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Abstract

Photoplethysmograph sensors use a light-based technology to sense the rate of blood

flow as controlled by the heart’s pumping action. This allows for a graphical display of a

patient’s pulse wave form and the description of its key features. A person’s pulse wave

has been proposed as a tool in a wide variety of applications. For example, it could be

used to diagnose the cause of coldness felt in the extremities or to measure stress levels

while performing certain tasks. It could also be applied to quantify the risk of heart disease

in the general population. In the present work, we explore its use for identity authentication.

First, we visualize the pulse waves from individual patients using functional boxplots

which assess the overall behavior and identify unusual observations. Functional boxplots

are also shown to be helpful in preprocessing the data by shifting individual pulse waves

to a proper starting point. We then employ functional analysis of variance (FANOVA)

and permutation tests to demonstrate that the identities of a group of subjects could be

differentiated and compared by their pulse wave forms. One of the primary tasks of the

project is to confirm the identity of a person, i.e., we must decide if a given person is whom

they claim to be. We used an equivalence test to determine whether the pulse wave of the

person under verification and the actual person were close enough to be considered equivalent.

A nonparametric bootstrap functional equivalence test was applied to evaluate equivalence

by constructing point-wise confidence intervals for the metric of identity assurance. We also

proposed new testing procedures, including the way of building the equivalence hypothesis

and test statistics, determination of evaluation range and equivalence bands, to authenticate

the identity.
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Chapter 1

Introduction

When we use online or offline services, like register to vote, view our driving records or tax

details, apply for an apprenticeship or manage a student loan, we want to be confident that

someone else cannot sign in pretending to be us, see our sensitive personal records or use our

identity to make fraudulent claims. We want to be confident that our data and services are

secure and that our privacy is protected. Here comes the issue of identity authentication. In

contrast to traditional authentication, which would prompt a user for the same credentials

during every login attempt, continuous biometric identification such as pulse wave, deter-

mines the risk associated with the action the user is about to take, based on context gathered

over time continuously, then combines that with what is known about the user to make dy-

namic decisions on how best to authenticate them. In the present work, we explore the use

of photoplethysmography (PPG) for identity authentication.

In Chapter 1, we define the user authentication and functional data and then introduce

a motivating example of continuous biometric authentication by PPG collected from the

pulse oximeter. We also review the existing continuous authentication techniques in Section

1.6.1. However, there are no studies on the use of PPG signals in continuous authentication

systems or how to standardize the PPG amplitude for comparing one waveform to another.
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To use the pulse waves from PPG for authentication, we need show that the variability

among curves between persons is large enough, relative to the variability among curves within

people. We visualize the pulse waves using functional boxplot in Section 2.1 and employ the

functional analysis of variance (FANOVA) in Section 2.2 and the permutation test in Sec-

tion 2.3 to differentiate the subjects when the pulse waves are generated from different people.

However, the primary goal of identity authentication could not be achieved by either

the FANOVA or the permutation test, or traditional hypothesis testing. We propose a new

testing procedure in Chapter 3 to evaluate equivalence for functional data and name it non-

parametric bootstrap functional equivalence test (NBFET). In Chapter 4, we simulate the

pulse wave-like curves from Brownian motion to determine the appropriate equivalence lim-

its and validate the performance of the proposed testing procedure by computing the power

and the type I error rate for various scenarios. Chapter 5 shows the results from real data

applications and a summary of our contributions in this work.

1.1 User Authentication

User authentication is the process of verifying whether the identity of a user is genuine before

granting him access to resources or services in a secure environment. Traditional authenti-

cation methods are based on the user’s knowledge, such as personal identification number

(PIN) and passwords, or something belonging to someone, such as a smart card or cardkey.

It is a well-established fact that traditional passwords are unsafe and may be forgotten, and

identification cards can be lost or misplaced. One of the solutions proposed to prevent such

occurrences is applying continuous authentication, a new generation of security systems that

require the user to re-authenticate themselves in a repeated manner for continued access to

resources in a secure environment.

There has been an increasing interest in biometric systems in recent years. Biometrics

2



technologies are widely used in numerous security applications and are considered among

the most accurate and efficient authentication systems on the market. Compared to the con-

ventional methods, biometrics can provide enhanced security and convenience by the use of

a person’s unique, permanent, and universal features recognized from human characteristics.

There are two main types of biometric identifiers: one is physiological characteristics, i.e.,

the shape or composition of the body, and the other is behavioral characteristics, i.e., the

behavior of an individual. Examples of physiological characteristics for biometric authenti-

cation are eye position tracking, pupil size, skin conductivity, relative blood flow, fingertips,

DNA, face, retina, or ear features. Behavioral characteristics are traits that are learned

from human actions, such as typing rhythm, gesture, pace, and voice. Dynamic signature

verification and keystroke dynamics are two examples of behavioral characteristics. So far,

behavioral biometrics have been less successful compared to physiological ones (Bergadano

et al., 2002) because of their significant variability over time.

While some of the above measures may be defined as strong biometrics, others may pro-

vide weak biometrics information for many people but can be discriminative for others. An

example of such a measure is the relative blood flow. Many people may have similar finger-

tip blood flow wave patterns, while some people may have a unique waveform that can be

used as a strong identifier. In this paper, we will investigate the use of a finger-tip blood

flow waveform as the biometric to perform identity authentication.

1.2 Functional Data

Functional data analysis considers responses and predictors for a subject not as a scalar or

vector-valued random variables but instead as random functions defined at infinitely many

points. A functional variable y(t) denotes a variable associated with t, i.e., a function of t,

where t could be time or some other temporal or spatial variable. It could be multidimen-

sional, although, in most cases, we will limit our discussion to a univariate t. When y(t) is

3



Figure 1.1: The heights of 10 girls taken between 1 and 18 years. Circles indicate the ages
at which measurements were taken. These data were collected as part of the Berkeley Growth
Study (Jones and Bayley, 1941).

continuous, a functional variable is called a curve. More formally, a variable is called a func-

tional variable if it takes values in an infinite dimensional space (Ferraty and Vieu, 2006).

Observations of functional variables are called functional data, such as y(ti), i = 1, 2, · · · , n.

Figure 1.1 shows an example of functional data. It displays the height function measured

between 1 and 18 years for each of 10 girls. We view each curve as a functional observation.

Circles indicate the ages at which measurements were taken. Growth is the most rapid in

the earliest years and slows down after the growth spurt that occurs at ages ranging from

about 9 to 15 years. One girl is tall for all ages, but some girls can be tall during childhood,

but end up as a comparatively small adult.

In many research areas, such as medicine, biology, economics and engineering, the data

generating process is naturally a stochastic function. Moreover, many problems are better

approached if the data are considered as functions. For instance, if each curve is observed

at different points, a multivariate analysis would not be valid, and it is necessary to smooth

the data and treat them as continuous functions defined over a common interval.
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In the field of functional data analysis, there are two viewpoints based on how they con-

ceptualize functional data (Ramsay, 1982). On the one hand, some authors view functional

data as a smoothed version of the multivariate data, and functional data analysis applies

the multivariate data analysis techniques in the language of functional observations. On the

other hand, the statistical application of spline functions, especially in the scope of nonpara-

metric function estimation (Eubank, 1999; Silverman et al., 1985; Wahba, 1990) speeds the

development of functional data analysis. Although there is a difference between these two

thoughts, the fundamental idea is that we view the observation as a whole function defined

on a bounded interval, rather than focusing on the individual values at particular points in

the range.

In our project, pulse waves are an example of functional data where we view each wave-

form, instead of individual values at particular points, as a functional observation. Let yij(t)

be the near-infrared PPG signal from the pulse oximeter for the jth curve of person i at

time point t, where i = 1, 2, · · · , 48, j = 1, 2, · · ·ni, and ni is total number of pulse waves

collected for person i.

Typically, in functional data analysis, the primary goal is to discover something about

the smooth curves that underlie the functional observations and to study the behavior of

the entire set of functional data (consisting of many curves). Therefore, smoothing usually

is applied before analyzing functional data. Ramsay (2006) also mentioned that the first

steps in a functional data analysis are data representation: smoothing and interpolation,

data registration or feature alignment, and data display.
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Figure 1.2: A finger pulse oximeter. Figure from SOS Technologies.

1.3 A motivating example: Authentication by Photo-

plethysmography

The utilization of photoplethysmographic (PPG) signals for biometric identification repre-

sents a novel approach in the area of secure authentication. The word plethysmograph is

a combination of two Greek words “plethysmos” which means increase and “graph” which

means writing (Shelley, 2007). It is mainly used to determine the blood volume or blood flow

in the body associated with each heartbeat. The introduction of the pulse oximeter (Fig-

ure 1.2) into routine clinical care greatly emphasizes the importance of PPG. Photoelectric

plethysmography, also known as PPG, can estimate the skin blood flow using infrared light.

It uses a probe which contains a light source and detector to detect cardiovascular pulse wave

that propagates through the body. There are two application modes for a pulse oximeter:

transmission and reflective (Figure 1.3), depending on where the detector is placed. In the

transmission mode, the detector is placed on a thin part of the body, usually a fingertip

or earlobe. The light will pass through the body part to the photodetector. The detector

can also be placed next to the light source for reflective plethysmography. Reflective pulse

oximetry does not require a thin part of the body and is thus suitable for a universal ap-

plication such as the forehead, feet, and chest. In outpatient settings, pulse oximeters are
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Figure 1.3: Transmission and reflective type pulse oximeter. Graph from Jian Shao and
Qirui Xu, Pulse Oximeter Based Heart Beats Rate Monitor, EE6350 VLSI Design Lab.

commonly worn on the finger. However, in cases such as shock or hypothermia, blood flow

to the periphery can be reduced, resulting in a PPG without a discernible cardiac pulse. In

this case, a PPG can be obtained from a pulse oximeter on the head, with the most common

sites being the ear, forehead, or nasal septum.

The PPG signal reflects the blood movement in the vessel, which goes from the heart

to the fingertips and toes through the blood vessels in a wave-like motion (Tokutaka et al.,

2009), as the amount of the backscattered light corresponds to the variation of the blood

volume (Alnaeb et al., 2007). Figure 1.4 shows a typical waveform of the PPG and its char-

acteristics features. It is most useful to view the waveform from the pulse oximeter as the

measure for the change in blood volume during a heartbeat cycle. The appearance of PPG

pulse can be divided into two stages: the anacrotic stage is the rising edge of the waveform,

whereas the catacrotic phase is the decreasing edge of the waveform as shown in Figure 1.4.

The mounting part is primarily associated with systole and the falling part with diastole.

A dicrotic notch, shown in Figure 1.4, usually occurs during the decreasing phase of people

with healthy compliant arteries. The systolic amplitude (x in Figure 1.4) is an indicator of

the pulse changes in the blood volume caused by arterial blood flow around the measure-

ment site (Asada et al., 2003; Chua and Heneghan, 2006). An example of four consecutive

waveforms are shown in Figure 1.5. Some features based on the PPG have been described
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Figure 1.4: A typical waveform of the PPG and its characteristics parameters: the am-
plitude of the systolic peaks is x while y is the amplitude of the diastolic peak. Figure from
Elgendi (2012).

in the literature.

1) Systolic Amplitude: As shown in Figure 1.4, the systolic amplitude (x) is an indicator

of the pulsatile changes in blood volume caused by blood flow around where the measure-

ment was taken (Asada et al., 2003; Chua and Heneghan, 2006). Systolic amplitude has been

related to stroke volume (Murray and Foster, 1996), which is the volume of blood pumped

from the left ventricle per beat. It is also has been suggested that systolic amplitude is

potentially a more suitable measure than the pulse arrival time for estimating continuous

blood pressure (Chua et al., 2010).

2) Pulse Area: The pulse area is measured as the total area under the PPG curve. Seitso-

nen et al. (2005) found that the PPG area respond to skin incision to differ between movers

and non-movers.

3) Pulse Interval: The distance between the beginning and the end of the PPG waveform.

Poon et al. (2004) suggested that the ratio of pulse interval to its systolic amplitude could

8



Figure 1.5: Consecutive PPG curves.

provide an understanding of the properties of a person’s cardiovascular system.

Compared to other biometric approaches, the PPG technique has distinct advantages

including low cost, easy to use without any complicated procedure, straightforward but ac-

curate to estimate the skin blood flow, heart rate, and blood oxygen saturation. Moreover,

it does not need direct contact with the skin surface, and it is conveniently accessible to the

various location of the body, such as the finger, earlobe, wrist or forehead.

1.4 Purpose of the Study

Identifying an individual based on a username, password or other means helps companies

ensure that the person is whom he or she claims to be when accessing a system, application

or network. However, in some cases, traditional authentication processes are not enough to

provide strong security throughout a user work session. That’s where continuous authenti-

cation comes in. The pulse wave is an important health metric able to perform continuous

authentication and also identify people at increased risk for development of heart disease,

stroke or some other health issues. The research objective is to differentiate and, more im-

portantly, to identify the subjects using their pulse wave curves from PPG, i.e., identity
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assurance. Identity assurance is a set of mechanisms and strategies allowing an organization

to minimize the risk related to identifying impersonation and misappropriation of authenti-

cation credentials.

1.5 Project and Data Description

Dr. Steve Warren, from the Department of Electrical and Computer Engineering, Kansas

State University, provided the pulse wave data for our project. The pulse oximeter prototypes

were used to acquire PPG records from 48 different subjects that are 20 to 64 years old. The

pulse oximeter was placed on the index finger of each individual, and the adjusted near

infrared AC signal was used for data collection. Experimental results were acquired in an

indoor environment. Some were collected at Kansas State University Open House, and thus

may not be as stable as those gathered in the laboratory. Figure 1.6 illustrate 60 seconds

of representative fingertip data from one subject and six single cycles extracted from the

raw signal after shifting to the same starting point at zero. Many people may have similar

finger-tip blood flow wave patterns, while some people may have quite different waveforms

that can be used as a strong identifier.

1.6 Review of Literature

1.6.1 Biometric Identification

Various biometric measures have been investigated for authentication purposes, including

face complexion (Brunelli and Poggio, 1993; Samal and Iyengar, 1992), iris recognition (Ne-

gin et al., 2000), the electrocardiogram (ECG) (Biel et al., 2001; Odinaka et al., 2012),

electroencephalogram (EEG) (Khalifa et al., 2012), phonocardiogram (PCG) (Beritelli and

Serrano, 2007), and photoplethysmogram (PPG) (Bao et al., 2005; Elgendi, 2012; Gu and

Zhang, 2003; Gu et al., 2003; Spachos et al., 2011; Yao et al., 2007). Monrose and Rubin
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Figure 1.6: PPG curves collected from a real person in the project. The upper graph is the
raw PPG signal within around 60 seconds of time, with the current shown on the vertical
axis. The lower one extracted six single cycles from the raw signal and shifted to the same
starting point at zero.

(2000) proposed keystroke biometric technique for continuous authentication. Their method

is based on a single biometric (unimodal technique), so in the absence of keystroke data,

the system is not able to authenticate the user. Altinok and Turk (2003) proposed con-

tinuous authentication techniques using face, voice, and fingerprint. They claimed that a

continuous biometric authentication system should be able to provide a meaningful esti-

mate of authentication certainty at any given time, even in the absence of any biometric
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data. They presented a new temporal integration technique that satisfied this requirement.

Sim et al. (2007) proposed a continuous authentication technique using face and fingerprint

biometrics. They used a mouse with a built-in fingerprint sensor, which made fingerprint

authentication a passive method for authentication. Derawi et al. (2010) collected data with

a commercially available mobile device containing low-grade embedded accelerometers. The

mobile device was placed at the hip on each volunteer to collect gait data. Preprocessing,

cycle detection and recognition-analysis were applied to the acceleration signal. Sitová et al.

(2016) introduced Hand Movement, Orientation, and Grasp (HMOG), a set of behavioral

features to continuously authenticate smartphone users. HMOG features capture subtle

micro-movement and orientation dynamics resulting from how a user grasps, holds, and taps

on the smartphone. Buriro et al. (2016) proposed a mechanism which profiles a user based

on how he holds the phone by taking into account the micro-movements of a phone and the

movements of the user’s finger during writing or signing on the touch screen.

The utilization of PPG signals for biometric identification represents a novel approach

in the area of secure authentication. The studies on biometric recognition methods based

on PPG signals have been performed on small datasets and by using algorithms inspired

by medical analysis techniques. Elgendi (2012) has given a comprehensive analysis of the

morphology of fingertip PPG and explained the reasons for their diversity and variation. For

most researchers, the primary concentration has been on the use of peak locations, relative

amplitudes, derivative-based slopes, and time intervals between the interests points. The

method presented in Gu et al. (2003) computes the templates by using four features: the

peak number, upward slope, downward slope, and time interval. However, this approach

ignores the higher-order derivative information contained in the pulse wave, and therefore,

does not make full use of the waveform to improve the identification accuracy. The study

presented in Yao et al. (2007) uses values of the local maximum, minimum, and inflection

points of PPG pulses to evaluate if samples of genuine and impostor individuals present

sufficient discriminability for being used in biometric recognition systems. Kavsaoğlu et al.

(2014) have used 40 such features, and they applied a feature ranking algorithm with k-means
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clustering. The method described in Spachos et al. (2011) performs biometric recognition

by applying the linear discriminant analysis (LDA) and using an eigenspace decomposition

of the time-domain signal to obtain a template for identification. These methods work well

for datasets with a small number of curves. When the sample datasets get larger, we should

develop more appropriate approaches and algorithms which permit performance of biomet-

ric recognition in a straightforward and fast manner. To the best of our knowledge, there

are no studies on the use of PPG signals in continuous authentication systems or how to

standardize the PPG amplitude/rhythm for comparing one waveform to another.

1.6.2 Statistical Methods for Functional Data

Pulse waves are an example of functional data: each waveform, instead of the individual val-

ues at particular points, represents a functional observation. Due to its practical advantage,

functional data analysis has received considerable attention in diverse areas of applications:

the comparison of growth curves (Rao, 1958), the analysis of handwriting in Chinese (Ram-

say, 2000), modeling price dynamics in online auctions (Wang et al., 2012), crop lodging

assessment (Ogden et al., 2002), forecasting of climate variations (Besse et al., 2000), data

mining (Hand, 2007), ozone population forecasting (Damon and Guillas, 2002), and many

more. Ramsay and Silverman (2002) give numerous examples considering a continuous func-

tional variable. Often, the continuous functional variable is time, which is the case in our

project, even though functional data may be observed over space, wavelength, temperature

or other continuums.

Research tools that are useful for handling functional data include various smoothing

methods, notably kernel regression, local least squares, and spline smoothing for which

various excellent references exist (De Boor et al., 1978; Eubank, 1999; Wand and Jones,

1994), functional analysis (Conway, 2013; Hsing and Eubank, 2015), and stochastic pro-

cesses (Karlin, 2014). Several software packages are publicly available to analyze functional
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data, including software at the Functional Data Analysis website of James Ramsay (http:

//www.psych.mcgill.ca/misc/fda/), the fda package (Ramsay et al., 2015) on the CRAN

project of R (R Core Team, 2013), the Matlab package PACE on the website of the Statistics

Department of the University of California, Davis (http://www.stat.ucdavis.edu/PACE/),

and the R package refund (Goldsmith et al., 2018) on functional regression.

A considerable effort is being made to adapt some standard statistical methods for func-

tional data. This is the case, for example, of principal component analysis (Boente and

Fraiman, 2000; Dauxois et al., 1982; Locantore et al., 1999; Pezzulli and Silverman, 1993;

Ramsay, 2006; Silverman et al., 1996), discriminant analysis (Ferraty and Vieu, 2003), re-

gression (Cardot et al., 1999; Cuevas et al., 2002; Ferraty and Vieu, 2002), and analysis of

variance (Cuevas et al., 2004; Kaufman et al., 2010). Fan and Lin (1998) proposed a two-

sample test and ANOVA test for the mean functions, with further work by Cuevas et al.

(2004) and Zhang (2013). Other two sample tests have been proposed for distributions of

functional data (Hall and Van Keilegom, 2007) and for covariance functions (Panaretos et al.,

2010).

1.6.3 Equivalence Testing

In our project, we are more interested in showing that the pulse waves being compared be-

long to the person owning the sensor because the mistake of claiming the wrong person is

worse than rejecting the correct person. In other words, our inferential goal is to establish

practical similarity rather than a statistically significant difference. If we want to claim

that two groups of pulse waves are “similar,” it is not enough to do the traditional test of

difference and just “not reject,” since failing to find a difference is not proof of similarity.

As a result, we consider equivalence testing where support for the alternative hypothesis of

similarity is provided by evidence against the null hypothesis of difference.
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There are 3 general approaches for equivalence testing: the confidence interval approach,

developed by Westlake (1981) and presented in this proposal; the nonequivalence null hy-

pothesis approach, developed by Anderson and Hauck (1983), which uses an approximation

to a non-central t-distribution to compute the p-value of the test; and Bayesian methods,

developed by Selwyn et al. (1981) and Selwyn and Hall (1984). The first two methods re-

quire the fewest assumptions (Westlake, 1988), and thus, are more appealing. Comparison

of the two approaches shows that the confidence interval approach is more conservative since

the actual Type I error rate is equal to or less than the stated Type I error rate. For the

nonequivalence null hypothesis approach, the actual Type I error rate could be higher than

the stated Type I error rate (Anderson and Hauck, 1983).

Equivalence testing for scalar data has been well addressed in the literature. See Berger

and Hsu (1996) for a comprehensive overview of commonly used procedures. However, the

same cannot be said for functional data. The resultant complexity from maintaining the

functional structure of the data rather than using scalar transformation to reduce the di-

mensionality renders the existing literature on equivalence testing inadequate for desired

inference. Alberola-López and Mart́ın-Fernández (2003) discuss a frequentist approach for

comparing two functions (time series) through the use of a Fourier basis expansion in the

cosinor model. Behseta and Kass (2005) present two methods of testing the hypothesis

of equality of two functions in a generalized non-parametric regression framework using a

recently developed generalized non-parametric regression method called Bayesian adaptive

regression splines (BARS)(DiMatteo et al., 2001). The first method uses Bayes factors, and

the second method uses a modified Hotelling-T 2 test. They applied both methods to the

analysis of 347 motor cortical neurons. All three approaches test strict equality between the

functions of interest but do not establish practical equivalence.

Fogarty and Small (2014) proposed a framework for equivalence testing for functional

data with both the frequentist and Bayesian paradigms. Their frequentist hypothesis test

extends the Two One-Sided Test (TOST) procedure for equivalence testing to the functional
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regime and uses the nonparametric bootstrap (Efron and Tibshirani, 1994) for assessing

equivalence by constructing point-wise confidence intervals for the metric of equivalence.

Their Bayesian methodology employs a functional analysis of variance model and uses a

flexible class of Gaussian processes for modeling the data and the parameters. However, the

authors do not explain how they choose the equivalence bands used in their paper, which is

the most crucial step in equivalence testing.
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Chapter 2

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is the practice of using visual and quantitative methods to

understand and summarize a dataset, usually to investigate a specific question or to prepare

for more advanced modeling, without making any assumptions about its content. It is a

critical first step in analyzing the data from an experiment. EDA often relies on visualizing

the data to assess patterns and identify data characteristics. It also takes advantage of some

quantitative methods to describe the data.

In this chapter, we first apply the functional boxplots in Section 2.1 to detect the out-

liers and visualize the pulse waveforms. We then implement functional analysis of variance

(FANOVA) in Section 2.2 and permutation test in Section 2.3 to differentiate the individu-

als. Based on these preliminary analyses, we find that the variability among curves between

different people is large enough, relative to the variability among curves within a person, to

use these curves for authentication. However, the main objective of identity authentication

cannot be achieved by either the FANOVA or the permutation test, we propose more appro-

priate procedures in Chapter 3.

Hitchcock et al. (2007) investigated the possible benefits of pre-smoothing functional

data before performing cluster analysis. They compare the accuracy of clustering results by
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the use of unsmoothed functional data with two smoothed versions of the data and finds

that smoothing produces a more accurate clustering. In our case, we will first apply non-

parametric regression smoothing to the pulse waves and then make further analysis, such as

functional boxplots, FANOVA, permutation tests and equivalence testing.

2.1 Visualization by Functional Boxplot

To analyze functional data, researchers often used mathematical models, among which Ram-

say (2006) provided various parametric methods while Ferraty and Vieu (2006) developed

detailed nonparametric techniques. In contrast to model-based analysis, visualization meth-

ods often help to display the data, highlight their characteristics, and reveal interesting

features.

A traditional boxplot is a robust tool for visualizing univariate data, giving an assess-

ment of the symmetry of the data and identifying outliers. However, this method of assessing

univariate data is unable to account for the complexity of functional data where multiple

measurements are taken per observation.

When constructing a traditional boxplot, the observations are first ordered by numeric

values so that the median observation, the first and third quartiles may be found. Order-

ing multivariate and functional data is more complicated. For this reason, various methods

have been proposed to define a depth score for each multivariate and functional observation

by which the observation can be ranked. Examples of depth for multivariate observations

include the Mahalanobis depth (Mahalanobis, 1936), the Tukey halfspace location depth

(Tukey, 1975), the Oja depth (Oja, 1983), the simplicial depth (Liu et al., 1990), the major-

ity depth (Singh, 1991), and the likelihood depth (Fraiman et al., 1999).

Vardi and Zhang (2000) proposed an L1−depth which can be extended to functional
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observations. Febrero et al. (2007) reviewed the functional depth of trimmed means (Cuevas

et al., 2006; Fraiman and Muniz, 2001). López-Pintado and Romo (2009) introduced notions

of band depth (BD) and modified band depth (MBD) as ways to order functional data. They

allow for ordering a sample of curves from the center outward and, thus, introduce a measure

to define functional quantiles and the centrality or outlyingness of a functional observation.

Having the order of curves, the functional boxplot is a natural extension of the classical

boxplot and is an informative and appealing tool for visualizing functional data. BD is the

proportion of a functional observation, i.e., a curve, that falls within a band delimited by

two functional observations. Considering a data set with N functional observations, there

are
(
N
2

)
= N(N−1)

2
possible number of bands catching a single functional observation. BD for

a single curve is the ratio of the sum of the number of bands containing this target curve to

the total number of possible bands.

Figure 2.1 shows a simple example with four curves on how to compute BD and MBD

in practice. First, there are six possible bands delimited by two curves. For example, the

gray area in Figure 2.1 is the band delimited by y1(t) and y3(t). We notice that the curve

y2(t) falls completely within the band, while y4(t) only partly does. We define that a curve

is contained in a band if this curve is on the border of the band. Then the band depth

for the curve y2(t) is 5/6 = 0.83 since only the band delimited by y3(t) and y4(t) does not

completely contain the curve y2(t) and the band depth for the curve y4(t) is 3/6 = 0.5 as

it only falls completely within the band delimited by itself and another curve. Similarly,

we could compute BD(y1) = 0.5 and BD(y3) = 0.5. To compute MBD, we see that the

curve y2(t) is always contained in the five bands, hence MBD(y2) = 0.83, the same value

as BD. In contrast, the curve y4(t) only belongs to the band in gray 40% of the time, thus

MBD(y4) = (3 + 0.4 + 0.4)/6 = 0.63 by definition. The median curve is the one with the

largest BD or MBD score. Sun and Genton (2012) used both the BD and MBD to create

functional boxplot.

In the classical boxplot, the box itself represents the middle 50% of the data. While
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Figure 2.1: An example of BD and MBD computation: the gray area is the band delimited
by y1(t) and y3(t). The curve y2(t) completely belongs to the band, but y4(t) only partly does.
Graph from Sun and Genton (2012).

in the functional boxplot, the band delimited by the α proportion (0 < α < 1) of deepest

curves from the sample is used to estimate the α central region. In particular, the sample

50% central region is

C0.5 = {(t, y(t)) : min
r=1,··· ,dn/2e

y[r](t) ≤ y(t) ≤ max
r=1,··· ,dn/2e

y[r](t)},

where dn/2e is the smallest integer not less than n/2, and y[i](t) denotes the sample curve

associated with the ith largest band depth value at time t. We view y[1](t), · · · , y[n](t) as

order statistics, with y[1](t) being the deepest (most central) curve or simply the median

curve, and y[n](t) being the most outlying curve. The border of the 50% central region is

defined as the envelope representing the box in a classical boxplot. Thus, this 50% central

region is analogous to the ”interquartile range” (IQR) and gives a useful indication of the

spread of the central 50% of the curves. We extend the 1.5 times IQR empirical outlier

criterion to the functional boxplot. The fences are obtained by inflating the envelope of the

50% central region by 1.5 times the range of the 50% central region. Any curves outside the
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fences are flagged as potential outliers.

We made functional boxplots for the waveforms of each person to get an overall idea of

the behavior of curves. One issue regarding the pulse waves is that several waveforms do

not seem to start at the right place due to the difficulty in the determination of minimum

local points and separating individual cycles during the data preprocessing. We also used

functional boxplots to edit the curves: identifying the proper starting points of each curve.

However, to make the boxplots for the curves, the data format needs to be a p × n matrix

where n is the number of curves, and p is the number of evaluation points for each curve.

However, the length of each pulse wave in our dataset varies from 0.6 seconds to 1.1 sec-

onds. Therefore, we first applied the kernel smoothing to the full-length curves, and then

truncated the smoothed curves to get equal-length pulse waves. After that, the functional

boxplots can be obtained using the fbplot function in R package fda (Ramsay et al., 2015).

Figure 2.2 shows the functional boxplots for person 1, person 2, person 7, and person 10.

The dark-colored areas represent the 50% central regions for each of the four persons with

the median curves shown in black. The red dashed lines indicate possible outliers. There

are three outliers (curves 16, 33, 54) for person 1; one outlier (curve 83) for person 2; three

outliers (curves 4, 5, 88) for person 7; four outliers (curves 1, 2, 5, 54) for person 10.

We noticed that, for example, curve 83 of person 2 was an outlier. However, it seemed

to start at an inappropriate place and the beginning of the curve may be the tail of the

previous one. If we shift this outlier to the left and make it start at a more reasonable

point, it may fall within the “interquartile range” and no longer be an outlier. We found the

most appropriate beginning and end points of each outlier or improperly behaved curves for

person 1, person 2, person 7 and person 10. Figure 2.3 shows the corresponding functional

boxplots using the smoothed and shifted data for these four people. We observed that curve

83, after moving to a more proper beginning point, was no longer an outlier. We identified

the outlier curves from the functional boxplots and cleaned the data by shifting outliers to a

more proper starting point. From Figure 2.3, we can see that these four persons have similar
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Figure 2.2: Functional boxplots for person 1, 2, 7, and 10. The colored area represents
the 50% central region, with the median curve shown in black. The red dashed lines indicate
possible outliers.

overall pulse wave patterns; however, person 1 and person 10 have a more apparent dicrotic

notch than person 2 and person 7. Person 2 has a much lower systolic amplitude and thus

was less steep than the other three.

Since the lengths of the curves vary, we also rescaled the time variable on the horizontal

axis to a (0, 1) scale so that each curve has the same length. The formula used is

t
′
=

t−min t

max t−min t

where t is the original value and t
′
is the normalized value. Figure 2.4 (a) shows the functional

boxplot for Person 1 after smoothing and shifting on original curves, and (b) represents the

functional boxplot for Person 1 after smoothing and shifting on curves rescaled to (0, 1) on
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Figure 2.3: Functional boxplots for person 1, 2, 7, and 10 using smoothed and shifted data.

time scale. The overall shape of the functional boxplot does not change much. Also note

that, for the rescaled data, we can compare relative locations of various features such as the

systolic peak or dicrotic notch across subjects.

2.2 Functional ANOVA to Differentiate Persons

Analysis of variance (ANOVA) is a statistical technique that examines differences in the

means of a variable across groups of observations. Frequently, we use ANOVA to test for dif-

ferences among several means by comparing variability among groups relative to variability

within groups. We reject the null hypothesis of equality if the between-subject variability is

much greater than the within-subject variability. For functional data, the problem of test-

23



Figure 2.4: Functional boxplots for person 1 after smoothing. (a): smoothing on original
curves; (b): smoothing on curves rescaled to (0, 1) on time scale.

ing the null hypothesis of equality of their respective mean functions given k independent

samples is considered. Functional ANOVA models partition a functional response according

to the main effects and interactions of various factors and are appropriate when the data

consists of functions that are expected to differ according to some set of categorical factors

(Ramsay, 2006). Thus, the setting is quite similar to that of classical one-way ANOVA model

except for the k samples under study consist of functional data.

Let Yij(t), j = 1, 2, · · · , ni, t ∈ [a, b] be k independent samples from L2-processes Yi, i =

1, 2, · · · , k, such that E(Yij(t)) = fi(t). We want to test the null hypothesis of

H0 : f1(·) = f2(·) = · · · = fk(·).

Fan and Lin (1998) considered the case when the sampling information is in a “discrete”

format Yij(t), t = 1, · · · , T . They proposed a HANOVA (high dimensional ANOVA) test

which relies on wavelet thresholding techniques. Maldonado et al. (2002) used a method

based on permutation distributions and provided an example in neurophysiology. Kaufman

et al. (2010) developed a general framework for functional ANOVA modeling from a Bayesian

viewpoint assuming Gaussian Process prior distributions for each batch of functional effects.
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They further assumed that the covariance between errors can be specified as a member of

Matérn covariance functions.

Cuevas et al. (2004) proposed a simple natural test for one-way ANOVA model for func-

tional data. The test procedure can be seen as an asymptotic version of the well-known

F-test, and the test statistic is given by

Vn =
∑
i<j

ni||Ȳi. − Ȳj.||2,

where Ȳi. = Ȳi.(t) =
∑ni

j=1
Yij(t)

ni
, Yij(t) represents the observed value from the jth curve of

the ith subject at time t, ni is the number of functional observations for subject i, and || · ||

stands for the usual L2 norm, ||y|| =
√∫ b

a
y2(t)dt.

The asymptotic distribution of Vn under H0 is linear combinations of independent Gaus-

sian processes. Provided that ni are large enough, null hypothesis is rejected at a level of α,

whenever Vn > Vα, where PH0(Vn > Vα) = α. Then an asymptotic Monte Carlo procedure

is implemented to approximately evaluate Vα. The test can be easily carried out using the

function anova.onefactor in R package fda.usc (Bande and de la Fuente, 2016). Figure

2.5 and 2.6 show the functional ANOVA based on 1000 bootstrap resamples for comparing

Person 1, 2, 7, 10, 11, and 14 using the truncated and rescaled curves after smoothing and

shifting the outliers. The p-values for comparison among six persons using either the trun-

cated or rescaled curves are 0’s, indicating that at least one person has different underlying

waveform from the others. Person 1 (red) behaves like Person 7 (blue) regarding functional

mean, so we performed the functional ANOVA comparing these two individuals in Figure

2.7 after shifting and truncating. There are 15 pairwise comparisons for a small group of six

persons. Therefore, with the Bonferroni correction, we test each individual hypothesis at a

significance level of α/15, where α is the desired overall significance level. The test statistic

for comparing between Person 1 and Person 7 is 1063.419 with a p-value of 0.061 after the
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Figure 2.5: Functional analysis of variance for six persons. A p-value of 0 indicates a
significant difference among 6 individuals.

Bonferroni correction. Therefore, we do not have enough evidence to differentiate these two

people from their underlying waveforms at 5% overall significance level.

Figure 2.6: Functional analysis of variance for six persons using data rescaled to (0, 1) on
time scale. A p-value of 0 indicates a significant difference among 6 individuals.

We also performed functional ANOVA on another small group of four people (Person 3, 6,
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Figure 2.7: Functional analysis of variance for comparing Person 1 and Person 7. A
p-value of 0.061 shows that we do not have enough evidence to differentiate these two people.

8, and 12) in the sample, and significantly different underlying waveforms could be detected

for all the comparisons we made. Therefore, we feel reasonably confident that the variability

among curves of different people is great enough, relative to the variability of curves within

people, to use these curves for authentication.

2.3 Permutation Test for Functional Data

Another way in which we assess the appropriateness of this data for authentication is permu-

tation tests, an approach for carrying out non-parametric tests. Permutation tests are most

useful when we have insufficient information about that distribution of the response variable,

are uncomfortable making assumptions about the distribution, or if the distribution of the

test statistic is not easily computed or derived. In our case, pulse wave data itself is complex,

and the distribution of the test statistic is difficult to derive. Thus, the permutation test is

an option to have a general idea on the behavior of the waveforms.
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In our case, we will employ a permutation test in which the distribution of the test

statistic under the null hypothesis is obtained by calculating all possible values of the test

statistic under rearrangements of the labels on the observed data. In contrast to many popu-

lar “classical” statistical tests, such as the t-test, F-test, z-test, and χ2-test, whose reference

distributions are obtained from theoretical probability distributions, permutation tests build

the reference distribution by resampling the observed data. Like bootstrapping, a permu-

tation test does not rely on traditional distribution assumptions and the only assumption

required is that the samples are assumed to be independent.

In each iteration of a permutation test, we rearrange the data set and compute the test

statistic from the shuffled data. The proportion of the shuffled test statistics that are as

extreme and more extreme than the observed test statistic gives a p-value. While a per-

mutation test requires that we perform all possible permutations of the data, which can

become quite large, we can efficiently conduct approximate permutation tests by conducting

a large number of random resamples. That process should, in expectation, approximate the

permutation distribution.

For our project, we first performed the permutation test on four persons (person 1, 2, 7

and 10) to see if they share the same population mean waveform. There are 57 curves for

person 1, 89 curves for person 2, 92 curves for person 7, and 56 curves for person 10. The

null and alternative hypotheses for the test can be stated as follows:

H0 : Four persons have identical mean waveform.

Ha : At least one person has different mean waveform from the others.

We selected the middle 40 curves from each of the four persons since curves in the middle

part of the data collection process were more stable and reliable than those from the begin-

ning and the tail. A nonparametric regression estimate using local polynomial kernel GEE

method (Chapter 4 of Wu and Zhang (2006)) was obtained by applying kernel smoothing to
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the full-length curves before making further analysis.

We consider the area between two estimated curves as our test statistic, and we compute

it from the trapezoidal rule. The trapezoidal rule is a technique for approximating the

definite integral
∫ b
a
f(t)dt. The trapezoid rule works by approximating the region under the

graph of the function f(t) as many trapezoids and calculating the sum of their areas. Let

tk be a partition of [a, b] such that a = t0 < t1 < t2 < · · · < tN−1 < tN = b and ∆tk be the

length of the kth subinterval, that is, ∆tk = tk − tk−1. Then

∫ b

a

f(t)dt ≈ TN =
N∑
k=1

f(tk−1) + f(tk)

2
∆tk. (2.1)

Since the time points are equally-spaced after smoothing, ∆tk = ∆t is a constant. The

approximation becomes more accurate as the resolution of the partition N increases.

Let C1(t), C2(t), C7(t) and C10(t) represent the local linear regression estimates from each

person, and C̃(t) is the estimated curve using local linear regression based on all 120 curves.

Let fi(tk) = Ci(tk)− C̃(tk), where i = 1, 2, 7, 10. Therefore, the test statistic can be written

as

T =
∆t

2

∑
i

∑
k

|fi(tk−1)|+ |fi(tk)|

= 790.824

We performed 1000 random rearrangements or shuffles in the permutation test, and none

of the test statistics from permutation is larger than the observed test statistic T = 790.824.

Thus, the probability of obtaining results as or more extreme than the observed test statistic

T in this set is zero. In another words, the permutation p-value is approximately 0. Thus, at

least one person has a different underlying waveform from the others at 5% significance level.
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P-value Person 1 Person 2 Person 7 Person 10
Person 1 – 0 0.002 0.001
Person 2 – 0 0
Person 7 – 0
Person 10 –

Table 2.1: Permutation p-values for comparing between two individuals using a Bonferroni
adjustment.

Next, we continue to make pairwise comparisons. The permutation p-values for pairwise

comparisons among Person 1, 2, 7, and 10 using a Bonferroni adjustment are shown in Table

2.1. All of the p-values are significant at 5% significance level. Thus, we can successfully

differentiate between any pair among these four people.

Pulse waves collected at a different times of the day from the same person may not have

an identical mean pattern. Permutation tests can also be used to test if curves from the same

individual have different underlying waveforms. We consider smoothed and shifted data for

the permutation test for person 1. The first 30 curves are grouped as the training data and

the rest 27 curves as the test data. The area computed from trapezoidal rule between the two

estimated curves from training and test set is 46.758. We used 1000 random permutations

and computed the area between two groups from the trapezoidal rule. We found that 530

test statistics out of 1000 are bigger than 46.75847. Thus, the two-sided p-value is 0.53.

The p-value for comparison within Person 1 using curves rescaled to (0, 1) on timescale

is 0.566. At 5% significance level, there is no evidence to conclude that training and test

from Person 1, using either original pulse waves or waves rescaled to (0, 1) on timescale, have

different probability distributions. We performed the same procedure on Person 2, 7, and 10.

The results are shown in Table 2.2. We obtained non-significant results for within-subject

comparisons on Person 1, 7, and 10. That is to say, if we have two groups of pulse waves

from each of these three people, we do not have enough evidence to distinguish between

training and test sets. At 5% significance level, the p-value for comparison within person

2 is significant. One of the possible reasons is that the pulse wave data is collected at K-
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Within a person Original curves Rescale on time

Person 1 0.53 0.566
Person 2 0.001 0.05
Person 7 0.32 0.388
Person 10 0.187 0.156

Table 2.2: Permutation p-values for comparing within a person using original curves, and
curves rescaled to (0, 1) on time scale.

state Open House. Thus, subject may have been excited and not quite calmed down at the

beginning of the data collecting process resulting in different behavior occurred between the

early and late parts of the waveforms.

2.4 Summary

In this chapter, we visualized and explored the pulse waves by looking at the functional

boxplots. We also used functional boxplots to correct outliers and shift them back to a

more proper starting point. FANOVA and permutation test can quickly and accurately

differentiate people if the pulse waves do not belong to the same person. However, the

primary goal of identity authentication is still not achieved due to the nature of traditional

hypothesis testing because a non-significant test for the difference is not the same as the

proof of similarity. In the next chapter, we introduce equivalence testing that could be used

to confirm a person’s identity, i.e. the pulse waves are actually from the same person. An

equivalence test aims to establish equivalence by rejecting a null hypothesis which states that

a meaningful difference exists. It is a statistical test of hypotheses for which the inferential

goal is to provide evidence of practical equivalence rather than declare a significant difference.
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Chapter 3

Equivalence Testing for Identity

Authentication

From Chapter 2, we are reasonably confident that the variability among curves between

different people is large enough, relative to the variability among curves within a person, to

use these curves for authentication. However, the goal of identity authentication is still not

achieved by either the FANOVA or the permutation test. In this chapter, we employ the

content of equivalence testing and propose a new testing procedure to confirm the identity.

We first give an introduction to equivalence testing in Section 3.1.1 and then explain why

we have chosen an equivalence test for identity authentication in Section 3.1.2. Equivalence

testing is commonly used in the approval process for generic drugs; thus in Section 3.2

we introduce the assessment of bioequivalence (BE) of two drugs using the two one-sided

test procedure (TOST), the most common statistical method for validating equivalence.

We also review guidelines for choosing the equivalence bands (EB) suggested by FDA. In

Section 3.3.2, we propose a new testing procedure, the nonparametric bootstrap functional

equivalence test (NBFET) which could be implemented to evaluate equivalence for functional

data.
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3.1 Equivalence Test

Ideally, scientists should be able to provide evidence for the absence of a meaningful effect.

Currently, researchers often conclude an effect is absent based on a nonsignificant test for

difference. Unfortunately, the logic of this approach is flawed; non-significance does not

provide evidence that the null hypothesis is true. A widely recommended alternative within

a frequentist framework is to test for equivalence. An equivalence test aims to establish

equivalence by statistically rejecting a null hypothesis which states that a meaningful differ-

ence exists. Equivalence testing originates from the field of pharmacokinetics (Hauck and

Anderson, 1984), where researchers sometimes want to show that a generic version of an

existing drug or “pioneer” has, to a practical extent, the same pharmacokinetic properties as

the pioneer; therefore, the generic drug can be prescribed to patients in place of the pioneer

drug.

3.1.1 What is an equivalence test?

An equivalence test is a statistical test of hypotheses for which the inferential goal is to estab-

lish practical equivalence rather than declare a statistically significant difference (Berger and

Hsu, 1996). For example, we can use an equivalence test to determine whether the means

for two groups of measurements are close enough to be considered equivalent. The term

“equivalence” is employed here to denote a weaker, or fuzzy, form of an identity relation.

The fuzziness of the equivalence hypotheses comes from the fact that exact equality is not

required to establish equivalence. Rather, the hypothesis of zero difference, corresponding to

the null hypothesis of the traditional two-sided testing problem, is expanded into an interval

or “indifference zone” (Wellek, 2010). Differences between two treatments small enough to

fall into this interval are deemed equivalent for practical purposes. For example, a deviation

of 1 or 2 mg from a targeted 200 mg dose of a drug may be unlikely to have any practical

effect when taken by a patient.

A crucial first step in performing a test of equivalence is deciding which parameters to
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compare and then defining how large the difference between them must be for the difference

to be considered practically important. For example, in the case of the simple parallel group

design with two treatment arms, we may want to test whether the population means of

the reference group and the test group are close enough to be considered equivalent. For

simplicity, assume that the two groups have the same variance, i.e., σ2
T = σ2

R = σ2. A test of

equivalence may be based on the difference of the two means, µT − µR. Equivalence of the

two groups could be concluded if we can demonstrate that the difference between the two

means is small, i.e.,

−εl < µT − µR < εu,

where εl and εu are some small non-negative known constants. The interval (−εl, εu) would

define our zone of indifference, and the values −εl and εu are then referred to as equivalence

limits. The actual, numerical values of the equivalence limits must be assigned a priori, i.e.,

without knowledge of the data. As the guidance for bioequivalence studies, the United State

Food and Drug Administration (FDA) recommended using the specifications ±20% of the

reference mean as the equivalence limits.

Examples of scenarios requiring equivalence tests include the assessment of a generic drug

performance relative to a brand-name drug and a comparison study in which the agreement

of new measurement device with the “gold standard” for measuring a particular phenomenon

must be assured before the new device can replace the old one. Recently, equivalence testing

has been growing in use in scientific research outside its traditional role in the drug approval

process and has made inroads in scientific applications unrelated to drug development (Bar-

nett et al., 2006, 2007). Barker et al. (2002) propose to use equivalence test for measuring

disparities in vaccination coverage, and Tempelman (2004) applies bioequivalence hypothesis

testing to dairy nutrition studies. Parkhurst (2001) states that “equivalence tests improve

the logic of significance testing when demonstrating similarity is important.”
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3.1.2 Why use an equivalence test?

In the usual two-sample two-sided hypothesis test, also called a test of difference, the null

hypothesis is that the two experimental groups under study do not differ with respect to a

particular parameter, e.g., the mean. If the analysis reveals a statistically significant differ-

ence between groups, the null hypothesis of no difference is rejected, and the two groups are

then declared to be different. If the analysis fails to indicate that a statistically significant

difference between groups exists, the null hypothesis cannot be rejected. However, failing

to find a difference is not the same as a proof of similarity. Non-significance may be due

to having a sample size that is too small to detect the true difference. The result of non-

significance has a history being misinterpreted in some research (Farrington and Manning,

1990; Huh, 1994; Westlake, 1981). Psychologists have incorrectly concluded there is no effect

based on a non-significant test result. For example, the word ”no effect” has been used in

108 articles published in Social Psychological and Personality Science up to August 2016.

Manual inspection revealed that the conclusion of ”no effect” was based on statistical non-

significance in almost all of these articles. Finch et al. (2001) reported that in the Journal of

Applied Psychology, an average of around 38% of articles with nonsignificant results makes

a conclusion that accepts the null hypothesis. This practice is therefore problematic. If the

researcher truly wants to be able to claim that the two groups are statistically ”similar,” it

is not enough to perform a two-sided test of difference and ”not reject” the null hypothesis

since failing to reject a null hypothesis of no difference is not logically equivalent to providing

evidence for a claim equivalence. As Altman and Bland (1995) put it: ”absence of evidence

is not evidence of absence.”

One critical objective in the present work is to show that the pulse waves being tested

do in fact belong to the person owning the sensor. Because the mistake of claiming the

wrong person is worse than failing to identify the correct person, it is important to deter-

mine whether a person’s curves are unique enough to be used for authentication. In other

words, our inferential goal is to establish practical similarity rather than detect a statisti-
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cally significant difference. Therefore, we consider a test of equivalence where the alternative

hypothesis of similarity is supported by rejecting the null hypothesis of difference.

3.2 The Assessment of Bioequivalence

Two different formulations of the same drug are said to be bioequivalent if they are absorbed

into the blood and become available at the drug’s site of action at about the same rate and

concentration. The determination of bioequivalence (BE) is crucial because the approval of

generic drugs in the United States often requires the establishment of bioequivalence between

the name brand drug and the proposed generic drug. If the manufacturer of the generic drug

can demonstrate BE, it can avoid performing costly clinical trials to prove the safety and

efficiency of its generic drug.

In many bioequivalence studies, the concentration of the active ingredient of interest is

measured in the blood plasma or serum over time. These concentration/time measurements

can be connected with a curve, and several variables can be observed. Figure 3.1 shows an

example of the concentration-time profile of two drugs. Instead of analyzing the individual

profile as multivariate or functional data, the profile is usually reduced to a small number of

real values by computing one or more of the following pharmacokinetic characteristics:

• area under the curve as a whole (AUC),

• maximum concentration (Cmax), and

• time at which the peak concentration Cmax was measured (tmax).

The two drugs are bioequivalent if the population means of these variables are sufficiently

close. Commonly, AUC and Cmax are considered as alternative estimates of the extent of

the absorption process for a trial subject, whereas tmax is interpreted as a measure of rate.

All three parameters are considered as a reasonable option for a reference measure of bioe-
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Figure 3.1: Example of concentration-time profiles for drug A and drug B. Birkett (2003).

quivalence.

For example, let µT denote the population mean AUC for the generic (Test) drug and

µR denote the population mean AUC for the name brand (Reference) drug. To demonstrate

bioequivalence, the following hypotheses are tested:

H0 :
µT
µR
≥ θU or

µT
µR
≤ θL

Ha : θL <
µT
µR

< θU .

The values of θL and θU are specified by the researchers and define how ”close” the versions

of the drug must be to be declared bioequivalent. Here, the interval (θL, θU) presents the

zone of indifference. Currently, both FDA (1992) and the European Community (EC, 1993)

use θL = 0.8 and θU = 1.25, values that are symmetric in the ratio scale, i.e. 1/0.8 = 1.25.

Commonly, natural logarithms of the AUC values are computed before analysis so that
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more appropriate hypotheses are:

H0 : ηT − ηR ≥ εU or ηT − ηR ≤ εL

Ha : εL < ηT − ηR < εR

where ηT = log(µT ), ηR = log(µR), εL = log(θL), εU = log(θU). With θL = 0.8, θU = 1.25,

εU = −εL, the standards are symmetric. The Type I error rate is the probability of claiming

the drugs to be bioequivalent, when in fact they are not. By setting up the hypotheses above

and controlling the Type I error rate at a specified small value, say, α = 0.05, the consumer’s

risk is being controlled.

3.2.1 Equivalence Tests for Differences Between Two Independent

Means

The formulation of equivalence hypotheses leads to the most basic form of equivalence test-

ing, the two one-sided tests (TOST) procedure (Barker et al., 2001; Berger and Hsu, 1996;

Huh, 1994; Schuirmann, 1987). Largely due to its ease of use and recommendations from

FDA guidance, the TOST procedure is the most common statistical method for testing

equivalence. The goal in the TOST approach is to specify a lower and upper bound, such

that the results falling within this ranges are declared equivalent. As the name implies, the

TOST is a two-step procedure and consists of decomposing the interval hypothesis H0 and

Ha above into two sets of one-sided hypotheses. For example, the hypotheses of equivalence

testing for differences between two independent means are set up as follows:

H01 : ηT − ηR ≥ εU

Ha1 : ηT − ηR < εU ,
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and

H02 : ηT − ηR ≤ εL

Ha2 : ηT − ηR > εL.

For each pair of hypotheses, a test statistics is computed and then compared to a critical

value from the t distribution. Specifically, H01 is rejected if

ȳT − ȳR − εU
s
√

1
nT

+ 1
nR

< −tα,r,

and H02 is rejected if

ȳT − ȳR − εL
s
√

1
nT

+ 1
nR

> tα,r,

where ȳT denotes the sample mean of a random sample for the test drug from a normal

population with mean ηT and variance σ2, and ȳR denotes the sample mean of a random

sample for the reference drug from a normal population with mean ηR and variance σ2, nT

and nR are the sample sizes for the test and reference group, and s2 is the pooled estimate

of variance σ2, i.e., s2 = {
∑nT

i=1(yi− ȳT )2 +
∑nR

j=1(yj − ȳR)2}/(nT + nR − 2). Here, tα,r is the

upper 100α percentile of a t distribution with r = nT + nR − 2 degrees of freedom.

These equations are highly similar to the familiar Student’s t-statistic for traditional,

one-sided tests of statistical significance with the only difference being that the lower equiva-

lence bound εL and the upper equivalence bound εU are subtracted from the mean difference

between groups. If we successfully reject the null for both tests, practical equivalence may

then be asserted at the 100α% significance level; otherwise, we fail to reject the assumption

of a practical difference.
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3.2.2 Confidence Interval Approach to Equivalence Testing

The TOST procedure is also identical to forming the corresponding (1 − 2α)100% confi-

dence interval and declaring the two groups equivalent if the interval lies entirely within

the tolerance limits (εL, εU). The reason the confidence level is (1 − 2α)100% and not the

usual (1−α)100% is because this method is equivalent to performing two separate one-sided

level-α tests. A careful explanation can be found in Berger and Hsu (1996) and Barker et al.

(2001). Thus, a 90% confidence interval yields a 5% significance level for testing equivalence.

Both FDA (1992) and EC (1993) specify that the TOST should be executed in this fashion.

Equivalence for differences between two independent means shown in the previous section

will be declared if the lower confidence bound ȳT − ȳR− tα,rs
√

1/nT + 1/nR is above εL and

the upper confidence bound ȳT − ȳR + tα,rs
√

1/nT + 1/nR is below εU .

When both the tests of difference and equivalence tests are used, there will be four pos-

sible outcomes in the confidence interval procedure: the effect is statistically equivalent and

not statistically different from zero (Scenario A), statistically equivalent and statistically dif-

ferent from zero (Scenario B), statistically different from zero but not statistically equivalent

(Scenario C), or neither statistically different from zero nor statistically equivalent (Scenario

D). In Figure 3.2, mean differences (black dots) and their 90% (thick lines with arrows) and

95% (thin lines) confidence intervals are illustrated for the four scenarios. The equivalence

limits chosen here are εL = −0.3 and εU = 0.5.

To conclude equivalence (Scenario A and B), the 90% CI around the observed mean

difference should fall within the equivalence bands (εL, εU) = (−0.3, 0.5). The traditional

two-sided test of difference is rejected (Scenario C) when the CI for the mean difference does

not include zero. Effects can be statistically different from zero and statistically equivalent

(Scenario B) when the 90% CI falls within the equivalence bounds and the 95% CI excludes

zero. Finally, an effect can be neither statistically different from zero nor statistically equiv-

alent (Scenario D) when the 90% CI includes one of the equivalence bounds and the 95% CI
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Figure 3.2: Mean differences (black dots) and 90% confidence intervals (thick blue hori-
zontal lines with arrows) and 95% confidence intervals (thin orange horizontal lines) with
equivalence bands εL = −0.3 and εU = 0.5 for four combinations of test results that are
statistically equivalent or not and statistically different from zero or not.

includes zero.

3.2.3 Setting Equivalence Bands

The determination of equivalence limits, εL and εU , is the most critical step in equivalence

testing. Large values of εL and εU determine a wider equivalence region and make it less

difficult to establish equivalence. The equivalence limits not only determine the results of

the test but also gives scientific credibility to the study. The value of a study or experiment

largely depends on how well the equivalence limits can be scientifically justified.

FDA and Center for Drug Evaluation and Research (CDER) recommend that statisti-

cal analysis for pharmacokinetic measures, such as AUC and Cmax, be based on the TOST

procedure to determine whether the average values for a pharmacokinetic measure observed

after administration of the Test and Reference products are comparable. This approach is
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termed average BE and involves the calculation of a 90% confidence interval for the ratio of

the averages (population geometric means) of the measures for the Test and Reference drug.

To establish average BE, the calculated confidence interval should fall within the BE limits,

usually 80%-125% for the ratio of the product averages.

For a broad range of drugs, a BE limit of 80% to 125% for the ratio of the product

averages has been adopted for the use of an average BE criterion. Generally, this limit of

80%-125% is based on a clinical judgment that a test product with measures outside this

range should be denied market access. However, for highly variable drugs, defined as those

for which the within-subject variability equals or exceeds 30% of the mean Cmax and/or

AUC, the equivalence limits may be widened to 0.75 -1.33 or even 0.70-1.43 (Midha et al.,

2005). We will discuss the procedure of determining appropriate equivalence bands for our

study in Section 4.4.

3.3 Equivalence Testing for Functional Data

Equivalence testing for scalar data has been well-addressed in the literature. However, the

same cannot be said for functional data. The complication from keeping the functional

structure of the data, rather than using a scalar transformation to reduce dimensionality,

makes the existing literature on equivalence testing deficient for the desired inference on

pulse waveforms. In this work, a framework for functional equivalence testing that is analo-

gous to its univariate counterpart is proposed and evaluated.

3.3.1 TOST for Functional Data

A TOST procedure is a commonly used approach for conducting the hypothesis testing

within the frequentist paradigm. Brown et al. (1997) and Berger and Hsu (1996) propose

procedures which are uniformly more powerful for the scalar data since the TOST procedure
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can suffer from a lack of power. However, these methods are themselves quite complicated

even for univariate data, and their added complexity does not seem to be justified by their

relatively small gain the power (Meyners, 2012). For this reason, in the majority of appli-

cations, TOST continues to be the method of choice extended to the equivalence testing for

functional data within the frequentist paradigm.

In the functional data setting, let θ(·) denote a functional measurement of similarity be-

tween the location parameters of two functions. One potential choice for θ(·) is the difference

between overall mean functions, µ1(·) − µ2(·). Let κl(·) and κu(·) denote lower and upper

equivalence limits which are now functions. These bands are chosen such that practical

equivalence can be established depending on whether or not θ(·) falls entirely within the

equivalence bands defined by κl(·) and κu(·). The null and alternative hypotheses for the

tests of location can be stated as follows:

Hθ
0 : ∃t ∈ T , θ(t) /∈ (κl(t), κu(t)),

Hθ
a : ∀t ∈ T , θ(t) ∈ (κl(t), κu(t)).

Note that the above test, in aggregate, is an Intersection-Union Test (IUT)(Berger and Hsu,

1996). To test these hypotheses within the frequentist paradigm, we can conduct TOST

procedures for the location parameter θ(·). Since this is an IUT, each of the hypothesis tests

can be conducted at significance level α to arrive at an overall size of α. In practice, func-

tional data are measured along a finite grid of values. Thus, the grid must be fine enough

so that areas of potential dissimilarity along the domain are not ignored.
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3.3.2 Nonparametric Bootstrap Functional Equivalence Test

Fogarty and Small (2014) proposed using the nonparametric bootstrap of Efron and Tib-

shirani (1994) for assessing equivalence by constructing point-wise confidence intervals for

the metric of equivalence and then using the duality between confidence intervals and point-

wise hypothesis tests to conduct the inference. We modified the nonparametric bootstrap

approach and applied it to the simulated data. If we consider two sets of curves generated

from the same person, then equivalence should be concluded since these two sets share the

same population mean.

We define the first set of curves as the reference group, and the second set of curves as

the test group. Let µR(t) denotes the population mean curve for the reference group and

µT (t) denote the population mean curve for the test group. Consider the ratio of two mean

curves as a metric for equivalence and then conduct the following hypotheses:

H0 :
µT (t)

µR(t)
≥ θu or

µT (t)

µR(t)
≤ θl for some t

Ha : θl ≤
µT (t)

µR(t)
≤ θu for all t

The values of θl and θu are specified by the researcher and define how close the mean curves

must be to be declared equivalent. We might choose θl = 0.8 and θu = 1.25 as the equivalence

limits as suggested by the FDA guidance on BE. If we can show that the ratio of two curves

falls within the range of (θl, θu), the underlying mean curves are declared to be equivalent.

Let ŷR(·) and ŷT (·) denote the nonparametric regression estimates of repeated measurement

curves for the reference group and test group, respectively. We use

T (·) =
ŷT (·)
ŷR(·)

as test statistics for the hypothesis and apply the nonparametric bootstrap procedure to de-
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rive point-wise confidence intervals. The duality between one-sided confidence intervals and

one-sided tests helps to decide to reject or fail to reject the difference of the null hypothesis.

Let yRi(t) be the ith curve for the reference group, i = 1, 2, · · · , nR, and yT i(t) be the ith curve

for the test group, i = 1, 2, · · · , nT . We compute the sample averages for both the reference

and the test group at each time points ȳR(t) = 1
nR

∑nR

i=1 yRi(t) and ȳT (t) = 1
nT

∑nT

i=1 yT i(t).

In each iteration, we do the following:

1. Sample nR curves with replacement from the reference group, and sample nT curves

with replacement from the test group.

2. Compute nonparametric regression estimates of the repeated measurements curves for

the reference and test group using the sm.rm function from R package sm (Bowman and

Azzalini, 2015). Denote these as {ŷ∗R(·)} and {ŷ∗T (·)}. We compute ŷ∗R(·) = S∗Rȳ
∗
R(·) and

ŷ∗T (·) = S∗T ȳ
∗
T (·), where ȳ∗R(·) and ȳ∗T (·) are the sample average curves, and S∗R and S∗T are

the smoothing matrices depending on the smoothing parameter for the reference and the

test group, respectively. Hart and Wehrly (1986) proposed a criterion for the choice of the

smoothing parameter in the context of repeated measurements.

3. Compute T̂ ∗(·) =
ŷ∗T (·)
ŷ∗R(·) .

4. Store this value.

We perform N iterations as shown above and record the bootstrap test statistics T̂ ∗(·).

The upper and lower point-wise confidence intervals for T (t) using a bias correcting percentile-

based bootstrap as discussed in Davison and Hinkley (1997) is:

Cu
1−α(T (t)) = [2T̂ (t)− qα[T̂ ∗(t)],∞),

C l
1−α(T (t)) = (−∞, 2T̂ (t)− q1−α[T̂ ∗(t)]),

where T̂ (t) is the observed test statistic and qα[T̂ ∗(t)] is the αth percentile of T̂ ∗(t) we

computed from step 3 in each iteration. If our lower equivalence limit at time t, θl, is
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outside of Cu
1−α(T (t)), then we can reject the null that T (t) < θl(t) at point t. Likewise,

if θu(t), is outside of C l
1−α(T (t)), we reject the null of T (t) > θu(t) at point t. The final

equivalence can be declared if we successfully reject both tests at every time point t. We call

this nonparametric bootstrap procedure the nonparametric bootstrap functional equivalence

test (NBFET) and apply it to the simulated data in Chapter 4 to verify its validity and

efficiency.

46



Chapter 4

Development of Equivalence Bands

and Method Validation

Having proposed the NBFET procedure in the previous chapter, we now proceed to evaluate

the performance of the proposed testing procedure on the simulated data. We also use our

simulations as a way to determine the equivalence bands that vary based on the coefficient

of variation (CV). We present the details of our evaluation based on equivalence testing,

including the choice of the data generating process, the determination of equivalence bands,

the evaluation methodology and the simulation results.

This chapter is organized as follows, in Section 4.1 we give the rationale for using sim-

ulation to carry out our evaluation, followed by the justification of the selection of data

generating process. We then apply NBFET discussed in Chapter 3 to the simulated data

based on common choices of equivalence bands in the drug approval processes in Section

4.3. In Section 4.4, we determine the equivalence bands appropriate for our study from

the simulation results. Then, we apply NBFET procedure to simulated data based on the

chosen equivalence bands, and we conclude with a discussion in Section 4.5. In Section 4.6,

we perform equivalence testing on a small set of feature points to see whether the procedure

can be simplified but also reach the same conclusion.
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4.1 Purpose of Simulation

For our project, we have appropriate and well-behaved data from only four persons. More-

over, there is a lot of variability and inaccuracy at the beginning of the curves due to the

difficulty of separating each pulse wave cycles. By observing simulated outcomes, we can

gain insight into the behavior of real-life pulse waves without subjecting a large number of

volunteers to repeated collection of their pulse waves. If the methodology works well for the

simulated data, it is more likely to run for the real-life situation. The following are some

advantages simulation study will bring to our project.

• Simulation provides complete control over the environment. For example, during eval-

uation, we like to set the curves to start exactly at zero with increased variability over time.

This is easy to do with simulation.

• Simulation allows sharing the code with others. Thus, the results can be duplicated

and verified by other researchers, who may want to evaluate their own scenarios, leading to

a more complete evaluation.

• With simulation, other types of functional data can also be generated using the same

methodology and procedure. Hence, it allows for setting up a better and more meaningful

evaluation schema.
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4.2 Generating Simulated Functional Data using Brow-

nian Motion

In this section, we introduce how to generate the pulse wave behavior-like curves from the

Brownian motion (Hida, 1980) for use in the simulation. Brownian motion was proposed to

describe the random movement of particles in a fluid due to their collisions with other fast-

moving molecules in the fluid. Brownian motion is also known as pedesis, which comes from

the Greek word for “leaping”. Most examples of Brownian motion are transport processes

that are also affected by larger currents, such as the motion of pollen grain on still water,

movement of dust motes in a room, diffusion of calcium through bones.

Definition 1. A stochastic process {X(t), t ≥ 0} is said to be a Brownian motion process if

(i) X(0)=0;

(ii) {X(t), t ≥ 0} has stationary and independent increments;

(iii) for every t > 0, X(t) is normally distributed with mean 0 and variance σ2t.

From the definition of the Brownian motion, we can see that the process always starts

at zero, and for every time point t, it follows a normal distribution with mean zero and a

variance which is a linear function of t. Thus, there is smaller variability at the beginning of

the curves and more considerable variability at the tail. Those are features we observe from

PPG pulse waves. Therefore, we propose to simulate curves that mimic the behavior of pulse

waves from Brownian motion with a known underlying population mean. A mathematical

model that describes Brownian motion is the Wiener process, a continuous-time stochastic

process named in honor of Norbert Wiener. It has been widely used in math, economics,

engineering, physics, biology, chemistry, etc.

Definition 2. A stochastic process {X(t), t ≥ 0} is said to be a Brownian motion process

with drift coefficient µ and variance parameter σ2 if
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Figure 4.1: (a) A simulated curve from the Brownian motion with mean 500f(t; 2.1, 12) +
550f(t; 4, 5) and variance 40 , (b) a group of 50 simulated curves from Brownian motion
after smoothing using nonparametric regression.

(i) X(0)=0;

(ii) {X(t), t ≥ 0} has stationary and independent increments;

(iii) for every t > 0, X(t) is normally distributed with mean µt and variance σ2t.

We generate the curves from a modified version of Brownian motion with drift, where

our mean is not linear in t but a function of t. Let f(t;α, β) denote the probability den-

sity function of a Beta distribution with shape parameters α and β, where 0 ≤ t ≤ 1 and

α, β > 0. Figure 4.1 (a) shows a simulated curve from the Brownian motion with mean

500f(t; 2.1, 12) + 550f(t; 4, 5) and variance σ2 = 40 , and (b) shows a realization of 50 sim-

ulated curves after smoothing using nonparametric regression. From Figure 4.1 (b), we can

see that the simulated curves mimic the behavior of the pulse waves and have similar pat-

terns we found in real-life data after preprocessing.
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4.3 Nonparametric Bootstrap with Common Choices

of Equivalence Bands

We consider the curves generated from Brownian motion with the following means as the

simulated data :

Mean A: 500f(t; 2.1, 12) + 550f(t; 4, 5),

Mean B : 500f(t; 2.3, 12) + 460f(t; 4.04, 5.1),

Mean C : 500f(t; 2.3, 12) + 500f(t; 4, 5),

Mean D : 250f(t; 2.8, 12) + 520f(t; 2, 2),

Mean E : 270f(t; 2.7, 12) + 490f(t; 2.1, 2),

Mean F : 500f(t; 2.1, 12) + 550f(t; 3, 3),

where f(t;α, β) is defined in Section 4.2. Namely, the underlying population means are a

mixture of beta distributions. The beta probability density function is unimodal when both

shape parameters are greater than one, and we can therefore control where the mode occurs

by changing the shape parameters. However, there are two peaks in the real pulse waves.

Therefore, we simulated curves from Brownian motion with population means that are a

mixture of two beta densities where each distribution has both shape parameters greater

than one.

Figure 4.2 shows the six population means used in our simulation study. These mean

curves represent some of the situations we will encounter in real life. For example, Mean

A and Mean C as are Mean D and Mean E are quite close to each other the entire time

range; while Mean A and Mean F behave similarly near the first peak but are disparate after

the notch. Mean D and Mean E are quite different from the other curves. They also show

similar patterns we found in real pulse waves. We will apply NBFET as discussed in Section

3.3.2 to the simulated curves from Brownian motion with means shown above to measure

the equivalence.
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Figure 4.2: The underlying population means for the simulation study.

4.3.1 Equivalence Bands

Recall the assessment of bioequivalence discussed in Section 3.2, the two drugs are bioe-

quivalent if the population means of pharmacokinetic characteristics AUC, Cmax, or tmax

are sufficiently close. For example, let µT denote the population mean AUC for the generic

(Test) drug and µR denote the population mean AUC for the name brand (Reference) drug.

To demonstrate bioequivalence, the following hypotheses are tested:

H0 :
µT
µR
≥ θU or

µT
µR
≤ θL

Ha : θL <
µT
µR

< θU .

The values of θL and θU are specified by the researchers and define how “close” the mean

responses of the measured characteristic from two drugs must be to be declared bioequiva-

lent. The interval (θL, θU) is called the zone of indifference or equivalence bands. According
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to the FDA, average bioequivalence is demonstrated if the 90% confidence interval of the

geometric mean ratios of the test and the reference drugs for the AUC fall completely within

limits (in %) of 80-125%. In other words, θL = 0.8 and θU = 1.25, which are symmetric in

the ratio scale.

Even though a review of more than a decade of bioequivalence data from the FDA sup-

ports the average bioequivalence criteria in approving high-quality drugs, there are some

concerns over some generic drugs that have a narrow therapeutic window such as some anti-

epileptic and anti-coagulant drugs. Many authors have criticized the one-fits-all criterion

because it does not consider the therapeutic window and variability of a drug. A highly vari-

able reference drug, which is defined as a drug with within-subject coefficient of variation

(CV) in one or more of the pharmacokinetic characteristics being 30% or larger, may not be

demonstrated to be bioequivalent even to itself in a typical cross-over study with a moderate

number of subjects (Davit et al., 2012). A review of 1010 bioequivalence studies of 180

generic drugs submitted to the FDA during 2003-2005 suggests that 31%(57/180) of those

are highly variable. Therefore, it is necessary to develop an alternative to the usual (0.8,

1.25) rule for highly variable drugs. It has been suggested by the European Agency for the

Evaluation of Medicinal Products (EMEA) that the bioequivalence bands of the 90% confi-

dence interval could be widened from 0.8-1.25 to 0.75-1.33 or even to 0.7-1.43, depending on

the within-subject CV. For our project, we will determine the equivalence bands appropriate

for different ranges of CV through a simulation study.

4.3.2 Determining the Evaluation Range

Before we determine the equivalence bands that are appropriate for our project through

simulation, we truncate the curves on the left and right, and limit our analysis on a specific

evaluation range. It would be the best if we could perform the equivalence test on the entire

(0, 1) time range; however, it causes some issues. First, each curve starts at zero and quickly
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Figure 4.3: Functional boxplot of a group of 50 curves generated from Brownian motion
with Mean 3 and variance of 40. We pick the truncation points at [0, 0.65].

increases at the beginning part. Thus, ratio of the test mean to the reference mean rapidly

goes up toward infinity early on even though the values are extremely close together. Sec-

ond, there is a lot of variability at the end of the curves, and the CVs at these points are

bigger than one. It is not very meaningful to measure the equivalence when the standard

deviation is larger than the mean. Third, some curves go below zero at the tail, and we have

negative values of the ratio of the mean curves. It is possible to have negative ratios but

not practically meaningful for our project. Therefore, we truncate the curves and make the

equivalence measurement within a specific range. The majority of meaningful information

for authentication is contained between the systolic peak and the dicrotic notch of the pulse

waves. Thus, we will make sure that we retain that part of the waveform for testing equiva-

lence.

Let ŷ(t), where t ∈ (0, 1), denote the estimated smoothing curve using nonparametric

regression for the reference data. We first determine the evaluation range [T1, Tr] where the

majority curves from the reference group have positive values. The values of T1 and Tr can

be determined from the functional boxplot of the reference data where the maximum non-
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Figure 4.4: Population Mean A and Mean C with the evaluation range of [0.06, 0.65].

outlying envelope is almost all positive. Let Dt be the time point where the first derivative

of the sample mean curve ŷ(t) gets the maximum, and Mt be the point where the mean

curve ŷ(t) reaches the first peak (maximum). We define the largest value among T1, Dt,

and 1
2
Mt as the left truncation point Tl, namely, Tl = max{T1, Dt,

1
2
Mt}. We then apply

NBFET on the evaluation range [Tl, Tr]. For example, we generate a group of 50 curves from

Brownian motion with Mean C and variance of 40 as the reference data and the functional

boxplot is shown in Figure 4.3. We will select [T1, Tr] = [0, 0.65] as the initial range since

its non-outlying envelope is almost all positive. By take the first derivative of the sample

mean curve ŷ(t), we get Dt = 0.05 and Mt = 0.12. Therefore, the left truncation point

Tl = max{0, 0.05, 1
2
∗ 0.12} = 0.06, and the evaluation range [Tl, Tr] = [0.06, 0.65]. Figure

4.4 shows the population mean curves from Mean A and Mean C, with the evaluation range

[0.06, 0.65]. Table 4.1 shows an example of the evaluation ranges for each of the reference

mean with a specific value of average of CV. For example, if we generate a group of curves

from a Brownian motion with Mean A and variance of 40 as the reference data, we will apply

the equivalence tests on the evaluation range of [0.06, 0.6].
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Reference Mean Variance of Brownian motion Average of CV Evaluation range

Mean A 40 0.146 [0.06, 0.6]
Mean B 40 0.125 [0.075, 0.6]
Mean C 40 0.172 [0.07, 0.65]
Mean D 25 0.162 [0.095, 0.65]
Mean E 25 0.136 [0.095, 0.65]
Mean F 40 0.141 [0.06, 0.6]

Table 4.1: The evaluation range for each of the reference mean with a specific value of
average of CV.

Ref Data Test Data average of CV EBs # rejecting Clopper-Pearson CI

Ha True Mean A Mean A 0.146 (0.8, 1.25) 999/1000 (0.994, 0.999)
Var=40 Var=40 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean A Mean A 0.244 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=80 Var=80 (0.75, 1.33) 965/1000 (0.952, 0.976)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean A Mean A 0.314 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=100 Var=100 (0.75, 1.33) 660/1000 (0.629, 0.689)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean A Mean A 0.486 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=120 Var=120 (0.75, 1.33) 26/1000 (0.0171, 0.0379)
(0.7, 1.43) 992/1000 (0.984, 0.997)

Table 4.2: The null hypothesis of difference is false since the reference and the test data are
generated from the same mean. We compute the powers of the tests for different average of
CV and EBs. EB represents equivalence band and CI represents confidence interval.

4.3.3 Simulation Results for Various Equivalence Bands

Let µR(t) denote the population mean curve for the reference group and µT (t) represent the

population mean for the test group. We consider the ratio of two mean curves as a metric

for equivalence and conduct the following hypotheses:

H0 :
µT (t)

µR(t)
> U(t) or

µT (t)

µR(t)
< L(t)

Ha : L(t) ≤ µT (t)

µR(t)
≤ U(t)

where (L(t), U(t)) is the predefined equivalence band (EB).
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We first consider the case where the reference and the test data are from the same known

population mean. In this case, the null hypothesis of difference is false since the reference,

and the rest data are actually from the identical mean. For example, we generate groups of

fifty curves from a Brownian motion with Mean A as both the reference and the test data.

We then apply NBFET to the curves within the evaluation range discussed in Section 4.3.2,

and the results are shown in Table 4.2. From the first part of Table 4.2, we can see that

when we use a variance of 40 in the Brownian motion, namely, the average of point-wise CVs

for the reference data is 0.146, we successfully reject H0 of difference 999 out of 1000 times

when the equivalence band is (0.8, 1.25), and Clopper-Pearson confidence interval for power

is (0.994, 0.999). With wider equivalence margins of (0.75, 1.33) or (0.7, 1.43), we reject all

1000 times and get observed power of 100%. We also consider other options of variances,

denoted by σ2, to cover a wide range of CVs for real-life situations. We can see that when

the variance of Brownian motion increases from 40 to 80, the average of point-wise CVs

goes up to 0.244, the power of the test decreases from 0.999 to 0 if the equivalence band is

(0.8, 1.25). With wider equivalence band of (0.75, 1.33), the power of the equivalence test

goes down from 100% to 96.5%. When the average of the point-wise CVs gets larger say,

0.486, the narrower equivalence bands of (0.8, 1.25) and (0.75, 1.33) do not provide good

power even though the reference and the test data are actually from the same population

mean. However, the power is still high (99.2%) when we use the widest bands of (0.7, 1.43).

Table 4.3 show the simulation results when the reference and the test data are generated

from Brownian motion with Mean B, Mean C, and Mean D. The complete simulation results

are shown in Appendix A. From the simulation, the equivalence bands of (0.8, 1.25) works

well when the average of CVs is smaller than 0.2, however, when the CVs increase to 0.2

but are lower than 0.3, we may enlarge the equivalence bands to (0.75, 1.33). It will be

appropriate to use the equivalence bands of (0.7, 1.43) when the average of CVs is beyond

0.3.
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Ref Data Test Data average of CV EBs # rejecting Clopper-Pearson CI

Ha True Mean B Mean B 0.125 (0.8, 1.25) 998/1000 (0.993, 0.999)
Var=40 Var=40 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean B Mean B 0.218 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=60 Var=60 (0.75, 1.33) 935/1000 (0.918, 0.949)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean B Mean B 0.334 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=100 Var=100 (0.75, 1.33) 522/1000 (0.491, 0.553)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean B Mean B 0.467 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=120 Var=100 (0.75, 1.33) 2/1000 (0.006, 0.021)
(0.7, 1.43) 990/1000 (0.981, 0.995)

Ha True Mean C Mean C 0.172 (0.8, 1.25) 997/1000 (0.991, 0.999)
Var=40 Var=50 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean C Mean C 0.225 (0.8, 1.25) 46/1000 (0.034, 0.061)

Var=80 Var=80 (0.75, 1.33) 972/1000 (0.960, 0.981)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean C Mean C 0.313 (0.8, 1.25) 4/1000 (0.00109, 0.0102)
Var=100 Var=100 (0.75, 1.33) 489/1000 (0.458, 0.520)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean C Mean C 0.429 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=120 Var=120 (0.75, 1.33) 147/1000 (0.126, 0.170)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean D Mean D 0.142 (0.8, 1.25) 999/1000 (0.994, 0.999)
Var=25 Var=25 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean D Mean D 0.238 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=40 Var=40 (0.75, 1.33) 892/1000 (0.871, 0.910)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean D Mean D 0.349 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=50 Var=50 (0.75, 1.33) 420/1000 (0.389, 0.451)

(0.7, 1.43) 944/1000 (0.928, 0.957)
Ha True Mean D Mean D 0.430 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=60 Var=60 (0.75, 1.33) 34/1000 (0.0237, 0.0472)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Table 4.3: Continued: The null hypothesis of difference is false since the reference and the
test data are generated from the same mean. We compute the powers of the tests for different
EBs. EB represents equivalence band and CI represents confidence interval.
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4.4 Determination of the Equivalence Bands

Based on the simulation results we got from Section 4.3.3, we decide to use equivalence

bands of (0.8, 1.25) when the CV for the reference data at time t, denoted CV (t), is less

than 0.2, equivalence bands of (0.75, 1.33) when the CV at time t is between 0.2 and 0.3,

and equivalence bands of (0.7, 1.43) when the CV at time t is between 0.3 and 1. It does not

make sense to evaluate equivalence when the standard deviation is larger than the mean;

thus, we truncate the curves at t when CV (t) > 1 for reference data. If CV (t) > 1 occurs

before the dicrotic notch, we still truncate at t when CV (t) > 1 because we believe that

the equivalence can hardly be measured when the standard deviation is bigger than the mean.

We define the EB = (L(t), U(t)) which determines whether the null hypothesis of differ-

ence is true or false. If the ratio of two population means falls entirely within the EB, then

the null hypothesis of difference is false. The interval (L(t), U(t)) is determined by the CV

of the reference data. In other words, for the following hypotheses in an equivalence test,

H0 :
µT (t)

µR(t)
> U(t) or

µT (t)

µR(t)
< L(t)

Ha : L(t) ≤ µT (t)

µR(t)
≤ U(t)

where µR(t) and µT (t) represent the population mean for the reference and test, respec-

tively. The EB = (L(t), U(t)) = (0.8, 1.25) when CV (t) < 0.2, (L(t), U(t)) = (0.75, 1.33)

when 0.2 ≤ CV (t) < 0.3, and (L(t), U(t)) = (0.7, 1.4) when 0.3 ≤ CV (t) < 1, where CV (t)

is the CV for the reference data at time t. In another words, the equivalence bands are

(L(t), U(t)) =


(0.8, 1.25), if CV (t) < 0.2

(0.75, 1.33), if 0.2 ≤ CV (t) < 0.3

(0.7, 1.4), if 0.3 ≤ CV (t) < 1.
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The equivalence bands proposed above constitute one of the main contributions in this

work. Currently, FDA suggests (0.8, 1.25), which is symmetric in the ratio scale, as the

equivalence limits to assess the bioequivalence for a scalar measure of similarity, such as AUC

and the maximum concentration. For highly variable drugs, the limits could be widened to

(0.75, 1.33) or even to (0.7, 1.43), depending on the within-subject CV. However, these is no

literature or guidance in determining the equivalence limits for a functional measurement of

similarity.

4.5 Nonparametric Bootstrap with Corrected Equiva-

lence Bands

In this section, we will implement NBFET procedure using the EB determined from Sec-

tion 4.4. Table 4.4 shows examples where the null hypothesis of difference is false, i.e., the

reference and the test data are generated from the population means which are practically

equivalent. In the first case, we generate the data from Brownian motion with the same

Mean A, and variances of 40, 80, 100, and 120, respectively. The power of the test decreases

from 0.999 to 0.89 when the variation increases from 40 to 120 (the average of CV goes up

from 0.146 to 0.486). In the second case, the reference and the test data are generated from

two different population means Mean E and Mean D, but the null of difference is still false

since the ratio of the population means falls entirely within the EB (Figure 4.5). The power

of the test goes down from 0.999 to 0.932 when the average of CV increases from 0.162

to 0.416. In the third and fourth cases, the null hypothesis of difference is still false since

the ratio of population means is completely contained in the EB. The powers of the tests

decrease slightly when the mean values of CV increase. In these four cases, the corrected

EB performs well in the sense that the power is maintained at a relatively high level.

Next, consider the case when the null hypothesis of difference is true. Figure 4.6 (a) shows

the population Mean A and Mean B, and (b) shows the ratio of Mean A to Mean B within
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Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

Ha True Mean A Mean A 0.146 999/1000 (0.9944, 0.9999)
Var=40 Var=40

Ha True Mean A Mean A 0.254 996/1000 (0.9898, 0.9989)
Var=80 Var=80

Ha True Mean A Mean A 0.314 966/1000 (0.9528, 0.9763)
Var=100 Var=100

Ha True Mean A Mean A 0.486 890/1000 (0.8689, 0.9087)
Var=120 Var=120

Ha True Mean E Mean D 0.162 999/1000 (0.9944, 0.9999)
Var=25 Var=25

Ha True Mean E Mean D 0.245 993/1000 (0.9856, 0.9972)
Var=40 Var=40

Ha True Mean E Mean D 0.328 980/1000 (0.9693, 0.9877)
Var=50 Var=50

Ha True Mean E Mean D 0.416 932/1000 (0.9146, 0.9468)
Var=60 Var=60

Ha True Mean A Mean C 0.146 982/1000 (0.972, 0.989)
Var=40 Var=40

Ha True Mean A Mean C 0.254 854/1000 (0.831, 0.875)
Var=80 Var=80

Ha True Mean A Mean C 0.314 945/1000 (0.929, 0.958)
Var=100 Var=100

Ha True Mean A Mean C 0.486 819/1000 (0.794, 0.842)
Var=120 Var=120

Ha True Mean B Mean C 0.125 964/1000 (0.951, 0.975)
Var=40 Var=40

Ha True Mean B Mean C 0.218 938/1000 (0.921, 0.952)
Var=80 Var=80

Ha True Mean B Mean C 0.334 887/1000 (0.866, 0.906)
Var=100 Var=100

Ha True Mean B Mean C 0.467 827/1000 (0.802, 0.850)
Var=120 Var=120

Table 4.4: The power of the equivalence test when the null hypothesis of difference is false,
i.e., the population means from the reference and the test group are considered equivalent.
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Figure 4.5: (a) Population Mean D and Mean E. (b) The ratio of Mean D to Mean E within
the evaluation range.

the evaluation range. From Figure 4.6 (b), we can tell that the null hypothesis of difference

is true since the ratio of two population means falls just above the upper initial equivalence

margin at the tail, and we expect the type I error rate around the significance level of 5%.

We compute the type I error rates for different averages of CV and summarize the results in

the first part of Table 4.5. When we generate the reference and the test data from Brown-

ian motion with the same variance of 40 (the average of CV is 0.132), we incorrectly reject

the null hypothesis of difference 60 out of 1000 times. The type I error rate is 0.06 with

the Clopper-Pearson confidence interval (0.0461, 0.0766). We then increase the variance of

Brownian motion to 80, 100, and 120, and get the corresponding type I error rates 0.025,

0.046, and 0.019. The type I error rates for all four cases with different averages of CV are

controlled around the significance level of 5%. In the second part of Table 4.5, we apply the

NBFET to curves generated from Brownian motion with the reference Mean A and the test

Mean F. From Figure 4.7, we can see that the null hypothesis of difference is true since the

ratio of two means does not fall entirely within the EB. The type I error rate of the test goes

down from 0.039 to 0.002 when the mean value of CV increases from 0.146 to 0.486. Figure
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Figure 4.6: (a) Population Mean A and Mean B. (b) The ratio of Mean A to Mean B
within the evaluation range.

4.8 (a) shows the population Mean B and Mean F, and (b) is the ratio of Mean F to Mean

B within the evaluation range. We expect the type I error rate much smaller than the level

of significance 5% since the ratio of two means shown in Figure 4.8 (b) is way more extensive

than the upper band at the tail. The last part of Table 4.5 confirms this low type I error rate.

The complete simulation results for all situations are shown in Appendix B. From the

simulation results based on the corrected EBs, we can see that when the null hypothesis of

difference is false, the powers of the test are all above 80%. When the null hypothesis of

difference is true, but the ratio of the population means just outside the equivalence bound-

aries, the type I error rates are controlled around the significance level of 5%. While the

type I errors are extremely small if the observed test statistic is way beyond the equivalence

boundaries. Therefore, the corrected EBs defined in Section 4.4 work well for the simulated

data, and they are likely to work for the real pulse waves as well.
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Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

H0 True Mean B Mean A 0.132 60/1000 (0.0461, 0.0766)
Var=40 Var=40

H0 True Mean B Mean A 0.268 25/1000 (0.0162, 0.0367)
Var=80 Var=80

H0 True Mean B Mean A 0.308 46/1000 (0.0339, 0.0609)
Var=100 Var=100

H0 True Mean B Mean A 0.452 19/1000 (0.0115, 0.0295)
Var=120 Var=120

H0 True Mean A Mean F 0.146 39/1000 (0.0279, 0.0529)
Var=40 Var=40

H0 True Mean A Mean F 0.254 21/1000 (0.0130, 0.0319)
Var=80 Var=80

H0 True Mean A Mean F 0.314 8/1000 (0.00346, 0.0157)
Var=100 Var=100

H0 True Mean A Mean F 0.486 2/1000 (0.000242, 0.00721)
Var=120 Var=120

H0 True Mean B Mean F 0.132 3/1000 (0.000619, 0.00874)
Var=40 Var=40

H0 True Mean B Mean F 0.268 0/1000 (0.00000, 0.00368)
Var=80 Var=80

H0 True Mean B Mean F 0.308 1/1000 (0.0000253, 0.00556)
Var=100 Var=100

H0 True Mean B Mean F 0.452 0/1000 (0.00000, 0.00368)
Var=120 Var=120

Table 4.5: The type I error rate of the equivalence test when the null hypothesis is true.
The reference and the test data are generated from a Brownian motion with Mean B and
Mean A in the first case.
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Figure 4.7: (a) Population Mean A and Mean F. (b) The ratio of Mean F to Mean A within
the evaluation range.

Figure 4.8: (a) Population Mean B and Mean F. (b) The ratio of Mean F to Mean B within
the evaluation range.
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4.6 Simplification by Choosing Featured Points

In the previous sections, we considered the curves as functional data and evaluated the

equivalence on the entire time range. We now pick the feature points such as systolic peak,

the dicrotic notch, and diastolic peak, and perform the equivalence test on these individual

time points. If the equivalence can be concluded for each of the evaluation points, the overall

equivalence can then be reached for the whole curve. One of the primary purposes of this

section is to see if we can simplify the NBFET procedure we discussed in Section 3.3.2 but

also reach the same conclusion by considering only a group of featured evaluation points.

4.6.1 Determining the Featured Evaluation Points

In this section, we will discuss a strategy for selecting the evaluation points for simulated

data. Suppose we have a group of p curves as the reference data with known mean and

variance of Brownian motion. Let ŷ(t), t ∈ (0, 1) be the nonparametric regression estimate

for the reference data. We will perform the following steps to pick the feature points:

Step 1: We determine the evaluation range [Tl, Tr] as discussed in Section 4.3.2.

Step 2: Let Mt be the first peak of the mean curve ŷ(t) where its first derivative equals

zero. Pick Mt ±Km ∗∆t as the first set of evaluation points, where ∆t is a very short time

interval.

Step 3: Find the changing point (dicrotic notch) of the mean curve ŷ(t) where the first

derivative goes from increasing to decreasing, and denote it as Nt. Pick Nt±Kn ∗∆t as the

second set of evaluation points.

We would consider the following combinations of the evaluation points:

Case 1: Few evaluation points: Km = Kn = {0}. 2 evaluation points.

Case 2: Moderate evaluation points: Km = {0, 1, 2}, Kn = {0, 1, 2}. 10 evaluation points.

Case 3: Moderate evaluation points: Km = {0, 1, 2}, Kn = {0, 1, 2, 3, 4, 5}. 16 evaluation
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points.

Case 4: More evaluation points: Km = {0, 1, 2, 3, 4, 5}, Kn = {0, 1, 2, · · · , 9, 10}. 32

evaluation points.

We consider only the first peak and dicrotic notch as the evaluation points in Case 1,

and extend to its neighborhood in Case 2, 3, and 4. For example, we select a distance of two

evaluation points as a neighborhood of both the first peak and the dicrotic notch in Case

2, which results in 10 total evaluation points. Case 1 has the fewest evaluation points and

Case 4 has the most. If the evaluation points are outside the range of [Tl, Tr], we use Tl as

the left ending point and Tr as the right ending point.

4.6.2 Simulation Results from Simplified Procedure

When the null hypothesis of difference is false and the reference data behaves equivalently

as the test data, the Nonparametric Bootstrap with corrected equivalence bands confirmed

the equivalence for all within-person and between-people comparisons in Section 4.5. If we

consider a smaller set of evaluation points, we will reach to the same conclusion but with a

slightly higher power. Therefore, we focus on the case when the null of difference is true and

see if evaluation based on a smaller set of measured points will lead us to an incorrect decision.

In the first case of Table 4.5, we considered the situation where the null of difference was

true and measured the equivalence between reference data from Mean A and test data from

Mean B. For example, if we generated the data from Brownian motion with a variance of

80 for both the reference and test data, the type I error of the equivalence test was 0.025.

The type I error increased to 0.046 when the variance of Brownian motion wnet up to 100.

Nonparametric Bootstrap with corrected equivalence bands worked well since we controlled

the type I error around the significance level of 5%.

Next, we want to see if the procedure could be simplified by measuring the equivalence
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Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

H0 True Mean B Mean A 0.132 Case 1: 1000/1000 (0.996, 1.000)
Var=40 Var=40 Case 2: 1000/1000 (0.996, 1.000)

Case 3: 986/1000 (0.977, 0.992)
Case 4: 56/1000 (0.0426, 0.0721)

H0 True Mean B Mean A 0.268 Case 1: 998/1000 (0.993, 0.999)
Var=80 Var=80 Case 2: 998/1000 (0.993, 0.999)

Case 3: 966/1000 (0.953, 0.976)
Case 4: 33/1000 (0.0228, 0.0460)

H0 True Mean B Mean A 0.308 Case 1: 1000/1000 (0.996, 1.000)
Var=100 Var=100 Case 2: 1000/1000 (0.996, 1.000)

Case 3: 992/1000 (0.984, 0.997)
Case 4: 41/1000 (0.0296, 0.0552)

H0 True Mean B Mean A 0.452 Case 1: 999/1000 (0.994, 1.000)
Var=120 Var=120 Case 2: 999/1000 (0.994, 1.000)

Case 3: 989/1000 (0.980, 0.994)
Case 4: 17/1000 (0.00993, 0.0271)

Table 4.6: The null hypothesis of difference is true, but the simplified procedure concludes
the equivalence.

on a smaller set of evaluation points but still control the type I error. We considered the

same data as we used in the first case of Table 4.5 and computed the type I error rates for

each of the four cases mentioned in Section 4.6.1. We picked ∆t = 0.01, and the results were

shown in Table 4.6. The first part of Table 4.6 showed the situation where the reference

and the test data were generated from Brownian motion with Mean A and Mean B, and a

common variance of 40 for each of the four cases. Case 1 considered only two evaluation

points (the first peak and the dicrotic notch) and got a type I error rate of 1000/1000 = 1.

Case 4 measured equivalence on neighborhoods of the first peak and the dicrotic notch of

total 32 points, and controlled the type I error rate at 56/1000 = 0.056. When we increased

the variance of Brownian motion to 80, 100, and 120, only Case 4 maintained the type I

error at the desired level. In another word, the procedure failed to distinguish two sets of

curves which came from population means that behaved quite differently and incorrectly

identified them as equivalent when we reduced the number of evaluation points. We also

applied the similar procedure to comparing the curves generated from Brownian motion with

the reference Mean A and the test Mean F, and with the reference Mean B and the test
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Mean F. The simulation results are shown in Table 4.7. From Table 4.7, we can see that

when we increased the number of the featured points from Case 1 to Case 4, only Case 3

and Case 4 gave the type I error rates at the desired level. The procedure could not dif-

ferentiate two differently behaved means when we decreased the number of the feature points.

The false acceptance of equivalence is sometimes dangerous, for example, it will approve

unauthorized access to company’s critical business data, or allow an acquaintance to view

personal medical records or bank account details. Moreover, the cost of identifying two

different subjects as equivalent is much more than incorrectly concluding two similar persons

differ. Therefore, we prefer applying equivalent testing on the whole function instead of on

a small group of featured evaluation points. However, Case 4 with the most measurement

points could be a replacement when the procedure takes too long to execute.
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Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

H0 True Mean A Mean F 0.146 Case 1: 999/1000 (0.994, 0.999)
Var=40 Var=40 Case 2: 785/1000 (0.758, 0.810)

Case 3: 47/1000 (0.0347, 0.0620)
Case 4: 17/1000 (0.00993, 0.0271)

H0 True Mean A Mean F 0.254 Case 1: 998/1000 (0.993, 0.999)
Var=80 Var=80 Case 2: 564/1000 (0.532, 0.595)

Case 3: 36/1000 (0.0253, 0.0495)
Case 4: 21/1000 (0.0130, 0.0319)

H0 True Mean A Mean F 0.314 Case 1: 982/1000 (0.972, 0.989)
Var=100 Var=100 Case 2: 611/1000 (0.580, 0.641)

Case 3: 28/1000 (0.0187, 0.0402)
Case 4: 2/1000 (0.0000242, 0.00721)

H0 True Mean A Mean F 0.486 Case 1: 967/1000 (0.954, 0.977)
Var=120 Var=120 Case 2: 145/1000 (0.124, 0.168)

Case 3: 4/1000 (0.00109, 0.0102)
Case 4: 0/1000 (0.00000, 0.00368)

H0 True Mean B Mean F 0.132 Case 1: 999/1000 (0.994, 0.999)
Var=40 Var=40 Case 2: 983/1000 (0.973, 0.990)

Case 3: 117/1000 (0.0977, 0.139)
Case 4: 3/1000 (0.000619, 0.00874)

H0 True Mean B Mean F 0.268 Case 1: 999/1000 (0.994, 0.999)
Var=80 Var=80 Case 2: 864/1000 (0.841, 0.885)

Case 3: 69/1000 (0.0541, 0.0865)
Case 4: 1/1000 (0.0000253, 0.00556)

H0 True Mean B Mean F 0.308 Case 1: 992/1000 (0.984, 0.997)
Var=100 Var=100 Case 2: 851/1000 (0.827, 0.873)

Case 3: 2/1000 (0.0000242, 0.00721)
Case 4: 0/1000 (0.00000, 0.00368)

H0 True Mean B Mean F 0.452 Case 1: 989/1000 (0.980, 0.994)
Var=120 Var=120 Case 2: 325/1000 (0.296, 0.355)

Case 3: 0/1000 (0.00000, 0.00368)
Case 4: 0/1000 (0.00000, 0.00368)

Table 4.7: Continued: The null hypothesis is true, but the simplified procedure concludes
the equivalence.
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Chapter 5

Conclusion

In the previous chapter, we introduced a procedure to determine the proper equivalence

bands from a simulation study and then applied the nonparametric bootstrap to curves

simulated from Brownian motion. The type I error rates of the test were controlled around

the nominal significance level of 5% and the powers were all above 80%. Here we apply

the nonparametric bootstrap procedure discussed in Section 3.3.2 to real pulse waves from

four of the persons to determine whether equivalence tests can actually perform identity

authentication. The real data applications and conclusions are summarized in Section 5.1.

We give a summary of contributions of this work in Section 5.2 and propose some future

work in Section 5.3.

5.1 Real Data Application

Recall the four representative persons we used in Chapter 2: Person 1, Person 2, Person

7, and Person 10. There are 57 pulse cycles from Person 1. Figure 5.1 shows the original

curves after truncating and shifting and the corresponding functional boxplot. We divide

the curves from Person 1 into two parts: the first 30 curves serve as the reference group

and the remaining 27 curves are taken to be the test group. From Table 2.2, we notice that

the p-value of the permutation test for comparing within Person 1 using the reference and
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Figure 5.1: The original curves and functional boxplot for Person 1.

the rest group is 0.53. Thus, we do not have enough evidence to conclude that these two

sets of curves come from two different people. To assure the identity, we further apply the

equivalence testing using the nonparametric bootstrap procedure discussed in Section 3.3.2

to see if we can confirm that these two sets of pulse waves generated from the same person.

According to the method for determining the evaluation range discussed in Section 4.3.2,

the range of equivalence evaluation for Person 1 is (0.06, 0.45). Therefore, we compare the

confidence interval computed from the nonparametric bootstrap procedure with the equiva-

lence bands in the range of (0.06, 0.45). If the 90% confidence interval falls entirely within

the equivalence bands between the time of 0.06 and 0.45, statistically significant equivalence

can be concluded for the two groups of curves from Person 1.

Figure 5.2 shows the 90% confidence interval for the ratio of the population mean curves

from the reference and the test group of Person 1. The equivalence bands are shown in red.

We see that the confidence interval falls completely with the equivalence bands between the
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Figure 5.2: 90% confidence interval for the ratio of population mean curves from Person
1, with the equivalence bands shown in red and the evaluation range in blue.

Figure 5.3: 90% confidence interval for the ratio of population mean curves from Person
10, with the equivalence bands shown in red and the evaluation range in blue.

equivalence range of (0.06, 0.45). Therefore, we conclude that the reference and the test sets

are generated from the same person. Namely, the identity is assured for Person 1. Similarly,

we can also authenticate the identity of Person 10 from Figure 5.3. Figure 5.3 indicates the
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90% confidence intervals for the ratio of the population mean curves from the reference and

the rest group of Person 10, with the equivalence bands shown in red. The evaluation range

computed according to Section 4.3.2 is (0.05, 0.46). Thus, we conclude that the reference and

the test groups are from the same person since the confidence interval falls entirely within

the equivalence limits in the evaluation range. However, from Figure 5.4, equivalence cannot

be concluded for Person 2 and Person 7. Table 2.2 shows that the permutation p-value for

comparing within Person 2 is 0.001. Therefore the first half and the second half curves are

generated from different population means. It is not surprising that the 90% confidence

interval falls outside the equivalence bands and we fail to confirm the identity of Person

10 from equivalence test. The permutation p-value for comparing within Person 7 is 0.32

as shown in Table 2.2. However, there is a lot of variability in curves from Person 7, and

some go below zero at around t = 0.4. Moreover, several pulse waves from Person 7 do not

seem to have the most appropriate starting points. Thus, the 90% confidence interval for

the ratio of the population means dramatically widens at the beginning and around time 0.4.

Figure 5.4: 90% confidence interval for the ratio of population mean curves from Person 2
and Person 7, with the equivalence bands shown in red.

In the present work, we explored the use of pulse waves collected using PPG for identity
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authentication. First, we visualized the pulse wave data using functional boxplots, which

gave an assessment of the shape of the data and identified unusual observations. Functional

boxplots also helped to adjust data by shifting pulse waves to a more appropriate starting

point. Functional ANOVA and permutation tests were then employed to demonstrate that

the identities in a small group of test subjects could be differentiated and compared by

their pulse waveforms. We successfully differentiated the four persons in the sample through

Functional ANOVA and permutation tests. The primary task of the project was to confirm

the identity of a person, i.e., decide whether a given person, the test subject, is whom they

claim to be, namely the reference subject. We developed a new equivalence testing procedure

using nonparametric bootstrap, including the process of building the equivalence hypothesis

and test statistics, determination of evaluation range and equivalence bands to determine

whether the pulse waves of the test subject and the pulse waves of the reference subject were

close enough to be considered equivalent. The identities of Person 1 and Person 10 were

successfully confirmed through the nonparametric bootstrap procedure. However, we could

not assure the identity of Person 2 and Person 7 due to issues such as large variabilities and

negative values at the tail of pulse waves, improper starting points, unstable environment

when the pulse waves were collected, poor settings of the pulse oximeters.

5.2 Summary of Contributions

The equivalence bands proposed in Section 4.4 are one of the main contributions in this work.

Currently, equivalence limits of (0.8, 1.25) are frequently used in the bioequivalence litera-

ture and also recommended by FDA. Instead of analyzing the individual profile as functional

data, the profile is usually reduced to some scalar values by computing the pharmacokinetic

characteristics, such as the area under the curve and the maximum concentration. For highly

variable drugs, the limits could be widened to (0.75, 1.33) or even to (0.7, 1.43), depending

on the within-subject CV. However, there is no literature or guidance in determining the

equivalence limits for a functional measurement of similarity. We employed a simulation

study to propose the proper EBs which are based on the point-wise coefficient of variances.
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Another contribution we made is to propose the NBFET procedure in Section 3.3.2. Fog-

arty and Small (2014) considered the difference in mean curves and the ratio of variances as

metrics for equivalence. They performed separate equivalence tests for these two measure-

ments of equivalence. In our work, we used the ratio of mean curves as the test statistic and

incorporate the variances into the determination of the equivalence bands. Therefore, both

the mean curve and the variance are included in the equivalence test, and we do not lose

information from either of them.

Moreover, we generated pulse wave-like curves from Brownian motion and demonstrated

that Brownian motion can be used to simulate other functional data with ———particular

patterns. To the best of our knowledge, there are no studies on the use of functional data

generated from Brownian motion to perform identity authentication using an equivalence test

or to determine the equivalence limits. The procedure to determine the evaluation range we

used in Section 4.3.2 may be only applicable to pulse waveforms. However, similar ideas or

steps could be employed to establish the range in an equivalence test for other examples of

functional data.

5.3 Future Work

In this paper, we first visualize the pulse waves by functional boxplots and get a sense of

behavioral patterns of the underlying mean curve. Then functional ANOVA was performed

via a permutation test to differentiate people as well as an equivalence test to confirm the

identity of persons. Functional ANOVA is described in Section 2.2 and permutation test in

Section 2.3. Section 3.3.2 introduced the nonparametric bootstrap procedure for assessing

equivalence, with the corresponding simulation results shown in Chapter 4. These are all

frequentist methodologies, and similar approaches also exist under the Bayesian framework.

For example, we could employ Bayesian functional ANOVA for differentiating the wave pat-
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terns of subjects. Markov chain Monte Carlo methods could be implemented, but there are

problems with both regarding convergence and computational time since the dataset in our

project is large. One possible solution is to use the integrated nested Laplace approximation

(INLA) so that very accurate approximations to the posterior marginals can be directly com-

puted. The main benefit of INLA is computational; where MCMC methods run for hours

and days, INLA provides precise estimates in seconds and minutes.

Fogarty and Small (2014) proposed to conduct the following three steps when using the

Bayesian framework for equivalence testing:

1. Define an equivalence region through expert consultation.

2. Define a probability value, called it γ, such that if P{Ha|Data} ≥ γ, equivalence may

be suggested. Using the suggestions of Jeffries (1961), a value of γ = 0.75 or γ = 0.95 may

be appropriate.

3. Specify prior distributions for the metrics of equivalence that are commensurate with

the researchers’ prior belief of the alternative being true relative to the null.

We suggested using functional measures of location to evaluate practical equivalence in

the frequentist case. However, it is not required to carry out a TOST in the Bayesian

paradigm. The Bayesian approach allows the computation of the posterior probabilities of

our functional metrics of equivalence which can then be compared to specified range directly.

In another word, we directly calculate P{Ha|Data} for each set of the equivalence hypothe-

ses. INLA could be used to get both the posterior and predictive distribution for the metrics

of equivalence.
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Appendix A

Additional Simulation Results for

Determining Equivalence Bands

This appendix shows the simulation results for determining the most appropriate EBs for

different options of average CV.

Ref Data Test Data mean of CV EBs # rejecting Clopper-Pearson CI

Ha True Mean E Mean E 0.136 (0.8, 1.25) 1000/1000 (0.996, 1.000)
Var=25 Var=25 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean E Mean E 0.215 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=40 Var=40 (0.75, 1.33) 922/1000 (0.904, 0.938)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean E Mean E 0.337 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=50 Var=50 (0.75, 1.33) 636/1000 (0.605, 0.666)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean E Mean E 0.411 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=60 Var=60 (0.75, 1.33) 68/1000 (0.0532, 0.0854)
(0.7, 1.43) 984/1000 (0.974, 0.991)

Table A.1: The null hypothesis of difference is false. The power for different choices of
equivalence bands with different averages of CV.
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Ref Data Test Data mean of CV EBs # rejecting Clopper-Pearson CI

Ha True Mean F Mean F 0.141 (0.8, 1.25) 996/1000 (0.990, 0.999)
Var=40 Var=40 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean F Mean F 0.239 (0.8, 1.25) 12/1000 (0.00621, 0.0209)

Var=80 Var=80 (0.75, 1.33) 979/1000 (0.968, 0.987)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean F Mean F 0.328 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=100 Var=100 (0.75, 1.33) 626/1000 (0.595, 0.656)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean F Mean F 0.408 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=120 Var=120 (0.75, 1.33) 147/1000 (0.126, 0.170)
(0.7, 1.43) 993/1000 (0.986, 0.997)

Ha True Mean B Mean C 0.125 (0.8, 1.25) 998/1000 (0.993, 0.999)
Var=40 Var=50 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean B Mean C 0.218 (0.8, 1.25) 67/1000 (0.0523, 0.0843)

Var=80 Var=80 (0.75, 1.33) 988/1000 (0.979, 0.994)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean B Mean C 0.334 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=100 Var=100 (0.75, 1.33) 596/1000 (0.565, 0.627)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean B Mean C 0.467 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=120 Var=100 (0.75, 1.33) 244/1000 (0.218, 0.272)
(0.7, 1.43) 995/1000 (0.988, 0.998)

Ha True Mean D Mean E 0.162 (0.8, 1.25) 994/1000 (0.987, 0.999)
Var=25 Var=25 (0.75, 1.33) 1000/1000 (0.996, 1.000)

(0.7, 1.43) 1000/1000 (0.996, 1.000)
Ha True Mean D Mean E 0.264 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=40 Var=40 (0.75, 1.33) 826/1000 (0.801, 0.849)
(0.7, 1.43) 1000/1000 (0.996, 1.000)

Ha True Mean D Mean E 0.352 (0.8, 1.25) 0/1000 (0, 0.00368)
Var=50 Var=50 (0.75, 1.33) 320/1000 (0.291, 0.349)

(0.7, 1.43) 925/1000 (0.906, 0.941)
Ha True Mean D Mean E 0.426 (0.8, 1.25) 0/1000 (0, 0.00368)

Var=60 Var=60 (0.75, 1.33) 10/1000 (0.00481, 0.0183)
(0.7, 1.43) 910/1000 (0.891, 0.927)

Table A.2: Continued: the null hypothesis of difference is false. The power for different
choices of equivalence bands with different averages of CV.
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Appendix B

Additional Simulation Results for

Validation

Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

Ha True Mean B Mean B 0.125 889/1000 (0.868, 0.908)
Var=40 Var=40

Ha True Mean B Mean B 0.218 987/1000 (0.978, 0.993)
Var=80 Var=80

Ha True Mean B Mean B 0.334 989/1000 (0.980, 0.994)
Var=100 Var=100

Ha True Mean B Mean B 0.467 944/1000 (0.928, 0.957)
Var=120 Var=120

Ha True Mean C Mean C 0.172 937/1000 (0.920, 0.951)
Var=40 Var=40

Ha True Mean C Mean C 0.225 976/1000 (0.964, 0.985)
Var=80 Var=80

Ha True Mean C Mean C 0.313 986/1000 (0.977, 0.992)
Var=100 Var=100

Ha True Mean C Mean C 0.429 890/1000 (0.869, 0.909)
Var=120 Var=120

Table B.1: The null hypothesis of difference is false. The power of the test for difference
averages of CV based on the corrected equivalence bands.
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Ref Data Test Data average of CV # rejecting Clopper-Pearson CI

Ha True Mean D Mean D 0.162 958/1000 (0.944, 0.970)
Var=25 Var=25

Ha True Mean D Mean D 0.264 976/1000 (0.964, 0.985)
Var=40 Var=40

Ha True Mean D Mean D 0.352 984/1000 (0.974, 0.991)
Var=50 Var=50

Ha True Mean D Mean D 0.426 922/1000 (0.904, 0.938)
Var=60 Var=60

Ha True Mean E Mean E 0.136 865/1000 (0.842, 0.886)
Var=25 Var=25

Ha True Mean E Mean E 0.245 914/1000 (0.895, 0.931)
Var=40 Var=40

Ha True Mean E Mean E 0.328 955/1000 (0.940, 0.967)
Var=50 Var=50

Ha True Mean E Mean E 0.416 886/1000 (0.865, 0.905)
Var=60 Var=60

Ha True Mean F F 0.141 828/1000 (0.803, 0.851)
Var=40 Var=40

Ha True Mean F Mean F 0.239 927/1000 (0.909, 0.942)
Var=80 Var=80

Ha True Mean F Mean F 0.328 951/1000 (0.936, 0.964)
Var=100 Var=100

Ha True Mean F Mean F 0.408 865/1000 (0.842, 0.886)
Var=120 Var=120

Table B.2: Continued: the null hypothesis of difference is false. The power of the test for
difference averages of CV based on the corrected equivalence bands.

93



Appendix C

R Programs

########################################

## R version 3.5.0 (2018 -04 -23)

## Packages used:

## fda Version 2.4.8

## fda.usc Version 1.4.0

## sm Version 2.2 -5.6

########################################

C.1 Functional Boxplots

## functional data analysis , such as functional boxplot

library(fda)

## Smoothing Methods for Nonparametric Regression and Density Estimation

library(sm)

## read the original curves for Person 1

person1 <-read.csv("/Users/mengjiaowu/Documents/Research/ModifiedData

/1-cycles2.csv",header=FALSE)

## the number of cycles

ncurves <-0.5*dim(person1 )[2] -1
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## the matrix for time and PPG values

T1<-matrix(0,nrow=dim(person1 )[1], ncurves)

W1<-matrix(0,nrow=dim(person1 )[1], ncurves)

## make the start time for each curve be zero

for (i in 1: ncurves ){

T1[,i]<-person1[,2*i+1]-min(person1[,2*i+1],na.rm=TRUE)

W1[,i]<-person1[,2*i+2]

}

## shift the curves so that they all start at zero

for (i in 1: ncurves ){

W1[,i]<-W1[,i]-W1[,i][1]

}

P1matrix <-matrix(0,nrow=ncurves ,ncol =71)

## smooth the original curves

for (i in 1: ncurves ){

P1matrix[i,]<-sm.regression(na.omit(T1[,i]),na.omit(W1[,i]),h=0.01 ,

eval.points=seq(0,0.84,by =0.012))$estimate

}

par(mfrow=c(1,2))

## make functional boxplots for Person 1

fbplot(t(P1matrix [,1:61]),x=seq(0,0.72,by=0.012) , method="MBD",

ylim=c(-500,3800), xlim=c(0,0.72),

fullout=TRUE ,xlab="Time",ylab="")

## add the title for the functional boxplot

title(main="Person 1")

## plot the original curves

plot(seq(0,0.72,by=0.012) , P1matrix [1 ,][1:61] , type="l",ylim=c(-500,3500),

xlab="Time",ylab="",main="Person 1")

for(i in 2: ncurves ){
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lines(seq(0,0.72,by=0.012) , P1matrix[i,][1:61] , col=i)

}

C.2 Functional ANOVA

## comparing four persons using ANOVA

library(fda.usc) ## functional ANOVA

## P1matrix is smoothing curves after truncation for person 1

## and each column represent a single pulse wave

mydata <-rbind(P1matrix ,P2matrix ,P7matrix ,P10matrix)

## compute the number of curves for each person

n1<-dim(P1matrix )[2]

n2<-dim(P2matrix )[2]

n7<-dim(P7matrix )[2]

n10 <-dim(P10matrix )[2]

## assign the lables for each person

group <-rep(c(1,2,7,10),c(n1,n2,n7,n10))

## one -way functional ANOVA based on 1000 bootstrap samples

res <-anova.onefactor(fdata(mdata),group ,nboot =1000 , plot=TRUE)

## save the graph

quartz.save("fanova6person.pdf","pdf",width =9)

C.3 Permutation Test

## permutation test using smoothed and shifted data to compare Person 1

##and Person 7

##the number of permutations

N<-1000

## P1matrix and P7matrix contain the smoothed and shift data
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## from Person 1 and Person 7

P1_7<-rbind(P1matrix [,1:61], P7matrix [ ,1:61])

## each permutation generated one value of difference in areas

Diff1_7<-rep(0,N)

## n1: the number of curves of Person 1

n1<-nrow(P1matrix)

for (s in 1:N){

time <-seq(0,0.72,by =0.012)

## randomly select n1 curves without replacement

sample <-sample (1: nrow(P1_7),n1)

traintime <-seq(0,0.72,by =0.012)

## create the training/reference data

traindata <-t(P1_7)[, sample]

num1 <-matrix(0,nrow=ncol(traindata),ncol=length(time))

dem1 <-matrix(0,nrow=ncol(traindata),ncol=length(time))

## compute the local linear regression estimate for the reference data

for (j in 1: length(time )){

for(i in 1:ncol(traindata )){

R<-var(na.omit(traindata[,i]))*diag(length(na.omit(traintime )))

weight <-chol2inv(chol(R))

num1[i,j]<-t(dnorm(na.omit(traintime)-time[j] ,0 ,0.01))%*%(diag(weight)

*na.omit(traindata[,i]))

dem1[i,j]<-t(dnorm(na.omit(traintime)-time[j] ,0 ,0.01))%*%diag(weight)

}

}

Numtrain <-apply(num1 ,2,sum)

Demtrain <-apply(dem1 ,2,sum)

## etatrain is the local linear regression estimate for the reference data

etatrain <-Numtrain/Demtrain
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#####################################################################

testtime <-seq(0,0.72,by =0.012)

testdata <-t(P1_7)[,-sample]

num1 <-matrix(0,nrow=ncol(testdata),ncol=length(time))

dem1 <-matrix(0,nrow=ncol(testdata),ncol=length(time))

## compute the local linear regression estimate for the test data

for (j in 1: length(time )){

for(i in 1:ncol(testdata )){

R<-var(na.omit(testdata[,i]))*diag(length(na.omit(testtime )))

weight <-chol2inv(chol(R))

num1[i,j]<-t(dnorm(na.omit(testtime)-time[j] ,0 ,0.01))%*%(diag(weight)

*na.omit(testdata[,i]))

dem1[i,j]<-t(dnorm(na.omit(testtime)-time[j] ,0 ,0.01))%*%diag(weight)

}

}

Numtest <-apply(num1 ,2,sum)

Demtest <-apply(dem1 ,2,sum)

## etatest is the local linear regression estimate for the test data

etatest <-Numtest/Demtest

## compute the difference between two estimated curves

h<-etatrain -etatest

tdiff <-0.012

## compute the area between two curves using trapzoid rule

Diff1_7[s]<-sum(abs(h[-1]+h[-length(h)])*tdiff/2)

}

## We computed the difference between the area under the estimated curve

## from Person 1 and from Person 7 is 121.595

p_value=mean(Diff1_7 >121.595)
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C.4 Brownian motion

## generate the curves from Brownian motion

xx<-seq(0,1,by =0.01)

## the mean is a mixture of Beta densities

mean.vector <-500*dbeta(xx ,2.1 ,12)+550*dbeta(xx ,4,5)

## the variance for the Brownian motion

vari <-40

## number of realizations

nreal <-50

## number of grid points

np<-100

## generate a group of 50 curves from Brownian motion

## with the given mean and varaince

mydata <-matrix(0,nrow=nreal ,ncol=length(mean.vector ))

fit <-matrix(0,nrow=nreal ,ncol=length(mean.vector )-1)

for (i in 1: nreal){

## generate values from normal distribution with mean 0 and variance=vari

dis <-rnorm(np ,0,vari)

dis <-c(0,dis)

## compute the cumulatice sum

dis <-cumsum(dis)

## curve generated from Brownian motion with a given mean and variance

mydata[i,]<-mean.vector+dis

## apply the nonparametric regression smoothing

fit[i,]<-sm.regression(xx ,curve1[i,],h=0.025 , ngrid=np)$estimate

}

par(mfrow=c(1,2))
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## plot the simualted data

time <-seq(0,1,length=np)

plot(time ,fit[1,],type="l",ylim=c(-800,2800), col=4,ylab="",

main="Simulated curves after smoothing")

for (i in 2: nreal){

lines(time ,fit[i,],col=4)

}

## make a functional boxplot for the simulated data

fbplot(t(fit),x=seq(0,1,length=np),method="MBD",xlim=c(0,1))

title("Functional boxplot of the simulated curves")

C.5 Nonparametric Bootstrap

## Nonparametric bootstap for the ratio of mean curves

## First , we generate curves from Brownian motion with two given

## population means: mean.vector1 and mean.vector2

nreal <-50 ## 50 realizations for each mean

np<-100 ## the number of evaluation/grid points

xx<-seq(0,1,by =0.01)

mean.vector1 <-500*dbeta(xx ,2.1 ,12)+550*dbeta(xx ,4,5)

mean.vector2 <-500*dbeta(xx ,2.6 ,12)+450*dbeta(xx ,4,5)

## genetate curves from Brownian motion and store them in curve1 and curve 2

curve1 <-matrix(0,nrow=nreal ,ncol=length(mean.vector1 ))

curve2 <-matrix(0,nrow=nread ,ncol=length(mean.vector1 ))

## apply nonparametric regression (smoothing) to curve1 and curve2 ,

## and store the results in fit1 and fit2

fit1 <-matrix(0,nrow=nreal ,ncol=np)

fit2 <-matrix(0,nrow=nreal ,ncol=np)
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for (i in 1: nreal){

dis <-rnorm(np ,0,vari1)

dis <-c(0,dis)

dis <-cumsum(dis)

curve1[i,]<-mean.vector1+dis

fit1[i,]<-sm.regression(xx ,curve1[i,],h=0.025 , ngrid=np)$estimate

}

for (i in 1: nreal){

dis <-rnorm(np ,0,vari2)

dis <-c(0,dis)

dis <-cumsum(dis)

curve2[i,]<-mean.vector2+dis

fit2[i,]<-sm.regression(xx ,curve2[i,],h=0.025 , ngrid=np)$estimate

}

## Then , we apply the nonparametric bootstrap to fit1 and fit2

## the number of bootstrap samples

bsample <-1000

## the number of iterations

niter <-500

## Ratio stores the ratios of the estimated curves of the

## reference and the test group from each iteration

Ratio <-matrix(0,nrow=bsample ,ncol=np)

## equivalence indicates if we reject the null of difference

## in each iteration

equivalence <-rep(-1,niter)

for (i in 1: niter){

smRef_1<-matrix(0,nrow=bsample ,ncol=np)

smTest_1<-matrix(0,nrow=bsample ,ncol=np)
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for (k in 1: bsample ){

Time <-seq(0,1,length=np)

## draw bootstrap samples for the reference group

Cref <-sample (1:nreal ,nreal ,replace=TRUE)

dataRef <-fit1[Cref ,]

## draw bootstrap samples for the test group

Ctest <-sample (1:nreal ,nreal ,replace=TRUE)

dataTest <-fit2[Ctest ,]

## compute the nonparametric regression estimate for repeated measurement

## curves for both the reference and the test group

smRef_1[k,]<-sm.rm(Time ,dataRef ,minh =0.01 , maxh =0.01 , display="none")

$aux$mean

smTest_1[k,]<-sm.rm(Time ,dataTest ,minh =0.01, maxh =0.01, display="none")

$aux$mean

}

## compute the ratio of the estimated curves

for (k in 1: bsample ){

Ratio[k,]<-smTest_1[k,]/smRef_1[k,]

}

## compute the 90% confidence interval from bootstrapping results

ratio_statqt <-apply(thetaRatio ,2,function(x)

{quantile(x,probs=c(0.05 ,0.95) , type =7)})

## if the confidence interval falls entirely within the equivalence limits ,

## we conclude the equivalence

equivalence[i]<-ifelse(min(ratio_statqt [1,])> 0.8

& max(ratio_statqt [2 ,]) <1.25,1,0)

}
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