289 research outputs found

    Cost-Based Optimization of Integration Flows

    Get PDF
    Integration flows are increasingly used to specify and execute data-intensive integration tasks between heterogeneous systems and applications. There are many different application areas such as real-time ETL and data synchronization between operational systems. For the reasons of an increasing amount of data, highly distributed IT infrastructures, and high requirements for data consistency and up-to-dateness of query results, many instances of integration flows are executed over time. Due to this high load and blocking synchronous source systems, the performance of the central integration platform is crucial for an IT infrastructure. To tackle these high performance requirements, we introduce the concept of cost-based optimization of imperative integration flows that relies on incremental statistics maintenance and inter-instance plan re-optimization. As a foundation, we introduce the concept of periodical re-optimization including novel cost-based optimization techniques that are tailor-made for integration flows. Furthermore, we refine the periodical re-optimization to on-demand re-optimization in order to overcome the problems of many unnecessary re-optimization steps and adaptation delays, where we miss optimization opportunities. This approach ensures low optimization overhead and fast workload adaptation

    Skyline queries computation on crowdsourced- enabled incomplete database

    Get PDF
    Data incompleteness becomes a frequent phenomenon in a large number of contemporary database applications such as web autonomous databases, big data, and crowd-sourced databases. Processing skyline queries over incomplete databases impose a number of challenges that negatively influence processing the skyline queries. Most importantly, the skylines derived from incomplete databases are also incomplete in which some values are missing. Retrieving skylines with missing values is undesirable, particularly, for recommendation and decision-making systems. Furthermore, running skyline queries on a database with incomplete data raises a number of issues influence processing skyline queries such as losing the transitivity property of the skyline technique and cyclic dominance between the tuples. The issue of estimating the missing values of skylines has been discussed and examined in the database literature. Most recently, several studies have suggested exploiting the crowd-sourced databases in order to estimate the missing values by generating plausible values using the crowd. Crowd-sourced databases have proved to be a powerful solution to perform user-given tasks by integrating human intelligence and experience to process the tasks. However, task processing using crowd-sourced incurs additional monetary cost and increases the time latency. Also, it is not always possible to produce a satisfactory result that meets the user's preferences. This paper proposes an approach for estimating the missing values of the skylines by first exploiting the available data and utilizes the implicit relationships between the attributes in order to impute the missing values of the skylines. This process aims at reducing the number of values to be estimated using the crowd when local estimation is inappropriate. Intensive experiments on both synthetic and real datasets have been accomplished. The experimental results have proven that the proposed approach for estimating the missing values of the skylines over crowd-sourced enabled incomplete databases is scalable and outperforms the other existing approaches

    Unsupervised Language Acquisition

    Full text link
    This thesis presents a computational theory of unsupervised language acquisition, precisely defining procedures for learning language from ordinary spoken or written utterances, with no explicit help from a teacher. The theory is based heavily on concepts borrowed from machine learning and statistical estimation. In particular, learning takes place by fitting a stochastic, generative model of language to the evidence. Much of the thesis is devoted to explaining conditions that must hold for this general learning strategy to arrive at linguistically desirable grammars. The thesis introduces a variety of technical innovations, among them a common representation for evidence and grammars, and a learning strategy that separates the ``content'' of linguistic parameters from their representation. Algorithms based on it suffer from few of the search problems that have plagued other computational approaches to language acquisition. The theory has been tested on problems of learning vocabularies and grammars from unsegmented text and continuous speech, and mappings between sound and representations of meaning. It performs extremely well on various objective criteria, acquiring knowledge that causes it to assign almost exactly the same structure to utterances as humans do. This work has application to data compression, language modeling, speech recognition, machine translation, information retrieval, and other tasks that rely on either structural or stochastic descriptions of language.Comment: PhD thesis, 133 page

    Efficient processing of large-scale spatio-temporal data

    Get PDF
    Millionen Geräte, wie z.B. Mobiltelefone, Autos und Umweltsensoren senden ihre Positionen zusammen mit einem Zeitstempel und weiteren Nutzdaten an einen Server zu verschiedenen Analysezwecken. Die Positionsinformationen und übertragenen Ereignisinformationen werden als Punkte oder Polygone dargestellt. Eine weitere Art räumlicher Daten sind Rasterdaten, die zum Beispiel von Kameras und Sensoren produziert werden. Diese großen räumlich-zeitlichen Datenmengen können nur auf skalierbaren Plattformen wie Hadoop und Apache Spark verarbeitet werden, die jedoch z.B. die Nachbarschaftsinformation nicht ausnutzen können - was die Ausführung bestimmter Anfragen praktisch unmöglich macht. Die wiederholten Ausführungen der Analyseprogramme während ihrer Entwicklung und durch verschiedene Nutzer resultieren in langen Ausführungszeiten und hohen Kosten für gemietete Ressourcen, die durch die Wiederverwendung von Zwischenergebnissen reduziert werden können. Diese Arbeit beschäftigt sich mit den beiden oben beschriebenen Herausforderungen. Wir präsentieren zunächst das STARK Framework für die Verarbeitung räumlich-zeitlicher Vektor- und Rasterdaten in Apache Spark. Wir identifizieren verschiedene Algorithmen für Operatoren und analysieren, wie diese von den Eigenschaften der zugrundeliegenden Plattform profitieren können. Weiterhin wird untersucht, wie Indexe in der verteilten und parallelen Umgebung realisiert werden können. Außerdem vergleichen wir Partitionierungsmethoden, die unterschiedlich gut mit ungleichmäßiger Datenverteilung und der Größe der Datenmenge umgehen können und präsentieren einen Ansatz um die auf Operatorebene zu verarbeitende Datenmenge frühzeitig zu reduzieren. Um die Ausführungszeit von Programmen zu verkürzen, stellen wir einen Ansatz zur transparenten Materialisierung von Zwischenergebnissen vor. Dieser Ansatz benutzt ein Entscheidungsmodell, welches auf den tatsächlichen Operatorkosten basiert. In der Evaluierung vergleichen wir die verschiedenen Implementierungs- sowie Konfigurationsmöglichkeiten in STARK und identifizieren Szenarien wann Partitionierung und Indexierung eingesetzt werden sollten. Außerdem vergleichen wir STARK mit verwandten Systemen. Im zweiten Teil der Evaluierung zeigen wir, dass die transparente Wiederverwendung der materialisierten Zwischenergebnisse die Ausführungszeit der Programme signifikant verringern kann.Millions of location-aware devices, such as mobile phones, cars, and environmental sensors constantly report their positions often in combination with a timestamp to a server for different kinds of analyses. While the location information of the devices and reported events is represented as points and polygons, raster data is another type of spatial data, which is for example produced by cameras and sensors. This Big spatio-temporal Data needs to be processed on scalable platforms, such as Hadoop and Apache Spark, which, however, are unaware of, e.g., spatial neighborhood, what makes them practically impossible to use for this kind of data. The repeated executions of the programs during development and by different users result in long execution times and potentially high costs in rented clusters, which can be reduced by reusing commonly computed intermediate results. Within this thesis, we tackle the two challenges described above. First, we present the STARK framework for processing spatio-temporal vector and raster data on the Apache Spark stack. For operators, we identify several possible algorithms and study how they can benefit from the underlying platform's properties. We further investigate how indexes can be realized in the distributed and parallel architecture of Big Data processing engines and compare methods for data partitioning, which perform differently well with respect to data skew and data set size. Furthermore, an approach to reduce the amount of data to process at operator level is presented. In order to reduce the execution times, we introduce an approach to transparently recycle intermediate results of dataflow programs, based on operator costs. To compute the costs, we instrument the programs with profiling code to gather the execution time and result size of the operators. In the evaluation, we first compare the various implementation and configuration possibilities in STARK and identify scenarios when and how partitioning and indexing should be applied. We further compare STARK to related systems and show that we can achieve significantly better execution times, not only when exploiting existing partitioning information. In the second part of the evaluation, we show that with the transparent cost-based materialization and recycling of intermediate results, the execution times of programs can be reduced significantly

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author
    corecore