Column three 
illustrates the variational intensity level set segmentation, while column four shows the 
results of the variational shape-based level set segmentation. The final column represents 
the intensity-based graph cuts segmentation results. 

The results concluded that the intensity-based approaches can be used as an initial or 

post segmentation process to the variational shaped-based level sets. Also, approaches 

where a shape model can be embedded into the formulation of the segmentation method 

are necessary for such cases as nodule segmentation. 
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3. Performance of the Variational Shape-based Segmentation 

The developed approach uses a region of interest (RO!) image that contains the lung 

nodule as input. Image intensity segmentation using level sets (as described above) is 

used to extract the non-lung regions from the lung tissue regions and represents the slices 

by a level set function (0g ) (see Figure 29). The first four rows are from DBI while the 

rest belong to DB2. The shape model is combined with the sign distance functions 0 9 to 

segment the nodule region in a variational registration step. The shape prior model is a 

signed distance function of a circle denoted by 0p . The shape prior model 0p is registered 

with the intensity model 0 9 to mark the boundaries of the lung nodule using the approach 

shown above. The model is initialized and then the alignment parameters are estimated 

using the gradient descent optimization. 

Different scales, rotation, and translation parameters are computed in each case to 

obtain an ellipse exactly around the nodule head (see Figure 30). Changing of the shape 

model can be noticed until the steady state around the nodule boundaries is reached. Also, 

the axis of the ellipse rotates and varies in size to include the most boundary information 

of the nodule. The approach is robust for various nodule sizes from larger nodules 

« .tem) to nodules that occupy smaller spatial support regions (i.e. > lem). 

Sample results from· the third and fourth databases are shown in Figures 31 and 32 

respectively. These databases have a variety of nodule sizes and types. In all cases, the 

hyper ellipse is capable of covering the prominent nodule shape. The elliptic region can 

be segmented later by a simple thresholding technique to result in an accurate measure of 

the nodule size by removing the lung tissues which have low intensity values. From 

Table 5, the number of dubbed failure cases is less than 6%. Result cases are judged by 
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checking if the model fits the boundaries, if nodule is found not to fit the boundary it is 

identified as a failure case. 

The ultimate goal of nodule segmentation is to specify the malignancy by following 

up the nodule size in different scans taken at different time intervals. The proposed 

nodule segmentation approach was used to segment 3D nodules in different patient scans, 

as a follow-up (see table 6). 
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FIGURE 29 - Different ROI images of lung nodules and their corresponding binary 
segmentation results: First fourth, seventh columns represent intensity images. Second, 
fifth, eighth columns demonstrate the binary segmentation results. The remaining 
columns illustrate the sign distance function 0gof the resulting regions. Juxta pleural 
nodules are shown in examples A.I and A.2. Well circumscribed nodule examples are 
given in: A.3 , B.3 and C.l. Vasculature nodule examples can be seen in B.1 , C.3 , D.1 , 
and D.3, while a pleural tail nodule is shown at B.2. Other examples are given in rows E 
to 1. 
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The table further emphasizes the correlation between malignancy and size-volume in 

the corresponding case. Volume changes for chronological scans of a given patient are 

illustrated, which corresponds to the malignancy estimate results provided by an expert . 

radiologist. Nodule growth/decay rates can be observed from scan to scan over time 

FIGURE 30 - Nodule segmentation results from DB 1 (left block-first four columns) and 
DB2 (right block-last four columns). Initialization is given in green while final nodule 
boundaries are shown in red. 
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FIGURE 31 - Sample nodule segmentation results are illustrated from DB3 . Nodules 
range in size as well as vary in positions with respect to the pleural wall and vasculature. 

TABLE 5 - Overall segmentation results found for the four datasets. Nodules are 
separated into the four nodule categories. The total numbers of nodules from the database 
considered in the nodule class are the numbers to the left of the brackets, while the failure 
cases are in the brackets. First two rows provide information on the four databases. 

Nodules OBI DB2 DB3 DB4 Summary 

....... -
Nodule Diameter(range in mm) 2-5 2.5-6 7-20 2-4 2-20 

Juxta-Pleural 115{4} 27{2} 6{0} 59{5} 94.66% 

Well-Circumscribed 91 {3} 50{3} 21 {I} 174{4} 96.73% 

Pleural-Tail 45{J} 1 O{l} O{O} 34{4} 93.26% 

Total 291 {10} 108{8} 28{l } 316{18} 94.12% 
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FIGURE 32 - Sample nodule segmentation results are illustrated from DB4. Nodules 
have sizes varying from 2-4 mm as well as varying positions with respect to the pleural 
wall and vasculature. 
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TABLE 6 - Follow-up evaluation for 5 patients on several scans is shown column-wise. 
Nodule size values are shown in mm3

. 

Patient ID # I I 2 4 6 6 6 7 

Nodule ID 3 5 2 2 I 2 3 I 

Scan # 1 824.76 3092.80 1052.30 2771.70 828 .78 579.56 724.45 1639.50 

Scan #2 1021.80 5608.90 1164.90 2346.60 1051.30 700.86 1051.30 965.52 

Scan #3 1305 .9 473 . 14 520.46 

E. Summary 

This chapter examined statitical and vartaional approaches for segmentation of lung 

nodules in LDCT scans. The cropped regions around the nodules have bimodal 

histograms (see Figure 11 in Chapter 1 of this dissertation). Intensity-based segmentation 

is plausible and various methods may be used to select a segmentation threshold. 

Unfortunately, due to the uncertainties associated with the nodules in LDCT, more 

elaborate segmentation methods are required. A further extension to the approach of 

Farag et aI. , 2006 [43] was introduced, in the intensity models based on the linear 

combinations of Gaussians (LCG) model , and in the paramter identification of the Gibbs-

Markov model used for modeling the spatial interaction. 

A generalized linear model for probability density estimation usmg linear 

combinations of Gaussians (LCG) with general weights was used. Approaches to 

estimate the number of modes in the histogram (components of the LCG model) and the 

corresponding parameters of the Gaussian kernels were presented. An analytical 

approach to estimate spatial interaction potentials in the Markov-Gibbs random field 

(MGRF) model is presented and evaluated. A maximum a posteriori (MAP) approach 
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was presented which uses the LCG and the MGRF models, resulting m an energy 

function that can be minimized iteratively using the Graph Cuts approach. 

A new variational shape-based level set formulation for the lung nodules 

segmentation problem was described. A shape prior model in the form of a circle was 

embedded into the image domain by means of registration, allowing the use of 

inhomogeneous scales. The usage of such scales in registering the shape and intensity 

models allowed the template to deform as an adaptive ellipse that tended to better fit 

around the head of the nodule boundaries. The registration process incorporates, in the 

implicit spaces, both a prior shape model and image intensity information. 

Among the possible extensions are the following : a) How to model the statsitical 

shape models and include the shape priors in the segmentation process? Since, the 

statistical shape-prior segmentation in the literature is known for its speed; b) How to 

generalize the transfonnation paramters that embed the shape model into the image 

domain, thus, avoiding the post EM step; c) Study incorporatation of the shape priors into 

the energy function, of general topological cliques in the MGRF models, and evaluation 

of the segmentation algorithm with respect to variational shape-based techniques such as 

level sets; and d) Perform exhuastive follow-up study for diagnosing nodule malignacy . 
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CHAPTER V 

CLASSIFICATION OF SMALL SIZE LUNG NODULES 

In the computer vision and biomedical imaging literature the terms categorization, 

classification, identification, and recognition share a lot of commonality of methods and 

purpose. In the face recognition setup, the general approach is to detect faces, extract 

signature information and then perform recognition. In the lung nodule example, one may 

also denote the classification step as recognition. However, classification may indeed 

entail two aspects: assigning segmented objects into types (classes), or assigning them 

into a definitive group (e.g. , pathology in the lung nodule case). 

Chapter II studied the deformable modeling methods based on ASM, AAM and 

ATM. Chapter III used these models for small object detection. Chapter IV used the 

models also for segmenting the detected object. This chapter aims at evaluating the 

effectiveness of the modeling approaches devised in the dissertation for classification, 

and completing the loop in computer-aided diagnosis/decision (CAD) system. The 

chapter further examines approaches for classification of lung nodules using modern 

object descriptors that have been introduced in the computer vision literature during the 

past decade. 

As objects of interest have been described in terms of their shape and appearance, this 

work shall focus on descriptors that adhere to shape and appearance contexts. 
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As discussed in Chapter II, texture, color, and intensity of an object will connote its 

appearance. Boundaries, specific unique features that are invariant to size, orientation and 

translation will connote its shape. This examination study shall be confined to feature 

descriptors of appearance and shape that are most suitable for classification of small 

object; again, small lung nodules (less than 10 nun in diameter) are the focus of this case 

study. 

Given precise object models, categorization may be performed by registration. That is 

the segmented image (or volume in 3D) of the candidate object may be registered to the 

available models, and the categorization will be assigned to the closet model. Various 

registration methods may be used. If appearance is captured in the models and images, 

the mutual information approach may be used (e.g., [78]). On the other hand, if the 

boundaries (shape) information is the main form for the models and candidates, then 

various matching methods, which are distance based, may be used; e.g., the iterated 

closest point (lCP) algorithm [79] . Various enhancements and modifications have been 

introduced to the MI and ICp · algorithms during the past decade and half, which 

improved speed and accuracy of the registration process. Likewise, elastic registration of 

shapes and volumes has been enhanced a great deal during the past decade. This chapter 

will not cover this literature. Recent surveys of modern registration methods may be 

found in [80][81] . If the object models and candidates are represented in terms of 

signatures (vector of features) , then categorization may be performed using a distance 

classifier, such the kNN (e.g. , [63]). 

On the other hand, if classification is categorization of objects into classes + groups, 

then a two-stage process may be conducted, the first may use appearance/shape 
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registration or distance classification, and the second may also repeat the same step but 

on a narrower population. 

To clarify this matter, two examples in face recognition and nodule analysis are 

given. Suppose there is a face recognition system tilted towards identifying young Asian 

teens. The system may use a typical face recognition system to identify young teen faces 

first. Then a classification stage, based on morphometric measurements, may be used to 

classify teens into Asian and non-Asian. In the lung nodule example, the first stage can 

detect and segment the lung nodules, then classification can provide: a) benign or 

malignant; or b) nodule category (well-circumscribed, vascular, juxta-pleural, and 

pleural-tail) + benign or malignant. In all cases, the most important aspects of 

categorization are two: features + matching criterion. 

~he remainder of this chapter examines the issues of feature descriptors and lung 

nodule classification into nodule category. Planned future work will address the 

subsequent step to classify into benign or malignant. Figure 33 illustrates the entire 

framework of nodule analysis formed of three steps: modeling, detection, segmentation 

and categorization. 

A. Object Feature Descriptors 

In the past decade, several object descriptors have been introduced in the computer 

vision literature, including the local binary pattern (LBP) [82] , the scale-invariant feature 

transform (SIFT) [32], its color extension CSIFT [83] , and the speeded-up robust 

features (SURF) [84]. A comprehensive evaluation of the geometric feature descriptors 

may be found elsewhere, in particular Mikolajczyk and Schmid, 2005 [85]. Various 

enhancements to the SIFT descriptor were introduced (e.g. , the ASIFT [33]). The 
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Daugman code method (e.g. , [86]) - used to discriminate between human irises - may be 

useful to quantify the intensity distribution of the lung nodules. If the objects are outlined 

in a closed contour, the classical Fourier Descriptor (FD) may lend benefit for shape 

classification [87] . This work applies the FD method to lung nodule classification. 
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FIGURE 33 - Summary of the lung nodule analysis system. The off-line models using 
ASMI AAMI A TM are used in detection, segmentation and categorization. 

In all, these descriptors have not been used before in the literature for the study of 

lung nodules. Highlighted below are the major characteristics of the descriptors and 

evaluation of their performance on the lung nodule class of objects as an example of 

small object classification under uncertainties. 
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1. Multi-Resolution Local Binary Pattern (LBP) 

The Local Binary Pattern is an operator invariant to monotonic changes in grayscale 

and can resist illumination variations as long as the absolute gray-level value differences 

are not badly affected (e.g., [82]). The original operator labeled the pixels of an image by 

thresholding the 3 x 3 neighborhood of each pixel with the center value and considered 

the result as a binary number. At a given pixel position (XCI Ye ), the decimal form of the 

resulting 8-bit word is 

(58) 

where, Ie corresponds to the center pixel (xClYc) , Ii to gray level values of the eight 

surrounding pixels and function s(o) is a unit-step function. 

The LBP operator was extended to a circular neighborhood of different radius size 

to overcome the limitation of the small original 3 x 3 neighborhood size failing to 

capture large-scale structures [82]. Each instance is denoted as (P, R) , where P refers to 

the equally spaced pixels on a circle of radius R. The parameter P controls the 

quantization of the angular space and R determines the spatial resolution of the operator. 

An LBP pattern is considered uniform if it contains at most two bitwise transitions 

from 0 to 1 and vice-versa, when the binary string is circular. The reason for using 

uniform patterns is that they contain most of the texture information and mainly represent 

texture primitives. The operator is derived on a circularly symmetric neighbor set of P 

members on a circle of radius R denoting the operator as LB P}f~ . 

Figure 34 illustrates examples of circularly symmetric neighbor sets for varIOUS 

(P, R). The LBP operator was further enhanced by combining it with a rotation invariant 

measure V ARp,R, which characterizes the contrast of local image texture. The 
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combination of the LBP~ operator and the varIance measure produces a powerful 

operator that is rotation and gray-scale invariant. 
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FIGURE 34 - Circularly symmetric neighbor sets for different values of (P, R); left 
(a) P = 4, R = 1.0; right P = 16, R = 2.0 . 

In the multi-resolution analysis the responses of multiple operators realized with different 

(P, R) are combined together and an aggregate dissimilarity is defmed as the sum of 

individual log-likelihoods computed from the responses of individual operators [82]. 

The notation LBP~W used in this chapter refers to the extended LBP operator in a (P, R) 

neighborhood, with only uniform patterns considered. 

The LBP is used to generate a feature vector which describes the nodule region of 

interest in a LCDT slice. The LBP is applied to one of three scenarios on: i) the original 

nodule images; ii) the gradient of the nodule image or, iii) an addition of the original and 

gradient nodule images. The gradient image was computed by first obtaining each 

individual image in the x- and y-spaces by fi ltering the corresponding directional-space 

original image with the corresponding parameter vector identified in the author' s work 

[88][94] ; the overall gradient nodule image is: 

(59) 
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A similarity measure is then used to classify these nodules to one of the four classes: 

juxta, well-circumscribed, pleural tail and vascularized. Principle component analysis 

(peA) and linear discriminant analysis (LDA) are used to project the extracted LBP 

descriptors to a low-dimensional subspace where noise is filtered out. 

Figure 35 illustrates the formation of the LBP descriptors on lung nodules. 

Original Image Gradient Image , , , , 
LBpu2 LBP~~.2 LBpu2 LBP~~2 8,1 8,1 , , 

FIGURE 35 - Block Diagram of generating the LBP for a juxta-pleural nodule. The 
equation for the above picture is: LBP~i + LBPf~,2 + LBP~i+ LBPf~,2 ' where the first 
two terms represent the original image and the last two terms represent the gradient 
image. 

2. The Signed Distance Transform 

The distance transform is a shape-based feature descriptor that represents each pixel 

of the binary edge map image with a distance to the nearest obstacle pixel i.e. binary 
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pixel. The extracted Signed Distance transform lmages were projected to a lower-

dimensional subspace using PCA and LDA. 

The LBP of the signed distance image results were also obtained, thus, resulting in a 

combinational shape and texture feature descriptor representation of the nodules and non-

nodules. The relevance of combining shape and texture feature vectors is described in the 

recognition stage. Figure 36 illustrates the approach which combines the LBP and Signed 

Distance Transform. 
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FIGURE 36: First row shows typical non-nodule (first column) and nodule textures 
Uuxta-pleural, well-circumscribed, vascularized and pleural tail, respectively). Second 
row shows edge maps (using the Canny Operator). Third row is the signed distance. 
Fourth row is the LBP of the nodules. Final results depict the LBP + Signed distance 
features. 
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3. The Scale-Invariant Feature Transform (SIFT) 

The SIFT is a combinational detector and descriptor approach introduced by Lowe 

[32] that allows extraction of distinctive scale and rotation invariant features from 

images. The SIFT is a combination of a scale invariant region detector known as the 

difference of Gaussian (DoG) detector and a proper descriptor referred to as SIFT -key. 

The approach consists of four major steps of computation to generate the set of image 

features: Scale Space extrema detection, Key-point Localization, Orientation assignment 

and Key-point descriptor. In the first stage of computation all scales and image locations 

are searched over using a DoG function to identify potential interest points that are 

invariant to orientation and scale. Once the potential interest points are found at each 

candidate location a detailed model is fitted to determine scale and location. 

The keypoints selected are based on the stability measures. To each keypoint 

location one or more orientations are assigned based on the local image gradient 

directions. All future operations are performed on image data that has been transformed 

relative to the assigned scale, location and orientation for each feature. At the selected 

scale in the region around each keypoint the local image gradients are measured and 

transformed into a representation that allows for significant levels of change illumination 

and local shape distortion. 

The scale-space of an image defined as a function, L(x, y, (J) , was shown by 

Koenderink (1984) [90] and Lindeberg (1994) [91] as follows : The only possible scale­

space kernel , under reasonable assumptions, is the Gaussian function, thus the scale­

space of an image L(x, y, (J) is produced from convolving a variable-scale 

Gaussian, G(x,y, (J), with an input image, I(x,y): 

104 



L(x,y,a) = G(x,y,a) * J(x,y) (60) 

Lowe proposed using scale-space extrema in the difference-of-Gaussian function, 

to accurately detect stable keypoint locations in scale-space, convolved with the image, 

D(x, y, a), which from the difference of two nearby scales separated by a constant 

multiplicative factor k can be computed: 

D(x,y,a) = (G(x,y,ka) - G(x,y,a)) * J(x,y) = L(x,y,ka) - L(x,y,a) (61) 

In order to detect the local maxima and minima of D(x, y, a) , each sample point is 

compared to its eight neighbors in the current image and nine neighbors in the scale 

above and below. The keypoint is selected if it larger or smaller than all of these 

neighbors. Once the keypoint candidate is obtained a detailed fit to the nearby data for 

location, ratio of principal curvatures and scale is performed to reject points with low 

contrast or poorly localized along an edge. Consistent orientation assignment to each 

keypoint based on local image properties allows the keypoint descriptor to be represented 

relative to this orientation and thus achieve invariance to image rotation. The scale of the 

keypoint is used to select the Gaussian smoothed image, L, with the closest scale. Each 

image sample, L(x,y) , at this scale, the gradient magnitude, m(x,y) and orientation 

8 (x, y) is pre-computed using pixel differences: 

m(x,y) = .j(L(x + l,y) - L(x -l,y))2 + (L(x,y + 1) - L(x,y -1))2 (62) 

8(x,y) = tan-1 (L(x,y + 1) - L(x,y -l)/(L(x + l,y) - L(x -l,y))) (63) 

An orientation histogram of 36 bins covering the 3600 range of orientations is formed 

from the gradient orientation of sample points within a region around the keypoint. 

Additional samples added to the histogram is weighted by its gradient magnitude and by 
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a Gaussian-weighted circular window with a a that is 1.5 times that of the scale of the 

keypoint. 

All the weighted gradients for the descriptor are normalized to the mam 

orientation of the circular region around the keypoint which is divided into 4x4 non­

overlapping patches. The histogram gradient orientations within the patches are 

computed and then histogram smoothing is performed to avoid sudden orientation 

changes and bin size reduction to eight bins to limit the descriptor's size results into a 

4 x 4 x 8 = 128 dimensional feature vector for each key-point. The feature vector is 

finally normalized to unit length and thresholded to reduce the effects of linear and non­

linear illumination changes. 

In nodule analysis framework, it is assumed that nodules have been already detected 

which correspond to interest/key points in Lowe' s algorithm; hence, this step can be 

bypassed. In order to obtain a nodule SIFT descriptor which is invariant to orientation, a 

consistent orientation should be assigned to the detected nodule which is represented by 

its centroid, xo . This orientation is based on the gradient of the nodule ' s local image 

patch. Considering a small window surrounding xo, the gradient magnitude and 

orientation can be computed using finite differences. Local image patch orientation is 

then weighted by the corresponding magnitude and Gaussian window. Eventually the 

orientation is selected to be the peak of the weighted orientation histogram. 

Building a nodule SIFT descriptor is similar to orientation assignment, for example a 

16x 16 image window surrounding the nodule centroid point Xo is divided into sixteen 

4x4 sub-windows, then an 8-bin weighted orientation histogram is computed for each 

sub-window, hence, 16x8 = 128 descriptors for each nodule is obtained. Thus, each 
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detected nodule can now be defined at location (xo, Yo), specific scale 0", explicit 

orientation 8 and descriptor vector, Xo = {xo, Yo, 0", 8, d}. 

Thus the SIFT operator $: I(x) ~ X can be viewed as mapping a CT slice lex) to the 

nodule space with n-nodules, X = {xar=l detected from lex) , where 

FIGURE 37 - Visualization of the SIFT Recognition process for a sample Non-nodules 
and Nodules: Juxta, Well-Circumscribed, Pleural-Tail and Vascularized. 

Principle component analysis (PCA) and linear discriminant analysis (LDA) are used 

to project the extracted SIFT descriptors to a low-dimensional subspace where noise is 

filtered out. Figure 37 shows the SIFT descriptors of lung nodules as well as non-nodule 

objects. 

4. The speeded-up robust features (SURF) 

This approach has numerous adaptations over the SIFT algorithm and the Harris-

Laplace feature detector [84] . This algorithm was implemented to improve execution 

time without compromising feature detection efficiency. The detector is based on the 

Hessian matrix, (e.g. , Tao and Dickinson, 2000 [92]), and relies on integral images to 
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reduce computation time. The descriptor is a distribution of Haar-wavelet responses 

within the neighborhood of interest. The Hessian matrix is defined as: 

[

Lxx (x, cr) 
H (x, cr) = L ( ) 

xy x, cr 
(64) 

where x = (x, y) represents a point in the image I, and cr is a scalar value. Lxx (x, cr) is 

the convolution of the second order Gaussian derivative with the image in point x. The 

SURF descriptor consists of several steps; a square region is constructed around the 

interest point and oriented either in a rotation invariant method, where the Haar-wavelet 

response in the x - and y- directions are computed and weighted with a Gaussian 

centered at the interest point, or a non-rotation invariant method. The wavelet responses 

in both directions are then summed-up over each sub-region. The total number of 

descriptors for each point is 64. 

The nodules are the input images, in this work, and the region of interest is mainly 

the texture information concentrated around an area where texture information is not 

sparsely found since the spatial support of lung nodules are relatively small in size. The 

"blob-response threshold" was reduced to 240; the number of octaves desired is only 1; 

and the step-response is 1 instead of 2. 

Principle component analysis (PCA) and linear discriminate analysis (LDA) are 

used to project the extracted SURF descriptors to a low-dimensional subspace where 

noise is filtered out. 
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s. The Daugman Code for Iris Recognition 

John Daugman in 1994 [86] developed an algorithm for use in iris recognition which 

1S also the basis of all current iris recognition systems. An image of the iris is first 

acquired, the iris region is then segmented, a fixed number feature points in the iris 

regions are selected to be encoded in an iris template, and then feature matching is used 

to identify or reject the presented subject. The overall Daugman Iris Recognition 

framework is depicted in Figure 36. In the image acquisition process iris images can be 

obtained under visible light; however, due to dark colored eyes absorbing the light and 

revealing less texture information infrared light is used in capturing iris images. 

Eye Intage 

Identify 
or 

Reject 
Subject 

• 

Iris Region 

Feature points 
in the iris region ---

Iris Tentplate 

FIGURE 38 - The Daugman model for automated iris recognition. 

The first stage of iris recognition is to isolate the actual iris region in a digital eye 

image. As illustrated in Figure 37, the iris region can be approximated by two circles, one 

for the iris boundary and another, interior to the first, for the pupil boundary. The eyelids 

and eyelashes normally occlude the upper and lower parts of the iris region, while 

specular reflections can also occur within the iris region, corrupting the iris pattern. 
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In [86], an integra-differential operator, defined below, was used to find both the 

pupillary boundary and the outer iris limbic boundary: 

max G r *- --ds I a ~ I (x,y ) I 
(r,xo,Yo) (J () ar r ,xo,yo 2rrr (65) 

where I(x, y) is an image such as that seen in Figure 38, Gcr(r) is a smoothing function. 

The operator searches over the image domain (x, y) for the maximum with respect to 

increasing radius r in the blurred partial derivative of the normalized contour integral of 

I(x,y) along a circular arc ds, with parameters r as the radius and (xo,Yo) corresponding 

to the circle center point. 

FIGURE 39 - The geometry of the iris region lends itself to approximating the iris region 
as two circles; the interior represents the iris pupillary boundary while the outer 
represents the iris limbic boundary. The iris region is the area encapsulated by the two 
contours. 

This operator functions as a coarse-to-fine iterative boundary search method. Once 

the iris and pupil boundaries are located the operator is manipulated to fit spline 

parameters to describe each optimal eyelid bowldary. 

Quadrature 2D Gabor wavelets are used to demodulate each isolated iris pattern its 

phase information. This process encodes the binary texture information by identifying in 
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which quadrant of the complex plane each resultant phase lies, when a given area of the 

iris is projected onto complex-valued 2D Gabor wavelets: 

h{Re,lm} = = sgn{Re,lm} Jp J~ I(p, 0)e-i(()(8o-~)e-(ro-p)2 /a
2 e-(8o-~) 2 /~2 pdpd0 (66) 

where h{Re,lm} can be regarded as a complex-valued bit as either 1 or 0 depending on the 

sign of the 2D integral representing the real and imaginary parts; I(p, 0) is the raw nodule 

image in a dimensionless polar coordinate system that is translation and size invariant; a 

and ~ are the multi-scale 2D wavelet size parameters; (j) is the wavelet frequency, 

spanning three octaves in inverse proportion to ~; and (r 0 - p) represents the polar 

coordinated of each region of the iris for which the phasor coordinates h{Re,lm} are 

computed. The fractional Hamming Distance (HD) is computed, and is used as the 

dissimilarity measure between any two irises, where 0 would represents a perfect match. 

HD = (II (nodule A ® nodule 8) n mask A n mask 8 11)/(11 mask A n mask 8 II) (67) 

where the XOR, (8), operator detects disagreement between any corresponding pair of bits 

while the AND, n, operator ensures that the compared bits are both deemed to have been 

uncorrupted by the lung nodule surroundings. 

Given two descriptors di = [d il ,di2 , .. . ,diNF and dj = [djll dj2 , ... ,djNf, ED can 

be defined as follows ; 

(68) 

Figure 39 depicts the process for a sample of juxta-pleural and well-circumscribed 

nodules. The different binarized and un-bianarized lung nodule codes obtained from the 

Daugman method are shown. 
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In [89], several descriptors, including the Daugman code approach, were examined 

for lung nodule classification. 
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FIGURE 40 - Visualization of Daugman Recognition process for a sample Juxta and 
Well-Circumscribed Nodules. 

6. The Fourier Descriptors 

The Fourier Descriptors is a classic shape analysis approach (e.g., [87]). It is 

invariant under scale and rotation and may be used to describe shapes. Fourier descriptors 

(FD) are presentations of vertices of a polygon in terms of the basis functions of the 

discrete Fourier transform. 

Let N represents the number of points of a given shape. The initial points can be 

represented as z . The Fourier descriptors ({ c(k): k = - M /2 + 1, ... , M /2}) are the 

coefficients of the Fourier transform of input points {(z(i): i = 0, ... , N - 1)}. The 

variables of the function can be as below. 

o N: The number of points of a given shape, (input). 
o M : The number ofthe Fourier descriptors you want to use (user selection). 
o L: The number of points needed to be reconstructed. 
o Xt: The reconstructed points where l = {O, ... , L - I}. 
o Zi : The given (original) points where i = {O, ... , N -I}. 
o Ck: The Fourier descriptors where k= {- MI2 + I, ... ,MI2}. 
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For a gIven closed contour, the points represented as z(i) = xCi) + j. y(i) , where 

i = 0, ... , N - 1. These points may be selected In a clockwise or counterclockwise 

direction as shown in Figure 40. From the start and to the end point, coordinate pairs 

(XO, Yo), (Xl' Yl), ... , (XN-V YN-l) are constructed from which the descriptor is 

evaluated. 

The Fourier descriptor can be defined as the typical Discrete Fourier Transform 

(DFT) summation: 

ck = 2. Zi exp( -j2TC ~) I
N - 1 'k 

N i=O N 
(69) 

where k= {- M /2 + 1, ... , M /2}. The reconstructed points is the inverse Discrete 

Fourier Transform (IDFT) are calculated as follows: 

M - IT (j'2 fk) Zf = Ck exp TC -
k=-!'i+1 N 

2 

(70) 

where f = {O, ... , L - 1}. 

The number of the Fourier descriptor is not dependent,on the number of the given and 

reconstructed points. It is related with how much information one wants to reconstruct 

from the given points . 

In the Fourier descriptor representation, the Ck coefficients around Co (DC term) 

describe the low-frequency information. The high frequency information is carried in the 

coefficients around C-M/2 and CM/2 terms. The Fourier descriptors at lower frequency 

represent the general shape, whereas the Fourier descriptors at higher frequency describe 

the details and sharp corners. 
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FIGURE 41 - The Fourier Descriptor is the DFT of sampled points on a closed contour. 

The effectiveness of FD approach on lung nodule models is illustrated below. Figure 

41 shows four lung nodule types from LDCT scans. Each nodule is manually annotated 

and evaluated the FD. Using 30% of the FD coefficients, the nodules contours can be 

reconstructed quite well. The reconstructed contours degrade in quality using fewer FD 

coefficients. The Fourier descriptors are effective for representing smooth non 

intersecting contours. They are invariant under scale and translation, and may provide a 

degree of invariance under rotation; thus incorporating them in a segmentation or 

registration frame work may lend some benefits. 
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FIGURE 42 - Illustration of the effectiveness of the Fourier Descriptors for 
representation of four lung nodule types. The 1 st column shows the original nodules; 
manually outlined contours on 2nd column, FD on 3rd column, reconstruction using 30% 
of the FD coefficients are shown in 4th column and using 10% on the 5th column. 

In the nodule example, shown in Figure 41 , the FD is concentrated at the DC value, 

yet there are still distinctions among the various nodules. 

7. Feature distance Measures 

The feature distance measurement is a numerical description of how far apart the 

feature vectors are from one another. Numerous methods found in the literature can be 

used; below are described three different distance measurements. 

i) The Euclidean distance 

The Euclidian distance (ED) between feature point vectors p and t in the Euclidean 

n-space 
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(71) 

Note that the Euclidean distance is rotation invariant but not scale-invariant. 
ii) The Mahalanobis Distance 

The Mahalanobis Distance is a scale-invariant distance measure based on 

correlations between variables by which variations can be identified for analysis. 

A multivariate vector X = [Xl' X2, ... , XNF from a group of values with mean 

11 = [1111 112, ... , IlNF and covariance matrix, S, is defined as: 

(72) 

iii) The Chebyshev Distance 

This distance is a metric defined on a vector space where the distance between two 

vectors is the greatest of their differences along any coordinate dimension. The 

distance between two vector points p and t with standard coordinates Pi and ti is 

defined as: 

DChebyshev(P, t) = max(lpi - til) (73) 

Evaluation of these distance measures for shape analysis exist elsewhere (e.g., [63]). 

B. Lung Nodule Classification 

The above descriptors form the basis for the classification process to be examined in 

the following section. 

116 



1. General Approach 

The general approach for nodule classification may be summarized by the following 

algorithm. 

1. Construct a statistically sufficient database of pathological nodules; 

2. Co-Register members of the nodule database to create the templates used for 

nodule detection, as described before 

3. Generate the feature vectors using the geometric descriptors (e.g. , SIFT, 

ASFIT, SURF, LBP and Gabor Wavelet) for all members of the nodule 

database and store offline. Machine learning algorithms may be used such as 

PCA, RANSAC and Adaboost for optimal selections of the feature vector in 

terms of discrimination as well as execution time; 

4. Perform the nodule detection using template matching; 

5. Crop ROIs of sizes NxN over detected nodules (e.g., N = 21) - these will be 

used for categorization; 

6. Segment the nodule regions with the ROIs using the variational approach 

described in Chapter IV, enhanced with a priori information about shape and 

intensity, using the nodule database; 

7. Repeat step # 3 on the candidate nodules after segmentation; 

8. Calculate the distance between the feature vectors of candidate nodules and 

those in the pathological database, and assign the nodule category based on 

minimum distance. 
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The above algorithm may be carried out by various ways, depending the features 

available. Below feature-based and registartion-based nodule classifcation implemented 

in the author's recent work [93-94] are discussed. 

2. Feature-based classification 

The classification stage using various feature descriptors was extensively analyzed in the 

author ' s work [88-89, 93-94] . The most significant classification results were obtained 

when the shape based signed distance transform was combined to the texture based LBP 

approach. The results in Tables 7-9 illustrate the classification results of the signed 

distance transform versus the multi-resolution local binary pattern (LBP). A third feature 

descriptor using the combination of the methods is also shown. 

Higher true-positive rates can be seen from the LDA projection in tables 7 and 8 

when more training is conducted using either the LBP or distance descriptors separately. 

When comparing the PCA results less training data resulted in better true-positive 

classification of nodules. In the non-nodule distance transform experimentations more 

training data was needed to obtain in some instances perfect results. This is 

understandable since the non-nodules do not have specific shape characteristics that can 

be defined or manipulated as in the nodules case. 

TABLE 7 - Classification Results for various nodules using Raw LBP, LDA LBP and 
PCA LBP with variable training percentages. 
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TABLE 8 - Classification Results for various nodules using Raw Distance Transform, 
LDA LBP and PCA Distance Transform with variable training percentages. 

Overall, the PCA combinational shape and feature description of nodules resulted in a 

drastic true-positive rate increase in classification. All of the results depicted in Tables 7 

and 8 allow the conclusion to be made that non-nodules do in-fact contain descriptor 

variations that allow them to be correctly classified. Also, combination of shape and 

texture feature information allows for better object representation to be obtained, thus 

improved results in classification. 

TABLE 9- Classification Results obtained from Raw Combinational Feature Transform 
and PCA Combinational Feature Transform with variable training percentages. 

Juxta Pleural 40 41 39 37 78 76 76 79 

Well-Circumscribed 40 37 36 34 73 68 71 68 

Vascular 24 20 22 12 51 54 44 76 

Pleural Tail 22 26 22 20 33 35 41 54 

Non Nodule 63 57 58 49 100 99 100 98 

Table 9 depicts impressive results when the LBP was obtained from the distance 

transform images. A 20% true-positive rate increase was found, in the PCA 25% training 

combinational vascular nodule case when comparing it to the PCA LBP results obtained 
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when only the texture information was used for classification, and a 13% increase over 

the distance transform results alone. Variations of percentage increases were seen for 

each nodule category. 

3. Registartion-Based Classification 

The idea of the registartion-based classification is to compare the segmented nodules with 

nodule models, using a registration algorithm. Since the ASM, AAM and A TM generated 

impressive nodule models (Chapter II) which resembled both the shape and appreance of 

real nodules, it is plausible to use the normalized nodule models as templates to compare 

with candidate nodules for classifcation. From the face recognition analogy, a probe (test 

face) is compared to a gallary using either direct matching (by registration) or through the 

use of features. 

The following terminologies are relavant to the categorization process: 

i) Target set T: a set of textured regions containing the nodule models generated by 

ASMI AAMI A TM approaches for all nodule types. 

ii) Gallery set g: a subset of T containing template(s) to be matched in a certain 

matching setup. 

iii) .Q.!!m set Q: a set of textured regions of unknown nodule type, where nodule type 

identification is performed by matching all elements in the query set to the target 

set. 

iv) Probe set Pg:a subset of Q , where each element has a match in the gallery set. 

v) Imposter set PN: a subset of Q, which contains elements that don' t have a match 

in the gallery set. 
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As an example, again, using the face recognition terminology, a region centered at a 

well circumscribed nodule is considered an imposter to a gallery containing only juxta 

pleural nodules. Also a non-nodule region is always considered as an imposter. 

Comparing the feature vector for all nodule models in the gallery set with the feature 

vector for all regions in the probe set results in a similarity matrix S , where the ijth 

element is the similarity between the ith element of the gallery and the jth element of the 

probe. The following metrics can be defined according to a similarity score: Normalized 

cross-corerlation (NCC), the mutual information (M!) or the output of descriptors such as 

SFIT, LBP, etc. 

Identification Rate/Probability: It is calculated as the proportion of testing nodules 

correctly matched to its own type, i.e. probe Pj is identified correctly in the top N gallery 

nodule types, where N = rank(pj) , such that: 

For each probe p in the probe set 'Pg, the similarity measures are sorted against the 

gallery g, and obtain the rank of the match. Identification performance is then stated as 

the fraction of probes whose gallery match is at rank r or lower. Thus the probability of 

identification at specific rank is defined as: 

(73) 

These quantities have been calculated for all the nodules in the ELCAP data. 

Table 10 shows the results for the four nodule categories. 

In measuring the ranking, the cropped nodules are used in two fashion; without 

segmentation (i.e. , no extraction of the nodule part in the cropped region) and with 

segmentation. The segmentation . of nodules were conducted by various homegrown 
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methods (including use of shape and intensity priors in an energy model optimized by 

graph cuts; also experimented with were basic segmentation using adaptive thresholding 

of the cropped regions by median filtering and anisotropic diffusion filtering, etc.). 

TABLE 10 - Results of the nodule categorization using registration/matching nodule 
candidates to nodule models. 

Well-Circu mscribed 0.8427 1.0 0.8876 0.9663 0.9775 1.0 

Vascularized 1.0 1.0 0.5 122 1.0 1.0 1.0 

Pleural Tail 0.326 1 0.7609 0.826 1 1.0 0.39 13 0.52 17 0.5435 1.0 

Figure 42 is the ROC for 291 nodules specified in the ELCAP dataset. Both the well-

circumscribed and the viscularized nodules provide the best performance. This is because 

both nodule types possess the best texture and shape information that enhances the 

correlation between the nodules and the models. 

In general, the results of the ranking (i.e., matching models with nodules) improved 

by segmentation of the nodule portion in the cropped region. Model-based approaches 

such level sets and combinations of Gibbs-Markov models enhance the segmentation at 

severe computation cost. Nodule segmentation is a work in progress issue. A code or 

signature for the models and the nodules will provide better matching than using the 

classic image registration methods on regions with small spatial support. The conclusion, 

however is that the cropped regions have always been correctly categorized within 

second ranks by a simple computational approach such the normalized cross-correlation. 

This indeed is very encouraging for moving into using context based image processing 
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and the ability to invoke advanced machine learning approaches to perform the matching 

process. 
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FIGURE 43 - ROC of automatic categorization on the ELCAP data. Well-circumscribed 
and vascular nodule types possess the best ranking for automatic categorization. 

The extensive analysis using the approaches described in this chapter has allowed 

several conclusions to be made: 

1) Texture and shape feature information separately are not sufficient for lung nodule 

categorization, since the combination of the approaches yielded great improvements. 

2) In all of the approaches used, the non-nodule features generated and projected by 

PCA or LDA provided excellent classification results; thus, non-nodules contain 

descriptor variations that allow them to be correctly classified and not confused with 

nodules. 

3) Intensity-based registration methods did not provide accurate categorization of small 

objects; a more appropriate similarity measures may be needed for these types of 

objects. 
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4) Signatures of nodules - based on multiple approaches - may be generated and used 

for categorization; similar to face recognition methods. However, more extensive 

annotated databases of nodules are needed. 

c. Summary 

In this chapter, a system for nodule candidate detection and classification was created to 

show the robustness and accuracy of the produced models. Detection using a template 

matching method with normalized cross-correlation similarity measure without false 

positive reduction was implemented to show the robustness of the data-driven templates 

formulated from the AAMand ASM approaches over the known parametric template 

generation. Detection using the data driven template matching approach, after false 

positive reduction via SIFT and LBP feature extraction, was also implemented, further 

enhancing the detection process. 

Classification of the nodules and non-nodules were examined using a k-NN leave­

one-out algorithm with the Euclidean distance as the similarity measure, in order to test 

whether or not significant distinctions between the nodule classes exist. An overall 12% 

true-positive rate increase was found in the PCA combinational classification results 

over using the PCA LBP or the PCA distance transform separately. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

A. Problem Overview 

This dissertation considered the problem of modeling of small objects under 

uncertainties of the imaging process. Modeling entails a mathematical description of the 

features and characteristics of the object in a way to allow proper representation of the 

key characteristic shape and/or texture infOlmation of the object. Deterministic and 

stochastic approaches of modeling are abundant; no approach is adequate to model all 

types of models. The developed model can then be utilized for accurate object analysis, 

detection, segmentation, classification, etc. 

From the human visual system (HVS) perspective, if the object is not visible, then it 

would not be possible to describe/model, and therefore no inference/recognition would be 

feasible. Small objects, which occupy a small portion of the field of view (FOV) of the 

eye - after proper fixation, magnification and enhancements - resemble a challenge to the 

HVS. This challenge increases in difficulties and consequences with added uncertainties 

such as motion, contrast, occlusion and noise. 

Training adds a clue for modeling and recognition m these circumstances. For 

example, if the unagmg process IS known, then specific and consistent 

characteristics/features about small objects may be used for modeling and recognition. 
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In the biomedical imaging field, the image formation has been improving steadily, in 

order to provide structure and function about the human body, even at the cellular level. 

At the end, the human visual system makes a decision based on detection of objects and 

associating a classification/diagnosis to them. 

This dissertation attempted at mimicking the HVS as it views and recognizes small 

objects. The difficulty, from the computational perspectives, is to translate the human 

expertise associated with target characteristics which are used for detection and 

recognition. The approaches taken are to first , quantify the information about the objects 

using the experts' annotation, and then develop the geometric models for detection, 

segmentation and classification. Hence, the availability of an inclusive ensemble is 

crucial for the success of the approach presented here. 

This dissertation developed a unified theory, and set of algorithms, for image-based 

modeling, detection, segmentation and categorization/classification of small objects 

under uncertainty. Modern approaches based on modeling shapes and appearance were 

examined. Two approaches were studied in detail , using active shape models (ASM) and 

active appearance models (AAM). A third approach using active tensor models (A TM) 

was briefly examined. The dissertation also studied the concepts of shape alignment for 

objects without distinct characteristics. 

The detection, segmentation and classification' processes for small objects using the 

generated models were examined, and new formulations to approaches were developed 

and tested. As such a front-end process of modeling, detection, segmentation and 

classification/categorization that is model-based and data-driven in nature was 

established. 
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B. Summary of contributions 

From the theoretical point of view, this dissertation developed a general approach for 

statistical inference about small objects that is entirely model-based. 

• Detection of small objects using template matching with various similarity 

metrics were thoroughly examined in Chapter III. The ROC of various 

similarity measures were examined on two clinical databases (ELCAP and 

LIDC), and on two other studies of small size. 

• Segmentation of small objects using statistical and variational methods was 

studied in Chapter IV . A novel energy formulation was introduced for the 

Gibbs-Markov segmentation approach. Also, a novel energy formulation for 

the variational segmentation approach which incorporates the shape 

information was described. 

• Classification of small nodules using registration and feature matching was 

performed for the first time. Assigning the detected objects to categories was 

examined. A subsequent step to categorization based on type/pathologies is 

being pursued. 

From the algorithmic point of VIew, the dissertation considered the front-end 

deployment of model-based approaches for small object recognition. 

• The ASM, AAM and A TM approaches have been programmed and tested on 

an ensemble of objects annotated by experts. 

• The geometric descriptors were used in object detection for false positive 

reductions, and were also used for classification into categories. 
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• The algorithms were validated using phantom and synthetic information, and 

also compared with experts results whenever available. 

From applications point of view, the dissertation focused on small lung nodules, of 

sizes less than 10 mm. Early detection of nodules as they develop in the lung tissue will 

assist in early diagnosis of lung cancer, thus assist in jump starting the treatment early, 

which enhances the chances for a cure. Lung cancer is the leading cause of deaths among 

all cancers. The end goal of the work presented in this dissertation is to create "biopsy 

from images" for lung cancer using LDCT scans. The work has pursued creating a fully 

automated CAD system that can detect, segment and classify the lung nodules. 

Pathologic databases for small size nodules are not available; an immediate focus of the 

CVIP Lab future work is to construct such a database. Indeed, the author' s software 

system, which will be optimized for use on various computerized media, will enable the 

creation of such a database. 

C. Possible Extensions 

This dissertation has discovered many of the difficulties associated with modeling 

small objects. Among the theoretical extensions to be considered are the following: 

I . Combine the variational and statistical methods for segmentation in a decision 

fusion framework. 

2. Quantify the effects of target pose, intensity and categories on the tensor 

model. 

3. Quantify the performance of ASM/AAM vs. ATM for object detection with 

respect to pose, illumination/intensity, size and occlusion. 
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4. Discover the use of simultaneous detection, segmentation and classification 

(SDSC) based on rotation-invariant matched filtering, followed by elastic 

registration. 

Among the algorithmic extensions to be considered are the following: 

5. Optimize the annotation software to facilitate its use by experts; e.g., in the 

lung nodule project 

6. Create a web-based small object categorization approach to enhance the 

participation of various users 

7. Deploy modern programming languages and paradigms of machine learning 

for analysis of small objects. 

Among the extensions to be considered for the Lung Nodule CAD system are the 
following: 

8. Create an annotated clinical nodule database for LDCT scans that address 

variations in scanning hardware, demographic locations and wide range of 

settings in the LDCT imaging protocol 

9. Create a lung nodule consortium which encourages uploading de-identified 

LDCT scans with validated diagnosis 

10. Upload the software system of the lung CAD onto smart phones and various 

IT media which encourages and facilities dissemination of expertise, and re-

training the software on the local imaging conditions. 

The dissertation has shown the difficulties of working with small objects; yet, it also 

showed that modern computer vision methodologies hold a real promise in solving an 

extremely difficult problem from the point of view of human experts as well as the 
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machine. The problem addressed in this dissertation has also shown the value of 

multidisciplinary research and how disparate disciplines can be combined to solve a real 

world problem. 
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