
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2021

Service Abstractions for Scalable Deep Learning Inference at the Service Abstractions for Scalable Deep Learning Inference at the

Edge Edge

Peizhen Guo
Yale University Graduate School of Arts and Sciences, patrick.guopz@gmail.com

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Guo, Peizhen, "Service Abstractions for Scalable Deep Learning Inference at the Edge" (2021). Yale
Graduate School of Arts and Sciences Dissertations. 56.
https://elischolar.library.yale.edu/gsas_dissertations/56

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/56?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Service Abstractions for Scalable Deep Learning Inference at the Edge

Peizhen Guo

2021

Deep learning driven intelligent edge has already become a reality, where millions of mobile,

wearable, and IoT devices analyze real-time data and transform those into actionable insights on

the device. Typical approaches for optimizing deep learning inference mostly focus on accelerating

the execution of individual inference tasks, without considering the contextual correlation unique to

edge environments and the statistical nature of learning-based computation. Specifically, they treat

inference workloads as individual black boxes and apply canonical system optimization techniques,

developed over the last few decades, to handle them as yet another type of computation-intensive

applications. As a result, deep learning inference on edge devices still faces the ever increasing

challenges of customization to edge device heterogeneity, fuzzy computation redundancy between

inference tasks, and end-to-end deployment at scale.

In this thesis, we propose the first framework that automates and scales the end-to-end process

of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The

framework consists of a series of service abstractions that handle neural network model tailoring,

model indexing and query, and approximate computation reuse respectively. Together, these services

bridge the gap between deep learning training and inference, lower the barrier and reduce the

burden for both deep learning researchers and the system (and application) developers, and eliminate

redundant computation while executing the inference tasks.

To build efficient and scalable services, we take a unique algorithmic approach of harnessing the

semantic correlation between the learning-based computation. Rather than viewing individual tasks

as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives

to formulate the semantics of the deep learning workloads, and algorithms to assess their hidden

correlation (in terms of the input data, the neural network models, and the deployment environments)

and then merge common processing steps to minimize redundancy.

Service Abstractions for Scalable Deep Learning Inference at the Edge

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Peizhen Guo

Dissertation Director: Wenjun Hu

June 2021

c© 2021 by Peizhen Guo

All rights reserved.

Contents

Acknowledgements xiv

1 Introduction 1

1.1 Deep Learning at the edge . 1

1.2 Scalability challenges in deploying Deep Learning inference to the edge 3

1.2.1 Heterogeneity in deployment environments 4

1.2.2 Interdisciplinary expertise and manual efforts 5

1.2.3 Fuzzy computation redundancy . 7

1.3 Requirement summary . 9

1.4 Contributions . 10

1.5 Dissertation roadmap . 13

2 Background 14

2.1 Deep Learning Inference at the Edge . 14

2.1.1 Current trend . 14

2.1.2 Lifecycle of deploying DL inference on edge devices 15

2.2 Related work . 17

2.2.1 Edge-Centric Inference Engine . 17

2.2.2 Machine Learning Compiler . 18

2.2.3 Compact Neural Network Architecture 19

2.2.4 Summary - the missing points . 20

3 Mistify: DNN Porting Service for Edge Devices at Scale 22

iii

3.1 Background and motivation . 24

3.1.1 Current DNN lifecycle . 24

3.1.2 The complexity of porting DNN models 25

3.1.3 The need to automate DNN porting . 28

3.1.4 System requirements . 29

3.2 Mistify demystified . 30

3.3 Scalable model architecture adaptation . 32

3.3.1 Adaptation goal specification . 33

3.3.2 Adaptation Executor . 34

3.3.3 Collective adaptation . 36

3.4 Privacy-aware fine-tuning at the edge . 38

3.4.1 Client: KD-enhanced parameter tuning 39

3.4.2 Server: client model coordination . 41

3.5 Runtime model adaptation . 41

3.5.1 Constructing a multi-branch model. 42

3.5.2 Background path . 43

3.5.3 Discussion . 43

3.6 Implementation . 44

3.7 Evaluation . 44

3.7.1 Collective Architecture adaptation . 45

3.7.2 Parameter tuning . 47

3.7.3 Runtime overhead of Mistify . 48

3.7.4 End-to-end performance . 50

3.8 Related work . 53

3.9 Mistify summary . 54

4 Sommelier: DNN Model Indexing and Query Service 55

4.1 Motivation . 57

4.1.1 The need for a DNN model repository . 57

4.1.2 Limitations of existing model repositories 59

iv

4.1.3 Requirements for DNN query support . 60

4.2 Characterizing DNN semantics . 61

4.2.1 The futility of conventional view . 62

4.2.2 Alternate view: Model equivalence . 63

4.3 Assessing semantic equivalence . 64

4.3.1 Detecting whole model equivalence . 65

4.3.2 Equivalence between model segments . 66

4.4 DNN model query with Sommelier . 70

4.4.1 Formulating DNN model queries . 71

4.4.2 Semantic index . 71

4.4.3 Resource profile index . 72

4.4.4 Query processing . 74

4.4.5 Discussion . 74

4.5 Implementation . 75

4.6 Evaluation . 76

4.6.1 General setup . 77

4.6.2 Assessing semantic equivalence . 78

4.6.3 End-to-end performance . 79

4.6.4 Tensorflow Hub case study . 81

4.6.5 Sommelier system overhead . 82

4.7 Related Work . 84

4.8 Sommelier summary . 84

5 Computation Reuse Service for Deep Learning Inference 86

5.1 Overview . 86

5.1.1 Contextual data driving DL inference at the edge 86

5.1.2 Redundancy among DL inference workloads 87

5.1.3 Missing service abstraction: caching and computation reuse 87

5.1.4 Solution overview . 88

5.2 Cross-Application Approximate Computation Reuse 89

v

5.2.1 Motivation . 89

5.2.1.1 Motivating applications . 89

5.2.1.2 Input correlation and similarity 90

5.2.1.3 Common processing steps . 92

5.2.1.4 Opportunities and challenges 94

5.2.2 Potluck System Design . 94

5.2.2.1 Overview . 94

5.2.2.2 Computing the key . 95

5.2.2.3 The usefulness of cache entries 95

5.2.2.4 Querying the cache . 96

5.2.2.5 Tuning the similarity threshold 97

5.2.2.6 Cache management . 98

5.2.2.7 Supporting multiple key types 99

5.2.3 Implementation . 100

5.2.3.1 Architecture . 100

5.2.3.2 Deduplication service . 100

5.2.3.3 APIs and patches to the application code 103

5.2.4 Evaluation . 103

5.2.4.1 General setup . 103

5.2.4.2 Input and key management . 105

5.2.4.3 Cache entry replacement strategy 107

5.2.4.4 System overhead . 108

5.2.4.5 Single-application performance 110

5.2.4.6 Multi-application performance 113

5.2.5 Related Work . 114

5.2.6 Potluck summary . 115

5.3 Cross-Device Approximate Computation Reuse 117

5.3.1 Motivation . 118

5.3.1.1 Example scenarios . 118

5.3.1.2 Fuzzy redundancy . 119

vi

5.3.1.3 Quantitative evidence . 120

5.3.2 Approximate Computation Reuse . 121

5.3.2.1 Application-specific feature extraction 123

5.3.2.2 Adaptive Locality Sensitive Hashing 124

5.3.2.3 Homogenized k Nearest Neighbors 126

5.3.2.4 Generality . 130

5.3.3 FoggyCache service design . 131

5.3.3.1 System overview . 132

5.3.3.2 Client side cache management 133

5.3.3.3 Server side cache updates . 134

5.3.3.4 Additional consideration . 135

5.3.4 Implementation . 136

5.3.4.1 Architecture . 136

5.3.4.2 APIs and patches . 137

5.3.5 Evaluation . 137

5.3.5.1 General setup . 137

5.3.5.2 Microbenchmarks . 138

5.3.5.3 Tradeoff between reuse and accuracy 142

5.3.5.4 End-to-end system performance 143

5.3.5.5 Large-scale experiment . 146

5.3.6 Related Work . 147

5.3.7 FoggyCache summary . 148

5.4 Harnessing DNN Semantic Correlation for Computation Reuse 149

5.4.1 Correlated models leading to computation redundancy 150

5.4.2 Measuring equivalence between DNNs 151

5.4.3 Semantic computation reuse . 152

5.4.3.1 Offline path . 153

5.4.3.2 Semantic-centric storage service 155

5.4.3.3 Online path . 156

5.4.3.4 Discussion . 156

vii

5.4.4 Implementation . 157

5.4.5 Evaluation . 158

5.4.5.1 General setup . 158

5.4.5.2 Accuracy loss vs saving computation 159

5.4.5.3 End-to-end performance . 159

5.4.5.4 Additional system overhead . 161

5.4.6 Related Work . 163

5.4.7 DeCor summary . 164

6 Conclusion and Future Direction 165

6.1 Conclusion . 165

6.2 Future directions . 167

viii

List of Figures

1.1 Lifecycle of deploying deep learning workloads on edge devices. 2

1.2 System stack (white boxes are our thesis components). 10

1.3 Big picture of the edge deep learning ecosystem (blue blocks are our thesis works). 11

3.1 Steps to port a DNN model to an edge setting. 25

3.2 Training dataset size influences accuracy. 27

3.3 Mistify system architecture. 30

3.4 Example porting configuration. 33

3.5 Configuration tree example. 36

3.6 Multi-branch model construction. 42

3.7 Completion time comparison for adapting a DNN from 0.5ˆ to 2ˆ resource con-

sumption. 46

3.8 Comparison of convergence speed and performance for default approach and with

Mistify support. 48

3.9 The ratio of communication time over training time, reflecting the algorithm scalabil-

ity for MobileNet (compact model). 49

3.10 The ratio of communication time over training time, reflecting the algorithm scalabil-

ity for BERT (huge model). 49

3.11 The dynamic tradeoff between latency, accuracy, and resource consumptions with

Mistify. 51

4.1 Anatomy of a DNN based inference task. 61

4.2 Extent of equivalence between DNN models. 63

ix

4.3 Extracting model segments recursively. 67

4.4 Sommelier system architecture. 70

4.5 Specifying a concrete use case as a DNN query 70

4.6 Sommelier query syntax. 76

4.7 QoR bound and actual QoR loss given varying levels of fine-tuning and datasets. . 77

4.8 End-to-end performance. 80

4.9 Resource and semantic index effectiveness. 81

4.10 Cross-series DNN correlation. 81

5.1 (a) and (b) are two snapshots taken successively along the same road 136 m apart

in October 2016. (c) is taken at a similar location but in August 2014. (d) and (e)

are captured in completely different places at different times, but both prominently

feature a stop sign. 90

5.2 Similarity between frames . 92

5.3 Schematic processing pipelines for three apps. 93

5.4 System architecture. 100

5.5 Cache layout. 102

5.6 The accuracy of the similarity threshold. 106

5.7 Threshold changes with lookup operations. 107

5.8 Comparison of cache entry replacement strategies given different access patterns. . 108

5.9 Time saving and accuracy vs the extent of deduplication opportunities. “C” and “M”

correspond to the CIFAR-10 and MNIST datasets respectively 111

5.10 Single and multi-app performance of Potluck. 112

5.11 Device density distribution from trace [1]. 120

5.12 Distance distribution between feature vectors of the same and different semantics. . 123

5.13 Locality sensitive hashing. 124

5.14 Calculating the homogeneity factor θ . 128

5.15 FoggyCache architecture. 131

5.16 Lookup quality and latency for the default LSH and A-LSH. 139

5.17 Reuse precision of H-kNN and alternatives. 140

x

5.18 Client cache hit rates and server cache sampling strategies. 140

5.19 Performance comparison of speculative execution in FoggyCache and alternatives. . 141

5.20 Tradeoff between captured reuse opportunities and computation accuracy. 142

5.21 The accuracy of the processing pipeline with and without FoggyCache. 144

5.22 Single- or cross-device reuse achieved with FoggyCache, with or without speculation.146

5.23 DeCor system architecture. 152

5.24 Model rewrite with overlapping segments. 154

5.25 Tradeoff between accuracy loss and reuse ratio. 158

5.26 End-to-end performance. 160

xi

List of Tables

1.1 Popular DL hardware specifications. 4

1.2 Inference time and accuracy for different workloads and DNNs running on NVIDIA

RTX 2070 GPU. 5

3.1 Accuracy of Collectively Adapted Models (Mistify) vs Individually Adapted Models

(Per-case) . 47

3.2 The accuracy of tuning parameters with Mistify. 49

3.3 Additional number of parameters and network switching time overhead. 50

3.4 Latency (ms) for building config tree. 50

3.5 Comparison of overhead for porting DNN to edge with/without Mistify. 51

4.1 Lower bound vs actual accuracy(%). A cell (X/Y/Z) reports “bound/min/average” of

actual accuracy. 79

4.2 Time of gauging semantic equivalence. 82

4.3 Runtime query latency (ms). 83

4.4 Memory footprint (MB) with the indices. 83

5.1 Key generation time . 105

5.2 Lookup latency . 109

5.3 Proportion of redundant scenes (%). 121

5.4 Lookup speed comparison (10,000 entries) . 125

5.5 Data correlation in different settings. 138

5.6 End-to-end FoggyCache performance. 143

5.7 Performance speedup opportunity when realizing equivalent model segments. . . . 151

xii

5.8 Time of gauging semantic equivalence. 161

5.9 Reuse operation latency. 162

5.10 Memory footprint with/without semantic reuse. 162

5.11 Computation overhead for rewritten models. 163

xiii

Acknowledgements

The past six years at Yale is a priceless and unforgettable journey to me. Lots of people made my

Yale life as a fantastic experience. First and foremost, my sincere thanks go to Prof. Wenjun Hu, my

thesis advisor, for guiding this work. She gave me a wonderful opportunity to work for a Ph.D. at

Yale, and her continuous support of my Ph.D. study and research enabled me to work on multiple

exciting projects. Second, I want to thank my committee members, Professors James Aspnes, Lin

Zhong, and Mahadev Satyanarayanan for the valuable feedbacks regarding my thesis. My lab mates

and collaborators Bo Hu and Rui Li also gave me great help along the journey. Special thanks to them

for collaborating with me on multiple projects and aiding me to finish my Ph.D. degree successfully.

Finally, I would like to sincerely thank my family, especially my parents, and my girlfriend for their

unconditional love and perpetual support.

xiv

To my family

xv

Chapter 1

Introduction

1.1 Deep Learning at the edge

AI-driven intelligent edge has already become a reality [2], where millions of servers, mobile and

IoT devices analyze real-time data and transform those into actionable insights on the device. For

example, real-time video analytics (e.g., for traffic monitoring [3], security surveillance [4], and

smart retail [5]), natural language understanding (e.g., virtual assistance, smart email composition [6],

and machine translator [7]), visual assistance [8], and industrial automation (e.g., defect detection,

assembly line management[9, 4]) are already everyday examples. It is projected that, by 2022, over

60% of the data locally generated by devices (e.g., IoT, sensors, and mobile devices) will drive

real-time intelligent decisions; 80% of the IoT and mobile devices shipped will have on-device AI

capabilities [10, 11].

Many AI functionalities today are powered by deep learning (DL), an emerging machine learning

technique known by its remarkable predictive performance already surpassing human beings in a

broad range of real-world tasks. Such remarkable performance comes with a price. The DL models

and algorithms are designed with millions or even billions of parameters, involving trillions of tensor

computations. Preparing these models to run inference tasks requires thousands of GPU hours on

training, and relies on powerful and efficient hardware for inference. However, edge devices are

power and resource constrained, and hence used to primarily offload related computation to the cloud

to benefit from the extraordinary capability of DL models [12]. But recently, increasingly inference

workloads are run natively on the edge devices to provide better interactive user experience (e.g.,

1

DL Inference taskCustomized
model pool

Cloud trained
model pool

......
Selec

tion

Tail
orin

g

Execution
engine

Input data

Offline
optimize inference logic

Online
optimize inference execution

Execute

Figure 1.1: Lifecycle of deploying deep learning workloads on edge devices.

„10 ms real-time response), data privacy (e.g., keeping sensitive medical data local), and reliability

(e.g., avoiding being affected by the network connectivity and bandwidth issues [13, 14]).

In general, enabling efficient and scalable DL inference on edge devices relies on two parts: 1)

preparing the DNN model that achieves good performance on the inference function with affordable

resource usage (blue boxes in Figure 1.1); and 2) executing the inference tasks (on this DNN model)

efficiently when input data arrive (grey boxes in Figure 1.1). Note that designing a state-of-the-art

DNN model is an immense undertaking nowadays (e.g., taking hundreds of GPU hours, millions of

dollars, and deep understanding of optimization theories [15, 7]). Hence, DNN model repositories,

storing pre-trained models for diverse use scenarios, are increasingly adopted, becoming an essential

component of the current DL ecosystems. Given this trend, “preparing” a DNN model essentially

means customizing and matching the pre-trained DNN models designed for the cloud to the various

application scenarios and diverse execution environments of the edge devices.

Therefore, to be more specific, we divide the whole deployment process into three logical

steps (Figure 1.1). First, it necessitates tailoring (i.e., adapting) the complex deep neural network

(DNN) model originally designed and trained on the cloud to edge settings with a range of hardware

capability. By various estimates, in the next three to five years there will be over 50 billions IoT

devices [16] with very diverse hardware profiles and runtime requirements. This creates a massive

2

search space and complexity. Then, given numerous DNN models available to use, the users (e.g.,

application developers, edge device administrators, etc.) have to select a model that is best suited to

the required learning functionality and the multitude of constraints (e.g., resource usage, accuracy,

latency, etc.). This typically involves profiling and identifying precisely which model to use from

potentially hundreds of DNNs in a model repository (e.g., TF-Hub [17]), including the specific

version for a particular DNN design. Finally, it needs scalable and efficient execution of the DNN

inference tasks on the resource-constrained edge devices to meet the demand of interactive user

experience with real-time input data arriving continuously. Given the dilemma between having

lightweight and energy-saving devices and using complex models to achieve best device intelligence,

there is a dynamic tradeoff made by the developers to achieve the desired performance by controlling

both the systems and the learning-based application logic. These will be further explained in

Section 2.1.2.

Existing works for optimizing deep learning inference at the edge include the following direc-

tions: building lightweight inference engines for DNN models (e.g., TF-Lite [18] and MCDNN [19]),

proposing end-to-end compiler toolchains for graph-level optimization and accelerator kernel code

generation (e.g., TVM [20]), and designing specialized compact neural network architectures for

mobile and IoT devices (e.g., MCUNet [21] and EfficientNet [22]). In general, they either treat

inference workloads as individual black boxes and apply system and compiler optimization tech-

niques, developed over the last few decades, to handle the DL based applications as yet another type

of computation-intensive workloads, or abstract the whole process as a non-convex optimization

problem in deep learning theory (Section 2.2). Therefore, even though they each resolve specific

problems while deploying DL inference workloads, we are still a long way from seamless deployment

of these workloads on current edge devices. The overarching issue is around scalability, which we

will further discuss next.

1.2 Scalability challenges in deploying Deep Learning inference to the

edge

In this section, we will explain in detail the three fundamental factors that cause the scalability

challenges, manifested in each logical step of deploying cloud-trained DNNs to the edge.

3

Table 1.1: Popular DL hardware specifications.

GPU Peak perf Memory Bandwidth
V100 112 TFLOP 32 GB 900 GB/sec
2080 11.7 TFLOP 11 GB 480 GB/sec

Edge GPU Peak perf Memory Bandwidth
Jetson AGX 11 TFLOP 16 GB 136 GB/sec
Jetson TX2 1.5 TFLOP 4 GB 58 GB/sec
Jetson nano 0.47 TFLOP 4 GB 25 GB/sec

ASIC Peak perf Memory Bandwidth
Edge TPU [25] 4 TFLOP - -
Raspberry pi 6 GFLOP 2 GB 8.5 GB/sec

1.2.1 Heterogeneity in deployment environments

The deployment environments for edge devices are extremely heterogeneous, in terms of the hardware

profile, application requirements, and runtime resource availability.

Hardware heterogeneity. The hardware profiles of the edge devices are incredibly diverse, ranging

from embedded sensors, IoT devices, mobile phones/tablets, to edge servers, with a full spectrum

of capability [23]. Table 1.1 lists the specifications of some selected GPU and ASIC accelerators,

from high-end to low-end, widely employed at the edge for DNN-based workloads. For the same

DNN inference workload, the completion times for low-end (e.g., nano) and high-end (e.g., 2080)

devices differ by orders of magnitude (e.g., 229 ms and 9.8 ms to run inference over ResNet). Even

when only considering smartphone platforms, to deploy a DL-based mobile app in the App Store

requires considering over hundreds of types of hardware devices, from high-end iPhone 12 with

dedicated neural processing units to 7-year-old Nexus 5 with much slower CPU processors [24].

Meanwhile, for the same hardware under different battery conditions and usage modes, the effective

processing capability also differs significantly which further increases the complexity of the hardware

heterogeneity.

Heterogeneous performance requirements. For a single DL function (e.g., object classification),

the performance requirements, e.g., latency and accuracy, vary with deployment endpoints. Therefore,

current pre-trained DNNs exhibit wide-ranging performance characteristics for the same functionality.

Table 1.2 shows the inference time and accuracy of commonly used DNNs for two vision-based

workloads and an NLP example (numbers from their original publications) [26, 27]. For the same

4

Table 1.2: Inference time and accuracy for different workloads and DNNs running on NVIDIA RTX
2070 GPU.

Workload Network Accuracy Time (ms)

Obj recog.
MobileNet 68.8 3.47

ResNeXt101 79.2 21.1

Obj Detect.
YOLO 57.9 22.5

SSD512 74.9 156

Q&A
BiDAF 76.8 59
BERT 88.5 323

workload, the DNN inference time differs by up to 8ˆ, and the inference quality (e.g., in accuracy, F1

score) varies by as much as 25%. Furthermore, state-of-the-art algorithms could adapt a DNN model

towards a wide range of performance targets. For instance, neural architecture search algorithms

generate different variants of EfficientNet for object classification with 8ˆ difference in memory

usage, 6ˆ difference in inference latency, and 7% difference in absolute classification accuracy [22].

Similarly, different variants of BERT model for NLP tasks differ by 10ˆ in speed and memory usage,

and 15% in accuracy [28].

Runtime resource availability. The availability of system resource (e.g., memory space, CPU

cycles, and accelerator quotas), varies on the edge device during runtime due to other workloads

competing for the same resource. For instance, when an edge device launches or completes workloads,

or adjusts the resource allocation of the containers that serve the DNN model for inference tasks, the

perceived resource availability to any active workloads changes [29, 30].

These numbers together outline a huge, complex, and dynamic design space to explore fine-

grained tradeoff points between hardware, resource, and inference performance. For each single DL

based task, each edge deployment scenario maps to a distinct tradeoff point that requires specific

efforts for customization, because a sub-optimal tailoring and/or selection of DNN models could

easily lose 10s of percentage points of accuracy or miss the latency requirement for real-time

processing by hundreds of milliseconds [31].

1.2.2 Interdisciplinary expertise and manual efforts

The second set of contributors of the scalability challenge are the interdisciplinary expertise and

manual efforts.

5

Regarding the expertise, the DL users (e.g., application developers, system administrators, etc.)

need to understand the DL model and algorithm internals. The ML researchers (e.g., DNN developers)

need to understand the low-level system primitives and execution details, keep track of the latest

hardware platforms, and eventually translate them into upper-level neural network design constraints.

Deep learning theory and systems are both fast evolving fields, with new techniques being proposed

perhaps daily, and this presents an increasingly high barrier for the average developer to optimally

deploy deep learning inference based applications on edge devices.

Manual efforts include configuring the algorithm parameters (e.g., learning rate), preparing the

datasets (e.g., both compact and unbiased), annotating the models (e.g., to annotate deployment

goals), and managing the execution runtime of the three deployment steps. More importantly, these

efforts grow linearly or even exponentially with the number of models, deployment environments,

DL workloads and their performance requirements.

We will further illustrate the expertise and manual efforts needed for completing the three

aforementioned stages of enabling deep learning applications on edge devices.

First, to tailor DNNs towards heterogeneous deployment settings, there are two possible ways.

The DL researchers should understand the resource budget and performance goal of each possible

type of edge device, interpret them as DNN design demands and finally generate DNNs to cater to

these demands as an additional step for model training. Alternately, the model users should prepare

datasets, select and apply the right training algorithms to tailor already published DNNs towards

their custom settings.

Second, to select the right one from potentially hundreds or thousands of DNN models to achieve

the desired learning-based function within reasonable resource budgets, the onus is on the user to

understand precisely which model performs best in their specialized scenario, and profile the model

thoroughly on their deployment platform regarding the dynamic resource availability during runtime

inference. A suboptimal model could miss the achievable accuracy target by 10%, break the real-time

latency guarantee by seconds, or waste 20 ˆ more resources. This is especially challenging for the

average users who simply wish to easily select and embed a DNN model in their application.

Third, to efficiently execute the inference tasks on an edge device, users have to understand both

the algorithmic aspects of the DNN model (e.g., each convolution layer extracts visual features at what

granularity), and the system aspects of the basic operations (e.g., the computation and memory access

6

pattern for the parallelizable matrix multiplication operation), so as to develop application-specific

solutions to optimize the end-to-end performance of their learning-based workloads.

1.2.3 Fuzzy computation redundancy

The approximation nature of deep learning inference as well as the spatial-temporal correlation

between edge devices together lead to a new type of fuzzy computation redundancy (further explained

in Chapters 3-5). For instance, tailoring a DNN model towards two devices with similar hardware

capabilities currently involves two separate DNN structure learning processes, which seems obviously

redundant. As another example, suppose two DL inference tasks take similar input data (e.g., photos

of the same object taken from different vantage points) and run on similar models (e.g., ResNet and

InceptionNet); they will likely produce the same classification result and running both are clearly

redundant.

Note that such redundancy is fundamentally different from traditional meaning of computation

redundancy, not characterized by identical input data, function logic, or execution settings. Instead, it

is characterized by the level of semantic correlation. Hence, such widely existing fuzzy redundancy

is not captured and handled by any existing system. Given that deploying DL inference already

involves tremendous computation, time, and manual efforts, such redundancy becomes a significant

contributing factor to the scalability issue, leading to extreme inefficiency in both model porting,

selection, and actual inference execution.

Redundancy caused by correlated input data. Deep learning applications on mobile and IoT

devices naturally involve computation on contextual data. These applications are typically invoked

on multiple devices in close proximity, processing similar and correlated contextual data that map to

the same outcome.

For instance, Google Lens [32] has become very popular, which enables visual search by

recognizing objects in the camera view and rendering recognized information using DNN. Consider

a scenario where the tourists near a famous landmark search for its history using the app. Clearly,

it is redundant to run the same recognition function repeatedly on different devices for the same

landmark. Although the devices capture different raw images, semantically the images are about

the same landmark. If the recognition results are not shared among nearby devices, but instead

7

computed from scratch on each edge device, it leads to significant redundancy. An empirical study

using Google Streetview API [33] to create an emulated landmark recognition scenario reveals that

over 83% of the images trigger redundant landmark recognition logic.

Redundancy caused by correlated DNN models. New inference workloads are increasingly

generated from similar deep neural network (DNN) models. The similarity between models stems

from three trending practice: (i) The same standard datasets (e.g., ImageNet [34]) are used to

train models to perform the same task; (ii) Model variants are derived from common base models

incrementally via transfer learning; (iii) Knowledge distillation techniques leverage the well-trained

existing models to guide the training of the new models and further produce semantically similar

interpretations of the input data by the old and new DNN models. As a result, there is significant

correlation between the inference workloads in terms of their generalized functional semantics. Note

that such semantics corresponds to the general functionality the DNNs attempt to approximate, rather

than the exact mathematical expressions of the DNNs.

Such correlation first leads to redundancy between inference tasks. Namely, when several

inference tasks with “equivalent” models (or segments) are invoked on identical or highly similar

inputs, the seemingly distinct workloads are in fact semantically equivalent, leading to redundant

computation. As an example, we select a set of similar DNN models (e.g., InceptionV3, ResNet50,

VGG19, MobileNet, and ResNeXt101) and feed them the same dataset. Surprisingly, we observe

that over 95% of their outputs agree with one another, and this agreement ratio is even significantly

higher than their inherent top-1 accuracy (e.g., 75%-85%), which reflects the “distance” between the

DNN models and the decision logic they are trying to approximate.

Further, such correlation between different DNN models results in redundant efforts of edge

developers for model selection. Existing model repositories (e.g., TF-Hub [17]) act as a remote

filesystem only, with primitive APIs to publish and load a model. To select a good model, a user has

to specify the precise URL to the model file and manually profile its performance in a loop until the

best fit is found. Not capturing the hidden correlation between DNN models, all these efforts have

to be repeated from scratch on all relevant DNN models every time a user searches for a suitable

DNN, which requires significant user sophistication, extremely unscalable computation time (e.g.,

thousands of GPU hours) and cost (e.g., millions of dollars [35]).

8

Redundancy caused by correlated execution environments. Mentioned previously, the first step

for enabling a cloud-designed DNN-based function on an edge device is to tailor (i.e. port) the model

towards various deployment constraints and requirements. Unfortunately, the current practice of

porting relies on laborious source code annotations and significant complexity on model architecture

adaptation. For instance, preparing the model tailoring logic for ResNet50 requires around 30 lines

of code edits scattered around several source files. Further, using state-of-the-art neural architecture

search (NAS) algorithms to fit a neural network architecture to a single edge device deployment

setting could lead to CO2 emission equivalent to 5 cars’ lifetime [36]. The situation gets even worse

when considering the intractable target space of heterogeneous edge device environments. Handling

each porting process independently is extremely unscalable.

Meanwhile, we observe that multiple DNN architecture adaptation trials often share similar

initial steps or training iterations and a large portion of them are interchangeable, i.e., unnecessarily

repeated. For instance, when looking into 128 randomly generated DNN adaptation targets (each

corresponding to an edge deployment setting), we find that up to 98% of the overall computation

efforts can be eliminated if carefully reusing the common initial training iterations [37].

1.3 Requirement summary

Given these factors causing scalability challenges for end-to-end deep learning inference deployment,

we summarize what it takes to address the challenges. Correspondingly, the requirements are as

follow:

• Fine-grained customization. To handle the multi-dimensional heterogeneity of the edge

deployment environments, we need scalable algorithms and mechanisms to reason about the

functional semantics and resource profile of the DNN models so as to do fine-grained DNN

tailoring and selection, where each edge deployment target is matched with a DNN model that

best fits the desired functionality, hardware constraints and performance goals.

• Redundancy elimination. To resolve the emerging type of fuzzy computation redundancy, we

need the right primitives to detect and measure the sources of redundancy, and algorithms to

merge common computation steps to eliminate such redundancy.

9

DL Framework

Hardware (Disk, Memory, CPU, GPU, Accelerators, etc.)
OS (File System, Accelerator Drivers, Tensor Libraries, etc.)

Model repository Inference
runtime

Training
runtime

Monitor

DNN Query Service
(Sommelier)

DNN Tailoring Service
(Mistify, NSDI'21)

Scheduler

.........

Applications (CV, NLP, Audio, Recommendation, etc.)

Computation Reuse Service
(FoggyCache, MobiCom'18)

Comp. Reuse Service
(Potluck, ASPLOS'18)

Model-level Computation Reuse Service
(DeCor)

Figure 1.2: System stack (white boxes are our thesis components).

• Service abstraction. To simplify the manual efforts, lower the barriers for average users without

the expertise in both DL algorithm and execution internals, and scale up the previous two

algorithmic steps, we need the right service abstractions to abstract the complexity and build

system support to automate and optimize the laborious processes.

1.4 Contributions

This thesis proposes the first generic framework towards automated, scalable, and efficient de-

ployment of DL inference from the cloud to edge devices. The framework consists of five services,

Mistify, Sommelier, Potluck, FoggyCache, and DeCor. Shown as the white boxes in Figure 1.2, these

services collectively serve as an intermediate layer built upon the vanilla deep learning framework,

supporting various deep learning applications.

Figure 1.3 further shows the end-to-end DL ecosystem spanning the cloud (or central servers)

and edge devices. The blue boxes, namely the five thesis components, address the challenges at

different stages of the end-to-end DL deployment process (from training to inference). Specifically,

Mistify [37] develops a DNN model architecture tailoring service bridging the gap between the cloud

(training) and the edge (inference) facilities. Sommelier provides DNN model indexing and query

service, above the model repository stack, supporting fine-grained DNN model selection for the users,

10

Distributed Training Engine

CPU GPU TPU

Monitoring and Analysis
e.g., TensorBoard

Data Ingestion
e.g., TF Datasets

DNN Design
e.g., keras

Model
Repository

e.g., TFHub,
TorchHub Edge DL Inference Engine

e.g., TFLite, Pytorch Mobile

DL Apps
CV NLP RL …

Training Inference

Som
m

elier

Potluck, FoggyCache

M
istify

DeCor

Figure 1.3: Big picture of the edge deep learning ecosystem (blue blocks are our thesis works).

workload developers, and the serving platforms. Above the DL inference execution engine, we have

Potluck [38], FoggyCache [39], and DeCor that collectively perform the caching and computation

reuse service to accelerate the speed and improve the resource efficiency of the inference tasks via

eliminating the computation redundancy between them.

Referring to the aforementioned requirements to tackle the scalability challenge, we further

elaborate how they are addressed by each individual piece.

Fine-grained customization: Mistify proposes algorithms to capture and merge common steps

among individual tailoring requests, and collaboratively fine-tune model parameters afterwards with

privacy-awareness. Together, they make fine-grained DNN structure tailoring towards each single

edge deployment setting practical and scalable. Meanwhile, Sommelier proposes algorithms to

express the semantics of DNN models and index structures to organize models according to their

semantic correlation and resource profiles, based on which model selection with fine-grained resource

and performance constraints (e.g., functional semantics, accuracy, latency, resource usage, and etc.)

is fully supported with both high efficiency and good quality.

Redundancy elimination: Potluck and FoggyCache propose algorithms and runtime support to

11

eliminate redundancy by caching and reusing computation results with semantically correlated input

data across applications and devices respectively; DeCor further extends the computation reuse

scheme to consider inference tasks that run on semantically correlated models; Sommelier proposes

semantic-based DNN indexing mechanisms to avoid repeated profiling and benchmarking overhead;

and Mistify proposes collective adaptation to merge common processing steps of tailoring a DNN

model towards different settings. Although they focus on different phases (i.e., tailoring, selection,

and execution) and different aspects (input data, model logic, and execution settings) of deploying

DL inference, these works, in common, achieve the general idea of gauging the “similarity” between

individual processing tasks and merge them accordingly to eliminate redundant processing of the

common parts.

Service abstraction: Each component of the thesis provides a novel service abstraction, out-

sourcing the interdisciplinary expertise, unnecessary development complexity, and laborious manual

efforts from the users. For instance, with Mistify, the DL researchers can focus on designing new

DNNs, without worrying about the deployment concerns. With Sommelier, the application developers

can focus on writing the business logic of the app, avoiding the complexity of tuning the DL-based

logic. With Potluck, FoggyCache, and DeCor, the platform developers can focus on optimizing the

execution speed and resource efficiency of each individual inference task, and no longer need to de-

velop sophisticated caching schemes for different types of workload and runtime setting. Meanwhile,

these thesis components collectively form an overall framework. Namely, a DNN porting service

by Mistify, model indexing and query service over the repository by Sommelier, and computation

reuse service intercepting the inference execution path by Potluck, FoggyCache and DeCor. Together,

these services lower the barrier for deploying DL inference on edge devices, automate the end-to-end

process, and make it scalable and efficient.

Summary. This thesis makes the following contributions:

• We observe and quantify the existing challenges in the end-to-end process of deploying deep

learning inference tasks from the cloud to heterogeneous edge devices and propose the first

universal framework covering the whole deployment lifecycle. The framework decouples the

currently intertwined DL design and deployment phases, removing the unnecessary complexity

from both the ML researchers and application developers.

12

• From a system perspective, we propose a series of missing service abstractions and build

runtime systems to handle the three essential steps of moving DL inference from the cloud to the

edge, which scale the end-to-end deployment process, and reduce the required interdisciplinary

expertise and laborious manual efforts from the users by orders of magnitude.

• From an algorithmic perspective, we leverage a unique paradigm of harnessing the semantic

correlation between the learning-based computation to build efficient and scalable services.

Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in

a white box approach, proposing primitives to formulate the semantics of the deep learning

workloads, and algorithms to assess their hidden correlation (in terms of the input data, the

neural network models, and the deployment environments) and then merge common processing

steps to minimize redundancy.

1.5 Dissertation roadmap

Chapter 2 first explains the background of deep learning inference and then gives a broad overview

of the existing efforts of optimizing DL workloads at the edge. Later sections elaborate on related

work in more detail.

The following three chapters will detail the service abstractions we propose, the algorithms we

design, and the systems we build. Following a problem driven narrative of how users deploy deep

learning inference workloads to edge step by step, Chapter 3 explains the DL logic tailoring service.

Then, given the ready-to-use models in the model repository, Chapter 4 explains details of how to

automate and scale the DNN model selection while meeting the multi-dimensional requirements

of the users. Finally, Chapter 5 focuses on how to harness the semantic correlation between input

data and DNN models to design caching and computation reuse primitives to eliminate computation

redundancy and accelerate deep learning inference execution.

Chapter 6 concludes this thesis and discusses a few potential directions extended from this thesis

that can be further explored in the future.

13

Chapter 2

Background

2.1 Deep Learning Inference at the Edge

2.1.1 Current trend

The emerging trend of deploying deep learning inference functions on edge devices have become a

mainstream, because of the increasing number of learning-based mobile and IoT applications and the

rapidly growing power and capability of the edge devices [40, 13]. On-device DL inference brings

the advantage of avoiding cloud communication latency and not affected by network connectivity

issues. More importantly, it provides stronger privacy guarantee where sensitive user data (e.g.,

medical records) never has to leave the device. These all facilitate broader use scenarios of deep

learning techniques on edge devices.

Broad scope of deep learning based applications. An increasingly wide range of DL based

applications are used on mobile, IoT, and embedded devices. Typical use scenarios include real-

time video analytics [41, 42, 43], autonomous driving [44, 45, 46], intelligent manufacturing and

agriculture [4, 47], smart home and city [9, 5], personal cognitive assistance [32, 48], etc.

Rapid growth of edge device capability. Traditionally, these learning-based workloads are of-

floaded to central servers (e.g., cloud, cloudlet, etc.) to process, due to the limited space and

processing capability of edge devices. Nowadays, increasingly powerful mobile processors and cus-

tomized AI chips [49, 25, 50] become available, which can handle increasingly complex computation

in real-time. For instance, state-of-the-art object detection pipeline can already run on NVIDIA

14

Jetson TX2 chip at 30 fps [26].

Need for on-device deep learning inference. Many DL applications, especially those with low

latency or high data privacy requirements, need on-device inference execution instead of remote

processing.

Although remote cloud processing relieves the burden from the processor of the edge devices, it

adds additional cost for streaming data to the cloud and unpredictable communication latency to the

end-to-end response time of the workload. For instance, LinkShare [51] observes that over 50% of the

requests could break the real-time response requirements when multiple sources are contending the

communication channel for offloading without an optimal scheduling strategy. This is unacceptable

for the scenarios (e.g., manufacturing, autonomous driving) with low latency requirements. Overall,

as the on-device computation time of DL workloads rapidly decrease over time, the trend of avoiding

remote processing will soon become increasingly dominant.

Meanwhile, for emerging DL applications covering functions like surveillance, medicine, and

recommendation, they will access very sensitive personal data (e.g., medical records, biometric

data, and Internet browsing actions) and therefore have a strong preference of keeping the data local

without streaming to remote cloud for processing [52, 53]. For instance, Federated Learning [54]

is an emerging paradigm proposed to address the privacy concern by conducting on-device neural

network training in a collaborative manner. On-device inference will only further guarantee the

privacy of the sensitive data, which will unlock more privacy-sensitive fields to benefit from deep

learning.

2.1.2 Lifecycle of deploying DL inference on edge devices

Noticeably, enabling efficient deep learning inference at the edge is far beyond simply focusing

on the on-device workload execution. It involves the optimization efforts in two aspects, inference

logic and inference execution. Figure 1.1 in Chapter 1 already illustrates the overall lifecycle of

deploying a cloud trained DNN logic to edge devices for inference, where the two optimization

stages: inference logic and inference execution are marked in blue and gray shades respectively.

Next, we will further discuss the two aspects.

To optimize the inference logic, we need to take the dynamic and heterogeneous execution

15

environments of the edge devices into consideration and tailor the platform-agnostic (cloud designed

and trained) DL model into a range of platform-aware models (e.g., variants that best fit tablets,

smartphones, and cameras respectively). We will further elaborate on this stage in Chapter 3. Further,

given the rapidly growing DL use cases and therefore the ever increasing amount of newly designed

DNN models, to select the one that best fits the required functionality, performance goals, and

resource budgets is an increasingly important optimization step for the average users who want to

incorporate DL functionality in their programs. For instance, for a simple object classification task,

there are over three hundreds pre-trained DNN models in TF-Hub. Each has its own resource usage

profile and accuracy performance with respect to specific datasets. We discuss our support for DNN

model selection in Chapter 4. Note that the inference logic optimization mainly considers machine

and resource heterogeneity. We leave the fine-grained optimization regarding the dynamics of the

input data as one of the future directions.

To optimize the inference execution on edge devices, it comes down to two sub-stages. Intuitively,

it first involves using a global view to conduct cross-task optimization among different edge devices

that are executing similar inference logic. Note that this is an essential stage that can harness the

unique characteristics of edge computing where co-located devices and their contexts are often

spatially and temporally correlated. Chapter 5 will further explain how the thesis optimizes inference

task executions at this stage. Then, zooming into each specific task, the execution engine will

leverage compiler and system optimization techniques to accelerate the inference task processing

and reduce resource consumption.

In the next section, we will explain the existing works in three categories. Further, referring to

Figure 1.1, we will discuss the missing points of each category of works and how they are manifested

as the key challenges of enabling efficient DL inference at the edge.

16

2.2 Related work

This section reviews overall directions of optimizing deep learning inference. Each of the latter

chapters will discuss other related work more specific to the topics at hand.

2.2.1 Edge-Centric Inference Engine

To run DL inference workloads efficiently on edge devices, several targeted engines are developed.

They propose efficient graph executor runtime, optimize operator kernels and executables, and

leverage additional hardware support to accelerate the deep learning workload execution.

Optimizing executor runtime. Several end-to-end DL inference engines have been built (e.g.,

Tensorflow-Lite [18], TensorRT [55], EIE [56], and others [57, 58, 59]) that expose straightforward

APIs for users to import models and submit inference tasks, and meanwhile internally leverage full-

stack optimizations (library, OS, and hardware) to accelerate the DL inference workloads by orders

of magnitude faster than simply using CPU. The ultimate goal of these platforms is to outsource the

efforts of performance tuning so that users can mainly focus on the learning logic. Many other works,

such as Clipper [60], Pretzel [61] and others [62, 63, 64], propose additional layers and optimizations

of the executor runtime of the inference engines and further focus on ease of deployment, resource

sharing, caching, and inter-model optimizations.

Optimizing operator kernels. Typical efforts in optimizing neural network operator kernels fall

into two categories: algorithm and hardware focused. For algorithm focused efforts, many recent

works (e.g., Winograd [65] and others [66, 67, 68]) propose algorithmic variants of the vanilla neural

network operators to carry out the same computation logic with less complexity. For instance, they

leverage transformations (e.g., FFT) to change the number of matrix multiplications with a tolerable

sacrifice of storage cost and numerical stability. For hardware focused efforts, they leverage the

unique characteristics of certain hardware to design the data layout and transform the computation

to best fit the hardware. For instance, Halide [69] and a few relevant works decouple the operator

kernel scheduling from computation and match that with the GPU hierarchy to fully benefit from data

locality. A few other works exploit the buffer capacity and architecture to achieve weight sharing

while accelerating convolution operations [70, 71].

17

Additional hardware support. Following the theory-system codesign approach, there have been a

large body of works building novel hardware architecture and use it to support deep neural network

computation. These works profile the data access pattern, computation parallelism, and data locality

characteristics of the most widely used DL operators and then use these as the principles to design

new hardware, including number of processing unit, cache size, bus bandwidth, memory hierarchy,

etc. A few typical works include GPU [72, 73], TPU [74], and DianNao [75, 76].

Application-specific solutions. For each specific type of the applications (e.g., video analytics,

cognitive assistance, and wearable computer vision), there are a large body of works providing

specialized support to optimize the execution of the DNN-based inference tasks, leveraging the

unique characteristics of the applications. For instance, Starfish [77] supports efficient execution of

concurrent vision workloads; DeepMon [78] accelerates real-time object detection on mobile devices

by offloading convolution layers to the GPU; Gabriel and relevant works [79, 80] leverage nearby

edge servers (i.e. cloudlets) and adaptive model (and execution path) switching techniques to achieve

fast and resource-efficient execution of wearable cognitive applications; Noscope [41] supports

large-scale DNN-based video analytics with multi-branch and early-exit techniques to optimize the

query execution with minimal resource consumption.

2.2.2 Machine Learning Compiler

Deep neural networks are represented by computation graphs. Intuitively, it draws the connection to

compiler optimizations where control graph abstractions are used as the intermediate representation

(IR) for the programs to analyze and optimize their data and control flows. Therefore, a large body

of works explore the DNN optimization from a compiler perspective. We classify them into three

categories, end-to-end, high-level, and low-level optimization, to further summarize.

End-to-end optimization. End-to-end machine learning compiler optimizations are typically inte-

grated as the compilation passes of the representative machine learning frameworks, handling both

the high-level graph optimizations and the low-level operator optimizations and hardware-specific

code generations. For instance, XLA [81] and MLIR [82] are proposed and initially embedded in

Tensorflow ecosystem [83]; TVM [20] is combined with NNVM [84] (and its later variant Relay [85])

as the compiler optimization stack for the MXNet framework [86]; and Glow [87] serves as the

18

compiler for Pytorch environment [88]. These works take a user-defined neural network model as

the input “program”, first translate it into a high-level IR (typically graphs) to apply computation

graph optimizations such as operator fusion, data layout transformation, memory planning, etc. Then,

the optimized computation graph is further translated into a low-level IR (typically sequences of

instructions) to generate platform-specific machine code with optimized loop unrolling, tiling, tensor

scheduling, etc.

High-level graph optimization. In addition to the end-to-end solutions mostly lead by the industry,

there are many recent works specifically focusing on the high-level graph optimization aspect. These

works leverage the semantics kept in the computation graph to perform domain-specific optimizations.

For instance, Metaflow [89] proposes iterative neural network operator fusing and graph rewriting

while guaranteeing the graphs before and after rewriting are mathematically equivalent. ColocRL [90]

uses reinforcement learning to discover more efficient strategies to place the computation graph on

GPU devices. TASO [91] provides rule generation algorithms to automate the graph substitution

process jointly considering the mathematical properties of the DNN operators and its effects on the

overall performance.

Low-level operator optimization. Most of the low-level optimizations happen at the granularity

of a single operator or instruction. Some existing works are already covered in the operator op-

timization paragraph in Section 2.2.1. Meanwhile, other works explore how to build automated

pipelines for code generation and operator kernel optimization from a compiler perspective. For

instance, Astra [92] incorporates lightweight profiling and the repetitiveness nature of deep learning

computation to optimize the kernels automatically. TVM also proposes a learning-based algorithm to

automatically search the best scheduling strategy for tensor programs [93].

2.2.3 Compact Neural Network Architecture

In production, both deep learning researchers and users fully realize the necessity of customizing

cloud-designed sophisticated DNN models to edge device settings by tailoring the model structure

and tuning the parameters.

DNN designer-driven approaches. Initially a series of DNN models hand-tuned by experts are

proposed that perform both fast and accurate prediction on mobile devices [94, 95, 96, 97]. The

19

essential techniques include quantization, neuron sparsification, and neural block simplifications.

Recently, Distiller [98], AMC [99], MorphNet [100], OFA [101], ChamNet [102], Efficient-

Net [22], and many neural architecture search (NAS) works [103, 104, 105, 106, 107, 108] further

explore how to leverage recurrent neural network (RNN) and evolution algorithms to perform DNN

compression, adaptation, and architectural search in an algorithmic way, obviating the need for

hand-tuning by experienced experts. These approaches adjust the model structure from parameter,

connectivity, and operator perspectives by automatically searching in the whole space of different

hyper-parameter combinations.

In addition, a series of works in deep learning theory start with a counter-intuitive observation

of deep neural network training, the simultaneous growth of model complexity and generalization

performance, and try to explain from a compression point of view by figuring out the lowest

complexity to express specific DL logic. Some works give theoretic proof of why existing DNN

models can be compressed to more compact variants without sacrificing performance [109, 110, 111].

Other works propose practical training algorithms like knowledge distillation [112, 113, 114, 115] to

enhance the DNN compression and adaptation quality.

DNN user-driven approaches. Hereby, DNN users refer to the machine learning platform and

application developers who “use” (run inference on) certain DNN model architecture, instead of

proposing their own DNNs. Edge-targeted frameworks like TF-Lite [18], PyTorch Mobile [116],

and application platforms like MCDNN [19] provide built-in model compression, quantization and

switching support. With minimal understanding of the DNN model internals, these works can only

support post-training, profiling-based compression such as 8 bit quantization, random dropout, etc.

2.2.4 Summary - the missing points

Unfortunately, existing works do not readily support efficient deep learning inference on edge devices.

We will summarize the missing points of existing works, which also motivate this thesis.

Inference logic optimization. Although there are a huge body of existing works that aim to provide

compact neural networks with high performance. They still face two fundamental challenges,

corresponding to the designer-driven and user-driven approaches. 1) For the designer-driven works,

the efforts are huge and unscalable to do fine-grained model tailoring and selection brought by

20

the dramatically increasing edge environment heterogeneity and DNN model diversity. 2) For the

user-driven approaches, there are increasing technical difficulties (about DNN logic and inference

system internals) and laborious manual efforts needed to customize a DNN model that best fits all

requirements, without the right service abstractions to support.

Inference execution optimization. For optimizing the inference task execution (either from a

system or compiler perspective), the missing points of existing works have two folds. First, they do

not harness the approximation nature of the DL functions for computation graph optimizations. Note

that neural network training can be viewed as a function approximation process. A same semantic

can be approximated by totally different mathematical expressions. Existing DNN optimization

approaches never realize this point to propose the right primitives to focus on the “approximate”

semantics. Second, they miss the first stage of inference execution optimization, namely from a

cross-task perspective. An intrinsic nature of edge devices is that they typically operate on contextual

data. Therefore, co-located devices and/or correlated contexts will lead to repeated or partially

overlapped inference tasks, which is eventually manifested as computation redundancy across

different applications and devices. Such computation redundancy is largely neglected by existing

works.

21

Chapter 3

Mistify: DNN Porting Service for Edge

Devices at Scale

AI applications powered by deep learning inference have become a mainstay on edge devices. As we

mentioned earlier, by 2022, over 60% of the data locally generated by devices (IoT, sensors, mobile

devices) will drive real-time intelligent decisions; 80% of the IoT and mobile devices shipped will

have on-device AI capabilities [10, 11]. While these used to primarily offload related computation to

the cloud, an increasing interest of deep learning inference workloads is to run them natively on the

edge device to provide better interactive user experience and data privacy. This often necessitates

fitting a model originally designed and trained on the cloud to edge devices with a diverse range of

hardware capability and performance requirements.

However, model porting is a non-trivial process even for a single target. From an algorithmic

perspective, the core techniques involved are called model tailoring in the machine learning literature.

There are two steps, adapting the architecture of a pre-trained model to fit a new specification,

followed by fine-tuning the new model parameters. Although there have been numerous model

tailoring algorithms [100, 117, 102, 101] to tailor model architectures and refine the parameter values,

the complete porting process actually requires 1) manually “embedding” the algorithms by correctly

annotating the model definition and the source code of the training logic; and 2) carefully handle the

high computation complexity (over 100ˆ GPU hours) of adapting the annotated model structure and

tuning the parameters with the right data.

22

Challenges. By various estimates, there will be over 50 billions mobile and IoT devices [16] with ever

increasing diversity of hardware profiles, which creates a massive space of distinct profiles for a cloud

model to tailor. Unfortunately, the current practice of porting cannot scale with the sheer size of this

tailoring space. Therefore, app developers currently perform little platform-specific customization to

the intractable target space [23], even though lack of customization results in suboptimal performance

(Section 3.1). The overarching issue is the scalability of porting DNN models towards diverse

edge settings. Corresponding to Section 1.2, the scalability issue can be further manifested by two

challenges: the unscalable complexity of customizing a model to heterogeneous edge settings; and

the laborious manual efforts and expertise needed to complete the end-to-end model porting (i.e.

tailoring) process due to the lack of the right service abstraction.

Solution overview. In this work, therefore, we propose collective adaptation and other comple-

mentary algorithms that capture and eliminate the redundancy between numerous model structure

adaptation processes to resolve the scalability challenge of fine-grained customization; and build

Mistify, a service abstraction to automate and scale the porting process from a pre-trained model to a

suite of compact variants tailored to diverse edge resource specifications (Section 3.2), outsourcing

the expertise and efforts from the users.

From an algorithmic perspective, we propose collective adaptation algorithm to generate new

models at scale via eliminating duplicate iterations; privacy-aware knowledge distillation to bal-

ance training data privacy and model accuracy; and downtime-free run-time model generation and

switching, all incorporated in our solution.

From a system perspective, we propose new abstractions to decouple the model semantics from

the execution characteristics. Instead of requiring the user to annotate the original model, Mistify

generates model adaptation logic from the configuration file to correctly tailor to the resource budgets

and performance requirements of each device (Section 3.3). Further, Mistify coordinates the implicitly

correlated edge data in a privacy-aware manner to optimize tuning performance (Section 3.4). During

the run time of the inference, Mistify incorporates a feedback mechanism to generate new models as

needed to adapt to fluctuating application demands and resource availability (Section 3.5).

To summarize, we make the following three contributions: First, we quantify the scalability

challenge of porting pre-trained DNN models to edge settings. This necessitates system support

23

to automate this process. Second, we design and implement Mistify as a service framework for

automated porting at scale. Mistify achieves scalability with collective adaptation and improves

model quality with privacy aware knowledge distillation and run-time model adaptation. Third,

Mistify provides a clean interface to separate DNN model design and deployment. This could lower

the bar to wider usage of on-device deep learning at the edge leveraging the abundant resource in the

cloud.

3.1 Background and motivation

The lifecycle of a DNN model spans design and deployment, and the need for automating model

porting arises from the complexity of the process. We discuss these in detail before outlining the

challenges and solutions.

3.1.1 Current DNN lifecycle

The lifecycle a DNN encompasses at least three stages: model design, publishing, and deployment.

DNN model design. DNN models today are designed towards either of two goals: optimal inference

quality, or minimal resource footprint.

The former is typically assumed for workloads run on the cloud. Given increasing computation

power, cloud-centric models employ advanced neural network topologies, millions of parameters

and floating-point operations (FLOPs) to achieve the highest accuracy. For example, BERT [7] and

ResNeXt [118] have 340 and 829 million parameters respectively, hence extremely computation

intensive.

The latter goal is geared towards resource-constrained edge devices, including IoT nodes, smart-

phones and tablets. The desirable models (e.g., MobileNet [94] and SqueezeNet [95]) are exceedingly

compact, requiring only a few MBs for storage and affordable computing budget, ready to run across

diverse device hardware. However, these DNNs sacrifice accuracy in exchange for super lightweight

execution, aiming at maximal deployment coverage.

Once well trained, these models are published to public repositories for deployment.

DNN deployment at the edge. Many DL inference engines have been developed to serve DNN

workloads on edge devices. They focus on deployment optimizations such as cross-platform com-

24

Cloud-designed
Big Model X
100GFLOP, 2GB

Structure adapted
Small Model Y
10GFLOP, 0.1GB

1. Adapt DNN structure

Structure adapted
Model Y weight:
[0, 0, 0, 0]

2. Tune DNN parameters

Ready to use
Model Y weight:

[0.1, 0.5, 0.2, 0.3]

private
datasetPublish / Download

Figure 3.1: Steps to port a DNN model to an edge setting.

patibility, trimming executable size, and low-power operator kernels [18, 20]. Once a DNN model

is loaded (e.g., from model repositories or custom URLs), these engines can execute the inference

efficiently.

Transition from design to deployment. When a pre-trained model is ill-suited to a desirable

deployment setting, it needs to be tailored to the new resource budget and performance goals.

Illustrated in Figure 3.1, this requires adapting the model architecture (e.g.,by trimming network

connections, skipping layers, pruning and quantizing parameters) and then fine-tuning (i.e., retraining)

the parameters with local datasets. However, the end-to-end model porting process is complex. The

source model needs to be correctly annotated to enable its architecture to be adapted for a particular

setting. Fine-tuning also requires careful use of the training data to balance training quality (effective

specialization without overfitting) and data privacy.

3.1.2 The complexity of porting DNN models

As more edge devices adopt on-device inference, porting cloud-based models to edge settings

becomes increasingly complex, facing several challenges: (i) the range of model adaptation targets

is huge as a result of the diversity in the hardware specification; (ii) the porting process involves

several stages, each requiring coordination between multiple parties; (iii) runtime dynamics and new

deployment settings necessitate frequent model re-adaptations.

Heterogeneous execution environment. Edge devices are incredibly diverse, ranging from embed-

ded sensors, IoT devices, mobile phones/tablets, to edge servers, with a full spectrum of hardware

25

capability [23]. Table 1.1 lists the specification of some GPU and ASIC accelerators and processors,

from high-end to low-end, widely employed at the edge for DNN-based workloads. For the same

DNN inference workload, the completion times for low-end (e.g., nano) and high-end (e.g., 2080)

devices can differ by orders of magnitude (e.g., 229 ms and 9.8 ms to run inference over ResNet).

Even when considering only smartphone platforms, to deploy a DL-based mobile app on App

Store need to consider over hundreds of types of hardware devices, from high-end iPhone11 pro

with dedicated neural processing units to 7-year-old Nexus 5 with orders of magnitude slower

processor [24]. Meanwhile, for the same hardware under different battery conditions and dynamic

latency requirements, the optimal DNN model also differs a lot which further increases the adaptation

targets to be considered.

Meanwhile, state-of-the-art algorithms could adapt a DNN model towards a wide range of

performance characteristics. For instance, different variants of EfficientNet for object classification

differ by 8ˆ in memory usage, 6ˆ in latency, and 7% in absolute accuracy [22]. Similarly, different

variants of BERT model for NLP tasks differ by 10ˆ in speed and memory usage, and 15% in

accuracy [28].

These numbers outline a massive design space to explore different tradeoff points between

inference accuracy and latency, where a sub-optimal choice could incur up to 10% accuracy loss (e.g.,

when running EfficientNet-B0 unnecessarily on the latest iPhone model) or miss the latency require-

ment for real-time processing by over 100 ms (e.g., running ResNet on a low-end smartphone) [31].

Clearly, one size does not fit all, but nor would a few sizes only. Instead, it is desirable to tailor

to each target at a fine granularity. For instance, EfficientNet-B4 (a popular model occupying a sweet

spot of computation complexity and prediction accuracy) is suitable for Samsung S9, achieving

83% accuracy and 50 fps real-time response rate. However, using the same DNN on its immediate

predecessor (S8) and successor (S10) would reduce the response rate by 14 fps for S8 and the

accuracy by nearly 1% for S10. These are significant to the model designers where even 0.1%

accuracy improvement merits tremendous effort (both intellectually and computationally) into model

design and training. Given the ever increasing size of this adaptation space, it is impractical to either

cover all plausible operation points with a few DNN models, or manually exhaust the entire space to

customize the adaptation tradeoff for each possible individual edge setting.

26

20 40 60 80 100
Ratio of dataset used (%)

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

MobileNet
ResNet50
ResNeXt101

Figure 3.2: Training dataset size influences accuracy.

Multi-stage multi-party efforts. Tailoring a DNN model involves first adapting to the right model

architecture, and then fine tuning the model parameters (Figure 3.1).

The first stage takes place where the original models are trained (i.e., in the cloud), with target

specification from the edge device. The second stage increasingly takes place at the edge given the

push for on-device inference and federated learning. Edge devices collect and maintain specialized

data relevant to the local context for model training [41, 54] and local data are typically privacy

sensitive [119]. However, smaller networks with less abundant datasets are well-known to be much

harder to train, as it is easy to overfit the model with the training data such that the model may

not generalize well to unseen test data [120, 112]. Thus, it is also preferable for the edge to take

advantage of relevant datasets available elsewhere (e.g., in the cloud or on other devices) to enhance

the training dataset and improve training quality. We illustrate this effect by training three DNNs

(MobileNet, ResNet50, and ResNeXt101) multiple times, each time using a different subset of the

Cifar100 dataset [121]. Figure 3.2 plots the relative test accuracy, compared to the default accuracy

when the entire Cifar100 dataset is used for training. Even though all models are trained to converge

to the same error values, the validation accuracy degrades by up to 80% when using less training

data.

To sum up, both stages of model tailoring require coordination between the cloud and the edge,

and resolving the conflict between data privacy and fine-tuning quality.

Fluctuating runtime characteristics. The runtime characteristics of deep learning inference tasks

27

is highly dynamic, reflected in two aspects.

First, the performance requirements, e.g., accuracy and response time, of an inference task change

frequently. For instance, the accuracy requirements of a vision-based security surveillance workload

are different during crucial and trivial moments, while the latency requirement fluctuates across peak

and off-peak hours (e.g., daytime and night) [122, 41]. Further, FLOPS is sometimes an inaccurate

proxy to statically estimate runtime latency [123]. Second, the resource availability (e.g., memory

space, CPU cycles, accelerator quotas), varies on the edge device due to other workloads competing

for the same resource. For instance, when an edge device launches or completes workloads, or

adjusts the resource allocation of the containers that serve the DNN model for inference tasks, the

perceived resource availability to any active workloads changes [29, 30].

The frequent changes in the performance requirements and resource available necessitate a

mechanism to better serve individual combinations of the operation point, including a suite of models

to switch dynamically, and asynchronously tailoring new ones as the demand warrants.

3.1.3 The need to automate DNN porting

Current practice. To tailor DNNs towards heterogeneous deployment settings, currently either

the model designers should generate different DNNs to cater to each possible resource budget and

performance goal, or the model users should prepare datasets, select and apply algorithms to tailor

already published DNNs towards their custom settings. Either way, a source model needs to be

manually annotated to incorporate a suitable adaptation algorithm and then fine-tuned.

Latest adaptation algorithms, such as AutoML [117], EfficientNet [22], and others [124, 100,

102, 101], all address target-specific adaptation case by case as an additional step in the design

phase. They use different techniques (e.g., gradient-based, evolutionary, and recurrent neural network

based) to revise the model architecture closer to the required resource and performance target with

successive training iterations.

Problems with current porting practice. The overarching problem of existing efforts is they do

not scale from a system perspective (e.g., hundreds of GPU hours for a single setting [125, 117]) and

largely rely on manual efforts (e.g., thousands lines of code spread across source files [126]). Such

manual tailoring process is not easily turned to a configuration style that is agnostic to the number of

28

cases because distinct structure adapting terms have to be added to different DNN models/layers and

at specific positions, which makes it difficult and error-prone. Furthermore, it is infeasible for the

model designers to prepare for all possible deployment settings, or for model users to be well versed

in machine learning literature to build the right algorithm.

The need for an automated framework. The current model porting process implicitly couples

DNN model design and deployment, even though they are conceptually separate stages, and incurs

unnecessary complexity to both model designers and model users. This motivates adding a separate

model porting stage to the model lifecycle, i.e., an intermediary to decouple design from deployment

and automatically port pre-trained DNN models towards heterogeneous edge settings.

Mistify is therefore built as an intermediate framework to encapsulate diverse adaptation al-

gorithms and address the end-to-end porting challenges outlined above, analogous to scheduler

frameworks for distributed systems implementing scheduling algorithms and providing supporting

services.

3.1.4 System requirements

To address the challenges above, an automated model porting framework should meet the following

requirements.

Avoiding deeply embedded and unscalable manual code changes. Since existing model adapta-

tion step is often coupled with the model design itself, a side effect is that relevant code changes are

embedded deep into the model design code. Therefore, the system challenge is to simplify the code

modifications needed to specify the adaptation target.

Mistify addresses this challenge in two steps (Section 3.3). First, we expose the right high-level

abstractions of adaptation choices to users. This elevates per-model code edits (embedded in the

particular script specifying the model) to framework level configuration parameter changes. Second,

we parse the adaptation requirements from the configuration files and merge implicitly correlated

model adaptation requests to reduce duplicate effort and improve scalability.

Cloud-edge multi-party coordination. To automate the two-stage model tailoring process with the

best training outcome, the main challenge is to simultaneously ensure private data stay locally but

parameter tuning can benefit from the data distributed across devices. We address this by estimating

29

Cloud - Mistify serverCloud - DNN design & store Edge - DNN deployment

Mistify Server

Collective adaptation

TF Hub

Serialized
Model

M
L

de
ve

ki
oe

r Architecture
adaptor

Structure
Adapt

configs

Parse
configs

Architecture
adaptor

Architecture
adaptor (§4)

Parameter
tuning

coordinator(§5)

TF Lite engine
Session

OS services

Mistify client

Mistify Client

Parameter
fine-tuner (§5)

Runtime
adaptation

initiator (§6)
deploy

privacy-aware
collaborative tuning

Runtime re-adapt
request

DL apps
CV NLP RL
…

Figure 3.3: Mistify system architecture.

semantic correlation between data across devices without explicitly exchanging and examining the

raw data. This way our system implicitly coordinates multiple devices running the same tailoring

process to maximally “share” available training data in a privacy preserving fashion (Section 3.4).

Fast response to runtime dynamics. Fundamentally, the system challenge is to effectively handle

the mismatch between a statically trained model and the dynamic execution environments during

runtime. Specifically, this requires generating new models as needed and switching to them with

minimal downtime. We address the challenge with a feedback mechanism between the model

deployment points (e.g., edge devices) and the model tailoring point (e.g., a central server or cloudlet)

to perform real-time DNN re-adaptation (Section 3.5).

3.2 Mistify demystified

The overarching goal for Mistify is two-fold: (i) Mistify should separate the model design and

deployment stages with a clean interface; and (ii) Mistify should bridge the two stages with a runtime

that automatically explores the design space at scale and generates models best suited to user-specified

tradeoff points, hiding such complexity from both sides.

Therefore, Mistify is designed as an intermediate framework between DNN model design toolkits

and deployment engines, as shown in Figure 3.3. The arrows across different shaded blocks show how

Mistify interacts with model designs and users. Mistify exposes APIs to model users and inference

engines to specify their porting configurations, either in a batch mode during initialization or in a

streaming mode incrementally during runtime. Example configurations are shown in Figure 3.4. Such

30

configuration includes hardware profile (e.g., FLOPS/s, memory bandwidth), resource availability

(e.g., slices of memory and CPU cycles), performance targets (e.g., inference accuracy and latency),

the original model to be adapted, and the datasets for fine-tuning. The source models are fetched

either from model repositories (e.g., TF-Hub) or developer specified custom URLs.

Mistify operates in two modes, a static mode (analogous to compile time) and a dynamic mode

(analogous to run time). The static mode can handle either asynchronous (i.e., porting a previously

designed model) or synchronous (i.e., connecting the porting stage directly to model design) model

porting in an offline fashion, whereas the dynamic mode can handle runtime model adaptation. The

static mode typically involves generating one model per device specification, but many specifications

in one batch; In the dynamic mode, we aim to generate multiple model variants for the same hardware

architecture, but with varying levels of resource consumption and inference result quality target.

The primary challenge of Mistify is therefore how to generate a large number of adapted DNN

models with minimal computation and manual intervention. In general, our approach is collective

adaptation, i.e., parsing adaptation goals and harnessing the implicit correlations among the goals to

reduce unnecessary computation (Section 3.3). Mistify parses a collection of individual adaptation

goals into a dependency tree with each node corresponding to a distinct goal, so that each goal is

adapted only from its immediate parent via a desirable adaptation algorithm that is automatically

chosen. Next, the adapted models are distributed to the endpoints, where the Mistify client runtime

will prepare the deployment of the adapted model by fine-tuning the parameters (Section 3.4). Finally,

the models start running on edge devices, and the Mistify client monitors the execution environment

(e.g., resource availability and desirable performance goals). The Mistify client will trigger on-

demand model re-adaptation asynchronously when the environment changes warrant a new model

(Section 3.5).

Example deployment. The Mistify server can be deployed in the cloud by the DNN application de-

velopers, coupled with the model repository (e.g., TF-Hub), exposing APIs to the public. Alternately,

the server can be maintained by the model users (e.g., edge device administrators) on their private

cloud to serve local devices (e.g., IoT nodes). Such deployment assumptions align well with the

common practices of on-device DL inference. [18, 4]. Mistify clients are simply deployed on the

edge devices along with the native DL engine as an extension module.

31

Use cases. For DL function (e.g. Google lens) developers, the porting system will save the manual

efforts of tweaking the DNN to fit each new model of smartphone. Instead, the developers simply

need to expose an API for the user devices to describe their deployment settings and then generate

models tailored to these settings. Take edge device owners as another case. When they want to

deploy deep learning based functions on their devices, they can simply search for a well-performing

pre-trained DNN model that fits their need, and then focus on their core business logic. The porting

system will handle the complexity of turning the model into variants that match heterogeneous device

specifications optimally.

Mistify server. The Mistify server consists of two functional modules: an architecture adaptor and a

parameter tuning coordinator. Once the architecture adaptor receives the original DNN model and

the adaptation settings from model users and/or the Mistify client, it generates the adapted models

and sends those to the corresponding clients (Section 3.3). The parameter tuning coordinator serves

as the central point to coordinate the parameter fine-tuning processes among the Mistify clients

(Section 3.4.2), whereas the actual tuning logic is executed on each client locally (Section 3.4.1).

Mistify client. The Mistify client consists of a runtime adaptation initiator, a parameter fine-tuner and

a runtime performance monitor. The runtime adaptation initiator intercepts the native DNN model

loading path of the inference engine to automatically trigger model adaptation during initialization,

and then listens for runtime re-adaptation requests. The parameter fine-tuner takes an adapted DNN

model as the starting point, optimizes its parameters jointly based on the local (private) training

data and the guidance from the correlated neighboring counterparts (coordinated by the Mistify

server). This approach aims to overcome overfitting while maintaining data privacy. The runtime

monitor tracks the current performance as well as resource availability. Once these profiles change

significantly, it will trigger an online model switching as well as an offline re-adaptation request.

3.3 Scalable model architecture adaptation

Instead of requiring the user to manually annotate the source models, Mistify provides expressive

configuration interfaces to specify adaptation goals and constraints (Section 3.3.1) and suitable

abstractions to capture common algorithmic steps that meet these constraints (Section 3.3.2). To

further scale to a large target space, Mistify merges adaptation instances to avoid duplicate efforts

32

[// start of all configurations
 {
 "id": "1",
 "model": "Resnet",
 "dataset": {
 "train": "/path/to/train",
 "test": "/path/to/test"
 },
 "algorithm": {
 "name": "Morphnet",
 "config": {
 "threshold": 0.1,
 "init_reg_strength": 1e-9
 }
 },
 "adaptation_goal": {
 "latency": "30ms",
 "accuracy": 0.80,
 "FLOP": "5G",
 "num_of_params": "20M"
 }
 },
 // more configurations ...

 // ... more configurations,
 {
 "id": "9",
 "model": "Efficientnet",
 "dataset": {
 "train": "/path/to/train",
 "test": "/path/to/test"
 },
 "algorithm": {
 "name": "Chamnet",
 "config": {
 "init_population": 10,
 "crossover_rate": 0.7,
 "mutation": 0.08
 }
 },
 "adaptation_goal": {
 "latency": "30ms",
 "accuracy": 0.80,
 "FLOP": "5G",
 "num_of_params": "20M"
 }
 }
] // end of all configurations

Figure 3.4: Example porting configuration.

(Section 3.3.3) with collective adaptation.

3.3.1 Adaptation goal specification

An adaptation goal reflects the desirable inference performance given static and dynamic device

conditions. Therefore, the user simply provides three sets of inputs: hardware profile, resource

availability, and performance targets. Hardware profile includes compute power (GFLOP/s), memory

bandwidth (GB/s), and quantization strategy (8/16/32 bits). Resource availability includes memory

limit (GB), CPU/GPU shares, and GPU memory allocation. Performance target includes latency

(s/task) and accuracy. These descriptions of an adaptation goal are consistent with most state-

of-the-art adaptation algorithms. Note that our collective adaptation approach is not limited to

aforementioned device and runtime factors. Custom finer-grained profiling libraries and tools can be

incorporated by implementing the Measure() interface of the adaptation executor (Section 3.3.2).

We leverage a JSON-like format to specify multiple goals in a single configuration file, which will be

parsed automatically during adaptation.

We next formulate the cost budgets of a given DNN structure based on the specification of the

adaptation goal provided by the user. In terms of computation cost, each layer contributes Cin ˚Cout ˚

Skernel ˚Sout multiplications and additions. Cin and Cout denote the input and output channels; Skernel

33

and Sout denote the convolution kernel and output size for Conv operations; for normal Matmul

operations, Skernel and Sout both equal 1 as they are equivalent to 1ˆ1 convolution on 1ˆ1 inputs. For

memory cost, each layer contributes Cin ˚Cout ˚Skernel parameters (Skernel is 1 for Matmul operations

similarly). Combined with the quantization strategy, the total memory consumption of a NN layer can

be calculated. For latency cost, we first calculate the previous two costs Ccomp and Cmem respectively.

Then, we leverage the hardware specifications (peak computation power and the memory bandwidth)

to translate these costs into the latency cost as Cmem{mem_bandwidth`Ccomp{comp_power.

We can further incorporate an energy consumption budget in the specification, but we leave this

to future work as the energy budget is more hardware specific and not as generic as the above three

cost items.

3.3.2 Adaptation Executor

Common workflow of DNN adaptation algorithms. State-of-the-art DNN adaptation algorithms

follow a similar process. They take a source DNN model and adaptation goals, and search for variants

of the base model architecture that fits each scenario. The search explores a high-dimensional vector

space, where each hyperparameter of the DNN (e.g., #layers, #filters, kernel size, and quantization)

corresponds to a specific dimension. The search process runs iteratively until the costs of the

current model optimally match the adaptation goal. Common search strategies include evolutionary

search [127, 102], gradient descent [124, 100], RNN-based search [123, 22], and so on.

Adaptation executor. In light of this common process, we design an abstraction, an Adaptation

Executor, that collects all adaptation settings as a closure, and exposes three function APIs (Init(),

Measure(), and Adjust()). Init() loads the adaptation settings, the model, and the constraints,

and then instantiates the executor that runs the chosen adaptation algorithm (default or user specified).

This function is also responsible for identifying the right places to insert the training loss terms

in the entire training workflow. Measure() is called after each adaptation iteration to determine

the costs of the current model in specific metrics (e.g., model size, accuracy, or custom costs

profiled by user-specified functions). Adjust() will then tune the control knobs of the algorithms

(e.g., dimension-wise step size, threshold, or learning rate) to steer the cost refinements towards

the adaptation goals in an optimal direction. These APIs abstract away the inner workings of

34

heterogeneous adaptation algorithms in a universal approach, obviating the need to directly annotate

the models to embed the adaptation logic. A new adaptation algorithm can interface with Mistify by

implementing the above APIs, and the user can specify the preferred algorithm in the configuration.

Case study: running MorphNet algorithm via adaptation executor. The vanilla DNN training

starts with defining an accuracy loss function (Lout put) based on the difference between the model

outputs and the ground-truth labels. The loss is back-propagated to each layer i (with parameter θi)

as Lipθiq. Each layer calculates the gradient of the loss, and optimizes the parameters (θi) iteratively

by minimizing the loss via gradient descent. Namely, θ new
i “ θ old

i ´η ¨∇θiLipθiq.

MorphNet (a recent gradient based search algorithm [100]) converts the resource costs of DNNs

as additional penalty terms of the loss function. This way, the DNN architecture is iteratively

optimized via gradient descent along with the vanilla DNN training. For instance, the “useless”

weight parameters will be suppressed to zero and trimmed during training when minimizing the

overall loss, as they do not contribute to reducing the accuracy loss but increasing the architectural

loss. The adaptation process completes when each structure-related cost (e.g., number of FLOPs)

satisfies the corresponding constraint, or when the pre-defined maximal running time is reached for

the non-converged cases.

However, to actually adapt a model with MorphNet, a user needs to (i) pick the penalty term

representation for each operator included in the DNN (e.g., Gamma regularizer for BatchNorm op),

(ii) specify the input and output operator of the model, (iii) instantiate the penalty term with the

arguments such as trimming threshold and learning rate, (iv) add the penalty term into the overall

training loss, and (v) set the cost monitoring and termination conditions. All these steps are repeated

for each adaptation target, and require modifying the source code of the DNN model definition and

training scripts. In contrast, with the clean APIs and the adaptation executor abstraction of Mistify

the users only need to specify the high-level configurations (e.g., adaptation algorithm, trimming

threshold) and all adaptation goals (e.g., memory usage, number of FLOPs) collectively in a single

JSON file.

To encapsulate the MorphNet algorithm in an Mistify adaptation executor, we implement the

APIs as follows. For Init(), we additionally implement the operations of deriving the positions

(e.g., Conv layers) to add architectural loss terms, essentially by first finding the input layers, and

35

C1

mem: 12gb
comp: 7gflops

C2
C3

C4 C7

C5

C6

mem: 7gb, comp: 5gflops
mem: 5gb
comp: 4gflops

mem: 10gb
comp: 6gflops

mem: 9gb, comp: 2gflops
mem: 6gb
comp: 3gflops

mem: 8gb
comp: 1gflops

Figure 3.5: Configuration tree example.

then traversing the whole DNN graph topologically along the dependencies to insert the loss terms to

corresponding layers until the outputs. Measure() simply calculates the resource and performance

costs of a given DNN independent of the adaptation algorithms. For Adjust(), we implement the

logic of setting the learning rate of the loss term corresponding to each resource and/or performance

constraint. The implementation of these APIs is lightweight (Section 3.6).

3.3.3 Collective adaptation

We observe that multiple adaptation goals often share similar initial steps or training iterations.

Handling each adaptation goal independently is very inefficient when deploying a model to a range of

devices. Therefore, Mistify provides a mechanism to “merge” adaptation goals to avoid duplicating

the same action. We parse the adaptation goals into an n-ary tree structure following certain rules.

Goals along a branch are adapted one-by-one serially in a single pass. We also design a mechanism

to navigate the adaptation direction, to meet the constraints (e.g., memory and computation) of a

single goal simultaneously.

Adaptation goals compilation. As mentioned above, each single goal consists of several resource

and performance constraints, and can be abstracted as a multi-dimensional vector. Then, combining

with the hardware specifications we build a partial order of all goal vectors (from the least demanding

to the most) according to their constraints. Figure 3.5 shows an example of 7 goals (C1 to C7), each

with two hardware resource constraints (memory usage mem and computation complexity comp).

Goals Ci and C j have a strict order Ci ăC j only when Ci.memăC j.mem and Ci.compăC j.comp.

Following the partial ordering relations between goals, we further generate a tree structure, with

each node representing a goal, and each edge leading to one of its immediate more demanding goals.

36

Hence, each branch of the tree corresponds to an independent adaptation path (marked with a red

arrow in Figure 3.5). Along each path, every two goals are consistently ordered on all constraints.

This ensures that they can be collectively adapted in one pass without conflicts. Note that the accuracy

does not strictly increase over the path. When Mistify starts to traverse a path from one point to the

next, the accuracy will first drop to a certain level, and then climb back while the training continues.

Meanwhile, the resource profiles will move to the desired position.

Given the tree structure, we first uniformly expand the architecture of the original DNN so that,

for each constraint dimension, its actual cost value is larger than that of the root node (the least

demanding goal). Then, starting from the root, we run the encapsulated adaptation algorithm to

trim the DNN architecture iteratively along each adaptation path. Every time a goal is satisfied, the

corresponding version of DNN is stored as a checkpoint for future use.

Note that even though the mapping between partially ordered goals to a tree structure is usually

not unique, we find that there is only marginal difference in the overall adaptation time between

different mappings. Hence, it is not worth optimizing the mapping given it is NP-hard.

Structure loss scheduling. When executing the adaptation along a path, an essential question is how

to control the adaptation towards the optimal direction (via Adjust()), i.e., how to meet multiple

desirable constraints simultaneously. Although some existing works achieve this by forking a new

adaptation schedule for each change of the adaptation “direction” [128], they are not scalable to

large number of adaptation goals and fine-grained continuous controls. For instance, the common

practice of training a single DNN model involves adapting learning rate periodically by at least over

10 times. Further multiplying this with the total number of adaptation goals in the configuration tree,

the overall trials will easily exceed tens or hundreds of thousand trials, which is too heavyweight for

almost all training platforms.

To address this, we adjust the control knobs based on the weighted combination of the corre-

sponding architecture losses. The overall DNN loss function is the sum of the normal loss (denoted as

L) and a set of architecture losses corresponding to each constraint tGiu. For each Gi, their control

knob (e.g., learning rate for gradient-based algorithms) can be viewed as a weight parameter wi,

which leads the overall loss Lall “L `
ř

i wi ¨Gi. Now, to adjust the adaptation “direction” towards

a specific constraint fi, we only need to increase the weight wi of the loss Gi.

37

Initially, all the weights wi are equal and sum to 1. Suppose for the loss of constraint fi

we have the initial value G
p0q
i and the target value G

p`q

i . Then, for every k training iterations

(empirically set to 200), we reschedule the weights once. The n-th iteration weight wpnqi is calculated

as Sharepnqi {
ř

i Sharepnqi , where Sharepnqi “
G
p`q

i ´G
pn´1q
i

G
p`q

i ´G
p0q
i

. In essence, we proportionally assign the

next values of the weights wpnqi according to how far the corresponding loss values wpn´1q
i deviate

from the targets, and finally normalize these weights.

3.4 Privacy-aware fine-tuning at the edge

After adjusting the model architecture with respect to the resource and performance constraints, the

weight parameters need to be fine-tuned before actual deployment. If all training data are collected

and stored in the cloud, parameter tuning simply follows the standard training process for the adapted

DNN. Instead, we will consider how to fine-tune parameters when edge devices collect and store

their private data locally. The challenge arises when specializing the DNNs only using the local

contexts of edge devices.

Recall (Section 3.1.2) that DNNs are hard to train with a small dataset, usually the case for

individual edge devices, and can easily overfit. On the other hand, the data local to each device is

often more relevant but private, making it difficult or infeasible to aggregate the data from different

end devices into a larger dataset for centralized training. Therefore we need to balance protecting

edge data privacy and training quality (in terms of how well individual models generalize). While

many existing works (e.g., Federated learning [54] and others [129, 130, 131]) address decentralized

private DNN training, they assume different endpoints train the same DNN structure with different

local datasets. The situation is different for Mistify, where the models on different devices have

different model structures to meet specific adaptation goals.

Knowledge distillation (KD). To tackle the aforementioned dilemma, we need a mechanism for

DNN “knowledge” sharing between distinct peer models and without explicitly exchanging private

data between devices. Fortunately, mutual knowledge distillation [113, 115] comes to the rescue.

When training a DNN model (M1, the student model) from scratch, leveraging additional help from

another similar but independently trained model (M2, the peer teacher model) can significantly

improve the validation accuracy of M1.

38

Specifically, the optimization of parameter θi follows:

θi “ θi´η∇θitφpy,M1pxqq`ϕpM2pxq,M1pxqqu

where ∇θ denotes taking derivatives with respect to the variable θ , φ and ϕ denote the loss functions

(e.g., cross-entropy) respectively defined for the ground-truth labels and the teacher model M2’s

outputs, and η denotes the learning rate as usual. The corresponding parameter values in M2 are

incorporated as added constraints. This way, the student model receives extra supervision from

the teacher model during training, beyond optimizing for conventional learning objectives like the

cross-entropy loss subject to the ground-truth training labels. The idea behind the formulation is to

take advantage of the extra supervision provided by the teacher model (M2) while training the student

model (M1), beyond optimizing for conventional learning objectives, such as the cross-entropy loss

subject to the ground-truth training labels. Mistify builds on the idea to coordinate parameter tuning

between the clients and the server in a privacy aware manner.

3.4.1 Client: KD-enhanced parameter tuning

Observe that a DNN trained locally on an edge device embeds the “knowledge” extracted from the

private local data. Therefore, to take full advantage of the edge data distributed across devices without

exchanging the private data, our algorithm instead shares the DNN models trained independently on

each device. The ensemble of DNNs from other devices serves as the “teacher” to guide the current

device’s model just like mutual knowledge distillation. In this way, the “knowledge” extracted from

different datasets are shared and the data privacy is preserved.

Our algorithm proceeds as follows.

(i) Each participating endpoint device (Ei) first tunes their adapted version of DNN model (Mi)

with locally available training data until convergence.

(ii) Each endpoint sends its current model along with its loss and accuracy statistics to the central

coordinator and waits for a response, namely a set of models (M1 to Mn) trained on the other devices.

An operator is added over the n outputs of these models (M1 to Mn), taking their average as the final

output of the model ensemble.

39

(iii) KD-enhanced tuning is then invoked to optimize the parameters θi of model Mi:

θi “ θi´η∇θitφpy,Mipxqq`ϕp
1

n´1

ÿ

j‰i

M jpxq,Mipxqqu

Namely, the outputs of each local model Mi are compared with both the ground-truth labels y and

the outputs of the assembled teacher model to calculate loss. We follow similar hyperparameter

settings as in [112], using cross-entropy loss for φ and Kullback-Leibler (KL) divergence [132] for

ϕ to measure the distance between the teacher and local models, and a default value 0.001 for η .

(iv) Loop over steps (i) to (iii) until the model finally converges. Noticeably, to improve general-

ization and avoid being skewed by some poor performing models, we randomly skip maxpn{10,1q

of the models used for each round of KD-enhanced tuning in step (iii).

Privacy-aware tuning. Although less privacy-sensitive than the training data, DNN models can

still leak the information from the private training data. To overcome this privacy leak challenge,

we can add noise to the fine-tuning process to achieve differential privacy [133, 134]. The noise

can be added to either the training data, or directly the model parameters to be sent to the Mistify

server. However, the latter provides less privacy protection, easier to “denoise”, and does not provide

fine-grained control easily.

Therefore, we augment the algorithm above with an optional step after (i). Specifically, we

add Laplacian noise to the local training data, and train the model (Mi) for additional epochs until

convergence. Then, this noisy model (M1
i) is sent to the central coordinator in step (ii). This provides

differential privacy to the model parameters and reduces information leakage from the private data.

The level of noise added is chosen empirically according to existing privacy-preserving machine

learning practice (e.g., PATE [133] and Myelin [134]) with the same level of privacy loss preference

(e.g., ε ă 5).

Note that Mistify is amenable to this differentially private approach by design. As Mistify aims

to scale to a large batch of end devices (hundreds of more), potentially there is a large number of

peer models to draw from during the intermediate steps. Therefore, even though the individual

noisy intermediate model (M1
i) is less accurate than its noiseless counterpart, the accuracy loss is

compensated for by the ensemble of other peer models [135].

40

3.4.2 Server: client model coordination

One particular concern of our aforementioned algorithm is whether the models used for KD-enhanced

tuning indeed add knowledge rather than noise. This is supported by the widely existing spatio and

temporal correlation between datasets from nearby edge devices [38, 136, 39]. Further, it is also

proposed that given datasets sufficiently similar in their semantic contexts (e.g., types of objects,

hidden feature occurrence frequencies) as the training data, the trained models perform semantically

equivalent functionality and can provably generalize to achieving the same capability [137, 138, 139].

In practice, we use commonly used spatio-temporal hints (e.g., location, time, view angle) sent by

each client along with their models as a coarse-grained mechanism to estimate the correlation between

datasets. There are myriad alternative lightweight approaches to measure dataset similarity without

piece-wise comparison of the actual raw data (e.g., by calculating dataset feature summaries [140,

141]). They are easily pluggable into Mistify by implementing the corresponding APIs. Regardless of

the exact metrics used to measure correlation, they are represented as multi-dimensional vectors. The

central coordinator located on the Mistify server maintains a Locality-Sensitive Hashing (LSH [142])

structure to index these vectors (representing edge endpoint contexts), which guarantees sublinear

complexity for query and insertion [143]. When an edge endpoint needs available models to fine-tune

its own parameters, it will select the “nearest” (most correlated) models, based on the aforementioned

methods.

3.5 Runtime model adaptation

Existing algorithms and libraries only port DNN models statically in a batch mode. Instead, Mistify

further extends DNN porting with a runtime streaming mode, where the client actively monitors

runtime changes of the resource and performance constraints and generates new models to such

dynamics. Mistify does not aim to address general runtime adaptation issues, such as resource

allocation and job scheduling. Nor does Mistify specifically deals with switching different existing

models during runtime [19, 144]. These orthogonal decisions are left to the operating system

scheduler or the regular inference serving environment. In contrast, the runtime of Mistify is invoked

to generate new models when existing models are inadequate. The adaptation mechanism involves

two paths, foreground and background.

41

…

Base Branch

2k-1 B
ranches

Base
…

Constraint: c0

Constraint: c1

Constraint: c2Constraint: c1

C
aseO

p

Branch selection
predicate

Figure 3.6: Multi-branch model construction.

3.5.1 Constructing a multi-branch model.

To support on-the-fly adaptation to fluctuating resource constraints, each DNN model is constructed

in a multi-branch form during the architecture adaptation process (Section 3.3). Figure 3.6 illustrates

the process. First, the aforementioned adaptation algorithm is triggered as usual until the constraints

specified in the configuration are satisfied. Now, besides continuing to adapt to other configurations,

a new adaptation thread is spawned. This thread separately adapts the current DNN into a k-branch

DNN. For instance, a 5-branch DNN is built by freezing the first few layers and adapting the

remaining layers towards 5 different configurations, whose resource budgets range from 1
3 of to

3ˆ times that of the original DNN model. The branches share the same base, achieve the same

inference task, but satisfy different resource budget and performance goals. In practice, k is set based

on the observation of the typical fluctuations of the resource availability and performance targets.

After fine-tuning the parameters of the multi-branch DNN, we add a case conditional operator (e.g.,

tf.case for Tensorflow) between the base and different branches.

Foreground path: downtime free branch switching. Foreground path is tightly coupled with the

user-facing inference serving logic, performing real-time adjustments of the current DNN model

based on the dynamic constraints. To achieve this, Mistify picks a branch from the multi-branch DNN

with the closest resource and performance profile. The branch switching is done on-the-fly by setting

the corresponding value of the conditional variable (red arrow in Figure 3.6) of the case operator in

the DNN, saving additional overhead such as allocating memory and preparing runtime resources.

This guarantees on-the-fly adjustment of the model resource consumption and performance statistics

without additional overhead such as reloading computation graph from files, allocating memory,

42

and preparing runtime executing resources. For instance, when the amount of resource available

to an inference workload shrinks by 45%, the foreground path will first select the branch with the

closest constraints (e.g., resource budget tightened to half) to run the subsequent tasks. Meanwhile,

the process to generate a new model tailored to the new resource constraints will be invoked in the

background, to eventually replace the current model.

3.5.2 Background path

Meanwhile, in the background, the Mistify client will send the new adaptation configuration to

Mistify server, where it is compared with existing ones in terms of their resource constraints, based

on the partial ordering explained in Section 3.3, in order to retrieve the immediate predecessor of

this incoming config. Then, the new DNN model is incrementally adapted from the corresponding

“predecessor” DNN, until the constraints of the new configuration are met. This avoids redundant

adaptation iterations between successive model adaptation instances and speeds up the process of

generating a new model. The new model will be sent to the client for subsequent processing.

3.5.3 Discussion

Admittedly, memory consumption as a resource constraint is not adjustable when achieving downtime-

free switching in foreground path. Instead, it consumes additional memory to hold multiple branches.

However, we consistently observe that among different resource and performance constraints, mem-

ory space is in most cases the most loose one. Further, dynamic memory allocation (enabled by many

platforms [86]) further alleviates the concerns for memory.

Meanwhile, as the bottom line, we provide a config parameter that controls if the downtime free

branch switching in foreground path is activated. When deactivated, the immediate task after branch

switching will wait the reloading and resource allocation of the DNN model (with a different branch)

to finish, before running. Such process makes sense for those cases with scarce memory space and a

stable runtime environment.

43

3.6 Implementation

We build Mistify over TensorFlow (TF) 1.13 [145] (Figure 3.3) and plan to open-source the codebase.

The server side consists of around 6K lines of Python code for the model architecture adaptor and

parameter tuning coordinator. The client side consists of around 2.5K lines of Python code for the

parameter fine-tuner and the runtime monitor. The former is a library extension of the TF core,

whereas the latter runs as a runtime daemon of the inference serving engine (e.g., TF-serving or

TF-Lite). The client and the server communicate via a lightweight RPC library using ZeroMQ [146]

and ProtoBuf [147].

Interfacing with the native environment. Recall that Mistify can be activated at two stages (Sec-

tion 3.2), when initializing inference serving or during the run time. For the former, the function

tfhub.load() is intercepted to trigger the model porting process (when fed the special argument).

For the latter case, the Mistify runtime monitor is by default registered with the live Session of TF

serving engine to collect runtime statistics (tf.RunMetadata), and to invoke the Mistify client to

initiate the re-adaptation process on demand. The foreground branch switching is implemented by

assigning a suitable value to the predicate variable of tf.case op.

Encapsulating adaptation algorithms. Mistify implements wrappers over two representative, state-

of-the-art adaptation algorithms, MorphNet [100] (using sparsifying regularizers) and ChamNet [102]

(using evolutionary algorithms). These are representatives of common categories of techniques.

Adding new adaptation algorithms to Mistify is fairly easy, following the process outlined in the

MorphNet case study in Section 3.3.2. Each wrapper implementation around these algorithms for

Mistify requires around 100 lines of code (LoC), which is fairly modest compared to the thousands of

LoC in the original codebases of these algorithms.

3.7 Evaluation

Hardware setup. Following Figure 3.3, a Linux server with 8-core 2.1 GHz Intel Xeon CPU, and

NVIDIA 2070 GPU acts as the server side of Mistify; For the client-side operations of Mistify, we use

devices with a low-end NVIDIA P600 GPU, a Google Edge TPU [25], and a Samsung S9 smartphone

respectively as representatives of diverse edge hardware.

44

Application benchmarks. Computer Vision (CV) and Natural Language Processing (NLP) tasks

currently dominate deep learning use scenarios, accounting, for example, for 95% of the DL work-

loads in the Google data centers [74]. We select one workload each, Object Recognition and Question

& Answering corresponding to the two application categories, as representative benchmarks. While

there are numerous other CV and NLP applications, for example, scene segmentation for CV, ma-

chine translation for NLP, these are based on DNN models derived from the same base structures

as those used for our benchmarks (For example, ResNet blocks for object recognition, detection,

and segmentation; Transformer blocks for Q&A, named entity recognition, sentiment analysis).

Therefore, the results obtained for our benchmarks are representive of a wide range of scenarios.

Specifically, we select three state-of-the-art DNNs, MobileNet [94], ResNet50 [148], and

ResNeXt101 [118], with increasing computation complexity (0.5 to 16 GFLOPs), parameter size (16

to 320 MB), and accuracy (68% to 79%) for object recognition. MobileNet is originally designed for

mobile devices, whereas the other two mostly run in the cloud. For Q&A, the input is a question

along with a context paragraph containing the answer to the question. A popular “accuracy” metric

for this is the Exact Match (EM) score, i.e., the answer that exactly matches the question means a

correct inference result, otherwise wrong. We prepare two DNNs, for the previous-generation and

current state of the art, BiDAF [149], and BERT [7]. The former is lightweight but task-specific

(customized for Q&A) (10ˆ MB), whereas BERT is much larger, generically supporting various

downstream tasks. Hereby, we use these DNNs with different specifications to evaluate if Mistify

could successfully tailor them into different execution settings by balancing the accuracy and resource

consumption (and correspondingly the latency).

Datasets. We use domain specific standard datasets to adapt network architectures, fine-tune their

parameters, and validate their performance. Specifically, ImageNet [34] and Cifar100 [121] are used

for object recognition, whereas SQuADv1.1 [150] is used for Q&A.

3.7.1 Collective Architecture adaptation

Collective adaptation time. We generate 128 different adaptation configurations based on four

DNNs (MobileNet, ResNet50, ResNeXt101, and BERT). Among these, the least and most demanding

configurations respectively constrain the adapted DNNs to 2ˆ and 0.5ˆ the default DNN memory

45

1 2 4 8 16 32 64 128
Num of configurations

1
2
4
8

16
32
64

128

A
da

pt
at

io
n

tim
e

(r
at

io
)

mobilenet
resnet50
resnext101
bert

Figure 3.7: Completion time comparison for adapting a DNN from 0.5ˆ to 2ˆ resource consumption.

usage and computation complexity. Then, we select different subsets of these 128 configurations,

adapt all of them with and without Mistify, and compare their overall time consumption to evaluate

our collective adaptation approach (Section 3.3.3). Figure 3.7 shows the relative time needed without

over with Mistify. Mistify accelerates the overall adaptation time almost linearly with the number

of configurations when it is less than 10, consistently achieving around 10x acceleration even for

DNNs as small as MobileNet. For large DNNs, such as BERT, that are structurally more amenable to

adaptation (i.e., easier to prune a subset of the network without affecting validation accuracy), the

acceleration scales well with over 100 configs.

Adaptation quality. Then, we examine the quality of the DNNs collectively adapted by Mistify

or adapted per-config by default. Table 3.1 shows two rows for each network, corresponding to

4ˆ compression and expansion with respect to the complexity and memory consumption of the

original DNN. This spans the range from low- to high-end hardware [23]. For instance, the respective

inference time of the compressed and expanded ResNet50, running on a Google Nexus 5 (low-end

2013 model) and a Samsung Galaxy 10 (high-end 2019 model), are both around 30 ms, low enough

for practical usage. “Accuracy” corresponds to the EM score (exactly matching the ground-truth

answer) for NLP. To avoid being affected by the parameter tuning quality, all adapted DNNs are

trained with the whole datasets, and without considering any device-specific constraints. We see that

46

Table 3.1: Accuracy of Collectively Adapted Models (Mistify) vs Individually Adapted Models
(Per-case)

DNN Per-case (%) Mistify (%) Relative diff (%)

MobileNet 55.8 54.7 -2.0%
69.4 69.5 +0.1%

ResNet50 68.2 68.0 -0.3%
72.9 72.5 -0.6%

ResNeXt101 74.0 74.3 +0.4%
77.6 77.9 +0.3%

BERT 71.4 70.6 -1.2%
79.1 78.8 -0.4%

Mistify’s adaptation algorithm achieves almost equivalent accuracy compared to the per-case default

algorithm, with less than 0.5% accuracy loss for most cases and only 1% for the worst scenario (e.g.,

when adaptation configurations are incompatible with total ordering, causing the overall adaptation

path to detour substantially), within the typical range of accuracy loss in exchange for resource

efficiency [151].

3.7.2 Parameter tuning

We use a more specialized dataset Cifar100 to evaluate parameter tuning on the edge. The whole

dataset is partitioned into subsets, as the local data of each edge device.

Convergence speed and quality. We compare the convergence speed and test accuracy for three

different networks (MobileNet, ResNet50, and ResNeXt101), with and without Mistify support for

parameter tuning (Section 3.4.1). Figure 3.8 shows that even without additional data, KD-enhanced

parameter tuning (solid lines) already achieves over 3ˆ faster convergence as well as better accuracy.

Scalability. We assess the scalability of the parameter tuning algorithm (Section 3.4.1) in terms of

the ratio of communication time over training time, under different network bandwidth settings. We

consider two extreme cases, MobileNet (very compact) and BERT (very sophisticated). In Figure 3.9

and Figure 3.10, each line corresponds to a specific network bandwidth in MB/s. When the network

bandwidth is over 5 MB/s, our algorithm is consistently scalable, communication merely taking less

than 15% of the time relative to training. For MobileNet case, even 1 MB/s narrow bandwidth could

fully support the algorithm. Note that federated learning is multiple device collaboratively train one

47

5 10 15 20 25 30
Epoch

40

50

60
T

es
t e

rr
or

 (
%

)

mobilenet-w/o
resnet50-w/o
resnext101-w/o
mobilenet
resnet50
resnext101

Figure 3.8: Comparison of convergence speed and performance for default approach and with Mistify
support.

single model, whereas for our case, each device fine-tune their own adapted model, just sharing

parameters as “knowledge” to enhance the training quality, so they are not directly comparable.

Further, the lines almost flatten beyond three neighbor networks, so using more neighbor networks

for our tuning does not impact scalability.

Accuracy of parameter tuning. We randomly partition Cifar100 and SQuAD each into 5 subsets,

each used by an edge device for local training. Then, we compare the fine-tuning accuracy using

different approaches. Table 3.2 shows that knowledge distillation (KD) improves parameter tuning

accuracy by 40% over local training alone. Compared to the ideal distillation case where an

exceptionally accurate teacher network is available (a pre-trained, cloud version), the ensemble

of 4 peer networks achieves within 10% of optimal KD, despite using half the training data and

meanwhile adding differential privacy to the model parameters.

3.7.3 Runtime overhead of Mistify

Foreground path on Mistify client. To switch to another network in response to the runtime

dynamics (Section 3.5.1), there are two types of overhead. First, additional space is needed to

store other networks in memory and switch to them seamlessly. Second, loading the new DNN

48

1 2 3 4 5 6
Number of neighbor DNNs

0.001

0.01

0.1

T
im

e
ra

tio

1
5
10
15
20
25

Figure 3.9: The ratio of communication time over training time, reflecting the algorithm scalability
for MobileNet (compact model).

1 2 3 4 5 6
Number of neighbor DNNs

0.01

0.1

1

T
im

e
ra

tio

1
5
10
15
20
25

Figure 3.10: The ratio of communication time over training time, reflecting the algorithm scalability
for BERT (huge model).

Table 3.2: The accuracy of tuning parameters with Mistify.

Scenario DNNs
MobileNet (%) ResNet50 (%) BERT (%)

Local training 39.7 43.9 22.5
KD 66.4 75.3 78.8

1-peer tuning 53.8 61.5 51.9
2-peer tuning 58.1 67.2 65.6
4-peer tuning 59.8 69.0 71.8

and preparing the runtime execution resources on-demand saves memory but needs downtime.

Specifically, the model size corresponds to the runtime memory consumption of the DNN, instead of

the size of the serialized model file. Table 3.3 illustrates the trends of additional memory consumption

or time consumption for different networks. The suffix “-kb” means adding k branches to the adapted

49

Table 3.3: Additional number of parameters and network switching time overhead.

DNN Additional/original params (M) Time (s)
MobileNet-b3 2.67/3.43 2.11MobileNet-b5 4.57/3.43
ResNet50-b3 18.2/23.9 3.34ResNet50-b5 31.7/23.9

ResNeXt101-b3 33.9/44.3 4.19ResNeXt101-b5 57.6/44.3
BERT-b3 92.4/110 21.84BERT-b5 171/110

Table 3.4: Latency (ms) for building config tree.

Num of constraints Num of configs
10 100 1000

1 0.03 0.34 5.22
2 0.05 0.71 11.94
3 0.08 0.92 15.46
4 0.14 2.13 37.91

DNN. We can see from the table that loading a network to memory for inference serving takes 2-20

seconds, whereas saving such switching overhead requires storing around 75% additional parameters

in memory for 3-branch cases, and around 1.5ˆ for 5-branch cases, affordable for most modern

hardware. For modern hardware, typically a few GB is affordable in avoiding over 20 second service

downtime, critical to many scenarios.

Latency of parsing adaptation configurations. Recall that we support four types of constraints

(inference latency, accuracy, memory consumption, computation complexity), we measure the latency

of generating a configuration tree (Section 3.3.3) given various numbers of configurations. Table 3.4

shows that when considering all four constraints and given 1000 different adaptation configurations,

it only takes around 38 ms to generate the config tree, a negligible latency compared to the overall

adaptation time.

3.7.4 End-to-end performance

Settings. Based on the device specifications in Table 1.1 and typical latency requirements for vision

and NLP tasks [9, 6], we generate a set of execution settings (with different combinations of memory,

complexity, and latency constraints), feed them to Mistify with different source DNNs, and evaluate

50

0.1 1 10 100
Compute complexity (GFLOPs)

40

50

60

70

80

A
cc

ur
ac

y
(%

)
MobileNet
ResNet
ResNeXt

(a) Accuracy vs. compute resource
(recog)

0.1 1 10
Memory consumption (GB)

40

50

60

70

80

A
cc

ur
ac

y
(%

)

MobileNet
ResNet
ResNeXt

(b) Accuracy vs. memory (recog)

10 100 1000
Latency (ms)

65

70

75

80

A
cc

ur
ac

y
(%

)

2070
etpu
S9
cpu

(c) Accuracy vs. latency (recog)

1 10 100 1000
Compute complexity (GFLOPs)

30

40

50

60

70

80

E
xa

ct
 M

at
ch

 s
co

re

BERT
BiDAF

(d) Accuracy vs. compute resource
(Q&A)

0.1 1 10
Memory consumption (GB)

40

50

60

70

80

E
xa

ct
 M

at
ch

 s
co

re

BERT
BiDAF

(e) Accuracy vs. memory (Q&A)

10 100 1000 10000
Latency (ms)

40

50

60

70

E
xa

ct
 M

at
ch

 s
co

re

2070
etpu
S9
cpu

(f) Accuracy vs. latency (Q&A)

Figure 3.11: The dynamic tradeoff between latency, accuracy, and resource consumptions with
Mistify.

Table 3.5: Comparison of overhead for porting DNN to edge with/without Mistify.

2 configurations 10 configurations 100 configurations
Man. Mor. Chm. Mist. Man. Mor. Chm. Mist. Man. Mor. Chm. Mist.

Lines
of
Code

ą0.2k 55 97 6 ą1k 138 159 14 ą10k 782 511 104

Num
of
Files

6 4 5 1 30 12 32 1 300 102 302 1

Total
time
(%)

100 54.2 100 12.5 100 2.86

the DNN models produced by Mistify, using Morphnet [100] and Chamnet [102] algorithms.

Balancing performance and resource usage. We first evaluate how well Mistify balances the

accuracy performance and resource consumption. We select common resource and latency constraints

as the execution settings for different edge devices. We set the memory consumption budget from

0.1 GB to 10 GB covering embedded IoT devices to edge server scenarios. We set the computation

complexity constraints for running inference on a DNN between 0.1 to 100ˆ GFLOPs, which

could further translate to staying within around 10ˆ ms inference latency from resource-constrained

devices to powerful edge servers.

Figure 3.11 shows the three-way trade-offs between accuracy, latency, and resource consumption.

51

The top three correspond to recognition, the lower three to Q&A. Mistify reduces the computation

complexity by over 20ˆ with less than 5% accuracy loss for the vision workload, and could achieve

50ˆ reduction of complexity in exchange for 12% relative quality of result degradation. Note that

the accuracy loss is due to the adaptation algorithms, not Mistify itself. Similarly, Mistify consistently

achieves a near-optimal and practically usable accuracy (comparable to existing hand-tuned on-

device models in production [96, 102]) with between 0.5 to 10 GB memory consumption during

run time, hence significantly decreasing the deployment complexity for many state-of-the-art DNN

models on the edge. Mapping resource consumption to inference time, Mistify consistently achieves

a near-optimal accuracy performance even when the latency requirements vary by 8 to 10ˆ, for

accelerator hardware ranging from advanced data center grade to low-power and lightweight devices.

Simplifying manual overhead. We further assess the end-to-end manual effort and time overhead

needed to port a pre-designed DNN to different edge devices. The manual overhead is quantified

with two metrics: lines of code (LoC) needed for code addition or modification, and number of files

(NoF) touched. The former depicts the overall overhead, and the latter one captures the scatteredness

of the modifications, which correlates with the probability of making mistakes. For NoF, we follow

a typical file organization [152], i.e., model definition, training, evaluation, and other stages are

separated into different files or folders.

We compare Mistify with manual porting, MorphNet [100] and ChamNet [102] (two state-of-the-

art “automatic” model tailoring toolkits and libraries). Different deployment scales and scenarios are

covered by varying the number of distinct configurations from 2 to 100.

Table 3.5 demonstrates that Mistify reduces the overall LoC modification needed by 7 to 10ˆ.

More importantly, Mistify exposes high-level configuration files to users, obviating the need for

source script modifications. Mistify only requires editing one file. Thus, it saves the number of files

users need to access by orders of magnitude (over 100ˆ). Finally, Mistify can manage adapting

to 100 execution settings using less than 3% of the time of the other approaches, highlighting the

enormous potential of harnessing the correlation among configurations to optimize the overall porting

efficiency.

52

3.8 Related work

We are not aware of prior work that aims at providing an automatic porting service bridging DNN

design and seamless edge deployment. The most related work revolves around model adaptation and

knowledge distillation algorithms.

Model adaptation. In production, DNN models hand-tuned by experts have already been shown

to run both fast and accurately on mobile devices [94, 95, 96, 97]. The essential techniques include

quantization, sparsification, and neural block optimization. Recently, Distiller [98], AMC [99],

MorphNet [100], OFA [101], ChamNet [102], and many neural architecture search (NAS) works [103,

104, 105, 106, 107] further explore how to algorithmically explore the search space and find the

optimal neural network structure, obviating the hand-tuning by experienced experts. However,

none of them is directly usable like Mistify, because they are all still algorithms, require manually

annotating source code to construct the adaptation logic, hence not scalable to edge scenarios with

multiple adaptation instances. None supports the on-device tuning scenarios or considers runtime

adjustments. Mistify is orthogonal as an automated system framework and can incorporate them as

pluggable algorithmic modules.

While frameworks like TF-Lite [18], PyTorch [88], and MCDNN [19] provide some model

compression and switching support, Mistify differs in techniques supported and the level of manual

efforts. To generate a good model, careful model architecture design is essential, which normally

requires significant expertise. Mistify abstracts the model architecture adaptation process with the

configuration APIs to make it accessible to non-experts, easy to automate the end-to-end process and

optimize for batch model generation at an abstract graph level.

Knowledge distillation. This was initially proposed as an optimization for model training by

transferring knowledge (i.e., parameter values) from a teacher network to a student network [112].

Later works extend the idea to a mutual distillation setting among peer models [113, 114, 115].

Mistify adopts and revises the general idea in a selective distillation manner to improve edge training

accuracy while enhancing privacy.

Edge-centric deep learning inference engines. Emerging frameworks such as TF-Lite [18] and

more [58, 73, 153] are optimized for inference serving on mobile and IoT devices, aiming to hide

53

the deployment complexity from developers and device users. However, the interface exposed by

existing engines only permits model downloading from the cloud (or the central server), without

tailoring to edge runtime requirements and constraints, proactively or reactively. In contrast, Mistify

provides an interface for two-way state exchange and a feedback loop between the cloud and the

edge, facilitating targeted model design and efficient execution on the edge.

3.9 Mistify summary

Deep learning models today are typically trained on the cloud and then ported to edge devices

manually. Not only is manual porting unscalable, it indicates a lack of separation between model

design (optimized for accuracy) and deployment (optimized for resource efficiency).

In this chapter, we design and implement Mistify, a framework to automate this porting process,

which reduces the DNN porting time needed to cater to a wide spectrum of edge deployment scenarios

by over 10ˆ, incurring orders of magnitude less manual effort. Mistify not only provides a useful

service to complete the transition from DL workload design to deployment on the edge, but cleanly

separates these two stages. We believe the system will further facilitate advanced model design and

seamless model deployment.

54

Chapter 4

Sommelier: DNN Model Indexing and

Query Service

Deep learning (DL) inference accounts for the explosive growth of analytics workloads everywhere, in

the cloud and on edge devices. Computer vision (CV) and natural language processing (NLP) tasks are

the dominant deep learning workloads currently deployed. According to Facebook statistics [154], the

volume of their workloads tripled in less than two years, increasingly supporting diverse applications.

These workloads are usually resource intensive but also increasingly user facing, hence under

stringent latency requirements.

As it requires significant expertise and computation resources to design deep neural network

(DNN) models, it is increasingly common to use a pre-trained model (e.g., ResNet [148] for image

recognition), either verbatim or as the basis to transfer the model to the target application (e.g.,

object detection and semantic segmentation). Typical edge inference engines provide an API to load

an existing model from a given repository. Model designers often start with an existing model or

incrementally generate new models. Model testers use a set of similar models to identify adversarial

inputs that lie at the decision boundaries. (Section 4.1.1). As a result, DNN model repositories have

become essential players in existing machine learning ecosystems, e.g., TF-Hub for the TensorFlow

ecosystem [17], PyTorch Hub for PyTorch [88] and Model zoo for MXNet [86]. These are even

more helpful for the general public.

Challenges. However, existing model repositories provide a barebone interface for the user to

55

retrieve a specific model. While it is common for a repository to house hundreds of models, the

onus is on the user to profile and identify precisely which model to use from potentially hundreds of

DNNs, including the specific version for a particular DNN design. This level of repository support

barely relieves an average user of the expertise required to design the model in the first place. This is

especially cumbersome for a model user who simply wishes to deploy one in an application [155]. A

suboptimal model could miss the achievable accuracy target by 10% or waste 20ˆ more resources.

Having to manually profile and search through individual models further inhibits effective runtime

adaptation to fluctuating resource availability during prediction serving. Section 4.1.2 discusses these

issues further.

In summary, the challenges are 1) the redundant expensive efforts of exhaustively profiling and

benchmarking DNN models from the repository by different edge DL-based application developers

every time they select a DNN model to use; and 2) the interdisciplinary expertise needed for

understanding both the algorithm and the execution details of the DL algorithms to figure out the

optimal DNN model to use for a particular DL inference workload.

Contribution. In this work, we propose Sommelier, an indexing and query service over typical

DNN model repositories, which automatically searches through the repository for the most suitable

model based on a desirable semantic requirement and resource budget, without requiring the user to

explicitly profile individual models.

For the algorithmic aspect, recognizing the difficulty to quantify the exact semantics of each DNN

model, Sommelier defines a notion of generalized semantic equivalence between models (Section 4.2)

and formulates the query goal as finding a model most interchangeable with a well-known reference

model (e.g., ResNet). Further, Sommelier proposes algorithms and indexing structures to measure

and organize DNN models based on this equivalence notion (Section 4.3). This eliminates the

aforementioned redundancy (and therefore the key scalability challenge) of exhaustively profiling

and benchmarking DNN models.

Meanwhile for the system aspect, Sommelier resolves the challenge of requiring the users to

have expertise in both the theory and execution details of the DNN models by exposing a model

query service abstraction on the existing model repository facility (Section 4.4), as the delegate for

model selection, which automates the process of DNN model semantic understanding and resource

56

profiling, and hides the complexity and efforts from the users.

In summary, we make the following contributions:

First, we formulate the lookup requirements of model repository users as quantifiable constraints

around DNN resource consumption and semantic equivalence between them.

Second, we design an algorithmic primitive and code library to automatically extract semantic

equivalence across DNN models, especially between model segments. To our knowledge, no previous

work automatically infers DNN sub-structures. We provide both proofs and empirical analysis to

show the “distance” between models.

Finally, we build a query system, Sommelier, that indexes DNN models and their resource

footprint and selects the most suitable model given a performance specification and resource budget.

Sommelier facilitates more extensive and precise usage of model repository with minimal expertise

or manual effort, and can further contribute to explainable AI.

4.1 Motivation

4.1.1 The need for a DNN model repository

Building DNN from scratch is too expensive. The efficacy of deep learning rests on the quality

of the DNN model, but training a sophisticated DNN from scratch is an immense undertaking.

This demands comprehensive understanding of optimization theory and neural network internals,

enormous amounts of training data, and computation resources. For example, training a ResNet50

network involves carefully choosing optimizers and hyper-parameters, and writing hundreds to

thousands of lines of code spanning Python, C++, and specialized libraries (e.g., CUDA, MKL [156])

to deploy the whole training pipeline; the entire training run could take 14 GPU-days, processing

nearly 1 TB of training data [148].

Given the colossal cost of training new models, repositories of DNN models are increasingly

adopted in DL ecosystems, to store pre-trained models for diverse model reuse possibilities. For

instance, we analyzed around 150 active DL projects on GitHub and over 94% of them involves

building and training upon existing models loaded from some model repository. Further, a small

set of six common neural network models is chosen by over 60 projects to carry out their learning

57

functionality. This confirms the importance of model repositories.

Usage of model repository. Model repository significantly reduces the learning curve of adopting

deep learning in practice. Application developers can directly choose a pre-trained model from the

repository that matches the required functionality (e.g., object detection) or certain model segments

(e.g., visual feature extractors) to build their learning-based applications without domain knowledge

of the DNNs [157, 158].

(i) Inference serving. Various deep learning inference serving frameworks (e.g., Tensorflow-

serving [12], Clipper [60]) have been developed to provide runtime support for low-latency, accurate,

and robust DNN-based prediction tasks. These systems interpose between end-user applications

and the deep learning engines, hiding the complexity of implementing and deploying the DL logic

from the application developers. Applications directly specify the model and provide input data, and

the inference serving system, integrated with a model repository, will load the specified model in

memory, and execute the input data.

(ii) Model design. With the emergence of training techniques such as transfer learning [159]

and knowledge distillation [160], model repositories are becoming indispensable to deep learning

researchers. These techniques facilitate incremental new model design by copying (a segment of)

an existing well-trained network as the basis and adapting towards new use cases with substantially

less effort (in model designing time and training data size). For instance, common well-trained

neural networks (e.g., ResNet [148], BERT [7]) are widely utilized for downstream CV and NLP

tasks [161, 162], accelerating the training time from days to minutes [154, 7].

(iii) DNN model testing. DNN models deployed in safety-critical applications such as autonomous

driving need to be robust against adversarial input data, namely specific input values that could

trigger abnormal inference results and potentially dangerous behaviors, e.g., misclassifying a stop

sign as a red flower. Key to the model verification process is to identify corner case input data. These

are typically found by loading a few similar DNN models from the model repositories [163, 164]

and exploring the intersection of their decision boundaries of these models.

58

4.1.2 Limitations of existing model repositories

Existing model respositories (e.g., TF-Hub [17]) act as a remote filesystem only, with primitive APIs

to publish and load a model. To retrieve a model a user has to specify the precise URL to the model

file. This requires significant user sophistication regarding the right model choice.

Inference serving. Since the rationale behind an inference serving system is to hide complexity,

developer interactions with the associated model repository should only include high-level specifica-

tions of DNN models (e.g., accuracy, latency, and resource usage) as the inputs, rather than the exact

model name and version. This is even more so for anyone not familiar with detailed DNN model

profiles. From the perspective of a DL inference serving system, the runtime execution environment

(e.g., queue length, caching strategy) and application performance goal (e.g., critical vs. non-critical

period) fluctuate [41, 165], making manual and static model selection a poor match for myriad

runtime optimization needs which necessitates the model repository to automatically suggest an

optimal selection.

Model design. Even for domain experts, appreciating the accuracy and resource usage of all models

in advance is impossible. For instance, ResNeXt101 and MobileNet, two models trained with the

same ImageNet dataset for classification, differ by 10% in accuracy and 20ˆ in memory consumption.

Further, such numbers are measured under a specific setting only, and could vary with the datasets

and hardware platforms. Enumerating models by name and profiling each until the best fit is found is

extremely unscalable.

DNN model testing. Since an important model testing step is to find the “tricky” input data using

a set of similar but not identical models, the quality of model selection dictates the coverage and

soundness of the testing process. Ideally, the repository should automatically determine which set of

models is similar yet provides sufficient local differences to explore adversarial examples. Instead,

this is currently done manually, with significant amount of repeated efforts when the same model is

tested multiple times.

Summary. All three use scenarios manifest the same fundamental limitation of existing model

repositories: there is no query support for the model repository, only a barebone filesystem. This

then leaves model selection to manual operations, which is time-consuming and often results

59

in suboptimal performance. For instance, manual selection effectively precludes runtime model

switching when serving inference tasks. Only ML experts with deep knowledge of DNNs can take

full advantage of such model repositories without worrying about suboptimal selections.

4.1.3 Requirements for DNN query support

Given the shortcomings of existing model repositories, we build Sommelier to provide model query

support. We next discuss the requirements and challenges for a query system.

Canonical model lookup requirements. Fundamentally, Sommelier supports a query operation,

query(), where the method signature captures the user requirements. An example query might take

the format of “find a model for vision on embedded devices that uses less than 50 MB memory but

only allows within 5% accuracy loss to ResNet model” [94]. For a DNN, its inference accuracy,

resource usage, and computation latency are the three key factors forming the multi-dimensional

design space that concerns a user. Latency can be estimated from the resource usage when given

the hardware specification. Therefore, a DNN model query should essentially specify two lookup

conditions: (i) model semantics (e.g., object recognition with over 95% accuracy over 1000-class

ImageNet syntax), and (ii) resource consumption (e.g., less than 1 GB memory and 0.5 TFLOP).

To fulfill such query requests over neural network models, we need to organize the models in a

reasonable way, and search through these models efficiently, which poses several challenges.

Challenge 1: assessing DNN model semantics. While organizing the DNN models along the

resource consumption axis is intuitive, it is not straightforward along the model semantics axis (e.g.,

by an accuracy target for a specific functionality). The latter relies on a measurable definition of

DNN semantics and the right primitive to compare and rank DNNs, neither of which is obvious.

DNN models are described by directed graphs of mathematical operators, and hence have unique

mathematical expressions. However, we observe that using these expressions to define and “compare”

DNN semantics does not suit practical scenarios. Instead, given the nature of DNNs and their interac-

tion with existing repositories, we find that assessing pair-wise semantic correlation between models

is more insightful than attempting to quantify the model semantics in absolute terms (Section 4.2).

Challenge 2: quantifying semantic relations between DNN models. Given the primitive to assess

DNN semantics, the next challenge is designing algorithms to measure the semantic relations between

60

conv2dInput relu flatten
Dense

… …
0
0.2
0.9
0.1
0.1

Mountain
in_channel=3
out_channel=64
kernel_size=(3,3)
padding=(1,1)

weight

in_unit=4096
out_unit=100

weight
bias

Attribute Parameter Layer

… Plane
Cat

Dog
Car

Figure 4.1: Anatomy of a DNN based inference task.

models. First, the nature of such relation differs depending on whether it is between two DNN

models holistically or between model segments, which requires different methods to handle. Second,

DNN models have complex topologies, diverse operators, and different validation dataset availability,

which requires generic and yet extensible algorithmic design. Third, DNN structures are increasingly

complex, hence requiring efficient and scalable techniques for model traversal. Section 4.3 describes

our approach to address these issues.

Challenge 3: query specification and processing. From a system perspective, the challenge centers

around (i) how to design an expressive query interface and specification to cover the user requirements

broadly; (ii) how to design index data structures and process the query accurately and efficiently.

These questions are answered in Section 4.4.

4.2 Characterizing DNN semantics

The anatomy of a DNN. Figure 4.1 shows an example recognition task using a DNN. It takes

an image of mountain (represented as a tensor) as the input, extracts and processes input features

layer by layer, and finally generates an output vector whose largest dimension reflects the result

“mountain”.

A DNN is typically expressed as a directed acyclic graph (DAG), following a dataflow model.

Each node in the DAG is a base layer in a network, considered as an atomic unit carrying out a certain

operation (e.g., 2D convolution) on its input. Each DNN layer is characterized by attributes and

parameters. Attributes (the grey boxes in Figure 4.1) describe the type and shape of the input/output

tensors and their dependency. Parameters (the blue boxes) capture the internal states of a layer (e.g.,

the weight and bias tensor of a Dense layer).

61

4.2.1 The futility of conventional view

A DNN model is simply a sequence of primitive mathematical operators. Therefore, it is intuitive,

and a common practice, to use the mathematical expression of a DNN to denote its task semantics,

and then compare the semantics between DNN models by assessing the difference between their

expressions. However, this common practice is problematic.

Reason 1: there is no unique formal representation of the DNN model and the DL task. Train-

ing deep neural network models are theoretically understood as a function approximation process,

where the exact “functionality” is unknown, but is gradually approximated through a finite set of

input data and output labels. The function thus derived is evaluated by how well it generalizes, i.e.,

how accurately it performs the inference task when fed unseen data. This implies that the same

“function semantics” can be “described” via totally different mathematical representations. From the

viewpoint of formal verification, the strongest postcondition for a DL task is not unique because

multiple outcomes can be acceptable given the same input [166, 167, 168]. This departs substantially

from the traditional sense of program semantics. For a function like sort(), we can specify the

strongest postcondition uniquely since it produces a unique correct output given an input.

Reason 2: program correctness is no longer a “yes” or “no” binary state, but extends to a

tunable performance metric, accuracy. It is common to revise the neural network structure to

adjust the tradeoffs between accuracy and other performance metrics, but this does not change

the functional semantics of the task. For instance, neural architecture search algorithms (e.g.,

OFA [101] and MnasNet [123]) adjust the neural network structural complexity, between 0.1ˆ to

10ˆ in exchange for the right accuracy targets that vary by almost 10%, in order to balance between

acceptable performance and resource footprint on edge devices. Minerva [151] prunes computation

on the hardware to achieve 3ˆ processing speedup on edge devices, at the expense of 2 to 10%

accuracy drop.

Quantitative evidence. We next empirically show the discrepancy between the mathematical

difference and semantic equivalence between various DNNs. We select 5 widely used DNN models

(Resnet50, Inception, ResNext101, VGG19 and MobileNet), all pre-trained with ImageNet for image

classification, and feed the same test input to all of them. In Figure 4.2, the off-diagonal entries show

the fraction of results (corresponding to the top-1 accuracy) that agree completely, while the diagonal

62

IncepRes50VGG19MobiRxt101

Figure 4.2: Extent of equivalence between DNN models.

entries show the inherent top-1 accuracy for each model. Interestingly, the output agreement ratio

between models is significantly higher than their inherent accuracy values. This implies that these

models are functionally equivalent and highly interchangeable in practice, yet none of the models is

the definitive one for the image classification task.

Observation. The correlation between models is not surprising. Intuitively, if two models are both

expected to identify a cat, say, they both need to learn the feline features from the training data.

Given most DNNs are trained with the same few standard datasets, there is far less diversity among

the features represented than the models extracting these features. In other words, there is inherent

correlation between the features identified by different models. This is more deterministic than

the individual feature extraction process, which sheds light on an alternate view of DNN model

semantics.

4.2.2 Alternate view: Model equivalence

Inspired by the observation above, we explore DNN semantics by instead harnessing the correlation

between models. Users typically know about the accuracy and resource profiles of a few well-

published models, e.g., ResNet for computer vision and BERT for NLP. Therefore, we can assess

the semantics of a model with respect to a well-known reference, supplied by the user or defined by

default.

Semantic equivalence between DNN models. We formally define the semantic equivalence be-

63

tween DNN models as the interchangeability of the models to achieve the inference task. Suppose

we have a model M1 and an arbitrary dataset D1 containing input data and groundtruth results of the

inference task. A second model M2 is semantically equivalent to M1 iff feeding D1 to M2 achieves

a quality of result (e.g., 95% classification accuracy) comparable to M1, differing by less than a

user-specified threshold ε (e.g., 5%). The notion of generalized semantic equivalence can be applied

beyond DNN, but we restrict our discussion to DNNs in this chapter.

The rationale is that (i) the equivalence measurement between DNN models is decoupled from

their concrete mathematical representations; and (ii) the threshold is a control knob for users to

customize the level of relaxation acceptable to suit their unique needs. Note that, in machine learning

theory, while many terms can be used to express the similarity between two functions, these do not

translate to the interchangeability between models (and their substructures). Therefore, the above

definition is needed for our particular consideration.

4.3 Assessing semantic equivalence

Having transformed the problem of uniquely specifying the semantics of a DNN model to assessing

the equivalence between models, we next develop an algorithm to quantify the level of equivalence

between models.

Given the type of model variants commonly seen today, there are two cases to consider. First,

two DNNs might be designed differently but trained with similar data to achieve the same task (e.g.,

recognizing animals). In particular, one model could be a structurally more compact version of the

other. In either case, the two models exhibit semantic equivalence holistically, and we can draw

on typical model evaluation approaches. Second, model variants are frequently derived from the

common model base, but transferred and fine-tuned to different downstream tasks (e.g., emotion

detection and question answering), then the semantic equivalence relation exists between the common

base segments of two models. For this, we develop a novel algorithm based on generalization theory,

because there is no notion of “accuracy” defined on the output of intermediate DNN layers for

evaluation.

64

4.3.1 Detecting whole model equivalence

We can simply treat each DNN model as a black box and compare them as a whole in two steps. We

first check the “structure” of the input and the output, manifested as the data types and the shape of

the tensor, to quickly filter out completely different models (e.g., for tasks that are not comparable),

and then use a validation dataset to get the quality of result (QoR, e.g. accuracy) difference and

compare to the acceptable threshold ε . Analogous to a compiler optimization process, the equivalence

detection follows a static analysis of first type-checking and then comparing the “values”.

Input and output layer check. For the input layer, we check the input tensor shapes of the candidate

models to determine if they possibly capture the same semantics. However, this can be misleading

because resizing and other preprocessing can be applied to the same raw input source causing them

to have different shapes. To cope with this, the model designers can specify in the configuration how

the inputs should be preprocessed, as well as register custom preprocessors if needed. The strict

comparison between input shapes is invoked only when no preprocessing is specified.

The model outputs are typically derived in two ways based on the task category, classification

(semantics defined by the largest dimension of the output), regression (semantics defined by the

whole output vector), or a combination of them when there are multiple outputs. For regression-style

outputs (e.g., object detection, word embedding), we simply observe the output shapes. If the shapes

are identical, we pass the two models to the next checking phase. For classification-style outputs

(e.g., object recognition), a finer-grained check can be additionally conducted if users specify the

output syntax, namely the syntax label of each output dimension (e.g., dimension i maps to “dog”,

dimension j maps to “cat”). Such an analysis could exclude those models having the same output

shape but carrying different semantics.

Finally, the models with matching input and output layer structures are passed to the next step.

Assessing semantic equivalence. We next feed the validation dataset to two candidate models,

measure the average QoR difference, and compare with the (default or user-specified) threshold ε . In

most scenarios, QoR goals are the same as the optimization objective in the model training phase.

However, if unspecified, the default QoR difference is computed as the average l2 distance between

the outputs of the two models.

So far, the QoR difference measured is an empirical value which might be specific only to this

65

validation dataset. To generalize, we leverage the generalization theory of DNNs [169, 170] as

a guide to generate an upper bound of the QoR difference independent of the validation dataset

selection. In brief, the upper bound of QoR difference is calculated by adding to the empirical value a

generalization bound dependent on the architecture of the neural network model. The generalization

bound is expressed as: Õtp 1
γ2n d2max} f pxq}2

řd
i“1

1
µ2

i µ2
iÑ
q1{2u, where γ is determined by the specific

metric chosen by the inference task, n is the size of the validation dataset, d denotes the total number

of layers, } f pxq}2 denotes the model output vector l2 length, µi and µiÑ are inter-layer factors

calculated from the weight matrix of the layer (details in [109]).

Finally, we determine the two models to be semantically equivalent if the upperbound QoR

difference is smaller than the pre-defined threshold ε . Specifically, another model M1 is judged seman-

tically equivalent to model M when |maxpQoRM,QoRM1q´DiffpM ÑM1q´QoRM| ă T hreshold.

We denote the output QoR difference as Diff, original QoR values of the two models as QoRM and

QoRM1 , and the threshold (app-specified or otherwise default) for QoR difference T hreshold.

4.3.2 Equivalence between model segments

In the case of transfer learning and model adaptation based use scenarios of the model repository,

two DNNs may not be equivalent in their entirety, but share semantically equivalent segments (e.g.,

a stack of layers). This motivates us to further analyze equivalence between DNN model internals.

Again, the detection proceeds in two steps, checking the structure of the model to extract potentially

equivalent model segments, and then assessing the semantic equivalence of them.

Extracting model segments. Unlike the whole model scenario, only checking the first and last

layer around intermediate model segments is far less informative for filtering out unrelated models.

Instead, we view the neural network models as DAGs and extract the common sub-graphs as the

candidates that are possibly equivalent. However, detecting common sub-graphs between two graphs

is well-known as an NP-hard problem and is simply not scalable. Fortunately, unlike general graphs

with arbitrary node connectivity, DNNs tend to connect layers sequentially, and only involve a small

set of parallel branches locally (e.g., residual connections in ResNet [148]). Therefore, we propose a

detection algorithm that instead finds the longest common operational sequence as the candidate

segments, which reduces the complexity to OpN2q, where N is the number of layers, without missing

66

B11

B21

B12 B13

B22

C1X ZA1 B12B11 B13

B21 B22

YX Z : S1

: S2

: S3

Sequences: S1, S2, and S3DAG of model 1: G1

: S4B12M B13 N

DAG of model 2: G2

B12M B13 N

Sequences: S4

H
as com

m
on sequence

Figure 4.3: Extracting model segments recursively.

useful segments.

Our algorithm first recursively extracts the longest sequence of operations from each DAG. As

an example shown in Figure 4.3, the operation sequence S1 is extracted first; then, zooming into the

“operator” Y , another two sequences of operations, S2 and S3, are further extracted from the graph G1.

Now, with a set of sequences (i.e., S1 to S3) extracted from each DAG, we find the longest common

sequences (green shaded) between the two sets of sequences as the candidate model segments for

further assessment.

Revising equivalence definition for model segments. For model segments, the definition of seman-

tic equivalence involves an additional step because intermediate segments themselves do not have

validation datasets and quality of result (QoR) metrics. Suppose we have a segment S from model

M, and another segment S1 structurally identical to S. We can derive a twin model M1 from M by

replacing the segment S with S1. Now, we can translate the semantic equivalence of S1 with S to the

semantic equivalence of M1 with M, as defined previously (Section 4.2.2).

Layer-wise output difference estimate. Since a large number of model segments can be extracted

from a single model, assessing whole model equivalence for each segment or their combinations is

far too complicated for practical purposes. Instead, we take random vectors as the inputs, calculate

the theoretic upper bound of the output vector difference brought by the candidate segments in

the model and their possibly equivalent counterparts. Finally, we derive the QoR (e.g., accuracy)

difference from the theoretic output difference upper bound accordingly.

Given the same input, the upper bound output difference between two model segments can be

calculated layer-wise from the input layer to the output layer by induction, namely, we derive the

67

output difference for layer i from the counterparts of layer i´1 following the data dependency.

We classify neural network layers (operations) into three categories and handle them individually:

linear operations, non-linear operations, and multi-source combinations. Linear operations essen-

tially cover all kinds of layers invoking matrix multiplication (FullyConnected, Convolution,

Embedding, etc.). Non-linear operations include activation (ReLU, tanh, sigmoid, etc.), pooling

(maxpooling, meanpooling, etc.), and normalization. Multi-source combination refers to merging

multiple input sources into a single output (add, multiply, concat, etc.). Note that even though

recurrent operations (RNN, GRU, LSTM, etc.) are typically viewed as independent operators, their

essential computing logic are no difference than a combination of aforementioned basic operations.

Therefore, each recurrent operator itself can be treated as a model segment to conduct error analy-

sis. Furthermore, recently proposed self-attention layers are recommended to replace the recurrent

operations, which simply consists of several typical matrix multiplication operations [171].

Starting with the linear operations (the computation kernel of almost all DNN layers), the output

difference of the current layer comes from two sources: (i) the output difference of previous layers

propagated to the current layer; and (ii) the additional output difference incurred by the weight

parameter differences between the current layer and its equivalent counterpart. Suppose W 1 is the

current layer’s weight matrix, W is the counterpart layer’s weight matrix, and ∆X is the upper bound

of the difference vector. The propagation of the upper bound of the difference vector ∆X is deducted

as follows. Assuming the current operator is at layer i, we denote the input and output difference

vectors by ∆X i and ∆X i`1, and the weight matrix difference by ∆W “W 1´W . The relationship

between ∆X i`1 and ∆X i can now be expressed as:

∆X i`1 “ p∆W q ¨X i`W 1 ¨∆X i

Then, we can deduce the upper bound layer-wise as:

max}∆X i`1} ď λmaxp∆W q ¨max}X i}`λmaxpW 1q ¨max}∆X i}

Whereas λmaxpW q denotes the largest singular value of matrix W , and max}X i`1} “ λmaxpW q ¨

max}X i}. Note that, for Convolution layers, the kernels are always internally reshaped (according

68

to im2col) into a single 2D matrix before calculating output. Therefore, they are treated the same way

as FullyConnected layers even though the latter often involve multiple kernels on multi-dimensional

inputs.

Next, we derive the output difference bound for non-linear operations. Consider activation

layers (RELU, tanh, and sigmoid) first. For ReLU activation, its expression relupxq “ maxp0,xq

ensures that |relupxq| ă |x|. The same holds for its recent invariants (LeakyReLU, PreLU, ELU,

Swish, etc.). For sigmoid and tanh activations, their expressions are σpxq “ 1
1`e´x and tanhpxq “

2σp2xq´ 1 respectively. Their derivatives are not greater than 1{4 and 1 respectively, which all

ensure |activationpxq| ă |x|. Therefore, even though activations are non-linear, it is safe to upper

bound the l2 norm of the activation output by simply by the input, because activationpXiq
2 ă X2

i

for all elements of the input vector X . Namely, all these activation layers and their variants (e.g.,

LeakyReLU) follow |activationpxq| ă |x|, which means the input difference bound itself could serve

as the upper bound of the output difference. Then, for Pooling layers, it is easily proved that

the l2 difference of the outputs is always smaller than or equal to that of the input difference. For

normalization layers, the output difference is scaled by a factor determined by the length of the

original output vectors. Thus, we can simply derive the upper bound as ∆X i`1 “ }∆X i}{}X i}.

Finally, we handle multi-source combination operations. Intuitively, we treat the difference

vectors of each input source as an independent random variable. Then, the statistical feature of the

output difference vectors can be derived by that of the input vectors according to the way in which

the output vector is mathematically expressed.

To sum up, for each type of popular neural network layer (operator), we propose an approach

to derive the output difference upper bound from its input difference and the weight matrix of its

possibly equivalent counterpart.

Assessing semantic equivalence. Based on the previous bound analysis, the algorithm proceeds as

follow. (i) Once all segments Si that have structurally identical counterparts S1i from other existing

models are extracted from the current model M forming a set SM “ tSiu, a forward pass of model

M is conducted to derive the output difference upper bound with respect to SM. (ii) Then, we add

Gaussian noise (scaled to center on the value of the output difference upper bound) to all the output

vectors collected previously, and then use these noisy outputs to measure the average quality of result

69

Sommelier System

Semantic equivalence
checking (§4)

Resource consumption
profiling

Model repository
So

m
m

el
ie

r A
PI

So
m

m
el

ie
r

qu
er

y
in

te
rf

ac
e

Resource
Index

Write

Add
new

model Q
ue

ry

Query
parsing

lookup
conditions

text
Semantic

Index

Figure 4.4: Sommelier system architecture.

Model: ResNet
semantic equiv: 95%

memory: 80%
TFLOPS: 60%

 Semantic constraint resource constraint Final selection criteria

max(semant_equiv)

Model designers search the closest DNN model from the
repository that is over 95% semantically equivalent to
ResNet, 20% less memory and 40% less computation.

Example:

Query spec

Figure 4.5: Specifying a concrete use case as a DNN query

QoRpSMq. Subtracting QoRpSMq from the original QoR (measured with the validation dataset) finally

gives the QoR difference, which is compared with the threshold ε . (iii) If the QoR difference exceeds

the threshold, we gradually remove segments from the set SM starting with the one with the lowest

computation complexity, recalculate the new QoR difference via steps (i) and (ii), until the bound

falls within the threshold. The algorithm returns the current semantic equivalence segment set (SM),

or null if SM is empty.

4.4 DNN model query with Sommelier

Building on the semantic analysis of DNN models discussed in the proceeding sections, we design

Sommelier to support DNN model queries. Figure 4.4 shows the system architecture, key components,

and its interface with the model repository and other parties. The core system is built on a pair of

index structures, a semantic index and a resource profile index, keyed with the same DNN model.

70

4.4.1 Formulating DNN model queries

Recall the model lookup requirements in Section 4.1.3. We first define a query specification to

express desirable model semantics and resource usage, as shown in Section 4.5.

A user specifies the semantic constraint, the resource budget, or the final selection criteria in

their queries. In particular, a semantic constraint is defined by a reference model (in a serialized

format) and the semantic equivalence threshold with respect to this reference. Resource constraints

include computation complexity and memory consumption. These are meant to indicate the user’s

resource budget or resource usage target. A user does not need to know the exact resource footprint

of any model. Final selection criteria outline any additional method(s) to select the final output

among the retrieved candidate models (e.g., the model with the “most similar” semantics, or select

with user-defined utility functions). If users have no preference for or prior knowledge of any specific

DNN model as the reference, they can specify the inference task category instead and Sommelier

supplies a default reference model for that task.

Figure 4.5 shows a query example, where, say, a model designer wishes to find a DNN model

that is most interchangeable with the latest version of ResNet (i.e., equivalent to ResNet 95% of the

time) but consumes 20% less memory and 40% less computation time. Note that such queries are not

about exact matches, but like range queries that jointly consider multiple lookup conditions. We

use TFLOPS and memory as the two most representative resource metrics to explain the Sommelier

design, but Sommelier is not restricted to these two metrics. Custom metrics (e.g., latency) can be

plugged in easily (shown later in Figure 4.6).

4.4.2 Semantic index

Sommelier leverages an index structure to track the semantic equivalence relations between stored

DNN models, so as to process the queries efficiently without having to compare the semantics

between each pair of DNNs. The top-level structure of the index is a hashtable. For each entry in the

table, the key is the hash fingerprint of a DNN model, and the value is a list of candidate records,

each of which consists of a candidate DNN model and its semantic equivalence level to the keyed

model. The records within each candidate model list is maintained in descending order according to

the semantic equivalence level. Therefore, the hashtable maintains the mapping between a model to

71

all its semantically equivalent counterparts.

Insertion to the index. When a new DNN model (Mn) is added, Sommelier randomly selects 5

existing models in the repository and conducts a pairwise semantic analysis between Mn and the

selected models. The difference between (Mn) and the other models can be derived transitively:

suppose models X and Y differ by A, Y and Z by B, then the semantic difference between X and

Z is bounded by |A´B| and |A`B|. Empirically, this sampling approach dramatically improves

scalability without degrading query quality much. Currently, there is one index for the entire

repository, since the majority of existing models are for either CV or NLP tasks. This can be easily

extended to one index per inference task category. We assess the semantic equivalence between two

models regardless of their actual usage.

A new entry (Rn) is created in the index table representing Mn. (i) For whole models, suppose an

existing model M1 has semantic equivalence level L1Øn to the new model Mn. Then, the model M1

along with L1Øn is added to the candidate list of the entry Rn. (ii) For model segments, suppose a

segment S1 of an existing model M1 has semantic equivalence level Ls1Ñsn to a segment Sn of the

new model Mn (e.g., interchangeable from S1 to Sn for Mn). Then, a model M1
n synthesized from Mn

by replacing Sn with S1 is added to the candidate list of entry Rn along with the equivalence level

Ls1Ñsn. Besides, for each entry of the existing models, the new model Mn is added to their candidate

list in the same way as explained.

Lookup with the index. When a query is submitted with the reference model Mn and the semantic

equivalence threshold as the arguments, Sommelier will first locate the key by calculating the

fingerprint of the reference model, and then, from the candidate list, collect as the output all the

models whose equivalence level exceeds the threshold. An output model Mi can be an existing real

model that is holistically equivalent to the input model Mn. Alternately, Mi can be synthesized by

replacing a segment Sn (from input model Mn) with S j (from an existing real model M j) such that Sn

and S j are equivalent.

4.4.3 Resource profile index

Likewise, Sommelier builds another index structure to record the resource profile of each DNN

model.

72

For each entry of the resource index, the key is a vector whose fields correspond to the usage

number of a certain resource (e.g., memory), and the value is the fingerprint of the DNN model.

Sommelier uses Locality Sensitive Hashing (LSH) [142] to organize the entries for fast distance-based

search over resource vectors. A LSH structure has multiple hash functions which collaboratively map

“close” vectors to the same bucket (and distant vectors to different bucket) with high probability. Thus,

the buckets convey a sense of “locality” where similar vectors are stored together. When searching

for similar vectors to the input, LSH uses these hash functions to locate the buckets corresponding to

the input and returns the vectors stored in these buckets as the output. Adding a new resource vector

to the LSH structure simply involves mapping and storing the vector to the corresponding buckets.

Insertion to the index. Inserting a new DNN model involves updating both the model storage

and the model index in the background. The former simply follows the practice of existing model

repositories (e.g., TF-Hub, Model zoo).

The essential step for inserting a new DNN model into the index is to generate the resource

consumption vector. For computation complexity, we simply sum up the FLOPs of all computation-

intensive operators in the model. The memory and latency dimensions additionally involve preparing

the model runtime, as execution configurations could significantly affect the numbers [102]. For

instance, static versus dynamic memory allocation will affect the runtime memory consumption;

the GPU architecture (bus bandwidth and #cores) will affect the latency of the model. To overcome

such challenges, we use the same execution settings to load any new model into memory once and

note down the actual memory consumption. To estimate the model latency, Sommelier separately

maintains an operator latency table, which includes the runtime latency of each type of basic neural

network operator. Then, given a new DNN model, the estimated latency is the combination of the

latencies of all its sequential operators.

Lookup with the index. When a query is submitted with the resource constraints, Sommelier first

converts the resource specification into the constraint vectors as mentioned, and then uses the vector

to query the LSH-based index (i.e., finding all keys with the value field smaller than the constraint

vector). Finally, among all the returned models, those that satisfy the constraints in all dimensions

will be the outputs.

73

4.4.4 Query processing

A query submitted to Sommelier is first parsed into an abstract syntax tree (AST), from which the

user-specified query conditions are extracted to formulate three query processing steps. Each step is

determined by a filtering constraint, the semantic constraint, the resource consumption constraint, or

the final selection criteria.

Based on the two indices, DNN queries submitted to Sommelier is handled as pipelines of

filtering operations. The filtering operations involve three stages, model semantic filtering, resource

consumption filtering, and final candidate filtering. Each stage takes the information from the

corresponding part of the query to configure the filter, execute the filtering logic on the index structure,

and then intersect the output models from the current stage with the models from the previous stages.

Noticeably, for resource consumption filter, the filtering condition is further represented as a multi-

dimensional vector. For instance, memory less than 200 MB, computation complexity less than

50 GFLOPS, and latency less than 30 ms is simply represented as a vector p200,50,30q.

4.4.5 Discussion

Supporting developer annotations. The above description for the index generation assumes no

metadata is available for any model. If any annotation is available, for example, noting down

the model accuracy and resource footprint in a particular setting, Sommelier can incorporate and

“translate” this information to our standard indexing metrics, in place of the corresponding analysis.

However, such annotations are unlikely to replace the built-in analysis provided by Sommelier unless

they can cover all information about the model in any runtime settings exhaustively.

Framework independency. It is sometimes inevitable to interact with the DL framework runtime

to accurately measure the resource consumption and analyze the model semantics. However, neither

the model semantics analysis nor the resource profiling differs significantly between frameworks

(Tensorflow, Pytorch, MxNet, etc.). Hence, Sommelier is not tied to or limited by any specific DL

framework.

Resource metrics. In this chapter, we use FLOPS to capture the computational complexity of a

model, which is widely adopted by most platform-aware DNN adaptation papers [172, 100, 117].

Although this metric is independent of specific types of hardware and frameworks, a drawback is

74

that it is not always accurate when further translated into platform-specific metrics such as latency.

To overcome this problem, Sommelier prepares the inference engine runtime for each new incoming

model on locally available hardware platforms (e.g., CPU, GPU, and TPU) and collect the actual

performance number of the additionally required metrics (e.g., latency). According to publicly

available statistics [158, 74], a small set of common types of platforms could support over 95% of all

types of workloads in a large company. This confirms the feasibility of using a small set of hardware

in the Sommelier runtime to support platform-aware metrics besides FLOPS [102].

4.5 Implementation

We implement Sommelier as a standalone query engine taking the existing model repositories as

its data connectors. The implementation consists of around 6000 lines of C++ and CUDA code

for neural network graph and operator definitions, semantic equivalence assessment, and query

processing, as well as around 1000 lines of Python code to import and export DNN models between

Sommelier and ONNX format [173], a universal neural network model representation compatible

with all mainstream frameworks such as TensorFlow and PyTorch. In particular, the module to assess

semantic equivalence can be separated out as a common library for model analysis. We plan to open

source the code.

APIs. Sommelier connects with a DNN model repository specified by the user during initialization.

Sommelier further exposes a query() API in place of the original interactions between users and the

model repository. It takes a query command (syntax shown in Figure 4.6) as the input and returns a

list of selected DNN models, or null if none satisfies all the query predicates. The emphasized terms

are supplied by users or other DL framework components (e.g., inference serving systems). The

ref-model is the name (or ID) of a reference model (when left empty, a default model is chosen based

on the type of inference task), threshold is the semantic equivalence threshold, and the optional

exec-spec outlines additional execution settings (e.g., hardware information, running mode, and

batch size) in key-value pairs to help building DNN resource usage profiles.

Porting to other DL frameworks Sommelier can be easily ported to interface with different DL

frameworks. Neural network representations are interchangeable between different frameworks

via ONNX [173]. Further, existing model repository APIs are mostly equivalent. For instance,

75

Figure 4.6: Sommelier query syntax.

loading models from TF-Hub and Pytorch Hub needs a call of torch.hub.load(path, name,

pretrained) and tfhub.KerasLayer(model_url) respectively. Hence, only 3 lines of configura-

tion change is needed to migrate Sommelier across model repositories.

4.6 Evaluation

The key to the Sommelier performance is to build the semantic and resource indices effectively and

efficiently, which in turn depends on the algorithms in Section 4.3. Therefore, our goals here are to

(i) evaluate the algorithms; (ii) show how the query system can be used for the use cases outlined in

Section 4.1.1; (iii) use TF-Hub as a case study to evaluate the index structures and analyze what they

reveal about the models; and (iv) evaluate the overhead of various operations.

76

0 5 10 15
Fine-tuning scope (unfreezed layers)

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Bound
Noise
Fine-tune

(a) Diff fine-tune scopes (recogni-
tion).

0 5 10 15
Fine-tuning scope (unfreezed layers)

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Bound
Noise
Fine-tune

(b) Diff fine-tune scopes (detec-
tion).

0 5 10 15
Fine-tuning scope (unfreezed layers)

0

20

40

60

80

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Bound
Noise
Fine-tune

(c) Diff fine-tune scopes (seg-
ment).

PascalVOC Caltech256 SUN397
Fine-tune datasets

70

80

90

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Actual(95%)
Actual(90%)
Bound(95%)
Bound(95%)

(d) Different datasets (recogni-
tion).

PascalVOC MSCOCO
Fine-tune datasets

70

80

90

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Actual(95%)
Actual(90%)
Bound(95%)
Bound(95%)

(e) Different datasets (detection).

MSCOCO Ade20k
Fine-tune datasets

70

80

90

100

R
el

at
iv

e
ac

cu
ra

cy
 (

%
)

Actual(95%)
Actual(90%)
Bound(95%)
Bound(95%)

(f) Different datasets (segmenta-
tion).

Figure 4.7: QoR bound and actual QoR loss given varying levels of fine-tuning and datasets.

4.6.1 General setup

DNN model benchmarks. To evaluate the semantic equivalence algorithms as well as the Somme-

lier query system, we prepare two sets of DNN models: (i) a synthetic repository of models we

generate ourselves, transferred from six widely used pre-trained models: three for vision (image

recognition [148], object detection [161], and semantic segmentation [162]), and the other three for

NLP (sentiment analysis, question and answering (Q & A), and named entity recognition) [7]. This

gives us fine-grained control in terms of different semantic equivalence levels to extensively evaluate

the algorithms; (ii) We also use some TF-Hub model collections to show how Sommelier indices

perform in realistic settings (Section 4.6.4).

Datasets. We use a few widely-used datasets to tune, validate, and assess semantic equivalence

between models: ImageNet [34], Caltech256 [174], and SUN397 [175] for object and scene recogni-

tion; PascalVOC [176] and MSCOCO [177] are used to fine-tune object detection; Ade20k [178] to

fine-tune segmentation; SQuAD1.1 [150], IMDB [179], and CoNLL03 [180] to fine-tune Q & A,

sentiment analysis, and named entity recognition workloads respectively.

Hardware. A Linux server with a quad-core 2.3 GHz Intel Xeon CPU, 64 GB memory, and an

NVIDIA RTX2070 GPU is used to evaluate Sommelier model query system. This covers inference

scenarios broadly, since they are run on a single server whether at the edge or in the cloud.

77

4.6.2 Assessing semantic equivalence

We first quantify how well Sommelier captures semantic equivalence between models, reflected in

two metrics: (i) whether the proposed quality of result (QoR) lower bound threshold is reliable, i.e.,

always below the actual QoR; (ii) whether the bound is tight, i.e., not far from the actual QoR so as

to avoid missing actually equivalent models.

Semantic equivalence between model segments. Recall that we are concerned with model seg-

ments in the case of transfer learning. We use the three CV workloads, whose models are all

transferred from the pre-trained Resnet50. We fine-tune the three models with different task-specific

datasets and by freezing different numbers of base model layers. Separately, we derive additional

reference models by adding noise to each fine-tuned model to mimic a worst-case fine-tuned result.

Then, we replace the transferred part of the newly tuned model with the counterpart in the original

one, and evaluate the relative accuracy (%) based on the absolute accuracy before replacement

(normalized to 100%). This relative accuracy is compared with our accuracy lower bound derived

from the original and fine-tuned models.

Figures 4.7a to 4.7c each plots three lines. The y-axis shows the relative result quality (QoR) of

the “partially replaced” model with respect to the fine-tuned model. The dashed line corresponds

to the estimated low-bound accuracy in our algorithm, whereas the two solid lines (“noise” and

“fine-tune”) reflect the actual accuracy relative to the normal and worse-case (by adding random

noise) fine-tuned models. It illustrates that our algorithm generates lower bounds that are reliable

and, more importantly, closely tracks the actual accuracy when the actual accuracy is less than 10%

(shaded region), which covers the operation region for practical usage. Figure 4.7d to 4.7f further

justifies the tightness of the bound given by Sommelier as it is consistently close to the actual QoR

with at most 4.5% relative difference under various fine-tune datasets.

Whole model semantic equivalence. Now we examine the QoR (i.e., accuracy) bound performance

for whole models. ResNet50 is selected as the reference model, for which the bound is calculated

(under different validation dataset size) with respect to Inception-V3, VGG19, and MobileNet, all

three achieving the same image recognition functionality. The actual accuracy while interchanging

these models for their tasks is measured 20 times with the same validation datset size and we compare

the accuracy lower bound with the lowest and average actual accuracy value. Table 4.1 justifies the

78

Table 4.1: Lower bound vs actual accuracy(%). A cell (X/Y/Z) reports “bound/min/average” of
actual accuracy.

Data Size InceptionV3 VGG19 MobileNet
100 54 / 64 / 72 54 / 66 / 75 50 / 57 / 69
1k 62 / 68 / 72 62 / 70 / 75 58 / 66 / 69

10k 67 / 70 / 72 70 / 72 / 75 62 / 66 / 69

bound is safe and further shows that the accuracy bound is increasingly close to the actual accuracy

when larger validation dataset is used. When over 1000 records are used for validation, the bound is

around 10% close to the actual accuracy.

4.6.3 End-to-end performance

Settings. We use the three aforementioned motivating examples (Section 4.1.1), i.e., model design,

model testing, and inference serving, to evaluate Sommelier in an end-to-end fashion. The first two

examples represent offline scenarios, and the last example represents online scenarios. The evaluation

setups (e.g., models, workloads, and datasets) are the same as described in Section 4.6.1. These

cover both similar whole models and model segments. Model testing also borrows the model settings

specified in DeepXplore [163].

Performance metrics. For offline scenarios (i.e., model design and testing), we care about the query

quality, namely whether the portion of DNN models selected by Sommelier is the ideal selection.

For online scenarios (i.e., inference serving), we examine the inference latency of the serving engine

using a vanilla model repository (which loads a single model statically) versus a repository backed

by Sommelier (which lends to adaptive model selection to runtime dynamics). Finally, we compare

the time and manual effort, in lines of code (LoC), needed for Sommelier versus manually.

Query quality. Figure 4.8a shows the portion of query output models matching the ideal model.

Even when all models are semantically different from one other by at most 4% (the most extreme

case where all models are “usable”), Sommelier still consistently returns the ideal one for over 60%

cases. When model differences are distributed evenly between 0% to 10%, Sommelier returns the

ideal model for over 95% cases.

Inference latency. Figure 4.8b shows that, when Sommelier is used with an inference server, it could

cut down the heavy tail (90-percentile) latency of inference tasks by over 6ˆ by switching models

79

5 10 15 20
DNNs distributed within #% semantic diff

60

70

80

90

100

Id
ea

l r
es

ul
t p

or
tio

n(
%

)

Design
Serving
Testing

(a) Query quality (Sommelier vs ideal).

0 20 40 60 80
Processing latency (ms)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Without Sommelier
With Sommelier

(b) Runtime inference time CDF.

D-T S-T T-T D-LoC S-LoC T-LoC
Workloads -- metrics

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ef

fo
rt

s

Sommelier
Expert

(c) Time and manual efforts saving.

Figure 4.8: End-to-end performance.

automatically, which is not possible for current model repositories.

Time and manual efforts. Finally, comparing to manually achieving such performace, Sommelier

significantly reduces the time consumption and lines of code needed. Figure 4.8c shows the relative

time and LoC needed, normalized with respect to the non-expert user (e.g., a sophomore student

without deep experience of Deep Learning). Sommelier reduces the profiling time needed by up to

30ˆ, and replaces hundreds LoC of script writing with 10 lines of Sommelier queries.

80

R50 R101 R50x3 R101x3 R152x4
DNN Models

0

5

10

15

M
em

or
y

co
ns

um
pt

io
n

(G
B

)

(a) Resource variance.

3/4 1/2 1/4 1/8
FLOPs proportion

0.8

0.85

0.9

0.95

1

S
em

an
tic

 e
qu

iv
al

en
ce

 (
%

)

Intra model family
Inter model family

(b) Semantic equivalence.

Figure 4.9: Resource and semantic index effectiveness.

5 10 15 20 25 30
Number of different model series in TF-Hub

20

40

60

80

100

C
lo

se
 D

N
N

s
in

 d
iff

 s
er

ie
s(

%
)

Top1
Top5

Figure 4.10: Cross-series DNN correlation.

4.6.4 Tensorflow Hub case study

We conduct a case study of 163 DNN models belonging to 30 series in Tensorflow Hub [17] to

illustrate how well Sommelier uncovers hidden correlation between models. Each series is a family

of models derived from a common basis. Consider two widely used state-of-the-art model series for

image classification, BiT [108] and EfficientNet [22]. They include a sequence of 5 and 8 models

respectively with increasing resource consumption (from tens to hundreds million paramters) and

accuracy (from 74% to 86%). Currently, manual model selection is done intra-series for simplicity,

not considering interchangeable models in different series.

First, Figure 4.9 zooms into organization across BiT and EfficientNet only. For the resource

index, Figure 4.9a shows the variance of the memory consumption for BiT models relative to their

“standard” memory usage. Under different execution settings (e.g., GPU specification and batch size),

the memory consumption can vary by 25% but Sommelier’s resource index avoids such inaccuracy

without exhaustive profiling. For the semantic index, we use the largest version (the R152x4 model)

81

Table 4.2: Time of gauging semantic equivalence.

Metrics Alexnet ResNet VGG19 BERT
Params (M) 62 60 143 340

Time (Seg) 1.89s 2.77s 5.46s 14.10s
Time (Whole) 1.25s 4.46s 6.18s 22.92s

in the BiT collection as the reference model, and measure the semantic equivalence between the

reference model and any model in BiT and EfficientNet collections with a similar resource profile.

Figure 4.9b surprisingly shows that when choosing a model 8ˆ smaller to replace the R152x4

model, the better one is from EfficientNet, not from the same BiT collection. This is hard to identify

manually.

Next, we incrementally index more series, eventually to all 163 models. For each model, we

identify its topK semantic equivalents (i.e., the models with the K highest semantic equivalence

scores) within and across model series. In Figure 4.10, the x-axis shows how many randomly selected

series are indexed, and the y-axis shows the portion of series with models having the topK semantic

equivalents outside their own series (repeated 5 times). On average, up to 40% and 80% series

find top 1 and 5 semantic equivalent DNNs in another series. This suggests the extent of hidden

correlation is widespread, highlighting the value of automatic semantic assessment in Sommelier.

Further considering partial model equivalence relations, the aforementioned percentage went above

50% and 90% respectively even with less than 5 series.

4.6.5 Sommelier system overhead

Sommelier introduces several query operations during run time. In this section, we profile them

individually.

Latency of semantic equivalence detection. Recall that Sommelier assesses semantic equivalence

between models offline (Section 4.3), which is not on the critical path of processing inference

workloads. We mainly consider whether Sommelier can handle huge DNN models. We use four

models (Table 4.2 column titles) as the inputs to test run the whole model and model segment

equivalence detection algorithms respectively. Table 4.2 shows the time needed. We can clearly

see that the algorithm scales well when the model size is extremely large. Even for the huge BERT

model which would consume over 12 GB of memory during run time, our algorithm still finishes

82

Table 4.3: Runtime query latency (ms).

Predicate Num of records
100 1K 10K 100K

Resource 0.22 0.54 1.63 4.32
Semantic 0.01 0.03 0.04 0.06

Both 0.24 0.61 2.30 6.69

Table 4.4: Memory footprint (MB) with the indices.

Models 10 100 1k 10K 100K
Resource 0.001 0.008 0.091 0.87 6.5
Semantic 0.006 0.58 23 55 71

within around 20 s, reasonable for offline index insertion.

Latency of runtime queries. The query operations are on the online path (Section 4.4). The main

latency overhead is searching the LSH-based resource index and the 2D pair-wise DNN semantic

index. This is relatively slower than the extremely fast (ns level), hash-based search for current,

naive DNN model lookups. We prepare the model repository with different numbers of models

varying from 100 to 100K. In each case, the storage is queried 20 times, and we time the average

search latency when given either a resource or semantic constraint alone, as well as when given

both constraints. Table 4.3 shows the average query time versus storage size. The query is fast

enough even considering both searching predicates. In practice, the repository size needed is mostly

smaller than 100K model records, where around 6 ms is the typical retrieval latency, even orders of

magnitude lower than the actual processing time of a typical inference task.

Memory overhead of Sommelier indices. Since Sommelier leverages index structures to track

the semantic correlation and resource profiles of DNN models to accelerate query processing

(Section 4.4), additional memory consumption is therefore inevitable. However, this should be

negligible since only the metadata of the models need to be kept in-memory, whereas the model itself

still resides on disk. Table 4.4 shows the added memory consumption incurred by randomly picking

different numbers of DNN models and building the two index structures. The additional memory

footprint is mostly under 80 MB, indeed negligible compared to the memory capacity of modern

hardware. This also leaves space for further caching the most frequently used models in memory to

further mask the model loading latency from a (remote) disk.

83

4.7 Related Work

We are not aware of any DNN query service based on their model semantics and resource consumption

profiles. Our work takes a leaf out of theoretical work on DNN semantic analysis and explanatory

queries in database literature.

Semantic analysis of DNN models. Until recently, there was little consideration of harnessing the

statistical nature of DNN [181]. Some relevant works studied the functional semantics of DNN

models to ensure neural networks are robust, safe, and interpretable. Reluplex [166], AI2 [167], and

others [182, 183] focus on DNN model semantics robustness against adversarial inputs using SMT

solvers and other verification techniques. Manifold [138], DeepTest [184] and DeepXplore [163]

validate DNN robustness solely via iteratively refined test datasets. However, they all verify local

properties (e.g., adding perturbation to an input) of DNNs, and hence not applicable to assess

task-level semantics between models. Recent work on interpretable AI, such as OMG [185] and

ARG [186] leverage continuity features of the input and human visual perception respectively

to explain why and how a given model matches the functional semantics of a DL task. Instead,

Sommelier provides the “inverse” function, serving the optimal DNNs to the users with DL tasks and

performance goals at hand.

Explanation query engines. Recent work in the database literature has explored the functionality

of the databases to detect causality, analyze internal correlations of the data, and answer explanation

queries for the users. These include theoretical analysis frameworks [187, 188], relational interfaces

for explanation [189], and optimizations for specialized data types (e.g., performance traces [190],

and error logs [191]). Although these techniques are agnostic to the specific data type, they lack the

capability to extract the relevant information from DNN models to effectively handle explanation

queries. Sommelier develops essential tools for this purpose.

4.8 Sommelier summary

DNN model repositories have become indispensible players in today’s machine learning ecosystems.

However, existing model repositories require the user to profile and identify precisely which model

to use.

84

Instead, we propose Sommelier, an indexing and query system over typical DNN model reposito-

ries, using a novel primitive to quantify semantic equivalence between DNN models. Sommelier is

built as a standalone query engine that can interface with an existing repository. Extensive evaluation

shows that Sommelier can identify the ideal model for over 95% of the queries, and reduce the 90th

percentile tail latency of inference tasks by a factor of 6 when interfaced with an inference server for

runtime model switching.

We believe Sommelier is a promising approach to expand the utility of model repositories with

minimal learning curve and manual efforts, paving way for future system optimizations. Looking

ahead, the DNN semantic analysis in Sommelier could further contribute to explainable AI.

85

Chapter 5

Computation Reuse Service for Deep

Learning Inference

5.1 Overview

5.1.1 Contextual data driving DL inference at the edge

Emerging learning-based mobile applications increasingly interact with the environment, process

large amounts of sensory input, and assist the edge device users with a range of tasks. For example, a

personal assistance application can “see” the environment and generate alerts or audio information

for visually-impaired users [192]. A driving assistance application [193] can render 3D scenes

overlaid on the physical environment to help the driver to visualize the surroundings beyond the

immediate views by understanding the semantics of the surrounding environments. A smart home

application [48] can parse audio commands to control home appliances and/or translate natural

language to search useful information. A smart agriculture solution consists of a fleet of autonomous

vehicles collaboratively maintain the health of the crops (e.g., watering the crops if they appear

dehydrated) by capturing the images and other sensor data (e.g., ambient light intensity, humidity,

and temperature), analyzing the crop status, and deciding the actions accordingly in real time. The

core logic of these applications, namely deep learning inference on the complex contextual data, are

usually computation-intensive and latency-sensitive, while running on resource-constrained devices.

The standard approaches to resolving these challenges involve either offloading these computation

86

to a cloud(let) [194, 195, 79, 196, 12, 197] or applying local system optimizations to speed up the

on-device processing [198, 199]. The former depends on the network bandwidth availability and

meanwhile suffers from unpredictable communication latency affecting the real-time performance.

The latter often trades off computation quality for faster response, yet still not sustainable as the

power growth of the mobile processors do not scale with the dramatic growth of the learning-based

application complexity [74].

5.1.2 Redundancy among DL inference workloads

Note that these aforementioned DL inference applications often operate on similar, correlated input

data and share common processing components, both within the same (type of) applications and

across different ones. While the input data are rarely the same, they share temporal, spatial, and

semantic correlation due to the overlapping contextual data collected or the similar functional

requirements of the applications. A closer look at these applications suggests there is widely existing

redundancy in such computation across applications (Section 5.2.1), edge devices (Section 5.3.1),

and different DNN models (Section 5.4.1). Applications with the similar functionality are used by

multiple devices over time, operating on a similar context (e.g., common physical locations).

Eliminating such redundancy across applications and devices is a promising direction to optimize

the resource efficiency of running DL inference tasks on resource-constrained edge devices, ultimately

achieving low latency, efficient resource usage, and high accuracy at the same time.

However, there is a defining difference between our cases and traditional redundancy elimination

- exact matching is no longer the criteria to define redundancy. Instead, the most common input

types, i.e., images, speech, and sensor reading, come from analog sources. The input values are

rarely exactly identical, but correlated temporally, spatially, or semantically, and mapped to the same

output leading to redundant processing.

5.1.3 Missing service abstraction: caching and computation reuse

Apparently, there is a missing piece in the existing DL inference execution facilities that could cache

and reuse computation results to eliminate redundant computation between DL inference workloads

(with similar input data and/or running on similar DNN models), across applications and/or edge

87

devices. To build the missing services requires resolving the following issues: 1) Existing primitives

fail to capture the characteristics of fuzzy computation redundancy; 2) There is no algorithm and

data structure that achieve computation deduplication and reuse approximately based on semantic

correlation on the input data and the computation logic; and 3) Although it is feasible to develop

application-specific solutions to capture and eliminate the redundancy, the engineering efforts are

largely repeated for each application. On the other hand, developing generic solutions needs careful

design to decouple yet bridge the application-specific metrics and system-generic computation reuse

workflow.

5.1.4 Solution overview

Aforementioned issues all necessitate a generic service abstraction to outsource the common com-

plexity among all applications, supporting caching and computation reuse based on the approximate

semantic relations between the inference tasks. The rest of this chapter will delve into the details

of three works Potluck (Section 5.2), FoggyCache (Section 5.3), and DeCor (Section 5.4). Algo-

rithmically, these works propose new abstractions, algorithms, and data structures to harness the

semantic correlation between input data and the computation logic to eliminate the redundancy

between the inference tasks. Further, they jointly serve as caching service on the edge execution

engine. With these service abstractions, edge developers could now solely focus on optimizing their

core application logic, without worrying about caching and memoization issues.

Specifically, Potluck [38] and FoggyCache [39] both capture the inference task redundancy by

gauging the input data correlation. We will first explain Potluck, which proposes the algorithms to

measure inference task similarity based on input data correlation, and designs the first caching proto-

type that achieves approximate computation reuse between applications. Based on the approximate

cache design of Potluck, we will explain FoggyCache, which further refines the algorithms and devel-

ops cache synchronization mechanisms and other techniques to achieve approximate computation

reuse across different edge devices.

DeCor further extends the computation reuse scheme to detect redundancy between inference

tasks running on similar DNN models. It is built on the algorithms of measuring the semantic

correlation between DNN models explained in Section 4.3.

88

5.2 Cross-Application Approximate Computation Reuse

In this section, we present Potluck, a cross-application approximate deduplication service to achieve

the above goal. Potluck essentially stores and shares processing results between applications and

leverages a set of algorithms to assess the input similarity to maximize deduplication opportunities,

as detailed in Section 5.2.2. We carefully design an input matching algorithm to improve the

processing performance without compromising the accuracy of the results. Potluck is implemented as

a background service on Android that provides support across applications (Section 5.2.3). Extensive

evaluation shows that our system can potentially reduce the processing latency for our benchmark

augmented reality and vision applications by a factor of 2.5 to 10 (Section 5.2.4).

In summary, we make the following contributions:

First, we highlight deduplication opportunities across emerging vision-based and AR-based mo-

bile applications. These arise from various sources of correlation in their input, common processing

components they leverage, and the co-installation of these applications.

Second, in view of the opportunities above, we propose a set of cross-application approximate

deduplication technique to achieve both fast processing and accurate results. To the best of our

knowledge, this is the first such attempt.

Third, we build Potluck as a background service. Extensive evaluation confirms its benefit is

significant, accelerates the inference execution by an order of magnitude without sacrificing accuracy.

5.2.1 Motivation

5.2.1.1 Motivating applications

Among the fastest growing applications, vision-based cognitive assistance applications and aug-

mented reality (AR) based applications are two representative categories.

As an example cognitive application, Google Lens [32] continuously captures surrounding

scenes via the camera, recognizes objects using deep learning techniques, and then presents related

information to assist the user. These applications increasingly provide personal assistance.

On the other hand, AR applications such as IKEA Place [200] for home improvement, Google’s

Visual Positioning System for indoor navigation [201], and PokeMon Go [202] blend the virtual and

physical experience. They overlay 3D graphic effects on real world scenes to enrich and enhance the

89

(a) (b) (c)

(d) (e)

Figure 5.1: (a) and (b) are two snapshots taken successively along the same road 136 m apart in
October 2016. (c) is taken at a similar location but in August 2014. (d) and (e) are captured in
completely different places at different times, but both prominently feature a stop sign.

interface between human eyes and the physical world.

Common themes. Most of these are lifestyle applications. According to the measurement study

of the smartphone usage [203], there is a high probability of such applications being co-installed,

even though they may not be running simultaneously. Further, they often operate in similar physical

environments, share common processing steps, and map a group of similar input values to the same

output. We discuss these in detail next.

5.2.1.2 Input correlation and similarity

The above applications all take input from the environment or some context, directly or indirectly.

Such input exhibits similarity, within an application or across applications, due to the activities of the

mobile user showing spatial and temporal correlation.

Temporal correlation. We can view the combined video input to all the applications as a continual

camera feed. In other words, assuming there is a never-ending centralized camera feed to the

mobile device, different applications simply take a subset of the frames as needed. From standard

video analysis, significant temporal correlation exists between successive frames because the scene

90

rarely changes completely within a short interval, and this has been leveraged extensively in video

compression. In most cases, the main objects of interest in these scenes are slightly distorted versions

of one another by some translation and/or scaling factor.

Spatial correlation. It is common for humans to follow along recurrent trajectories, for example,

due to their regular commuting schedules or frequenting a favorite restaurant from time to time.

Therefore, there is some level of recurrence of the scenes obtained as part of those activities, though

potentially taken from different view points and partially different environments, such as different

lighting conditions and surrounding backgrounds. The actual images might show different color bias,

for example. Such correlation can be identified using SURF [204] like approaches.

Semantic correlation. A further situation arises when the same object or the same type of objects

appears in completely unrelated background scenes and at different times. For example, when a road

sign is detected at different places and times, regardless of the exact sign, a driver assistance app

simply generates an alert. Since many applications interpret the scene to related abstract notions

of objects or faces, many seemingly different images can be classified to the same category and

considered semantically equivalent.

Similar but not identical. However, these correlated input frames are rarely exactly the same, for

various reasons. In some cases, the scene is actually changing (e.g., the user walking or driving along

a street). In other cases (e.g., approaching the same intersection from different directions), we get

more or less the same scenes, but at different view angles. More generally, there might be distortion

across frames due to image blur (different focus or motion-induced blur).

Correlation in the results. Generalizing the semantic correlation, these similar input values are

often mapped to the same output values in the aforementioned applications, due to the resolution

of the results. For example, adjacent pixels in an image may be mapped to the same feature details.

Image recognition functions may attach the same label to different images. For an AR application,

there is no need to render a new scene if it is visually indistinguishable to our eyes from a previous

one.

Examples. Figure 5.1 illustrates these similarities. The images are taken from Google Street View.

Images (a) - (c) could be perceived “the same” by a Google Len like app for showing the Washington

Monument, whereas images (d) and (e) show “stop sign”.

91

5 10 15 20
Frame No.

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

 v
ec

to
r

di
st

an
ce ColorHist feature

HOG feature
Raw input

Figure 5.2: Similarity between frames

As another example, we select a video segment from an HEVC test dataset [205], and compute

several features (color histogram [206], HoG feature [207]) for consecutive frames. Figure 5.2

shows the relative differences between the first and later frames, calculated as the Euclidean distance

between the normalized vectors of the matched features. Shorter distances indicate higher levels

of similarity, although there are no universal criteria to define similarity levels. The features show

consistent correlation levels across a long sequence of frames whereas the raw images do not.

5.2.1.3 Common processing steps

As noted previously [77, 19], many computer vision applications share similar, incremental process-

ing steps. However, we also observe common processing steps in other types of applications (e.g.,

speech recognition) and across different types of applications (e.g., vision and AR applications).

Figure 5.3 shows the schematic processing flows for a cognitive application (Google Lens), and

two AR based applications, IKEA place (as an example of AR shopping application) and indoor

navigation.

The indoor navigation app first recognizes the environment in the input image feed, which

essentially invokes the object recognition procedure. This is also the core step of the Google Lens

cognitive assistance app. Similar situations could be very common, since AR application logic

typically starts with understanding the spatial context. Therefore, AR applications can share essential

recognition functions with image recognition apps.

92

object
recognition

Camera frame
recognized

labels

fetch
information

to UI

object
recognition

Camera frame
recognized
positions

3D graphic
rendering

to UI
recognized

3D graphic
rendering

3D
warping

rendered
markers

Space
tracking

Camera frame
calibrated

view

3D graphic
rendering

to UI

Motion sensor
virtual

furniture

Google Lens

Indoor Navigation app

IKEA Place

object
recognition

object
recognition

Camera frame

Figure 5.3: Schematic processing pipelines for three apps.

The two AR applications both require 3D graphic rendering. IKEA place would render virtual

furniture at certain positions to visualize a furnished room, while the indoor navigation app would

render a virtual map of merchandise to help direct customers. When the latter takes place in a

furniture shop, the rendering logic would be essentially the same as what is needed for IKEA place.

Common functions are also used in non-vision based applications. For example, two location

based applications can share the processing for GPS data or related contextual information close in

time. A call assistant might use the mic to capture the audio to identify the location and ambient

environment to determine whether to mute the call [208]. Similarly, the same procedures can be used

for home occupancy detection as part of smart home management to determine whether to turn off

the lights and turn on the alarm.

More generally, emerging learning-based application ecosystems further presents common APIs

and libraries, and the possibility of sharing common processing steps between applications. For

instance, Alexa Skills [48] enable developers to deploy various services on smart IoT devices like

Amazon Echo. Deep learning frameworks such as Tensorflow [83] provide high-level programming

models for app developers. Services and applications within such ecosystems leverage the same

human-device interface, processing pipelines, and the underlying implementations to capture the

input, understand the context, and execute tasks.

93

5.2.1.4 Opportunities and challenges

Given the similarities between applications discussed so far, deduplication is a natural approach

for performance optimization. As long as these applications collectively are used frequently, there

is significant potential for deduplication. For example, the home occupancy assessment and home

personal assistant are usually used multiple times throughout a day; the Google Lens and indoor

navigation are both likely to be used daily or more frequently.

Note that these “sharing” applications do not need to be run concurrently. Deduplication works as

long as the previous results are still cached, and the interval could easily be days or longer provided

there is enough space to store the cached results.

Challenges. In order to effectively deduplicate the processing across applications, we need support

for identifying the equivalence between input values, cross-application sharing, and appropriate

cache management criteria.

Since the input images are rarely the same, we need to be able to quantify and assess the extent

of similarity between them, based on the semantics of the function.

The deduplication opportunities may straddle application boundaries, so we need a service shared

between applications. This will naturally support in-app deduplication as well, though incurring a

slight overhead by crossing the application boundaries.

Deduplication means we need to cache previous results. However, since our cache serves a

different purpose than those of traditional caches, we cannot manage cache entries based on the least

recent access or other traditional cache entry replacement algorithms.

We address these challenges by designing a cache service, Potluck, shared between applications.

5.2.2 Potluck System Design

5.2.2.1 Overview

Potluck caches previously computed results to provide approximate deduplication across applications.

The processing flow is conceptually simple. When an application obtains an input (e.g., a frame

from a video feed) and calls certain processing functions, it first queries the cache for any existing

results. The query proceeds in several steps. First, the input data are turned into a feature vector,

which serves as the key. Second, a lookup attempt is made with the key and the name of the function

94

called, by matching the input key to any existing key within a given similarity threshold. If there

is a hit, the cached result is returned. Otherwise, the application processes the raw input and then

puts the result in the cache. Third, the put action may trigger an adjustment of the input similarity

threshold. We discuss the individual steps next.

5.2.2.2 Computing the key

Definition of keys. The key is essentially a variable-length feature vector generated from the input

image, such as SIFT [209], SURF [204], HoG [207], colorHist [206], FAST [210], and Harris [211].

For example, the feature vector might be a 768-bit vector to represent the color histogram, a vector of

Nˆ64 bytes to describe SURF features from the input image, or a vector of mˆn bytes to represent

the down-sampled version of the raw input image into mˆn pixels.

An essential requirement is that the key must be defined in a metric space, in which a notion of

distance can then be defined. This need not necessarily be the Euclidean distance, although it is the

one commonly used.

Given the raw input (e.g., images or speech segments), as application requirements might differ,

we give the application the freedom to choose the exact key generation and similarity assessment

mechanisms. App developers can customize the implementation of both or select from a library of

mechanisms provided within Potluck.

Converting the raw input to a feature vector is important, because this step can eliminate noise in

the raw data, “homogenize” inputs with different formats and scales, and save space when storing

these items.

5.2.2.3 The usefulness of cache entries

The Importance metric. Conventional caches operate within a single application, where the entries

store frequently accessed data. The number of data access attempts simply reflects the value of the

data and determines whether the data should be retained.

Instead, our cache is different, since not all cache entries of computation results are created

equal, and the variance across applications is even larger. The access frequency is the only factor that

determines the value of the cached result. Therefore, we assess the usefulness of a cache entry by a

95

new metric, called importance, computed as computation overheadˆaccess f requency{entry size

In addition, each cache entry is tagged with a validity period. When that expires, the entry will be

automatically cleared from the cache in the background.

The importance value indicates how frequently an entry has been used and might save on future

computation times, but has no correlation with the accuracy of the result. Therefore, it is only used

for evicting a cache entry. The lookup operation does not take into account this value.

Calculation and update of importance. The importance value for an entry is dynamic and its recal-

culation happens in two cases. A lookup() call increments the access frequency of the fetched entry

by 1, and the corresponding importance value is updated accordingly. With a put() call, on the other

hand, a new importance value is calculated for the entry. Specifically, the computation overhead is

calculated as the elapsed time between the lookup() miss and the put() operation of this entry, and

the access f requency is initialized to 1. The expiration time is simply that of the overall entry, set

during the put() call.

5.2.2.4 Querying the cache

Threshold-restricted nearest neighbor query. A query involves finding the closest match for an

input key. When given a feature vector as the key, we initiate a k nearest neighbour search, iterating

over all entries in the key index.

After that, we discard those returned entries whose distance from the input key vector exceeds a

certain threshold. By default, to balance the lookup time and quality, we set k to 1. We experimented

with a few values and find that this value provides the fastest lookup time without sacrificing quality.

Random dropout. When a cache query operation is invoked, with a probability (currently set to

0.1) Potluck will simply return null without actually querying the cache. This is a randomization

mechanism to enforce a put() operation at least periodically. This refreshes cache entries as well

as triggers a recalibration of the threshold. The latter is valuable, in case the threshold has been

loosened too much, as explained next. We will discuss how to set the “dropout” probability at the

end of Section 5.2.4.2.

96

Algorithm 1: NN-based threshold tuning algorithm

1 initialize threshold Ð 0;
// params are customizable

2 initialize kÐ 4, α Ð 0.8, zÐ 100;
Wait: z entries inserted to cache by Put operations

3 while service not terminated do
4 wait for new Put operation;
5 read pkey,valq pair from the operation;
6 pkey1,val1q Ð lookup(key);
7 if ||key1´ key|| ď threshold and val1 ‰ val then
8 threshold Ð threshold{k;
9 else if ||key1´ key|| ą threshold and val1 “ val then

10 threshold Ð p1´αqˆ ||key1´ key||`αˆ threshold;
11 end

5.2.2.5 Tuning the similarity threshold

The threshold controls to what extent different raw inputs are consider “the same”. Part of our

argument is that many raw images are similar and therefore we can avoid duplicating the subsequent

processing. Clearly, there is a tradeoff between performance speedup from reusing previous results

and the accuracy of the results. We manage this by adaptively tuning the similarity threshold based

on the ground truth and the observation of the nearest neighbour entry, as shown in Algorithm 1.

The algorithm. The idea is straightforward. The threshold is initialized to 0, meaning no distance

between input images is permitted. After caching enough entries (100 by default), the algorithm

kicks into action and we then gradually increase (“loosen”) or decrease (“tighten”) it as needed,

triggered by each put() operation. In general, the threshold is loosened conservatively but tightened

aggressively. If the threshold is too tight, we might miss deduplication opportunities. When the

threshold is too loose, the cache lookups might return false positives, i.e., input images that are not

actually similar but considered so due to the threshold.

Given the new key and value to be stored in the cache, the algorithm finds the nearest neighbor in

the feature vector space to the new key. Two cases should be noted. If the key distance is larger than

the threshold and both keys map to the same values (line 9 in the pseudo-code), the threshold is too

tight and should be loosened with an exponentially weighted moving average. Conversely, if the key

distance is within or equal to the current threshold, but the keys map to different values (line 7), the

threshold is too loose and should be tightened. Note that the latter case will not arise naturally. If two

97

keys are within the threshold, the cache query would normally return the cached result (incorrectly).

Therefore we adopt the “random dropout” in the cache lookup process to artificially trigger this case

from time to time, as a quality control mechanism.

Intuition and correctness. The threshold-tuning algorithm is essentially based on finding k nearest

neighbors (kNN). It observes the distance between the (key, value) pairs of the nearest neighbours

and compares the stored results with the ground-truth to adjust the maximum diameter of the “similar”

result cluster accordingly. This diameter is then the threshold value we adopt. kNN is a widely used

non-parametric, case-based machine learning algorithm, which makes no assumptions of the input

data model. It has been extensively studied for decades and proven correct [212] for handling data

with unknown features. In the same vein, our NN-based threshold tuning algorithm can provide

reasonable hints on the correlation between input similarity and the reusability of the result even if

we have no prior knowledge of the input data.

Quality of results and security considerations. While leveraging results across applications in

Potluck can yield performance benefits, it breaks the isolation between applications. This can leave

the system vulnerable to malicious apps polluting the cache by inserting spurious results.

Fortunately, the combination of the threshold-based kNN and random dropout algorithms can

guarantee the quality of results (QoS) is not completely affected by a polluted cache and act as a

defense mechanism against malicious apps. The protection can be further enhanced by incorporating

a reputation system (such as Credence [213]) into Potluck. Each cache entry can be tagged with

the application source. The threshold-tuning phase can then establish a reputation record for each

application, and malicious apps can be identified and barred from time to time.

It is worth mentioning that sharing results in our context does not present privacy concerns.

The input data tend to be derive from the contextual information for the mobile device, and hence

common to all applications on the device.

5.2.2.6 Cache management

Inserting and indexing cache entries Several steps are involved to insert a cache entry (namely

a put() operation). Potluck first collects the auxiliary information about the entry to compute its

importance. Second, we invoke the threshold tuning algorithm (Section 5.2.2.5). Finally, we store

98

the key, the computed result, and the importance value.

The key is then added to the right position in the index. The processing time depends on the

index data structure. However, unlike cache lookup, the indexing process runs in the background

asynchronously and does not affect the application response time.

Eviction policy and expiry. The cache entries can be discarded in two ways. First, cache entries

can expire, and the timeout is currently set to be an hour. Second, if the cache is full when a new

put() request comes, the least important entry will be evicted and replaced with the new entry.

5.2.2.7 Supporting multiple key types

So far we have explained the processing flow from a single-app (single key type) perspective. In

practice, different applications may prefer to map input to feature vectors of different specifications.

In other words, we need to support multiple definitions of the key, or types. Each application should

be able to perform cache operations using their preferred key types, and we automate typecasting

between keys to further support cross-application deduplication.

Multi-index structure. For multi-key-type settings, we construct a cache query index for each type

of the keys, so that the query index can be optimized for the unique properties of the particular key

type to ensure highly efficient lookups. Cache entries generated by different applications but using

the same key type will be managed in the same index.

Cache lookup. The cache lookup will take one more argument, specifying the key type being looked

up. This then sends the query to the corresponding key index.

Cache insertion. Whenever a put() operation introduces a new key-value pair to the cache, we

propagate this entry to all key indices. This triggers operations to iterate through all existing input

key types, mapping the raw input to each key type, invoke the threshold tuning procedure per key

index, and then insert the key to each corresponding index.

Cache entry eviction. Unlike cache insertion, cache eviction is not propagated to all indices. Instead,

for each key type, the corresponding index will select the entry to be evicted and delete the key.

The actual cached computation result will be cleared via garbage collection when no indices have

references to it.

99

Potluck Service

secondary flash storage

In-memory storage

App
Listener CacheManager

AppY

notify oper. info

manage
stored entries

AppX

Binder IPC
register/request

lookup

OS
APP

Figure 5.4: System architecture.

5.2.3 Implementation

5.2.3.1 Architecture

We implement Potluck as a background application level service in Android Marshmallow OS with

API version 23. Figure 5.4 shows the architecture of the system.

The deduplication service consists of the following modules. The AppListener maintains a

threadpool, handles the requests from upper-level applications, and carries out the corresponding

procedures, including registering apps to the service, executing the lookup() or put() requests,

and invoking the threshold tuning or reset procedure. The CacheManager maintains the importance

metric of stored entries by monitoring the execution time of the functions and the access frequency

of the stored entries. Based on such information, it handles the expiry and eviction in the background.

The DataStorage is the storage layer which keeps previous computation results, and indexes the

entries to speed up lookup requests.

5.2.3.2 Deduplication service

Key generation and comparison. Generally, our system supports variable-length vectors to serve

as the keys. They are implemented as Vector instances from java.util.

Collection, String instances of java.lang.String, or INDArray instances (a third-party class

for fast numerical vector computation) [214]. We implement the extraction of the features mentioned

100

in Section 5.2.2. Most of them are already implemented in the openCV library [215], and we invoke

the corresponding functions to process the input image.

By default, we support comparison and similarity measurement for scalars and vectors, as well

as lexical ordering and comparison for strings.

Support for custom key definition and matching. We expose an interface to the application,

through which the application can customize its own key generation and comparison logic if desired.

For example, app developers can implement Mel Frequency Cepstral Coefficents (MFCC) [216]

computation for an audio file and Principal Component Analysis (PCA) [217] based dimensionality

reduction for high-dimensional input data. Any customized classes and methods are then incorporated

via dynamic class loading, supported via reflection in Java. In this way, app-specific components

are meshed with the system logic in Potluck. Our implementation leverages the OpenHFT.compiler

open-source package [218] to achieve this.

Cache organization. Figure 5.5 shows the cache layout. There are three variables, the function

called, the feature vector specification (i.e., the key type), and the value of the key, that collectively

correspond to a stored result. Therefore, we organize the cache entries into multiple levels, first by

the functions invoked, then by the key types, and finally the specific keys.

First, when an insertion or lookup is needed, we add or match a function. This is implemented

with a HashMap. Note that this means only applications using exactly the same function can share

results. Since the type of applications that might benefit from Potluck typically use common libraries

(such as OpenCV or some deep learning framework), we believe the current approach is reasonable

tradeoff between simplicity and effectiveness. Second, we use another HashMap to organize all key

types corresponding to a function. Third, we use appropriate data structures to organize different

key values, either a Locality Sensitive Hash (LSH) [142], KD-tree [219], treemap, or a hashmap,

depending on the key dimension and how similarity assessment work. The final “values” stored are

simply references (memory addresses) to the actual value stored in the memory.

A hashmap is useful for the exact matching, achieving Op1q time complexity for key search.

A Treemap is implemented as a balanced binary tree which supports nearest neighbor and range

searches in OplogNq time. Scalar or vector keys which are compared by their lexical order could

benefit from using this data structure. Further, KD-trees and LSHs are data structures to support

101

Function Name Map

Func 1

KD-tree index

Func 2 Func N

Physical memory block

Hash key index

Figure 5.5: Cache layout.

spatial indexing and efficient nearest neighbor and range searches (with OplogNq average complexity)

for multi-dimensional vectors, where we can only calculate distances between keys but not derive a

global order for them.

Cache eviction and expiry. Cache entry eviction and expiry are handled by a separate management

thread running in the background. If the cache is full when put() is called, the management thread

will iterate through all indices to find the entry with the lowest importance to be discarded.

Separately, the management thread also maintains a queue that orders all cache entries by their

expiration times. This thread will be waken up when the current head item in the queue reaches

its expiration time. The thread clears all (at the same time) expired entries from the cache and the

priority queue, and sets the next wake-up time according to the expiration time of the new head item.

Communication between components. The communication between the apps and the deduplication

service leverages Binder with AIDL [220], the IPC mechanisms natively supported by the Android

OS. Interactions between the internal modules of the service are simply through shared memory with

mutual exclusion locks.

The AppListener receives a Request message from an application, which consists of the request

type (register or operation), function name, key type, lookup key, and computation results to store. It

replies to the application with a Reply message containing the request type and the corresponding

return values. The AppListener also sends the query information to the CacheManager.

102

The CacheManager maintains a queue of query requests. It also manages the data in the

dataStorage, inserting new entries, evicting the least important entries when necessary, updating

the importance value of those accessed entries, and discarding expired entries.

5.2.3.3 APIs and patches to the application code

There are two sets of APIs exposed to the application, on the control and data paths of the application

respectively.

Registration on the control path. Applications start using Potluck with a register() call. This

function registers a handle with the cache service, loads any custom-defined key generation methods,

and initializes the application-specific key index. It also resets the input similarity threshold.

Cache operations on the data path. Applications can call put() and lookup(), two intuitive

functions to insert and look up an entry. Therefore, the changes needed to leverage Potluckis

negligible.

Discussion. Currently we need to patch the application source code to add handles to Potluck, but

this makes sense because fuzzy input matching requires having the exact input values, not just their

memory representations. Further, we want to expose some interface to the application to control the

accuracy and performance tradeoff.

5.2.4 Evaluation

5.2.4.1 General setup

Application benchmarks. We built three simplified applications as benchmarks, one image recogni-

tion application and two augmented reality (AR) applications. The image recognition application

includes pre-trained models and performs deep-learning based inference using the AlexNet neural

network [221]. For the AR applications, one uses the current 3D orientation of the device and its

location to render virtual objects, while the other first runs image recognition on the current frame in

the camera view, and then renders virtual objects overlaid on the detected physical objects.

Data sets. While the above applications can run in real time, evaluating the recognition performance

using real-time camera feeds is difficult, since it is impractical to enumerate all possible scene

103

sequences as the input for evaluation. Further, any single camera feed only captures a single scenario,

and does not necessarily represent the general case. Therefore, we turn to standard datasets used

to train and test image classification algorithms. In such datasets, images are crowdsourced and

well calibrated, which eliminates the spatio-temporal correlation between them. In light of this,

they present less favorable (i.e., more challenge) scenarios for Potluck than datasets collected from

real applications. Experiment results from these data sets are then indicative of the worst-case

performance for Potluck, and we can expect better performance for real applications.

We use two commonly used image classification datasets, CIFAR-10 [121] and MNIST [222],

which serves as a controlled, generic scenario. We also capture several video feeds in real life

to emulate real application scenarios. The comparison between the results from these datasets

cross-validates our belief that the performance of Potluck in practice will be better than reported in

this section.

The CIFAR-10 dataset consists of 60,000 32ˆ32 color images categorized into 10 classes, 6,000

each. There are 50,000 training images and 10,000 test images. We use images within the same class

to mimic deduplication opportunities where similar objects appeared in different backgrounds.

The MNIST dataset is a database of handwritten digits, consisting of a training set of 60,000

examples and a test set of 10,000 examples. The digits have been size-normalized and centered in a

fixed-size image.

We found that experiment results from the two datasets were similar, and therefore we mostly

present results based on CIFAR-10, as it covers a wider range of image scenes.

Experiment environment. All experiments in this section are run a Google Nexus 5 (with a quad-

core 2.26 GHz Qualcomm Snapdragon as the CPU and an Adreno 330 graphics processor) as our

mobile device, running Android Marshmallow OS with API version 23. Later in the section we also

use a PC (with a quad-core 2.3 GHz Intel Core i7 CPU and NVIDIA GeForce GT 750M GPU) to

compare the processing times. The PC is around an order of magnitude faster than the phone.

Metrics. We evaluate Potluck in terms of accuracy, processing time, and missed opportunity.

The first two characterize the performance benefit and tradeoff of capturing the input similarity

to reduce duplicate computation. The third one is analogous to the notion of recall commonly used

to characterize machine learning algorithms. Roughly speaking, recall measures the portion of test

104

Table 5.1: Key generation time

Feature Size (KB) Time (ms) Usage
SIFT 124 1568 Recognition
SURF 32 446 Recognition
Harris 35 91 Detection
FAST 28 4.6 Detection

Downsamp 1 5.8 Deep learning

data recognized based on the training data. In our case, we first characterize the optimal case for

deduplication under each specific experiment setting, which defines the upperbound performance of

our system, and then quantify missed opportunity by the gap between the performance of Potluck

and the particular optimal case.

Since the input is the main determining factor for the performance of our system, our results are

interpreted with respect to the input data setting of each experiment.

5.2.4.2 Input and key management

Key generation. We randomly select a set of 600ˆ400 images from our dataset, and measure the

time taken to generate a feature vector following different feature extraction methods. Around 500

features are detected in each image. Table 5.1 shows that generating SIFT and SURF features as the

key takes orders of magnitude longer than the others but captures more information about the raw

image. They are suited to recognition tasks. Harris and FAST features are based on edge detection

and a good fit for object detection workloads. Detection is the first step of recognition, and the latter

requires much more detailed information. Downsamp refers to down-sampling the raw image to

fewer dimensions, which is then vectorized to be fed into deep neural networks. Since key generation

is the first step to use Potluck, there is clearly a tradeoff between the processing time and the level

of feature expressiveness required for a specific app. For our later experiments, we use Downsamp

for the deep learning based image recognition app and FAST for motion estimation within the AR

applications.

Threshold tuning. The similarity threshold determines the amount of deduplication we can achieve

as well as the accuracy of the lookup result. The threshold is loosened or tightened depending on the

cached entries. We perform two experiments to evaluate the tuning algorithm.

First, we investigate how many entries should be cached before we start calibrating the threshold

105

2 4 8 16 32 64 128 256

Number of entries used for initializing threshold

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 5.6: The accuracy of the similarity threshold.

and thus enabling the deduplication service. We consider a threshold “accurate” if the results from

the cache query are similar to the ground truth. We randomly pick a variable number of images from

the training set of CIFAR-10, put the recognition results into the cache, and calculate the initial value

of the threshold. Then, we take 400 images from the test set and obtain the recognition results by

both running the recognition algorithm and retrieving the nearest match from the cache results. These

steps are repeated 10 times and we collect the average and variance information.

Figure 5.6 shows the normalized recognition accuracy of the threshold vs the number of cache

entries used for initializing the threshold. Since the recognition accuracy without leveraging dedupli-

cation is not 100% anyway, we use that as a baseline to normalize the accuracy of our system. In

other words, the y-axis shows the accuracy with Potluck divided by the baseline accuracy value. The

line shows the average value, while the errorbars show the maxima and minima.

The accuracy stabilizes quickly as more cache entries are available. With at least 32 entries (over

1 second for a normal 30 fps video feed), the accuracy exceeds 95% with less than 5% error. The

time overhead for computing a new threshold turns out to be less than 1 ms and negligible.

Second, we analyze how quickly the threshold is tightened. Recall that we loosen the threshold

slowly and conservatively to minimize the possibility of false positives, but try to tighten it quickly.

This is also because the threshold is loosened more frequently, invoked by each natural put()

operation. In contrast, it is only tightened after a random dropout mechanism (Section 5.2.2.4), which

happens rarely. In this experiment, we start with a certain threshold (normalized to 1), and then count

106

0 20 40 60 80 100

Number of passed cache operations

0

0.2

0.4

0.6

0.8

1

T
hr

es
ho

ld
 (

no
rm

al
iz

ed
 to

 1
)

factor 1/2
factor 1/4
factor 1/8

Figure 5.7: Threshold changes with lookup operations.

how many cache entries are needed to adjust the threshold to 0.

Figure 5.7 illustrates that, when the decrease factor (the parameter k defined in Alg. 1) is over 1/4

and the dropout probability 0.1 (the respective default value used), within around 20 cache operations

(including lookup() and put()), the threshold shrinks by a factor of 20. With only 30 operations

on average, we could further shrink it by a factor of 100. In other words, when switching to a new

scene, for a 30 fps camera, the threshold could be adjusted accordingly within seconds, which is an

acceptable latency for most use cases.

5.2.4.3 Cache entry replacement strategy

To evaluate our cache replacement strategy, we consider two cache hit patterns, uniform distribution

and exponential distribution, and compare our importance-based strategy with two commonly used

cache replacement strategies, least recently used (LRU) and random discard.

The number of cache hits, or the occurrences of reusable results can be modeled by a uniform

distribution or an exponential distribution. Uniform distribution is often seen for single-app or in-app

deduplication, as it is common to obtain input frames at fixed intervals and each component in the

processing pipeline is invoked once per new input. Exponential distribution fits the multi-application

scenario as the relative application popularity can be modeled by an exponential distribution [223].

For this experiment, we first define 100 different workloads, each of which takes a different

amount of computation time ranging from 1 ms to 10 s. Then we create two request arrival sequences

107

0 50 100
Proportion of working set cached (%)

0

0.2

0.4

0.6

0.8

1

C
om

pu
ta

tio
n

tim
e

/ t
ot

al
 ti

m
e

Importance
LRU
Random

(a) Exponential distribution

0 50 100
Proportion of working set cached (%)

0

0.2

0.4

0.6

0.8

1

C
om

pu
ta

tio
n

tim
e

/ t
ot

al
 ti

m
e

Importance
LRU
Random

(b) Uniform distribution

Figure 5.8: Comparison of cache entry replacement strategies given different access patterns.

with 10,000 requests each, generated from these 100 workloads. Within the two request sequences,

the number of occurrence of each workload is uniformly and exponentially distributed respectively.

Next, we vary the proportion of working sets cached from 10 to 90 (meaning caching 10% - 90%

of all workloads). Under each value, we submit the request sequence to the cache and measure the

portion of the total computation time required due to cache misses, using the three different cache

replacement algorithms.

Figure 5.8 shows that our algorithm consistently outperforms LRU by a large margin. For both

request patterns, using the importance metric to retain entry caches can save an additional 40% of the

computation while caching less than 20% of the previous results. The fraction of computation time

drops further to below 5%, when the proportion cached grows to over 40% and 60% of the active

working set respectively for the exponential and uniform workload distributions. The non-uniform

distribution in the request patterm will propagate to the importance values, skewing the distribution

of the latter. These results suggest that our algorithm successfully retains the results from the

computation-intensive workloads.

5.2.4.4 System overhead

Cache lookup and insertion overhead. The cache lookup overhead depends on the organization,

the current cache size, and the key length. The computation complexity of a key matching operation

is determined by the key length. We submit 100 requests to the cache and measure the average

108

Table 5.2: Lookup latency

of entry key size (bytes) LSH (µs) enum (µs)
100 100 3.2 50
1000 100 3.6 170

10000 100 4.4 2210
100000 100 6.7 21340
100000 1000 7.5 205070
100000 5000 8.1 –

completion time.

Table 5.2 compares the lookup time using Locality Sensitive Hash (LSH) and by naively enu-

merating through all keys. LSH based lookup is very efficient, takes less than 10µs, and scales well

with an increasing cache size. Without a carefully designed key structure, the best one could do is

to resort to naive enumeration. It incurs an acceptable latency when the total size of the keys is no

larger than 10 MB, but cannot scale well to hundreds of MB.

The insertion overhead is at micro-second level even for a 500 MB cache (about the upper limit,

since using more space is not practical for mobile devices), which is negligible.

IPC latency. We sequentially submit 500 requests and divide the total response time by 500. The

average end-to-end latency using the Binder and AIDL mechanism is about 0.36 ms per request.

Space overhead. Android sets a per-device limit for the maximum heap space an app could use,

ranging from 16 MB to 512 MB. This simply prevents applications from exhausting the memory,

and our service operates within the limit.

Our key structure is also efficient regarding space usage. Consider a raw image of 400ˆ400

pixels, about 500 KB in size. Its SIFT or SURF feature vectors are only 48 KB and 24 KB in size

when 400 features points are extracted. Other feature vectors (such as FAST features) are often more

compact. Even if all these vectors are used simultaneously, their combined size is still an order of

magnitude smaller than that of the raw image.

Further, as we mentioned previously, even though we use multiple key indices, the corresponding

“values” are only memory addresses, not the actual recognition results. This way, the recognition

results are not stored redundantly.

Generalization to other hardware models. The overhead numbers listed above further imply that

109

the benefit of Potluck is not device or CPU dependent, but bound by the input. The read/write speed

for memory and flash storage access varies little across phone models, while the latency due to the

lookup/pipeline overhead is at least 3 orders of magnitude lower than running the same computation

on a high-end GPU-equipped device. In fact, we will show later (Section 5.2.4.6) that an old phone

running deduplication could outperform a powerful PC.

5.2.4.5 Single-application performance

We next evaluate the end-to-end performance of Potluck for applications individually. We run both

the deep learning application and the AR application that loads and renders 3D models based on the

current location and device orientation.

Performance and accuracy tradeoff. We randomly select 100, 500, and 5000 images along with

their (ground-truth) recognition labels from the CIFAR-10 training set and 500 images from the

MNIST dataset as the pre-stored entries, and then select 100 images from the test set as the inputs to

the cache lookups. Figure 5.9 shows the processing time saved and the accuracy respectively as the

threshold changes. The actual threshold values produced by our tuning algorithm stay within the

shaded region in either figure.

The performance of Potluck is measured by dividing the accuracy and time saving by the

respective optimal values. The optimal accuracy is defined as the accuracy when using the pre-trained

AlexNet deep neural network to recognize the test images. The optimal time saving is 100% assuming

all lookups result in cache hits (with the right results).

We make several observations from the figures. First, our threshold tuning algorithm results in a

reasonable tradeoff by saving up to 80% of total the computation time at the expense of less than

10% accuracy drop. Second, when there is a larger number of stored results, the accuracy starts to

drop slightly earlier. This makes sense because more cached results can increase the noise and the

chance of mis-classification (i.e., false positives for key matches). Third, not surprisingly, the total

time saving increases significantly with the number of stored entries, as there is a higher probability

of cache hits. Lastly, the two different datasets shows consistent trends for the tradeoff between

the accuracy and total time saved. This suggests the generic behavior of the system under various

scenarios.

110

0 5 10
Threshold

0

0.2

0.4

0.6

0.8

1

T
im

e
sa

ve
d

(r
at

io
)

5000 C
500 C
100 C
500 M

(a) Time saved

0 5 10
Threshold

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
(r

at
io

)

5000 C
500 C
100 C
500 M

(b) Accuracy

Figure 5.9: Time saving and accuracy vs the extent of deduplication opportunities. “C” and “M”
correspond to the CIFAR-10 and MNIST datasets respectively

Note that we cannot assess the “accuracy” easily for AR applications, since the rendered scenes

are evaluated with a number of visual quality metrics, such as the image resolution, and there is no

absolute notion of “accurate”.

Mobile processing vs offloading to a PC. To further gauge the benefit of Potluck, we compare the

application processing time on the mobile device and on the PC mentioned earlier. The latter is a

proxy for offloading computation to a power server but without incurring network transfer latency.

For the deep learning based image recognition application, the experiment setting is the same as

for the previous experiment, except that we run our threshold tuning algorithm live to automatically

adjust the threshold, instead of fixing its value. Figure 5.10(a) shows the normalized average

completion time for each image with optimal deduplication, with and without Potluck on the mobile

device, and on the PC. The performance of Potluck is within 5 ms of the optimal case. It reduces the

completion time of the native application on the mobile by a factor of 24.8, and even reduces the

native execution time on the powerful laptop PC by a factor of 4.2.

For the 3D graphic rendering part of the AR application, our target results are three 2D scenes

with depth information, each containing virtual 3D objects of different rendering complexity. Nor-

mally, a 3D object is rendered and then projected onto the display. With Potluck, the processing

flow is simplified to looking up rendered 2D images with the most similar orientation, estimating

the transform matrix, and warping the original 2D image to fit the current orientation [224]. The 3D

111

Small cache Large cache
0

50

100

150

200

C
om

pl
et

io
n

T
im

e
(m

s)

4.4 us 4.4 us

Optimal
With Potluck
Unmapped lookup time
PC without Potluck
Mobile without Potluck

(a) Deep learning

1 obj scene 2 obj scene 3 obj scene
0

50

100

150

200

250

300

C
om

pl
et

io
n

T
im

e
(m

s)
Optimal
With Potluck
PC without Potluck
Mobile without Potluck

(b) AR rendering

Image Recognition AR-loc AR-cv
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
om

pl
et

io
n

T
im

e

5e-5

Optimal
Mobile with Potluck
PC without Potluck
Emulated FlashBack

(c) Three apps concurrently

Figure 5.10: Single and multi-app performance of Potluck.

orientation and location of the device are used as the key for the cache lookups in Potluck.

Since we only care about the transform matrices between scenes, and not the actual scenes in the

video, for this experiment we generate a video feed of three virtual 3D models viewed from different

angles and sample non-consecutive frames to synthesize the workload to emulate a real scenario.

Figure 5.10(b) compares the per-frame rendering time needed by Potluck with the times for native

rendering on the mobile, on the PC, and the optimal deduplication case. The performance of Potluck

is within 9.2% of the optimal deduplication performance. It reduces the running time of the native

application on the mobile device by a factor of 7, and only takes 47% longer than rendering on the

PC.

112

5.2.4.6 Multi-application performance

Finally, we run the three applications together, two AR applications and an image recognition app

as described at the beginning of the section. Note that the applications are not required to run

simultaneously in the foreground in the classical sense of concurrency. Rather, we emulate a scenario

where the invocations of these applications are interleaved in similar spatio-temporal contexts. We

record several 30-second video segments from the real world at 60 fps, extract 200 frames, evenly

spaced, from each video sequence, as our input sequences, and evaluate the performance gain from

Potluck.

Figure 5.10(c) shows the normalized completion time of the three applications respectively.

Potluck reduces the per-frame completion time by 2.5 to 10 times, and almost achieves the same

performance as optimally reusing previous results. For the deep learning and the location based

AR applications, running deduplication on the mobile device is even faster than running the whole

workload on the PC.

The last set of bars in the figure represents an emulated version of FlashBack [225]. This is

a system to achieve fast graphics rendering for virtual reality applications, by precomputing all

possible input combinations and simply looking up the corresponding results during the actual run.

This is the closest to reusing previous results for AR applications, even though the input handling is

different. Assuming the same result from the input handling techniques in FlashBack and Potluck,

the benefit of FlashBack only extends to in-app result reuse for only the rendering portion of our AR

applications. In view of our benchmark applications, therefore, the emulated FlashBack can benefit

the location-base AR application similar to Potluck does, benefit the rendering portion of the second

AR application, but does nothing for the deep learning application.

We also evaluated Potluck on the MNIST dataset. The images in this set show higher semantic cor-

relation than those in CIFAR-10. While Potluck delivered a similar time saving for the location-based

AR workload as shown in Figure 5.10(c), it reduced the processing time of the image recognition

application by a factor of 16 compared to native computation on the phone. This highlights the

benefit of Potluck when the input data exhibit stronger correlation, as Potluck is able to eliminate

more potentially duplicated processing. Further, these results again suggest that Potluck could bring

significant performance gain in a broad range of scenarios.

113

5.2.5 Related Work

To the best of our knowledge, no existing work has explored cross-application approximate dedupli-

cation in mobile scenarios. Further, Potluck provides a more generic mechanism for deduplication

even within the same (type) of applications. We discuss a few approaches closest to ours.

Application-specific solutions. Starfish [77], Flashback [225], and MCDNN represent recent efforts

accelerating computation-intensive mobile applications. Starfish extends common computer vision

(CV) libraries [215] with a centralized mechanism, including a cache to store previous function call

arguments and results. However, it does not readily work for newer DNN-based applications [226,

227], and its memoization requires precise matching between the inputs. FlashBack is a pre-

rendering system specifically designed for virtual reality (VR) applications. It utilizes nearest

neighbour matching to select pre-rendered frames and adjust them for new frames. However, the

design assumes fixed environment and known data pattern, which is not the case for non-VR

applications, as the scenes for AR applications are unbounded and constantly changing. MCDNN

accelerates the execution of deep neural networks on mobile devices. One particular optimization is to

share the execution (results) of the common layers of the neural networks from different applications.

But, the sharing is synchronous and does not involve explicit caching. If the exact same input is

passed to the neural network twice, the whole computation will be performed twice.

In contrast, Potluck is more flexible in several ways. It targets cross-application deduplication,

does not require applications to run concurrently to share results, and makes little assumptions of

the specifics of the sharing applications or the shared input data. The input similarity is determined

semantically, rather than based on the raw binary representation.

Deduplication vs frame sampling. Though not designed for the same settings, several previous

efforts related to video analytics [228] or continuous vision [199] considered some form of frame

sampling to reduce the computation complexity. These systems selectively process “the most

interesting” input frames and skip the rest. They include algorithms to identify the frames of interest

for further processing.

Potluck can be viewed as a different take on frame sampling. Our service computes the full

results for selected input images and find a nearest match for the rest. One important difference

is that Potluck makes no assumptions about the sequence of input images and is more flexible for

114

applications launched in an ad hoc fashion.

Computation reuse in clusters. In distributed clusters, Differential dataflow reuses results between

iterations within the same program [229], while DryadInc [230], SEeSAW [231] and Nectar [232]

leverage cross-job (not application) computation reuse with a centralized cache service and a program

rewriter that replaces redundant computation with the corresponding cached results. These solutions

do not readily apply to a mobile setting, since the resource constraints are completely different, and

there is no distributed filesystem as a basic structure to synchronize data globally. UNIC [233] is a

recent work specifically designed for deduplication security, which is orthogonal to our design. The

techniques proposed by UNIC can be incorporated into Potluck for better program-level integrity and

secrecy.

Approximate caching. There is a loose analogue between deduplicating computation in Potluck and

deduplicating storage in approximate caching (such as Doppelg’́anger [234]) and the compression of

image sets [235] or nearly identical videos [236]. All cases are motivated by the similarity between

input images, and various feature extraction mechanisms can be used to quantify the similarity for

further compression. However, Potluck further reasons about the computation resulted from the input

similarity, whereas the other schemes aim to reduce the space usage of the input.

5.2.6 Potluck summary

In this section, we argue for an unorthodox approach to optimize the performance of computation-

intensive mobile applications via cross-application approximate deduplication. This is based on

the observation that many emerging applications, such as computer vision and augmented reality

applications take similar scenes as the input and sometimes invoke the same processing functions.

Therefore, there are ample opportunities for reusing previously computed results.

We build Potluck, a background service that conceptually acts as a middleware to support

multiple applications. Potluck converts the input image to a feature vector, which, along with the

function invoked, then serves as a key to the previously computed result. The design further includes

mechanisms to dynamically tune the input similarity threshold and manage cache entries based on

their potential for reuse. Evaluation shows that we can speed up the processing significantly via

deduplication.

115

Looking ahead, we believe there is scope to explore further deduplication opportunties. We have

mainly focused on image-based applications, since they tend to be among the most computationally

intensive. However, the design and implementation presented are general and can apply to other

types of input data. We can also apply the deduplication concept across devices. Further, the applica-

tions could exploit optimization opportunities by adding post-lookup logic to perform incremental

computation.

116

5.3 Cross-Device Approximate Computation Reuse

Section 5.2 explains a first prototype of caching and reusing computation results from the inference

tasks of different applications that operate on similar input data. Recall that the overall approximate

reuse process involves several steps and key challenges: 1) capturing and quantifying the input

similarity in a metric space, 2) fast search for the most similar records, and 3) reasoning about the

quality of previous output for reuse.

Step one is straightforward. Existing, domain-specific techniques can already turn these raw input

values into feature vectors, and we can then define a metric to compute the distance between them,

for example, the Euclidean distance. There are two implications, however. First, leveraging these

feature extraction techniques decouples the application specific processing from generic system-wide

procedures applicable to any such applications. Second, the app developer can use well-established

techniques and libraries, and there is no need to manually annotate or manage the input features.

In this Section 5.3, to achieve approximate computation reuse across device boundary poses

greater challenges to the latter two steps, and therefore we need to refine the algorithms. The

challenges arise from two fundamental constraints regardless of the underlying scenario: (i) The

input data distributions are dynamic and not known in advance, and (ii) similarity in the input

does not directly guarantee the reusability among the output and there is no metrics measuring the

reusability likelihood. To address (i), we propose a variant of locality sensitive hashing (LSH), which

is commonly used for indexing high-dimensional data. The standard LSH is agnostic to the data

distribution and does not perform well for skewed or changing distributions. Therefore, our adaptive

locality sensitive hashing (A-LSH) dynamically tunes the indexing structure as the data distribution

varies, and achieves both very fast and scalable lookup speed and constant lookup quality regardless

of the exact data distribution. For (ii), we propose a variant of the well-known k nearest neighbor

(kNN) algorithm. kNN is a suitable baseline since it makes no assumptions about the input data

distribution and works for almost all cases. However, kNN performs poorly in a high-dimensional

space due to the curse of dimensionality, insufficient amounts of data and skewed distribution in the

data [212]. Our homogenized kNN (H-kNN) overcomes these hurdles to guarantee highly accurate

reuse and provides control of the tradeoff between the reuse quality and aggressiveness.

Now, given the refined algorithms with better control of the approximate reuse and higher

117

efficiency, we further incorporate approximate computation reuse as a multi-tier service, called

FoggyCache, extending the current computation offloading runtime. FoggyCache employs a two-

level cache structure that spans the local device and the nearby server to achieve cross-device

computation reuse. To maximize reuse opportunities, we further optimize the client-server cache

synchronization with stratified cache warm-up on the client and speculative cache entry generation

on the server.

FoggyCache is implemented on the Akka cluster framework [237], running on Ubuntu Linux

servers and Android devices respectively. Using ImageNet [34], we show that A-LSH achieves over

98% lookup accuracy while maintaining constant time lookup performance. H-kNN achieves the pre-

configured accuracy target (over 95% reuse accuracy) and provides tunable performance. We further

evaluate the end-to-end performance with three benchmarks, simplified versions of real applications

corresponding to the motivating scenarios. Given a combination of standard image datasets, speech

segments, and real video feeds, and an accuracy target of 95%, FoggyCache consistently harnesses

over 90% of all reuse opportunities, reducing computation latency and energy consumption by a

factor of 3 to 10.

In summary, we make the following contributions:

First, we observe cross-device fuzzy redundancy in upcoming mobile and IoT scenarios, and

highlight eliminating such redundancy as a promising optimization opportunity.

Second, we propose A-LSH and H-kNN techniques to quantify and leverage the fuzzy redundancy

for approximate computation reuse, independent of the application scenarios.

Third, as an example realization, we design and implement FoggyCache that provides approxi-

mate computation reuse as a service, which achieves a factor of 3 to 10 reduced computation latency

and energy consumption with little accuracy degradation for realistic application benchmarks.

5.3.1 Motivation

5.3.1.1 Example scenarios

Smart home. Many IoT devices connected to a smart home service platform [238] run virtual

assistance software that takes audio commands to control home appliances. The intelligence of

such software is supported by inference functions, such as speech recognition, stress detection, and

118

speaker identification [239]. Statistics [240] show that a small set of popular audio commands, e.g.,

“turn on the light”, are often repeatedly invoked. Say two household members issue this command to

their respective device in different rooms. Currently, each command triggers the entire processing

chain. However, processing both is unnecessary, as the two commands are semantically the same. It

would be more efficient if one could reuse the processing output from the other.

Cognitive assistance apps. Google Lens [32] has become very popular, which enables visual search

by recognizing objects in the camera view and rendering related information. Key to the app is the

image recognition function. Consider a scenario where the tourists near a famous landmark search

for its history using the app. Clearly, it is redundant to run the same recognition function repeatedly

on different devices for the same landmark. Although the devices capture different raw images,

semantically the images are about the same landmark. If the recognition results can be shared among

nearby devices, e.g., by a base station, we can avoid the redundant processing on individual devices.

Intelligent agriculture. Robotic assistance has been deployed to automate agricultural tasks. As

an example [241], a fleet of autonomous vehicles move along pre-defined routes to measure and

maintain the health of the crops, e.g., watering the crops if they appear dehydrated. Each vehicle

captures images and other sensor data (for ambient light intensity, humidity, and temperature) every

few meters, recognizes the crop status, and then acts accordingly in real time. The vehicles on

adjacent paths record significantly correlated data, and running the same processing function on these

correlated sensor data will largely produce the same results. Such repeated processing is unnecessary

if the processing outputs can be shared among the vehicles, e.g., through the command center of the

robots.

5.3.1.2 Fuzzy redundancy

Common to all three scenarios above, the application logic revolves around recognition and inference.

There is redundancy in the processing of each application, even when presented with non-identical

input data. We refer to this as fuzzy redundancy. This is due to the similarity in the input data, the

error tolerance of the processing logic, and the repeated invocations of the same functions.

Input similarity stems from the same contextual information being captured, such as major

landmarks, ambient noise, and road signs. For such information, there is (i) temporal correlation

119

10 20 30 40 50
Density (per 100 sqm)

0

2

4

6

8

10

F
ra

ct
io

n
(%

)

(a) Outdoors

10 20 30 40 50
Density (per 100 sqm)

0

2

4

6

8

10

F
ra

ct
io

n
(%

)

(b) Indoors

Figure 5.11: Device density distribution from trace [1].

between successive samples (e.g., frames in a video feed), (ii) spatial correlation between what

nearby devices observe, and (iii) common objects involved (e.g., traffic lights at each intersection).

Error tolerance arises from a common input-output mapping process, i.e., the input values that

are “close” enough are often mapped to the same output. A large number of workloads exhibit this

property, where high-dimensional input values (e.g., images of handwritten digits) are mapped to

lower-dimensional output values (e.g., “0”, “1”, ..., “9”), and therefore the possible output values are

constrained to a finite set. Learning-based workloads (e.g., recognition, classification, and AI agent)

and graphics rendering [224] both exhibit such resilience, and increasingly they have been run in

mobile scenarios.

Repeated invocations are manifested in three ways. (i) Given the popularity of some mobile apps,

the same app (e.g., Google lens and PokeMon) can be launched by the same device or across devices

repeatedly. (ii) Significant correlation exists in spatio-temporal contexts and smartphone usage [242].

For instance, IKEA Place [200], an augmented reality furnishing app, is mostly run by shoppers

in IKEA stores. (iii) Mobile applications often rely on standard libraries. This is very common

for computer vision (OpenCV [215]), graphics (OpenGL [243]), and deep learning (TF-Lite [18]),

which means even different applications can invoke the same library functions.

5.3.1.3 Quantitative evidence

To gauge the extent of fuzzy redundancy, we estimate the amount of correlated processing for

landmark recognition in the aforementioned cognitive assistance scenario. This is measured with the

proportion of input images showing semantically equivalent scenes across mobile devices.

First, we estimate the mobile device density distribution by leveraging a WiFi trace from

120

Table 5.3: Proportion of redundant scenes (%).

Setting Device density (# devices / 100 m2)
0-10 10-20 20-30 ą 30 Average

Indoors 49.63 74.43 99.57 100 64.14
Outdoors 61.01 85.76 99.51 100 82.67

CRAWDAD [1]. Mobile devices frequently scan WiFi access points (APs) to switch or renew their

association, by broadcasting a probe request every few seconds. The trace contains probe requests

from clients within range of different APs over three months. The AP locations include auditoria,

office buildings, malls, and scenic spots. We select the traces at two types of locations, scenic spots

and office buildings, for an outdoor and an indoor scenario respectively. The device density (i.e.,

number of devices per 100m2) is calculated by counting the number of distinct devices sending probe

requests within a 30-second window. Figure 5.11 shows the device density distribution at these two

locations.

Next, we use Google Streetview API [33] to download streetviews and create an “outdoor input

image set” as perceived by a phone camera. The number of images selected is proportional to the

corresponding device density distribution measured above. For the sampled images, we count the

number of images capturing the same scenes (i.e., buildings, landmarks, and traffic signals) and

convert that to a percentage of all images to quantify the amount of fuzzy redundancy. Similarly, we

use the NAVVIS indoor view dataset [244] for indoors and repeat the above procedures to estimate

the portion of redundant scenes.

Table 5.3 shows the proportion of redundant scenes given different device density. On average,

around 64% and 83% of the images exhibit fuzzy redundancy for indoor and outdoor scenarios

respectively. The amount of redundancy increases significantly with the device density. This

highlights substantial redundancy elimination opportunities to optimize the performance of these

contextual recognition based applications.

5.3.2 Approximate Computation Reuse

To eliminate fuzzy redundancy, we follow the philosophy for conventional computation reuse, i.e.,

caching previous outputs and later retrieving them instead of computing from scratch every time.

However, existing precise reuse techniques cannot handle the approximation we need.

121

Problems with precise computation reuse. Conventional reuse [233, 231] determines the reusability

of a previous computation output on the basis of hash-based exact input matching. Unfortunately,

this is too restrictive for fuzzy redundancy, where the input values are correlated but rarely identical.

We need to relax the criterion such that computation records are reusable if the input values are

sufficiently similar.

Challenges for approximate computation reuse. Extending exact reuse is non-trivial and requires

solving several problems: (i) embedding application-specific raw input data into a generic metric

space, (ii) fast and accurate search for the nearest-match records in a high-dimensional metric space,

and (iii) reasoning about the quality of reuse among the potential search outputs. Challenge (i) can

be addressed with well-established domain-specific feature extraction approaches (Section 5.3.2.1).

To address (ii) and (iii), we propose adaptive locality sensitive hashing (A-LSH, Section 5.3.2.2) and

homogenized k nearest neighbors (H-kNN, Section 5.3.2.3).

Reuse process. Armed with these techniques, approximate computation reuse proceeds on a per-

function basis. We always turn function input into feature vectors to serve as cache and query

keys. Once an inference function is actually executed, a key-value pair is added to the A-LSH data

structure. The value is simply the function output. When an application invokes a particular function,

this triggers a reuse query for that function. We retrieve several key-value pairs from the A-LSH

whose keys are the nearest-match to the query key (i.e., a feature vector from the new function input).

Among the values of these key-value pairs, we then select the final query result (i.e., the new function

output) with H-kNN. Section 5.3.2.4 discusses the generality of this process.

Crucially, while the input matching is approximate, the ideal output identified for reuse is precise,

the same as the result from the full-fledged computation, due to the error tolerance discussed earlier

(Section 5.3.1.2).

Terminology. Thoughout the paper, “input” refers to the raw input data to the inference function

or the corresponding feature vectors serving as the cache or query key, while “output” refers to the

previously computed results, the cached value matching a cache key or the reuse query result.

122

0.3 0.4 0.5 0.6 0.7
Relative distance between vectors

0

0.05

0.1

0.15

P
ro

po
rt

io
n

of
 v

ec
to

rs Different
Same

(a) Image data

0.4 0.5 0.6 0.7 0.8 0.9
Relative distance between vectors

0

0.1

0.2

0.3

0.4

P
ro

po
rt

io
n

of
 v

ec
to

rs Different
Same

(b) Audio data

Figure 5.12: Distance distribution between feature vectors of the same and different semantics.

5.3.2.1 Application-specific feature extraction

Different contextual recognition applications vary by their input data type (such as images, audio,

and text) and inference logic. Therefore, the first step is to embed heterogeneous raw input data into

a generic representation while preserving the notion of similarity.

There are two implications from this step. First, it decouples application-specific processing

from general reuse procedures. Second, it obviates the need for app developers to manually annotate

data features.

Assessing similarity is far more challenging than checking for equality. Fortunately there are

well established techniques to map raw data to multi-dimensional vectors in a metric space. We can

then compute the Euclidean distance between vectors to gauge their similarity.

Domain-specific approaches. For images and videos, their local and global characteristics can be

captured in feature vectors such as SIFT [209] and GIST [245], which have been shown [246] to

effectively measure image similarity. For audio, MFCC [216] and PLP [247] are widely used to

capture acoustic features in compact vectors for speech applications [248].

Autoencoding. More generally, recent Autoencoder techniques [249, 250] use deep neural networks

to automatically learn state-of-the-art feature extraction schemes for various data sources, including

text, images, and speech.

Examples. Figure 5.12 shows that we can indeed quantifying data similarity with the distance

between feature vectors mapped from the raw images and audio samples. The data are randomly

selected from three arbitrary classes from ImageNet [34] and the TIMIT acoustic dataset [251]. We

use SIFT to turn 256ˆ256 images into 1000-dimension vectors and MFCC to convert 30-ms speech

123

bucket: <1,0,1,1,0,1>

hashtable 1

query
hashtable j

High-dimensional
Data Locality Sensitive Hashing Limitation

Weak differentiation
can make query slow

Strong differentiation can
make query inaccurate

bucket bucket

Figure 5.13: Locality sensitive hashing.

segments (sampled at 16 kHz, 16-bit quantization) to 39-dimension vectors. Figures 5.12a and 5.12b

plot the distribution of the distance between pairs of feature vectors, for the image and audio data

respectively. The distances are normalized in their respective scale space. We can see that the feature

vectors for the same scene (or utterance) are geometrically “closer”.

5.3.2.2 Adaptive Locality Sensitive Hashing

After turning the raw input data into high-dimensional feature vectors, we need a mechanism to index

them for fast and accurate lookup.

Locality sensitive hashing (LSH) as a strawman. LSH [142] is widely used to search for the

nearest matches in a high-dimensional space [252]. The data structure consists of multiple hashtables,

each of which employs carefully selected, distinct hash functions and a set of buckets. The hash

functions will map similar data to the same bucket in their corresponding hashtables with high

probability. The buckets convey a sense of “locality”.

Figure 5.13 shows LSH operations for three clusters of data, represented by three shapes. Ideally,

each cluster should be mapped to a distinct, corresponding bucket across hashtables. When searching

for the nearest matches, LSH first locates the bucket corresponding to the query input within each

hashtable. The entries in all these buckets form a candidate set, from which the final output is selected

based on its distance to the query input.

The time complexity for retrieving the nearest neighbors using LSH is Opnρ lognq, where n is the

number of data records indexed and ρ is a variable far smaller than one. In comparison, other spatial

indexing data structures such as R-Tree, KD-Tree, and VP-Tree [253, 219, 254] are not as practical

124

Table 5.4: Lookup speed comparison (10,000 entries)

Dimension R-Tree (ms) LSH (ms)
4 0.018 0.002
64 2.279 0.009
128 6.342 0.011
1024 87.504 0.010

or efficient as LSH when dealing with high-dimensional data such as images or audio. R-tree has

Op2d lognq complexity, where d refers to the index key dimension. The factor 2d significantly limits

its usage in high-dimensional scenarios. Table 5.4 shows the lookup speed using different data

structures when given random high-dimensional vectors as keys. While LSH consistently caps the

lookup time at around 0.01 ms, that time for R-tree increases exponentially, to 87 ms, with the

number of dimensions.

Limitation of LSH. The standard LSH is statically configured, however, limiting its performance.

Recall that each hashtable in the LSH leverages a set of hash functions h : Rd Ñ N. Each

hash function maps a vector v to an integer by hipvq “ t
ai¨v`bi

r u, where ai, bi are random projec-

tion vectors and the parameter r captures the granularity of the buckets, i.e., how well buckets

differentiate among dissimilar entries. The concatenation of the j integers together forms a bucket,

ă h1pvq,h2pvq, ...,h jpvq ą, within the hashtable.

Thus, configuring r is crucial for LSH performance. Lookup is both fast and accurate when the

hash bucket granularity matches the distribution of the cache keys.

The rightmost part of Figure 5.13 shows two examples of parameter misconfiguration. The star

represents the query input, and should ideally be hashed to a bucket containing all the squares but

only squares. When the buckets are too coarse-grained, the hashing differentiation is weak. Many

dissimilar keys are hashed to the same bucket. Searching through a large bucket is slow, but we can

be confident that all relevant entries are in the bucket and the best match can be found. Conversely,

fine-grained buckets contain few entries each and are quick to search through, but might not contain

the best match.

In practice, a major challenge is that the distribution of the input data is unknown and often

time-varying. The performance of the standard LSH is thus at the mercy of the data distribution.

This necessitates an algorithm to tune the LSH configuration during run time.

125

Adaptive LSH (A-LSH). In the LSH query complexity expression Opnρ lognq, we aim to keep the

parameter ρ constantly low for optimal lookup performance.

Analytically, ρ is determined by r [255]: ρprq “ logpr
p1, pr “ 1´ 2Φp´r{cq´ 2?

2πr{c
p1´

e´pr
2{2c2qq, and p1 is simply pr when r “ 1. Φp¨q is the cumulative distribution function of the

standard normal distribution, N „ p0,1q.

c is in fact called the locality sensitivity factor. Its ideal value should divide the entire data set into

disjoint subsets, such that the variance is small within each subset but large across different subsets.

The bucket granularity (r) can then be determined based on the intra-subset variance. Therefore, to

obtain the optimal ρ , we first estimate the value of the data-dependent parameter c in the previous

formula and then optimize the parameter r accordingly.

Since c varies with the current cached key distribution but no assumptions can be made in

advance, we approximate c with the statistics of the key distribution. Specifically, for each cache

key, we first find its kth nearest neighbors, where k is a pre-selected constant (Section 5.3.2.3). The

distance to this kth neighbor, Dk, measures the radius of the immediate neighborhood cluster of the

cached key. Across all cached keys we then have a distribution of Dk. Then, we calculate c as the

smaller of 5ˆmeanpDkq and the 95th percentile within the distribution of Dk. This is an empirical

rule we learned from experiments, covering a wide variety of data. Finally, we can tune r to reach the

local minimum of the function ρprq during the run time, leveraging existing optimization methods

such as gradient descent [256].

5.3.2.3 Homogenized k Nearest Neighbors

After retrieving several “closest” cached records, we need to determine the reuse output from these

records. Intuitively, we want to reuse aggressively as opportunities arise, but also conservatively to

ensure the reused result would be identical to a newly computed result. This requires balancing the

reuse quality and aggressiveness.

k nearest neighbors (kNN) as a strawman. Selecting a reusable record can be modeled as a

data classification problem, so we first consider kNN [212], an algorithm most widely used for

this purpose. The algorithm finds k records closest to the query input, identifies the cluster label

associated with each, and then returns the mode of the cluster labels through majority voting. When

126

applied to the cached key-value pairs for our reuse scenario, step one above is based on matching

keys, while the “cluster label” is the value field of each pair.

The primary advantage of kNN is its non-parametric nature, namely, no data-specific training is

needed a priori. Despite the simple idea, kNN has been proved to approach the lowest possible error

rate when given sufficient data [257]. State-of-the-art improvements, such as weighted kNN [258],

assign different weights to the nearest records to further improve the kNN accuracy.

Problem with native kNN. The ideal situation for native kNN is when the k records form a single

dominant cluster that truly matches the query key. The value associated with this cluster is then

unambiguously the correct result for reuse. In practice, however, neither condition is guaranteed.

Therefore, native kNN and its variants cannot always ensure accurate reuse. Nor do they give much

control over the reuse quality or the aggressiveness. The limitations are manifested in both the input

and output processing.

First, existing kNN variants cannot always assess input similarity accurately. The Euclidean dis-

tance between high-dimensional vectors (i.e., the cache keys) becomes less informative with increased

dimensionality and fails to reflect the similarity in the keys. The curse of dimensionality causes the

noise in certain dimensions to disproportionally skew the overall distance measurement [212].

Second, a dominant value cluster is often absent due to insufficient data or a skewed data

distribution, and existing kNN variants provide inadequate tie-breakers between multiple clusters.

As an example, suppose an input key K1 is located at the intersection of two clusters, corresponding

to the computation outputs V1 and V2 respectively. Among the nearest keys of K1, half of their values

are V1, and the rest are V2. In this case, either V1 or V2 can be valid, and it is impossible to select one

correctly without further information.

Consequently, the perceived input similarity does not guarantee output reusability, and it is hard

to gauge the confidence level of correct reuse merely from the cache keys. Unfortunately, native kNN

and variants make decisions based on the keys but not the cached values.

To address the above limitations, we propose a novel refinement, called homogenized kNN (H-

kNN). It utilizes the cached values to remove outliers and ensure a dominant cluster among the k

records initially chosen. This lets us improve and explicitly control the quality of reuse.

Homogeneity factor θ . Observe that the kNN performance issues arise from the lack of a suitable

127

<key1, >
<key2, >
<key7, >
<key8, >
<key9, >

<key11, >
<key12, >

<key10, >

…… [, 7]

[, 3]

[, 2]

}
}
}

<Key, Val> Pairs
 <Input, Output>

Vector N

θ

kNN

2

3

Homogeneity factor θ

N⃗7

Nmax

Figure 5.14: Calculating the homogeneity factor θ .

mechanism to assess the dominance of the clusters from the k records, hence the correctness of reuse.

We therefore define a metric, the homogeneity factor (θ), for this purpose.

From the k key-value pairs, we first prepare a frequency vector ~N “ rN1,N2, ...,Nks, where

each element Ni records the frequency of the ith distinct value. Then, θp~Nq “ Nmax{||~N||2, where

Nmax “maxpNiq,@ i P r1,ks. Figure 5.14 shows an example. 12 nearest keys correspond to 3 distinct

values. Therefore, we derive ~N “ r7,3,2s, and θ “ 7{
?

72`22`32.

A geometric interpretation gives an intuition behind θ . Cached records (key-value pairs) with the

same value form a cluster. Each cluster is mapped to a distinct dimension in ~N, and the cluster size

mapped to the length of the projection onto that dimension. The homogeneity factor θ is actually the

cosine distance between ~N and its longest projection. A small cosine distance implies the existence

of a large dominant value cluster, i.e., a high level of homogeneity among the k records selected. In

that case, we can be highly confident that this dominant value is the correct result for reuse.

This definition of θ applies to discrete output values, which covers most classification scenarios.

If, instead, the output values are continuous, θ can simply be defined to be inversely proportional to

the variance of the k values and normalized to the proper scale.

Homogenized kNN (H-kNN). With the homogeneity factor, we can then set a threshold θ0 to

control the reuse quality. Algorithm 2 describes the operations of H-kNN. The intuition behind

our refinement is to first remove outliers from the k records initially chosen and then assess the

homogeneity of the remaining records. Reuse proceeds only if there is a dominant cluster. Note

that meanpDkq is the average kth nearest neighbor distance Dk (also used when adapting the LSH

parameters in Section 5.3.2.2).

128

Algorithm 2: Homogenized kNN

// queryKey and k are arguments
1 Select k nearest neighbors with native kNN, get Listărecordą neighborList;
2 neighborList.filter {recordñ distance(record.key, queryKey) ă meanpDkq};
3 Calculate ~N and θ from neighborList;
4 if θ ą θ0 then
5 return value corresponding to Nmax;
6 end
7 return null;

The value of θ0 simultaneously affects the correctness of the returned results and the proportion

of non-null query outputs, the latter of which can be interpreted as the aggressiveness of reuse.

Therefore, with H-kNN, the quality of reuse can be enhanced and explicitly controlled by adjusting

θ0. A lower θ0 permits more reuse but potentially less accurate results. θ0 can be set empirically by

default (discussed in Section 5.3.5.3) or dynamically by the application according to its preference

for the aggressiveness of reuse.

Bounding accuracy loss. For H-kNN, first note the reuse accuracy is tunable through θ0. Next, we

investigate the error inherent in the H-kNN algorithm.

For an input x, the error probability of reuse can be denoted by

errorpreuseq “ Px„Cpreusepxq ‰ computepxqq, where C is the input distribution. According to the

Probably Approximately Correct (PAC) learnability framework [259], for each given constant values

of ε and δ , the error rate is bounded by ε with at least 1´ δ probability, when the number of

participating samples, n, exceeds the value of the polynomial pp 1
ε
, 1

δ
,n,dimp f qq. n in our case is

the total number of the cached records that are usable by H-kNN. dimp f q is a factor determined

by the intrinsic complexity of the learning task. For native kNN, dimp f q quantifies how well the

nearest neighbor data points can be unambiguously clustered (i.e., the VC dimension of a local sphere

constituted by the nearest neighbour data [260]).

In other words, we can bound the potential accuracy loss of kNN with a specified confidence

level by tuning the bucket granularity of the records stored in A-LSH, i.e., the parameter r mentioned

in Section 5.3.2.2. As H-kNN improves on kNN, the reuse error can be reduced by further factor

determined by the intrinsic VC dimensionality of the cached values.

129

5.3.2.4 Generality

We emphasize that the approximate reuse algorithms (A-LSH and H-kNN) are applicable to different

applications.

Application-agnostic process. A-LSH and H-kNN are agnostic to the application logic because

they operate at the granularity of individual functions (e.g., an image recognition method) instead

of an application as a whole (e.g., the Google Lens app). If an application successively calls image

recognition and speech recognition, say, two separate reuse queries will be issued.

A learning-based application typically executes in three stages: (i) acquiring and preprocessing

the input, (ii) invoking relevant machine learning pipelines, and (iii) combining the outputs to

generate the final result.

For example, the cognitive assistance app (Section 5.3.1.1) might acquire an image from the

camera view, run image recognition to identify a landmark label, search for the landmark on the

Internet, and finally display a selected page to the user. Depending on the input image quality,

additional preprocessing can be employed, e.g., illumination correction, noise removal, and seg-

mentation. Similarly, the final output generation steps, e.g., combining outputs from multi-modal

learning pipelines, searching for related information and rendering on the screen, would be distinct

for each specific case. However, the core machine learning functions, i.e., image recognition, are

common across invocations of the app.

Stages (i) and (iii) vary by application and potentially even between different runs of the same

application. In contrast, Stage (ii) only varies by the type of learning operations but not the specific

application contexts. Operating only on stage (ii) enables A-LSH and H-kNN to be application-

agnostic.

Beyond classification. Although we have used classification examples throughout this section,

the reuse framework is broadly applicable to different types of machine learning functions. A-

LSH is designed for fast and accurate nearest neighbour lookup upon high-dimensional data, and

hence is generic to machine learning models. H-kNN can be applied to learning tasks with either

discrete output (i.e., classification) or continuous output (i.e., regression, prediction), as explained in

Section 5.3.2.3. A sufficient condition of H-kNN is local smoothness of the model, which is shown

to be satisfied by a majority of the machine learning techniques [261, 262].

130

Offloading Runtime
FoggyCache

Server
side

Client
Side

Client
Side

1 2

Remote
computation

Local
comp

Local
comp

21

1

Offloading Runtime

Remote
computation

Local
comp

Local
comp

21

2

Reuse/Offload request
Cache sync

Edge server
Mobile device X
Mobile device YSpeculative exec

With FoggyCache Traditional

1 1/

Exec

App

A
pp 1

A
pp 2

App

A
pp 1

A
pp 2

Stub

Stub

Figure 5.15: FoggyCache architecture.

5.3.3 FoggyCache service design

The techniques discussed in the previous section are generic to any approximate computation reuse

scenarios. In this section, we discuss how to implement these techniques as a service for cross-device

reuse outlined in Section 5.3.1. We target contextual based recognition and inference applications.

Mobile computing paradigms today typically require coordination between the smart devices,

nearby edge servers [263], and the remote cloud. An essential component in such systems is an

offloading runtime, such as MAUI, Odessa, and Comet [197, 264, 265]. The runtime dynamically

partitions the processing pipeline into fine-grained tasks and places their execution locally on the

device or remotely on a server.

Therefore, we re-design the traditional offloading runtime by incorporating approximate reuse as

a service called FoggyCache, interposed between the application and the offloading runtime as an

intermediate layer. FoggyCache intercepts the application call to the offloading runtime interface,

as shown in Figure 5.15, to invoke approximate reuse regardless of where the computation task is

eventually executed.

131

5.3.3.1 System overview

FoggyCache follows a typical client-server architecture. The FoggyCache client can be on a smart-

phone, tablet, or IoT device. The FoggyCache server is a central point of coordination between the

clients. Given the advent of mobile edge computing for low-latency computation offloading, edge

servers or cloudlets [195] are ideally suited to deploying the FoggyCache server.

Server. The server-side FoggyCache consists of an A-LSH cache gathering previous computation

records (input & output) of all clients, a service daemon handling reuse queries, and a module that

handles the client-server coordination.

Client. The client-side FoggyCache consists of an on-device A-LSH cache and a service endpoint

which interacts with the server-side cache and the offloading runtime or the applications. The local

cache stores a subset of the computation records from the server-side to minimize remote lookup.

Plugging FoggyCache in the offloading runtime. To avoid modifying the application, we retain

the native interface between the application and the offloading runtime. The FoggyCache client

intercepts the offloading call inside the entry point to the offloading runtime.

Take MAUI as an example. Once a method is declared as remoteable, its invocation will

prompt the standard offloading runtime to schedule the code execution, locally or remotely. With

FoggyCache, the method invocation first triggers the reuse pipeline before a scheduling decision

is made. If any previous results are reusable, these are returned directly to the application without

further computation. Otherwise, the normal offloading action resumes to schedule and execute the

task. The APIs are detailed in Section 5.3.4). The FoggyCache server runs in its own process or

container, separately from the remote end of the offloading runtime.

Challenge: two-level cache coordination. Both the server-side and client-side caches adopt the

least frequently used (LFU) policy for cache entry replacement. However, coordination is crucial

between the two levels of cache. As new computation requests are initiated from the clients, yet

cross-device reuse is supported at the FoggyCache server side. Therefore, how new computation

records propagate from the clients to the server and vice versa notably affects the FoggyCache

performance. Our solution has two parts, corresponding to the two directions of data flow between

the client and the server, shown in Figure 5.15 by the arrows of cache sync and speculative execution.

132

Algorithm 3: Initial cache warm-up algorithm

// Subset size s and num of nearest neighbors k are inputs, subset is the
output

1 Initialize empty subset[s];
2 Create inverted index Idx: {Value ÞÑ ListăEntryą lst} from the cache;
3 Sort the Value from large to small in Idx w.r.t. lst.size();
4 Store the sorted Values into a ListăValueą vlist;
5 while vlist is not empty && subset is not full do
6 Value v = vlist.get(0);
7 ListăEntryą elist = Idx.get(v);
8 Sample min(k, elist.size(), subset.spaceLeft()) entries from elist and append them to subset;
9 vlist.remove(v);

10 end
11 if vlist is empty then
12 Proportionally sample entries from the cache to fill up the subset;
13 end

5.3.3.2 Client side cache management

Two mechanisms are needed to synchronize the client side caches with the server side: client warm-

up and cache miss handling. The former is needed when a client appears in the vicinity of the server

for the first time to boot-strap the service. The latter is triggered when no locally cached outputs

could be reused.

Client cache warm-up. Intuitively, the client cache should receive broadly distributed entries to

jump start the reuse service and maximize the probability of a random reuse query being matched

with a reusable output from the cache.

Without relying on any assumptions on the input data distribution, we adopt stratified sampling

to generate a subset of the server cache. The size of the subset is determined by the client or follows

a default value. Algorithm 3 details the operations. The key idea is to first select as many types

of cached keys with popular cached values as possible, where the popularity of a cached value is

estimated based on the number of cache keys mapped to this value. This ensures a broad coverage

of the records in the subset so that our approximate reuse algorithms could proceed in most cases.

If space remains in the client cache after this first sampling pass, the algorithm then proportionally

samples from the rest of the entire server cache. This algorithm achieves a dynamic trade-off between

the subset coverage, the distribution of the cache keys, and the limited client cache space.

Note that existing data-dependent prefetching techniques [266, 267] are orthogonal to our design.

133

While we aim for reasonable performance without prior knowledge, other prefetching techniques

could be adopted instead if prior knowledge about the input data is known.

Cache miss handling. Cache miss handling is on the critical path of the application, and therefore

the processing logic and the data transmitted should be lightweight and minimal.

When the FoggyCache client does not carry reusable outputs, it sends a request to the server

including the query input and the homogeneity threshold θ0. Different clients could therefore

customize the tradeoff between time saving and reuse accuracy by querying the same server cache

with different thresholds θ0.

The FoggyCache server executes the query and returns the reused output along with k nearest

records, the minimum needed to carry out the H-kNN algorithm. This way, it reduces a potential

cache miss from a similar, future query on the client device. Meanwhile, k is small enough to avoid

incurring non-negligible communication overhead.

5.3.3.3 Server side cache updates

From the server perspective, it is desirable to collect newly generated computation records from

the clients in a timely fashion for cross-device reuse. Intuitively, each FoggyCache client can batch

updates to the server periodically. However, the cache entries might reach the server too slowly

and unreliably this way, especially in the face of client mobility or unstable network connectivity.

Moreover, not all computation records are created equal. For instance, a computation record with

few nearest neighbour records stored in the FoggyCache server could potentially benefit all clients

that submit reuse queries with similar inputs, and hence should be synchronized to the server as soon

as possible. However, only the FoggyCache server knows such information. Therefore, we devise a

speculative execution mechanism on the FoggyCache server to speed up its updates proactively.

Speculative computation. Once a reuse query comes, the server additionally estimates the impor-

tance (i.e., the probability of future reuse) of the computation task that corresponds to the query.

Based on this probability, the server decides whether to speculatively execute the task and add the

input-output record to the cache for future reuse queries.

Although prediction-based speculative execution algorithms are widely used [268, 269], they are

not directly applicable. Due to the approximate nature, the importance of a computation record is no

134

longer solely decided by the access statistics about the record itself.

Instead, the likelihood of a computation record being reused in the future is jointly determined

by three factors: the average access frequency (Fk), the average distance from the reuse query

(Distk), and the homogeneity factor (θk) among the k nearest neighbors of the query input. The

FoggyCache server also maintains the average access frequency Favg, the average distance to k

nearest neighbor Distavg among all cached records, and the default homogeneity threshold θ0. We

then calculate Pf “ minpFavg{Fk,1q, Pd “ minpDistavg{Distk,1q, and Pθ “ minpθk{θ0,1q, as the

corresponding normalized factors ranging in (0, 1] so that they can be used as probabilities. Then,

importance “ 1´Pf ¨Pd ¨Pθ . The multiplication captures the independence between these three

factors. The FoggyCache server will then invoke speculative computation for this query with

a probability equals to importance . The intuition behind the importance value is that we first

take access frequency Fk as a baseline estimate, and then further consider the approximate nature,

where the input distribution (Diskk) and the output distribution (θk) both play an important role in

determining the reused output (Section 5.3.2).

Note that the decision to proceed with speculative execution does not consider the load on

the edge server. Basically, we decide whether to speculatively compute a record based on its

importance, but we let the task scheduler on the edge server to decide when to execute the speculation

task. For instance, the task can be separately assigned a low priority to avoid it contending with

latency-sensitive tasks.

5.3.3.4 Additional consideration

Incentives: Various approaches [270, 271, 272] have been proposed to incentivize participation

in decentralized systems. FoggyCache follows the “give and take” approach to incentives, similar

to the proposal in [270]. Each FoggyCache client is allocated free credits at the beginning, while

additional credits are given proportional to the number of computation outputs it contributes. The

credits are used to query reusable computation from the server. The exact numerical value of the

proportion parameters vary based on the global balance of queries and contributions under each

specific scenario.

Security. The main security concern for FoggyCache arises from malicious devices polluting the

135

cache with false computation outputs. To address this, we can incorporate existing object-based

reputation system (e.g., Credence [213]) in FoggyCache with negligible additional overhead. Each

computation record is additionally labelled with an anonymous identity of the contributing client.

Clients implicitly vote on cached records while running the reuse query. Specifically, if a cached

record is selected by Step 2 of the H-kNN but its output is not chosen in the end, this constitutes a

negative vote. Conversely, a successful reuse is a positive vote.

Privacy. Good enough privacy could be achieved by anonymizing participating devices when

reporting data to the server. Since FoggyCache targets locality-based scenarios, the raw input of

the approximate reuse is mostly local contextual information. Such information is meant to be

collected by all nearby entities and hence public by nature. Location privacy is less of a concern here.

Moreover, the FoggyCache client does not have to store and operate on raw input data. This means

that different applications or vendors can employ their custom encryption schemes to protect the

raw data without affecting cross-device reuse, as long as they feed the feature vectors extracted to

FoggyCache.

5.3.4 Implementation

5.3.4.1 Architecture

We implement FoggyCache following a typical client-server model. A two-level cache structure that

spans the edge server as well as the local device serves as our storage layer. The communication

layer builds on the Akka [237] framework.

Cache layout. The two-level storage adopts the same layout. The highest level of each cache

structure is a Java HashMap, which maps a function name (String) to an in-memory key-value

store, where an A-LSH is generated from the key region among computation records of this function

collected from all the clients. Additionally, the server side cache system includes utility functions to

serialize and deserialize its data partially to disk.

Concurrency. FoggyCache is built using the Akka toolkit, which adopts the actor model [273] to

handle concurrent interactions between system components. Each function module is implemented

in a separate class extending the Akka AbstractActor class. Concurrency is managed implicitly by

the Akka framework via message passing. We further leverage the Akka cluster module to provide a

136

fault-tolerant, decentralized membership service.

5.3.4.2 APIs and patches

FoggyCache APIs. As much as possible, FoggyCache aims to make the processing logic transparent

to the offloading runtime and applications. Therefore, three intuitive APIs are exposed: Config-

Func(func_name, config), QueryCompOutput(func_name, input, params), and

AddNewComp(func_name, input, output). The first specifies reuse configurations for each na-

tive function (e.g., serialization, feature extraction, and vector distance calculation). The latter two

trigger reuse queries and feed the native processing outputs back to FoggyCache.

Application or library patches. To interact with FoggyCache, short patches should be applied to

the offloading runtime, or the application code when no runtime is used. No more than 10 lines of

code is needed to wrap around the native pipeline. QueryCompOutput and AddNewComp are added to

the native code within a conditional statement to determine whether to invoke the native processing

pipeline. ConfigFunc enables on-demand customizations.

5.3.5 Evaluation

5.3.5.1 General setup

Application benchmarks. Following the motivating examples in Section 5.3.1, we build three

stripped-down versions of real applications as benchmarks, two for image recognition (plant and

landmark detection) and one for speaker identification. These are implemented in Java, using the

DL4J [57], OpenCV [215], and Sphinx [274] libraries. The workload settings follow those in related

papers [248, 275], using the same pre-trained neural network models that are widely adopted by real

applications. Compared to the real applications, our benchmarks skip supporting functionalities such

as the user interface, since they can interfere with the timing and energy measurements of the core

computation modules. Our benchmarks can also be instrumented easily for various measurements,

which is difficult with proprietary applications.

Datasets. We use two standard image datasets, ImageNet [34] and Oxford Buildings [276], an audio

dataset, TIMIT acoustics [251], and several real video feeds.

137

Table 5.5: Data correlation in different settings.

Setting Avg norm distance
ImageNet (same synset) 1.00 +/- 0.15
Video (10 frames apart) 0.31 +/- 0.04
Video (30 frames apart) 0.53 +/- 0.27

The ImageNet plant subset includes over 4000 types of labeled plant images, taken from different

viewpoints under various lighting conditions. The Oxford Buildings dataset consists of 5000 images

of 11 specific landmarks in Oxford, hand-picked from Flickr. The TIMIT acoustic dataset [251]

contains broadband recordings of 630 speakers of eight major dialects of English, and we use it for

speaker identification. For end-to-end performance evaluation, we also use several 10-minute real

video feeds, taken on a university campus and in a grocery store, multiple times at either location.

Table 5.5 compares the average feature vector distance between two images from the same syntax

set in ImageNet and two frames from a video feed. The distance is significantly larger (by more than

50%) for ImageNet than for successive video frames, because no spatio-temporal correlation exists

between images in ImageNet.

Therefore, we mainly use the standard image and audio datasets in our evaluation. Although

they appear less realistic than real audio or video feeds, they present more challenging cases for

computation reuse and help us gauge the lower-bound performance of FoggyCache.

Hardware setup. With a 64-bit NVIDIA Tegra K1 processor, Google Nexus 9 is one of the most

powerful commodity Android mobile devices. Thus, we use the tablet (running Android OS 7.1) as

the client side device to assess the potential benefit from saving computation with FoggyCache. The

FoggyCache server runs on a Ubuntu (14.04) Linux desktop server with a quad-core 2.3 GHz Intel

Xeon CPU and 16 GB of memory.

5.3.5.2 Microbenchmarks

A-LSH performance. We first select a subset from ImageNet, optimize the parameter r for the

default LSH, and calculate the average kth nearest neighbor distance (meanpDkq in Section 5.3.2.2).

Recall that this distance captures the density of the data in the LSH (a large distance indicates a low

density and vice versa). Then, we select other subsets of images where their average kth nearest

138

0 2 4 6 8
Relative k-th nearest neighbour distance

0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e Default LSH
A-LSH

(a) F1 score

0 2 4 6 8
Relative k-th nearest neighbour distance

10 -1

100

101

102

R
el

at
iv

e
La

te
nc

y Default LSH
A-LSH

(b) Latency

Figure 5.16: Lookup quality and latency for the default LSH and A-LSH.

distances range from 1{8 of the Dk to 8ˆ. These subsets serve as the input to the default LSH and

A-LSH. k is set to the default value 10. The lookup quality is measured by the F1 score, the harmonic

mean of precision (the correct rate of the results) and recall (the percentage of the correct results

found), ranging from 0 (the worst) to 1 (the optimal).

Figure 5.16a shows that the lookup quality of the default LSH fluctuates dramatically given

different data densities, whereas A-LSH consistently maintains an F1 score over 0.98. The default

LSH only achieves a high lookup quality when the data distribution matches the pre-determined

value of r. Figure 5.16b further shows that the lookup time for A-LSH remains constant. However,

there is no guarantee for the default LSH, especially when the data are densely stored and thus highly

clustered into the same few hash buckets. Note that although LSH appears to incur a lower lookup

time for sparsely populated data, the corresponding lookup quality is low. Together the figures show

that A-LSH accurately adapts the parameters to the dynamics of the input data distribution, and

consistently achieves a near-optimal balance between the lookup quality and speed.

H-kNN performance. We compare H-kNN with naive kNN and a state-of-the-art variant, weighted

kNN [258]. The performance metric is the reuse precision, which is upper-bounded by 100%.

First, we select 1100 images from 4 types of syntax sets in ImageNet. 1000 of them are fed

into the cache, and the other 100 images as inputs for H-kNN k and θ0 (the homogeneity threshold)

values vary. The solid and dashed lines in Figure 5.17a represent the H-kNN and native kNN

performance, respectively. H-kNN outperforms native kNN by an increasing margin as θ0 increases,

which confirms that (i) the homogenization process improves the reuse accuracy, and (ii) the level of

accuracy is indeed tunable through the parameter θ0. This means that applications can customize

the level of reuse based on desirable accuracy guarantees. The value of k makes little difference,

139

0.7 0.75 0.8 0.85 0.9 0.95

Homogeneity threshold 3

0.75

0.8

0.85

0.9

0.95

R
eu

se
 p

re
ci

si
on

 (
%

)

H-kNN

Native kNN

k = 10
k = 15
k = 20

(a) Effects of θ0

0.1 0.2 0.3 0.4 0.5

Ratio of border images

0.4

0.6

0.8

1

R
eu

se
 p

re
ci

si
on

 (
%

)

Native kNN
H-kNN
Weighted kNN

(b) Effects of data distribution

Figure 5.17: Reuse precision of H-kNN and alternatives.

50 100 150 200
Number of input types

0

0.2

0.4

0.6

0.8

1

C
ac

he
 h

it
ra

te Stratefied
Random

(a) cache size 1000

100 500 900 1300 1700 2100
Number of local cache entries

0

0.2

0.4

0.6

0.8

1

C
ac

he
 h

it
ra

te

Stratefied
Random

(b) 100 types of inputs

Figure 5.18: Client cache hit rates and server cache sampling strategies.

however. Based on the results, we set k = 10 and θ0 = 0.9 throughout this section. More detailed

tradeoff is shown in Figure 5.20b.

Second, we investigate how H-kNN copes with two intersecting clusters (the example against

native kNN in Section 5.3.2.3), by adjusting the proportion of cache keys at the intersection of

two clusters. Figure 5.17b indicates that H-kNN maintains a consistent and high reuse precision

regardless of the key distribution. Unfortunately, both native and weighted kNN suffer, as predicted

in Section 5.3.2.3, with the reuse precision dropping by 40%.

Client cache warm-up. We next evaluate the benefit of stratified sampling for client cache warm-up

(Section 5.3.3.2), and compare that to randomly sampling server cache entries.

We generate different key-value pairs from ImageNet data to store in the FoggyCache server

cache and also for reuse queries. Then, we bootstrap the client cache with stratified sampling and

random sampling (as the baseline) respectively. The performance of the algorithms is shown in terms

of the client cache hit rate.

First, we set the client cache size to 1000 entries, change the number of syntax sets of images

140

0.1 0.2 0.3 0.4 0.5
New computation ratio

0

20

40

60

80

100

F
ra

ct
io

n
of

 r
eu

se
(%

)

FoggyCache
Random
No speculation

(a) Speculation performance

0.1 0.2 0.3 0.4 0.5
New computation ratio

0

20

40

60

80

S
pe

cu
la

tiv
e

ex
ec

 r
at

e
(%

)

Ideal
FoggyCache

(b) Speculation efficiency

Figure 5.19: Performance comparison of speculative execution in FoggyCache and alternatives.

at the server, and observe the cache hit rates. We make two observations from Figure 5.18a. (i)

When fewer than 100 types of images are cached at the server, stratefied sampling achieves over

50% cache hit rate, which confirms that popular images in ImageNet are adequately prioritized. (ii)

When more types of images are cached at the server, the client cache hit rate from random sampling

drops to nearly zero, whereas stratified sampling still manages over 25% hit rate, showing better type

coverage in the latter.

Then, we select 100 types of images from the server cache and vary the client cache size.

Figure 5.18b shows both strategies achieve 80% hit rate, but stratefied sampling requires only a

quarter of the cache space needed by random sampling.

Speculative server cache updates. Finally, we gauge the benefit of incorporating speculative

computation (Section 5.3.3.3) in FoggyCache. We select a subset of ImageNet dataset to create

multi-device reuse query streams, where the fraction of “new” computation (no reusable results

exist at all) ranges from 5% to 50%. We compare our speculative execution algorithm with two

alternatives, random and no speculation.Random means invoking speculative execution with the

same probability as in FoggyCache, but selecting inputs randomly. The ideal reuse proportion is

100%.

Figure 5.19a illustrates that FoggyCache consistently caches in around 90% of the reuse oppor-

tunities, whereas random and no speculation cannot keep up as the fraction of “new” computation

increases, because FoggyCache accurately predicts the importance of a computation record for future

reuse and preemptively generates that record before the actual reuse request. Figure 5.19b compares

the fraction of computation that is speculatively executed in the ideal case (each speculatively gener-

ated record is visited later) and in FoggyCache, and our algorithm only triggers 10% unnecessary

141

0 20 40 60 80 100
Proportion of reusable computation(%)

0

20

40

60

80

100

A
ct

ua
l r

eu
se

 r
at

e(
%

) Reference86% accuracy
90% accuracy
94% accuracy
98% accuracy

(a) Reuse opportunities captured

0.4 0.6 0.8 1
Homogeneity threshold 3

20

40

60

80

100

T
im

e
sa

ve
d

&
 A

cc
y

(%
)

Accuracy

Time saved

6000 entires
200 entries

(b) Reuse vs accuracy tradeoff

Figure 5.20: Tradeoff between captured reuse opportunities and computation accuracy.

computation at most compared to the ideal case.

5.3.5.3 Tradeoff between reuse and accuracy

Accuracy. We run object recognition using ResNet50 [15] on selected ImageNet images to assess

the tradeoff between the aggressiveness of reuse and the accuracy.

First, we quantify how well FoggyCache recognizes reuse opportunities when the fraction of

reusable queries in the whole query stream varies. The dashed line in Figure 5.20a shows the ideal

case and serves as a reference. Any points above indicate false negatives (missed reuse), while points

below the line indicate false positives (inaccurate reuse).

FoggyCache consistently captures the reuse opportunities in all data combinations while main-

taining high accuracy. Both the false positive and false negative rates are below 10% (the 0% and

100% reuse points) while the reuse accuracy exceeds 90%. Even if we reuse conservatively to ensure

a 98% accuracy, we only miss fewer than 30% of all reuse chances.

Second, we examine the trend of the total computation time saved and the relative accuracy

(compared to native recognition accuracy), both as the homogeneity threshold θ0 varies. We run the

experiments for various caching levels, ranging from 200 to 6000 cached entries. For legibility only

the lines for 200 and 6000 entries are plotted. The other lines fall between these two.

The dashed and solid lines in Figure 5.20b plot the relative accuracy and the time saved respec-

tively. We can see that setting θ0 to between 0.8 to 0.95 would ensure both higher than 90% accuracy

and less than 20% loss of the reusable opportunity. This confirms that FoggyCache achieves a decent

balance between accuracy and computation time reduction.

142

Table 5.6: End-to-end FoggyCache performance.

Workload Latency (ms) Energy (mJ)
App. Description Offl.

(w/o)
Offl.
(w/)

w/o. w/ w/o. w/

Speaker
Id.

Num of
speakers

4 28.1 8.4 13.1 4.2 30.4 9.8
8 28.1 11.8 13.1 5.5 30.4 13.3
16 28.1 12.1 13.1 5.9 30.4 13.7
32 28.1 13.2 13.1 6.4 30.4 15.0

Landmark
Det.

DNNs
AlexNet [221] 24.6 16.3 37.1 19.5 365.9 39.5
ResNet50 [15] 32.8 17.7 102.4 27.9 1315 110.7
VGG16 [277] 53.8 21.4 269.6 57.3 3132 246.9

Video feed (campus) 53.8 12.0 269.6 25.4 3132 114.2

Plant
Recog.

DNNs
AlexNet 24.6 16.6 37.1 21.4 316.8 113.9
GoogleNet [278] 29.2 17.9 65.3 32.2 817.4 236.8
VGG16 53.8 27.9 269.6 99.8 3132 901.4

Video feed (grocery) 53.8 16.5 269.6 30.8 3132 131.1

User experience. We conduct an informal user survey among students on our campus to gauge how

approximate reuse affects user experience. In the context of the cognitive assistance application,

students are asked whether they are satisfied with different combinations of the percentage accuracy

loss and the reuse benefits (in terms of percentage reduction of battery consumption and latency),

with data points taken from Figure 5.20b. From 100 completed questionnaires, 92 are satisfied with

the user experience when the accuracy loss is under 5%, and 80 satisfied when the accuracy loss is

under 10%. FoggyCache performs well for both cases. For more accuracy-sensitive applications,

such as autonomous driving and medical pill recognition, the accuracy of FoggyCache can be tuned

by carefully selecting the value of θ0 and the number of cached records.

5.3.5.4 End-to-end system performance

We investigate the end-to-end performance of FoggyCache using the three aforementioned application

benchmarks. We separately consider two modes of execution for mobile applications, local processing

on the mobile device and edge offloading. The real-time decision made by the offloading runtime

between the two modes is orthogonal to the FoggyCache behavior. The performance metrics are

latency, energy consumption, and accuracy. The latency is measured end-to-end from the arrival of a

request to its completion. The accuracy is defined as the percentage of correct results. The energy

consumption is calculated based on the real-time battery status collected with the Android debugging

143

4 8 16 32
Number of speakers

0

20

40

60

80

100

O
ve

ra
ll

A
cc

ur
ac

y
(%

)

Native
with FoggyCache

(a) Speech identification

AlexNet ResNet50 VGG16
0

20

40

60

80

100

O
ve

ra
ll

A
cc

ur
ac

y
(%

)

Native
with FoggyCache

(b) Landmark recognition

AlexNet GoogleNet VGG16
0

20

40

60

80

100

O
ve

ra
ll

A
cc

ur
ac

y
(%

)

Native
with FoggyCache

(c) Plant recognition

Figure 5.21: The accuracy of the processing pipeline with and without FoggyCache.

API, adb dumpsys batterystats.

Experiment settings. We use Nexus 9 tablets as the FoggyCache clients, configured with a 15 MB

local cache size. The FoggyCache server is deployed on a Linux machine which also serves as

the edge offloading destination. The network latency between the clients and the server is around

20 ms, a typical value for the edge setting [279]. We also tried lower latencies but they only made

FoggyCache perform better.

144

For Speaker identification, we randomly select 3200 speech segments from 4, 8, 16, and 32

speakers respectively from the TIMIT dataset, add different ambient noise, and extract the PLP

feature vectors We store the computation records in the server cache, and populate 10% of them

to the tablet for client cache warmup. Another 200 speech segments are selected from TIMIT and

preprocessed the same way to serve as the test inputs. The core computation of the workload follows

the same setting as for DeepEar [248].

For landmark detection and plant recognition, we take 5000 images each from the Oxford dataset

and ImageNet and both the campus and grocery store video feeds. The standard datasets exhibit no

spatio-temporal correlation between successive inputs, while the real video feeds contain common

imperfections, e.g., motion induced or out-of-focus blur. We extract feature vectors, warm up the

client cache with 10% of the data, and process another 1000 images as test inputs. Four fine-tuned

neural network models (AlexNet, GoogleNet, ResNet50, and VGG16) are used to evaluate the

performance.

Performance. Table 5.6 records the performance in all the experiments. “With” and “Without”

refer to whether FoggyCache is enabled, and “Offl.” refers to cases where the actual computation

happens at the edge server instead of the local device. The numbers in bold highlight the most

remarkable performance of FoggyCache. FoggyCache achieves a 50-70% latency reduction for both

local processing and edge offloading for the standard image datasets. When using the real video feeds,

the processing latency could be reduced by 88%. The energy consumption is only measured for local

processing. FoggyCache reduces the native energy consumption by a factor of 3 for the standard

datasets and 20 for the video feeds. Figure 5.21 shows that FoggyCache caps the overall accuracy

penalty under 5% while achieving good performance. This confirms that A-LSH and H-kNN can

ensure the reuse quality regardless of the specific settings. The accuracy penalty for the video feeds

is constantly under 1%, hard to tell from the bars and thus not shown in the figure.

To sum up, FoggyCache effectively reduces the latency and energy consumption (for on-device

processing) of the native processing pipelines, and the benefit is more pronounced when the native

logic is more resource intensive.

145

1 3 5 7 9 11 13 15 17 19
Number of devices

0

0.2

0.4

0.6

0.8

R
eu

se
d

P
ro

po
rt

io
n Upper bound

Single device

Cross-dev w/ spec
Cross-dev w/o spec

Figure 5.22: Single- or cross-device reuse achieved with FoggyCache, with or without speculation.

5.3.5.5 Large-scale experiment

Finally, we run the landmark detection benchmark and examine how the number of devices affects

the overall computation reuse opportunities.

Each client device is supplied with 300 input images about 5 landmarks, randomly selected from

the Oxford dataset. This corresponds to feeding to the application a 10-second video at 30 fps with

no inter-frame correlation. The server and clients caches are configured to be the same sizes as in

Section 5.3.5.4 but remain empty before the start, so that the caches evolve solely with the reuse

needs on all client devices. We start with a single FoggyCache client, and then increase the number

of concurrent clients in successive runs.

Figure 5.22 compares the reuse opportunities captured in several scenarios: reuse within the same

device only (the “single-device reuse” line), cross-device reuse with or without speculative execution,

and the theoretic upper bound which quantifies the intrinsic reuse opportunity within the input dataset.

The error-bars are obtained from 10 runs. As the number of devices in the system increases, the

percentage of successful reuse also climbs quickly. Once we have more than 10 devices in the system,

the reuse proportion stays above 70%. Additional devices provide marginal benefit, given the upper

bound is around 80%. The figure also shows that FoggyCache outperforms intra-device reuse by

more than 55% and FoggyCache without speculation by 25%.

146

5.3.6 Related Work

We are aware of little existing work exploring approximate computation reuse algorithms in mobile

scenarios. Further, the FoggyCache system incorporates these approximate algorithms into the

existing execution runtime on mobile devices. We discuss a few approaches closest to ours.

Precise redundancy elimination. Redundancy elimination (RE) is widely employed, e.g., in mobile

applications, data analytics [229, 230, 231, 232], networking [280, 281], and storage systems [282].

However, existing schemes involve exact matching while FoggyCache handles fuzzy redundancy.

Starfish [77], MCDNN [19], and Flashback [225] all include caching while accelerating computation-

intensive mobile applications. However, they either involve exact matching with cache entries or

consider only low-dimensional input values within a pre-defined set. In contrast, FoggyCache handles

fuzzy input matching without prior knowledge of the data distribution.

UNIC [233] targets security aspects of RE, which are orthogonal to our design and can be

combined with FoggyCache.

Approximate techniques. Approximate caching techniques such as Doppelgänger [234] and Image

set compression [283] leverage similarity between data pieces to reduce storage overhead. Ap-

proximate computing techniques such as ApproxHadoop [284] and Paraprox [285] selectively skip

inputs and tasks to reduce computation complexity with tolerable errors. FoggyCache adopts similar

insights such as exploiting similarity and suppressing error propagation but approximates repeated

computation using different techniques.

Cachier[286] and Potluck[38] are the closest to FoggyCache. Cachier alludes to the notion of

approximate reuse but focuses on cache entry optimization, assuming certain query patterns. Our

own prior work, Potluck, experiments with avoiding duplicated image recognition and augmented

reality rendering for single device. In contrast, FoggyCache is more general, achieving high quality

reuse and tunable performance, without assumptions about the workload.

Cross-device collaboration. Collaborative sensing and inference systems such as CoMon [287]

and Darwin [288] revolve around multi-device coordination in the same context. However, unlike

FoggyCache eliminating fuzzy redundancy between devices, these cross-device collaboration works

focus on partitioning a big job into correlated or independent subtasks, distributing them among the

devices, and then collecting the individually results.

147

5.3.7 FoggyCache summary

In this section, we argue for cross-device approximate computation reuse for emerging mobile

scenarios, where the same application is often run on multiple nearby devices processing similar

contextual inputs. Approximate reuse can simultaneously achieve low latency and accurate results,

and is a promising optimization technique.

We design techniques, adaptive locality sensitive hashing (A-LSH) and homogenized k nearest

neighbors (H-kNN), to address practical challenges to achieve generic approximate computation reuse.

We then build FoggyCache, which extends the mobile offloading runtime to provide approximate

reuse as a service for mobile edge computing. Evaluation shows that, when given 95% accuracy

target, FoggyCache consistently harnesses over 90% of all reuse opportunities, which translates to

reduced computation latency and energy consumption by a factor of 3 to 10. FoggyCache provides

tuning mechanisms to further improve the accuracy.

While FoggyCache is optimized for multi-device mobile and edge scenarios, our reuse techniques

A-LSH and H-kNN are generic and have broader applicability. We will investigate other approximate

reuse paradigms in future work.

148

5.4 Harnessing DNN Semantic Correlation for Computation Reuse

Zooming into the workload growth, we already explained in Chapter 4 that new inference workloads

are increasingly generated from similar deep neural network (DNN) models. The similarity between

models stems from three trending practice: (i) Different vendors design custom models to achieve the

same goal; (ii) Model variants are derived from the same base models through tuning or compression,

though largely yielding the same outcomes; and (iii) Transfer learning facilitates generating new

models incrementally from old ones. As a result, there is significant correlation between inference

workloads regarding their application semantics.

The problem around DL inference then is that, at the system level, all of the above are treated as if

individually new models and distinctive workloads. In other words, we actually need the abstractions

to efficiently represent and exploit the similarity between models as the key to further accelerate DL

inference workloads by eliminating redundancy between DNN models. Fortunately, the semantic

equivalence detection techniques mentioned in Section 4.3 is actually the right tool that we can use.

Harnessing the semantic equivalence between deep learning models, we build the corresponding

operator for semantic computation reuse that approximates a new model with an existing model

(Section 5.4.3). This is implemented over MXNet, and further as part of a prediction serving runtime

transparent to the application (Section 5.4.4). Extensive evaluation (Section 5.4.5) shows that we

improve the inference throughput by 13ˆ with less than 5% accuracy drop, and still up to 7ˆ even

with less than 2% accuracy loss.

In summary, we make the following contributions:

First, we highlight the extent of semantic correlation between emerging deep learning inference

workloads resulting in redundant inference computation.

Second, based on the DNN semantic equivalence detection techniques (Section 4.3), we build

DeCor as a runtime service for DNN semantic computation reuse between deep learning inference

workloads. Evaluation shows this is a promising approach to accelerate inference workloads without

additional resource consumption.

149

5.4.1 Correlated models leading to computation redundancy

Given the widely existing correlation between DNN models (explained in Section 4.2), if the

semantically equivalent models then process the same input during inference, they are likely to incur

redundant computation. This is best explained through an intuitive understanding of the inference

process.

Equivalence between models. Training deep neural network models are theoretically understood

as a function approximation process, where the exact “functionality” is unknown, but are gradually

approximated through sufficient input data and output labels. The same “function semantics” can be

“described” by totally different model representations. The correlated models (or model segments)

mentioned in previous chapters are simply examples of models capturing the same task semantics

but with different structures and/or parameter values. Therefore, these correlated models should be

viewed as equivalent during inference execution.

Note that this notion of function semantics is unique to DL and not captured in the traditional

sense of program semantics. For a conventional function like sort(), it is possible to specify the

strongest postcondition uniquely since it produces a unique output given any input. In contrast, the

strongest postconditions for a DL task is not unique because multiple outcomes may be acceptable

given the same input.

Context-driven inputs. Most real-time DL inference workloads process visual, audio, and textual

inputs collected from the local context, and therefore the same inputs recur with a high probabil-

ity [289]. This observation has motivated several systems [290, 39, 61, 60] to incorporate caching as

a key component in their designs. For instance, a single video stream from a surveillance camera

triggers the execution of all video analytic workloads installed on the device. Further, successive

frames in a stream are almost identical in most cases. Similarly, the same piece of text (e.g., email,

webpage) could trigger multiple NLP workloads such as named entity recognition for information

extraction and machine translation for non-native readers.

Computation redundancy. When several inference tasks with “equivalent” models (or segments)

are invoked on identical or highly similar inputs, the seemingly distinct workloads are in fact

semantically equivalent. In this case, processing all the workloads then incurs redundant computation.

Ideally, a distinct input should only trigger one of these equivalent workloads, not all.

150

Table 5.7: Performance speedup opportunity when realizing equivalent model segments.

Model Time saving Performance comparison
Faster-rcnn 46% saved 0.8 / 0.78 mAP
PSPNet 74% saved 0.84 / 0.82 mIoU

Empirical motivation for optimization. We empirically quantify the level of redundancy between

correlated models and segments, namely the performance optimization opportunity. We prepare

three workloads, respectively for recognition, detection, and segmentation, following a production

setting [154]. The DNN models (PSPNet and Fast-rcnn) for the latter two are transferred from Resnet

(trained for recognition), with their own successive layers added and fine-tuned based on domain-

specific datasets. We emulate computation reuse by comparing the outputs from the recognition

tasks to the corresponding outputs obtained from the other two workloads. Table 5.7 illustrates the

computation time speedup and accuracy loss for the detection and segmentation tasks following this

reuse strategy. Notably, over 3x of performance speedup with less than 2% result of quality loss

shows that exploiting the equivalence between models is a promising optimization opportunity.

5.4.2 Measuring equivalence between DNNs

In Section 4.3, we have proposed the algorithms for measuring the correlation (namely, the inter-

changeability) between DNN models and model segments. Hereby, we further discuss the design and

implementation for achieving an automatic equivalence measuring system with high performance.

Whole model equivalence detection. The whole model equivalence detection is mainly built on

the idea of using a validation dataset to check the output similarity between two DNNs. Therefore,

we implement this module based on the abstraction of TensorFlow Estimator. Specifically, all the

configuration settings around the validation dataset and the two DNNs are kept in a session_config.

Then, the validation dataset are randomly shuffled and fed to the estimator in an infinite loop, wrapped

in an input_fn. Finally, when the desired generalization level (or the pre-defined maximal size) is

reached, the input_fn will throw an out_of_input exception to finish the estimator.predict()

function, which eventually completes the whole model equivalence measuring process.

Model segment equivalence detection. The model segment equivalence detection is essentially

implemented as a DNN graph traversal pass, following the topological order between the operators.

151

ONLINEOFFLINE

Input/Model

M odel

Exist ing M odels

Semantic Equivalence
Detection

Upper
Bound

Analysis
Reuse Op

Cond

 Model
Rewrite

 M odel Profi le

[M odel I D , rPlan]

Model ID

rPlan selectionList(rPlans)
Key:

Model ID
Value:

List(rPlans)

Model
execution

Record
store Output

reuseRatio Update

Native Deep
Learning

Framework
(TF, MXNet)

Forward
(Model,Input)Bind()

App

DeCor

Storage

Inference Serving Runtime

Python

Symbolic Expr

Binder

Engine

Hardware

R ...

Figure 5.23: DeCor system architecture.

The graph traversal logic is the same as the normal forward and backward passes of the DNN

computation graph. The main difference for the equivalence detection pass is the visit() function

for each DNN operator, which will invoke the backend computation kernel associated to the operator

to derive the output difference upper bound, based on the upper bound of the input difference. Note

that the initial input difference to the two DNN segments are particularly important, as it serves as the

bridge to incorporate input semantic equivalence with the DNN segment equivalence. For instance,

if the threshold used to determine input data semantic equivalence can be used as the initial input

difference upper bound to carry out the model segment equivalence detection.

Extending to new operators. Extending the automatic equivalence measuring module to incorporate

new operators is fairly easy, highly similar to adding a new operator (layer) in an existing DL

framework. First, we specify the hyper-parameters of the new operator (e.g., input shape, output

shape, data type, etc.) and register them to the graph definition template (e.g., NNVM for MXNet,

GraphDef for TensorFlow) of our equivalence measuring module. Then, we associate the operator

with a backend computation kernel that achieve the semantic correlation analysis. The backend

computation kernel accelerates the relevant numerical computation (e.g., calculating the eigenvalue

of a matrix, and flattening a convolution kernel into 2D matrix, etc.), which can then be implemented

on CUDA, MKL, or other CPU and accelerator libraries for better efficiency. In summary, the two

steps are very straightforward, requiring only a few hundred lines of code to plug in to the model

segment equivalence measuring module.

5.4.3 Semantic computation reuse

In this section, we explain DeCor, a system that achieves cross-job semantic computation reuse,

which harnesses the aforementioned semantic equivalence relations across inference jobs to optimize

Deep Learning system performance by eliminating semantically redundant computation.

152

Typical DL framework workflow. Initially, a model should be defined programatically or loaded

from a file via certain frontend language (i.e. Python) interface. The DL framework will parse

the model, allocate runtime resources, and generate the model executor when the Bind(model)

API is called. Then, the executor can be used to run inference based on new inputs by calling

Forward(input) API of the DL framework.

DeCor runtime. Our runtime has two triggering paths, offline and online, intercepting the two native

APIs Bind(model) and Forward(input) respectively. Figure 5.23 shows DeCor architecture. The

offline path detects semantic equivalence relations of the model, rewrites it to embed reuse operations,

and updates the index of the semantic-centric storage service. The online path carries out the actual

semantic reuse operations for each inference task.

5.4.3.1 Offline path

Semantic equivalence detection. As the first module in the offline path, it receives the symbolic

computation graph representation (i.e. nnvm::symbol for MXNet) of the new model registered.

Then, the algorithms described in Section 4.3 and Section 5.4.2 are conducted upon the new model

and existing models, which finally mark the start and end positions of all semantically equivalent

model segments (or the whole model).

As the whole graph semantic equivalence checking can be costly, we further optimize it to avoid

doing pair-wise checking between the new model and all existing models, making the algorithm

scalable with the total number of models. Specifically, suppose the existing models A1 to An are

semantically equivalent, instead of checking the new model B with all n models, we randomly select

three to check. If all three models are determined as equivalent to B, then we associate B with all n

existing models as equivalent to each other.

Automatic model rewriting. Having the positions of semantic equivalent segments within a neural

network model, the next step is to modify the model so that the reuse operations (including query

and insertion to the storage service) can be triggered automatically.

Figure 5.23 gives a simple example of how model rewriting works. Essentially, the model

rewriter leverages the control flow operators (supported by almost all mainstream deep learning

frameworks [145, 86, 291]) to embed the conditional logic where the actual execution of the marked

153

Param 1

Forked Layer only
with metadata

1 2 3 { cond
1 2
reuse 3

cond 2 3
reuse

1Param 2 Param 3

Pointers to
parameters

Original model Rewritten models

Layer Model segments to
embed reuse operator.

Figure 5.24: Model rewrite with overlapping segments.

segments depends on whether there are existing computation results stored that are reusable. To be

specific, suppose we have a model expressed as Ga Ñ Gb Ñ Gc, where Ga, Gb, and Gc are three

computation graph segments connected sequentially. If Gb has a semantically equivalent counterpart,

for a conditional operator expressed as cond(ifSym, thenSym, elseSym), the ifSym corresponds

to the operations of querying reusable computation records; thenSym corresponds to the operations

of determining the reuse outputs; and elseSym corresponds to the original computation segment Gb

followed by a storage insertion. Finally, the model is rewritten as Ga Ñ condpi f , then,Gbq Ñ Gc.

When multiple reusable model segments overlap with each other, shown by Figure 5.24, their

model rewriting plans conflict. In this case, the original model is forked multiple copies and we

rewrite them differently for each plan. Note that only the metadata, namely the model attributes with

the dataflow dependency between layers, are actually copied which is extremely lightweight. The

memory space holding model parameters are not copied but just referenced by corresponding nodes

(grey ones in Figure 5.24) in the forked models.

After rewriting, the rewritten model is passed to the native framework to generate the model

executor. Finally, a profiling step is triggered to measure the additional overhead brought by the

embedded reuse operations and the saved computation time via reuse. After filtering out inefficient

models, these numbers along with the QoR difference bound derived by previous analysis will be

kept with the model executor as its profile, which in total forms a semantic reuse plan (rPlan in

Figure 5.23).

154

5.4.3.2 Semantic-centric storage service

To skip computation, we also need a storage service to store inference results from the “equivalent”

models. It performs three basic functions: query, insertion, and management.

Semantic-centric indexing. The key design difference compared to traditional storage systems is

the indexing structure of our storage service. First, the top-level index of the computation records is

no longer the name or hash of the inference model. Instead, we index computation records by their

“semantics” (each of which is given a sID to denote). Namely, all (intermediate) computation records

from different but semantically equivalent model segments will be stored in the same place. Hence,

when retrieving reusable computation records, all these semantically equivalent records can all be

considered, breaking the intra-model reuse boundary.

Further, to achieve semantic-centric indexing, an additional data structure is necessary, model-

semantic mapping table, which keeps track of the mapping between each model and its all semantic

equivalence information. Each entry in the table corresponds to a distinct upper-level DL model,

which contains the mapping from the model ID (ID) to a list of semantic reuse plans (rPlan). Each

rPlan includes the specific rewritten model executor (rModExec) with reuse operations embedded,

and the rProfile (computation saving capability, additional overheads, and QoR difference bound)

of current plan. Further, the reuse success ratio of each sID in the current reuse plan is also kept in

the profile. They are used and updated during online operations (Section 5.4.3.3).

Computation record store. The computation records under the same “semantics” are stored and

organized by the Locality Sensitive Hashing (LSH) structure [142] to support exact, nearest, and

range query. To meet the strict latency requirements of online inference workloads, computation

records are all kept in the main memory. Even though, we will show in the evaluation that comparing

to the memory footprint needed to execute the DL model, far less additional memory is required to

keep previous computation records.

Query and insertion. Query happens when an input invokes a specific model. The model-semantic

mapping table is first searched to decide the optimal reuse plan (Section 5.4.3.3). Then, the corre-

sponding model executor is launched, and when the embedded reuse operator is triggered, the LSH

structure associated to the corresponding semantics will be queried for reusable computation records

based on the input. Insertion happens when new models are registered with reuse plans generated, or

155

when finishing actual computation where new input-output records are generated. The former case

will update the index and mapping table. The latter inserts the record under corresponding semantics.

Storage management. Semantic-centric storage has a runtime profiler carrying out two important

management functions, (i) updating real-time reuse statistics, reuseFreq for online reuse plan

selection (Section 5.4.3.3); and (ii) trim the least efficient reuse-embedded execution graph with

respect to the memory consumption limit. During runtime, after accumulating enough real-time

statistics (i.e. reuse success ratio) and the memory reaches limit, the least performant reuse plan will

be removed by the profiler to save space.

5.4.3.3 Online path

Reuse plan selection. Once a new inference model is invoked with an input data, the first step

is to lookup the model-semantic mapping table to select the optimal model executor to run (if

multiple exists), which is based on an intuitive heuristic, performance improvement (Score), where

Score“ Σn
i“1reuseFreqi ¨compSavedi´p1´ reuseFreqiq ¨overheadi among all components i within

the whole model that are wrapped with reuse operations. The reuse plan with the highest Score will

be finally selected. Noticeably, compSavedi, overheadi, and reuseFreqi are all kept in the reuse plan.

Reuse operations. Reuse operations include two parts, retrieving computation records and deter-

mining reuse output based on these records, which are wrapped in the if and then statement of

the reuse operator respectively. Retrieving computation record is simply a storage system lookup

using the current input as the key. If no records are retrieved, reuse fails and will invoke the actual

computation logic. If multiple records are returned, the final output is determined as the average

among all outputs of the retrieved records.

5.4.3.4 Discussion

Security and privacy. It is a traditional topic about secure and private computation reuse [233]. Fur-

ther, deep learning poses unique security challenges in overcoming model reverse engineering [292]

and adversarial examples [293]. These aspects are not the main focus of our work, and our system

does not impede the combination with these approaches. Moreover, as the nature of semantic reuse,

the exact input-output records are much harder, if not totally impossible, to be inferred simply by

156

retrieving the reuse storage.

Scalability. Different from training, online inference workloads hardly run in distributed mode.

Therefore, scaling up the model serving system by launching more endpoints (e.g. VMs, containers)

still works when DeCor module is plugged in. Furthermore, the semantic-centric storage service

could easily scale up by migrating it upon distributed in-memory storage (e.g. Redis [294] and

Ignite [295]).

5.4.4 Implementation

We implement DeCor over MXNet 1.4 [86], which can run both on the edge (mobile devices and

edge servers) and in datacenters. Our implementation consists of around 600 lines of C++ code in

the backend for automatic model-rewriting, as well as around 3000 lines of Python code that builds

a minimalist inference serving system prototype along with the storage system as a background

service.

All the offline and online components are implemented in the backend, so as to minimize

frontend-backend API calls. Specifically, semantic equivalence detection module is implemented

in nnvm::graph_editor.cc that directly handle nnvm::Symbol. Then, function rewriter is imple-

mented as a nnvm::Pass that operates on internal computation graph nnvm::Graph.

DeCor interface. DeCor sits between the inference workloads and the native DL framework. It

exposes a set of configuration items for each upper-level task to specify their preferences for semantic

computation reuse (i.e., equivalence threshold, QoR metrics, validation datasets). On the framework

side, DeCor intercepts the two native MXNet APIs, Bind() and Forward(). Invocations of these

two native APIs by upper-level applications trigger the offline and online paths of DeCor respectively.

Meanwhile, the users can specify, in their per-app config file, the error metric and the accuracy target.

Porting to other DL frameworks. Although our implementation is specific to MXNet, the system

can be ported easily to other DL frameworks. Prevailing DL platforms follow similar APIs and

workflows. For example, TensorFlow provides two APIs: Create() creates a runnable session with

the newly loaded model, and Run() runs the session associated to a model when new inputs are

fed. These are the counterparts, respectively, to Bind() and Forward() in MXNet. Further, the

ONNX [173] forum provides cross-framework interpret-ability of DNN models, which raises the

157

0 10 20 30 40

Relative QoR threshold (%)

75

80

85

90

95

100

R
el

at
iv

e
Q

oR
 (

%
)

Recognition
Detection
Segmentation

(a) Relative accuracy.

0 10 20 30 40

Relative QoR threshold (%)

0

5

10

15

20

25

R
eu

se
 r

at
io

 (
%

)

Recognition
Detection
Segmentation

(b) Reuse ratio.

Figure 5.25: Tradeoff between accuracy loss and reuse ratio.

possibility of semantic reuse even across platforms.

5.4.5 Evaluation

5.4.5.1 General setup

Application benchmarks. Using the same set of typical DL application examples (Section 4.6.3),

we build six realistic DL inference workloads, three for vision (image recognition [148], object

detection [161], and semantic segmentation [162]), and the other three for NLP (sentiment analysis,

question and answering (Q & A), and named entity recognition) [7]. All models and configurations

of the six workloads are reproduced from their original papers.

Datasets. We use domain specific standard datasets to fine-tune the six workloads and generate

input data streams according to real settings. Specifically, ImageNet [34], Caltech256 [174], and

SUN397 [175] are used for object and scene recognition; PascalVOC [176] and MSCOCO [177] are

used to fine-tune object detection; Ade20k [178] is used to fine-tune segmentation; SQuAD1.1 [150],

IMDB [179], and CoNLL03 [180] are used to fine-tune Q & A, sentiment analysis, and named entity

recognition workloads respectively.

Hardware. A Linux server running Ubuntu (16.04) acts as our model server, with a quad-core

2.3 GHz Intel Xeon CPU, 64 GB memory, and an NVIDIA K80 GPU with 24 GB graphic memory.

We focus on the server inference scenario in this section, since resource-constrained edge devices

only benefit more from DeCor based on our empirical results.

158

5.4.5.2 Accuracy loss vs saving computation

We first prepare 4 similar models, the pre-trained Resnet50 as the base, and transferring it to generate

three other models specific to each vision workloads mentioned earlier. The three new models

are fine-tuned by randomly selecting 40 parameters and retraining those with task-specific training

datasets to different levels, ensuring the relative QoR loss caused by reusing results from pre-trained

base model falls evenly between 0% to 40%, with same input streams assembled from the the vision

related standard datasets.

We consider two metrics: the portion of reuse leveraged, the accuracy loss relative to what the

native model achieves. In Figure 5.25, the x-axis corresponds to the semantic equivalence threshold,

controlling the tradeoff between the two metrics. Figure 5.25b shows that DeCor consistently captures

over 85% as reusable, among all actually reusable fine-tuned models. Meanwhile, Figure 5.25a

shows that the actual QoR loss caused by reuse is always below the QoR threshold. These suggest

DeCor could perform well on both metrics. Although it gradually lose track of reuse opportunities

when setting semantic equivalence threshold over 10%, such loose semantic equivalence threshold

hardly makes any practical sense.

5.4.5.3 End-to-end performance

Settings. We use all six CV and NLP workloads described in Section 5.4.5.1. 90% of the CV tasks

have models transferred from the Resnet50 base model, whereas the other 10% are chosen from the

MXNet model zoo for the same task. The NLP workloads are all transferred from the BERT [7]

base model, with different layers added to achieve different downstream tasks. The input data are

synthesized from mixing randomly selected data from the nine standard datasets (all collected from

real scenarios) described earlier, to emulate input streams from real settings. Specifically, we generate

1000-entry input data streams with different data correlation frequency (25% to 100%) to measure our

system performance. The semantic equivalence threshold is set to 5% for most experiments, which

means we want less than 5% QoR loss incurred by semantic computation reuse. This corresponds to

the median accuracy drop within the range of 2-10% considered acceptable for speedup [151]. We

also experiment with 2% accuracy drop as a conservative scenario.

Performance. We evaluate the system using four metrics: relative QoR, processing time distribution

159

0 20 40 60 80
Computation time (ms)

0

0.5

1

C
D

F
 o

f c
om

pu
ta

tio
n

tim
e

no-reuse
25%
50%
75%
~100%

(a) Processing time CDF.

Recog Segm Detect NER Q&A Senti
Type of applications

70

80

90

100

R
eu

se
 r

at
io

 (
%

)

25%
50%
75%
~100%

(b) Relative QoR.

Recog Segm Detect NER Q&A Senti
Type of applications

0

5

10

15

T
hr

ou
gh

pu
t (

ta
sk

/s
)

25%
50%
75%
~100%

(c) Task throughput.

Figure 5.26: End-to-end performance.

of all inference tasks, system throughput (tasks handled per second) and the corresponding resource

consumption interpretation. Figure 5.26 shows the performance of DeCor for all workloads and input

streams. The four bars in each group correspond to the performance at different input correlation

levels (25% to 100%), i.e., the maximum portion of reuse possible.

DeCor reduces the median task processing time by 40% with 50% reusable inputs, and could

reduce the task processing time by up to 85% when nearly all inputs are reusable. Compared to the

160

Table 5.8: Time of gauging semantic equivalence.

Metrics Alexnet ResNet VGG19 BERT
Params (M) 62 60 143 340

Time (Seg) 1.89s 2.77s 5.46s 14.10s
Time (Whole) 1.25s 4.46s 6.18s 22.92s

native framework, DeCor further improves the task throughput by up to 13ˆ, which translates to a

10ˆ reduction of resource consumption to achieve the same response time. DeCor achieves such

performance improvement with less than 4% relative QoR penalty. Even if the equivalence threshold

is 2%, DeCor could still achieve a median task throughput improvement of around 2ˆ, and up to

7.4ˆ.

Performance predictability. Admittedly, the reported performance is workload-specific, but it

provides useful hints to predict DeCor performance given specific settings. 100% reuse (optimal)

typically provides an order of magnitude improvement on the processing latency. On that basis we

can estimate the overall performance improvement by further considering the proportion of recurring

input. Multiplying the improvement numbers at optimal reuse (100% reuse opportunities leveraged)

by the input recurrence ratio provides a simple but effective estimate.

5.4.5.4 Additional system overhead

DeCor introduces several additional operations to the system runtime. In this section, we profile

them individually.

Latency of semantic equivalence detection. Recall that DeCor assesses semantic equivalence

between models offline (Section 5.4.3.1), which is not on the critical path of processing inference

workloads. We mainly consider whether DeCor can handle huge DNN models.

We use the four models (listed as Table 5.8 column titles) as the inputs to dry-run the whole

model and model segment equivalence detection algorithms respectively, and measure the average

time consumption.

Table 5.8 shows the time needed to detect equivalent model segments and determine whole model

equivalence. We can clearly see that the algorithm scales well when the model size is extremely large.

Even for the huge BERT model which would consume over 12 GB memory during runtime, our

algorithm still finishes within around 20s, which is far less than the average time that a new model is

161

Table 5.9: Reuse operation latency.

Records 5K 50K 500K 5M
Time (ms) 0.02 0.05 3.6 13.7

Table 5.10: Memory footprint with/without semantic reuse.

Model Memory # Reuse plans Addi. (MB)
Resnet50 0.89 GB 1 / 5 / 10 16 / 41 / 65
VGG19 3.28 GB 1 / 5 / 10 12 / 34 / 59

designed and registered to serve inference.

Latency of reuse operations. The reuse operations are on the online paths (Section 5.4.3.3). The

main latency overhead is from the LSH-based nearest record search [142] useful for CV workloads,

since completely identical inputs are rare [39]. This is much slower than the extremely fast (ns level),

hash-based exact search previously used for computation reuse.

We prepare the storage with records of 2 KB each, varying the number of records from 5K to 5M.

In each case, the storage is queried 20 times, and we time the search operations. Table 5.9 shows

the average search time vs storage size. The online reuse operation is fast enough even considering

similarity-based retrieval. In practice, the storage size needed is far smaller than 10 GB, and 5 ms is

the typical retrieval latency, much faster than actually processing an inference task.

Memory and computation overhead for rewritten models. Since DeCor rewrites the original

computation graph of a new model to generate reuse plans by embedding reuse operators (Sec-

tion 5.4.3.1), additional memory is needed. However, this should be negligible since only the

metadata of the model are copied and modified. Table 5.10 shows the added memory consumption

incurred by randomly generating 1 - 10 reuse plans for Resnet50 and VGG19. The additional memory

footprint is mostly under 50 MB, indeed negligible compared to the memory footprint of the original

model. This can be further reduced when the background profiler trims inefficient plans.

Rewritten models may also incur computation overhead unnecessarily during run time in the

absence of reuse records, despite the presence of similar models at “compile” time. DeCor avoids

this with the offline profiling stage of model writing. Table 5.11 shows that DeCor incurs up to

7% additional execution time when embedding as many as 6 reuse operators (corresponding to 6

different possibilities of model origin). In practice, it is unlikely that a single model is derived from

more than six sources of base models.

162

Table 5.11: Computation overhead for rewritten models.

Reuse Ops 1 2 3 4 5 6
Addi. time (%) 3.8 4.9 5.6 6.1 6.5 7

5.4.6 Related Work

We are not aware of prior work that discusses or leverages semantic equivalence across DL inference

workloads for system optimization. The most related work otherwise revolves around accelerating

DL inference or redundancy elimination.

System optimizations for Deep Learning inference. To accelerate DL inference workloads, exist-

ing approaches variously optimize the computation graph [20], the prediction serving runtime [61, 60],

and hardware support [74, 72]. These require proposing new programming models, revising system

workflows and resource management, or hardware-specific support. In contrast, we harness the

intrinsic semantic correlation between inference workloads for inter-job optimization. Our approach

is agnostic to the workload semantics, the underlying hardware or the framework. The DeCor

runtime is transparent to applications and does not involve intrusive modification to the native DL

frameworks.

Redundancy elimination. Redundancy elimination (RE) is widely employed, e.g., in DL serving

systems, data analytics [229, 230, 231, 232], databases [296], and storage systems [282]. Unlike

DeCor, however, none of the existing systems harnesses the semantic equivalence between functions.

Clipper [60], Pretzel [61] and MCDNN [19] all include caching to accelerate latency-sensitive

inference tasks. They either treat the DL model as a blackbox or require the app developer to manually

annotate the exact segment to be shared globally. In contrast, DeCor automatically extracts semantic

equivalence relations between jobs. For data analytics frameworks, DryadInc [230], Nectar [232],

Differential dataflow [229], and SEeSAW [231] achieve cross-job RE with a centralized cache service

and a program rewritter to suppress redundant execution paths. Although deep learning workloads

are run on these frameworks, only recurrent jobs (the same job run repeatedly) benefit from the RE

mechanism. The system abstractions and programming models are also quite different. UNIC [233]

targets security aspects of RE, which are orthogonal to our design and can be combined with DeCor.

All existing proposals assume precise function matching, i.e., reuse is conditioned on the same

function being invoked again and again. While this might suit traditional (discrete) programs, it will

163

increasingly miss truly “overlapping” DL inference computation, since DL inference workloads are

more amorphous.

5.4.7 DeCor summary

As new deep learning inference workloads are increasingly generated from variants of existing

pre-trained models or transfer learning, we can observe significant correlation between models and

workloads. However, existing system solutions treat all inference workloads as individually distinct,

often navigating a difficult tradeoff between minimizing response time, inference error, and resource

consumption.

In this section, we provide primitives to efficiently represent and expose the semantic similarity

between DNN models, and an immediate application is to provide semantic computation reuse. Our

system, DeCor, is built as a runtime extension of MXNet, transparent to the application. Extensive

evaluation shows that our system can accelerate the inference workloads by 13ˆ while incurring

within 5% accuracy drop relative to the performance of the native models.

Looking ahead, we expect the equivalence detection to serve as a building block for further

system optimizations, for example, to help restructure the computation pipeline across workloads.

We will explore those in future work.

164

Chapter 6

Conclusion and Future Direction

6.1 Conclusion

This thesis takes a first step in building the end-to-end service abstractions for enabling efficient deep

learning inference at the edge. We first highlight the existing challenges in the end-to-end process of

deploying deep learning inference tasks from cloud to heterogeneous edge devices and propose a

universal framework to resolve them, which consists of a series of new service abstractions to the

users. Specifically, we build Mistify - an automated DNN model porting service that accelerates and

scales the customization of DNN logic towards heterogeneous edge settings (Chapter 3); Sommelier -

a DNN model indexing and query service that simplify the manual, time and computation efforts of

selecting the optimal DNN model to achieve the desired functionality under specific constraints and

budgets (Chapter 4); and Potluck, FoggyCache, and DeCor that collectively perform approximate

caching and computation reuse on the inference workloads to accelerate the speed of inference

execution and meanwhile improve resources and energy efficiency (Chapter 5).

From a system perspective, these services abstract away the required interdisciplinary expertise

and laborious manual efforts from the users, and significantly lower the barrier of deploying deep

learning inference logic. From an algorithmic perspective, we adopt a unique paradigm in our

solutions, treating learning-based workloads collectively as white boxes, proposing algorithms that

harness the hidden correlation between them to optimize the resource efficiency of the whole process

of deploying deep learning inference tasks.

While building these systems, we further form a deeper understanding of DNN based workloads

165

and develop an initial approach to measure the semantics of DNN models. Looking forward, we

believe this will lead to opportunities far beyond just optimizing inference workload preparation and

execution. It should be further extended to use as a novel primitive to explore the explainable AI,

ethical AI, and AI fairness. I hope my thesis could be a stepping stone that helps facilitate more

future works in this area, which would ultimately bring Deep Learning and AI technology seamlessly

running around all of us.

166

6.2 Future directions

My generic approach of understanding and harnessing the features of AI-driven workloads to design

service abstractions that automate manual services and achieve seamless execution of them at the

edge is a promising direction far beyond this thesis. AI is moving extremely fast. In the foreseeable

future, the learning-based functions will become increasingly dynamic and heterogeneous in their

processing logic, execution preferences, and etc. Therefore, a promising direction based on this thesis

is to build more future-proof system framework that dynamically coordinates both the cloud and

the heterogeneous edge devices and covers the whole life cycle of machine learning, including data

ingestion, training, validation and testing, porting, and inference. Moreover, the unique algorithmic

approaches proposed by this thesis could be leveraged in a much broader scope (e.g., from a database

and/or compiler perspective) to further optimize the ML systems. Following are a few promising

directions to explore.

Continuous learning. According to the recent research, the lifecycle of the DNN model is becoming

long-lasting and dynamic, instead of the single-shot training and inference. Under such trend of

online continuous learning, the data ingestion and model evolution process become essential to

the success of a DL function. Leveraging the primitives to analyze semantic correlation between

new data collected and the model checkpoints along the evolution paths, we can build systems for

continuous learning focusing on higher data efficiency, faster iterations, and robust to data noise and

malicious training behaviors.

Data management for explainable AI. Machine Learning testing as well as deep learning explan-

ability is an area gaining much focus. When using ML techniques for autonomous driving and

medical scenarios, the security, robustness and predictability of DNN models are critical. Several

recent systems (e.g., DeepXplore [163]) proposed to automatically detect adversarial scenarios by

reasoning the decision boundary between semantically similar models. In light of this, it would be

interesting to build tools to reason, compare, and analyze DNN model internals (e.g., diff, debug,

and generative tools), based on the semantic correlation notion mentioned above. These systems

could tell the fine-grained relations between two models and generate tailored data for DNN testing

under targeted scenario. An immediate usage could be generating artificial models from a pre-trained

model to construct the environment for DNN testing, contributing to much more automated, robust,

167

and controllable DNN robustness testing. Eventually, our notion of semantic correlation would serve

as a key towards explainable AI, uncovering the missing connections between DNN (or even human

brain) neuron topology and the functional semantics.

Semantic-invariant deep learning compiler. Another promising direction to explore is adding

the novel primitives of measuring semantic correlation to the existing DL compiler stack (e.g.,

TVM [20]). Existing deep learning compilers optimize the computation graph of a DNN model

by performing greedy rule-based graph transformations and operator kernel generation, both of

which only consider transformations that strictly guarantee mathematical equivalence. Harnessing

the function approximation nature of machine learning, we can further explore the opportunities of

extending the current DL workload optimization from mathematical to semantic invariant.

168

Bibliography

[1] M. V. Barbera, A. Epasto, A. Mei, S. Kosta, V. C. Perta, and J. Stefa. CRAWDAD

dataset sapienza/probe-requests (v. 2013-09-10). Downloaded from https://crawdad.org/

sapienza/probe-requests/20130910, September 2013.

[2] MobiSys’19 IoT Day. https://www.sigmobile.org/mobisys/2019/iot_day_

program/.

[3] N. V. Kim and M. A. Chervonenkis. Situation control of unmanned aerial vehicles for road

traffic monitoring. Modern Applied Science, 9(5):1, 2015.

[4] Foghorn: The Original Edge-Native AI Platform. https://www.foghorn.io/

edge-ai-platform/.

[5] Driving intelligent retail with AI. https://www.nvidia.com/en-us/industries/

retail/.

[6] S. Ravi and Z. Kozareva. Self-governing neural networks for on-device short text classification.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 887–893, 2018.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[8] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong. Redeye: analog convnet image

169

sensor architecture for continuous mobile vision. In ACM SIGARCH Computer Architecture

News, volume 44, pages 255–266. IEEE Press, 2016.

[9] Aetina: dedicated AI computing solution at edge. https://www.aetina.com/index.php.

[10] Avnet. Ai at the edge: The next frontier of the internet of things, 2018.

[11] Gartner highlights 10 uses for ai-powered devices. https://www.gartner.com/en/

newsroom/press-releases/2018-03-20-10-uses-for-ai-powered-devices.

[12] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S. Ramesh,

and J. Soyke. Tensorflow-serving: Flexible, high-performance ml serving. arXiv preprint

arXiv:1712.06139, 2017.

[13] W. Qualcomm. We are making on-device ai ubiquitous, 2018.

[14] S. A. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan. The emerging landscape of

edge computing. GetMobile: Mobile Computing and Communications, 23(4):11–20, 2020.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016.

[16] D. Evans. The internet of things: How the next evolution of the internet is changing everything.

CISCO white paper, 1(2011):1–11, 2011.

[17] Tensorflow hub: A repository of reusable assets for machine learning with tf. https://

github.com/tensorflow/hub.

[18] Deploy machine learning models on mobile and IoT devices. https://www.tensorflow.

org/lite.

[19] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy. Mcdnn:

An approximation-based execution framework for deep stream processing under resource

constraints. In Proceedings of the 14th Annual International Conference on Mobile Systems,

Applications, and Services, pages 123–136, 2016.

170

[20] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze,

et al. tTVMu: An automated end-to-end optimizing compiler for deep learning. In 13th

tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 18), pages

578–594, 2018.

[21] J. Lin, W. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han. Mcunet: Tiny deep learning on iot

devices. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances

in Neural Information Processing Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[22] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.

In International Conference on Machine Learning, pages 6105–6114, 2019.

[23] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac,

Y. Jia, B. Jia, et al. Machine learning at facebook: Understanding inference at the edge. In

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),

pages 331–344. IEEE, 2019.

[24] Share of smartphone models sold in the united states from

2017 to 2020. https://www.statista.com/statistics/755671/

united-states-smartphone-market-share-by-model/.

[25] Edge tpu: Google’s purpose-built asic designed to run inference at the edge. https://cloud.

google.com/edge-tpu.

[26] S. Bianco, R. Cadene, L. Celona, and P. Napoletano. Benchmark analysis of representative

deep neural network architectures. IEEE Access, 6:64270–64277, 2018.

[27] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767, 2018.

[28] Y. Mao, Y. Wang, C. Wu, C. Zhang, Y. Wang, Y. Yang, Q. Zhang, Y. Tong, and J. Bai.

Ladabert: Lightweight adaptation of bert through hybrid model compression. arXiv preprint

arXiv:2004.04124, 2020.

171

[29] J. Wang, J. Pan, and F. Esposito. Elastic urban video surveillance system using edge computing.

In Proceedings of the Workshop on Smart Internet of Things, page 7. ACM, 2017.

[30] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann. Dynamic urban surveillance

video stream processing using fog computing. In 2016 IEEE second international conference

on multimedia big data (BigMM), pages 105–112. IEEE, 2016.

[31] C. Xia, J. Zhao, H. Cui, X. Feng, and J. Xue. Dnntune: Automatic benchmarking dnn models

for mobile-cloud computing. ACM Transactions on Architecture and Code Optimization

(TACO), 16(4):1–26, 2019.

[32] World around you with Google Lens and the Assistant. https://www.blog.google/

products/assistant/world-around-you-google-lens-and-assistant/.

[33] Google Street View Image API.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[35] Economist. The cost of training machines is becoming a prob-

lem. https://www.economist.com/technology-quarterly/2020/06/11/

the-cost-of-training-machines-is-becoming-a-problem, 2020.

[36] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning

in NLP. In A. Korhonen, D. R. Traum, and L. Màrquez, editors, Proceedings of the 57th

Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July

28- August 2, 2019, Volume 1: Long Papers, pages 3645–3650. Association for Computational

Linguistics, 2019.

[37] Mistify: Automating DNN model porting for on-device inference at the edge. In 18th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX

Association, April 2021.

[38] P. Guo and W. Hu. Potluck: Cross-application approximate deduplication for computation-

intensive mobile applications. In Proceedings of the Twenty-Third International Conference

172

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’18,

pages 271–284, New York, NY, USA, 2018. ACM.

[39] P. Guo, B. Hu, R. Li, and W. Hu. Foggycache: Cross-device approximate computation

reuse. In Proceedings of the 24th Annual International Conference on Mobile Computing and

Networking, MobiCom ’18, pages 19–34, New York, NY, USA, 2018. ACM.

[40] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen. Convergence of edge

computing and deep learning: A comprehensive survey. IEEE Communications Surveys &

Tutorials, 22(2):869–904, 2020.

[41] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope: optimizing neural

network queries over video at scale. Proceedings of the VLDB Endowment, 10(11):1586–1597,

2017.

[42] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and M. Philipose.

Videoedge: Processing camera streams using hierarchical clusters. In 2018 IEEE/ACM

Symposium on Edge Computing (SEC), pages 115–131. IEEE, 2018.

[43] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica. Chameleon: scalable adaptation

of video analytics. In Proceedings of the 2018 Conference of the ACM Special Interest Group

on Data Communication, pages 253–266, 2018.

[44] M. Bansal, A. Krizhevsky, and A. S. Ogale. Chauffeurnet: Learning to drive by imitating the

best and synthesizing the worst. In A. Bicchi, H. Kress-Gazit, and S. Hutchinson, editors,

Robotics: Science and Systems XV, University of Freiburg, Freiburg im Breisgau, Germany,

June 22-26, 2019, 2019.

[45] Y. He, N. Zhao, and H. Yin. Integrated networking, caching, and computing for connected ve-

hicles: A deep reinforcement learning approach. IEEE Transactions on Vehicular Technology,

67(1):44–55, 2017.

[46] R. Q. Hu et al. Mobility-aware edge caching and computing in vehicle networks: A deep

reinforcement learning. IEEE Transactions on Vehicular Technology, 67(11):10190–10203,

2018.

173

[47] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha, A. Kapoor, M. Sudarshan,

and S. Stratman. Farmbeats: An iot platform for data-driven agriculture. In 14th tUSENIXu

Symposium on Networked Systems Design and Implementation (tNSDIu 17), pages 515–529,

2017.

[48] Alexa Skills Kit: Add Voice to Your Big Idea and Reach More Customers. https://

developer.amazon.com/alexa-skills-kit.

[49] W. Qualcomm. Mobile processors that are smooth, fast, and powerful. https://www.

qualcomm.com/products/mobile-processors.

[50] S. Mittal. A survey on optimized implementation of deep learning models on the NVIDIA

jetson platform. J. Syst. Archit., 97:428–442, 2019.

[51] B. Hu and W. Hu. Linkshare: device-centric control for concurrent and continuous mobile-

cloud interactions. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,

pages 15–29, 2019.

[52] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacogenet-

ics: An end-to-end case study of personalized warfarin dosing. In 23rd tUSENIXu Security

Symposium (tUSENIXu Security 14), pages 17–32, 2014.

[53] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco, H. Adam, H. Neven,

and L. Vincent. Large-scale privacy protection in google street view. In 2009 IEEE 12th

international conference on computer vision, pages 2373–2380. IEEE, 2009.

[54] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,

J. Konecny, S. Mazzocchi, H. B. McMahan, et al. Towards federated learning at scale: System

design. arXiv preprint arXiv:1902.01046, 2019.

[55] H. Vanholder. Efficient inference with tensorrt, 2016.

[56] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie: Efficient

inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture

News, 44(3):243–254, 2016.

174

[57] Deep learning for Java. https://deeplearning4j.org/.

[58] Integrate machine learning models into your app. https://developer.apple.com/

documentation/coreml.

[59] Y. Ma, D. Yu, T. Wu, and H. Wang. Paddlepaddle: An open-source deep learning platform

from industrial practice. Frontiers of Data and Domputing, 1(1):105–115, 2019.

[60] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica. Clipper: A

low-latency online prediction serving system. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 613–627, 2017.

[61] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and M. Interlandi.

tPRETZELu: Opening the black box of machine learning prediction serving systems. In 13th

tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 18), pages

611–626, 2018.

[62] W. Wang, S. Wang, J. Gao, M. Zhang, G. Chen, T. K. Ng, and B. C. Ooi. Rafiki: machine

learning as an analytics service system. arXiv preprint arXiv:1804.06087, 2018.

[63] Z. Ahmed, S. Amizadeh, M. Bilenko, R. Carr, W.-S. Chin, Y. Dekel, X. Dupre, V. Eksarevskiy,

S. Filipi, T. Finley, et al. Machine learning at microsoft with ml. net. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages

2448–2458, 2019.

[64] Mxnet model server (mms). https://github.com/awslabs/mxnet-model-server, 2018.

[65] A. Lavin and S. Gray. Fast algorithms for convolutional neural networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 4013–4021, 2016.

[66] J. Cong and B. Xiao. Minimizing computation in convolutional neural networks. In Interna-

tional conference on artificial neural networks, pages 281–290. Springer, 2014.

[67] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks through ffts. In

Y. Bengio and Y. LeCun, editors, 2nd International Conference on Learning Representations,

ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

175

[68] D. H. Bailey, K. Lee, and H. D. Simon. Using strassen’s algorithm to accelerate the solution

of linear systems. The Journal of Supercomputing, 4(4):357–371, 1991.

[69] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian. Automatically

scheduling halide image processing pipelines. ACM Transactions on Graphics (TOG), 35(4):1–

11, 2016.

[70] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficient dataflow

for convolutional neural networks. ACM SIGARCH Computer Architecture News, 44(3):367–

379, 2016.

[71] Y.-H. Chen, J. Emer, and V. Sze. Using dataflow to optimize energy efficiency of deep neural

network accelerators. IEEE Micro, 37(3):12–21, 2017.

[72] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer.

cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[73] M. Dukhan, Y. Wu, and H. Lu. Qnnpack: open source library for optimized mobile deep

learning.

[74] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit.

In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA),

pages 1–12. IEEE, 2017.

[75] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao: A small-

footprint high-throughput accelerator for ubiquitous machine-learning. In ACM Sigplan

Notices, volume 49, pages 269–284. ACM, 2014.

[76] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al.

Dadiannao: A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 609–622. IEEE, 2014.

[77] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency support for computer vision

applications. In Proceedings of the 13th Annual International Conference on Mobile Systems,

Applications, and Services, pages 213–226. ACM, 2015.

176

[78] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based deep learning framework

for continuous vision applications. In Proceedings of the 15th Annual International Conference

on Mobile Systems, Applications, and Services, pages 82–95, 2017.

[79] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards wearable

cognitive assistance. In Proceedings of the 12th annual international conference on Mobile

systems, applications, and services, pages 68–81. ACM, 2014.

[80] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and M. Satyanarayanan. Towards scalable

edge-native applications. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,

pages 152–165, 2019.

[81] M. Abadi, M. Isard, and D. G. Murray. A computational model for tensorflow: an introduction.

In Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages, pages 1–7, 2017.

[82] C. Lattner, J. Pienaar, M. Amini, U. Bondhugula, R. Riddle, A. Cohen, T. Shpeisman, A. Davis,

N. Vasilache, and O. Zinenko. Mlir: A compiler infrastructure for the end of moore’s law.

arXiv preprint arXiv:2002.11054, 2020.

[83] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. TensorFlow: A System for Large-Scale Machine Learning. In OSDI, volume 16,

pages 265–283, 2016.

[84] NNVM: reusable graph IR for deep learning systems. https://github.com/apache/tvm/

tree/main/nnvm.

[85] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame, T. Chen, and Z. Tatlock.

Relay: A new ir for machine learning frameworks. In Proceedings of the 2nd ACM SIGPLAN

International Workshop on Machine Learning and Programming Languages, pages 58–68,

2018.

[86] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang.

Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.

arXiv preprint arXiv:1512.01274, 2015.

177

[87] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov, N. Gibson, J. Hegeman,

M. Lele, R. Levenstein, et al. Glow: Graph lowering compiler techniques for neural networks.

arXiv preprint arXiv:1805.00907, 2018.

[88] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep

learning library. In Advances in neural information processing systems, pages 8026–8037,

2019.

[89] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken. Optimizing dnn

computation with relaxed graph substitutions. SysML 2019, 2019.

[90] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M. Norouzi,

S. Bengio, and J. Dean. Device placement optimization with reinforcement learning. In

International Conference on Machine Learning, pages 2430–2439. PMLR, 2017.

[91] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken. Taso: optimizing deep

learning computation with automatic generation of graph substitutions. In Proceedings of the

27th ACM Symposium on Operating Systems Principles, pages 47–62, 2019.

[92] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou. Astra: Exploiting predictability to

optimize deep learning. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 909–923,

2019.

[93] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and A. Krishna-

murthy. Learning to optimize tensor programs. In S. Bengio, H. M. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,

NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3393–3404, 2018.

[94] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv preprint arXiv:1704.04861, 2017.

178

[95] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[96] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang,

and K. Murphy. Progressive neural architecture search. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 19–34, 2018.

[97] S. Ravi. Projectionnet: Learning efficient on-device deep networks using neural projections.

arXiv preprint arXiv:1708.00630, 2017.

[98] Neural Network Distiller by Intel AI Lab: a Python package for neural network compression

research. https://github.com/NervanaSystems/distiller.

[99] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression

and acceleration on mobile devices. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 784–800, 2018.

[100] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi. Morphnet: Fast &

simple resource-constrained structure learning of deep networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1586–1595, 2018.

[101] H. Cai, C. Gan, and S. Han. Once for all: Train one network and specialize it for efficient

deployment. arXiv preprint arXiv:1908.09791, 2019.

[102] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu, Y. Wu, Y. Jia, et al.

Chamnet: Towards efficient network design through platform-aware model adaptation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

11398–11407, 2019.

[103] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[104] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using

reinforcement learning. In 5th International Conference on Learning Representations, ICLR

179

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,

2017.

[105] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable

image recognition. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8697–8710. IEEE Computer

Society, 2018.

[106] H. Liu, K. Simonyan, and Y. Yang. DARTS: differentiable architecture search. In 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

[107] E. Real, C. Liang, D. R. So, and Q. V. Le. Automl-zero: Evolving machine learning algorithms

from scratch. In Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning

Research, pages 8007–8019. PMLR, 2020.

[108] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big

transfer (bit): General visual representation learning. 2019.

[109] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets

via a compression approach. In J. G. Dy and A. Krause, editors, Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,

Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages

254–263. PMLR, 2018.

[110] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep

relu networks. Machine Learning, 109(3):467–492, 2020.

[111] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and gener-

alization for overparameterized two-layer neural networks. In K. Chaudhuri and R. Salakhut-

dinov, editors, Proceedings of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research, pages 322–332. PMLR, 09–15 Jun

2019.

180

[112] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv

preprint arXiv:1503.02531, 2015.

[113] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton. Large scale dis-

tributed neural network training through online distillation. arXiv preprint arXiv:1804.03235,

2018.

[114] T. Li, J. Li, Z. Liu, and C. Zhang. Knowledge distillation from few samples. arXiv preprint

arXiv:1812.01839, 2018.

[115] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep mutual learning. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 4320–4328, 2018.

[116] Pytorch mobile. https://pytorch.org/mobile/home/, 2019.

[117] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[118] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. van der

Maaten. Exploring the limits of weakly supervised pretraining. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 181–196, 2018.

[119] V. Popov, M. Kudinov, I. Piontkovskaya, P. Vytovtov, and A. Nevidomsky. Distributed

fine-tuning of language models on private data. 2018.

[120] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast optimization,

network minimization and transfer learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4133–4141, 2017.

[121] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 and cifar-100 datasets. URl: https://www. cs.

toronto. edu/kriz/cifar. html, 6, 2009.

[122] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez. Scaling video analytics

systems to large camera deployments. In Proceedings of the 20th International Workshop on

Mobile Computing Systems and Applications, pages 9–14. ACM, 2019.

181

[123] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le. Mnasnet:

Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[124] J. M. Alvarez and M. Salzmann. Learning the number of neurons in deep networks. In

Advances in Neural Information Processing Systems, pages 2270–2278, 2016.

[125] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning

in nlp. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 3645–3650, 2019.

[126] MorphNet: a library of learning deep network structure during training. https://github.

com/google-research/morph-net.

[127] Y. Xiong, R. Mehta, and V. Singh. Resource constrained neural network architecture search:

Will a submodularity assumption help? In Proceedings of the IEEE International Conference

on Computer Vision, pages 1901–1910, 2019.

[128] A. Shin, D. Y. Kim, J. S. Jeong, and B.-G. Chun. Hippo: Taming hyper-parameter optimization

of deep learning with stage trees. arXiv preprint arXiv:2006.11972, 2020.

[129] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,

A. Segal, and K. Seth. Practical secure aggregation for privacy-preserving machine learning.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 1175–1191, 2017.

[130] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient

learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,

pages 1273–1282. PMLR, 2017.

[131] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd

ACM SIGSAC conference on computer and communications security, pages 1310–1321, 2015.

[132] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathematical

statistics, 22(1):79–86, 1951.

182

[133] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Úlfar Erlingsson. Scalable

private learning with pate. In ICLR, 2018.

[134] N. Hynes, R. Cheng, and D. Song. Efficient deep learning on multi-source private data. CoRR,

abs/1807.06689, 2018.

[135] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow, and K. Talwar. Semi-supervised

knowledge transfer for deep learning from private training data. In 5th International Confer-

ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings. OpenReview.net, 2017.

[136] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deepcache: Principled cache for mobile deep

vision. In Proceedings of the 24th Annual International Conference on Mobile Computing

and Networking, pages 129–144, 2018.

[137] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for provably robust

neural networks. In International Conference on Machine Learning, pages 3578–3586, 2018.

[138] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold: A model-agnostic frame-

work for interpretation and diagnosis of machine learning models. IEEE transactions on

visualization and computer graphics, 25(1):364–373, 2018.

[139] A. Ruoss, M. Baader, M. Balunović, and M. Vechev. Efficient certification of spatial robustness.

arXiv preprint arXiv:2009.09318, 2020.

[140] S. Parthasarathy and M. Ogihara. Exploiting dataset similarity for distributed mining. In

International Parallel and Distributed Processing Symposium, pages 399–406. Springer, 2000.

[141] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels

using a learned similarity metric. In Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48, ICML’16, pages 1558–1566.

JMLR.org, 2016.

[142] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based

on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational

geometry, pages 253–262. ACM, 2004.

183

[143] J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinfor-

matics, 17(5):419–428, 2001.

[144] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane. Mobisr: Efficient

on-device super-resolution through heterogeneous mobile processors. In The 25th Annual

International Conference on Mobile Computing and Networking, pages 1–16, 2019.

[145] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th tUSENIXu

Symposium on Operating Systems Design and Implementation (tOSDIu 16), pages 265–283,

2016.

[146] P. Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.", 2013.

[147] Protocol buffers: language-neutral, platform-neutral extensible mechanism for serializing

structured data. https://developers.google.com/protocol-buffers/.

[148] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In

European conference on computer vision, pages 630–645. Springer, 2016.

[149] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine

comprehension. arXiv preprint arXiv:1611.01603, 2016.

[150] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine

comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, pages 2383–2392, 2016.

[151] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato,

G.-Y. Wei, and D. Brooks. Minerva: Enabling low-power, highly-accurate deep neural

network accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), pages 267–278. IEEE, 2016.

[152] TensorFlow Official Models. https://github.com/tensorflow/models.

[153] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani. Deep Learning for IoT Big Data

and Streaming Analytics: A Survey. IEEE Communications Surveys & Tutorials, 2018.

184

[154] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law, P. Malani, A. Malevich,

S. Nadathur, et al. Deep learning inference in facebook data centers: Characterization,

performance optimizations and hardware implications. arXiv preprint arXiv:1811.09886,

2018.

[155] N. J. Yadwadkar, F. Romero, Q. Li, and C. Kozyrakis. A case for managed and model-less

inference serving. In Proceedings of the Workshop on Hot Topics in Operating Systems, pages

184–191, 2019.

[156] Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn). https://intel.

github.io/mkl-dnn/.

[157] Open source deep learning code and pretrained models. https://modelzoo.co/.

[158] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia,

Y. Jia, A. Kalro, et al. Applied machine learning at facebook: A datacenter infrastructure per-

spective. In 2018 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pages 620–629. IEEE, 2018.

[159] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural

networks? In Advances in neural information processing systems, pages 3320–3328, 2014.

[160] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS

Deep Learning and Representation Learning Workshop, 2015.

[161] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection

with region proposal networks. In Advances in neural information processing systems, pages

91–99, 2015.

[162] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2881–2890, 2017.

[163] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of deep learning

systems. In proceedings of the 26th Symposium on Operating Systems Principles, pages 1–18,

2017.

185

[164] H. Karimi, T. Derr, and J. Tang. Characterizing the decision boundary of deep neural networks.

arXiv preprint arXiv:1912.11460, 2019.

[165] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and S. R. Dulloor.

Scaling video analytics on constrained edge nodes. SysML, 2019.

[166] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient smt

solver for verifying deep neural networks. In International Conference on Computer Aided

Verification, pages 97–117. Springer, 2017.

[167] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. Ai2:

Safety and robustness certification of neural networks with abstract interpretation. In 2018

IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2018.

[168] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[169] B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-bayesian approach to spectrally-

normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[170] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for

neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249,

2017.

[171] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M.

Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[172] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. Adanet: Adaptive structural

learning of artificial neural networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 874–883. JMLR. org, 2017.

[173] ONNX: Open Neural Network Exchange Format. https://onnx.ai/.

186

[174] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[175] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene

recognition from abbey to zoo. In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 3485–3492. IEEE, 2010.

[176] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual

object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338,

June 2010.

[177] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

Microsoft coco: Common objects in context. In European conference on computer vision,

pages 740–755. Springer, 2014.

[178] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene Parsing through

ADE20K Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[179] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors

for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon,

USA, June 2011. Association for Computational Linguistics.

[180] E. F. Sang and F. De Meulder. Introduction to the conll-2003 shared task: Language-

independent named entity recognition. arXiv preprint cs/0306050, 2003.

[181] P. Kraft, D. Kang, D. Narayanan, S. Palkar, P. Bailis, and M. Zaharia. Willump: A statistically-

aware end-to-end optimizer for machine learning inference. arXiv preprint arXiv:1906.01974,

2019.

[182] G. Singh, R. Ganvir, M. Püschel, and M. Vechev. Beyond the single neuron convex barrier for

neural network certification. In Advances in Neural Information Processing Systems, pages

15072–15083, 2019.

[183] M. Balunovic and M. Vechev. Adversarial training and provable defenses: Bridging the gap.

In International Conference on Learning Representations, 2020.

187

[184] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-

driven autonomous cars. In Proceedings of the 40th international conference on software

engineering, pages 303–314, 2018.

[185] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions for monitoring and

improving ml model. arXiv preprint arXiv:2003.01668, 2020.

[186] U. Ehsan, P. Tambwekar, L. Chan, B. Harrison, and M. O. Riedl. Automated rationale

generation: a technique for explainable ai and its effects on human perceptions. In Proceedings

of the 24th International Conference on Intelligent User Interfaces, pages 263–274, 2019.

[187] R. Fagin, R. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-structural

databases. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 184–195, 2005.

[188] S. Roy and D. Suciu. A formal approach to finding explanations for database queries. In

Proceedings of the 2014 ACM SIGMOD international conference on Management of data,

pages 1579–1590, 2014.

[189] F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Ananthanarayan, J. Sheu, E. Meijer,

X. Wu, et al. Diff: a relational interface for large-scale data explanation. Proceedings of the

VLDB Endowment, 12(4):419–432, 2018.

[190] D. Y. Yoon, N. Niu, and B. Mozafari. Dbsherlock: A performance diagnostic tool for

transactional databases. In Proceedings of the 2016 International Conference on Management

of Data, pages 1599–1614, 2016.

[191] S. Roy, A. C. König, I. Dvorkin, and M. Kumar. Perfaugur: Robust diagnostics for performance

anomalies in cloud services. In 2015 IEEE 31st International Conference on Data Engineering,

pages 1167–1178. IEEE, 2015.

[192] Openshade with visually impaired users. http://www.openshades.com/.

[193] A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian detection for driving assistance systems:

Single-frame classification and system level performance. In Intelligent Vehicles Symposium,

2004 IEEE, pages 1–6. IEEE, 2004.

188

[194] J. Flinn. Cyber foraging: Bridging mobile and cloud computing. Synthesis Lectures on Mobile

and Pervasive Computing, 7(2):1–103, 2012.

[195] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in

mobile computing. IEEE pervasive Computing, 8(4), 2009.

[196] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker. Agile

Application-aware Adaptation for Mobility. In Proceedings of the Sixteenth ACM Symposium

on Operating Systems Principles, SOSP ’97, pages 276–287, New York, NY, USA, 1997.

ACM.

[197] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.

Maui: making smartphones last longer with code offload. In Proceedings of the 8th in-

ternational conference on Mobile systems, applications, and services, pages 49–62. ACM,

2010.

[198] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman, and J. Flinn.

Outatime: Using Speculation to Enable Low-Latency Continuous Interaction for Mobile

Cloud Gaming. In Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, MobiSys ’15, pages 151–165, New York, NY, USA,

2015. ACM.

[199] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse: Continuous,

real-time object recognition on mobile devices. In Proceedings of the 13th ACM Conference

on Embedded Networked Sensor Systems, pages 155–168. ACM, 2015.

[200] How stores will use augmented reality. https://www.technologyreview.com/s/601664/.

[201] Google’s indoor VPS navigation by Tango-ready phone. http://mashable.com/2017/05/

google-visual-positioning-service-tango-augmented-reality/.

[202] PokeMon Go augmented reality game. http://www.pokemongo.com/.

[203] X. Liu, H. Li, X. Lu, T. Xie, Q. Mei, H. Mei, and F. Feng. Understanding Diverse Smarpthone

Usage Patterns from Large-Scale Appstore-Service Profiles. arXiv preprint arXiv:1702.05060,

2017.

189

[204] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European

conference on computer vision, pages 404–417. Springer, 2006.

[205] J. Le Feuvre, J. Thiesse, M. Parmentier, M. Raulet, and C. Daguet. Ultra high definition

HEVC DASH data set. In Proceedings of the 5th ACM Multimedia Systems Conference, pages

7–12. ACM, 2014.

[206] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color histogram

indexing for quadratic form distance functions. IEEE transactions on pattern analysis and

machine intelligence, 17(7):729–736, 1995.

[207] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi. Pedestrian detection using infrared

images and histograms of oriented gradients. In Intelligent Vehicles Symposium, 2006 IEEE,

pages 206–212. IEEE, 2006.

[208] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. LEO: Scheduling sensor inference

algorithms across heterogeneous mobile processors and network resources. In Proceedings

of the Annual International Conference on Mobile Computing and Networking, MobiCom16.

ACM, 2016.

[209] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110, 2004.

[210] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In European

conference on computer vision, pages 430–443. Springer, 2006.

[211] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision conference,

volume 15, pages 10–5244. Citeseer, 1988.

[212] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The

American Statistician, 46(3):175–185, 1992.

[213] K. Walsh and E. G. Sirer. Experience with an object reputation system for peer-to-peer fileshar-

ing. In Proceedings of the 3rd Conference on Networked Systems Design & Implementation -

Volume 3, NSDI’06, pages 1–1, Berkeley, CA, USA, 2006. USENIX Association.

190

[214] N-Dimensional Arrays for Java. http://nd4j.org/.

[215] Open-source computer vision. http://opencv.org/.

[216] P. Mermelstein. Distance measures for speech recognition, psychological and instrumental.

Pattern recognition and artificial intelligence, 116:374–388, 1976.

[217] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[218] Openhft java runtime compiler. https://github.com/OpenHFT/

Java-Runtime-Compiler.

[219] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics hardware.

ACM Transactions on Graphics (TOG), 27(5):126, 2008.

[220] Android Interface Definition Language for IPC. https://developer.android.com/

guide/components/aidl.html.

[221] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems, pages 1097–1105,

2012.

[222] Y. LeCun, C. Cortes, and C. J. Burges. Mnist handwritten digit database. AT&T Labs [Online].

Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[223] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Diversity

in smartphone usage. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 179–194. ACM, 2010.

[224] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In Proceedings of the

1997 symposium on Interactive 3D graphics, pages 7–ff. ACM, 1997.

[225] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality on mobile devices

via rendering memoization. In Proceedings of the 14th Annual International Conference on

Mobile Systems, Applications, and Services, pages 291–304. ACM, 2016.

191

[226] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution

with sparse prior. In Proceedings of the IEEE International Conference on Computer Vision,

pages 370–378, 2015.

[227] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-scale bifurcated deep network for

top-down contour detection. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4380–4389, 2015.

[228] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee. The design and implemen-

tation of a wireless video surveillance system. In Proceedings of the 21st Annual International

Conference on Mobile Computing and Networking, pages 426–438. ACM, 2015.

[229] F. D. McSherry, R. Isaacs, M. A. Isard, and D. G. Murray. Differential dataflow, October 20

2015. US Patent 9,165,035.

[230] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc: Reusing Work in Large-scale Computations.

In HotCloud, 2009.

[231] K. Kannan, S. Bhattacharya, K. Raj, M. Murugan, and D. Voigt. Seesaw-similarity exploiting

storage for accelerating analytics workflows. In HotStorage, 2016.

[232] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nectar: Automatic

Management of Data and Computation in Datacenters. In OSDI, volume 10, pages 1–8, 2010.

[233] Y. Tang and J. Yang. Secure deduplication of general computations. In USENIX Annual

Technical Conference, pages 319–331, 2015.

[234] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger. Doppelgänger: a cache for approxi-

mate computing. In Proceedings of the 48th International Symposium on Microarchitecture,

pages 50–61. ACM, 2015.

[235] H. Wu, X. Sun, J. Yang, W. Zeng, and F. Wu. Lossless Compression of JPEG Coded Photo

Collections. IEEE Transactions on Image Processing, 25(6):2684–2696, 2016.

[236] H. Wang, T. Tian, M. Ma, and J. Wu. Joint Compression of Near-Duplicate Videos. IEEE

Transactions on Multimedia, 2016.

192

[237] Build powerful reactive, concurrent, and distributed applications more easily. https://akka.

io/.

[238] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and P. Bahl. An operating

system for the home. In Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, pages 25–25. USENIX Association, 2012.

[239] Amazon Alexa: a first look at reach figures. https://omr.com/en/

amazon-alexa-skill-marketing/.

[240] Smart home, seamless life: Unlocking a culture of convenience, January 2017.

[241] S. Vijayarangan, P. Sodhi, P. Kini, J. Bourne, S. Du, H. Sun, B. Poczos, D. Apostolopoulos,

and D. Wettergreen. High-throughput robotic phenotyping of energy sorghum crops. Field

and Service Robotics. Springer, 2017.

[242] H. Verkasalo. Contextual patterns in mobile service usage. Personal and Ubiquitous Comput-

ing, 13(5):331–342, 2009.

[243] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL programming guide: the official guide

to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc., 1999.

[244] R. Huitl, G. Schroth, S. Hilsenbeck, F. Schweiger, and E. Steinbach. TUMindoor: An extensive

image and point cloud dataset for visual indoor localization and mapping. In Proc. of the

International Conference on Image Processing, Orlando, FL, USA, September 2012. Dataset

available at http://navvis.de/dataset.

[245] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the

spatial envelope. International journal of computer vision, 42(3):145–175, 2001.

[246] R. Hu and J. Collomosse. A performance evaluation of gradient field hog descriptor for sketch

based image retrieval. Computer Vision and Image Understanding, 117(7):790–806, 2013.

[247] H. Hermansky. Perceptual linear predictive (plp) analysis of speech. the Journal of the

Acoustical Society of America, 87(4):1738–1752, 1990.

193

[248] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: Robust smartphone audio sensing in

unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, pages

283–294, New York, NY, USA, 2015. ACM.

[249] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. science, 313(5786):504–507, 2006.

[250] M. Zhao, D. Wang, Z. Zhang, and X. Zhang. Music removal by convolutional denoising

autoencoder in speech recognition. In Signal and Information Processing Association Annual

Summit and Conference (APSIPA), 2015 Asia-Pacific, pages 338–341. IEEE, 2015.

[251] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue.

Timit acoustic-phonetic continuous speech corpus. Linguistic data consortium, 10(5):0, 1993.

[252] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In

VLDB, volume 99, pages 518–529, 1999.

[253] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient and robust

access method for points and rectangles. In Acm Sigmod Record, volume 19, pages 322–331.

Acm, 1990.

[254] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric

spaces. In SODA, volume 93, pages 311–321, 1993.

[255] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based

on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational

geometry, pages 253–262. ACM, 2004.

[256] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[257] C. J. Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620,

1977.

[258] Y. Li and B. Cheng. An improved k-nearest neighbor algorithm and its application to high

194

resolution remote sensing image classification. In Geoinformatics, 2009 17th International

Conference on, pages 1–4. Ieee, 2009.

[259] F. Laviolette and M. Marchand. Pac-bayes risk bounds for stochastic averages and majority

votes of sample-compressed classifiers. Journal of Machine Learning Research, 8(Jul):1461–

1487, 2007.

[260] S. Kpotufe. k-nn regression adapts to local intrinsic dimension. In Advances in Neural

Information Processing Systems, pages 729–737, 2011.

[261] D. Duvenaud, O. Rippel, R. Adams, and Z. Ghahramani. Avoiding pathologies in very deep

networks. In Artificial Intelligence and Statistics, pages 202–210, 2014.

[262] S. Gu and L. Rigazio. Towards deep neural network architectures robust to adversarial

examples. arXiv preprint arXiv:1412.5068, 2014.

[263] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young. Mobile edge computing—a key

technology towards 5g. ETSI White Paper, 11(11):1–16, 2015.

[264] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan. Odessa: enabling

interactive perception applications on mobile devices. In Proceedings of the 9th international

conference on Mobile systems, applications, and services, pages 43–56. ACM, 2011.

[265] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and X. Chen. Comet: Code offload

by migrating execution transparently. In OSDI, volume 12, pages 93–106, 2012.

[266] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve world wide

web latency. ACM SIGCOMM Computer Communication Review, 26(3):22–36, 1996.

[267] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin. Practical prediction and

prefetch for faster access to applications on mobile phones. In Proceedings of the 2013 ACM

international joint conference on Pervasive and ubiquitous computing, pages 275–284. ACM,

2013.

[268] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th annual

symposium on Computer Architecture, pages 135–148. IEEE Computer Society Press, 1981.

195

[269] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a distributed file system.

In ACM SIGOPS Operating Systems Review, volume 39, pages 191–205. ACM, 2005.

[270] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt. Micro-blog: sharing and

querying content through mobile phones and social participation. In Proceedings of the 6th

international conference on Mobile systems, applications, and services, pages 174–186. ACM,

2008.

[271] L. Buttyan and J.-P. Hubaux. Security and cooperation in wireless networks: thwarting

malicious and selfish behavior in the age of ubiquitous computing. Cambridge University

Press, 2007.

[272] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich monitoring of road and traffic

conditions using mobile smartphones. In Proceedings of the 6th ACM conference on Embedded

network sensor systems, pages 323–336. ACM, 2008.

[273] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, USA, 1986.

[274] Open source speech recognition toolkit. https://cmusphinx.github.io/.

[275] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image retrieval: Learning global

representations for image search. In European Conference on Computer Vision, pages 241–257.

Springer, 2016.

[276] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large

vocabularies and fast spatial matching. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

[277] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[278] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

A. Rabinovich, et al. Going deeper with convolutions. Cvpr, 2015.

196

[279] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and M. Satyanarayanan.

Quantifying the impact of edge computing on mobile applications. In Proceedings of the 7th

ACM SIGOPS Asia-Pacific Workshop on Systems, page 5. ACM, 2016.

[280] A. Anand, V. Sekar, and A. Akella. Smartre: an architecture for coordinated network-wide

redundancy elimination. In ACM SIGCOMM Computer Communication Review, volume 39,

pages 87–98. ACM, 2009.

[281] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan, and J. P. Singh. Asym-

metric caching: improved network deduplication for mobile devices. In Proceedings of the

18th annual international conference on Mobile computing and networking, pages 161–172.

ACM, 2012.

[282] L. DuBois, M. Amaldas, and E. Sheppard. Key considerations as deduplication evolves into

primary storage. White Paper, 223310, 2011.

[283] Z. Shi, X. Sun, and F. Wu. Feature-based image set compression. In Multimedia and Expo

(ICME), 2013 IEEE International Conference on, pages 1–6. IEEE, 2013.

[284] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approxhadoop: Bringing approxima-

tions to mapreduce frameworks. In ACM SIGARCH Computer Architecture News, volume 43,

pages 383–397. ACM, 2015.

[285] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-based approximation

for data parallel applications. In ACM SIGARCH Computer Architecture News, volume 42,

pages 35–50. ACM, 2014.

[286] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. Cachier: Edge-caching for recog-

nition applications. In 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), pages 276–286. IEEE, 2017.

[287] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song. Comon: Cooperative ambience

monitoring platform with continuity and benefit awareness. In Proceedings of the 10th

international conference on Mobile systems, applications, and services, pages 43–56. ACM,

2012.

197

[288] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu, and A. T. Campbell.

Darwin phones: the evolution of sensing and inference on mobile phones. In Proceedings of

the 8th international conference on Mobile systems, applications, and services, pages 5–20.

ACM, 2010.

[289] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez. Scaling video analytics

systems to large camera deployments. In Proceedings of the 20th International Workshop on

Mobile Computing Systems and Applications, pages 9–14. ACM, 2019.

[290] S. Yang. Iot stream processing and analytics in the fog. IEEE Communications Magazine,

55(8):21–27, 2017.

[291] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning software library.

Technical report, Technical Report IDIAP-RR 02-46, IDIAP, 2002.

[292] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz. Towards reverse-engineering black-box neural

networks. arXiv preprint arXiv:1711.01768, 2017.

[293] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar. Adversarial machine

learning. In Proceedings of the 4th ACM workshop on Security and artificial intelligence,

pages 43–58. ACM, 2011.

[294] Redis: in-memory data structure store. https://redis.io/.

[295] Ignite: memory-centric distributed database, caching, and processing. https://ignite.

apache.org/.

[296] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection and

maintenance using multi-query optimization. In ACM SIGMOD Record, volume 30, pages

307–318. ACM, 2001.

198

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28321020

2021

	Service Abstractions for Scalable Deep Learning Inference at the Edge
	Recommended Citation

	Acknowledgements
	Introduction
	Deep Learning at the edge
	Scalability challenges in deploying Deep Learning inference to the edge
	Heterogeneity in deployment environments
	Interdisciplinary expertise and manual efforts
	Fuzzy computation redundancy

	Requirement summary
	Contributions
	Dissertation roadmap

	Background
	Deep Learning Inference at the Edge
	Current trend
	Lifecycle of deploying DL inference on edge devices

	Related work
	Edge-Centric Inference Engine
	Machine Learning Compiler
	Compact Neural Network Architecture
	Summary - the missing points

	Mistify: DNN Porting Service for Edge Devices at Scale
	Background and motivation
	Current DNN lifecycle
	The complexity of porting DNN models
	The need to automate DNN porting
	System requirements

	Mistify demystified
	Scalable model architecture adaptation
	Adaptation goal specification
	Adaptation Executor
	Collective adaptation

	Privacy-aware fine-tuning at the edge
	Client: KD-enhanced parameter tuning
	Server: client model coordination

	Runtime model adaptation
	Constructing a multi-branch model.
	Background path
	Discussion

	Implementation
	Evaluation
	Collective Architecture adaptation
	Parameter tuning
	Runtime overhead of Mistify
	End-to-end performance

	Related work
	Mistify summary

	Sommelier: DNN Model Indexing and Query Service
	Motivation
	The need for a DNN model repository
	Limitations of existing model repositories
	Requirements for DNN query support

	Characterizing DNN semantics
	The futility of conventional view
	Alternate view: Model equivalence

	Assessing semantic equivalence
	Detecting whole model equivalence
	Equivalence between model segments

	DNN model query with Sommelier
	Formulating DNN model queries
	Semantic index
	Resource profile index
	Query processing
	Discussion

	Implementation
	Evaluation
	General setup
	Assessing semantic equivalence
	End-to-end performance
	Tensorflow Hub case study
	Sommelier system overhead

	Related Work
	Sommelier summary

	Computation Reuse Service for Deep Learning Inference
	Overview
	Contextual data driving DL inference at the edge
	Redundancy among DL inference workloads
	Missing service abstraction: caching and computation reuse
	Solution overview

	Cross-Application Approximate Computation Reuse
	Motivation
	Motivating applications
	Input correlation and similarity
	Common processing steps
	Opportunities and challenges

	Potluck System Design
	Overview
	Computing the key
	The usefulness of cache entries
	Querying the cache
	Tuning the similarity threshold
	Cache management
	Supporting multiple key types

	Implementation
	Architecture
	Deduplication service
	APIs and patches to the application code

	Evaluation
	General setup
	Input and key management
	Cache entry replacement strategy
	System overhead
	Single-application performance
	Multi-application performance

	Related Work
	Potluck summary

	Cross-Device Approximate Computation Reuse
	Motivation
	Example scenarios
	Fuzzy redundancy
	Quantitative evidence

	Approximate Computation Reuse
	Application-specific feature extraction
	Adaptive Locality Sensitive Hashing
	Homogenized k Nearest Neighbors
	Generality

	FoggyCache service design
	System overview
	Client side cache management
	Server side cache updates
	Additional consideration

	Implementation
	Architecture
	APIs and patches

	Evaluation
	General setup
	Microbenchmarks
	Tradeoff between reuse and accuracy
	End-to-end system performance
	Large-scale experiment

	Related Work
	FoggyCache summary

	Harnessing DNN Semantic Correlation for Computation Reuse
	Correlated models leading to computation redundancy
	Measuring equivalence between DNNs
	Semantic computation reuse
	Offline path
	Semantic-centric storage service
	Online path
	Discussion

	Implementation
	Evaluation
	General setup
	Accuracy loss vs saving computation
	End-to-end performance
	Additional system overhead

	Related Work
	DeCor summary

	Conclusion and Future Direction
	Conclusion
	Future directions

	Blank Page

