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Abstract

Integration flows are increasingly used to specify and execute data-intensive integration
tasks between several heterogeneous systems and applications. There are many different
application areas such as (near) real-time ETL (Extraction Transformation Loading) and
data synchronization between operational systems. For the reasons of (1) an increasing
amount of data, (2) typically highly distributed IT infrastructures, and (3) high require-
ments for data consistency and up-to-dateness, many instances of integration flows—with
rather small amounts of data per instance—are executed over time by the central integra-
tion platform. Due to this high load as well as blocking synchronous source systems or
client applications, the performance of the central integration platform is crucial for an
IT infrastructure. As a result, there is a need for optimizing integration flows. Existing
approaches for the optimization of integration flows tackle this problem with rule-based
optimization in the form of algebraic simplifications or static rewriting decisions during
deployment. Unfortunately, rule-based optimization exhibits two major drawbacks. First,
we cannot exploit the full optimization potential because the decision on rewriting alter-
natives often depends on dynamically changing costs with regard to execution statistics
such as cardinalities, selectivities and execution times. Second, there is no re-optimization
over time and hence, the adaptation to changing workload characteristics is impossible.
In conclusion, there is a need for adaptive cost-based optimization of integration flows.

This problem of cost-based optimization of integration flows is not as straight-forward as
it may appear at a first glance. The differences to optimization in traditional data manage-
ment systems are manifold. First, integration flows are reactive in the sense that they pro-
cess remote, partially non-accessible data that is received in the form of message streams.
Thus, proactive optimization such as dedicated physical design is impossible. Second,
there is also the problem of missing knowledge about data properties of external systems
because, in the context of loosely coupled applications, statistics are non-accessible or do
not exist at all. Third, in contrast to traditional declarative queries, integration flows are
described as imperative flow specifications including both data-flow-oriented and control-
flow-oriented operators. This requires awareness with regard to semantic correctness when
rewriting such flows. Additionally, further integration-flow-specific transactional proper-
ties such as the serial order of messages, the cache coherency problem when interacting
with external systems, and the compensation-based rollback must be taken into account
when optimizing such integration flows. In conclusion, the cost-based optimization of
integration flows is a hard but highly relevant problem in today’s IT infrastructures.

In this thesis, we introduce the concept of cost-based optimization of integration flows
that relies on incremental statistics maintenance and inter-instance plan re-optimization.
As a foundation, we propose the concept of periodical re-optimization and present how
to integrate such a cost-based optimizer into the system architecture of an integration
platform. This includes integration-flow-specific (1) prerequisites such as the dependency
analysis and a cost model for interaction-, control-flow- and data-flow-oriented opera-
tors as well as (2) specific statistic maintenance strategies, optimization algorithms and
optimization techniques. While this architecture was inspired by cost-based optimizers
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of traditional data management systems and the included optimization techniques focus
on execution time minimization only, we additionally introduce two novel cost-based op-
timization techniques that are tailor-made for integration flows, which both follow the
optimization objective of throughput maximization. First, we explain the concept of
cost-based vectorization of integration flows in order to optimally leverage pipeline paral-
lelism of plan operators and thus, increase the message throughput. Second, we discuss
the concept of multi-flow optimization via horizontal message queue partitioning that in-
creases throughput by executing operations on message partitions instead of on individual
messages and thus, it reduces work of the integration platform such as the costs for query-
ing external systems. Finally, the major drawbacks of periodical re-optimization are (1)
many unnecessary re-optimization steps, where we find a new plan, only if workload char-
acteristics have changed, and (2) adaptation delays after a workload change, where we
use a suboptimal plan until re-optimization and miss optimization opportunities. There-
fore, we refine the re-optimization approach from periodical re-optimization to on-demand
re-optimization, where only necessary statistics are maintained and re-optimization is im-
mediately triggered only if a new plan is certain to be found.

The positive consequences of the cost-based optimization of integration flows are, in gen-
eral, (1) the continuous adaptation to dynamically changing workload characteristics and
(2) performance improvements in the sense of minimizing execution times and maximizing
message throughput by exploiting the full optimization potential of rewriting decisions.
In particular, the parameterless on-demand re-optimization achieves a fast but robust
adaptation to changing workload characteristics with minimal overhead for incremental
statistics maintenance and directed re-optimization. Finally, this cost-based optimization
framework of integration flows can be used for investigating additional integration-flow-
specific optimization techniques. Those optimizations are strongly needed in order to meet
the continuously increasing performance requirements on integration platforms.
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1 Introduction

I can’t change the direction of the wind,
but I can adjust my sails to always reach my destination.

— Jimmy Dean

Advances in information technology combined with rising business requirements lead to
a rapidly growing amount of digital information created and replicated worldwide. For
example, recent studies [IDC08, IDC10] conducted by the market research organization
IDC, report a yearly information increase by over 60% to 1.2 zettabyte (ZB) in 2010.
Beside this huge amount of digital information, due to technical and organizational issues,
the information is distributed across numerous heterogeneous systems, applications and
small devices [IDC08, Haa07]. For these reasons, the integration of heterogeneous systems
and applications becomes more and more crucial for an IT infrastructure. In another
recent study [Gar09], the market research organization Gartner reveals that the revenue
of the worldwide application infrastructure and middleware market increased by 6.9% from
14.17 billion USD in 2007 to 15.15 billion USD in 2008. In conclusion, the integration of
heterogeneous systems is seen as one of the biggest and most cost-extensive challenges
information technology faces today [BH08].

Historically, the predominant integration approaches were materialized and virtually in-
tegrated systems [DD99], where both types provide a homogeneous global view over data of
several source systems. Nowadays, we observe emerging requirements of complex integra-
tion tasks that (1) stretch beyond simple read-only applications, (2) involve many types of
heterogeneous systems and applications, and (3) require fairly complex procedural aspects.
To meet these requirements, typically, imperative integration flows are modeled and exe-
cuted in order to exchange data between the heterogeneous systems and applications of an
IT infrastructure [HAB+05]. There are plenty of application examples for this type of im-
perative integration flows, including, for instance, enterprise information systems [BH08],
health care management [CHX08, GGH00], energy data management [SAP03], financial
messaging [MS09], telecommunications [ACG+08], and context-aware mobile applications
[CEB+09]. For example, large health care management system infrastructures include
up to 20-120 different applications and systems [Mic07] and rely on domain-specific stan-
dards for data exchange such as HL/7 (Health Level 7) [hl707] or DICOM (Digital Imaging
and Communications in Medicine) [dic09]. The deployed integration flows are repeatedly
executed by an integration platform. Examples of such platforms are ETL tools (Extrac-
tion Transformation Loading) [KC04], EAI servers (Enterprise Application Integration)
[Lin99] or MOM systems (Message-Oriented Middleware) [HW04], which have converged
more and more in the past [Sto02, HAB+05] and this trend is expected to continue in the
future as well [HAB+05].

From a business perspective, we classify all information systems of an enterprise accord-
ing to the three levels of an information system pyramid [Sch97] as operational systems,
dispositive systems, or strategical systems. In this context, typically, two major use cases
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1 Introduction

for integration flows exist [Sch01]. First, the horizontal integration describes the integra-
tion of systems within one level. A typical example is the integration of operational systems
by EAI servers (adapter-based integration of arbitrary systems and applications) or MOM
systems (efficient message transport via messaging standards), where every update within
an operational system can initiate data synchronization with other operational systems
and hence, data is exchanged by transferring many small messages [HW04]. Second, the
vertical integration describes the integration across the levels of the information pyramid.
The most typical example is the integration of data from the operational systems into
the dispositive and strategical systems (data warehouses) by ETL tools. In this context,
there is a trend towards operational BI (Business Intelligence) that requires immediate
synchronization between the operational source systems and the data warehouse in or-
der to achieve high up-to-dateness for analytical query results [DCSW09, O’C08, WK10].
This requirement is typically addressed with a near-real-time approach [DCSW09], where
the frequency of periodical delta load is simply increased, or with data-driven ETL flows,
where data changes of the operational source systems are directly propagated to the data
warehouse infrastructure as so-called trickle-feeds [DCSW09, SWCD09].

As a result of both horizontal and vertical integration, many independent instances of
integration flows are executed over time. In addition to this high load of flow instances,
the performance of source systems depends on the execution time of synchronous data-
driven integration flows, where the source systems are blocked during execution. For
these reasons, there are high performance demands on integration platforms in terms of
minimizing execution and latency times. Furthermore, from an availability perspective in
terms of the average response times, the performance of synchronous integration flows has
also direct monetary influences. For example, Amazon states that just 0.1s increase in
average response times will cost them 1% in sales [Bro09]. Similarly, Google recognized
that just 0.5s increase in latency time caused the traffic to drop by a fifth [Lin06]. In
consequence, optimization approaches are required.

Existing optimization approaches of integration flows are mainly rule-based in the sense
that a flow is only optimized once during the initial deployment. Thus, only static rewrit-
ing decisions can be made. Further, the optimization of integration flows is a hard prob-
lem with regard to the characteristics of imperative flow specifications with interaction-,
control-flow- and data-flow-oriented operators as well as specific transactional properties
such the need for preserving the serial order of incoming messages. The advantage is low
optimization overhead because optimization is only executed once. However, rule-based
optimization has two major drawbacks. First, many optimization opportunities cannot
be exploited because rewriting decisions can often only be made dynamically based on
costs with regard to execution statistics such as operator execution times, selectivities
and cardinalities. Second, it is impossible to adapt to changing workload characteristics,
which commonly vary significantly over time [IHW04, NRB09, DIR07, CC08, LSM+07,
BMM+04, MSHR02]. This would require rewriting an integration flow in a cost-based
manner according to the load of flow instances and specific execution statistics.

Contributions

In order to address the high performance demands on integration platforms and to over-
come the drawbacks of rule-based optimization, we introduce the concept of cost-based
optimization of integration flows with a primary focus on typically used imperative in-
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tegration flows. In detail, we make the following more concrete contributions that also
reflect the structure of this thesis.

• As a prerequisite, Chapter 2 analyzes existing techniques and introduces the notation
and examples used throughout this thesis. The literature survey is twofold. On
the one side, we review common integration approaches and, more specifically, we
discuss the modeling, execution and optimization of integration flows. On the other
side, we discuss adaptive query processing techniques to illustrate the state-of-the-
art of cost-based optimization in other system categories such as DBMS (Database
Management Systems) or DSMS (Data Stream Management Systems).

• In Chapter 3, we explain the novel fundamentals for the cost-based optimization of
integration flows that enable arbitrary optimization techniques. The specific charac-
teristics of integration flows in terms of missing statistics, changing workload char-
acteristics, imperative flow specification (prescriptive) and transactional properties
have led to the need for fundamentally new concepts. In order to take into account
both data-flow- and control-flow-oriented operators, we explain the necessary de-
pendency analysis as well as a hybrid cost model. We introduce the inter-instance,
periodical re-optimization that includes the core transformation-based optimization
algorithm as well as specific approaches for search space reduction, workload adap-
tation sensibility, and the handling of correlated data. Finally, we present selected
concrete optimization techniques to illustrate the rewriting of flows.

• Subsequently, in Chapter 4, we present the cost-based vectorization of integration
flows that is a tailor-made, control-flow-oriented optimization technique. Based on
the problems of low resource utilization and specific transactional requirements, this
technique computes the optimal grouping of operators to multi-threaded execution
buckets in order to achieve the optimal degree of pipeline parallelism with a min-
imal number of buckets and hence, it maximizes message throughput. We present
context-specific rewriting techniques to ensure transactional properties and discuss
exhaustive and heuristic computation approaches for certain settings and constraints.

• As a tailor-made data-flow-oriented optimization technique, we introduce the con-
cept of multi-flow optimization in Chapter 5. It is based on the problem of expensive
access of external systems. The core idea is to horizontally partition the inbound
message queues and to execute flows for partitions of multiple messages. Due to
the decreased number of queries to external systems as well as cost reductions for
local operators, this results in throughput improvements. In detail, we introduce the
partition tree that is used as a physical message queue representation, an approach
for creating and incrementally maintaining such partition trees, and related flow
rewriting techniques. Furthermore, we extend the defined cost model and present
an approach to periodically compute the optimal waiting time for collecting mes-
sages in order to achieve the highest throughput, while ensuring maximum latency
constraints of individual messages.

• In order to decrease the overhead for statistics monitoring and re-optimization but
to adapt to changing workloads as fast as possible, in Chapter 6, we introduce the
novel concept of on-demand re-optimization. This includes (1) to model optimality
of a plan by its optimality conditions using a so-called Plan Optimality Tree rather
than considering the complete search space, (2) to monitor only statistics that are
included in these conditions, and (3) to use directed re-optimization if conditions are
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1 Introduction

violated. We present this concept separately for two reasons: first, the contributions
of Chapters 3-5 are easier to understand using the simple model of periodical re-
optimization; second, although the concept of on-demand re-optimization has been
designed for integration flows, other research fields can also benefit from this general
re-optimization approach.

Finally, Chapter 7 concludes this thesis with a summary of achieved results and a
discussion of open research aspects.

Structure

Figure 1.1 illustrates the resulting overall structure of the thesis and shows how the men-
tioned chapters are partitioned into three major parts.

Literature Survey 

Chapter 1

Introduction

Chapter 7

Conclusions

Chapter 2

Preliminaries 
and Existing 
Techniques

Part I: 
Introduction & State-of-the-Art

Chapter 4

Vectorizing 
Integration Flows

Part II: 
Periodical Re-Optimization

Specific Optimization Techniques

Chapter 5 

Multi-Flow 
Optimization

Chapter 3

Fundamentals of 
Optimizing 

Integration Flows 

Chapter 6

On-Demand 
Re-Optimization 

Part III: 
On-Demand Re-Optimization & Summary

Figure 1.1: Overview of the Structure of this Thesis

In the first part, we give the necessary background in terms of a literature survey.
Subsequently, in the second part, we explain the foundations of periodical cost-based re-
optimization and discuss two integration-flow-specific optimization techniques in detail.
Finally, the third part introduces the advanced concept of on-demand, cost-based re-
optimization and how the presented approaches from Part II benefit from this concept.
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2 Preliminaries and Existing Techniques

As preliminaries, in this chapter, we survey existing techniques in order to give a compre-
hensive overview of the state-of-the-art of optimizing integration flows. We start with a
classification of integration approaches. Subsequently, we generalize the system architec-
ture of typical integration platforms and review the modeling, execution and optimization
of integration flows. Moreover, we also classify approaches of cost-based optimization and
adaptive query processing in different system categories. Furthermore, we introduce the
used notation of integration flows including their transactional requirements and we define
the running example integration flows of this thesis.

2.1 Integration Flows

Integration (from lat. integer = complete) refers to the assembly of many parts to a
single composite. In computer science, integration is used in the sense of combining local
integration objects (systems, applications, data or functions) with a certain integration
technology. For several reasons, which we will reveal in this section, the integration and
interoperability of heterogeneous and distributed components, applications, and systems
is one of the broadest and most important research areas in computer science.

Historically, database technology itself was introduced with the goal of integrated en-
terprise data management in the sense of so-called enterprise databases [Bit05]. Unfortu-
nately, the comprehensive and future-oriented database design over multiple application
programs has not been achieved. As a result, the current situation is that enterprise data
is inherently distributed across many different systems and applications. In this context,
we often observe the problems of (1) non-disjointly distributed data across these systems,
(2) heterogeneous data representations, and (3) data propagation workflows that are im-
plicitly defined by the applications. Despite the permanent goal of homogeneity and the
trend towards homogeneous services and exchange formats, those problems will also re-
main in the future due to the diversity of application requirements, performance overheads
for ensuring homogeneity (e.g., XML exchange formats), continuous development of new
technologies that always cause heterogeneity with regard to legacy technologies, as well
as organizational aspects such as autonomy and privacy. In consequence, data must be
synchronized across those distributed and heterogeneous applications and systems.

This historically reasoned situation of enterprise data management by itself leads to
the major goals of integration. First, the distributed and heterogeneous data causes the
requirement of data consolidation and homogeneity in order to provide a consistent global
view over all operational systems. Second, non-disjointly distributed data and implicit
data propagation workflows reason the need for interoperability in terms of interactions
and data synchronization between autonomous systems and applications. Third, in or-
der to achieve availability (high availability and disaster recovery) as well as performance
and scalability (location-based access, load balancing, and virtualization) technically dis-
tributed subsystems must be integrated and synchronized as well.
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2 Preliminaries and Existing Techniques

Due to these goals of integration that are based on different application use cases,
a variety of integration approaches and realizations emerged in the past. In order to
precisely separate the focus of this thesis, we classify those integration approaches, where
integration flows are only one category among others.

2.1.1 Classification of Integration Approaches

There exist several, partially overlapping, classification aspects of integration approaches,
which include the (1) application area, (2) data location, (3) time aspect and consistency
model, (4) event model, (5) topology, and (6) specification method. We explicitly exclude
orthogonal integration aspects such as schema matching, model management, master data
management, lineage tracing and the integration of semi-structured and unstructured data
because techniques from these areas are typically not specifically designed for a certain
integration approach.
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Figure 2.1: Classification of Integration Approaches

Our overall classification that is shown in Figure 2.1 comprises the aspects (1) application
area, (2) data location, and (6) specification method. In addition, we put the major types
of integration systems (system aspect) into the context of this classification. Regarding
the application area, we distinguish between information integration (data and function
integration), application integration, process integration and GUI integration.

Information integration refers to the area of data-centric integration approaches, where
huge amounts of data are integrated. In this context, we typically distinguish between
virtual and materialized integration [DD99] based on the data location. First, for vir-
tual integration, a global (virtual) view over the distributed data sources is provided and
data is not physically consolidated. Examples for this type of integration approach are
virtual DBMS (VDBMS), federated DBMS (FDBMS), and Peer Database Management
Systems (PDBMS). The difference is that VDBMS/FDBMS use a hierarchical topology,
while PDBMS use a peer-to-peer topology. Typically, both system types provide an event
model of ad-hoc queries in order to allow dynamic integration. Second, for materialized
integration, the data is physically stored or exchanged with the aim of data consolidation
or synchronization. In this context, we mainly distinguish two types of system categories
based on their event model. On the one side, DSMS (Data Stream Management Systems)
and Publish/Subscribe systems follow a data-driven model where tuples are processed
by standing queries or subscription trees, respectively. While DSMS execute many rather
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complex queries, Publish/Subscribe systems usually execute huge numbers of fairly simple
queries. On the other side, there are ETL tools that follow a time-based or data-driven
event model. All three system categories conceptually use a hub-and-spoke or bus topol-
ogy, where in both cases a central integration platform is used. Finally, all system types
of the application area of information integration are query-based in the sense of the spec-
ification method for integration task modeling. A special case is given by ETL tools that
often use integration flows as the specification method as well.

The categories of application integration and process integration refer to a more loosely
coupled type of integration, where integration flows are used as specification method and
message-oriented flows are hierarchically composed. The main distinction between both
is that application integration refers to the integration of heterogeneous systems and ap-
plications, while process integration refers to a business-process-oriented integration of
homogeneous services (e.g., Web services). Thus, both are classified as materialized inte-
gration approaches because messages are propagated and physically stored by the target
systems. However, application integration is data-centric in terms of efficiently exchang-
ing data between the involved applications, while process integration is more focused on
procedural aspects in the sense of controlling the overall business process and its involved
systems. In this context, we see many different facets of system types such as (near)
real-time ETL tools (that use the data-driven event model), MOM systems (that use
standard-messaging infrastructures such as Java Message Service), EAI systems, BPEL
Engines (Business Process Execution Language), and Web Service Management Systems
(WSMS). Note that those system categories have converged more and more in the past
[Sto02, HAB+05] in the form of overlapping functionalities [Sto02]. For example, stan-
dards from the area of process integration such as BPEL are also partially used to specify
application integration tasks.

Finally, GUI integration (Graphical User Interface) describes the unique and integrated
visualization of (or the access to) heterogeneous and distributed data sources. Portals
provide a unique system for accessing heterogeneous data sources and applications, where
data is only integrated for visualization purposes. In contrast, mashups dynamically com-
pose Web content (feeds, maps, etc.) for creating small applications with a stronger focus
on content integration. See the classification by Aumueller and Thor [AT08] for a detailed
classification of existing mashup approaches. Both portals and mashups are classified as
virtual integration approaches that use a hierarchical topology, and the specification is
mainly user-interface-oriented.

The exclusive scope of this thesis is the category of integration flows. As a result, the
proposed approaches can be applied for process integration, application integration, and
partially information integration as well.

2.1.2 System Architecture for Integration Flows

The integration of highly heterogeneous systems and applications that require fairly com-
plex procedural aspects makes it almost impossible to realize these integration tasks using
traditional techniques from the area of distributed query processing [Kos00] or replica-
tion techniques [CCA08, PGVA08]. In consequence, those complex integration tasks are
typically modeled and executed as imperative integration flow specifications.

Based on the specific characteristics of integration flows, a typical system architecture
has evolved in the past. This architecture is commonly used by the major EAI prod-
ucts such as SAP eXchange Infrastructure (XI) / Process Integration (PI) [SAP10], IBM
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Message Broker [IBM10], MS Biztalk Server [Mic10], or Oracle SOA Suite [Ora10]. We
generalize this widely-accepted1 common architecture to a reference architecture for in-
tegration flows in order to survey existing work with regard to modeling, executing, and
optimizing integration flows. Furthermore, this system architecture—which is illustrated
in Figure 2.2—represents the foundation of this thesis from a system architecture per-
spective. In detail, two major components are relevant: (1) a modeling component for
integration flow specification and (2) a runtime execution component that executes de-
ployed integration flows.
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Figure 2.2: Reference System Architecture for Integration Flows

The modeling component is used for specifying complex integration tasks by integra-
tion flows in the form of graphs or hierarchies of operators and edges. Typically, the
configuration and administration of the execution environment is done via this modeling
component as well. From a research perspective, we concentrate only on the specification
of integration flows and discuss a classification as well as related approaches and languages
in Subsection 2.1.3.

The execution component consists of a set of inbound adapters, multiple message queues,
an internal scheduler (for time-based integration flows), a central process execution en-
gine, a set of outbound adapters, and a temporary data store (persistence of messages and
configuration meta data). The inbound adapters listen for incoming messages, transform
them into a common format (e.g., XML), and either append the messages to inbound
queues (in case of asynchronous flow execution) or directly forward them to the process
engine (in case of synchronous flow execution). Typically, those inbound adapters are
realized as decoupled listener threads (e.g., a TCP Listener) or standard APIs (e.g., an
HTTP implementation). Existing integration platforms provide many different technical
and application-level adapters for domain-specific data exchange standards such as HL/7
(Health Level 7) [hl707] or DICOM (Digital Imaging and Communications in Medicine)
[dic09] and proprietary system APIs (e.g., SAP R/3). Within the process engine, compiled
plans of deployed integration flows are executed. For this purpose, this engine includes
a flow parser for the deployment of integration flows and a runtime environment for the

1There are plenty of existing application integration platforms. For a detailed survey of the major
products, we refer the interested reader to a related study conducted by the market research organization
Gartner [TSN+08] and to a survey on SQL support in workflow products [VSRM08].
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execution. During execution of these flows, the outbound adapters are used as services
(gateways) in order to actively invoke external systems, where they transform the inter-
nal format back to the proprietary message representations. The inbound and outbound
adapters hide syntactic heterogeneities of external systems, while structural heterogeneities
are addressed by schema transformation as part of the plan execution within the process
engine. Note that each supported proprietary application, data format or standard proto-
col requires such specific inbound and outbound adapters. This concept of inbound and
outbound adapters in combination with the common internal message format (in terms
of XML or other tree-structured data representations) is crucial in order to reduce the
complexity of such an execution component for two reasons. First, for n incoming formats
and m outgoing formats, we reduced the number of required transformation services (e.g.,
for transforming an XML message to a binary EDIFACT message) from n ·m to n + m
because we only need individual mappings (transformations) between the internal format
and the sets of incoming and outgoing formats. Second, using the common format, all
operators of the process engine need only to be realized once, according to this internal
format, and the specific characteristics of external systems are hidden from the process
engine by a generic outbound adapter interface.

The deployment of integration flows finally combines both the modeling and execution
components. Typically, an XML representation of the modeled integration flow is used
in order to transfer the flow specification to the execution component, where the flow
parser is used in order to create an internal plan of the integration flow. All analysis
and optimization procedures then work on this plan representation. Finally, the plan
is compiled into an executable form. In this context, we distinguish several different
execution models and approaches that we will discuss in detail in Subsection 2.1.4.

As already mentioned, there are plenty of application examples for imperative integra-
tion flows [BH08, CHX08, GGH00, SAP03, MS09, ACG+08, CEB+09]. Due to (1) the
high number of heterogeneous systems and applications and (2) the continuous change
of technology that reasons heterogeneity, the need for efficient integration will constantly
remain in the future.

2.1.3 Modeling Integration Flows

With regard to the overall system architecture, one important aspect is how to model inte-
gration flows. Essentially, we classify existing approaches of specification models using the
two criteria (1) flow structure and (2) flow semantics. Figure 2.3 illustrates the resulting
classification of integration flow modeling approaches. In contrast to declarative queries
that are specified with descriptive languages, imperative integration flows are typically
specified using prescriptive languages.

Modeling Integration Flows

Directed 
Graph

Hierarchy of 
Sequences

Source 
Code

Fixed
Flow

data flow control flow control flowSemantics

Structure

data flow control flow control flow

Figure 2.3: Classification of Modeling Approaches for Integration Flows
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From the perspective of structural representation, we distinguish four major types.
First, there are directed graphs, where the integration flow is modeled with G = (V,A) as
sets of vertexes V (operators) and arcs A (dependencies between operators). Typically,
such a graph is restricted to directed acyclic graphs (DAG), and XMI (XML Metadata
Interchange) [OMG07] is used as technical representation. Common examples of this type
are UML (Unified Modeling Language) activity diagrams [OMG03] and BPMN (Business
Process Modeling Notation) process specifications [BMI06]. However, many proprietary
representations exist as well. Van der Aalst et al. identified common workflow patterns
for imperative workflows with directed graph structures in order to classify the expressive
power of concrete workflow languages [vdABtHK00, vdAtHKB03]. Second, hierarchies
of sequences are a common representation. There, the flow is modeled as a sequence of
operators, where each operator can be an atomic or complex (composite of subsequences)
operator. Thus, arbitrary hierarchies can be modeled. As the technical representation
XML is used due to its suitable hierarchical nature. This is the most common type for
representing integration flows because this specification is more restrictive, which allows
the automatic compilation into an executable form and all algorithms working on this
representation can be realized as simple recursive algorithms. Examples are BPEL [OAS06]
processes and XPDL (XML Process Definition Language) [WfM05] process definitions.

Example 2.1. In order to make this distinction between directed graphs and hierarchies
of sequences more understandable, Figure 2.4 shows an example integration flow with both
different flow structures. Figure 2.4(a) illustrates an example plan with a directed graph
structure, where we receive a message, execute two filters depending on an expression
evaluation and finally send the result to an external system. Figure 2.4(b) illustrates the
same example with a hierarchy-of-sequences structure. When comparing both, we see that
the directed graph uses only atomic operators and allows for arbitrary temporal dependen-
cies between operators, while the hierarchy of sequences require complex operators (e.g., the
Switch operator) that recursively contain other operators and therefore is more restrictive.

SwitchReceive Write

Selection Selection

Selection Selection

(a) Directed Graph

SwitchReceive Write

Selection Selection

Selection Selection

(b) Hierarchy of Sequences

Figure 2.4: Integration Flow Modeling with Directed Graphs and Hierarchies of Sequences

In contrast to directed graphs and hierarchies of sequences, there is a third and a fourth
type, both of which are less common nowadays. Some integration platforms allow to
model (to program) integration flows on source code level using specific APIs. Examples
of this type are JPD (Java Process Definition) [BEA08], BPELJ (BPEL extension for
Java) [BEA04], and script-based integration platforms such as pygrametl [TP09]. As an
advantage, arbitrary custom code can be used, while the flow designer is confronted with
high modeling and optimization efforts. Finally, some platforms use fixed integration flows.
A fairly simple example is the concept of so-called message channels, where messages are
received, transformed and finally sent to a single external system. Concrete integration
flows are modeled by configuring these fixed flows. Although this structure allows for
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efficient processing of simple integration tasks, complex integration tasks require many
indirections and thus, cannot be realized efficiently or not modeled at all. In addition,
from the perspective of flow semantics, we distinguish between data-flow- and control-
flow-oriented modeling [MMLW05].

Example 2.2. Figure 2.5 shows an example integration flow with both different flow se-
mantics (data flow and control flow): Figure 2.5(a) illustrates an example plan with data-
flow semantics, where we receive a message, execute two filters and finally, send the result
to two external systems. Here, the edges describe data dependencies between operators,
while temporal dependencies cannot be specified. For example, we cannot specify in which
temporal order to execute the two final writes. A specific characteristic is that if two or
more operators require a certain intermediate result, this intermediate result must be copied
in order to send it to both operators. In contrast, Figure 2.5(b) illustrates the same exam-
ple plan using the control-flow semantics. Here, the edges describe temporal dependencies,
while data dependencies are implicitly given by input and output variables (for clarity, il-
lustrated as dashed edges). Thus, the semantic of this integration flow additionally includes
the execution order of operators and does not require copy operations.

SelectionReceive Selection Copy

Write

Write

(a) Data-Flow Semantics

SelectionReceive Selection Write

var1

Write

var2 var3

(b) Control-Flow Semantics

Figure 2.5: Integration Flow Modeling with Directed Graphs

Examples of integration flow modeling with directed graphs and control-flow seman-
tics are UML activity diagrams [OMG03] and BPMN process specifications [BMI06]. In
contrast, directed graphs in combination with data-flow semantics are commonly used by
traditional ETL tools. To summarize, control-flow semantics specify an integration flow
more precisely than pure data-flow semantics because the control-flow includes the data
flow and additional temporal dependencies. However, note that the implicit data flow
specification (beside the primary temporal dependencies) can cause semantic data flow
modeling errors such as lost or inconsistent data [TvdAS09].

In addition to this classification, further aspects of modeling integration flows—that
we will reveal in the following—are currently discussed in the literature. This includes
(1) the combination of control-flow and data-flow modeling (hybrid flow semantic), (2)
the combination of hierarchical and source code structure (hybrid flow structure), (3) the
model-driven development of integration flows, and (4) the declarative flow modeling.

A. Hybrid Flow Semantic

The strict distinction between data-flow and control-flow semantics has been considered
as a problem, especially, in the context of data-intensive integration flows that also require
rather complex procedural aspects. In consequence, two projects have addressed the com-
bination of data flow and control flow using hybrid modeling semantics, where the data
flow is modeled explicitly rather than only by input and output variables.

First, there is the concept of BPEL/SQL, where specific SQL activities can be used
within BPEL process specifications in order to combine the advantages of data-flow and
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control-flow modeling [MMLW05]. In detail, SQL activities, Retrieve Set activities, and
Atomic SQL Sequence activities (as transactional boundary for other SQL activities) have
been introduced. For example, this concept was implemented as the BPEL extension
ii4BPEL (information integration for BPEL) [IBM05b] within the IBM Business Integra-
tion Suite that is based on the WebSphere application server. See the survey by Vrhovnik
et al. [VSRM08] for a detailed comparison of SQL support by workflow products. To
summarize, this BPEL/SQL approach provides hybrid modeling semantics in terms of
control flow and data flow. In addition, it enables the efficient execution of data-intensive
processes due to potentially reduced transferred data. We will revisit this approach from
an optimization perspective in Subsection 2.1.5.

In contrast to the BPEL/SQL activities, the BPEL-DT (Data Transitions) [HRP+07,
Hab09] approach uses the traditional control-flow semantics enriched with so-called data
transitions. It is based on the concept of data-grey-box Web services [HPL+07] that
represent a specific data framework in order to propagate data between Web services
by reference. Data transitions are used in terms of data-intensive data dependencies
between external Web service interactions within a BPEL process. Such a data transition
is modeled and executed as an integration flow using arbitrary integration platforms such
as ETL tools. In conclusion, arbitrary combinations of the control-flow-oriented BPEL
specification with data-flow-oriented integration flows can be realized.

However, both approaches are still control-flow-oriented because the control-flow-oriented
BPEL is enriched with data-centric constructs, but still exhibits temporal dependencies,
which is the major classification criterion between data-flow and control-flow semantics.

B. Hybrid Flow Structure

In addition to the mentioned hybrid modeling semantics, there are also arguments for a
hybrid modeling structure. For example, when using directed graphs or the hierarchy of
sequences, aspects like complex control flow branches, specific variable initialization or
the preparation of complex queries to external systems are difficult and complex to model.
In contrast, when using source code structures, the overall process specification is hidden
and too fine-grained. For these reasons, a combination of both aspects is advantageous
for certain integration flows.

BPELJ (BPEL for Java) [BEA04] enables such a hybrid modeling structure by combin-
ing the hierarchy of sequences and source code. Therefore, arbitrary Java code snippets
(expressions, or small blocks of Java code) can be included in BPEL process specifications.
This is done via so-called bpelj:snippet activities, where the complete code block is in-
cluded in this activity and the activity can be used within the overall process specification.

C. Model-Driven Development of Integration Flows

In the context of complex integration flows, we observe a trend towards applying model-
driven development techniques from the area of software technology.

First steps towards model-driven development of integration flows were made by Simitsis
et al. in the sense of separating ETL flow modeling into conceptual [VSS02a], logical
[VSS02b] and physical [TVS07] models as well as using transformation rules [Sim05] to
describe the transition from one model to another.

The Orchid project [DHW+08] enables the generation of ETL jobs from declarative
schema mapping specifications. A so-called Operator Hub Model (OHM) is used in order
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to automatically specify the semantics of ETL jobs in a platform-independent manner.
The Orchid project is restricted to the generation of ETL flows. In addition, Jörg and
Deßloch addressed the generation of incremental ETL jobs [JD08, JD09] and subsequently,
they also investigated the optimization of these incremental ETL jobs [BJ10].

In contrast, the METL project by Albrecht and Naumann focuses on the combination of
the generation and model management of ETL flows [AN08]. There, platform-independent
and tool-independent operators for model management were introduced. In contrast to
generic model management [BM07] for schema mappings, the order, type, and configu-
ration of data transformation steps must be taken into account. These requirements are
addressed with specific high-level operators and an ETL management platform [AN09].

In addition to these ETL flow approaches, our GCIP framework (Generation of Com-
plex Integration Processes) [BHLW09a] addresses the modeling of platform-independent
integration flows [BHLW08e], the flow generation for arbitrary integration platforms (e.g.,
FDBMS, EAI, ETL) as well as the application of optimization techniques [BHLW08f,
BHLW08g, BBH+08a, BBH+08b] during model-driven generation and finally, the deploy-
ment of these generated integration flows [BHLW09b]. Therefore, a hierarchy of platform-
independent, platform-specific, and tool-specific models is used.

While all of these approaches address at most two aspects of integration flows, namely
the flow specification and schema definitions, Mazon et al. defined the multi-dimensional
model-driven architecture for the development of data warehouses [MTSP05]. There, the
aspects (1) data sources, (2) ETL flows, (3) multi-dimensional data warehouse design, (4)
customization code, and (5) application code as well as their inter-influences are taken
into account. This general framework was recently extended by data merging and data
customization aspects for data mining [KZOC09].

D. Declarative Integration Flow Modeling

In contrast to the usually used imperative integration flows that are modeled in a pre-
scriptive manner, the Demaq project [BMK08] models declarative integration flows in
a descriptive manner by using dependable XML message queue definitions (basic, time-
based, gateway), where the processing logic is described in terms of a declarative rule
language. As a foundation, a declarative Queue Definition Language (QDL) and a Queue
Manipulation Language (QML) based on the XQuery update facility are used [BKM07].
Furthermore, Demaq introduced the concept of slices that are specifications of logical
message groups in the form of virtual queues. Despite the concept of dependable and
time-based queues, complex procedural aspects, i.e., temporal dependencies, and complex
control-flows are hard to model. However, for message-centric integration flows, reasonable
performance, scalability and transactional properties are achieved [BK09].

While Demaq describes the overall flow with dependencies between queues, the Orchid
project [DHW+08] uses declarative schema mappings between source and target schemes
and generates imperative ETL flows. To this extent, Orchid also uses declarative modeling
semantics despite the resulting imperative ETL flow specifications.

Finally, the modeled integration flows are deployed into the execution environment
using pre-defined exchange formats (e.g., XML). From this point in time on, the deployed
integration flows are identified by logical names and executed many times. However, there
are several side-effects from modeling to execution.
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2.1.4 Executing Integration Flows

When deploying an integration flow, we transform the logical flow into an executable plan.
Therefore, we distinguish two major plan representations. First, there are interpreted
plans, where we use an object graph of operators and interpret this object graph during
execution of a plan instance. Second, there are compiled plans, where code templates are
used in order to generate and compile physical executable plans. As a first side-effect
from the modeling perspective, (1) directed graphs are typically interpreted, while (2)
hierarchies of sequences, source code and fixed flows are commonly executed as compiled
plans.

Moreover, as a second side effect, flows with data-flow modeling semantics are typi-
cally also executed with data-flow semantics. The same is true for control-flow semantics.
Hence, we use the flow semantics, as our major classification criterion of execution ap-
proaches. With regard to the data granularity as the second classification criterion of plan
execution, we traditionally distinguish between two fundamental execution models:

• Iterator Model: The Volcano iterator model [Gra90, Gra94] is the typical execution
model of traditional DBMS (row stores). Each operator implements an interface
with the operations open(), next() and close(). The operators of a plan call their
predecessors, i.e., the top operator determines the execution of the whole plan (pull
principle). In addition, each operator can be executed by an individual thread (and
thus, adheres to the pipes-and-filter execution model), where each operator exhibits
a so-called iterator state (tuple buffer) [Gra90]. The advantages of this model are
extensibility with additional operators as well as the exploitation of vertical paral-
lelism (pipeline parallelism or data parallelism) and horizontal parallelism (parallel
pipelines). The disadvantages are the high communication overhead between oper-
ators and the predominant applicability for row-based (tuple-based) execution.

• Materialized Intermediates: The concept of materialized intermediates is the typical
execution model of column stores [KM05, MBK00]. Operators of a plan are executed
in sequence (one operator at a time), where the result of one operator is completely
materialized (as variable) and then used as input of the next operator (push prin-
ciple). This reduces the overhead of operator communication and is particularly
advantageous for column stores, where operators work on (compressed) columns in
the form of continuous memory (arrays). This concept offers additional optimization
opportunities such as vectorized execution within a single operator, or the recycling
of intermediate results [IKNG09] across multiple plans.

Integration flows are typically executed as independent plan instances. Here, we distin-
guish between data-driven integration flows, where incoming data conceptually initiates a
new plan instance, and scheduled integration flows, where such an instance is initiated by
a time-based scheduler. If strong consistency is required, data-driven integration flows are
executed synchronously, which means that the client systems are blocked during execu-
tion. In contrast, if only weak (eventual) consistency is required, data-driven integration
flows can also be executed asynchronously using inbound queues. Note that scheduled
integration flows are per se asynchronous and thus, ensure only weak consistency. We use
this integration-flow-specific characteristic of independent instances to refine the classifi-
cation criterion of data granularity. Therefore, we introduce the notion of instance-local
(data/messages of one flow instance) and instance-global (data/messages of multiple flow
instances) data granularity.
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Figure 2.6: Classification of Execution Approaches for Integration Flows

Putting it all together, Figure 2.6 illustrates the overall classification. Using control-
flow-oriented execution semantics (with temporal dependencies) directly implies the use
of materialized intermediates in the form of variables. In this context, both instance-local
and instance-global processing is possible. Typically, EAI servers and BPEL engines use
this execution approach. Hence, this thesis uses the execution model of control-flow se-
mantics and materialized intermediates as conceptual foundation. Furthermore, data flow
execution semantics allow for both the iterator model and materialized intermediates as
well as both instance-local and instance-global data granularity. Examples for the use
of materialized intermediates are Demaq [BMK08] (instance-global) and some ETL tools
(instance-local). The iterator model requires a more fine-grained classification. Iterator,
instance-global refers to a tuple-based processing over data of multiple instances, where
punctuations are used to distinguish data from the different instances. An example for this
model is the stream-based Web service approach [PVHL09a, PVHL09b]. In contrast, itera-
tor, instance-local refers to a tuple-based processing over data of a single instance, which is
the typical execution model of ETL tools. In addition, an iterator, hybrid instance-global
model can be used, where the single materialized intermediates of multiple instances are
executed in a pipelined fashion and thus, with the iterator model.

Finally, we will use this classification of execution approaches in order to position the
different optimization approaches as well as the results of this thesis.

2.1.5 Optimizing Integration Flows

Based on the different modeling and execution approaches, we now focus on the optimiza-
tion of deployed integration flows. The main scope is the optimization of integration flows
with control-flow execution semantics.

Due to the early state of the research area of integration flow optimization, an exhaustive
classification of optimization approaches for integration flows does not exist. However,
typically, integration-flow-specific characteristics are exploited for optimization. First,
the expensive access of external systems is tackled with approaches that speed up the
external data transfer. Second, the control-flow-oriented execution is optimized by parallel
execution of subplans of an integration flow or by operator reordering. Thus, we use these
two categories in order to classify the existing approaches.
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A. Data Transfer Optimization

Essentially, the problem of expensive access to external systems (by actively invoking the
existing outbound adapters) is tackled with data transfer optimization. In this context,
we distinguish between (1) streaming transfered data (where the amount of exchanged
data is almost unchanged) and (2) reducing the amount of transfered data.

Streaming Transfered Data. The standard invocation model of external systems or Web
services is the transfer of materialized messages, i.e. the complete message is serialized
(converted to a byte stream) or, more generally, marshalled and transfered to the external
system, where the message is unmarshalled and processed. In contrast, the streaming
invocation of Web services for each tuple achieves higher throughput by leveraging pipeline
parallelism, but it also causes overhead, incurred by parsing SOAP/XML headers and
network latencies. Thus, there is a trade-off between pipeline parallelism achieved by
streaming and the existing overhead. There are approaches that exploit this trade-off
by passing batches of tuples (chunks of messages) in the form of individual messages to
the external system. Srivastava et al. introduced the adaptive data chunking [SMWM06],
where the chunk size k was determined—based on the measured response time of a batch
ci(ki)—by minimizing the response time per tuple ci(ki)/k. This concept was refined by
Gounaris et al. to the use of an online extremum-control approach [GYSD08b, GYSD08a]
that was adapted from control theory. Both approaches use a combination of control-flow
semantics with iterator, instance-local execution. In contrast, Preißler et al. introduced
the concept of stream-based Web services [PVHL09a, PVHL09b] over multiple process
instances, which is thus classified as control-flow semantics with iterator, instance-global
execution. Here, splitting rules are defined and message buckets are determined by the
message content according to those splitting rules. These buckets are then streamed to
and from the external Web service without the overhead (network latency) of passing
individual messages. The concept of stream-based Web services has the advantage that
both the data transfer (similar to the previously mentioned approaches, but with less
latency) and the processing within the Web service (that is able to statefully work on
the defined subtrees of XML messages) are optimized. In addition, streaming subtrees of
messages is also advantageous for local processing steps [PHL10]. Although some of these
approaches are first steps towards the adaptive behavior of integration flows, they neglect
local processing costs in the sense of optimizing only calls to external systems or applying
static (rule-based) optimizations only.

Reducing Transfered Data. The aforementioned approaches use a stream-based data
transfer between the integration platform and the external systems. This does not affect
the amount of exchanged data (payload). In contrast, there are also approaches that can
reduce the amount of transfered data. First, BPEL-DT and BPEL/SQL achieve this by
using references to data sets instead of physically exchanging data. BPEL-DT [HRP+07,
Hab09] reduces the transfered data by passing references to a data layer and using ETL
tools when possible. This reduction is achieved by using proprietary exchange formats
instead of XML. Furthermore, Vrhovnik et al. introduced the rule-based optimization
of BPEL/SQL processes [VSES08, VSS+07], where several rewrite rules were defined in
order to condense sequences of SQL statements and to push down certain operations to the
DBMS. In particular, the tuple-to-set rewrite rules reduce the amount of transfered data.
Second, Subramanian and Sindre introduced the rule-based optimization of ActiveXML
workflows [SS09a, SS09b]. An ActiveXML document is an XML document that contains
several Web service calls in order to load dynamic external content. In this approach,
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they group many independent service calls of an ActiveXML document that target the
same Web service into one service call and thus, in most cases, they reduce the amount
of transfered data. Note that all of these approaches for reducing the transfered data are
rule-based in the sense that rewriting is only applied once during the initial deployment
of an integration flow or the execution model was changed.

B. Control Flow Parallelization and Operator Reordering

In contrast to approaches that optimize the data transfer between the integration platform
and the external systems, further optimization approaches use control flow parallelization
in order to speed up integration flows by explicitly parallelizing processing steps or operator
reordering to reduce the size of intermediate results.

In general, all of those approaches analyze dependencies between tasks of a workflow and
then rewrite tasks with no dependencies between them to parallel subflows. For example,
Li and Zhan determine the critical path of a workflow with regard to the execution time and
then optimize only this part of the workflow [LZ05]. Typically, such rewritings are made
only once during the initial deployment (optimize-once model [BBD09]) and thus, they
are rule-based optimization approaches, where rewriting rules are often defined in terms of
algebraic equivalences [HML09, YB08]. For example, Behrend and Jörg proposed to use
the known Magic Sets technique for the rule-based optimization of incremental ETL flows
[Beh09, BJ10]. There, selection constants gathered in a subflow are propagated to other
subflows with common attributes in order to filter tuples as early as possible. In addition,
the XPEDIA system [BABO+09] achieves partitioned parallelism by partitioning large
XML documents into multiple parts, evaluating the parts in parallel, and finally, merging
the results. This concept is a hybrid approach of control flow and data flow parallelism
because parallel subflows are used to evaluate independent data partitions.

Furthermore, Srivastava et al. proposed an algorithm for finding the best plan of Web
service calls (control-flow semantics) with regard to the highest degree of parallelism and
thus, lowest total execution time [BMS05, SMWM06]. In addition to the exploitation of
parallelism, they also include the selectivity of services as a metric for arranging these
services. However, costs of local processing steps are neglected and the optimal plan
is computed for each incoming ad-hoc Web service query (optimize-always optimization
model). Similar to this, Simitisis et al. proposed an optimization algorithm for ETL flows
[Sim04, SVS05] by modeling this optimization problem as a state-space search problem. In
addition to the parallelization of operators, they used techniques for merging, splitting and
reordering operators. Although they use a cost model, the approach is mainly rule-based
due to optimization on logical level and optimization is triggered whenever a flow instance
is requested. This optimize-always model [BBD09] is advantageous for long-running flow
instances. However, when executing many instances with rather small amounts of data—
as it is the case for typical workloads of integration flows—the optimize-always model falls
short due to the predominant optimization costs.

The BPEL/SQL approach uses, in addition to SQL-activity-specific rewriting rules,
parallelization techniques for the rewriting of SQL activities [Rei08]. This is an exam-
ple of a hybrid approach, where aspects of data transfer optimization and control flow
parallelization are combined in order to achieve highest performance.

To summarize, existing techniques of optimizing integration flows mainly try to decrease
the costs for accessing external systems and to increase the degree of parallelism. Thereby,
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none of the existing approaches addresses the basic characteristic of integration flows that
they are deployed once and executed many times. On the one side, there are approaches
that follow the optimize-once model, where rule-based optimization is applied during the
initial deployment of a plan only. These approaches cannot adapt to changing workload
characteristics, which may lead to poor plans over time, and many optimization tech-
niques that require cost-based decisions cannot be applied at all. On the other side, there
are approaches that follow the optimize-always model, where optimization is triggered
whenever an instance of an integration flow is executed. This might lead to tremendous
optimization overhead if many instances with rather small amounts of data are executed
over time because in such scenarios, the optimization time can be even higher than the
execution time of a single instance. In conclusion, we observe the lack of a tailor-made
cost-based optimization approach for integration flows that allows the continuous adapta-
tion to changing workload characteristics and that exploits the specific characteristics of
integration flows in the form of being deployed once and executed many times.

2.2 Adaptive Query Processing

In contrast to the mainly rule-based optimization of integration flows, there is a large
body of work on the cost-based optimization in various system categories. With regard
to the aim of adaptation to changing workload characteristics as well as to unknown and
misestimated statistics, the literature refers to this field as Adaptive Query Processing
(AQP). In this section, we classify and discuss the existing techniques. For this purpose,
we present an extended AQP classification that combines the known, system-oriented clas-
sification of Babu and Bizarro [BB05] with the time-oriented classification of Deshpande
et al. [DHR06] and extend it by the category of integration flows. We focus only on
the main characteristics and drawbacks but refer to the surveys [BB05, DIR07] and the
tutorials [DHR06, IDR07] for a more detailed analysis of the individual categories.

2.2.1 Classification of Adaptive Query Processing

From a system perspective [BB05], we distinguish between (1) the plan-based adaptation of
ad-hoc queries in DBMS, (2) the adaptation of deployed integration flows (see Section 2.1)
in integration platforms, (3) the adaptation of continuous queries (CQs) in DSMS, and
(4) tuple routing as a specific execution model for CQs. We use this system-oriented
classification when surveying existing techniques in the following subsections. All of those
different system categories exhibit specific characteristics that are reflected by the specific
optimization approaches.

In addition to this system-oriented classification, we use a time-based classification in
the sense of when re-optimization is triggered. Figure 2.7 illustrates the resulting overall
classification. According to the spectrum of adaptivity [DHR06], there are essentially four
types when re-optimization can be triggered. First, the coarse-grained inter-query opti-
mization refers to the standard optimization model of DBMS as established in System R
[SAC+79], where each query is optimized during compile-time and thus, before execution
(optimize-always). For OLTP systems with rather short query execution times, plan or
QEP (query execution plan) caching [ZDS+08, BBD09, Low09] is a widely used approach
in order to reduce the optimization time by compiling a new QEP only if it does not
exist or if statistics have changed significantly (optimize once). Second, late binding uses
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natural blocking operators such as Sort and Group By in order to evaluate statistics and
to re-optimize the remaining query plan during runtime. Third, inter-operator adapta-
tion can re-optimize a plan at any possible point between operators by inserting artificial
materialization points (Checkpoint operators). Fourth, the fine-grained intra-operator
adaptation allows for re-optimization during the runtime of a single operator by data
partitioning across concurrent subplans (and thus, concurrent instances of an operator).
From a time perspective, we additionally use the notation of reactive (react to suboptimal-
ities) and proactive (create switchable plans before execution) re-optimization [BBD05a].
Furthermore, we distinguish between synchronous and asynchronous re-optimization. For
synchronous re-optimization (late-binding and inter-operator), execution is blocked be-
cause the current execution process requires the optimization result (in terms of the opti-
mal remaining subplan), while for asynchronous optimization (intra-operator), execution
is not blocked and plans are exchanged or merged at the next possible point.

Putting it all together, in the context of plan-based adaptation in DBMS, there exist
approaches for inter-query optimization, late-binding, inter-operator and intra-operator re-
optimization. Here, only intra-operator re-optimization can be executed asynchronously,
while all other approaches require synchronous re-optimization because the remaining plan
is optimized. Furthermore, the integration flow adaptation is classified as inter-instance
adaptation, which is similar to inter-query adaptation. In the opposite, continuous query
adaptation refers to intra-operator adaptation because theoretically, an infinite stream
of tuples is processed (and thus, we cannot block execution until all tuples are read by
any operator). Finally, the tuple routing strategies, as an alternative for continuous query
adaptation, represent by themselves the most fine-grained time scheme for re-optimization,
where the optimization decisions in the sense of routing paths over operators can be made
for each individual tuple. In the following, we use this general classification to put existing
techniques into the context of adaptive query processing.

2.2.2 Plan-Based Adaptation

For reactive, inter-operator re-optimization, the traditional optimizer is used to create a
plan. During execution, intermediate results are materialized, and if estimation errors are
detected, the current plan is re-optimized. In ReOpt [KD98], the optimizer is invoked
if statistics differ significantly, regardless of whether or not this will produce another
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plan. Further, progressive optimization [HNM+07, MRS+04, EKMR06] uses checkpoint
operators to determine if validity ranges of subplans are violated and thus, can avoid
unnecessary re-optimization. The major drawback is that validity ranges are defined as
black boxes for subplans. Hence, directed re-optimization is impossible and it cannot be
guaranteed that the current plan is not optimal. In addition, there might be trashing
of intermediates, and the use of materialization points might be too coarse-grained. The
latter problems were addressed by corrective query processing [IHW04] (reactive, intra-
operator) that uses data partitioning across plans. Here, new plans are used only for new
data and stitch-up phases combine the results of different plans. This is disadvantageous
if there are large intermediate results in combination with large operator states because
these results must be post-processed and then merged with a union.

In contrast to these reactive re-optimization approaches, proactive, inter-operator re-
optimization in Rio [BBD05a, BBD05b] computes bounding boxes around all used es-
timates to express their uncertainty before optimization. The bounding boxes are then
used to create robust or switchable plans. During execution, a switch operator can choose
between three (low, estimate, high) different remaining plans based on a random sample
of its input. However, those bounding boxes are used as black boxes with regard to single
estimates. Again, this makes directed re-optimization impossible and the suboptimality
of the current plan cannot be guaranteed.

To summarize, all plan-based adaptation approaches rely on the assumption of long-
running queries, where mid-query re-optimization can significantly improve the query ex-
ecution time. Optimization is triggered synchronously at materialization points or asyn-
chronously in the case of intra-operator re-optimization.

2.2.3 Continuous-Query-Based Adaptation

In contrast to plan-based adaptation in DBMS, the adaptation of continuous queries in
DSMS is typically realized with another approach: The optimizer specifies which statistics
to gather, requests them from the monitoring component, and re-optimization is triggered
periodically or whenever significant changes have occurred [BB05]. CQ-specific aspects
are the extensive profiling of stream characteristics [BMM+04] and the state migration
(e.g., tuples in hash tables) during re-optimization [ZRH04] in order to prevent missing
tuples or duplicates and to ensure the tuple order. Examples for this optimization model
are CAPE [ZRH04, RDS+04, LZJ+05], NiagaraCQ [CDTW00], StreaMon [BW04], and
PIPES [CKSV08, KS09, KS04]. There exist high statistics monitoring overhead and the
mentioned problem of when to trigger re-optimization.

In order to tackle the problem of state migration and to allow for fine-grained adaptation
as well as load balancing, also tuple routing strategies can be applied. The routing-based
adaptation does not use any optimizer but combines optimization, execution, and statistics
gathering. The most prominent example of such a system is Eddies [AH00, MSHR02].
An eddy operator is used to route single tuples along different operators rather than
using predefined plans. Due to the dynamic evaluation of applicable operators as well
as the decisions on routing paths by routing policies [AH00, TD03, BBDW05], there can
be significant overhead compared to plan-based adaptation [Des04]. This problem was
weakened by the self-tuning query mesh [NRB09, NWRB09] that uses a concept drift
approach to route groups of tuples instead of single tuples.

Both approaches of continuous-query-based adaptation and tuple routing strategies rely
on the assumption that continuous queries process infinite tuple streams. Specific charac-
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teristics are non-blocking operators and the need for state-awareness (e.g., state migration
on plan rewriting). Due to processing infinite streams, re-optimization is by definition
intra-operator or per-tuple routing, where re-optimization can be done asynchronously.

2.2.4 Integration Flow Optimization

As we have shown in Subsection 2.1.5, existing techniques for the optimization of inte-
gration flows are mainly rule-based (optimize-once) [LZ05, VSS+07, BJ10] and thus, do
not address re-optimization, or they follow an optimize-always model [SVS05, SMWM06].
However, similar to the categories of plan-based adaptation in DBMS and continuous-
query-based adaptation in DSMS, integration flows exhibit certain specific characteristics
that could be exploited for a more efficient re-optimization approach.

First, integration flows are deployed once and executed many times. Due to the exe-
cution of many instances with rather small amounts of data (that stands in contrast to
plan-based adaptation in DBMS), there is no need for inter-operator or intra-operator re-
optimization. Second, in contrast to CQ-based adaptation in DSMS, many independent
instances of an integration flow are executed over time. Due to this execution model of in-
dependent instances, there is no need for state migration because a plan can be exchanged
between two subsequent instances with low costs.

Based on the specific characteristics, integration flows require incremental statistic
maintenance and inter-instance (inter-query) re-optimization. The advantages would be
(1) the asynchronous optimization independent of executing certain instances, (2) the
fact that all subsequent instances rather than only the current query benefit from re-
optimization, and (3) the inter-instance plan change without the need of state migration.

To summarize, we infer that the specific characteristics of DBMS, DSMS and integration
platforms require tailor-made optimization approaches. While there exist sophisticated ap-
proaches for plan-based adaptation in DBMS and continuous-query-based adaptation in
DSMS, to the best of our knowledge, there does not exist any optimization approach of
integration flows that allows the continuous adaptation to changing workload characteris-
tics. This lack of a tailor-made cost-based optimization approach for integration flows is
addressed in this thesis.

2.3 Integration Flow Meta Model

Based on the literature review of integration flows, we now define the integration flow
meta model that is used as our formal foundation throughout the whole thesis. On the
one side, we introduce the basic notation of integration flows including the message meta
model and the flow meta model as well as the execution semantics of integration flows. On
the other side, we discuss specific transactional properties of integration flows that must
be ensured when rewriting such flows.

2.3.1 Notation of Integration Flows

As the basic notation of integration flows, essentially, we use an extension of the so-called
Message Transformation Model (MTM) [BWH+07, BHW+07]. This integration flow meta
model consists of two vital parts. First, the message meta model describes the structural
aspects, that is, the structure of data objects (materialized intermediates) processed by an

21



2 Preliminaries and Existing Techniques

integration flow. Second, the flow meta model describes the operational aspects in terms
of the control flow and the data flow.

Message Meta Model

Assume a sequence2 of incoming messages M = {m1,m2, . . . ,mn} that is processed by an
integration flow. We model each message mi as a (ti, di, ai)-tuple, where ti ∈ Z+ denotes
the incoming timestamp of the message, di denotes a semi-structured (self-describing) tree
of name-value data elements that represents the payload of the message, and ai denotes a
list of additional, atomic name-value attributes, which is used for meta data and message
protocol information.

Example 2.3 (Order Message). We assume a simple order message that has been received
from a Web shop in the form of a proprietary binary message. This message has been
transformed into an internal XML representation by an inbound adapter:

ti = 61238178981000 //Fr Jun 25 7:16:21 2010

di = "<Order>

<Orderkey>7000000</Orderkey>

<Custkey>1001</Custkey>

<Orderdate>2010-06-25</Orderdate>

<Totalprice>398.80</Totalprice>

<Orderlines>

<Orderline>

<Productkey>109</Productkey> <Quantity>4.0</Quantity>

<Lineprice>49.95</Lineprice> <Shipmode>1</Shipmode>

<Comment>Color: blue</Comment>

</Orderline>

<Orderline>

<Productkey>57</Productkey> <Quantity>1.0</Quantity>

<Lineprice>199.00</Lineprice> <Shipmode>1</Shipmode>

</Orderline>

</Orderlines>

</Order>"

ai = msgtype, "web_order";

RcvPort, "5010"’;

RcvAdapter, "WSO";

We received this message at timestamp t1 = 61238178981000 (Fr Jun 25 7:16:21 2010).
The content of the message is represented by the semi-structured tree of data elements di,
which includes the general order information as well as two detailed orderlines. Finally,
the list ai of key/value pairs is used to hold meta data such as the message type that has
been annotated by the configured inbound adapter instance.

Using the tree of name-value data elements di, we can represent heterogeneous data
formats and all operators can be realized according to this internal representation.

2We use the term sequence for finite and infinite sequences (or synonymously streams) of incoming
messages. In case of infinite sequences, we have n =∞.
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Flow Meta Model

According to our classification of integration flows, our flow meta model defines a plan P
of an integration flow as a hierarchy of sequences with control-flow semantics that uses
instance-local, materialized intermediates.

In detail, the flow meta model exhibits an instance-based execution model, which means
that each incoming message mi or scheduled time event ei (in case of plans that are ini-
tiated by an internal scheduler) conceptually initiates a new instance pi of a plan P .
This instance is then executed within a single master thread (except for modeled parallel
subflows) such that no queues between operators are required. As a consequence of this ex-
ecution model, a plan instance pi has a local state, while a plan P is stateless by definition,
which stands in contrast to standing queries in DSMS. With these control-flow semantics,
both the data flow and the control flow can be appropriately described because data de-
pendencies as well as temporal dependencies are expressible. The single operators use
local messages as variables (data dependencies), while edges between operators describe
the temporal order of these operators. Similar types of instance-based process models are
typical for workflow-based integration systems [BPA06, OAS06, WfM05]. Putting it all
together, a plan of an integration flow is defined as follows:

Definition 2.1 (Plan). A plan P of an integration flow is defined with P = (o, c, s) as
a 3-tuple representation. Let o = {o1, o2 . . . , om} denote a sequence of operators, let c
denote the context of P as a set of local message variables, and let s denote a set of
services s = {s1, s2 . . . , sl} that represent outbound adapters. An instance pi of a plan
P , with P ⇒ pi, executes the sequence of operators exactly once. Each operator oj has a
specific type as well as a unique node identifier nid. We distinguish between atomic and
complex operators, where complex operators recursively contain sequences of operators with
oj = {oj,1, oj,2 . . . , oj,m′}. A single operator can have multiple input variables and multiple
output variables. Each service si contains a type, a configuration and a set of operations.

Our flow meta model includes specific operator types for integration flows in order
to describe local processing steps and the interaction with external systems. In detail,
this flow meta model defines a set of interaction-, control-flow-, and data-flow-oriented
operators by combining common process description languages with the relational algebra.
We use the min-max notation [KE09] to describe the minimal and maximal number of
input and output messages of each specific operator type. In addition, we identify complex
operators that recursively contain arbitrary other operators.

The interaction-oriented operators describe the interaction between the integration plat-
form and the external systems. These operators use adapters in order to encapsulate the

Table 2.1: Interaction-Oriented Operators

Name Description Input Output Complex

Invoke Actively write/read data to/from
external systems

(0,1) (0,1) No

Receive Passively receive a message from an
invoking client system (listener)

(0,0) (1,1) No

Reply Send a result to the invoking client
system

(1,1) (0,0) No
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Table 2.2: Control-Flow-Oriented Operators

Name Description Input Output Complex

Switch Content-based alternative with mul-
tiple paths (if-elseif-else semantics)

(1,1) (0,0) Yes

Fork Execution of multiple parallel sub-
flows (forklanes)

(0,0) (0,0) Yes

Iteration Loop over a sequence of operators
(foreach, while)

(0,1) (0,0) Yes

Delay Wait until a specific timestamp or
for a specified time, respectively

(0,0) (0,0) No

Signal Initiation of a signal, which could be
caught by a specific signal handler

(0,0) (0,0) No

Table 2.3: Data-Flow-Oriented Operators

Name Description Input Output Complex

Assign Value assignment of atomic or com-
plex objects (language: XPath)

(0,*) (1,1) No

Translation Execution of schema mappings, in
the sense of message transforma-
tions (e.g., XSLT, STX, XQuery)

(1,1) (1,1) No

Selection Filtering of tuples depending on
content-based conditions

(1,1) (1,1) No

Projection Selection of attributes depending on
a specific attribute list

(1,1) (1,1) No

Join Join between two input messages
w.r.t. a join condition and a join
type

(2,2) (1,1) No

Setoperation Set operations (union, inter-

section, difference) of two input
messages

(2,2) (1,1) No

Split Decomposition of a large message
into multiple smaller messages

(1,1) (0,*) No

Orderby Sorting of tuples according to a
specified attribute

(1,1) (1,1) No

Groupby Partitioning of tuples w.r.t. group-
ing attributes and aggregate func-
tions

(1,1) (1,1) No

Window Partitioning of tuples for ranking
and correlations, without grouping

(1,1) (1,1) No

Validate Validation of one input message de-
pending on a specific condition

(1,1) (0,0) No

Savepoint User-defined storage of UNDO/
REDO images of the input variable

(1,*) (0,0) No

Action Execution of arbitrary code snippets (0,1) (0,1) No
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access to heterogeneous systems and applications. There, the proprietary external mes-
sages and data representations are transformed into the described internal message meta
model. In detail, the group of interaction-oriented operators include the operators shown
in Table 2.1. In contrast to this, the data-flow- and control-flow-oriented operators are
used as local processing steps within the integration platform in the sense that they do
not perform any interactions with external systems. Both groups of operators are shown
in Table 2.2 and Table 2.3, respectively.

The instance-based plan execution has several implications for all operators. First, the
operators use materialized intermediate results in the sense of local message variables.
Second, the data flow is implicitly given by those input and output variables.

Moreover, we distinguish between external integration flow descriptions (e.g., BPEL),
internal plans (logical representation) and internal compiled plans (physical representa-
tion). Here, the term plan is a shorthand for internal plans. In Section 2.4, we present
several use cases that are used as example plans throughout the whole thesis.

2.3.2 Transactional Properties

There are several transactional properties of integration flows that must be guaranteed
under all circumstances. In this section, we discuss different problems that can occur while
executing an integration flow as well as how they are typically addressed in integration
platforms and what we can imply for the cost-based optimization of integration flows. For
more details, see our analysis of problem categories [BHLW08a].

The most important risk of executing integration flows is the problem of message lost
when using a simple send and forget execution principle.

Problem 2.1 (Message Lost). Assume that the stream of incoming messages M is col-
lected using transient (in-memory) inbound message queues. If a server breakdown of the
integration platform has occurred, all messages not sent to the target systems will be lost.
This is a problem because often the messages cannot be restored by the source systems.

As shown in Section 2.1.2, this problem is typically addressed by persistently storing all
incoming messages at the inbound server side of the integration platform. The resulting
implication is that all integration platforms follow a store and forward principle in order to
guarantee that each received message will be successfully delivered to the external systems.
Thus, if a failure occurs, the stored messages are used to resume the state of execution.
A failure or server breakdown can occur at an arbitrary point in time. Thus, there might
be operators and interactions with external systems that have already been successfully
finished, while other operators have not. When re-executing the complete integration flow,
the following problem arises.

Problem 2.2 (Message Double Processing). Assume that a server breakdown during ex-
ecution of plan instance p1 has occurred. Recall that typically, each interaction with an
external system is an atomic transaction. Thus, there might be successfully finished op-
erators and currently unfinished operators. Furthermore, if the external system does not
support transactional behavior, there might be partially successful interactions with exter-
nal systems. If we re-execute the plan instance p1 with p′1, we might send the same message
twice to an external system.

In order to tackle this problem, specific recovery models for integration flows are used,
where we distinguish between two types. First, there is the compensation-based transac-
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tion model [OAS06], where compensation flows are modeled by the user (e.g., the compen-
sation of an INSERT would be a DELETE with the appropriate identifier). These compensa-
tions are executed for successfully executed parts of an integration flow. As a result, the
compensated parts are rolled back (compensated) and completely re-executed after that.
With regard to arbitrary external systems and applications, there might exist operations
where no compensation exists at all. Second, there is the recovery-based transaction model
[BHLW08a, SWDC10] that tries to address the problem of missing compensations. Here,
REDO-images—in the sense of output messages of successfully executed operators—are
stored in order to resume integration flows after the last successful operator. In conclusion,
the problems of message lost and message double processing are typically addressed with
persistent message storage and a tailor-made recovery model. Thus, the contract of an in-
tegration platform can be extended from store-and-forward to a form that guarantees that
each received message will be successfully delivered exactly once to the external systems.

Beside these data-related guarantees also temporal guarantees must be ensured. From
the perspective of integration flow optimization, we would consider executing subsequent
plan instances in parallel. Unfortunately, the problem of message outrun would arise.

Problem 2.3 (Message Outrun). Assume two messages m1 and m2, where m1 arrives
earlier at the integration platform than m2, with t1 < t2. If we execute the two resulting
plan instances p1 and p2 in parallel, an outrun of messages in terms of changed sequential
order of messages at the outbound side might take place and the result of p2 is sent to
the external system s1 before the result of p1. For example, if customer master data is
propagated to the external system s1 with the customer’s first order, a message outrun can
result in a referential integrity conflict within the target system s1. Additional examples
from the area of financial messaging that also require serialization are financial statements
and stock exchange orders.

To tackle this problem, typically, inbound message queues are used in combination with
single-threaded plan execution. This serialized execution of plan instances guarantees that
no message outrun can take place. This is comparable to snapshot isolation in DBMS
[LKPMJP05, CRF08]. Hence, internal out-of-order processing would be possible, because
we only need to ensure the serialized external behavior in the sense that the inbound order
is equivalent to the outbound order of messages. More formally, eventual consistency
[Vog08] with the property of monotonic writes (serialize the writes of the same plan), and
thus, with convergence property, must be guaranteed. In addition, also monotonic reads
with regard to individual data objects must be ensured.

The mentioned transactional properties have several implications for the cost-based
optimization of integration flows. First, when rewriting plans during optimization, we must
be aware of the problems of message lost, message double processing, and message outrun.
Second, the contract of an integration platform with any client application or system
is that each received message must be successfully delivered, in arrival-order (monotonic
writes), with monotonic reads from external systems, exactly once to the external systems.

2.4 Use Cases

From a business perspective, we distinguish between horizontal and vertical integration of
information systems [Sch01]. In this section, we illustrate an example scenario for both
use cases, including concrete integration flows that we will use as running examples and
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Figure 2.8: Use Cases of the Example Scenario w.r.t. the Information System Pyramid

test cases for our experimental evaluation throughout the whole thesis. Note that parts
of this scenario are adapted from our DIPBench specification (Data-Intensive Integration
Process Benchmark) [BHLW08b, BHLW08c]. While these flows and related workloads
adhere to common characteristics of real-world integration flows, we explicitly do not use
real-world data sets and workload characteristics because for evaluation purposes we want
to generate arbitrary selectivities, cardinalities and temporal variations in order to cover
a broad spectrum of application scenarios. The context of this example scenario is supply
chain management (SCM) [MDK+01] within an enterprise. This includes the planning,
execution, control, and monitoring of all supply chain activities in order to automatically
synchronize customer demands with supply. Figure 2.8 illustrates an information system
pyramid including all information systems affected by our simplified SCM scenario.

In this scenario, several operational, dispositive and strategical information systems
exist. At the level of operational systems, various systems have to be distinguished. First,
an eCommerce Web shop s5 is used by the customers in order to submit orders. Second,
the master data of all customers is maintained by a specific CRM system (Customer
Relationship Management) s4. Third, the ERP system (Enterprise Resource Planning)
s3 is the leading information system that is used for all core business activities. Fourth,
all materials in terms of basic material as well as created products are managed using a
material management system s2. Fifth, and finally, there is a specific SCM system s1,
which is used to automatically submit orders to suppliers of the required basic material.
At the level of dispositive systems, a global data warehouse s6 and context-specific data
marts are used in order to consolidate data from the operational systems and to enable
arbitrary, analytical ad-hoc queries. Finally, at the strategical level, a DSS (Decision
Support System) s7 is used for long-term planning.

There are strong dependencies between the different heterogeneous systems and appli-
cations. Thus, integration is crucial for the automatic supply chain management, where
all those systems and applications need to interact with each other. In this scenario, we
distinguish two types of integration use cases. First, horizontal integration refers to the
integration of operational systems, where data must be synchronized immediately based
on business events such as a submitted order in the eCommerce Web shop. Second, verti-
cal integration refers to the physical consolidation of data of all operational systems into
the data warehouse infrastructure. Then, the strategical systems can be used in order to
monitor, analyze, and plan all supply chain activities. In the following, we describe the
two use cases in more detail and introduce example integration flows for both.
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Figure 2.9: Example Horizontal Integration Flows

2.4.1 Horizontal Integration: EAI

The use case of horizontal integration addresses the integration of the operational systems
(SCM, Material, ERP, CRM, and eCommerce) of our example scenario. This use case
is typical for EAI (Enterprise Application Integration) scenarios, where updates within
an operational system trigger immediate data synchronization in the sense of message
exchange by data-driven integration flows. Due to the OLTP character in terms of many
short business transactions in the operational systems, many instances of integration flows
with rather small amounts of data per instance are executed over time. Within the scope
of this use case, various integration flows exist. We pick four concrete examples with
different characteristics and define these integration flows in detail.

Example 2.4 (Material Synchronization). Figure 2.9(a) illustrates an integration flow
(plan P1) that is used to synchronize material (basic material and products) master data
from the ERP system to the SCM system as well as to the Material system. Essentially,
when new material has been created within the ERP system, a proprietary material message
is automatically sent to the integration platform. This asynchronously initiates a plan
instance of P1. The Receive operator (o1) writes the internal message to an instance-
local variable. Subsequently, a Switch operator o2 evaluates the message type (MATMAS04
or MATMAS05 for inter-version compatibility) and decides which alternative Switch path is
executed. After specific schema transformations (Translation) that differ according to
the present message type, queries are prepared (Assign) in order to send (Invoke) the
data to the external systems s1 (SCM) and s2 (Material).

Example 2.5 (Orders Processing). The integration flow (plan P2) shown in Figure 2.9(b)
propagates order messages that have been submitted within our eCommerce Web shop to
the central ERP system. During execution of an instance of this plan, additional master
data of the customer are read from the CRM database and joined to this message. In
detail, the Receive operator (o1) gets an orders message from the queue and writes it
to a local variable. Then, the Assign operator (o2) is used in order to prepare a query
with the customer name of the received message as a parameter. Subsequently, the Invoke

operator (o3) queries the external system s4 (CRM system) in order to load master data
information for that customer. Here, one SQL query Qi per plan instance (per received
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message) is used. The Join operator (o4) merges the result message with the received
message (with the customer key as join predicate). Finally, an Assign operator (o5) and
an Invoke operator (o6) are used to sent the join result to system s3 (ERP system).

Example 2.6 (Material Inventory Update). The ERP system is the leading information
system in our example scenario. Hence, the current material inventory is periodically
updated within the ERP system. Therefore, the integration flow (plan P3) that is shown
in Figure 2.9(c) is periodically executed. Essentially, this plan specifies that after a query
has been prepared, the external systems s1 (SCM system) and s2 (Material system) are
queried. The result sets are joined (o4) and aggregated (o5) per material. Finally, the
aggregated material inventory is sent to the ERP system s3.

Example 2.7 (Product Cost Estimate). Using the eCommerce Web shop, a customer
can order user-defined products. Therefore, one can pose a cost estimate bid. In order
to answer such a cost estimate bid, data from several operational systems is required.
Therefore, the synchronous integration flow (plan P4) shown in Figure 2.10 is used.

Join (o14)
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Join (o13)
[in: msg5,msg7, out: msg8]

Receive (o1)
[service: s5, out: msg1]
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[in: msg7]

Assign (o10)
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> 9000000
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[in: msg3, out: msg4]

Invoke (o3)
[service s3, in: msg2, out: msg3]

Join (o5)
[in: msg1,msg4, out: msg5]

Invoke (o8)
[service s1, in: msg6, out: msg7]

Join (o9)
[in: msg5,msg7, out: msg9]

Invoke (o11)
[service s2, in: msg6, out: msg7]

LEFT OUTER

INNER

INNER INNER

Figure 2.10: Example Integration Flow – Plan P4

We receive a message from the external system s5 (eCommerce). Subsequently, we query
the ERP system in order to determine if this user-defined product has already been sold. If
this is the case, we query the SCM system and join those possible products with the basic
information. Otherwise, we query the Material system in order to determine the costs of
a newly created product. Finally, we prepare the answer in the sense of a cost estimate
and send a reply message to the customer (who was blocked during execution).

To summarize, the plans P1, P2, and P4 are data-driven integration flows, while the
plan P3 is a periodically (time-based) initiated integration flow. Furthermore, the plans
P1, P2, and P3 are executed asynchronously (where for P1 and P2 inbound queues are
used), while the plan P4 is executed synchronously (where the client system is blocked).
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2.4.2 Vertical Integration: Real-Time ETL

In contrast to horizontal integration, the use case of vertical integration addresses the
consolidation of data from the operational source systems into dispositive and strategical
systems. In this context, typically, data-centric ETL (Extraction Transformation Loading)
flows are used. However, there is a trend towards operational BI where changes in the
source systems are directly propagated to the data warehouse infrastructure in order to
achieve high up-to-dateness of analytical query results [DCSW09, O’C08, WK10]. This
is typically realized with (1) near real-time ETL flows, where data is loaded periodically
but with high frequency, or with (2) real-time ETL flows, where data is loaded based
on business transactions. As a result of both strategies, many instances of integration
flows with rather small amounts of data are executed over time. Although this is similar
to horizontal integration, we use selected ETL integration flows in order to demonstrate
their specific characteristics as well.

Example 2.8 (Real-Time Standard Orders Loading). If a new order of standard products
(not user-defined) is created using the ERP system, the data is directly propagated to
the data warehouse infrastructure. Therefore, the integration flow (plan P5) shown in
Figure 2.11(a) is used. A plan instance is asynchronously initiated by receiving a data
set from the ERP system, and it executes three different Selection operators (according
to different attributes) in order to filter orders that are maintained within dedicated data
marts. Subsequently, a Switch operator routes the incoming tuples—using content-based
predicates—to specific schema mapping Translation operators (specific to the referenced
material). Finally, the result is loaded into the data warehouse s6.

Example 2.9 (Near-Real-Time Customer Loading). Non-disjoint (overlapping) customer
master data from the eCommerce Web shop, the CRM system as well as the ERP sys-
tem is loaded into the data warehouse in a near real-time fashion. Plan instances of the
integration flow (plan P6)—that is illustrated in Figure 2.11(b)—are periodically initiated
and executed. Essentially, this plan creates three parallel subflows, where the customer
master data is loaded from the ERP system s3, from the CRM system s4, and from the
eCommerce Web shop s5. After the subflows have been temporally joined, two subsequent
Setoperation operators (type UNION DISTINCT) are executed in order to eliminate dupli-
cates. Finally, the resulting customer data is loaded into the data warehouse s6.

Example 2.10 (Real-Time Customized Orders Loading). Incoming orders of customized
products that are registered within the central ERP system are also directly propagated
to the data warehouse architecture using the integration flow (plan P7) that is shown in
Figure 2.11(c). Initiated by those incoming order messages, four parallel subflows are
executed, where we load the related supplier data from the SCM system s1, product in-
formation from the Material system s2, customer data from the CRM system s4, and
transaction information from the eCommerce Web shop s5. Subsequently, a left-deep-
join-tree—consisting of four Join operators (chain query type)—merges the received order
message with the loaded data. Finally, the result is sent to the data warehouse s6.

Example 2.11 (DSS Data Provision). The consolidated data of the data warehouse is
partially provided for strategical planning within the DSS. In order to synchronize the data
warehouse with the DSS, the integration flow (plan P8) is used as shown in Figure 2.11(d).
Essentially, instances of this plan are initiated periodically. First, a procedure is called by
the Invoke operator o2 that executes several data cleaning and aggregation operations on
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Figure 2.11: Example Vertical Integration Flows

the collected orders information. Furthermore, two queries are prepared in order to read
orders and orderline information from the data warehouse. After those data sets have been
extracted from the data warehouse, two Invoke operators are used in order to load the data
into the DSS.

To summarize, the plans P5 and P7 are data-driven integration flows, while the plans
P6 and P8 are scheduled and thus, time-based initiated integration flows. Only plan P5 is
initiated synchronously, while the plans P6, P7, and P8 are all initiated asynchronously.

We will use these eight integration flows from the use cases of horizontal and vertical
integration as running examples throughout the whole thesis. All of these flows exhibit
different characteristics that can be exploited for optimization purposes.
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2.5 Summary and Discussion

To summarize, we classified existing work of specifying integration tasks, where we mainly
distinguish query-based, integration-flow-based and user-interface-oriented approaches.
Due to the emerging requirements of complex integration tasks that (1) stretch beyond
simple read-only applications, (2) involve many types of heterogeneous systems and appli-
cations, and (3) require fairly complex procedural aspects, imperative integration flows are
increasingly used. Hence, we further classified the modeling, execution and optimization
of these integration flows in detail according to a generalized reference system architecture
of an integration platform for integration flows. Typically, an integration flow is modeled
as a hierarchy of sequences with control-flow semantics. The control-flow semantics sub-
sumes also implicit data-flow semantics by using instance-local, materialized intermediates
in the form of variables. With regard to the optimization of such integration flows, we
can summarize that mainly rule-based optimization approaches (optimize-once) have been
proposed so far. This optimization model has two major drawbacks. First, adaptation to
changing workload characteristics is impossible because the flow is only optimized once
during the initial deployment. Second, many cost-based optimization decisions cannot be
made statically in a rule-based fashion.

In contrast to the rule-based optimization of integration flows, there are numerous ap-
proaches of adaptive query processing in different application areas. However, these ap-
proaches are tailor-made for specific system types and their underlying assumptions of
execution characteristics. For example, plan-based adaptation in DBMS is based on the
assumption of long running queries over finite data sets, while continuous-query-based
adaptation in DSMS relies on the assumption of continuous queries over infinite tuple
streams. In contrast to these system types, integration flows exhibit the specific char-
acteristics of being deployed once and executed many times, where many independent
instances—with rather small amounts of data per instance—are executed over time. In
conclusion, the major research question is if we can exploit context knowledge of integra-
tion flows in order to design a tailor-made optimization approach that takes into account
these specific characteristics of integration flows.

As a formal foundation, we defined the basic notation in the form of a meta model
for integration flows, including a message meta model that covers all static data aspects
and a flow meta model that precisely defines the plan execution characteristics as well as
interaction-, control-flow-, and data-flow-oriented operators. This meta model reflects the
common modeling and execution semantics of integration flows as well as their specific
transactional requirements and thus, all results of this thesis can be seamlessly applied to
other meta models as well. Furthermore, we specified example integration flows within the
context of the two major use cases of horizontal and vertical integration. These example
flows represent the main characteristics and different facets of integration flows and hence,
they are used as running examples throughout the whole thesis.

Putting it all together, there are existing approaches for query-based, integration-flow-
based and UI-oriented integration. From the perspective of optimization, there exist
tailor-made techniques for adaptive query processing. In contrast, the optimization of
integration flows is mainly rule-based. Thus, the focus and novelty of this thesis is the
cost-based optimization of integration flows that is strongly required in order to address
the high performance demands when executing integration flows.
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Flows

In this chapter, we introduce the fundamentals of a novel optimization framework for
integration flows [BHW+07, BHLW08f, BHLW08g, BHLW09a] in order to enable arbi-
trary cost-based optimization techniques. This framework is tailor-made for integration
flows with control-flow execution semantics because it exploits the major integration-flow-
specific characteristic of being deployed once and executed many times. Furthermore, it
tackles the specific problems of missing statistics, changing workload characteristics, and
imperative flow specifications, while ensuring the required transactional properties as well.

The core idea of the overall cost-based optimization framework for integration flows is
incremental statistics maintenance in combination with asynchronous, inter-instance plan
re-optimization. In order to take into account both, data-flow- and control-flow-oriented
operators, we specify the necessary dependency analysis as well as a novel hybrid cost
model. Furthermore, we introduce the periodical re-optimization that includes the core
transformation-based optimization algorithm as well as specific approaches for search space
reduction (such as a join reordering heuristic), influencing workload adaptation sensibility,
and handling of correlated data. Subsequently, we present selected concrete optimization
techniques (such as the reordering/merging of switch paths, early selection application,
or the rewriting of sequences and iterations to parallel flows) to illustrate the rewriting
of plans. Finally, the evaluation shows that significant performance improvements are
possible with fairly low optimization overhead.

3.1 Motivation and Problem Description

The motivation for designing a tailor-made optimization approach for integration flows
is the specific characteristic of being deployed once and executed many times that can
be exploited for efficient re-optimization. Moreover, integration flows are specified with
control-flow semantics (imperative) in order to enable the execution of complex procedural
integration tasks.

Problem 3.1 (Imperative Integration Flows). When rewriting imperative flow specifica-
tions, the data flow and the control flow (in the sense of restrictive temporal dependencies)
must be taken into account in order to ensure semantic correctness. Here, semantic cor-
rectness is used in the sense of preventing the external behavior (data aspects and temporal
order) from being changed.

The majority of existing flow optimization approaches [LZ05, VSS+07, BJ10, BABO+09]
apply rule-based optimizations only (optimize-once) using, for example, algebraic equiva-
lences. There, rewriting decisions are statically made only once during the initial deploy-
ment of an integration flow. However, this is inadequate due to the following problem:
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Problem 3.2 (Changing Workload Characteristics). In the context of integration flows
that integrate distributed systems and applications, the workload characteristics—in the
form of statistics such as selectivities, cardinalities, and execution times—can change sig-
nificantly over time [IHW04, NRB09, DIR07, CC08, LSM+07, BMM+04, MSHR02]. This
can be caused by unpredictable workloads of the external systems (e.g., number of update
transactions, amount of data to be integrated, waiting times for external systems) or tem-
poral variations of infrastructural properties (e.g., network traffic or bandwidth). These
influences lead to changing workload characteristics of the integration platform in the sense
of different numbers of plan instances, different cardinalities and selectivities as well as
different execution times when accessing external systems.

As a result of Problem 3.2, rule-based optimized plans, where no execution statistics
are used for optimization, fall short and may perform inefficiently over time. For the
same reason, also manually optimized plans, where a fixed (hand-crafted) plan is specified
by an administrator, cannot be applied [Win03]. Cost-based optimization, using data
properties and execution statistics, has the potential to overcome this deficit because
optimal execution plans are generated with regard to the current statistics. By keeping
these statistics up-to-date, adaptation to changing workload characteristics is possible.
However, for integration flows, there is the additional problem of missing statistics:

Problem 3.3 (Missing Knowledge about Statistics of External Systems). One of the
main problems of integration flow optimization is the lack of knowledge about data char-
acteristics (e.g., cardinalities, selectivities, ordering) and execution statistics (execution
times, bandwidth) of the different data sources [IHW04]. Due to the integration of au-
tonomous (loosely-coupled) source systems, the integration platform usually has no access
to statistical information of the external systems—if they exist at all.

However, execution statistics are required for cost-based optimization. Due to the miss-
ing statistics, the central integration platform has to incrementally maintain the workload
characteristics and execution statistics by itself. The combination of Problem 3.2 and
Problem 3.3 leads to the need for a cost-based optimization approach that incrementally
maintains execution statistics and re-optimizes given plans if necessary. Unfortunately, ex-
isting cost-based approaches [SMWM06, SVS05] follow an optimize-always model, where
optimization is synchronously trigged for each plan instance before it is executed. This
optimize-always model falls short in the presence of many short-running plan instances,
where the optimization time might be even higher than the execution time of an instance.
In addition, these existing approaches do not consider an overall cost-based optimization
framework but only investigate selected cost-based optimization techniques in isolation.

In consequence, we introduce the general concept of cost-based optimization of im-
perative integration flows. As a starting point, we follow the optimization objective of
minimizing the average execution time of a plan, which implicitly increases the message
throughput as well. The core concept is (1) to incrementally monitor workload character-
istics and execution statistics, and (2) to periodically re-optimize given plans using a set of
cost-based optimization techniques. As a result, this approach enables cost-based rewrit-
ing decisions and it achieves a suitable adaptation to changing workload characteristics,
while it requires less optimization overhead than the optimize-always model.

The cost-based optimization of integration flows differs from cost-based optimization for
(1) programming languages or (2) data management systems for several reasons. First,
although optimizers of programming language compilers optimize imperative programs,
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they do not consider any data-intensive operators (such as Join, Groupby, etc) and related
optimization techniques as well as they are typically not aware of interactions with external
systems. Second, existing cost-based optimizers for DBMS or DSMS optimize data-flow
graphs rather than imperative control-flow graphs. Similarly to existing approaches of
integration flow optimization, both categories use the optimize-once or optimize-always
models and thus, do not take into account the major characteristic of integration flows in
the form of being deployed once and executed many times.

We use the introduced system architecture of typical integration platforms (see Sub-
section 2.1.2) in order to sketch the required architectural extensions for enabling the
cost-based optimization of integration flows. Figure 3.1 illustrates this extended reference
system architecture including the novel cost-based optimization component.
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Figure 3.1: Extended Reference System Architecture

In order to address the problem of imperative integration flows, the deployment process
is modified such that a dependency analysis of operators is executed during the initial
deployment. Furthermore, the rule-based optimization, where we do not require any
execution statistics, is executed once during this deployment as well. We described several
rule-based optimization techniques for integration flows [BHW+07], but in this thesis,
we omit the details for the sake of clarity of presentation. From this point in time, the
plan is executed many times and the optimizer is used to continuously adapt the current
plan to changing workload characteristics. The goal of plan optimization is to rewrite
(transform) a given plan into a semantically equivalent plan that is optimal in the average
case with regard to the estimated costs. Therefore, we use a feedback loop according to
the general MAPE (Monitor, Analyze, Plan, Execute) concept [IBM05a]. During plan
execution, statistics are gathered (Monitor). Then, the optimizer periodically analyzes
the given workload (Analyze) in order to optimize the current plan. Subsequently, the
rewritten plan is deployed (Plan) and used for execution (Execute).

We use this general feedback loop as the overall structure of this chapter. First, we
present a self-adjusting cost model for integration flows and explain the cost estimation of
plans, using this cost model (Monitor→ Analyze; Subsection 3.2.2). Second, we illustrate
the optimization problem as well as the overall periodical re-optimization algorithm (An-
alyze → Plan; Section 3.3). Third, we demonstrate the rewriting of plans using selected
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cost-based optimization techniques (Plan → Execute; Section 3.4). Fourth, selected ex-
perimental evaluation results are presented in order to illustrate the achieved execution
time improvement as well as the required optimization overhead (Execute → Monitor;
Section 3.5). Finally, we summarize the results of this chapter and discuss advantages and
disadvantages of this approach in Section 3.6.

3.2 Prerequisites for Cost-Based Optimization

Based on the problem of imperative integration flows, the prerequisites of cost-based op-
timization are two-fold. On the one side, the operator dependency analysis is required in
order to ensure correctness of plan rewriting. On the other side, an accurate cost model
is required in order to allow for precise cost estimation when comparing alternative plans
of an integration flow. In this section, we address both fundamental requirements.

3.2.1 Dependency Analysis

When rewriting plans, we have to preserve semantic correctness. Here, semantic cor-
rectness is used in the sense of preventing the external behavior from being changed.
This is comparable to snapshot isolation in DBMS [CRF08] or in replication scenarios
[DS06, LKPMJP05]. We introduce the dependency analysis for integration flows that re-
sembles similar dependency models from areas like compiler construction for programming
languages [Muc97] and computational engineering.

The dependency analysis (based on the analysis of control-flow and data-flow) is ex-
ecuted once during the initial deployment of a plan in order to generate the so-called
dependency graph DG(P ) of a plan P . All of our optimization techniques use these op-
erator dependencies in order to determine whether or not rewriting is possible. In detail,
we distinguish three dependency types:

• Data Dependency oj
δDm1−→ oi: Operator oj depends on (reads as input) the message

m1 that has been modified or created by operator oi (read after write).

• Output dependency oj
δOm1−→ oi: Both, operator oj and operator oi, write their results

to message m1, where operator oj is a temporal successor of oi (m1 is overwritten
multiple times, write after write). However, the variable might be read in between.

• Anti-dependency oj
δ−1
m1−→ oi: Operator oj modifies the message m1, while operator

oi—as a predecessor of oj—depends on this message (before m1 is written, it is
referenced, write after read).

Based on this distinction of dependency types, the dependency graph DG(P ) is con-
structed using three basic rules. First, a data dependency is created if the output variable
of an operator is one of the input variables of a following operator. Second, if two op-
erators have the same output variable and if this variable is not written in between, an
output dependency is created between the two operators. Third, an anti-dependency is
created if the output variable of an operator is the input variable of a previous operator
and if this variable is not written in between. Hence, an anti-dependency can only occur
if an output dependency exist. It follows that, for example, output dependencies are sub-
sumed by other output dependencies, i.e., one operator is involved at most in one output
dependency per data object.
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In [LRD06], semantic constraints are modeled locally for each individual plan by the
user in order to preserve semantic correctness by using application knowledge. There,
constraints between operators are explicitly specified in order to exclude these operators
from any plan rewriting. In contrast to this approach, we define semantic correctness of
plans with global constraints—that are independent of specific plans and thus, reduce the
required modeling and configuration efforts for a user—as follows:

Definition 3.1 (Semantic Correctness). Let P denote an original plan and let P ′ de-
note a plan that was created by rewriting P . Then, semantic correctness of P ′ refers to
the semantic equivalence of P ≡ P ′. This equivalence property is given if the following
constraints hold:

1. There are no dependencies δ between operators of concurrent subflows (parallel sub-
flows of a Fork operator).

2. If there is a dependency δ between an interaction-oriented operator and another
operator, the temporal order of them must be equivalent in P and P ′.

3. If there are two interaction-oriented operators, where at least one performs a write
operation and both refer to the same external system, the temporal order of them
must be equivalent in P and P ′.

4. If there exists an anti-dependency between two operators, the temporal order of these
operators must be equivalent in P and P ′.

5. If there is a data dependency between two operators, the sequential order of these
operators must be equivalent in P and P ′ or the applied optimization technique must
guarantee semantic correctness (equivalent results) of the changed sequential order.

According to Rule 5, the specific optimization techniques decide whether or not oper-
ators, with dependencies between these operators, can be reordered. This is necessary
because the reordering decision must be made based on the concrete involved operators
and their parameterizations. For example, two Selection operators can be reordered,
while this is impossible for a sequence of Selection and Projection operators if the se-
lection attribute is removed by the projection. In case there was a dependency δ between
two operators and if their sequential order (and thus, also the temporal order) was changed
when rewriting P to P ′, the parameters of the two operators (and hence, the new data
flow) must be changed accordingly. Thus, when rewriting a plan, incremental maintenance
(transformation) of the dependency graph is applied as well. Due to the importance of
this dependency graph, we use Example 3.1 to illustrate its core concepts.

Example 3.1 (Dependency Graph). We use the plan P3 from Example 2.6. Figure 3.2(a)
shows the related dependency graph. Consider the dependency δDmsg3. It is a data depen-
dency (D) over the message msg3 from o4 to o3; i.e., operator o4 reads the result of o3

as one of its join operands. Hence, o4 depends on o3. The dependency graph is used to
determine rewriting possibilities. For example, since there are no dependencies between
operators o2 and o3 and none of them is a writing interaction, we can insert a Fork oper-
ator and execute those as parallel subflows (Figure 3.2(b)). If there are data dependencies
between local operators (no interaction-oriented operators), we can yet exchange their se-
quential order (e.g., o4 and o5 by the optimization technique eager group-by). However,
we are not allowed to exchange o6 and o7 because this would change the external behavior.
Further, the output and anti dependencies determine that we are not allowed to exchange
the order of the involved operators (e.g., o3 and o6).

37



3 Fundamentals of Optimizing Integration Flows

Join (o4)
[in: msg2,msg3, out: msg4]

Assign (o6)
[in: msg5 out: msg1]

Invoke (o7)
[service s5, in: msg1]

Assign (o1)
[out: msg1]

Invoke (o2)
[service s4, in: msg1, out: msg2]

Invoke (o3)
[service s5, in: msg1, out: msg3]
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           δmsg1D           δmsg1D

           δmsg4D

           δmsg5D
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           δmsg1-1
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(a) Dependency Graph DG(P3)

Join (o4)
[in: msg2,msg3, out: msg4]

Assign (o6)
[in: msg5, out: msg1]

Invoke (o7)
[service s5, in: msg1]

Assign (o1)
[out: msg1]

Invoke (o3)
[service s5, in: msg1, out: msg3]

Groupby (o5)
[in: msg4, out: msg5]

Fork (o-1)

Invoke (o2)
[service s4, in: msg1, out: msg2]

(b) Plan P ′3

Figure 3.2: Example Dependency Graph and its Application

While our approach focuses on the optimization of complete plans, Vrhovnik et al. use a
so-called Sphere Hierarchy—in addition to a dependency analysis—to determine optimiza-
tion boundaries that must not be crossed [VSS+07]. Thus, they independently optimize
partitions (spheres) of a plan. For example, the operator subsequence of a complex op-
erator (e.g., each subflow of the Fork operator) is optimized only locally. However, since
this is BPEL-specific [OAS06] (scope activity) and reduces the optimization potential, we
do not restrict ourselves to these boundaries. Another approach [WPSB07] generates a
minimal dependency set. For this purpose, they merge and optimize explicitly modeled
dependencies. In contrast, we do not use explicitly modeled dependencies but analyze
implicit dependencies (given by the data flow) in order to ensure semantic correctness. Fi-
nally, our automatic dependency-awareness reduces the development effort of integration
flows and it is an essential prerequisite for both rule-based and cost-based optimization.

3.2.2 Cost Model and Cost Estimation

Referring back to the problem of changing workload characteristics (Problem 3.2), a tailor-
made cost model reflecting these workload characteristics is required as a foundation of
cost-based plan optimization. Due to the problem of missing statistics (Problem 3.3),
execution statistics must be incrementally maintained as input for the defined cost model.
In this context, the problem is to determine costs (cardinalities as well as execution times)
for rewritten parts of a plan, where no statistics exist so far. Furthermore, the challenge of
representing (1) data-flow-, (2) control-flow-, and (3) interaction-oriented operators arises
(Problem 3.1), where the different operator categories are described by different execution
statistics. While for the data-flow- and interaction-oriented operators, cardinality is a
widely-used metric, this is not applicable for the control-flow-oriented operators because
the costs of those operators are mainly described by means of execution times. In addi-
tion, concrete costs of the interaction-oriented operators strongly depend on the involved
external systems and their individual performance. Hence, also for interaction-oriented
operators the execution time rather than the cardinality should be used as the metric.
In consequence of the aforementioned characteristics, in this subsection, we propose the
double-metric cost model [BHLW09c] for enabling precise cost estimation of a plan.

Cost models in other domains typically follow a different approach. A widely used
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concept is to use an empirical cost model. There, physical operators are empirically ana-
lyzed (static or dynamic/leaning-based) with regard to the execution costs when varying
the input parameters such as the input cardinalities. The results of these experimental
measurements are then used in order to determine continuous cost functions that approx-
imately describe the cost of the evaluated operator. This is done for all physical operators
and then, it is generalized to cost functions for logical operators. These continuous cost
functions are tailor-made for a given hardware platform or they include parameters to
fine-tune and adjust the cost models to different hardware platforms, respectively. Em-
pirical cost models are known to produce precise results in local settings, where operators
and data structures are known in advance and where all operations are executed locally.
For example, such empirical cost models exist for object-relational DBMS [Mak07], native
XML DBMS [WH09, Wei11], and computational-science applications [SBC06]. Unfortu-
nately, due to the integration of heterogeneous systems and applications, an empirical
cost model is inadequate for integration flows or distributed data management in general
because the dynamic adaptation to external costs (execution times of external queries
or remote data access) is required [ROH99, JSHL02, NGT98, GST96, RZL04, SW97].
Furthermore, learning-based approaches can lead to non-monotonic cost functions.

In contrast to empirical cost models in DBMS, our double-metric cost model relies on a
fundamentally different concept. The core idea is twofold. First, we define abstract cost
functions according to the asymptotic time complexity of the different operator imple-
mentations using the monitored cardinalities—similar to empirical cost models—as input
parameter. Second, we additionally use the monitored execution times in order to weight
the computed costs. This ensures—similar to cardinality estimation in the Leo project
[SLMK01, ML02, AHL+04]—that the cost model is self-adjusting by definition, which
means that it does not require any knowledge about the involved external systems, and
that we are able to compare costs of interaction-, control-flow- and data-flow-oriented
operators by a combined metric of cardinalities and execution times.

Statistics Monitoring and Cost Model

Execution statistics are monitored at the granularity of single operators in order to enable
our double metric cost estimation approach. Figure 3.3 illustrates the conceptual model
of operator statistics.

operator oinid W(oi)
wait(oi)

(|dsin1(oi)| … |dsin k1(oi)|)

(|dsout1(oi)| … |dsout k2(oi)|)

(a) Generic Operator

operator oi

|dsin(oi)|

|dsout(oi)|

nid W(oi)
wait(oi)

(b) Unary Operator

operator oi

|dsin1(oi)|

|dsout(oi)|

nid W(oi)
wait(oi)

|dsin2(oi)|

(c) Binary Operator

Figure 3.3: General Model of Operator Execution Statistics

An operator oi is described, in the general case (see Figure 3.3(a)), by cardinalities of
arbitrary input data sets |dsini |, a node identifier nid, the total execution time W (oi), the
subsumed waiting time wait(oi) (e.g., time of external query execution, where local pro-
cessing is blocked) with 0 ≤ wait(oi) ≤ W (oi), and cardinalities of arbitrary output data
sets |dsoutj |. Naturally, unary (see Figure 3.3(b)) and binary ((see Figure 3.3(c)) operators
with a single output are most common. With regard to efficient monitoring, we use the
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size of messages as good indicator for the cardinalities. Based on these monitored atomic
statistics, derived more complex statistics such as the relative frequencies of alternative
paths P (pathi) or operator selectivities sel(oi) = |dsout1(oi)|/|dsin1(oi)| are computable.
In order to allow cost estimation for integration flows with control-flow semantics, in the
following, we define a double-metric cost model.

Definition 3.2 (Double-Metric Cost Estimation). The costs of a plan P are defined as
an aggregate of operator costs, where these operator costs are defined by two metrics:

1. Abstract costs C(oi) are defined for all data-flow- and interaction-oriented operators
in the form of their time complexity using cardinalities as the metric.

2. Execution times W (oi) are then used as the second metric in order to weight the
abstract costs. For control-flow-oriented operators, we only use execution times.

Both types of input statistics (cardinalities and execution times) are used in the form of
aggregates over the monitored atomic statistics of executed plan instances.

For multiple deployed integration flows, it can be necessary to normalize the monitored
execution statistics (in particular execution times) when aggregating them. We presented
detailed cost normalization algorithms [BHLW09c] that we omit here for the sake of being
focused on the core cost model.

Based on Definition 3.2, Tables 3.1-3.3 show the double-metric costs of all operators of
our flow meta model (see Subsection 2.3.1). In the following, we substantiate the different
cost formulas according to the two steps of our cost estimation approach.

1: Abstract Costs: In a first step, we consider the mentioned abstract costs C(P ) that
are based on the cardinality metric. Costs for interaction-oriented operators include the
costs for the operators Receive, Reply and Invoke. The costs for the Receive operator
are determined as |dsout|, i.e., by the cardinality of the received data set dsout and they
comprise costs for transport, protocol handling, format conversion as well as decompres-
sion. The costs for the related Reply operator are similarly computed with |dsin|. Finally,
the costs of the Invoke operator are computed by |dsin|+ |dsout| because it actively sends
and receives data. A data set |dsout| might be NULL (e.g., in case of pure write interac-
tions); in that case, we assume a cardinality of 0. Control-flow-oriented operators have no
abstract costs. An exception to this is the Switch operator because it evaluates expres-
sions over input data sets, which requires costs of |dsin| for a single path expression and
due to the if-elseif-else semantic total costs of

∑n
i=1 (P (pathi) · i · |dsin|) for all n paths,

where P (pathi) denotes switch path probabilities (relative frequencies). For computing
the abstract costs of the data-flow-oriented operators, we partly adapted a cost model from
a commercial RDBMS [Mak07] to the specific characteristics of integration flows. With
regard to physical operator alternatives, we excluded hash-based algorithms because they

Table 3.1: Double-Metric Costs of Interaction-Oriented Operators

Operator
Name

Abstract Costs C(oi) Execution Time W (oi)

Invoke |dsin|+ |dsout| W (oi)
Receive |dsout| W (oi)
Reply |dsin| W (oi)
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Table 3.2: Double-Metric Costs of Control-Flow-Oriented Operators

Operator Abstract Execution Time W (oi)
Name Costs C(oi)

Switch |dsin|
n∑
i=1

P (pathi) ·

 i∑
j=1

W
(
exprpathj

)
+

mi∑
k=1

W (oi,k)


Fork -

n
max
i=1

 mi∑
j=1

W (oi,j) + i ·W (Start Thread)


Iteration - r ·

∑n
i=1W (oi)

Delay - W (oi)
Signal - W (oi)

Table 3.3: Double-Metric Costs of Data-Flow-Oriented Operators

Operator
Name

Abstract Costs C(oi) Execution Time W (oi)

Assign |dsin|+ |dsout| W (oi)
Translation |dsin|+ |dsout| W (oi)
Selection |dsin| W (oi)

sorted:|dsin|/2
Projection πdistinct : |dsin| · |dsout|/2 W (oi)

πall/sorted : |dsin|
Join onNL: |dsin1|+ |dsin1| · |dsin2| W (oi)

sorted:|dsin1|+ |dsin2|
Setoperation ∪, \,∩ : |dsin1|+ |dsin2| · |dsout|/2 W (oi)

sorted:|dsin1|+ |dsin2|
∪all : |dsin1|+ |dsin2|

Split |dsin|+
∑ni

j=1|dsoutj | W (oi)

Orderby |dsin| · log2|dsin| W (oi)
Groupby |dsin|+ |dsin| · |dsout|/2 W (oi)
Window |dsin| · |dsout|/2 W (oi)
Validate |dsin| W (oi)
Savepoint |dsin| W (oi)
Action |dsin|+ |dsout| W (oi)

do not introduce additional requirements on plan rewriting and they are not applicable
without extensions for persistent messages that do not fit into main memory. Additionally
to the relational operators, the operators Assign and Translation both exhibit abstract
costs of |dsin|+ |dsout| because they get an input message and transform it to an output
message, where the output can be smaller or larger than the input. Furthermore, the
Split operator decomposes a message into multiple smaller messages. Hence, the sum of
cardinalities for the input message |dsin| and of the set of output messages

∑ni
j=1|dsoutj |

is a representative indicator. Both the Validate and the Savepoint operator have costs
of |dsin| because they do not create any output message. Integrating the Savepoint into
the cost model enables, for example, to include the overhead for recoverability [SWDC10]
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into optimization. Finally, the Action operator exhibits abstract costs in the form of
|dsin| + |dsout|. However, the Action operator will not be included in any rewriting (ex-
cept for parallelism) because it executes arbitrary code snippets and thus, is treated as a
black box by the optimizer.

2: Execution Times: In a second step, we monitor statistics (e.g., execution times
and cardinalities) in order to weight the mentioned abstract costs of interaction- and data-
flow-oriented operators. With the aim to estimate the costs for a newly created plan P ′,
we aggregate the costs C(o′i) and C(oi) of the single operators weighted with the execution
statistics W (oi) of the current plan P . Thus, we estimate missing statistics with

Ŵ (o′i) =
C(o′i)

C(oi)
·W (oi). (3.1)

For control-flow-oriented operators, we directly estimate the execution time. The costs for
the complex control-flow-oriented Switch operator can be computed by

n∑
i=1

P (pathi) ·

 i∑
j=1

W
(
exprpathj

)
+

mi∑
k=1

W (oi,k)

 , (3.2)

where we require switch path probabilities P (pathi) (relative frequencies) for all n paths,
weighted costs for path expression evaluation W

(
exprpathj

)
because the evaluation of

these expressions (e.g., XPath) can be cost-intensive as well as weighted costs for the
mi operators of each path. Here, the second summation goes only up to j = i because
the evaluation is aborted if we find a true condition due to the if-elseif-else semantic of
this operator. Similar, the costs for the complex Fork operator (concurrent subflows of
arbitrary operators) are computed by the most time-consuming subflow:

n
max
i=1

 mi∑
j=1

W (oi,j) + i ·W (Start Thread)

 , (3.3)

where W (Start Thread) denotes a constant, used to represent the required time for cre-
ation and start of a thread. When computing the costs for the Iteration operator, with

r ·
n∑
i=1

W (oi) , (3.4)

the average number of iteration loops r is required as well. Further, the waiting time of
the Delay operator is also taken into account. Finally, the Signal operator has to be
mentioned, where costs (needed for raising an exception) are represented as a constant.

Putting it all together, this cost model has several fundamental properties. Some of
these properties are used by different chapters of this thesis.

• Self-Adjustment: Due to weighting with monitored execution times, the cost model is
self-adjusting with regard to the behavior of different operators according to changing
workload characteristics. Thus, the cost model adjusts itself to the present environ-
ment (hardware platform, behavior of external systems). Especially, this behavior
of external systems or different queries to these systems and thus, also of network
properties could not be taken into account by an empirical cost model that is only
based on cardinalities.
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• Comparability of Control- and Data-Flow-Oriented Operators: The double-metric
cost model enables the comparison of data-flow and control-flow-oriented operators
by their normalized execution time. In contrast to empirical cost models, the double
metric cost model includes interaction- and control-flow-oriented operators as well.

• Plan Cost Monotonicity: The Picasso project [RH05] has shown that the assumption
of Plan Cost Monotonicity (PCM) holds for most queries in commercial DBMS even
over all plans of a plan diagram [HDH07]. In contrast, this assumption always holds
for our cost model of integration flows with regard to a single plan. As a result,
the costs of a plan are monotonically non-decreasing with regard to any increasing
influencing parameter such as selectivities, cardinalities, or execution times.

• Asymmetric Cost Functions: The cost model exhibits asymmetric cost functions,
i.e., the ordering of binary operator inputs has influence on the computed costs.
Thus, commutativity of inputs must be considered during optimization.

• No ASI Property: Finally, the cost model does not exhibit the ASI (Adjacent Se-
quence Interchange) property [Moe09]. This property is given if and only if there is
a ranking function of data sets such that the ordering of ranks is the optimal join
ordering. Due to (1) possibly correlated external data sets and (2) different join
implementations including the merge-join (which is known to not having the ASI
property [Moe09]) our cost model does not exhibit this property.

Cost Estimation

In the following, we illustrate the cost estimation, using the known data-flow-oriented
optimization technique of eager group-by [CS94] (type invariant group-by), as an example
rewriting technique.

Example 3.2 (Cost Estimation). Assume the plan P3 with monitored execution statistics
and a plan P ′3 that has been created by rewriting P3 during optimization (invariant group-
by due to N:1-relationship between data sets, e.g., given by message schema descriptions).
There are no statistics available for P ′3. The plans are shown in Figure 3.4. The statistics
of subplans that are equivalent in P3 and P ′3 can be reused. Thus, only the new output
cardinality |dsout(o′5)| and the execution times W (o′5) and W (o′4) have to be estimated.
Assuming a monitored join selectivity (where f is a shorthand for filter selectivity) of

fdsout(o2),dsout(o3) =
|dsout(o2) on dsout(o3)|
|dsout(o2)| · |dsout(o3)|

=
|dsout(o4)|

|dsout(o2)| · |dsout(o3)|
=

5,000

5,000,000
=

1

1,000

and a group-by selectivity of

fγdsout(o4) =
|γdsout(o4)|
|dsout(o4)|

=
|dsout(o5)|
|dsout(o4)|

=
1,000

5,000
=

1

5
.

The selectivities are used in order to compute the output cardinalities of new or reordered
operators. Due to the invariant placement of the group-by operator, we can compute the
new group-by output cardinality and directly set the new join output cardinality by

|d̂sout(o′5)| = fγdsout(o4) · |dsout(o2)| = 1

5
· 5,000 = 1,000

|d̂sout(o′4)| = 1,000.
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Figure 3.4: Plan Cost Estimation Example

Furthermore, we estimate the missing execution times using the monitored statistics of P3

and the defined abstract costs of P3 and P ′3 as follows:

Ŵ (o′5) =
|dsin(o′5)|+ |dsin(o′5)| · |dsouto

′
5|

2

|dsin(o5)|+ |dsin(o5)| · |dsout(o5)|
2

·W (o5) =
2,505,000

2,505,000
· 35 ms = 35 ms

Ŵ (o′4) =
|dsin1(o′4)|+ |dsin1(o′4)| · |dsin2(o′4)|
|dsin1(o4)|+ |dsin1(o4)| · |dsin2(o4)|

·W (o4) =
1,001,000

5,005,000
· 50 ms = 10 ms.

Finally, we can use the computed cost estimates, aggregate the plan costs, and compare
these costs as follows:

W (P3) = 5 ms + max(60 ms + 3 ms, 26 ms + 2 · 3 ms) + 50 ms + 35 ms + 5 ms + 40 ms

= 198 ms

Ŵ (P ′3) = 5 ms + max(60 ms + 35 ms + 3 ms, 26 ms + 2 · 3 ms) + 10 ms + 5 ms + 40 ms

= 158 ms.

In our example, we would choose P ′3 as execution plan because, it is optimal, on average,
under the assumption of precise monitored statistics. Note that although o2 and o7 are de-
fined with equal abstract costs (Invoke), we adapt to the concrete workload characteristics
by weighting those costs with monitored execution times. In addition, the double metric
cost model enables us to use one single metric (the execution time) for data-flow-oriented
operators (e.g., Groupby), interaction-oriented operators (e.g., Invoke), and control-flow-
oriented operators (e.g., Fork).

To summarize, we proposed the first complete cost model for integration flows. This
double-metric cost model is self-adjusting because we weight the abstract costs with mon-
itored execution statistics. For this reason, over time, the estimates converge to the real
costs of the concrete application environment and hence, this cost model enables the adap-
tation to changing workload characteristics. Further, the two metrics enable to integrate
the interaction-, control-flow-, and data-flow-oriented operators into a unique cost model
and thus, enable the comparison of plans with control-flow semantics.
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3.3 Periodical Re-Optimization

Based on the presented prerequisites, we now explain the core algorithm for the cost-based
optimization of imperative integration flows. First, we formally define the periodic plan
optimization problem including the existing parameters and show that this problem is
NP-hard. Due to the complexity of this optimization problem, we additionally introduce
two search space reduction approaches. Then, we describe how the parameters can be
leveraged in order to influence the sensibility of workload adaptation. Finally, we sketch
how to handle conditional probabilities and correlation without the knowledge about data
characteristics (e.g., value distributions) of external systems.

The core optimization algorithm is independent of any concrete optimization technique.
For that reason, it can be extended with arbitrary new techniques. However, we use
selected optimization techniques in order to illustrate the properties and the behavior of
our optimization algorithm. In Section 3.4, we will explain various concrete optimization
techniques in more detail.

3.3.1 Overall Optimization Algorithm

Existing approaches of integration flow optimization, which also take execution statistics
into account [SMWM06, SVS05], use the optimize-always model, where the given plan
is optimized for each initiated plan instance. While this is advantageous for changing
workload characteristics in combination with long running plan instances, it fails under
the assumption of many plan instances with rather small amounts of data because in this
case the optimization time might be even higher than the execution time of the plan. In
consequence, we introduce an optimization algorithm that exploits the integration-flow-
specific characteristics of (1) being deployed once and executed many times as well as (2)
the presence of an initially given imperative integration flow.

Optimization Problem

The goal of plan optimization is to rewrite (transform) a given plan into a semantically
equivalent plan that is optimal in the average case with regard to the estimated costs. The
major differences to DBMS are (1) the average case optimization of a deployed plan and
(2) the transformation-based plan rewriting that takes into account the specified control-
flow semantics of imperative integration flows. As a first step, we define the optimal plan
as follows:

Definition 3.3 (Optimal Plan). A plan P = (o, c, s) is optimal at timestamp Tk with
respect to a given workload W (P, Tk) if no plan P ′ = (o′, c′, s) with lower estimated execu-
tion time Ŵ (P ′) < W (P ) exists. Thus, the optimization objective φ of any optimization
algorithm is to minimize the estimated average execution time of the plan with:

φ = min Ŵ (P ). (3.5)

The plan P is optimal according to the monitored statistics at the timestamp of opti-
mization Tk. In case of changing workload characteristics, over time, the plan P might
loose this property of optimality. For this reason, we require periodical re-optimization if
we do not want to employ an optimize-always model. Hence, as a second step, we formally
define this time-based optimization problem as follows:

45



3 Fundamentals of Optimizing Integration Flows

Definition 3.4 (Periodic Plan Optimization Problem (P-PPO3)). The P-PPO describes
the periodical creation of the optimal plan P at timestamp Tk with the period ∆t (opti-
mization interval). The workload W (P, Tk) is available for a sliding time window of size
∆w. Optimization required an execution time TOpt with TOpt = Tk,1 − Tk,0 and Tk = Tk,0.
When solving the P-PPO at timestamp Tk,1, the result is the optimal plan w.r.t. the
statistics available at timestamp Tk,0.

Topt(P)

∆t(P)

time t

Opti

Workload W(P,Tk)
Opti+1

Workload W(P,Tk+1)

∆w(P)

Tk+1Tk
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Tk-1       
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∆t(P)

∆w(P)
Topt(P)Topt(P)

Figure 3.5: Temporal Aspects of the P-PPO

Figure 3.5 illustrates the temporal aspects of periodical re-optimization in more detail.
We optimize the given plan at timestamp Tk with a period of ∆t. During this optimization,
we evaluate costs of a plan by double-metric cost estimation, where only statistics in the
interval of [Tk − ∆w, Tk] are taken into account. The parameters optimization interval
∆t and workload sliding time window size ∆w are set individually for each plan P . We
will revisit the influence of these parameters in Subsection 3.3.3. The following example
illustrates this concept of periodical re-optimization and shows how the introduced cost
estimation approach is used in this context.

Example 3.3 (Periodical Re-optimization). Assume a plan P with instances pi, for which
execution statistics have been monitored. This plan comprises a Receive operator o1 and
a following Invoke operator o2.

p2

Workload W(P,Tk+1)

time t

Workload W(P,Tk)

o1 o2o2o1o2o1

p3p1

T2=29T1=13

0 30

∆t=16 

∆w=12∆w=12

3 6 9

12 15 18

Figure 3.6: Example Execution Scenario

Figure 3.6 illustrates a situation where three plan instances, p1, p2 and p3, are executed in
sequence. Hence, nine statistic tuples are stored and normalized: two operator tuples and a
single plan tuple, for every plan instance. Table 3.4 illustrates example execution statistics.
Assume an optimization interval ∆t = 16 ms, a sliding time window size ∆w = 12 ms,
and the moving average (MA) over this window as workload aggregation method (method
used to aggregate statistics over the time window). As a result, we estimate the costs of
plan P at timestamps Tk = {T1 = 13, T2 = 29} as follows (simplified on plan granularity):

ŴT1(P ) =

∑n
i=1W (pi ∈ [1, 13])

|WP |
=
W3

1
=

4 ms

1
= 4 ms

ŴT2(P ) =

∑n
i=1W (pi ∈ [17, 29])

|WP |
=
W6 +W9

2
=

3 ms + 4 ms

2
= 3.5 ms.

3We use the prefix P- as indicator for problems throughout the whole thesis. As an example, P-PPO is
the abbreviation for the Periodic Plan Optimization problem.
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Table 3.4: Example Execution Statistics

PID NID OType Start End ... W [ms]

1 (p1) 1 Receive 4.1 5.7 ... 1.6
1 (p1) 2 Invoke 5.9 7.7 ... 1.8
1 (p1) Plan 4.0 8.0 ... 4.0

2 (p2) 1 Receive 19.1 20.3 ... 1.2
2 (p2) 2 Invoke 20.4 21.7 ... 1.3
2 (p2) Plan 19.0 22.0 ... 3.0

3 (p3) 1 Receive 24.2 26.1 ... 1.9
3 (p3) 2 Invoke 26.1 27.9 ... 1.8
3 (p3) Plan 24.0 28.0 ... 4.0

Basically, the optimization algorithm is triggered with period ∆t = 16 ms. At those times-
tamps, only statistics of plan instances pi ∈ [Tk − ∆w, Tk] are used for cost estimation.
Hence, at T1 = 13, only statistics of p1 are included, while at T2 = 29 (T1 + ∆t), statistics
of p2 and p3 are used.

As a result, we are able to periodically estimate the costs of a plan with the aim to
optimize this plan according to the current workload characteristics.

In the following, we discuss the complexity of this approach. Essentially, the periodic
plan optimization problem that includes the creation of the optimal plan is NP-hard. This
claim is justified by the known complexity of two subproblems (concrete optimization
techniques). First, the merging of parallel flows (see Fork operator) to a minimal number
of parallel flows with a maximum constraint on the total costs of such a flow is reducible
to the NP-hard bin packing problem. Second, also the subproblem of join enumeration is,
in general, NP-hard but requires a more detailed argumentation:

• A plan is a hierarchy of sequences (Definition 2.1) with control-flow semantics (that
subsume the data-flow semantics). Hence, all types of join queries are possible.

• The join enumeration is NP-hard in general (if all types of join queries are supported)
[Neu09]. For a comprehensive analysis of known results, see [Moe09].

• If a cost model has the ASI property, join enumeration can be computed with poly-
nomial time. There, ranks are assigned to relations and the sequence of ordered
ranks is optimal [IK84, KBZ86, CM95].

• Our cost model does not exhibit the ASI property (see Subsection 3.2.2).

As a result, the periodic plan optimization problem belongs to the complexity class of
NP-hard problems. Obviously, the analogous problem of cost-based query optimization
in DBMS is also NP-hard. However, in [SMWM06], it was shown that the optimal Web
service query plan can be computed in O(n5), where n is the number of Web services.
The difference is caused by their assumption of negligible local processing costs (including
joins and other data-flow-oriented operators) such that no join enumeration has been used.
In contrast, our optimization objective is to minimize the average total execution costs
including local processing steps. In order to ensure efficient periodical re-optimization, we
will introduce tailor-made search space reduction heuristics in Subsection 3.3.2.
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Optimization Algorithm

According to the defined integration flow optimization problem, we now explain the overall
optimization algorithm including the two aspects of (1) when and how to trigger re-
optimization of a plan and (2) how to re-optimize the given plan using the set of available
cost-based optimization techniques. The näıve algorithm for solving the P-PPO comprises
three subproblems: (1) the complete creation of alternative plans (the search space), (2)
the periodical cost evaluation of each created plan (search space evaluation), and (3) the
choice of the plan with minimal costs. In contrast to this generation-based approach, we
exploit the specific characteristic of an initially given imperative plan, by using an iterative
(transformation-based) optimization algorithm. In the following, we describe in detail how
to trigger re-optimization and how to re-optimize the given plan.

Algorithm 3.1 Trigger Re-Optimization (A-TR)

Require: plan identifier ptid, optimization interval ∆t, workload window size ∆w,
aggregation method method, optimization algorithm algorithm

1: while true do
2: sleep(∆t)
3: P ← getPlan(ptid)
4: DG← getDependencyGraph(ptid)
5: Estimator.aggregateStatistics(P, ∆w, method) // see Subsection 3.3.3
6: ret← Optimizer.optimizePlan(P, DG, algorithm)

7: if ret.isChanged() then
8: P ← ret.getPlan()
9: putPlan(ptid, P)

10: putDependencyGraph(ptid, ret.getDG())
11: Parser.recompilePlan(ptid, P)
12: Runtime.exchangePlans(ptid, P)

Algorithm 3.14 illustrates when and how re-optimization is triggered. Essentially, this
algorithm is started as a background thread for each deployed integration flow and period-
ically issues plan re-optimization with period ∆t (line 2). Therefore, monitored execution
statistics are aggregated with a certain aggregation method (line 5) and re-optimization
is initiated with one of our optimization algorithms (line 6). If the current plan has been
changed during this re-optimization, we recompile the logical plan into an executable phys-
ical plan (line 11) and exchange the plan at the next possible point between two subsequent
plan instances (line 12). When triggering re-optimization, the optimization algorithm is
selected. There, patternMatchingOptimization (A-PMO) is the default algorithm, while
several additional heuristic algorithms can be used for search space reduction.

Algorithm 3.2 illustrates our transformation-based optimization algorithm A-PMO. This
algorithm is invoked for the complete plan, where it recursively iterates over the hierarchy
of operator sequences (of the current plan) and applies optimization techniques according
to the operator types (the included comments show the abbreviations of applied opti-
mization techniques, which we partly discuss in Section 3.4). There are four types of
optimization techniques. First, we apply all techniques, which need to be executed on top
level of a plan and before all other optimization techniques (line 2). For example, the join

4Similar to the naming scheme of problems, we use the prefix A- to indicate names of algorithms.
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Algorithm 3.2 Pattern Matching Optimization (A-PMO)

Require: operator op, dependency graph DG
1: if type(op) is Plan then
2: apply Plan techniques on op (Before) // WD10 (DPSize), WD13, MFO
3: o ← op.getSequenceOfOperators()
4: apply WC2 on o // apply technique for all sequences
5: for i← 1 to |o| do // for each operator of the sequence
6: if type(oi) ∈ (Plan, Switch, Fork, Iteration, Undefined) then // complex
7: oi ← A-PMO(oi, DG)
8: apply operator techniques on oi // WC1, WC4, WD1, WD2, WM1, WC3
9: else // atomic

10: apply operator techniques on oi // WM1, WM2, WM3, WD3, WD4, WD5,
// WD6, WD8, WD9, WD11, WD12

11: if type(op) is Plan then
12: apply Plan techniques on op (After) // Vect, HLB

enumeration is only executed once for the complete plan. Within this full optimization
algorithm, we use the DPSize [SAC+79, Moe09] join enumeration algorithm. Another ex-
ample is the optimization technique multi-flow optimization (see Chapter 5). Second, for
complex operators (line 6), we recursively invoke this algorithm and subsequently, apply
available optimization techniques. Third, we apply operator-type-specific techniques for
the individual atomic operators (line 9). Note that from each operator, parent nodes and
all other operators are reachable. From the perspective of a single optimization technique,
however, only successors (following operators) are considered (forward-only) in order to
avoid to consider the same operator multiple times. Fourth, we apply all techniques, which
need to be executed on top level of a plan and after the operator-type-specific techniques.
Among others, we invoke the optimization technique vectorization (see Chapter 4). In
contrast to the full plan enumeration with dynamic programming approaches, this iter-
ative, transformation-based algorithm preserves the control-flow semantics of the given
plan and it iteratively improves the current solution. Thus, it can be aborted between
applying optimization techniques without loss of intermediate optimization results.

The worst-case time complexity of the A-PMO is given by the optimization technique
with the highest individual complexity. In our case this is the optimization technique
join enumeration, where we use the DPSize join enumeration algorithm. According to the
complexity analysis of DPSize [MN06] by Moerkotte and Neumann, it is given by O(n4)
for chain and cycle queries as well as by O(cn) for star and clique queries, where n denotes
the number of joined input data sets.

Example 3.4 (Optimization Algorithm). Recall the plan P1 that is shown in Figure 3.7(a).
The A-PMO recursively iterates over all operators and applies available optimization tech-
niques. We start at the top-level sequence of operators, where we apply the rewriting of
sequences to parallel flows5 because no data dependencies exists between o7 and o8. The
resulting plan P ′1 is shown in Figure 3.7(b). Then, we iterate over the individual operators.

5Rule-based optimization techniques are applied during the initial deployment of a plan. As an example
consider the operators o4 and o6, which would be detected as redundant work and thus merged to a
single operator after o2. This operator would have been included in the parallel flow of operator o7.
For simplicity of presentation, we did not apply rule-based optimization techniques in the example.
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Figure 3.7: Example Execution of the Optimization Algorithm

At operator o1 we find no optimization technique. At operator o2, we recursively invoke the
algorithm for the operator sequences (o3, o4) and (o5, o6) but do not find a different plan.
Afterwards, the reordering of switch paths according to their cost-weighted path probabili-
ties is applied, where the resulting plan P ′′ is shown in Figure 3.7(c). Further, we apply
the rescheduling of parallel flows in order to start the most time-consuming flow first (Fig-
ure 3.7(d)). Note that the application order of different optimization techniques influences
the resulting plan. For this reason, we predefined this application order for existing opti-
mization techniques. Finally, we recursively invoke the algorithm for the sequences (o7)
and (o8, o9) but do not find another plan.

This overall cost-based optimization algorithm represents the framework for applying
arbitrary optimization techniques. We describe selected techniques in Section 3.4 but one
can easily extend the set of used techniques with additional ones.

3.3.2 Search Space Reduction Heuristics

Our core optimization algorithm produces the globally optimal plan with regard to set
of used optimization techniques and the monitored statistics. Additionally, we now pro-
vide heuristic optimization algorithms. Although these heuristics reduce the costs of pe-
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riodical re-optimization, we cannot guarantee to find the globally optimal plan. How-
ever, often good plans are produced by these heuristics. Essentially, we discuss the
criticalPathOptimization algorithm (A-CPO) as well as the heuristicPatternMatch-
ingOptimization algorithm (A-HPMO), which are both based on our standard A-PMO.

Critical Path Optimization

The application of our first heuristic, critical path optimization, promises optimization
time reduction but does not change the asymptotic worst-case time complexity of the
optimization algorithm. The critical path cp(P ) of the plan is determined in the form of
operator execution times [LZ05]. We then apply the A-PMO only for this critical path and
thus we might reduce the number of operators evaluated by the optimization algorithm
from m to m′, where m′ denotes the number of operators included in the critical path
with m′ = |oi ∈ cp(P )| and m′ ≤ m.

The intuition of this heuristic is that the execution time of a plan instance does not
depend on parallel subflows, which execution time is subsumed by more time-consuming
subflows. As a result, we only benefit from this heuristic if the plan includes a Fork

operator. This heuristic exploits the control-flow semantics of our flow meta model. In
the following, we illustrate the concept of critical path optimization with an example.

Example 3.5 (Critical Path Optimization). Recall the plan P ′3 from Example 3.2. Clearly,
the critical path of a plan can only be different to this plan if and only if parallel subflows
(Fork operator) exist. Then, we determine the most time-consuming subflow of each Fork

operator as part of the critical path, while all other subflows are subsumed and hence,
are marked as not to be optimized. Figure 3.8 illustrates the determined critical path of
the running example P3, where (o3) is subsumed by (o2, o5). Hence, we have reduced the
number of operators that are included in the optimization.
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Figure 3.8: Example Critical Path Optimization

This algorithm is a heuristic because we cannot guarantee to find the globally optimal
plan for two reasons. First, the critical path might change during the optimization. As
a consequence of not considering certain operators of the new critical path, we might get
suboptimal plans. Second, we do not consider data-flow-oriented operators not included
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within the critical path. When reordering selective operators (e.g., joins), this can have
tremendous impact for following operators (that are included in the critical path). For
example, we might exclude a join operator from the optimization because it is not within
the critical path, which might lead to a suboptimal join order.

In conclusion, there are three cases where this critical-path approach is advantageous.
First, it can be used if the optimization interval is really short and thus, optimization
time is more important than in other cases. Second, it is beneficial if the parallel subflows
are fully independent of the rest of the plan because then, we do not miss any global
optimization potential. Third, its application is promising if there is a significant difference
in the costs of the single subflows; otherwise, the critical path might change.

Heuristic Join Enumeration

Since the complexity of the A-PMO is dominated by the complexity of join enumeration,
we typically use our tailor-made heuristic optimization algorithm, if the number of join
operators of a plan exceed a certain number. In contrast, for the second problem with
high complexity (merging parallel flows), we apply a heuristic by default because the plan
cost influence of join enumeration is much higher than the number of parallel flows. Thus,
the A-HPMO is essentially equivalent to the A-PMO except that we do not apply the full
join enumeration but the heuristic described here.

Similar concepts are also used in DBMS, where existing approaches typically fall back
to some kind of greedy heuristics or randomized algorithms if a certain optimization time
is exceeded [Neu09]. In contrast, we use—similar to selected DBMS such as Postgres—the
number of joins as an indicator when to use the heuristic because otherwise, intermediate
results of join enumeration cannot be exploited when using the DPSize (bottom-up dy-
namic programming) join enumeration algorithm and thus, the elapsed optimization time
would be wasted if we have to fall back to the heuristic.

Before discussing the join enumeration heuristic, we need to define the join enumeration
restrictions that must be taken into account when reordering joins in order to preserve
the semantic correctness. Most importantly, Rule 2 from Definition 3.1 applies. Thus, if
there is a dependency between an interaction-oriented operator and another operator, the
temporal order of them must be equivalent in P and P ′. In addition to this, the input
data of interaction-oriented operators (data that is sent to external systems) must also be
equivalent in P and P ′ (preventing the external behavior from being changed). This has
influence of applicable join re-orderings. We use an example to illustrate the consequences
of these join enumeration restrictions.

Example 3.6 (Join Enumeration Restrictions). Recall the example plan P7 and a slightly
different plan P ′7 (where we changed the initial order of the Invoke operator o19) that
are illustrated in Figure 3.9. While for plan P7 (Figure 3.9(a)) a full reordering is appli-
cable (in case of a clique query type, where all data sets are directly connected), for P ′7
(Figure 3.9(b)), we are not allowed to reorder all Join operators of this plan. The plan
P ′7 is an example, where we might change the external behavior if we consider full join
enumeration. The reason is, that the external system s6 requires the result of operators
o14, o15 and o16. During full join reordering, we might use operator o17 earlier in this
chain of Join operators and thus, we would be unable to produce the required result in
case of selective joins (or we need at least a combination of Selection and Projection

operators in order to hide additional data). In conclusion, only partial join reordering
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Figure 3.9: Join Enumeration Example Plans

including the operators o14, o15 and o16 (independently of the operator o17) is possible.
In contrast, for join enumeration in DBMS, the temporal order of table accesses does not
matter when considering only the final query result because all joins can be considered by
simply evaluating the connectedness of quantifiers (data sets).

In order to take into account the described join enumeration restrictions as well as the
control-flow semantics of an integration flow, we introduce a tailor-made, transformation-
based join enumeration heuristic. For the sake of clarity, we require some notation before
discussing the join enumeration heuristic. For our heuristic join reordering, we do only
consider (1) left-deep join trees (no composite inners [OL90] in the sense of bushy trees),
(2) without cross-products, and (3) only one join implementation (nested loop join). Note
that after join re-ordering, we still decide between different join operator implementations.
Using these assumptions in combination with our asymmetric cost functions, there exist
n! alternative plans for joining n data sets. For example, assume a left-deep join tree
(R on S) on T (n = 3) with the following n! = 6 possible plans:

Pa(opt) : (R on S) on T Pc : (R on T ) on S Pe : (S on T ) on R
Pb : (S on R) on T Pd : (T on R) on S Pf : (T on S) on R.

The join selectivity fR,S (filter selectivity) of R on S is given by

fR,S =
|R on S|
|R| · |S|

with fR,S ∈ [0, 1] (3.6)

and the costs of the nested loop join are computed by C(R on S) = |R|+|R|·|S| (asymmet-
ric, in order to take into account commutativity of join inputs). Further, the join output
cardinality can be derived with |R on S| = fR,S · |R| · |S|. Thus, the costs of the complete
plan (R on S) on T are given by

C((R on S) on T ) = |R|+ |R| · |S|+ fR,S · |R| · |S|+ fR,S · |R| · |S| · |T |. (3.7)

The core idea of our heuristic join reordering is to transform the full join enumeration
into binary re-ordering decisions between subsequent join operators. This is possible be-
cause we restricted ourself to left-deep-join trees and nested loop joins only. We then can
observe that the costs before and after a binary reordering decision are independent of

53



3 Fundamentals of Optimizing Integration Flows
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Figure 3.10: Heuristic Join Reordering Example

the order of these two operators as shown in Figure 3.10. For example, the costs of the
Join operator ∗ onW are independent of the order of previous join operators because the
size of the intermediate result (1,000) before this operator is constant and hence, these
operator costs are also constant. This concept of binary cost-based reordering decisions
take into account cardinality and selectivity of join operators and thus generalized the
existing ranking functions minSel, minCard, and minSize [BGLJ10].

Algorithm 3.3 illustrates the heuristic join reordering in detail. Essentially, it uses a
transformation-based approach, where the inputs of join operators are reordered. First,
we select the input data set with the smallest cardinality (line 1) and reorder it with
the existing first join operand (line 2). Second, we incrementally reorder subsequent join
operands by iterating over all joins (line 3) and comparing the costs of the overall plan
under the hypothesis that we reorder the join operand with a subsequent operand. Assum-
ing variable selectivities and cardinalities, the cost comparison of subplans for arbitrary
left-deep join trees are specified as follows. First, fix two input data sets with the com-
mutativity optimality condition of |R| ≤ |S|. Second, the optimality of executing R on S
before ∗ on T is given if the following optimality condition holds:

|R|+ |R| · |S|+ fR,S · |R| · |S|+ fR,S · |R| · |S| · |T |
≤ |R|+ |R| · |T |+ fR,T · |R| · |T |+ fR,T · |R| · |T | · |S|

|S|+ fR,S · |S|+ fR,S · |S| · |T |
≤ |T |+ fR,T · |T |+ fR,T · |T | · |S|.

(3.8)

Algorithm 3.3 Heuristic Join Reordering (A-HJR)

Require: set of input data sets R (with n = |R|)
1: Rk ← minRi∈R|Ri| // determine smallest input
2: reorder(R1,Rk)
3: for i← 3 to n do // for each input
4: for j ← i− 1 to 2 do // for each predecessor input
5: if ¬ connected(Ri, Rj−1) then // is reordering impossible
6: break
7: if ¬ optimal(Ri, Rj) then // is reordering not meaningful
8: break
9: reorder(Rj ,Ri)

10: return R
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We can monitor all cardinalities |R|, |S|, and |T | but only the selectivities fR,S and
f(RonS),T . To estimate fR,T , we need to derive it with fR,T θ f(RonS),T , where θ is a
function representing the correlation. If we assume statistical independence of selectivities,
we can set fR,T = f(RonS),T . However, in general, the selectivities are derived from the
present conjunction of join predicates. This cost comparison is applied for each subset
of join operators of a plan that can be fully reordered. Note that this heuristic does not
necessarily requires that the cost model exhibits the ASI property [Moe09]. In addition,
simple sorting of join operands is not applicable due to the use of arbitrary correlation
functions and the need for evaluating if join inputs are connected.

Although this algorithm often produces good results, obviously, it does not guarantee
to find the optimal join order. This is reasoned by (1) the restrictions of considering only
nested loop joins and left-deep-join trees, (2) the selection of the first join operand based
on minimum cardinality, and (3) reordering only directly connected join operands rather
than partial subtrees.

In contrast to our transformation-based join reordering heuristic, recent approaches of
heuristic query optimization [BGLJ10] use merge-based techniques, where ranked subplans
are merged iteratively to an overall plan. While this bottom-up approach is advantageous
for declarative queries, our transformation-based reordering is more advantageous for im-
perative integration flows with regard to the characteristic of an initially specified plan.

In general, this heuristic join reordering algorithm exhibits a quadratic time complexity
of O(m2), where m denotes the number of operators with m = n − 1 and n denotes the
number of joined input data sets. This is reasoned as follows. First, we iterate over all n
input data sets in order to determine the minimum cardinality. Second, we iterate over all
input data sets and for each, compare the costs assuming a reordering with its predecessors
(similar to selection sort). Thus, in total, we execute at most

n+
n∑
i=3

(i− 2) =
n2 − n

2
+ 1 (3.9)

iterations during this algorithm. Finally, note that—except the awareness of temporal
dependencies (join enumeration restrictions)—this heuristic join reordering algorithm can
be applied in data management systems as well. As a result, the use of this heuristic
join enumeration algorithm (combined with an extended heuristic first fit algorithm for
merging parallel flows that we will describe in Section 3.4) reduces the overall complexity
of the periodic plan optimization problem to polynomial time, where most of our other
optimization techniques exhibit a linear or quadratic time complexity.

3.3.3 Workload Adaptation Sensibility

The core optimization algorithm can be influenced by a number of parameters. We can
leverage these parameters in order to adjust the sensibility of adaptation to changing
workload characteristics. For our core estimation approach, workload statistics of the
current plan P are monitored. If an alternative plan P ′ has been created, we estimate the
missing operator statistics with Ŵ (o′i) = C(o′i)/C(oi) ·W (oi) using our cost model, where
workload statistics of P are aggregated over the sliding time window. In this context, the
following three parameters influence the sensibility of workload adaptation:

Workload Sliding Time Window Size ∆w (time interval used for statistic aggrega-
tion): Monitored statistics of plan instances pi with pi ∈ [Tk−∆w, Tk] are included in the
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current sliding window used for cost estimation. Increasing the sliding window size ∆w
results in a slower adaptation because statistics are computed over long time intervals.
For example, when using average-based aggregation methods, a long sliding time window
causes a slow adaptation because the overall influence of the most recent statistic tuples is
fairly low. As a result, the parameterization is a trade-off between robustness of estimates
and fast adaptation to changing workload characteristics. A short time window leads to
high influence of single outliers (not robust but fast adaptation), while a long time window
takes long histories into account (robust but slow adaptation).

Optimization Interval ∆t: An increasing ∆t will also cause a slower adaptation be-
cause no re-optimization (and thus, no re-estimation) is initiated during this optimization
interval. The longer the optimization interval, the longer we rely on historic estimates.
This parameter only affects the number of estimation points rather than influencing the
estimation itself. Thus, this is also a trade-off between the costs of re-optimization and
the fast adaptation to changing workload characteristics.

Workload Aggregation Method (method used to aggregate statistics over the sliding
window): The choice of the workload aggregation method also influences the adaptation
sensibility. For workload aggregation over a sliding time window of length ∆w, which
contains statistics (equi-distant time series) of n plan instances, our statistic estimator uses
the following four aggregation methods in order to compute the one-step-ahead forecast
at timestamp t and we assume that this estimate stays constant for the next optimization
interval. As an example, we illustrate the aggregation of operator execution times W (oj):

• Moving Average (MA):

MAt =
1

n

n∑
i=1

Wi (oj) (3.10)

• Weighted Moving Average (WMA):

WMAt =

((
n∑
i=1

(wi ·Wi (oj))

)
/

n∑
i=1

wi with wi =
i

2

)
=

n∑
i=1

(wi ·Wi (oj))

n·(n+1)
4

(3.11)

• Exponential Moving Average (EMA):

EMA1 = Wi (oj)

EMAt = EMAt−1 + α · (Wi (oj)− EMAt−1) with α = 0.05, 1 ≤ i ≤ n
(3.12)

• Linear Regression (LR):

LRt = a+ b · x with x = n+ 1

a =
1

n

n∑
i=1

Wi(oj)− b ·
1

n

n∑
i=1

i =
1

n

n∑
i=1

Wi (oj)− b ·
n+ 1

2

b =

n

n∑
i=1

(i ·Wi(oj))−
n∑
i=1

i ·
n∑
i=1

Wi(oj)

n
n∑
i=1

i2 −

(
n∑
i=1

i

)2 =

n∑
i=1

(i ·Wi (oj))−
(n+ 1)

2

n∑
i=1

Wi (oj)

1
12(n3 − n)

.

(3.13)
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The MA causes the slowest adaptation because of the simple average, where all items
are equally weighted, while WMA (linear weights) and EMA (exponential weights) support a
faster adaptation due to the highest influence of the latest items. However, LR achieves the
fastest adaptation because the estimate is extrapolated from the last items. Unfortunately,
LR tends to over- and underestimate on abrupt changes. Further, full re-computation with
all methods can be realized with linear complexity of O(n). A detailed explanation of
the different adaptation parameters with regard to monitored execution statistics is given
within the experimental evaluation. We also experimented with Polynomial Regression
(PR) with up to a degree of four. Due to high over- and underestimation on abrupt changes,
we do not use this aggregation method. Apart from these aggregation methods, one can
use forecast models types [DB07, BJR94] in order to detect reoccurring patterns and thus,
increase the accuracy of estimation. However, doing so is a trade-off between estimation
overhead and benefit achieved by more accurate estimation. Experiments have shown that
the simple exponential moving average (EMA) robustly achieves the highest accuracy with
low estimation overhead such that we use this method as our default workload aggregation
strategy. There, we do not use any automatic parameter estimation. However, the auto-
matic evaluation and adaptation of this parameter could be seamlessly integrated into the
periodical re-optimization framework.

Recall the parameters optimization interval ∆t and sliding time window size ∆w. If
∆t ≥ ∆w, statistic tuples are only used at one specific optimization timestamp. In this
case, we simply compute those statistics from scratch using the workload aggregation meth-
ods. However, if ∆t < ∆w, this is an inefficient approach because we aggregate portions
of statistic tuples multiple times. In such a case, incremental maintenance of workload
statistics—in the sense of updating the aggregate with new statistics—is required. In gen-
eral, incremental statistics maintenance is possible for all of these aggregation methods.
However, note that MA and LR require negative (implicitly removed tuples based on time)
and positive maintenance (new tuples) according to the sliding time window size ∆w (and
thus, atomic statistics must be stored), while EMA and WMA does not require negative main-
tenance due to the increasing weights, where the influence of older tuples can be neglected.
In conclusion, we use the EMA as default workload aggregation method.

Finally, the workload aggregation can be optimized. Similar to the basic counting
algorithm [DGIM02], approximate incremental statistics maintenance over the sliding
window—with summarizing data structures—is possible. Further, according to workload
shift detection approaches [HR07, HR08], it might be possible to minimize the optimiza-
tion costs by deferring the cost re-estimation until predicted workload shifts (anticipatory
re-optimization).

3.3.4 Handling Correlation and Conditional Probabilities

In the context of missing knowledge about data properties of external systems, the main
problem of cost estimation is correlation and conditional probabilities (more precisely,
relative frequencies). Assume two successive Selection operators σA and σB. In fact, we
are only able to monitor P (A) and P (B|A). A näıve approach would be to assume that
all predicates and the resulting selectivities and cardinalities are independent. However,
this can lead to wrong estimates [BMM+04] that would result in non-optimal plans or
changing a plan back and forth.

Example 3.7 (Monitored Selectivities). Assume two successive Selection operators σA
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and σB and the following gathered statistics:

σA : |dsin| = 100, |dsout| = 40 σB : |dsin| = 40, |dsout| = 8

⇒P (A) = 0.4 //monitored

P (B) = P (B|A) = 0.2 //computed assuming independence

P (A ∧B) = 0.08. //monitored

Assuming statistical independence, we set P (B) = P (B|A) and based on the comparison
of P (A) > P (B), we reorder the sequence (σA, σB) to (σB, σA). Using the new plan, we
gather the following statistics:

σB : |dsin| = 100, |dsout| = 68 σA : |dsin| = 68, |dsout| = 8

⇒P (B) = 0.68 //monitored

P (A) = P (A|B) ≈ 0.12 //computed assuming independence

P (A ∧B) = 0.08. //monitored

Clearly, P (A) and P (B) are strongly correlated (P (¬A∧¬B) = 0). Due to the simplifying
assumption of independence, we would assume that P (B) > P (A). Hence, we would
reorder the operators back to the initial plan. As a result, even in the presence of constant
statistics, we would reorder the plan back and forth and thus, produce inefficient plans.

Our approach of conditional selectivities explicitly takes those conditional probabil-
ities into account in order to overcome that problem when reordering selective data-
flow-oriented operators (e.g., Selection, Projection with duplicate elimination, Join,
Groupby, Setoperation) or the paths of a Switch operator. Essentially, we maintain
selectivity statistics over multiple versions of a plan, independently of the sliding time
window statistics. Therefore, for each pair of data-flow-oriented operators with direct
data dependency within the current plan, we maintain a row of selectivities:

(o1, o2, P (o1), P (o2), P (o1 ∧ o2)), (3.14)

where both operators o1 and o2 are identified, and we store the selectivity as well as the
conjunct selectivity of both operators. The approach works similar for binary operators
and reordered Switch paths. Due to the binary comparison approach of only two operators
at-a-time, the overhead is fairly low. In the worst case, there are m2 selectivity tuples,
where m denotes the number of operators. We revisit the example in order to explain that
concept in detail.

Example 3.8 (Monitored Conditional Selectivities). Assume the same setting as in Ex-
ample 3.7. When reordering σA and σB at timestamp T1, we create a new statistic tuple
as shown in Table 3.5.

Table 3.5: Conditional Selectivity Table

o1 o2 P (o1) P (o2) P (o1 ∧ o2)

T1 σA σB 0.4 0.08

T2 σA σB 0.4 0.68 0.08

We only include probabilities that are known not to be conditional (the first operator and
the combination of both operators). If we evaluate the temporal order of those operators
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at T2, we enrich the selectivity tuple with the missing information (due to reordering, we
now have independent statistics for both operators). Over time, we use the exponential
moving average (EMA) to adapt those statistics independently of the sliding time window.
Finally, we see that the sequence of (σA, σB) is the best choice because P (A) < P (B).
We might make wrong decisions at the beginning but the probability estimates converge to
the real statistics over time. Hence, we do not make wrong decisions twice as long as the
probability comparison and the data dependency between both operators do not change.

As long as a selectivity tuple contains a missing value for an operator o2, we make the
assumption of statistical independence and hence compute P (o2) = P (o1 ∧ o2)/P (o1).
Furthermore, we compute the conditional probabilities for a given operator—based on the
described selectivity tuple—as follows:

P (o2|o1) =
P (o1 ∧ o2)

P (o1)

P (o1|o2) =


P (o1 ∧ o2)

P (o2|o1)
= P (o1) P (o2) = NULL

P (o1 ∧ o2)

P (o2)
otherwise.

(3.15)

Thus, we explicitly use the monitored conditional probabilities if available. It is important
to note that we can only maintain the probability of the first operator as well as the joint
probability of both operators. Hence, the additional problem of starvation in reordering
decisions might occur if the real probability of the second operator decreases because
we cannot monitor this effect. In order to tackle this problem of starvation in certain
rewriting decisions, we use an aging strategy, where the probability of the second operator
is slowly decreased over time. This prevents starvation because over time we reorder both
operators due to the decreased probability and can monitor the actual probability of this
second operator. Although this can cause suboptimal plans in case of no workload changes,
it prevents starvation and converges to the real selectivities and probabilities.

For arbitrary chains of operators, the correlation table is used recursively along operators
that are directly connected by data dependencies such that an operator might be included
in multiple entries of the correlation table. For such chains, we allow only reordering
directly connected operators. After a reordering, all entries of the correlation table that
refer to a removed data dependency are removed as well and new entries for new data
dependencies are created.

In conclusion, the adaptive behavior of our condition selectivity approach ensures more
robust and stable optimizer decisions for conditional probabilities and correlated data,
even in the context of changing workload characteristics. Note that there are more sophis-
ticated, heavyweight approaches (e.g., by using a maximum entropy approach [MHK+07,
MMK+05] or by using a measure of clusteredness [HNM03]) for correlation-aware se-
lectivity estimation in the context of DBMS. We could also maintain adaptable multi-
dimensional histograms [BCG01, AC99, LWV03, MVW00, KW99]. However, in contrast
to DBMS, where data is static and statistics are required for arbitrary predicates, we op-
timize the average plan execution time with known predicates but dynamic data. Hence,
the introduced lightweight correlation table can be used instead of heavyweight multi-
dimensional histograms, where we would need to maintain exact or approximate fre-
quencies with regard to arbitrary conjunct predicates [Pol05, TDJ10]. However, other
approaches can be integrated as well. Due to the problem of missing statistics about
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data properties of external systems, we use the described lightweight concept for explic-
itly taking into account conditional probabilities and correlation at the same time using a
incremental reordering approach that is tailor-made for integration flows.

3.4 Optimization Techniques

In this section, we discuss specific optimization techniques that are used within the de-
scribed core optimization algorithm. For selected techniques, we present the core idea, the
optimality conditions, possible execution time reduction, the rewriting algorithm and its
time complexity, as well as possible side effects to other techniques.

Cost-Based Techniques

Rule-Based Techniques

Data Flow Control Flow

Reordering of Switch-Paths (WD1) 
Merging of Switch-Paths (WD2)

Execution Pushdown to External Systems (WD3)
Early Selection Application (WD4)

Early Projection Application (WD5)
Early GroupBy Application (WD6)

Materialization Point Insertion (WD7)
Orderby Insertion / Removal (WD8)

Join-Type Selection (WD9)
Join Enumeration (WD10)

Setoperation-Type Selection (WD11)
Splitting / Merging of Operators (WD12)

Precomputation of Values (WD13)
Early Translation Application (WD14)

see Chaper 5       Multi-Flow Optimization (MFO)

(WC1) Rescheduling Start of Parallel Flows
(WC2) Rewriting Sequences to Parallel Flows
(WC3) Rewriting Iterations to Parallel Flows
(WC4) Merging Parallel Flows

(WM1) Message Indexing 
(WM2) Recycling Locally Created Intermediates
(WM3) Recycling Externally Loaded Intermediates

(Vect) Cost-Based Vectorization       see Chapter 4

(HLB) Heterogeneous Load Balancing

Double Variable Assignment Removal (RD1)
Unnecessary Variable Assignment Removal (RD2)
Unnecessary Variable Declaration Removal (RD3)
Two Sibling Translation Operation Merging (RD4)

Two Sibling Validation Merging (RD5)
Unnecessary Switch-Path Elimination (RD6)

Algebraic Simplification (RD7)

(RC1) Redundant Control Flow Rewriting
(RC2) Unreachable Subgraph Elimination
(RC3) Local Subprocess Inline Compilation
(RC4) Static Node Compilation

Figure 3.11: Cost-Based Optimization Techniques

Figure 3.11 distinguishes the used cost-based optimization techniques into control-flow-
oriented and data-flow-oriented optimization techniques and emphasizes (with bold font)
the techniques that we will describe in detail. All optimization techniques presented in
this section follow the optimization objective of minimizing the average execution time
of a plan. In addition to these techniques, we will discuss in very detail the cost-based
vectorization in Chapter 4 and the multi-flow optimization in Chapter 5, which both follow
the optimization objective of maximizing the message throughput. Apart from these
techniques, we refer the interested reader to our details on message indexing [BHW+07,
BHLW08d] and rule-based optimization techniques [BHW+07] that are omitted in this
thesis. The latter includes, for example, relational algebraic simplifications as described
by Dadam [Dad96].

3.4.1 Control-Flow-Oriented Techniques

Control-flow-oriented optimization techniques address the interaction- and control-flow-
oriented operators of our flow meta model. These techniques try to exploit the specific
characteristics of operators like alternatives (Switch operator), loops (Iteration opera-
tor), and parallel subflows (Fork operator, constrained by Invoke operators).
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One of the core concepts is to leverage parallelism of operator execution in order to
minimize the execution time. Due to typically low CPU utilization reasoned by (1) single-
threaded, instance-based plan execution, (2) significant waiting times for external systems,
and (3) IO-bottlenecks for message persistence, these decisions are made with cost-based
optimality conditions rather than statically during the initial deployment.

Rescheduling the Start of Parallel Flows

The technique WC1: Rescheduling the Start of Parallel Flows rewrites existing Fork oper-
ators. The execution time of the Fork operator o is determined by its most time-consuming
subflow ri with

W (o) =
|r|

max
i=1

 mi∑
j=1

W (oi,j) + i ·W (Start Thread)

 (3.16)

because the individual subflows are started in sequence and temporally joined (synchro-
nized) at the end of this operator.

The core principle of this technique is to reduce waiting time by rewriting the concurrent
subflows such that the subflows are started in descending order of their execution time.
In other words, the start sequence of parallel subflows is optimal if the condition Ŵ (ri) ≥
Ŵ (ri+1) holds, where Ŵ (ri) =

∑mi
j=1 Ŵ (oi,j). The execution time can be reduced by (|r|−

1)·W (Start Thread), where W (Start Thread) denotes the constant costs for creation and
start of a thread.

The rewriting algorithm essentially consists of two steps. First, for each subflow, we
recursively sum up the costs of all individual operators. Second, we check if the optimality
condition holds and order the subflows according to the estimated costs if required. The
time complexity of this algorithm is given by O(|r| · log|r|).

Example 3.9 (Rescheduling Parallel Flows). Assume our example plan P7 and the mon-
itored execution times shown in Figure 3.12(a). Furthermore, assume the cost for starting
of a parallel subflow (thread) to be W (Start Thread) = 3 ms. The estimated costs of the
Fork operator are then given by Ŵ (o2) = 2 · 3 ms + 230 ms = 236 ms. Rescheduling the
parallel flows yields the alternative plan shown in Figure 3.12(b). Using this plan, the
costs are reduced to Ŵ (o2) = 3 ms + 230 ms = 233 ms.

Fork (o2)

Invoke (o10)

Assign (o9)

Invoke (o7)

Assign (o6)

Invoke (o12)

Assign (o11)

Translation 
(o13)

Invoke (o4)

Assign (o3)

Translation 
(o8)

Translation 
(o5)

5ms

130ms

70ms

10ms

150ms

70ms

7ms

90ms 120ms

85ms

4ms

230ms 209ms205ms 97ms

(a) Plan P7

Fork (o2)

Invoke (o4)

Assign (o3)

Translation 
(o5)

5ms

130ms

70ms

Invoke (o7)

Assign (o6)

Translation 
(o8)

10ms

150ms

70ms

Invoke (o12)

Assign (o11)

Translation 
(o13)

120ms

85ms

4ms

Invoke (o10)

Assign (o9)

7ms

90ms

230ms 209ms 205ms 97ms

(b) Optimized Plan P ′7

Figure 3.12: Example Rescheduling Parallel Flows

Clearly, the benefit of this optimization technique is limited but the potential increases
with increasing number of subflows. This technique should be used after WC2 and WC3
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(parallelizing sequences and iterations) because otherwise we might miss optimization op-
portunities. Furthermore, this technique should be used also after WC4 (merging parallel
flows) because otherwise, we might perform unnecessary optimization efforts.

Rewriting Sequences to Parallel Flows

The technique WC2: Rewriting Sequences to Parallel Flows is used to optimize sequences
of operators. Such sequences can be found as implicit children of each Plan, Switch path,
Fork subflow, and Iteration. The costs of a sequence of operators o is given by the sum
of their execution times with W (o) =

∑m
i=1W (oi).

The core concept is to rewrite a sequence of operators to parallel subflows of a Fork

operator by analyzing the dependencies between the single operators. Recall that the
execution time of the Fork operator is determined by the subflow with highest cost. For
analyzing the optimality of such a rewriting, we take into account the number of logical
processors (hardware threads) k as well as the CPU utilization of the involved operators.
There, the CPU utilization of an operator with regard to a single logical processor is
computed by (W (oi) − wait(oi))/W (oi), where the waiting time can be monitored (e.g.,
waiting time for external systems); otherwise we assume wait(oi) = W (oi) · 0.05 as a
heuristic. Such a rewriting of a sequence to |r| parallel subflows is advantageous if

|r|
max
i=1

 mi∑
j=1

Ŵ (oi,j) + i ·W (Start Thread)

 <

m∑
i=1

Ŵ (oi)

with Ŵ (oi,j) =
|r|

min(|r|, k)
· (W (oi,j)− wait(oi,j)) + wait(oi,j),

(3.17)

which means that the estimated most time-consuming parallel subflow must have lower
costs than the plan sequence of operators. There, the costs of operators within parallel
subflows are estimated by the waiting time plus the execution time that depends on the
number of logical processors k and the number of parallel subflows |r|. Intuitively, this
represents the increased execution time if parallel subflows share hardware resources. This
is a worst-case consideration because for an exact model, the temporal overlap of waiting
times and execution times would be required as well.

Rewriting sequences to parallel flows is realized with the following algorithm. First, we
split the given sequence into disjoint subsequences according to Rule 3 of Definition 3.1
(preserve temporal order of writing interactions to the same external system). Second, for
each of these subsequences, we create a new Fork operator and partition the individual
operators, where we iterate over the operators and determine if they depend on other
operators of the same subsequence. If so, we add this operator to the existing subflow,
where the operator referred by the dependency exists; otherwise, we create a new subflow
and add the operator as a child. If an operator depends on multiple operators from
different subflows, this operator splits the subsequence into two subsequences. Third,
if a Fork operator contains only one subflow, we rewrite it back to a simple sequence.
Fourth, and finally, we check the optimality condition for each Fork operator. The time
complexity of this algorithm is O(m2) due to the dependency checking for each operator.
In the following, we use an example to illustrate this rewriting concept in more detail.

Example 3.10 (Rewriting Sequences to Parallel Flows). Recall our example plan P8 that
is essentially a sequence of operators and assume the monitored execution times shown in
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Assign (o3)
[out: msg2]

Assign (o4)
[out: msg3]

Invoke (o5)
[service s6, in: msg2, out: msg4]

Invoke (o6)
[service s6, in: msg3, out: msg5]

Assign (o7)
[in: msg4, out: msg6]

Assign (o8)
[in: msg5, out: msg7]

Invoke (o9)
[service s7, in: msg6]

Invoke (o10)
[service s7, in: msg7]

Assign (o1)
[out: msg1]

Invoke (o2)
[service s6, in: msg1]
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3ms
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Figure 3.13: Example Rewriting Sequences to Parallel Flows

Figure 3.13(a). The costs are estimated as Ŵ (P8) = 500 ms. Figure 3.13(b) illustrates
the optimized plan P ′8. During rewriting, the operator sequence was split by the writing
interactions o2 (after o2 because it is the first interaction) and o9 (before o9 in order to
avoid executing it in parallel to o6) into three subsequences due to Rule 3 of Definition 3.1
(no parallel interactions with the same external system if one is a writing interaction).
Furthermore, for the second subsequence, we created a Fork operator with two subflows. If
we assume k = 2 logical processors and a thread start time of W (Start Thread) = 3 ms, we
estimate the costs of the Fork operator as follows: W (o−1) = max((81 ms+3 ms), (140 ms+
2 · 3 ms)) = 146 ms As a result, we reduced the estimated plan costs to Ŵ (P ′8) = 425 ms,
while ensuring semantic correctness at the same time. There, the Invoke operators o5 and
o6 can be executed in parallel because they are both reading interactions.

This optimization technique offers high optimization opportunities. With regard to
maximal optimization opportunities, this technique should be applied before the tech-
niques WC1 (rescheduling parallel flows) and WC4 (merging parallel flows). In order to
prevent the special case of local suboptima, we directly evaluate the techniques WC1 and
WC4 for the resulting plan (e.g., P ′8 from Example 3.10) if the parallel execution exhibits
higher estimated costs than the serial execution.

Rewriting Iterations to Parallel Flows

Similar to rewriting sequences, the technique WC3: Rewriting Iterations to Parallel Flows
rewrites an Iteration with r loops to a Fork operator with r concurrent subflows. This
is applicable if there are no dependencies between operators of different iteration loops.
However, foreach semantics without such dependencies are typical for integration flows.

The core idea is to use, similar to loop unrolling of programming language compilers
for parallel environments, the estimated number of iterations in order to determine the
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number of parallel subflows. The rewriting of iterations to parallel flows is beneficial if

|r|
max
i=1

 mi∑
j=1

Ŵ (oi,j) + i ·W (Start Thread)

 < r ·
mi∑
j=1

W (oi,j)

with Ŵ (oi,j) =
|r|

min(|r|, k)
· (Ŵ (oi,j)− wait(oi,j)) + wait(oi,j).

(3.18)

Due to foreach semantics, r must be estimated in terms of the frequency of iterations.
Rewriting is realized by the following algorithm. We check if there are no dependencies
between iterations and if we are allowed to change the temporal order. In case of inde-
pendence, we compile all operators of the iteration body to r subflows plus one additional
subflow. Each subflow references a specific data partition of the inbound data set, while
the last subflow is used for all partitions that exceed the estimated number of iterations.

In conclusion, this optimization technique offers—similar to the rewriting of sequences—
high optimization opportunities. In contrast to sequences, the rewriting relies heavily on
the estimated number of iterations. The possibility of arbitrary input data sets might
result in unused subflows (overestimation) or in executing multiple partitions with the
last subflow (underestimation). One can further enhance this by using dynamic runtime
scheduling of parallel subflows (e.g., guided self-scheduling [PK87], or factoring [HSF91]).
In addition, this technique can be combined with rewriting sequences (the operators of
one iteration) to parallel flows and this technique should be applied before the techniques
WC1 (rescheduling parallel flows) and WC4 (merging parallel flows).

Merging Parallel Flows

Recall the costs of a Fork operator that are determined by the most time-consuming
subflow. The idea of the technique WC4: Merging Parallel Flows is that if the costs
of the subflow with maximum costs subsume the costs of two or more other subflows,
the subsumed subflows can be rewritten to one subflow in order to reduce the costs by
W (Thread) that denotes the costs for thread creation, starting, and monitoring (in con-
trast to the previously used W (Start Thread) that denotes the time required for thread
creation only). Therefore, all Fork operators with more than two subflows have to be
considered. We achieve an execution time reduction because less threads are required,
while the most time-consuming subflow is unchanged.

In general, this problem of a given maximum constraint per partition and the opti-
mization objective of minimizing the number of partitions, is reducible to the offline bin
packing problem that is known to be an NP-hard problem. Therefore, we use an extension
of the heuristic first fit algorithm [Joh74] that works as follows. First, we determine the
subflow with maximum costs. Second, for each old subflow, we check if it can be merged
with an existing new subflow. If this is possible, we merge the subflow with the first fit
subflow by temporally concatenating the sequences of operators; otherwise, we create a
new subflow. In the worst case, for each old subflow, we check each new subflow. Thus,
the time complexity is given by O(m2). In the following, we use an example to illustrate
this heuristic algorithm.

Example 3.11 (Merging Parallel Flows). Recall our example plan P7 from Example 3.9.
Further, assume changed execution times as shown in Figure 3.14(a). First, we determine
the fourth subflow (349 ms) as upper bound for our extended first fit algorithm. Second,
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Figure 3.14: Example Merging Parallel Flows

we iterate over all subflows in order to minimize the total number of subflows. There, for
the first old subflow, we create a new subflow. Then, we check if the second old subflow
fits into the first. Due to 205 ms + 230 ms > 349 ms, we create a second new subflow.
Subsequently, we repeat this with the third old subflow and observe that we can merge it
with the first new subflow. Finally, the fourth old subflow, obviously, cannot fit into an
existing subflow and hence, we create a third new subflow. Figure 3.14(b) illustrates the
result of this algorithm.

As a result, this optimization technique reduces the number of required threads without
sacrificing the estimated execution time of a Fork operator. Due to less synchronization
and thread monitoring overhead, this results in execution time reductions. Note that this
technique should be applied after WC2 and WC3 (rewriting sequences and iterations to
parallel flows), but before WC1 (rescheduling parallel flows).

Apart from these purely control-flow-oriented optimization techniques, there are several
optimization techniques that can be classified as hybrid techniques because they combine
data-flow- and control-flow-oriented aspects in order to achieve lower execution time. We
will discuss them within the context of data-flow oriented optimization techniques.

3.4.2 Data-Flow-Oriented Techniques

The data-flow-oriented optimization techniques address the interaction-oriented opera-
tors and the data-flow-oriented operators of our flow meta model. This includes various
techniques from traditional query processing, hybrid techniques combining data-flow and
control-flow-oriented aspects, and techniques that are tailor-made for integration flows.

Reordering and Merging of Switch Paths

Programming language compilers and modern processors use only path probabilities for
static and dynamic branch prediction in order to support speculative path computation.
In contrast, expression evaluation within integration flows is typically more expensive due
to the expression evaluation on messages (e.g., XPath expressions on XML messages).

The techniques WD1: Reordering of Switch Paths and WD2: Merging of Switch Paths
are applied to the Switch operator depending on the workload characteristics. For this
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purpose, the path probabilities P (pathi) (as relative frequencies over the sliding window)
and the absolute costs for evaluation of a path expression W (exprpathi) are needed in order
to compute the relative costs for accessing a Switch path with W (exprpathi)/P (pathi).

As the core concept of WD1, we reorder Switch path expressions according to their
relative costs for expression evaluation. When applying this technique we need to ensure
the semantic correctness, where the structure of an expression is assumed to be a set of
predicates attribute θ value. We define that only independent expressions (e.g., annotated
within the flow specification) can be reordered, while conditional expressions prevent any
reordering. This reordering of Switch paths is optimal (in the average case) if Switch

paths are sorted in ascending order of their relative costs, such that the following optimality
condition holds:

W (exprpathi)

P (pathi)
≤
W
(
exprpathi+1

)
P (pathi+1)

. (3.19)

With such a reordering, an execution time reduction of

∆W (pathi, pathi+1) = P (pathi) ·W
(
exprpathi+1

)
− P (pathi+1) ·W (exprpathi) (3.20)

is possible when reordering two paths pathi+1 and pathi.
In contrast to the reordering of independent expressions, for any expressions that refer

to the same attribute, the technique WD2 can be applied. There, the concept is to
merge expressions with equivalent attribute to a compound switch path in order to extract
the single value only once and to evaluate it multiple times. With such a merged path
evaluation, an execution time reduction of

∆W (pathi, pathi+1) = P (pathi+1) ·W
(
exprpathi+1

)
(3.21)

can be achieved. The compound path can be reordered similar to normal Switch paths.
In consequence, the technique WD2 should be applied before WD1.

The following rewriting algorithm applies the reordering and merging of Switch paths.
First, we partition the expressions, according to the attributes (e.g., represented by
XPath expressions). If a partition contains multiple paths, we apply the merging by
replacing the two paths with one compound path that writes the extracted attribute
value to an operator-local cache and evaluates it multiple times. Therefore, all sub-
paths of the compound path are annotated as compound. Second, we compute the rel-
ative costs W (exprpathi)/P (pathi) for each path and reorder the path according to the
given optimality condition. In total, this rewriting algorithm exhibits a complexity of
O(m2) = O(m2 +m · logm) due to partitioning and sorting of Switch paths. We use an
example to illustrate the resulting execution time when using these techniques.

Example 3.12 (Reordering and Merging Switch Paths). Recall our example plan P1 that
is shown in Figure 3.15(a). Further, assume that the costs for accessing each of the two
Switch paths has been monitored as W (expr) = 30 ms. We analytically investigate the
influence of varying path probabilities P (A) ∈ [0, 1] with P (A)+P (B) = 1. Figure 3.15(b)
illustrates the influence of reordering the switch paths (assuming independent expressions,
e.g., A : var1 = x and B : var2 = y), where the costs are computed by P (A) ·W (expr) +
(P (A) ·W (expr) + P (B) ·W (expr)) due to the ordered if-elseif semantic. Based on the
equivalence of costs for evaluating the expressions, we benefit from reordering if P (A) <
P (B). This means, for P (A) < 0.5, we reorder (A,B) to (B,A) and thus, achieve the
shown benefits. Furthermore, Figure 3.15(c) illustrates the influence of merging switch
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Figure 3.15: Example Reordering and Merging of Switch Paths

paths (assuming non-disjoint expressions, e.g., A : var1 < x and B : var1 < y), where the
total costs are independent of the path probabilities because the XPath expression is only
evaluated once. Therefore, we benefit from merging if P (A) < 1.

Finally, note that the monitored path probabilities are conditional probabilities due to
the ordered if-elseif-else semantics of the Switch operator. For example, we monitor the
relative frequency of P (path1) but the conditional frequency of P (path2|path1). Please,
refer to Subsection 3.3.4 on how to estimate conditional probabilities in this context.

Selection Reordering

Similar to traditional query processing, reordering of selective operators such as Selection,
Projection (distinct), Groupby, Join, and Setoperation (distinct) is important in order
to find the optimal plan that reduces the amount of processed data as early as possible.
In contrast to existing approaches, in the context of integration flows, the control-flow
semantics must be taken into account when evaluating selective operators. Essentially,
this control-flow awareness applies to all selective data-flow-oriented operators. However,
we use the technique WD4: Early Selection Application in order to explain this control-
flow-awareness.

The core idea of selection reordering is to reduce the amount of processed data by
reordering Selection operators by their selectivity foi = |dsout|/|dsin|, where foi ∈ [0, 1].
The costs of a single Selection operator is given by |dsin|. Thus, the costs of a sequence
of Selection operators are determined by

C(P ) =

m∑
i=1

|dsin(oi)| =
m∑
i=1

i−1∏
j=1

foj · |dsin(o1)|

 . (3.22)

This implies that the order of Selection operators is optimal if foi ≤ foi+1 . Due to
the problem of data correlation, the first optimization of a plan orders the Selection

operators according to this optimality condition, while all subsequent optimization steps
use the introduced correlation table for correlation-aware incremental re-ordering.
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In order to achieve control-flow awareness, we additionally need to take into account
the path probabilities of (possibly hierarchically structured) Switch operators in the form
of probabilities P (oi) that an operator is executed. As a result, the costs of a sequence of
Selection operators are determined by

C(P ) =

m∑
i=1

(P (oi) · |dsin(oi)|)

=

m∑
i=1

i−1∏
j=1

(
P (oj) · foj + (1− P (oj))

)
· |dsin(o1)|

 ,

(3.23)

where (P (oi) · foi + (1− P (oi))) denotes the effective operator selectivity. The order of
Selection operators is still optimal if foi ≤ foi+1 holds for all selective operators due to the
conditional operator execution with P (oi). However, the effective operator selectivity must
be taken into account when evaluating following operators. If a Switch operator contains
multiple Selection operators (in different paths), we reorder only the complete Switch

operator according to the total effective operator selectivity P (oi) · foi + P (oj) · foj . The
actual rewriting algorithm works as follows. First, we determine the selectivities of each
individual operator. Second, we reorder the operators according to the given optimality
condition. Third, we evaluate if the increased costs of additional non-selective operators
(such as the Switch operator) are amortized by applying the selective operator earlier.
While the normal selection reordering exhibits a time complexity of O(m logm) due to
the simple sorting according to the selectivities, the control-flow aware selection reordering
exhibits a time complexity of O(m2) = O(m2 + m logm) because after sorting, for each
operator, we additionally evaluate all subsequent operators. In the following, we use an
example to illustrate the importance of this control-flow aware rewriting.

Example 3.13 (Selection Reordering). Assume a subplan P as illustrated in Figure 3.16(a)
that contains four different Selection operators. Furthermore, assume the given moni-
tored selectivities, path probabilities and an input cardinality of |dsin(o1)| = 1,000. For
sake of simplicity the costs of a (hierarchically structured) Switch operator are computed
by |dsin| and we use the abstract costs rather than the weighted costs for cost comparison.
Then, the costs are determined as follows: C(P ) = 1,000+500+350+0.05·350+0.965·350 =
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Figure 3.16: Example Control-Flow-Aware Selection Reordering
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2,205.05, where for example, the cost of the Switch operator o3 are determined with
C(P ) = 1,000 · 0.5 · 0.7 = 350 by the input data size and the selectivity of previous opera-
tors. If we would reorder the Selection operators traditionally, we would get the operator
sequence (o7, o8, o1, o2) shown in Figure 3.16(b). The costs of this sequences (using Equa-
tion 3.23) are given by C(P ′) = 1,000+0.05 ·1,000+1,000 ·0.965+1,000 ·0.965 ·0.4+1,000 ·
0.965 · 0.4 · 0.5 = 2,594 and thus, the costs are higher than the initial costs. In contrast,
if we reorder Selection operators in a control-flow-aware manner, we get the operator
sequences (o8, o1, o2, o7) shown in Figure 3.16(c). The costs of this sequence are computed
by C(P ′′) = 1,000 + 1,000 · 0.4 + 1,000 · 0.4 · 0.5 + 200 + 1,000 · 0.4 · 0.5 · 0.7 · 0.05 = 1,807.
As a result, control-flow-aware selection reordering reduced the costs from 2,594 to 1,807.

To summarize, the control-flow aware selection reordering exhibits a slightly worse time
complexity than the traditional selection ordering. However, the opportunity of a sig-
nificant plan cost reduction justifies the application of this technique. Finally, note that
the same concept of effective operator selectivities (P (oi) · foi + (1− P (oi))) is in gen-
eral, also applicable for all selective operators such as Groupby, Join, Setoperation, and
Projection. For the sake of a clear presentation, we will not mention this during the
discussion of the following data-flow-oriented optimization techniques.

Eager Group-By and Pre-Aggregation

Similar to reordering selective operators, it can be more efficient to apply specific operators
as early as possible in order to reduce the cardinalities of intermediate results, where the
earliest possible position can be determined using the dependency graph. The core concept
is to reduce the cardinality of intermediate results and thus, to improve the execution time
of the following operators.

We concentrate only on WD6: Early Groupby Application, which was considered for
DBMS [CS94] (with complete [YL95] or partial [Lar02] aggregation) and for EII (En-
terprise Information Integration) frameworks (adjustable partial window pre-aggregation
[IHW04]). For early group-by application, a sequence of Join and Groupby is rewritten
to a construct of Groupby and Join (invariant group-by also known as eager group-by) or
to a construct of Groupby, Join, and Groupby (pre-aggregation). The assumption is that
it can be more efficient—with respect to the monitored cardinalities and selectivities—to
compute the Join on pre-aggregated partitions rather than on the single tuples. The
precondition is that the list of grouping attributes G contains the Join predicate jp.

First of all, we need some additional notation, where we use the relational algebra for
simplicity of presentation. Assume a join of n data sets (with arbitrary multiplicities) and
a subsequent group-by, where the join predicate and group-by attributes are equal with
γF (X);A1

(R onR.A1=S.A1 S). For left-deep join trees, without cross products, and only one
join implementation, there are then 4n! possible plans because for each join operator, four
possibilities exist to apply the Groupby operator (for invariant group-by, the final γ in
Pc-Pf can be omitted):

Pa(opt) : γ(R on S) Pc : γ((γR) on S) Pe : γ(R on (γS)) Pg : (γR) on (γS)
Pb : γ(S on R) Pd : γ(S on (γR)) Pf : γ((γS) on R) Ph : (γS) on (γR).

Without loss of generality, we assume n = 2 and concentrate on the four possibili-
ties to arrange group-by and join for a given join order. In addition to the join costs
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of C(on) = |R| + |R| · |S|, the group-by costs are given by C(γ) = |R| + |R| · |R|/2.
Furthermore, the output cardinality in case of a single group-by attribute Ai is defined
as 1 ≤ |γR| ≤ |DAi(R)|, while for an arbitrary number of group-by attributes it is

1 ≤ |γR| ≤
∏|A|
i=1 |DAi(R)|, where DAi denotes the domain of an attribute Ai. Further, we

denote the group-by selectivity with fγR = |γR|/|R|. Then, the plan Pa is optimal if the
following four optimality conditions hold. First, the commutative join order is expressed
with |R| ≤ |S|. Second, there is one optimality condition for each single join input (in
order to determine if pre-aggregation is advantageous):

C(γ(R on S)) ≤
(
|R|+ |R|2/2

)
+ (fγR · |R|+ fγR · |R| · |S|)

+
(
f(γR),S · fγR · |R| · |S|+ (f(γR),S · fγR · |R| · |S|)2/2

)
with C(γ(R on S)) = (|R|+ |R| · |S|) +

(
fR,S · |R| · |S|+ (fR,S · |R| · |S|)2/2

)
,

(3.24)

C(γ(R on S)) ≤
(
|S|+ |S|2/2

)
+(|R|+ |R| · fγS · |S|)+

(
|R|+ (fR,(γS) · fγS · |R| · |S|)2/2

)
,

(3.25)
and one condition for all join inputs:

C(γ(R on S)) ≤
(
|R|+ |R|2/2

)
+
(
|S|+ |S|2/2

)
+ (fγR · |R|+ fγR · |R| · fγS · |S|). (3.26)

These conditions are necessary due to the characteristic of missing knowledge about data
properties. For example, we do not know the multiplicities of join inputs that can be
exploited for defining simpler optimality conditions in advance. The algorithm for realizing
this technique is invoked for each Groupby operator. Then, we check by the use of the
dependency graph if this operator can be reordered with predecessor Join operators, where
for each join there are four optimality conditions. As a result, this algorithm exhibits a
linear time complexity of O(m). We use an example to illustrate this concept.

Example 3.14 (Eager Group-By). Recall our running example plan P2 as shown in Fig-
ure 3.17(a). Assume arbitrary join multiplicities and monitored statistics. Based on the
given optimality condition, the plan has been rewritten to P ′2 as shown in Figure 3.17(b).
Essentially, we observed that the full eager-group-by before the join causes lower costs
than the join-group-by combination. Note that the Fork operator is taken into account by
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Figure 3.17: Example Eager Group-By Application
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determining only the most time-consuming subflow rather than all subflows. A detailed
cost estimation example of a rewritten subgraph (applying this technique) was given with
Example 3.2 (Cost Estimation) in Subsection 3.2.2

Finally, this technique should be applied after the join enumeration WD10 because
it requires the optimal join order as the basis for its rewriting algorithm but it should
be applied before WD9 because the join type selection might change according to the
estimated cardinalities. Interdependencies to join enumeration are deferred to the next
invocation of the optimizer.

Set Operations with Distinctness

For the Setoperation operator, we distinguish different types, among others the UNION

DISTINCT and the UNION ALL. While the UNION ALL can be computed with low costs of
|dsin1|+ |dsin2|, the costs of UNION DISTINCT are computed by

|dsin1|+ |dsin2| ·
|dsout|

2
. (3.27)

We transfer the first data set completely into the result (|dsin1|) and then, for each tuple
of the second data set dsin2, we need to check whether or not this tuple is already in the
result. In the average case, this causes costs of |dsout|/2 for each tuple. As a result, UNION
DISTINCT has a quadratic time complexity of O(N2).

The core idea of WD11: Setoperation-Type Selection in combination with the WD8:
Orderby Insertion / Removal is to sort both input data sets by their distinct key in order
to enable the application of an efficient merge algorithm for ensuring distinctness. Hence,
only costs of |dsin1| + |dsin2| (similar to a UNION ALL) would be necessary to compute
the UNION DISTINCT. Including the costs for sorting, the result is a time complexity of
O(N logN). Despite the internal order-preserving XML representation, sorting of message
content is applicable in dependence on the source adapter types of these messages.

In the following, we consider the required optimality conditions. There are three al-
ternative subplans for a union distinct R ∪ S. First, there is the normal union distinct
operator with costs that are given by C(R ∪ S) = |R|+ |S| · |R ∪ S|/2 (two plans due to
asymmetric costs), where |R| ≤ |R∪ S| ≤ |R|+ |S| holds. Second, we can sort both input
data sets and apply a merge algorithm (third plan), where the costs are computed by

C (sort(R) ∪M sort(S)) = |R|+ |S|+ |R| · log2|R|+ |S| · log2|S|. (3.28)

In conclusion, for arbitrary cardinalities, the optimality conditions are |R| ≥ |S| and

|R|+ |S| · |R ∪ S|
2

≤ |R|+ |S|+ |R| · log2|R|+ |S| · log2|S|

|R ∪ S| ≤ 2 +
2 · |R| · log2|R|

|S|
+ 2 · log2|S|.

(3.29)

We see that this decision depends on the union output cardinality and both input cardi-
nalities. If one input is known to be sorted, the corresponding Orderby operator is omitted
and the optimality conditions are modified accordingly.

Example 3.15 (Setoperation-Type Selection). Assume our example plan P6 (see Fig-
ure 3.18(a)) that includes two Setoperation operators of type UNION DISTINCT. Using
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Fork (o1)

Invoke (o5)
[service s4, in: msg3, out: msg4]

Setoperation (o8)
[in: msg2,msg4, out: msg7]

Assign (o4)
[out: msg3]

Invoke (o3)
[service s3, in: msg1, out: msg2]

Assign (o2)
[out: msg1]

Invoke (o7)
[service s5, in: msg5, out: msg6]

Assign (o6)
[out: msg5]

UNION DISTINCT

Assign (o10)
[in: msg8, out: msg9]

Invoke (o11)
[service s6, in: msg9]

Setoperation (o9)
[in: msg7,msg6, out: msg8]

UNION DISTINCT

(a) Plan P6

Fork (o1)

Invoke (o5)
[service s4, in: msg3, out: msg4]

Setoperation (o8)
[in: msg2,msg4, out: msg7]

Assign (o4)
[out: msg3]

Invoke (o3)
[service s3, in: msg1, out: msg2]

Assign (o2)
[out: msg1]

Invoke (o7)
[service s5, in: msg5, out: msg6]

Assign (o6)
[out: msg5]

UNION DISTINCT
(Merge)

Assign (o10)
[in: msg8, out: msg9]

Invoke (o11)
[service s6, in: msg9]

Setoperation (o9)
[in: msg7,msg6, out: msg8]

UNION DISTINCT
(Merge)

Orderby (o16)
[in: msg6, out: msg6]

Orderby (o13)
[in: msg4, out: msg4]

Orderby (o12)
[in: msg2, out: msg2]

(b) Plan P ′6

Figure 3.18: Example Setoperation Type Selection

the techniques orderby insertion and setoperation type selection, we created the rewritten
plan P ′6 shown in Figure 3.18(b). Here, we use the efficient merge algorithm for both
Setoperation operators and hence, require to sort all three input data sets. Sorting the
result of the first Setoperation operator is not required because the output of the merge
algorithm is already ordered. Consider two cases with different statistics for input and
output cardinalities of the Setoperation o8. Figure 3.19 (left) shows the abstract costs of
the two possible subplans—P6 : (o8) versus P ′6 : (o′12, o

′
13, o

′
8)—in both cases.

Statistics C(o8) C(o′12, o
′
13, o

′
8)

|dsin1(o8)| = 1,000
case 1 |dsin2(o8)| = 1,000, 501,000 21,932

|dsout(o8)| = 1,000

|dsin1(o8)| = 1,000,
case 2 |dsin2(o8)| = 10, 6,000 11,009

|dsout(o8)| = 1,000

Figure 3.19: Example Setoperation Cost Comparison

We observe that the optimality of these subplans depends on current workload character-
istics, while the subplan (o′12, o

′
13, o

′
8) is more robust6 over arbitrary statistic ranges than

the subplan (o8) as shown in Figure 3.19 (right).

Finally, this optimization technique is also applicable for other operators such as Projec-
tion with duplicate elimination or for forcing a merge-based join algorithm (WD9). Thus,
in general, the technique WD8 (orderby insertion) should be applied before selecting dif-
ferent physical types of an operator.

To summarize, we presented selected control-flow- and data-flow-oriented optimization

6Robustness is an alternative optimization objective, which is beyond the scope of this thesis. However,
in contrast to existing work [ABD+10], we would identify these robust (insensitive to input statistics)
plans by simply choosing one of the plans with lowest asymptotic time complexity with regard to their
overall abstract cost functions of all plan operators.
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techniques. Traditional techniques can be adapted also for the optimization of integra-
tion flows. In addition to this, there are hybrid techniques, where the control flow must
be taken into account for data-flow-oriented techniques as well. Finally, there are also
techniques that are tailor-made for integration flows. In conclusion, we observe the pres-
ence of many optimization opportunities, where ensuring semantic correctness is a major
challenge with regard to concrete optimization techniques. Therefore, our transformation-
based optimization algorithm iteratively applies optimization techniques. Many of these
techniques are independent but for dependable techniques, we need to prevent local subop-
tima. Note that applying techniques independently (1) reduces the optimization overhead
due to a reduced search space, and (2) less development effort for new techniques. The
presented general optimization framework can then be extended with arbitrary additional
optimization techniques.

3.5 Experimental Evaluation

In this section, we present results of our exhaustive experimental evaluation with regard
to the three evaluation aspects: (1) optimization benefits and scalability, (2) optimization
overheads, as well as (3) workload adaptation. In general, the evaluation shows that:

• Significant performance improvements can be achieved by periodical re-optimization
in the sense of minimizing the average execution time of a plan. According to Little’s
Law [Lit61], this has also direct influence on the message throughput improvement.
Scalability experiments showed that the benefit increases with increasing amount of
input data as well as with increasing plan complexity.

• The overhead for statistic maintenance and periodical re-optimization is moderate.
Thus, this overhead is typically subsumed by the achieved execution time reduction.
Even in the worst-case, where the initial plan constantly exhibits the optimality
property, this additional runtime overhead is moderate.

• The right choice of parameterization (workload aggregation, optimization interval,
sliding time window size) in combination with correlation awareness can ensure an
accurate but still robust adaptation to changing workload characteristics. In de-
tail, even after specific workload changes, the self-adjusting cost model consistently
converges to the real costs.

In conclusion of these major experimental findings, the periodical re-optimization can
be applied by default. The available parameters of the optimization algorithm can addi-
tionally be used to fine-tune the adaptation sensibility (and thus, influence the execution
time reduction) and the optimization overhead.

The detailed description of our experimental results is structured as follows. First, we
explain the end-to-end comparison of no-optimization versus periodical re-optimization
for all plans of our use cases. This already includes the optimization overhead. Second,
we analyze this optimization overhead in more detail with regard to statistics monitoring
and re-optimization. Third, we evaluate the cost model according to the adaptation to
changing workload characteristics as well as how to set the existing parameters.
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Experimental Setting

The experimental setup comprises an IBM blade with two processors (each a Dual Core
AMD Opteron Processor 270 at 2 GHz) and 9 GB RAM, where we used Linux openSUSE
9.1 (32 bit) as the operating system. Our WFPE (workflow process engine) realizes the
extended reference system architecture (described in this chapter) including our optimiza-
tion component. The WFPE is implemented using Java 1.6 as the programming language
and includes approximately 36,000 lines of code. It currently includes several adapters (in-
bound and outbound) for the interaction with files, databases, and Web services. However,
the external systems, used by our example integration flows, have been simulated with file
adapters in order to minimize the influence of used systems on the measured experimental
results (reproducibility). In order to use arbitrary workload scenarios with different car-
dinalities and selectivities (workability), we executed all experiments on synthetic XML
data generated using our DIPBench toolsuite [BHLW08c].

There are several parameters that influence plan execution. Essentially, we analyzed
two groups of parameters. First, there is the group of optimization parameters, where we
used different sliding window sizes ∆w (default: 5 min), different optimization intervals ∆t
(default: 5 min), and different workload aggregation methods Agg (default: EMA). Second,
there is the group of workload characteristics. Here, we used different numbers of plan
instances n (executed instances), different plans with certain numbers of operators m, and
different input data sizes d (default: d = 1, which stands for 100 kB input messages) and
different selectivities. With regard to applied optimization techniques, we used all cost-
based optimization techniques, except message indexing and heterogeneous load balancing
(both not discussed in this thesis) as well as vectorization (see Chapter 4) and multi-
flow optimization (see Chapter 5). Furthermore, we disabled all rule-based optimization
techniques in order to focus on the benefit achieved by cost-based optimization because
these techniques either did not apply (e.g., algebraic simplifications) for the used plans or
they achieved a constant absolute improvement (e.g., static node compilation) for both
the unoptimized and the cost-based optimized execution.

End-to-End Comparison and Optimization Benefits

In a first series of experiments, we compared the end-to-end performance of no-optimiza-
tion versus the periodical re-optimization. These experiments already include all opti-
mization overheads (such as statistics maintenance and periodical re-optimization). As a
result, these experiments show the overall benefit achieved by periodical re-optimization.

First, we compared the periodical re-optimization with no-optimization. The periodical
re-optimization was realized as asynchronous inter-instance optimization approach. We
executed 100,000 instances of our example plan P5 for the non-optimized plan as well as
for the optimized plan and measured re-optimization and plan execution time. For peri-
odical re-optimization, the plan execution time already includes the synchronous statis-
tic maintenance. During execution, we varied the input cardinality (see Figure 3.20(b))
and selectivities of the three selection operators (see Figure 3.20(a)). Here, the input
data was generated without correlations between different attributes. With regard to re-
optimization, there are four points (∗1, ∗2, ∗3, and ∗4) where a workload change (shown
as intersection points between selectivities) reasons the change of the optimal plan.

For periodical re-optimization, we used an optimization interval of ∆t = 5 min, a sliding
window size of ∆w = 5 min and EMA as the workload aggregation method. Figure 3.20(c)
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(a) Selectivity Variations (b) Input Data Size Variations

(c) Optimization Time (d) Execution Time

(e) Cumulative Optimization Time (f) Cumulative Execution Time

Figure 3.20: Comparison Scenario Periodical Re-Optimization

shows the single re-optimization times and Figure 3.20(e) illustrates the cumulative time
required for re-optimization during this scenario. Note that we used the elapsed scenario
time as the x-axis in order to illustrate the characteristics of periodical re-optimization. We
see that periodical re-optimization requires many unnecessary optimization steps. How-
ever, each single optimization step requires only a fairly low optimization time. Note that
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for this example plan, the re-optimization time is dominated by the physical plan com-
pilation and the waiting time for the next possible exchange of plans. The generation of
physical plans regardless of whether or not a new plan was found has been reasoned by
optimization techniques (such as switch path re-ordering), which directly reorder opera-
tors and thus, they always signal that recompilation is required. Clearly, for periodical
re-optimization, we could use a larger ∆t and thus, would reduce the cumulative total
optimization time. However, in that case, we would use suboptimal plans for a longer
time and hence, we would miss more optimization opportunities.

Furthermore, Figures 3.20(d) and 3.20(f) show the execution time using periodical re-
optimization compared to the non-optimized execution. The different execution times
are caused by the changing workload characteristics in the sense of different input car-
dinalities as well as selectivities of the different operators. When using periodical re-
optimization, the often re-occurring small peaks are caused by the numerous asynchronous
re-optimization steps. Further, a major characteristic of periodical re-optimization is that
after a certain workload shift, there is an adaptation delay until periodical re-optimization
is triggered. During this time, the execution time of the current plan is much longer than
the execution time of the optimal plan. In order to reduce these adaptation delays, a small
∆t is required. However, this would significantly increase the total re-optimization time.
To summarize, over time, significant execution time reductions are yielded by periodical
re-optimization due to the adaptation to changing workload characteristics.

(a) Cumulative Execution Time (b) Cumulative Opt. Time (c) Scenario Elapsed Time

Figure 3.21: Influence of Optimization Interval ∆t

Second, we used the introduced comparison scenario in order to investigate the influence
of the parameter ∆t in more detail. We re-executed this with different optimization pe-
riods ∆t ∈ {1 s, 2 s, 3.75 s, 7.5 s, 15 s, 30 s, 60 s, 120 s, 240 s, 480 s, 960 s 1800 s, 3600 s, 7200 s}.
Figure 3.21(a) illustrates the resulting cumulative execution time for optimized execution
compared to the unoptimized execution. We observe that the higher the optimization
period, the higher the cumulative execution time because we miss optimization oppor-
tunities after a workload shift due to deferred adaptation. However, it is important to
note that if the optimization period is too small, the execution time gets worse again.
This is reasoned by small benefits reached by immediate asynchronous re-optimization in
combination with increasing optimization costs as shown in Figure 3.21(b). While, so far
we used only the cumulative execution time (sum of plan execution times) as indicator,
now, we also discuss the elapsed time (time required for executing the sequence of plan in-
stances, which includes the workflow engine overhead and time during exchange of plans).
Figure 3.21(c) shows that for small optimization intervals ∆t—where we often exchange
plans—the elapsed time increase faster than the cumulative execution time. The reason is
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(a) Cumulative Execution Time (b) Cumulative Optimization Time

Figure 3.22: Use Case Comparison of Periodical Re-Optimization

asynchronous optimization but synchronous exchange of plans, where execution is blocked.
As a result both cumulative execution time and elapsed time might have different optimal
∆t configurations. Thus, this parameter is a possibility to fine-tune the optimizer.

Third, with regard to workability, we observed fairly similar results for our other exam-
ple plans and statistic variations. Here, we compared the periodical re-optimization with
no-optimization once again. In detail, we executed 20,000 plan instances for each example
plan (P1,P2,P3,P4,P5,P6,P7,P8) and for each execution model. There, we fixed the cardi-
nality of input data sets to d = 1 (100 kB messages) and used a well-balanced workload
configuration (without correlations and without workload changes). Furthermore, we fixed
an optimization interval of ∆t = 5 min, a sliding window size of ∆w = 5 min and EMA as
the workload aggregation method.

To summarize, we consistently observe execution time reductions (see Figure 3.22(a)).
In the following, we describe in detail how these benefits have been achieved:

• P1: This plan was affected by three different optimization techniques. First, the
technique WD1 reordered the two paths of Switch operator o2. Furthermore, the
operator sequence (o7,o8,o9) has been rewritten to parallel subflows (o7) and (o8,o9).
Finally, the technique WC1 rescheduled the start of both subflows in order to start
the most time-consuming subflow (o8,o9) first.

• P2: No optimization technique affected this plan.

• P3: Similar to plan P1, the techniques WC2 and WC1 have been applied on the op-
erator sequence (o2,o3) in order to rewrite this sequence to parallel subflows and to
reschedule the start of these subflows. In addition, the technique WD6 has been ap-
plied in order to pushdown the invariant group-by and thus, exchanged the temporal
order and data dependencies of operators o4 and o5.

• P4: For this rather complex plan, only the optimization technique WD9 was applied.
In detail the Join operator o9 was rewritten from a nested loop join to a subplan of
two (concurrent) Orderby operators and one merge join.

• P5: Similar to our first end-to-end comparison scenario, the technique WD4 was ap-
plied for the plan P5 with the aim of reordering the sequence of Selection operators
(o2,o3,o4).

• P6: This plan was affected by a set of techniques. First, the initially given Fork

operator was rescheduled by WC1. Furthermore, the techniques WD11 and WD8
rewrote the two subsequent Setoperation (UNION DISTINCT) operators to a sub-
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plan with Orderby and Setoperation (UNION DISTINCT MERGE) operators. The
sorted output order between the two Setoperation operators was exploited by the
optimizer in order to reduce the number of required Orderby operators. Finally, the
Setoperation and Orderby operators were parallelized by WC2.

• P7: Similar to P6, this plan was also affected by WC1 in the sense of rescheduled
subflows of the existing Fork operator. Furthermore, the techniques WD10 and WD8
changed the Join operators o14, o15 and o16 from nested loop joins to subplans of
Orderby and merge join operators. Finally, note that join enumeration did not
resulted in a new join order.

• P8: This plan was mainly affected by control-flow oriented optimization techniques.
In detail, the operator sequence (o3-o9) was rewritten into two parallel subflows of a
Fork operator. The last operator o10 was not included because both o9 and o10 are
two writing interactions to the same external system. Finally, the technique WC1
was applied once again for rescheduling the created subflows.

In addition to these consistent optimization benefits, Figure 3.22(b) shows the required
cumulative optimization time. The significant differences between the optimization times
of different plans are caused by two facts. First, the different total execution time influences
the number of periodical re-optimization steps required in this scenario because these
optimization steps are triggered periodically. Second, different techniques (with different
time complexity) are applied according to the specific operator types used in the concrete
plan. For example, plans P4 and P7 are dominated by the costs for join enumeration,
where we did not found different join orders due to ensuring semantic correctness (P4)
and the chain query type (P7).

Putting it all together, we can conclude that execution time reductions are possible,
while only a fairly low overhead is required by periodical re-optimization.

Scalability

In addition to the presented comparison of optimized and unoptimized execution, scala-
bility is one of the most important aspects. Hence, we conducted a series of experiments
that examines the scalability with regard to increasing number of operators as well as with
regard to increasing input data size.

Figure 3.23: Speedup of Rewriting Sequences to Parallel Flows
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First, in order to investigate the benefits of rewriting patterns to parallel subflows in
more detail, we executed a speedup experiment. Figure 3.23 shows the results of this
experiment on the rewriting of sequences to parallel flows (WC2). We used a plan that
contains a sequence of m = 100 independent Delay operators, and we explicitly varied
the number of threads k (concurrent subflows) used for parallelism (Fork operator) in
order to evaluate the speedup. Due to the distribution of m operators to k forklanes, a
theoretical speedup of m/ dm/ke is possible. Then, we varied the waiting time of each
single Delay operator from 10 ms to 40 ms in order to simulate different network delays
and waiting times for external systems, respectively. This experiment was repeated ten
times. As a result, an increasing maximum speedup (at an increasing number of threads)
was measured with increasing waiting time (note that the fall-offs were caused by the Java
garbage collector). This strong dependence of multi-tasking benefit on the waiting time
of involved operators justifies the decision to use the waiting time as main cost indicator
when rewriting sequences and iterations to parallel flows.

Second, we used our running example plans in order to investigate the scalability of
optimization benefits with increasing input data size. Based on the experimental results
shown in Figure 3.22, we re-used the workload configuration and all plans except plan P2

because for this plan no optimization technique could be applied. In detail, we executed
20,000 plan instances for each running example plan and compared the periodical re-
optimization with no-optimization varying the input data size d ∈ {1, 2, 3, 4, 5, 6, 7} (in
100 kB messages), which resulted in a total processed input data size of up to 13.35 GB
(for d = 7). Note that we varied this input data size only for the initially received message
of a plan, while for plans P3, P6 and P8, we changed the cardinality of externally loaded
data sets because these plans are time-based initiated. Further, we fixed an optimization
interval of ∆t = 5 min, a sliding window size of ∆w = 5 min and EMA as the workload
aggregation method. For all investigated plans, we observe that the relative benefit of
optimization increases with increasing data size as shown in Figure 3.24. Essentially, the
same optimization techniques were applied and thus, the optimization time is unaffected
by the used input data size. The highest benefits were reached by the data-flow oriented
optimization techniques. For example, the unoptimized versions of plans P4, P6, P7 show
a super-linearly increasing execution time with increasing data size, while the optimized
versions shows almost a linear increasing execution time. Thus, the optimized versions
exhibit a better asymptotic behavior, which is for example, caused by rewriting nested
loop Joins to combinations of Orderby and merge Join subplans. With this in mind, it
is clear that arbitrarily high optimization benefits can be reached with increasing input
data size (input cardinalities).

Optimization Overhead

In addition to the evaluation of performance benefits and the scalability with increasing
input cardinalities and increasing number of operators, we evaluated the optimization
overhead in more detail. Therefore, we conducted a series of experiments, where (1) we
compared the optimization overhead of our exhaustive optimization approach versus the
heuristic optimization approach and (2) we analyzed the overhead of statistics monitoring
and aggregation in detail.

First, we evaluated the influence of using the exhaustive optimization algorithm A-PMO
or the heuristic A-HPMO. We already discussed when it is applicable to use the second
heuristic A-CPO and therefore did not include it into the evaluation. Essentially, the ex-
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(a) Plan P1 (b) Plan P3

(c) Plan P4 (d) Plan P5

(e) Plan P6 (f) Plan P7

(g) Plan P8

Figure 3.24: Use Case Scalability Comparison of Periodical Re-Optimization

haustive and heuristic optimization approach differ only in the join enumeration algorithm
used. Thus, we evaluated the execution time of the technique join enumeration for dif-
ferent plans that included different numbers of Join operators (m ∈ {2, 4, 6, 8, 10, 12, 14})
as a clique query (where all quantifiers are directly connected). Here, we compared the
optimization time of (1) the exhaustive join enumeration using the standard DPSize algo-
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Figure 3.25: Optimization Overhead of Join Enumeration

rithm [Moe09] and (2) our join reordering heuristic with quadratic time complexity that
we have described in Subsection 3.3.2. Before optimization, we randomly generated statis-
tics for input cardinalities and join selectivities. The experiment was repeated ten times.
Figure 3.25 illustrates the results of this experiment using a log-scaled y-axis. The opti-
mization time of the full join enumeration increases exponentially, while for the heuristic
re-optimization, the optimization time increases slightly super-linear. However, we observe
acceptable absolute optimization time of exhaustive join enumeration until eight Join op-
erators, where the clique query is the worst-case for the DPSize algorithm. This justifies
our algorithm selection rule of using the full optimization algorithm until eight joins and
to use the heuristic for larger numbers of joins. As a result, we can guarantee that (1)
the time required by our optimization algorithm will not increase exponentially with the
complexity of plans and (2) the algorithm will find the optimal plan in the presence of
small numbers of Join operators.

Second, we analyzed the overhead of statistics monitoring and statistics aggregation.
If statistics monitoring is enabled, each operator propagates at least three (|dsin|, |dsout|,
and W (oi)) statistics to the Estimator. However, there are operators that propagate
more statistics such as Switch path frequencies, number of iterations and the cardinality
of multiple input and output data sets. Thus, the efficiency of statistics monitoring and
workload aggregation is important in order to achieve moderate re-optimization overheads.

Figure 3.26: Cumulative Statistic Maintenance Overhead

We used the statistic trace from our first comparison scenario (see Figure 3.20), where
we executed n = 100,000 plan instances of P5. We used three statistics (execution time,
input and output cardinalities) from seven of nine operators of this plan that results in
a test set of 2,100,000 statistic tuples. All sub experiments were repeated 1,000 times.
Figure 3.26 illustrates the results for different aggregation strategies. Full aggregation
refers to a single estimation using all statistics, which is applicable if the optimization
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period is longer than the sliding time window size (∆t ≥ ∆w). In detail, we aggregated
700,000 statistics (execution times W (oi) only) and we observed that all statistics were
aggregated in less than 20 ms. The single aggregation methods differ only slightly in their
execution time, where MA is the fastest method but only minor differences are observable.
If ∆t < ∆w or no ∆w is used, incremental statistics maintenance is required. Thus, we
repeated the experiment with our incremental aggregation methods. When comparing full
and incremental maintenance, we see that the incremental methods are a factor of 1.5 to
3 slower than the full methods because they require additional computation efforts for
producing valid intermediate results and for many method invocations. EMA is the fastest
incremental method based on its incremental nature. Our Estimator comprises all of these
aggregation methods and some additional infrastructural functionalities, where we use the
incremental EMA as default aggregation method. The maintenance of all three statistics
(|dsin|,|dsout|, and W (oi)) for all plan instances of the test set (2,100,000 statistic tuples)
using our Estimator is illustrated as Estimator (EMA). In conclusion, the overhead for
statistics maintenance during the full comparison scenario was 106 ms. This is negligible
compared to the cumulative execution time of 140 min in the optimized case.

Workload Adaptation

Due to changing workload characteristics, the sensibility of workload adaptation has high
importance. According to Subsection 3.3.3, there are three possibilities to influence the
sensibility of workload adaptation: (1) the workload sliding time window size ∆w, (2) the
optimization period ∆t, and (3) the workload aggregation method Agg. We evaluated
their influence in the following series of experiments.

Figure 3.27: Workload Adaptation Delays

Figure 3.27 shows the results of an experiment, where we executed n = 20,000 instances
of plan P3 and a modified plan P ′3 (with eager group-by) with disabled periodical re-
optimization. After n = 5,000 and n = 15,000 instances, we changed the cardinality of
one of two input data sets (workload changes WC1 and WC2). While in the first part,
the eager group-by was most efficient, the simple join and group-by performed better after
WC1. We fixed a sliding window size of ∆w = 5,000 s and MA as the workload aggregation
method. It took 2,100 plan instances to adapt to the workload shift and the plan changed
(PC1 at break even point between estimated plan costs). This adaptation delay depends
on the used sliding time window size ∆w and the aggregation method.
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We conducted further experiments where we executed n = 100,000 instances of the
plan P8 and varied the scale factor data size d (in 100 kB) in order to simulate changing
workload characteristics. Figure 3.28(a) illustrates the monitored plan execution times
with annotated input data sizes d. Based on these statistics, we evaluated the influences
of workload aggregation methods, their parameters, and of the sliding time window size
in detail.

(a) Execution Time (b) Workload Aggregation Method

(c) EMA Smoothing Parameter α (d) Sliding Time Window Size ∆w

Figure 3.28: Influence of Parameters on the Sensibility of Workload Adaptation

First, Figure 3.28(b) shows the influence of the workload aggregation method, where
we fixed ∆w = 1,000 s and illustrate the estimated costs continuously (∆t = 1 s). The
real execution times contain several outliers and a major skew. Obviously, MA causes the
slowest adaptation, while WMA and EMA cause faster adaptation. This is reasoned by the
fact that MA (constant weights) computes a linear average, while WMA (linear weights) and
EMA (exponential weights) compute weighted averages over the sliding window, where the
latest items have higher influence. Further, LR causes the fastest adaptation due to extrap-
olation. However, it is important to note that LR tends to strongly over- and underestimate
on abrupt workload shifts such as at the 80,000th plan instance. The results support our
decision to use the exponential moving average (EMA) as default aggregation method due
to fast but robust workload adaptation. There, our default setting of the EMA parameter
α = 0.002 was set empirically based on the observed variance of plan execution times
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for typical workloads. Second, we evaluate the parameters of these workload aggregation
methods. Figure 3.28(c) illustrates the influence of the parameter EMA smoothing constant
α. We used a sliding time window size of ∆w = 10,000 s and illustrated the estimated costs
continuously (∆t = 1 s). Clearly, an decreasing parameter α causes slower adaptation and
therefore more robust estimation. However, for typical parameter settings of 0.05 to 0.001
very fast but still robust adaptation can be achieved. Note that for α ∈ {0.2, 0.02, 0.002}
we obtained similar results for the sliding window size of ∆w = 1,000 s from the previous
experiment. However, for α = 0.0002 (with ∆w = 1,000 s) the estimates varied signif-
icantly which was caused by too few statistics in the time window in combination with
a low smoothing factor such that the estimated values were significantly determined by
the initial value (first statistic in the window) because the adaptation took too long. In
order to analyze the influence of the sliding window size ∆w in general, we conducted an
additional experiment. Figure 3.28(d) illustrates the influence of the sliding time window
size, where we fixed Agg = MA and varied ∆w from 10 s to 10,000 s. Clearly, the adaptation
slows down with an increasing ∆w. However, both extremes can lead to wrong (large er-
ror) estimations. The choice of the window size should be made based on the specific plan
because, for example, a long-running plan or a infrequently used plan need a longer time
window than plans with many instances per time period. The EMA method, typically, does
not need sliding window semantics due to the time-decaying character where older items
can be neglected. However, if a sliding window is used, the sliding window size ∆w should
be set according to the plan and the used smoothing constant α such that enough statis-
tics are available as already discussed. Furthermore, the optimization interval influences
the re-estimation granularity. With ∆t = 1 s, we get a continuous cost function, while an
increasing ∆t causes a slower adaptation because this influences the maximal delay of ∆t
until re-estimation. Obviously, parameter estimators, which minimize the error between
forecast values and real values could be used to determine optimal parameter values for
∆t and ∆w. However, when and how to adjust these parameters is a trade-off between
additional statistic maintenance overhead and cost estimation accuracy that is beyond the
scope of this thesis.

With regard to precise statistic estimation, handling of correlated data and conditional
probabilities are important. Therefore, we conducted an experiment in order to evaluate
our lightweight correlation table approach in detail. We reused our end-to-end comparison
scenario (see Figure 3.20), where we executed 100,000 instances of our example plan P5

and compared the resulting execution time when using periodical re-optimization with and
without the use of our correlation table. In contrast to the original comparison scenario, we
generated correlated7 data. Figure 3.29(a) illustrates the conditional selectivities P (o2),
P (o3|o2), and P (o4|o2 ∧ o3) of the three Selection operators, where we additionally set
P (o3|¬o2) = 1 and P (o4|¬o2 ∨¬o3) = 1. As a result, o3 strongly depends on o2 as well as
o4 strongly depends on o2 and o3.

Figure 3.29(b) illustrates the resulting execution time with and without the use of our
correlation table. We observe that without the use of the correlation table, the optimiza-
tion technique selection reordering assumes statistical independence and thus, changed the
plan back and forth, even in case of constant workload characteristics. This led to the pe-
riodic use of suboptimal plans, where the optimization interval ∆t = 5 min prevented more
frequent plan changes. In contrast, the use of the correlation table ensured robustness by

7We did not use the Pearson correlation coefficient and known data generation techniques [Fac10] in order
to enable the exact control of unconditional and conditional selectivities.
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(a) Selectivity Variations (b) Execution Time

Figure 3.29: Comparison Scenario of Periodical Re-Optimization with Correlation

maintaining conditional probabilities over multiple versions of a plan. Due to the involve-
ment of three correlated operators, incremental optimization required deleting records
from this correlation table. As a result, there are also some plan switches to suboptimal
plans (e.g., after workload shift *2, we observe three wrong plan switches). However, over
time, the conditional selectivity estimates converge to the real selectivities, which reasons
a 10% improvement with regard to the cumulative execution time. In conclusion, the use
of our correlation table ensures robustness in the presense of correlated data or conditional
probabilities, while the overhead is negligible (in this comparison scenario, we maintained
three entries in this correlation table).

The details of our exhaustive evaluation have shown that significant performance im-
provements can be achieved by periodical re-optimization in the sense of minimizing the
average execution time of a plan, while only moderate overhead is imposed by statis-
tics monitoring and periodical re-optimization. Even in the case, where no optimization
techniques could be applied, no significant performance penalty was measured. Most im-
portantly, the optimized plans show a better scalability than unoptimized plans. Thus,
typically, the relative performance improvements increase with an increasing input data
size or an increasing number of operators. Finally, with the right choice of parameters
the self-adjusting cost model in combination with correlation awareness enables a fast but
still robust adaptation to changing workload characteristics.

3.6 Summary and Discussion

To summarize, in this chapter, we introduced the cost-based optimization of imperative
integration flows to overcome the major problem of inefficiently performing integration
flows in the presence of changing workload characteristics. The incremental maintenance
of execution statistics addresses missing knowledge about data properties when integrating
heterogeneous and highly distributed systems and applications. In the area of integration
flows, cost-based re-optimization has been considered for the first time. Our solution com-
prises the dependency analysis and details on the monitoring of workload and execution
statistics as well as the definition of the double-metric cost model. Based on these founda-
tions, we discussed the NP-hard Periodic Plan Optimization Problem (P-PPO), including
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our transformation-based optimization algorithm, approaches for search space reduction
and adjusting the sensibility of workload adaptation as well as a lightweight concept for
handling conditional probabilities and correlation. Further, we explained selected opti-
mization techniques that are specific to integration flows because they exploit both the
data flow and the control flow in a combined manner. Our evaluation shows significant
performance improvements with moderate overhead for periodical re-optimization.

In conclusion, our cost-based optimization approach can be integrated seamlessly into
the major products in the area of integration platforms. Based on the observation of
many independent instances of integration flows, this approach of periodical cost-based
re-optimization is tailor-made for integration flows. In detail, the advantages of periodical
re-optimization are (1) the asynchronous optimization independently of executing certain
instances, (2) the fact that all subsequent instances rather than only the current query
benefit from re-optimization, and (3) the inter-instance plan change without the need
of state migration. This general optimization framework can be used as foundation for
further rewriting techniques and optimization approaches.

Apart from these re-optimization advantages, the optimization framework presented so
far has still several shortcomings. First, only the optimization objective of minimizing
the average plan execution time was considered. This is not always a suitable optimiza-
tion objective because in high load scenarios often the major optimization objective is
throughput maximization, while moderate latency times are acceptable. Therefore, in the
following, we will present two integration-flow-specific optimization techniques that have
the potential to significantly increase the message throughput. In detail, we present the
cost-based vectorization (a control-flow-oriented optimization technique) in Chapter 4 and
the multi-flow optimization (a data-flow-oriented optimization technique) in Chapter 5.
Second, also the periodical re-optimization algorithm itself has several drawbacks. This
includes the generic gathering of statistics for all operators that causes the maintenance of
statistics that might not be used by the optimizer. While for the evaluated workload ag-
gregation methods, this overhead was negligible, there might be performance issues when
using more complex forecast models. In addition, there is the problem of periodically
triggered re-optimization, where a new plan is only found if workload characteristics have
changed. Otherwise, we trigger many unnecessary invocations of the optimizer that eval-
uates the complete search space. Depending on the used optimization techniques this can
have notable performance implications. However, if a workload change occurs, it takes a
while until re-optimization is triggered. During this adaptation delay, we thus use a subop-
timal plan and miss optimization opportunities. Finally, the parameter ∆t (optimization
period) has high influence on optimization and execution times and hence, parameteriza-
tion requires awareness of changing workloads. These four drawbacks are addressed with
the concept of on-demand re-optimization that we will present in Chapter 6. However, the
periodical re-optimization already provides a reasonable optimization framework including
many fundamental concepts and thus, is used as the conceptual basis of this thesis.
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Based on the general cost-based optimization framework, in this chapter, we present
the vectorization of integration flows [BHP+09a, BHP+09b, BHP+11] as a control-flow-
oriented optimization technique that is tailor-made for integration flows. This technique
tackles the problem of low CPU utilization imposed by the instance-based plan execution
of integration flows. The core idea is to transparently rewrite instance-based plans into
vectorized plans with pipelined execution characteristics in order to exploit pipeline paral-
lelism over multiple plan instances. Thus, this concept increases the message throughput,
while it still ensures the required transactional properties. We call this concept vectoriza-
tion because a vector of messages is processed at-a-time.

In order to enable vectorization, we first describe necessary flow meta model extensions
as well as the rule-based plan vectorization that ensures semantic correctness; i.e., the
rewriting algorithm preserves the serialized external behavior. Furthermore, we present
the cost-based vectorization that computes the optimal grouping of operators to multi-
threaded execution buckets in order to achieve the optimal degree of pipeline parallelism
and hence, maximize message throughput. We present exhaustive, heuristic, and con-
strained computation approaches. In addition, we also discuss the cost-based vectorization
for multiple deployed plans and we sketch how this rather complex optimization technique
is embedded within our periodical re-optimization framework. Finally, the experimental
evaluation shows that significant throughput improvements are achieved by vectorization,
with a moderate increase of latency time for individual messages. The cost-based vector-
ization further increases this improvement and ensures robustness of vectorization.

4.1 Motivation and Problem Description

In scenarios with high load of plan instances, the major optimization objective is often
throughput maximization, where moderate latency times are acceptable [UGA+09]. Un-
fortunately, despite the optimization techniques on parallelizing subflows, instance-based
plans of integration flows, typically, do not achieve a high CPU utilization.

Problem 4.1 (Low CPU Utilization). The low CPU utilization is mainly caused by (1)
significant waiting times for external systems (for example, the plan instance is blocked,
while executing external queries), (2) the trend towards multi- and many-core architec-
tures, which stands in contrast to the single-threaded execution of instance-based integra-
tion flows, and (3) the IO bottleneck due to the need for message persistence to enable
recoverability of plan instances.

In conclusion of Problem 4.1 in combination with the existence of many independent plan
instances, there are optimization opportunities with regard to the message throughput,
which we could exploit by increasing the degree of parallelism. Essentially, we could
leverage four different types of parallelism to overcome that problem, where we additionally
use the classification [Gra90] of horizontal (parallel processing of data partitions) and
vertical parallelism (pipelining):
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• Intra-Operator (Horizontal): First, the operator implementations can be changed
such that they split input messages, work on data partitions of input messages in
parallel, and finally merge the results. For example, this type of parallelism is used
in the XPEDIA system [BABO+09]. In the context of processing tree-structured
messages (XML), the benefit is limited due to a high serial fraction required for
splitting and merging of messages.

• Inter-Operator (Horizontal): Second, there are the already mentioned techniques
on rewriting sequences and iterations to parallel subflows (Subsection 3.4.1), where
the scope is intra-instance (or synonymously inter-operator) only. However, in the
absence of iterations and due to restrictive dependencies between operators, the
benefit of these techniques is limited. Nevertheless, they are valid because they can
be applied to all types of flows, while the following two techniques are limited to
data-driven integration flows.

• Inter-Instance (Horizontal): Third, we could execute multiple plan instances in par-
allel. Unfortunately, due to the need for logical serialization of plan instances (Sec-
tion 2.3.2), simple multi-threaded plan execution is not applicable because expensive
global serialization would be required at the outbound side. If no serialization is re-
quired, this technique has the highest optimization potential.

• Inter-Operator/Inter-Instance (Vertical): Fourth, there is the possibility of pipeline
parallelism with a scope that stretches across multiple instances of a plan.

In order to overcome the problem of low CPU utilization, we introduce the vectoriza-
tion of integration flows that uses the fourth possibility by applying pipelining to inte-
gration flows. Instance-based plans (that use an one-operator-at-a-time execution model)
are transparently rewritten into pipelined plans (that use the pipes-and-filters execution
model, where multiple operators represent a pipeline and thus, are executed in parallel).
This concept of vectorization applies to data-driven integration flows (that include at least
one Receive operator). More specifically, it is designed for asynchronous data-driven in-
tegration flows, where the client source systems are not blocked during execution of a
plan instance. However, it is also extensible for synchronous data-driven integration flows
by employing call-back mechanisms in combination with the concept of correlation IDs
[OAS06], where waiting clients are logically mapped to asynchronously processed mes-
sages. Due to the control-flow semantics of integration flows and the need for ensuring
semantic correctness, transparent pipelining as an internal optimization technique (not
visible to the user) poses a hard challenge.

With regard to this challenge, in Section 4.2, we introduce the full vectorization of
plans, where each operator is executed as a single thread. There, we discuss the rewriting
algorithm as well as the rewriting with control-flow-awareness in detail. While, this typi-
cally already increases throughput, the full vectorization exhibits a fundamental problem:
namely, this execution model might require a high number of threads.

Problem 4.2 (High Number of Required Threads). If each operator is executed as a single
thread, the number of operators determine the number of threads required for a vectorized
plan. Thus, the throughput improvement of a concrete plan achieved by vectorization
strongly depends on the number of operators of this plan. In dependence on the concrete
workload (runtime of a single operator) and the available parallelism of the used hardware
platform, a number of threads that is too high can also hurt performance due to additional
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thread monitoring and synchronization efforts as well as increased cache displacement.
This problem is strengthened in the presence of multiple deployed plans because there, the
total number of operators and thus, the number of threads is even higher. In addition, the
higher the number of threads, the higher the latency time of single messages.

To tackle this problem of a possibly high number of required threads, in Section 4.3, we
introduce the cost-based vectorization of integration flows that assigns groups of operators
to execution buckets and thus, to threads. This reduces the number of required threads
and achieves higher throughput. In addition, Section 4.4 discusses how to compute the
optimal assignment of threads to multiple deployed plans. Finally, Section 4.5 illustrates
how this cost-based vectorization of integration flows, as an optimization technique for
throughput maximization, is embedded into our overall optimization framework that was
described in Chapter 3.

In contrast to related work on throughput optimization by parallelization of tasks
in DBMS [HA03, HSA05, GHP+06], DSMS [SBL04, BMK08, AAB+05] or ETL tools
[BABO+09, SWCD09], our approach allows the rewriting of procedural integration flows to
pipelined (vectorized) execution plans. Further, existing approaches [CHK+07, CcR+03,
BBDM03, JC04] that also distribute operators across a number of threads or server nodes,
compute this distribution in a static manner during query deploy time. In contrast, we
compute the cost-optimal distribution during periodical re-optimization in order to achieve
the highest throughput and to allow the adaptation to changing workload characteristics.

4.2 Plan Vectorization

As a prerequisite, we give an overview of the core concepts of our plan vectorization
approach [BHP+09b]. We define the vectorization problem, explain the required modifi-
cations of the integration flow meta model, sketch the basic rewriting algorithm, describe
context-specific rewriting rules and analyze the costs of vectorized plans.

4.2.1 Overview and Meta Model Extension

The general idea of plan vectorization is to transparently rewrite the instance-based plan—
where each instance is executed as a thread—into a vectorized plan, where each operator
is executed as a single execution bucket and hence, as a single thread. Thus, we model a
standing plan of an integration flow. Due to different execution times of the single oper-
ators, transient inter-bucket message queues (with constraints8 on the maximum number
of messages) are required for each data flow edge. With regard to our classification of
execution approaches, we change the execution model from control-flow semantics with
instance-local, materialized intermediates to data-flow semantics with a hybrid instance-
global data granularity (pipelining of materialized intermediates from multiple instances),
while still enabling complex procedural modeling. We illustrate this idea of plan vector-
ization with an example.

Example 4.1 (Full Plan Vectorization). Assume the instance-based example plan P2 as
shown in Figure 4.1(a). Further, Figure 4.1(b) illustrates the typical instance-based plan

8Queues in front of cost-intensive operators include larger numbers of messages. In order to overcome the
high memory requirements, typically, the (1) maximal number of messages or (2) the maximal total
size of messages per queue is constrained. It is important to note that finally, this constraint leads to
a work-cycle of the whole pipeline that is dominated by the most time-consuming operator.
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execution, where each incoming message initiates a new plan instance. All operators of
one instance are executed before the next instance is started.

msg1

msg2

msg3

msg4

Receive (o1)
[service: s5, out: msg1]

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Invoke (o6)
[service s3, in: msg5]

msg5

(a) Example Plan P2

plan instance pid=3
plan instance pid=2

plan instance pid=1
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Receive (o1)
[service: s5, out: msg1]

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Invoke (o6)
[service s3, in: msg5]

msg5

Message 
Queue

time t

(b) Instance-Based Plan Execution of P2

Figure 4.1: Example Instance-Based Execution of Plan P2

In contrast, Figure 4.2 shows the fully vectorized plan, where each operator is executed
within an execution bucket. Note that we also emphasized the changed operator parameters.

Vectorized plan P’

inter-bucket message queue

Copy (oc)
[in: msg1, out: msg1]

Message 
Queue

execution bucket bi (thread)

Assign (o2)
[in: msg1, out: msg2]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o6)
[service s3, in: msg5]

Figure 4.2: Example Fully Vectorized Execution of Plan P ′2

We can leverage pipeline parallelism (within a single pipeline) and parallel pipelines. In
this model, each edge of a data flow graph includes a message queue for inter-operator
communication. Dashed arrows represent dequeue (read) operations, while normal arrows
represent enqueue (write) operations. Additional operators (e.g., the Copy operator for
data flow splits) are required, while the Receive operator is not needed anymore.

Major challenges have to be tackled when transforming P into P ′ in order to preserve
the control-flow semantics and prevent the external behavior from being changed. Based
on the mentioned requirement of ensuring semantic correctness in the form of serialized
external behavior, we now formally define the plan vectorization problem. Figure 4.3(a)
illustrates the temporal aspects of the example instance-based plan (assuming a sequence
of operators). In this case, different instances of this plan are serialized in incoming order.
Such an instance-based plan is the input of our vectorization problem. In contrast to this,
Figure 4.3(b) shows the temporal aspects of a vectorized plan for the best case. Here,
only the external behavior (according to the start time t0 and the end time t1 of plan
and operator instances) must be serialized. Such a vectorized plan is the output of the
vectorization problem. The plan vectorization problem is then defined as follows.
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time t
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(b) Fully Vectorized Execution of Plan P ′

Figure 4.3: Temporal Aspects of Instance-Based and Vectorized Plans

Definition 4.1 (Plan Vectorization Problem (P-PV)). Let P denote a plan, and pi ∈
{p1, p2, . . . , pn} denotes the plan instances with P ⇒ pi. Further, let the plan P contain a
sequence of atomic or complex operators oi ∈ {o1, o2, . . . , om}. For serialization purposes,
the plan instances are executed in sequence, where the end time t1 of a plan instance is
lower than the start time t0 of the subsequent plan instance with t1(pi) ≤ t0(pi+1). Then,
the P-PV describes the search for the vectorized plan P ′ (with data flow semantics) that
exhibits the highest degree of parallelism for the plan instances p′i such that the constraint
conditions (t1(p′i, oi) ≤ t0(p′i, oi+1)) ∧ (t1(p′i, oi) ≤ t0(p′i+1, oi)) hold and the semantic cor-
rectness (see Definition 3.1) is ensured.

The same rules of ensuring semantic correctness as used for inter-operator parallelism
in Chapter 3 also apply for vectorized plans. For example, this requires synchronization of
writing interactions. However, we assume independence of plan instances, which holds for
typical data-propagating integration flows. This means that we synchronize, for example,
a reading interaction with a subsequent writing interaction of plan instance p1 but we
allow executing the reading interaction of p2 in parallel to the writing interaction of p1.
Nevertheless, monotonic reads and writes are ensured. We will revisit this issue of intra-
instance synchronization when discussing the rewriting algorithm.

Based on the P-PV, we now reveal the static cost analysis of the best case (full pipelines),
where cost denotes the total execution time. Let P include an operator sequence o with
constant operator costs W (oi) = 1, the costs of n plan instances are

W (P ) = n ·m // instance-based

W (P ′) = n+m− 1 // fully vectorized

∆(W (P )−W (P ′)) = (n− 1) · (m− 1),

(4.1)

where m denotes the number of operators. This is an idealized model only used for
illustration purposes. In practice, the improvement depends on the most time-consuming
operator omax with W (omax) = maxmi=1W (oi) of a vectorized plan P ′ because the work-
cycle of the whole data flow graph depends on this operator due to filled queues (with
maximum constraints) in front of this operator. We will revisit this effect when discussing
the cost-based vectorization in Section 4.3. The costs are then specified by:

W (P ) = n ·
m∑
i=1

W (oi) // instance-based

W (P ′) = (n+m− 1) ·W (omax). // fully vectorized

(4.2)
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Over time and hence, with an increasing number of plan instances n, the performance
improvement regarding the total execution time grows linearly. We use the term perfor-
mance in the sense of high throughput and low execution time of a finite message sequence
M ′. For this case of a finite sequence, where the incoming order of this sequence must be
preserved, (1) the execution time W (P,M ′), (2) the message throughput |M ′|/∆t, and (3)
the latency time TL(M ′) are correlated. According to Little’s Law [Lit61], the rationale
for this is the waiting time within the system because instances of one plan must not
be executed in parallel. In more detail, decreasing total execution time of the message
subsequence decreases the waiting time, increases the message throughput and thus finally
decreases the total latency time of this message sequence:

W (P,M ′) ∝ 1

|M ′|/∆t
∝ TL(M ′). (4.3)

However, the latency of single messages can be higher for vectorized plans compared to
instance-based plans.

Message and Flow Meta Model

In order to allow for transparent vectorization as an internal optimization technique, the
control-flow semantics must be preserved when vectorizing a plan. Therefore, we extended
the Message Transformation Model (MTM) (Subsection 2.3.1) in order to make it appli-
cable for vectorized plans, where we refer to it as VMTM.

In the VMTM, we extend the message meta model from a triple to a quadruple with
mi = (ti, di, ai, ci), where the context information c denotes an additional map of atomic
name-value attribute pairs with cij = (nj , vj). This extension is necessary due to process-
ing of multiple messages within one single standing (vectorized) plan instead of indepen-
dent plan instances. Thus, instance-related context information such as local variables
(e.g., counters or extracted attribute values) must be stored within the messages.

In contrast to the MTM flow meta model, in the VMTM, the flow relations between
operators oi do not specify the control flow (temporal dependencies) but the explicit data
flow in the form of message streams. Additionally, the Fork operator is removed because
in the vectorized case, operators are inherently executed in parallel. Finally, we introduce
the additional operators And and Xor for synchronization of operators in order to preserve

Table 4.1: Additional Operators of the VMTM

Name Description Input Output Complex

And Reads a synchronization ID and a single
message and forwards the read message.

(2,2) (1,1) No

Xor Reads a synchronization ID and/or mul-
tiple messages and outputs all messages,
which synchronization IDs have already
been seen. Thus, this operator has an intra-
operator state of IDs and messages.

(1,*) (0,*) No

Copy Gets a single message, then copies it n− 1
times and puts those messages into the n
output queues.

(1,1) (2,*) No
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the control-flow semantics of an integration flow as well as the Copy operator for data flow
splits. The semantics of these operators are described in Table 4.1.

In order to realize the pipes-and-filter execution model, operators are executed in so-
called multi-threaded executed buckets. Figure 4.4 illustrates the conceptual model of
such an execution bucket.

…
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operator oi

input queue 
qin k1dequeue()

enqueue()

input queue 
qin1

sync input queue 
sqin

output queue 
qout k2

output queue 
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(a) Generic Operator
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qout

input queue 
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sync output queue 
sqout

(c) Binary Operator

Figure 4.4: Conceptual Model of Execution Buckets

In general, Figure 4.4(a) shows the generic model of an execution bucket that contains
a set of input message queues, a set of output message queues, a single so-called input
synchronization queue, a single output synchronization queue, and an operator. The
bucket is a thread with an endless loop, where in each iteration it dequeues from all
input message queues, dequeues from the synchronization queue, executes the operator,
and enqueues the results into all output queues. However, with regard to the defined
flow meta model, unary (see Figure 4.4(b)) and binary (see Figure 4.4(c)) operators with
one or two inputs and a single output are most common. Note that only the unary
operators Xor and And require synchronization input queues, while each operator can have
a synchronization output queue, which depends on its position within the plan and the
need for serialization. Apart from the synchronization queues, similar operator models
are commonly used in the context of data stream management systems [GAW+08] and
related system categories [CEB+09, CWGN11].

4.2.2 Rewriting Algorithm

In this subsection, we first describe the core rewriting algorithm and second, we specify
the control-flow-specific rewriting techniques, which preserve the external behavior. Both
aspects are required in order to enable plan vectorization as an optimization technique.

Core Algorithm

The basic rewriting algorithm that is described in the following can be applied for all types
of operators of our integration flow meta model.

In detail, Algorithm 4.1 consists of two parts. In a first part, the dependency analysis
is performed by determining all data dependencies between operators. There, we create
a queue instance for each data dependency between two operators (the output message
of operator oi is the input message of operator oj). Internally, our optimizer reuses the
existing dependency graph that was described in Subsection 3.2.1. In a second part, we
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Algorithm 4.1 Plan Vectorization (A-PV)

Require: operator sequence o
1: B ← ∅, D ← ∅, Q← ∅
2: for i← 1 to |o| do // for each operator oi
3: // Part 1: Dependency Analysis
4: for j ← i to |o| do // for each following operator oj

5: if ∃oj
δ→ oi then

6: Q← Q ∪ q with q ← createQueue()

7: D ← D ∪ d〈oj , q, oi〉 with d〈oj , q, oi〉 ← createDependency()

8: // Part 2: Graph Creation
9: if oi ∈ Switch, Iteration, Validate, Signal, Savepoint, Invoke then

10: // see rules on rewriting context-specific operators
11: else
12: b(oi)← createBucket(oi)
13: for k ← 1 to |D| do // for each dependency d
14: d〈oy, q, ox〉 ← dk
15: if oi ≡ ox then
16: b(oi).addOutputQueue(q)
17: else if oi ≡ oy then
18: b(oi).addInputQueue(q)
19: if b(oi).countOutputQueues() ≥ 2 then
20: createCopyOperatorAfter(b(oi), B,D,Q)
21: else if b(oi).countOutputQueues() = 0 then
22: createLogicalQueue(b(oi−1), b(oi), B,D,Q)
23: B ← B ∪ b(oi)
24: return B

create the graph of execution buckets. This part contains the following three steps. First,
we create an execution bucket for each operator. Second, we connect each operator with
the referenced input queues. Clearly, each queue is referenced by exactly one operator,
but each operator can reference multiple queues. Third, we connect each operator with
the referenced output queues. If one operator must be connected to n output queues with
n ≥ 2 (its results are used by multiple following operators), we insert a Copy operator
after this operator in order to send the message to all dependency sources. Within the
createCopyOperatorAfter function the new operator, execution bucket and queue are
created as well as the dependencies and queue references are changed accordingly. Further-
more, if an operator is connected to zero input queues, we insert an artificial dummy queue
(where empty message objects are passed) between this operator and its former temporal
predecessor. Based on this basic rewriting concept, additional rewriting rules for context-
specific operators (e.g., Switch, Iteration) and for serialization and recoverability are
required (line 10). We use an example to illustrate the A-PV in more detail.

Example 4.2 (Automatic Plan Vectorization). Recall our example plan P2 as well as the
vectorized plan P ′2 of Example 4.1. Figure 4.5(a) and 4.5(b) illustrate the core aspects
when rewriting P2 to P ′2. First, we determine all direct data dependencies δ and add those
to the set of dependencies D. If an operator is referenced by multiple dependencies (e.g.,
operator o1 in this example), we need to insert a Copy operator just after it. Furthermore,
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Receive (o1)
[service: s5, out: msg1]

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]
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Invoke (o6)
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(a) Dependency Graph DG(P2) of Plan P2

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Invoke (o6)
[service s3, in: msg5]

Copy (oc)
[in: msg1, out: msg1]

(b) Vectorized Plan P ′2

Figure 4.5: Example Plan Vectorization

we create a queue qi for each dependency and connect the operators with these queues.
Finally, we simply remove all temporal dependencies and get P ′.

Although the A-PV is only executed once during the initial deployment of an integration
flow, it is important to note its time complexity with increasing number of operators m.

Theorem 4.1. The A-PV exhibits a cubic worst-case time complexity of O(m3).

Proof. Basically, we prove the complexity for the two algorithm parts: the dependency
analysis and the graph creation. Assume an operator sequence o. We fix the number of
operators m with m = |o|. Then, an arbitrary operator oi with 1 ≤ i ≤ m can—in the
worst case—be the target of i− 1 data dependencies δ−i , and it can be the source of m− i
data dependencies δ+

i . Based on the equivalence of δ− = δ+ and thus, |δ−| = |δ+|, there
are at most

m∑
i=1

(i− 1) =

m−1∑
i=1

i =
m · (m− 1)

2
(4.4)

dependencies between arbitrary operators of this sequence. Hence, the dependency anal-
ysis is computable with quadratic complexity of O(m2).

When evaluating operator oi, there are at most
∑m−1

i=1 i = m · (m − 1)/2 (for cases
i = m − 1 and i = m) dependencies in D. During the graph creation, for each operator,
each dependency d ∈ D must be evaluated in order to connect queues and execution
buckets. In summary, for all operators, we must check at most

m∑
i=1

i∑
j=1

(m− j) = m · m · (m+ 1)

2
−

m∑
i=1

i · (m− i− 1)

=
m2 · (m+ 1)

2
+

m∑
i=1

i2 −
m∑
i=1

m · i+

m∑
i=1

i =
m3 −m

3

(4.5)

dependencies for graph creation. Hence, the algorithm part of graph creation is computed
with cubic complexity of O(m3). In summary, the plan vectorization algorithm exhibits a
cubic worst-case time complexity of O(m3) = O(m3 +m2). Hence, Theorem 4.1 holds.

Note that this is the complexity analysis of our A-PV algorithm, while the P-PV prob-
lem can be solved with quadratic time complexity of O(m2). For example, one can use
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two additional hash maps as secondary index structures for source operators and target
operators over the set of data dependencies D. Then, for any operator oi we only need to
iterate over the lists of its own source and target dependencies. This leads to a quadratic
worst-case time complexity for the algorithm part of graph creation. However, for the
general case, where we need to iterate over all dependencies, we have cubic complexity.
Furthermore, for low numbers of data dependencies, the overhead of the A-PV is moderate
and therefore, we use the more general form.

Rewriting Context-specific Operators

In addition to the core rewriting algorithm, we now discuss rewriting rules for the context-
specific operators Switch, Iteration, and Savepoint as well as specific situations, where
multiple writes to external systems must be synchronized (Invoke) in order to guarantee
semantic correctness when applying plan vectorization.

Rewriting Switch operators. When rewriting Switch operators, we must be aware of
their ordered if-elseif-else semantics. Here, message sequences are routed along different
switch-paths, which will eventually be merged. Assume a message sequence of m1 and
m2, where m1 is routed to path A, while m2 is routed to path B. If W (A) ≥ W (B) +
W (SwitchB), m2 arrives earlier at the merging point than m1 does. Hence, a message
outrun has taken place. In order to overcome this problem, we could use timestamp
comparison at the merging point. Therefore, we introduced the XOR operator that is
inserted just before the single switch paths are merged. It reads from all queues, compares
the timestamps of read messages and forwards the oldest. Due to the possibility of message
starvation (we are not allowed to forward a message until we read a younger message from
all other switch paths) in combination with possibly nested Switch operators, we use a
so-called synchronization queue that represents the temporal order of messages and thus,
by comparing the message source IDs with the read synchronization IDs, we overcome
the problem of starvation because we can output messages according to this sequence of
IDs. The dedicated synchronization queue is required due to arbitrarily nested Switch

operators, where the assumption of a cohesive sequence of source IDs does not hold.

Example 4.3 (Rewriting Switch Operators). Assume the dependency graph DG(P1) of

@type='MATMAS05'

Receive (o1)
[service: s3, out: msg1]

Assign (o4)
[in: msg2, out: msg3]

Switch (o2)
[in: msg1]

Translation (o3)
[in: msg1, out: msg2]

Translation (o5)
[in: msg1, out: msg2]

Assign (o6)
[in: msg2, out: msg3]

Invoke (o7)
[service s1, in: msg3]

@type='MATMAS04'

δmsg1
Dδmsg1

D                

δmsg1
D

δmsg2
Dδmsg2

D                

δmsg3
Dδmsg3

D                     

(a) Dependency Graph DG(P1) of Subplan P1

Assign (o4)
[in: msg2, out: msg3]

Switch (o2)
[in: msg1]

Translation (o3)
[in: msg1, out: msg2]

Translation (o5)
[in: msg1, out: msg2]

Assign (o6)
[in: msg2, out: msg3]

Invoke (o7)
[service s1, in: msg3]

XOR (ox)
[in: msg3, out: msg3]

(b) Vectorized Subplan P ′1

Figure 4.6: Rewriting Switch Operators
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a subplan of our example plan P1 shown in Figure 4.6(a). The vectorized plan P ′1 is
the output of the A-PV and it is shown in Figure 4.6(b). There, the Switch-specific
rewriting technique has been applied, where we have created two pipeline branches (one
for each switch-path) and changed the data flow such that messages are passed through
the Switch operator. In order to avoid message outrun, we inserted the XOR operator
and the synchronization queue. Note that the full plan of P1 required additional Copy and
And operators for the last Invoke operator because it depends directly on the output of the
Translation operator. This serialization concept will be discussed separately.

Rewriting Iteration operators. When rewriting Iteration operators, the main prob-
lem is also the message outrun. We must ensure that all iteration loops (for a message)
have been processed before the next message enters. Basically, a foreach Iteration is
rewritten to a sequence of (1) one Split operator, (2) operators of the Iteration body
and (3) one Setoperation (UNION ALL) operator. Using this strategy, inherently leads to
the highest degree of parallelism, while it requires only moderate additional costs for split-
ting and merging. In contrast to this, iterations with while semantics are not vectorized
(one single execution bucket) because we cannot guarantee semantic correctness.

Rewriting Savepoint operators. Within the instance-based model, we can use message-
specific and context-specific savepoints. Due to the missing global context, we need to
reduce the savepoint semantics to the storage of messages, where context information needs
to be stored via specific messages. However, in order to ensure the semantic correctness,
we require two different rewriting methodologies. The message-specific savepoint is simply
vectorized in a standard manner. In contrast to this, the context-specific savepoint, that
stores all current messages at a certain plan position, must be rewritten in a more complex
way. Here, we need to insert one savepoint into each parallel data flow branch with respect
to the operator position in the instance-based case.

Rewriting Invoke operators. In order to realize the serialization of external behavior
(precondition for transparency), we must ensure that explicitly modeled sequences of writ-
ing interactions (Invoke operators) are serialized (see Rule 3 of Definition 3.1). Hence,
we use the And operator for synchronization purposes. If (1) two Invoke operators have
a temporal dependency within P , (2) they perform a writing interaction to the same ex-
ternal system, and (3) they are included in different pipelines in P ′, we insert an And

operator right before the second Invoke operator as well as a synchronization queue be-
tween the first Invoke operator and the And operator. The And operator reads from the
synchronization queue and from the original queue and synchronizes the external behavior
by deferring all messages until its source message ID is available in the synchronization
queue. We use an example to illustrate this concept.

Example 4.4 (Serialization of External Behavior). Assume a dependency graph DG(P8)
of a subplan of our example plan P8 (see Figure 4.7(a)) to be part of a data-driven integra-
tion flow. If we vectorize this subplan to P ′8 (see Figure 4.7(b)) with two pipeline branches,
we need to ensure the serialized external behavior. We inserted an And operator, where the
first Invoke sends synchronizing source message IDs to this operator using the introduced
synchronization queue. Only in the case that the Assign as well as the first Invoke have
been processed successfully, the payload message of the right pipeline branch is forwarded
to the second Invoke.

In summary, when rewriting instance-based plans to vectorized plans, we guarantee
semantic correctness for context-specific operators as well.
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Invoke (o5)
[service s6, in: msg2, out: msg4]

Invoke (o6)
[service s6, in: msg3, out: msg5]

Assign (o7)
[in: msg4, out: msg6]

Assign (o8)
[in: msg5, out: msg7]

Invoke (o9)
[service s7, in: msg6]

Invoke (o10)
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δmsg7
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D                
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(a) Dependency Graph DG(P8) of Subplan P8

AND (oa)
[in: msg7, out: msg7]

Invoke (o5)
[service s6, in: msg2, out: msg4]

Invoke (o6)
[service s6, in: msg3, out: msg5]

Assign (o7)
[in: msg4, out: msg6]

Assign (o8)
[in: msg5, out: msg7]

Invoke (o9)
[service s7, in: msg6]

Invoke (o10)
[service s7, in: msg7]

(b) Vectorized Subplan P ′8

Figure 4.7: Rewriting Invoke Operators

4.2.3 Cost Analysis

We already discussed the cost analysis of sequences of operators, where each operator oi
has a single data dependency with the previous operator oi−1. In addition, we investigate
the costs with regard to the specific rewriting results. Therefore, we reuse the idealized
model where each operator exhibits constant costs with W (oi) = 1. Similar to the case of
operator sequences, this can be extended to the case of arbitrary operator costs.

Parallel data flow branches. In the case of different data flow branches, messages are
processed by |r| concurrent pipelines within one vectorized plan, where a single pipeline
ri contains |ri| operators. Examples for this type of branches are simply overlapping
data dependencies, as well as the Switch and the Fork operator. In this case of multiple
branches with |r| ≥ 2, the idealized costs for processing n messages are

W (P ) =

{
n ·m instance-based (unoptimized)

n ·max
|r|
i=1(|ri|) instance-based (optimized, if applicable)

W (P ′) = n+
|r|

max
i=1

(|ri|)− 1 fully vectorized,

(4.6)

where max
|r|
i=1(|ri|) denotes the longest branch. The benefit compared to inter-operator

(horizontal) parallelism depends on the optimization techniques that could be applied on
the instance-based representation because not all operators without data dependencies can
be parallelized (e.g., sequence of writing interactions). Furthermore, in the case of |r| = 1
and thus, |r1| = m, the general cost analysis stays true. The improvement is caused by the
higher degree of parallelism. However, the presence of parallel data flow branches may also
cause overhead for vectorized plans with regard to splitting and merging those branches.
An example for the splitting of branches is the Copy operator that is used for multiple
dependencies on one message. Further, examples for the merging of branches are the And

operator for synchronizing external writes as well as the Xor operator for synchronizing
the Switch operator.

Rolled-out Iteration. Further, the rewriting of Iteration operators with foreach
semantics needs some consideration. Here, we split messages according to the foreach
condition and execute the iteration body as inner pipeline without cyclic dependencies.
Finally, the processed sub messages are merged using the Setoperation operator (UNION
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ALL). In fact, in the instance-based case, the costs of processing n messages are determined
by W (P ) = n · r ·m, where r denotes the number of iteration loops for each message and
m denotes the number of operators in the iteration body. When rewriting the Iteration

operator to parallel flows, in the best case, the costs are reduced to W (P ) = n ·m because
all iteration loops are executed in parallel. In contrast, due to the sub pipelining of a
vectorized plan, we can reduce the costs to W (P ′) = n · r + m − 1 + 2, where r denotes
the number of sub-messages. We see that costs of 2 must be added to represent the costs
for message splitting (Split) and merging (Setoperation). Furthermore, the optimality
of vectorized execution is given if r ≤ m.

Finally, note that this is a best-case consideration using an idealized static cost model
supposed for illustration purposes. This does not take into account a changed number of
operators during vectorization or additional costs for synchronization. However, in the
following sections, we will revisit these issues.

In conclusion, plan vectorization strongly increases the degree of parallelism and thus,
may lead to a higher CPU utilization. In this section, we introduced the basic vectorization
approach and the required meta model extensions. In addition, we described the core
rewriting algorithm as well as the specific rewriting rules that are necessary in order to
guarantee semantic correctness.

4.3 Cost-Based Vectorization

Plan vectorization rewrites an instance-based plan (one execution bucket per plan) into a
fully vectorized plan (one execution bucket per operator), which solves the P-PV. How-
ever, the approach of full vectorization has two major drawbacks. First, the theoretical
performance and latency of a vectorized plan mainly depends on the performance of the
most time-consuming operator. The reason is that the work cycle of a whole data-flow
graph is given by the longest running operator because all queues after this operator are
empty, while queues in front of it reach their maximum constraint. Similar theoretical
observations have also been made for task scheduling in parallel computing environments
[Gra69], where Graham described bounds on the overall time influence of task timing
anomalies, which quantify the optimization potential vectorized plans still exhibit. Sec-
ond, the practical performance also strongly depends on the number of operators because
each operator requires a single thread. Depending on the concrete workload (runtime of
operators), a number of threads that is too high can also hurt performance due to (1) ad-
ditional thread monitoring and synchronization efforts as well as (2) cache displacement
because the different threads work on different intermediate result messages of a plan.

Figure 4.8 shows the results of a speedup experiment from Chapter 3, which was re-
executed for two plans with m = 100 and m = 200 Delay operators, respectively. Then,
we varied the number of threads (k ∈ [1,m]) as well as the delay time in order to simulate
the waiting time of Invoke operators for external systems. Furthermore, we computed
the speedup by Sp = W (P, 1)/W (P ′, k). The theoretical maximum speedup is m/ dm/ke.
As a result, we see that the empirical speedup increases, but decreases after a certain
maximum. There, the maximum speedup and the number of threads, where this maximum
speedup occurs depends on the waiting time, i.e., the higher the waiting time, the higher
the reachable speedup and the higher the number of threads, where this maximum occurs.

In conclusion, an enhanced vectorization approach is required that takes into account
the execution statistics of single operators. In this section, we introduce a generalization
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(a) P with m = 100 (b) P with m = 200

Figure 4.8: Speedup Test with Varying Degree of Parallelism

of the P-PV and present our cost-based vectorization approach [BHP+09a, BHP+11] that
overcomes the two drawbacks of vectorization. The instance-based plan and the fully
vectorized plan are then specific cases of this more general solution. This cost-based
vectorization directly relies on the foundations of our general cost-based optimization
framework in the form of a cost-based, control-flow-oriented optimization technique.

4.3.1 Problem Generalization

The core idea of this problem generalization is to rewrite an instance-based plan to a cost-
based vectorized plan with a minimal number of execution buckets, where each bucket
can contain multiple operators. All operators of a single execution bucket are executed
instance-based, while the set of execution buckets use the pipes-and-filter execution model.

Example 4.5 (Cost-Based Vectorization). Recall the vectorized plan P ′2 (shown in Fig-
ure 4.9(a)) from Example 4.1. If we now use cost-based vectorization, we search for the
cost-optimal plan P ′′2 with k execution buckets. Figure 4.9(b) illustrates an example of
such a cost-based vectorized plan. There, k = 4 execution buckets are used, while buckets
2 and 4 include two operators. The individual operators of each bucket are executed with
the instance-based execution model. As a result, we require only four instead of six threads
for this plan.

The input (instance-based plan) and the output (vectorized plan) of the P-PV are
extreme cases of this generalization. In order to compute the cost-optimal vectorized
plan, we generalize the P-PV to the Cost-Based P-PV:

Definition 4.2 (Cost-Based Plan Vectorization Problem (P-CPV)). Let P denote a plan,
and pi ∈ {p1, p2, . . . , pn} denotes the implied plan instances with P ⇒ pi. Further, let
each plan P comprise a sequence of atomic and complex operators oi ∈ {o1, o2, . . . , om}.
For serialization purposes, the plan instances are executed in sequence with t1(pi) ≤
t0(pi+1). The P-CPV describes the search for the derived cost-optimal plan P ′′ accord-
ing to the optimization objective φ with k ∈ [1,m] execution buckets bi ∈ {b1, b2, . . . , bk},
where each bucket contains l operators oi ∈ {o1, o2, . . . , ol}. Here, the constraint condi-
tions (t1(p′′i , bi) ≤ t0(p′′i , bi+1)) ∧ (t1(p′′i , bi) ≤ t0(p′′i+1, bi)) and (t1(bi, oi) ≤ t0(bi, oi+1)) ∧
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(a) Vectorized Plan P ′2
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(b) Cost-Based Vectorized Plan P ′′2

Figure 4.9: Example Cost-Based Plan Vectorization

(t1(bi, oi) ≤ t0(p′′i+1, bi)) must hold. We define that (lbi ≥ 1) ∧ (lbi ≤ m) and
∑|b|

i=1 lbi = m
and that each operator oi is assigned to exactly one bucket bi.

An instance-based plan P is a specific case of the cost-based vectorized plan P ′′, with
k = 1 execution buckets. Similarly, the fully vectorized plan P ′ is also a specific case of the
cost-based vectorized plan P ′′, with k = m execution buckets, where m denotes the number
of operators. Figure 4.10 illustrates the resulting spectrum of cost-based vectorization.

k=1 2 3

instance-based 
plan

vectorized 
plan

k=mm-2 m-1

cost-based vectorized plan

Figure 4.10: Spectrum of Cost-Based Vectorization

At this point, we need to define the optimization objective φ, where in general, arbitrary
objectives could be used. However, the goal of the vectorization optimization technique
is message throughput improvement. Thus, the optimization objective is to reach the
highest degree of pipeline parallelism with a minimal number of threads.

The core idea of this objective is illustrated in Figure 4.11. In case of an instance-based
plan, all operators, except for parallel subflows, are included in the critical path that is
shown as gray-shaded operators. In contrast, in case of a vectorized plan that includes
a sequence of operators o with data dependencies between these operators, the execu-
tion time mainly depends on the most time-consuming operator omax with W (omax) =
maxmi=1W (oi). The reason is that queues in front of this most time-consuming operator
reach their maximum constraints—in case of full system utilization—and thus, the costs
of a vectorized plan are computed with W (P ′) = (n+m− 1) ·W (omax). This execution
characteristic, that the work-cycle of a pipeline depends on its most time-consuming sub-
task, is known from other research areas (e.g., databases and operating systems) as the
convoy effect [Ros10, BGMP79]. As a result of this effect, the work cycle of the vectorized
plan is given by W (omax) with the time period between the start of two subsequent plan
instances W (omax) = t0(pi+1)− t0(pi). For example, operator o3 dominates the work cycle
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(b) Fully Vectorized Plan P ′
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(c) Cost-Based Vectorized Plan P ′′

Figure 4.11: Work Cycle Domination by Operator o3

of plan P ′ in Figure 4.11(b). In conclusion, we leverage the waiting time during work
cycles of the data flow graph and merge operators into execution buckets if applicable.
Formally, this optimization objective is defined as follows:

φ =
m

min
k=1

k | ∀i ∈ [1, k] :

 lbi∑
j=1

W (oj)

 ≤W (omax) (4.7)

The goal is to find the minimal number of execution buckets k under the restriction that the
execution time of each bucket bi (sum of execution times of the lbi operators of this bucket)
does not exceed the execution time of the most time-consuming operator. As a result, we
achieve the highest degree of parallelism with a minimal number of threads. Further
advantages of this concept are reduced latency time for single messages and robustness
in the case of many plan operators but limited thread resources. The special case of
the P-CPV with optimization objective φ, where all operators are independent (no data
dependencies), is reducible to the NP-hard offline bin packing problem [Joh74].

Typically, the optimization objective φ allows to find a scheme that exploits the highest
pipeline parallelism but requires fewer threads than the full vectorization. However, in
special cases such as (1) where all operators exhibit almost the same execution time or
(2) where a plan contains too many operators, the problem of a large number of required
threads still exist. In order to overcome this general problem, we extend the P-CPV by a
parameter to allow for higher robustness. In detail, this extended optimization problem
is defined as follows:

Definition 4.3 (Constrained P-CPV). With regard to the P-CPV, find the minimal num-
ber of k buckets and an assignment of operators oj with j ∈ [1,m] to those execution buckets
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bi with i ∈ [1, k] according to the constrained optimization objective

φc =
m

min
k=1

k | ∀i ∈ [1, k] :

 lbi∑
j=1

W (oj)

 ≤W (omax) + λ, (4.8)

where λ (with λ ≥ 0) is a user-defined absolute parameter to control the cost constraint.
There, λ = 0 leads to the highest meaningful degree of parallelism, while higher values of
λ lead to a decrease of parallelism.

Essentially, one can configure the absolute parameter λ in order to influence the number
of threads. The higher the value of λ, the more operators are assigned to single execution
buckets, and thus, the lower the number of buckets and the lower the number of required
threads. However, the decision on merging operators is still made in a cost-based manner.

Based on the defined cost-based vectorization problems, we now investigate the resulting
search space. Essentially, both problems exhibit the same search space because they only
differ in the optimization objective φ, where the worst-case time complexity depends on
the structure of a given plan. Figure 4.12 illustrates the best case and the worst case.

o1 o2 o3 o4 o5 o6 o7

(a) Best-Case Plan Pb

o2 o3 o4 o5 o6 o7

Fork o1

(b) Worst-Case Plan Pw

Figure 4.12: Plan-Dependent Search Space

The best case from a computational complexity perspective is the sequence of operators
(see Figure 4.12(a)), where each operator has a data dependency to its predecessor. Here,
the order of operators must be preserved when assigning operators to execution buckets. In
contrast, the worst-case is a set of operators without any dependencies between operators
(see Figure 4.12(b)) because there, we could create arbitrary combinations of operators.
We use an example to illustrate the resulting plan search space for the best case.

Example 4.6 (Operator Distribution Across Buckets). Assume a plan P with a sequence
of four operators (m = 4). Table 4.2 shows the possible plans for the different numbers of
buckets k.

Table 4.2: Example Operator Distribution

|b| b1 b2 b3 b4

Plan 1 k = 1 o1, o2, o3, o4 - - -

Plan 2 k = 2 o1 o2, o3, o4 - -
Plan 3 o1, o2 o3, o4 - -
Plan 4 o1, o2, o3 o4 - -

Plan 5 k = 3 o1 o2 o3, o4 -
Plan 6 o1 o2, o3 o4 -
Plan 7 o1, o2 o3 o4 -

Plan 8 k = 4 o1 o2 o3 o4

We can distinguish eight different (24−1 = 8) plans, where Plan 1 is the special case of an
instance-based plan and Plan 8 is the special case of a fully vectorized plan.
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In the following, we formally analyze the time complexity for exhaustively solving this
problem. For this purpose, we analyze the complexity of the best and worst case and
combine this to the general result.

Lemma 4.1. The cost-based plan vectorization problem exhibits an exponential time com-
plexity of O(2m) for the best-case plan of an operator sequence.

Proof. The distribution function D of the number of possible plans over k is a symmetric
function according to Pascal’s Triangle9, where the condition lbi = lbk−i+1

with i ≤ m/2
holds. Based on Definition 2.1, a plan contains m operators. Due to Definition 4.2, we

search for k execution buckets bi with lbi ≥ 1∧ lbi ≤ m and
∑|b|

i=1 lbi = m. Hence, different
numbers of buckets k ∈ [1,m] have to be evaluated. From now on, we fix m′ as m′ = m−1
and k′ as k′ = k − 1. In fact, there is only one possible plan for k = 1 (all operators in
one bucket) and k = m (each operator in a different bucket), respectively:

|P |k′=0 =

(
m′

0

)
= 1 and |P ′|k′=m′ =

(
m′

m′

)
= 1 . (4.9)

Now, without loss of generality, we fix a specific m. The number of possible plans for a
given k is then computed with

|P ′′|k =

(
m′

k′

)
=

(
m′ − 1
k′ − 1

)
+

(
m′ − 1
k′

)
=

k′∏
i=1

m′ + 1− i
i

. (4.10)

In order to compute the total number of possible plans, we have to sum up the possible
plans for each k, with 1 ≤ k ≤ m:

|P ′′| =
m′∑
k′=0

(
m′

k′

)
with k′ = k − 1 and m′ = m− 1. (4.11)

Finally,
∑n

k=0

(
n
k

)
is known to be equal to 2n. Hence, by changing the index k from

k′ = 0 to k = 1, we can write:

|P ′′| =
m′∑
k′=0

(
m′

k′

)
=

m∑
k=1

(
m− 1
k − 1

)
= 2m−1. (4.12)

In conclusion, there are 2m−1 possible plans that must be evaluated. Due to the linear com-
plexity of O(m) for determining the costs of a plan, the cost-based plan vectorization prob-
lem exhibits an exponential best-case overall time complexity of O (2m) = O

(
m · 2m−1

)
.

Hence, Lemma 4.1 holds.

Lemma 4.2. The cost-based plan vectorization problem exhibits an exponential time com-
plexity of O(2m) for the worst-case plan of a set of operators.

9As an alternative to Pascal’s Triangle, we could also consider the m − 1 virtual delimiters between
operators. Due to the binary decision for each delimiter to be set or not, we get 2m−1 different plans.
However, we used Pascal’s Triangle in order to be able to determine the number of plans for a given
number of execution buckets k.
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Proof. The problem of finding all possible plans of m operators that are not connected by
any data dependencies is reducible to the known problem of finding all possible partitions
of a set with m members, where the Bell’s numbers Bm [Bel34a, Bel34b] represent the
total number of partitions. Note that similar to this known problem, we exclude the plan
with zero operators (B0 = B1 = 1). Thus, the number of possible plans can be recursively
computed by

|P ′′| = Bm =
m−1∑
j=0

(
m− 1
j

)
·Bj . (4.13)

Furthermore, each Bell number is the sum of Stirling numbers of the second kind [Jr.68].
As a result, we are able to determine the number of plans |P ′′|k for a given k by

Bm =
m∑
k=0

S(m, k) with S(m, k) =
1

k!

k∑
j=0

(−1)k−j
(
k
j

)
jm

|P ′′|k =
1

k!

k∑
j=0

(−1)k−j
(
k
j

)
jm

(4.14)

In addition, many asymptotic limits for Bell numbers are known [Lov93]. However, in
general, we can state that the Bell numbers grow in O(2cm), where c is a constant factor.
Due to the linear complexity of O(m) for determining the costs of a plan, the cost-based
plan vectorization problem exhibits an exponential worst-case overall time complexity of
O (2m) = O (m · 2cm). Hence, Lemma 4.2 holds.

Now, we can combine the results for the best and the worst case to the general result.

Theorem 4.2. The cost-based plan vectorization problem exhibits an exponential time
complexity of O(2m).

Proof. The cost-based plan vectorization problem exhibits an exponential time complexity
of O(2m) for both the best-case plan (Lemma 4.1) and the worst-case plan (Lemma 4.2).
Hence, Theorem 4.2 holds.

4.3.2 Computation Approach

So far, we have analyzed the search space of the P-CPV. We now explain how the optimal
plan is computed with regard to the current execution statistics. In detail, we present
an exhaustive computation approach (thus, with exponential time complexity) as well
as a heuristic with linear time complexity that is used within our general cost-based
optimization framework. For simplicity of presentation, we use the sequence of operators.
However, the general version of the exhaustive and heuristic computation approaches
use recursive algorithms that contain many specific cases for arbitrary combinations of
subplans (sequences and sets) as well as cases for complex operators.

Exhaustive Computation Approach

The exhaustive computation approach has the following three steps:

1. Scheme Enumeration: Enumerate all 2m−1 possible plan distribution schemes for
the sequence of operators.
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2. Schema Evaluation: Evaluate all distribution schemes according to the optimization
objective φ or φc.

3. Plan Rewriting: Rewrite the plan according to the distribution scheme.

In the following, we briefly describe each of those steps with more technical depth.
1: Scheme Enumeration: In order to enumerate all possible distribution schemes

of a plan P with m operators, we recursively use Algorithm 4.2. As a first step, we
create a MEMO table with m columns. In a second step, for each k ∈ [1,m], we create a
record of length k and invoke the recursive A-EDS. Conceptually, this algorithm varies the
number of operators of bucket 1 (line 5) and recursively invokes itself in order to distribute
the remaining operators across buckets 2 to k. It then varies the number of operators of
bucket 2 and so on. Finally, if the remaining operators should be distributed across the last
bucket, we insert the tuple into the MEMO structure but we could also directly evaluate the
enumerated scheme. As a result, the MEMO structure holds all 2m−1 candidate distribution
schemes. Note that this approach is used recursively for complex operators and it contains
different loop conditions for the case of sets of operators.

Algorithm 4.2 Enumerate Distribution Schemes (A-EDS)

Require: number of operators m, number of buckets k, record r, position pos
1: if k = 1 then
2: r.pos[1]← m
3: insert r into MEMO

4: else
5: for i← 1 to m− k + 1 do // for each operator oi
6: r.pos[pos]← i
7: A-EDS(m− i, k − 1, r, pos+ 1) // recursively enumerate distribution schemes

2: Scheme Evaluation: Having enumerated all candidates, we can now iterate over
the MEMO structure and evaluate those schemes in order to determine the optimal scheme
according to the optimization objectives φ or φc. Recall the problem definition of cost-
based vectorization, i.e., the overall performance of vectorized plans depends on the most
time-consuming operator. Here, the costs of a bucket are defined as the sum of all op-
erators in that bucket. We then determine the bucket with maximum costs. The overall
optimization objective φ is to minimize the number of buckets under the condition of
lowest possible maximum bucket costs. In general, all 2m−1 candidate schemes need to
be evaluated. However, we could prune schemes, where (1) we already determined that
a bucket exceeds the maximum execution time and (2) the number of buckets exceeds
the minimum number of buckets seen so far. These pruning techniques can be realized
on-the-fly during scheme enumeration or with skip-list structures as known from other
research areas such as join enumeration [HKL+08] or time series analysis [GZ08].

3: Plan Rewriting: Finally, we use the optimal scheme in order to rewrite the given
plan P . For that, the A-PV can be reused with minor changes. Here, we do not create an
execution bucket for each operator but we consider the computed k. All operators of one
bucket can be copied as a subplan, while data dependencies across execution buckets are
replaced by queues. The general model of execution buckets (see Subsection 4.2) is reused
as it is with the difference of arbitrary subplans instead of single operators.

Similar to the analysis of Section 4.2, the rewriting algorithm still has a worst-case com-
plexity of O(m3) for the case of k = m. Furthermore, the evaluation of a single distribution
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scheme has a linear time complexity of O(m). As a result, the overall complexity of the
exhaustive computation is still dominated by the enumeration of candidate distribution
schemes, and hence, it has an exponential time complexity of O(2m).

Heuristic Computation Approach

Due to this exponential complexity of the P-CPV, a search space reduction approach for
determining the (near) cost-optimal solution for the P-CPV is required. Therefore, we
present a heuristic algorithm that solves the P-CPV and the Constrained P-CPV with
linear complexity of O(m). The core idea is to use a first fit (next fit) approach of merging
operators into execution buckets until the maximum constraint is reached.

Algorithm 4.3 Cost-Based Plan Vectorization (A-CPV)

Require: operator sequence o
1: A← ∅, B ← ∅, k ← 0
2: max← maxmi=1W (P ′, oi) + λ
3: for i← 1 to |o| do // for each operator oi
4: if oi ∈ A then
5: continue 3
6: k ← k + 1
7: bk(oi)← create bucket over oi
8: for j ← i+ 1 to |o| do // for each following operator oj

9: if
(∑|bk|

c=1W (oc) +W (oj)
)
≤ max then

10: bk ← add oj to bk
11: A← A ∪ oj
12: else
13: break 9
14: B ← B ∪ bk
15: return B

Algorithm 4.3 illustrates the concept of the cost-based plan vectorization algorithm.
The operator sequence o is required. First, we initialize two sets A and B as empty sets.
Thereafter, we compute the maximal costs of a bucket max with max = maxmi=1W (oi)+λ
followed by the main loop over all operators. If the operator oi belongs to A (operators
already assigned to buckets), we can proceed with the next operator. Otherwise, we
create a new bucket bk and increment the number of buckets k accordingly. After that, we
execute the inner loop in order to assign operators to this bucket such that the constraint∑|bk|

c=1W (oc) ≤ max holds. This is done by adding oj to bk and to A. Here, we can ensure
that each created bucket has at least one operator assigned. Finally, each new bucket bk
is added to the set of buckets B.

The heuristic character is reasoned by merging subsequent operators. This is similar to
the first-fit (next fit) algorithm [Joh74] of the bin packing problem but with the difference
that the order of operators must be preserved. Thus, there are cases, where we do not find
the optimal scheme. However, this algorithm often leads to good or near-optimal results.
In conclusion, we use this heuristic as default computation approach, which motivates a
more detailed complexity and cost analysis, which we discuss in the following.
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Theorem 4.3. The cost-based plan vectorization algorithm solves (1) the P-CPV and (2)
the constrained P-CPV with linear time complexity of O(m). There, the cost constraints
hold but the number of execution buckets might not be minimized.

Proof. Assume a plan that comprises a sequence of m operators. First, the maximum of
a value list (line 2) is known to exhibit a linear time complexity of O(m). Second, we see
that the bucket number is at least 1 (all operators assigned to one bucket) and at most
m (each operator assigned to exactly one bucket). Third, in both cases of k = 1, and
k = m, there are at most 2m − 1 possible operator evaluations. If we assume constant
time complexity for all set operations, we can now conclude that the cost-based plan
vectorization algorithm exhibits a linear complexity with O(m) = O(3m − 1). However,
due to the importance of the concrete order of operator evaluations, we might require a
higher number of execution buckets k than optimal. Hence, Theorem 4.3 holds.

We use an example to illustrate this heuristic cost-based plan vectorization algorithm
and the influence of the λ parameter regarding the constrained optimization objective φc.

Example 4.7 (Heuristic Cost-Based Plan Vectorization). Assume a plan with m = 6
operators shown in Figure 4.13. Each operator oi has assigned execution times W (oi). The
maximum operator execution time is given by W (omax) = maxmi=1W (oi) = W (o3) = 5 ms.

given operator 
sequence o

W(o1)=1
o1 o2 o4 o5 o6

W(o2)=4 W(o3)=5 W(o4)=2 W(o5)=3 W(o6)=1

λ=0 (max W(bi)=5) o1 o2 o4 o5 o6

o1 o2 o4 o5 o6

o1 o2 o4 o5 o6

λ=1 (max W(bi)=6)

λ=2 (max W(bi)=7)

k=4

k=3

k=3

o3

o3

o3

o3

b1

b1

b1 b2

b2

b2 b3 b4

b3

b3

Figure 4.13: Bucket Merging with Different λ

The Constrained P-CPV describes the search for the minimal number of execution buckets,
where the cumulative costs of each bucket must not be larger than the determined maximum
plus a user-defined cost increase λ. Hence, we search for those k buckets whose cumulative
costs of each bucket are, at most, equal to five. If we increase λ, we can reduce the number
of buckets by increasing the allowed maximum and hence, the work cycle of the vectorized
plan. This example also shows the heuristic character of the algorithm. For the case of
λ = 2 ms, we find a scheme with (k = 3,W (b1) = 5 ms,W (b2) = 7 ms,W (b3) = 4 ms),
while our exhaustive approach would find the more balanced scheme (k = 3,W (b1) =
5 ms,W (b2) = 5 ms,W (b3) = 6 ms).

In conclusion, this heuristic approach ensures the maximum benefit of pipeline par-
allelism and often minimizes the number of execution buckets and hence, reduces the
number of threads as well as the length of the pipeline at the same time. Cammert et
al. introduced a similar optimization objective in terms of a stall-avoiding partitioning
of continuous queries [CHK+07] in the context of data stream management systems. In
contrast to their approach, our algorithm is tailor-made for integration flows with con-
trol flow semantics and materialized intermediate results within an execution bucket. In
addition, (1) we presented exhaustive and heuristic computation approaches as well as
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the related complexity analysis, (2) we introduced the parameter λ in order to adjust the
computation approaches, and (3) we integrated this heuristic algorithm into our overall
cost-based optimization framework.

Optimality Analysis

As already mentioned, the optimality of the vectorized plan depends on (1) the costs
of the single operators, (2) the CPU utilization of each operator and (3) the available
resources (possible parallelism). However, the A-CPV only takes the costs from (1) into
consideration. Nevertheless, we can give optimality guarantees for this heuristic approach.

The algorithm can be parameterized with respect to the hardware resources (3). If
we want to force the single-threaded execution, we simply set λ to λ ≥

∑m
i=1W (oi) −

maxmi=1W (oi). If we want to force the highest meaningful degree of parallelism (this is
not necessarily a full vectorization), we simply set λ = 0.

Now, assuming the given λ configuration, the question is, which optimality guarantee we
can give for the solution of the cost-based plan vectorization algorithm10. For this purpose,
Re(oi) denotes the empirical CPU utilization (measured with a specific configuration) of an
operator oi with 0 ≤ Re(oi) ≤ 1, and Ro(oi) denotes the maximal resource consumption of
an operator oi with 0 ≤ Ro(oi) ≤ 1. Here, Ro(oi) = 1 means that the operator oi exhibits
an average CPU utilization of 100 percent. In fact, the condition

∑m
i=1Re(oi) ≤ 1 must

hold.
Obviously, for an instance-based plan P , we can write Re(oi) = Ro(oi) because all

operators are executed in sequence and thus, do not influence each other. When we
vectorize P to a fully vectorized plan P ′, with a maximum of Re(o

′
i) = 1/m, we have to

compute the costs with W (o′i) = Ro(oi)/Re(o
′
i) ·W (oi). When we merge two execution

buckets b′i and b′i+1 during cost-based plan vectorization, we compute the effective CPU
utilization Re(b

′′
i ) = 1/|b|, the maximal CPU utilization Ro(b

′′
i ) = (W (b′i)·Ro(b′i)+W (b′i+1)·

Ro(b
′
i+1))/(W (b′i) +W (b′i+1)), and the cost

W (b′′i ) =


Re(b

′
i)

Re(b′′i )
·W (b′i) +

Re(b
′
i+1)

Re(b′′i+1)
·W (b′i+1) Re(b

′′
i ) ≤ Ro(b′′i )

Ro(b
′
i)

Ro(b′′i )
·W (b′i) +

Ro(b
′
i+1)

Ro(b′′i+1)
·W (b′i+1) otherwise.

(4.15)

We made the assumption that each execution bucket gets the same maximal empirical
CPU utilization Re(b

′′
i ), that resources are not exchanged between those buckets, and we

do not take the temporal overlap into consideration. However, we can give the following
guarantee, while optimality cannot be ensured due to the heuristic character of the A-CPV
(see Theorem 4.3).

Theorem 4.4. The A-CPV solves (1) the P-CPV, and (2) the constrained P-CPV with
guarantees of W (P ′′) ≤W (P ) and W (P ′′) ≤W (P ′) under the restriction of λ = 0.

Proof. As a precondition, it is important to note that, for the case of λ = 0, the A-CPV
cannot result in a plan with k = 1 (although this is a special case of the P-CPV) due to

the maximum rule of
∑|bk|

c=1W (oc) + W (oj) ≤ max (Algorithm 4.3, line 10). Hence, in

10For this optimality analysis, we use a slightly different notation of operators oi and execution buckets
bi in order to clearly distinguish the three different execution models. Let oi denote instance-based
execution, o′i denote full vectorized execution, and o′′i denote cost-based vectorized execution.
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order to prove the theorem, we need to prove the two single claims of W (P ′′) ≤ W (P )
and W (P ′′) ≤W (P ′).
For the proof of W (P ′′) ≤ W (P ), assume the worst case, where ∀oi : Ro(oi) = 1. If we
vectorize this to P ′′, we need to compute the costs by W (b′′i ) = (Ro(b

′′
i ))/(Re(b

′′
i )) ·W (oi)

with Re(b
′′
i ) = 1/|b|. Due to the vectorized execution, W (P ′′) = maxmi=1W (b′′i ), while

W (P ) =
∑m

i=1W (oi). Hence, we can write W (P ′′) = W (P ) if the condition ∀oi : Ro(oi) =
1 holds. This is the worst case. For each Ro(oi) < 1, we get W (P ′′) < W (P ).
In order to prove W (P ′′) ≤W (P ′), we fix λ = 0. If we merge two buckets bi and bi+1, we
see that Re(b

′′
i ) is increased from 1/|b| to 1/(|b|−1). Thus, we re-compute the costs W (b′′i )

as mentioned before. In the worst case, W (b′′i ) = W (b′i), which is true iff Re(b
′
i) = Ro(b

′
i)

because then we also have Re(b
′′
i ) = Re(b

′
i). Due to W (P ′′) = maxmi=1W (b′′i ), we can state

W (P ′′) ≤W (P ). Hence, Theorem 4.4 holds.

In conclusion, we cannot guarantee that the result of the A-CPV is the global optimum
because we cannot efficiently evaluate the effective resource consumption. However, we can
guarantee that each merging of execution buckets when solving the P-CPV with λ = 0
(where the costs of each bucket are lower than or equal to the highest operator costs)
improves the performance of the plan P .

4.3.3 Cost-Based Vectorization with Restricted Number of Buckets

Due to dynamically changing workload characteristics, we recommend using the cost-based
vectorization approach. However, there might exist scenarios where an explicit restriction
of k and thus, of the number of threads, is advantageous. Hence, in this subsection, we
discuss the necessary changes of the exhaustive and heuristic computation approaches
when using this constraint.

Exhaustive Computation Approach

With regard to the exhaustive cost-based computation approach (see Subsection 4.3.2),
only minor changes are required when restricting k. Due to the restricted number of
execution buckets, k = |b|, the search space is smaller than for the previously described
P-CPV. As already stated, for an operator sequence (best case), there are

|P ′′|k =
k−1∏
i=1

m− i
i

(4.16)

different possibilities, while for sets of operators, there are

|P ′′|k =
1

k!

k∑
j=0

(−1)k−j
(
k
j

)
jm (4.17)

possibilities to distribute the m operators of plan P across k buckets. Hence, the enumer-
ation of candidate distribution schemes can be reused by simply invoking the recursive
Algorithm 4.2 only once for the given k. In addition, we change the optimality condition
for evaluating those candidates to

φ = min

|b|=kmax
i=1

 lbi∑
j=1

W (oj)

 , (4.18)
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where we determine the minimum costs only for the given k. Hence, the optimization
objective is to keep the maximum costs of execution buckets as low as possible. Due to
the explicitly given k, the constrained objective φc is not applicable. Finally, the rewriting
algorithm can be reused as it is.

Heuristic Computation Approach

In contrast to the exhaustive computation, the heuristic approach requires major changes
when restricting k because we cannot exploit the maximum capacity of a bucket that
would result in any k and thus, would stand in conflict to the fixed k constraint. Hence,
we require an alternative heuristic to solve this optimization problem.

The heuristic algorithm (A-RCPV) for a restricted number of execution buckets k works
as follows. In a first step, we distribute the m operators uniformly across the given k
buckets, where the first m−k · bm/kc buckets get dm/ke operators and all other operators
get bm/kc operators assigned to them. In a second step, for each bucket, we check if the
performance can be improved by assigning its first operator to the previous bucket or its
last operator to the next bucket. There, the optimization objective φ (Equation 4.18)
is used to determine the influence in the sense of lower maximum bucket costs. Finally,
we do this for each operator until no more operators are exchanged during one run over
all operators. Due to the direct evaluation with φ, cycles are impossible and hence, the
algorithm terminates and it exhibits a linear time complexity of O(m). We illustrate this
using an example.

Example 4.8 (Heuristic Computation with Fixed k). Assume a fixed number of buckets,
k = 3. Figure 4.14 uses the plan and statistics from Example 4.7 and illustrates the
heuristic approach for fixed k.

given operator 
sequence o

W(o1)=1
o1 o2 o4 o5 o6

W(o2)=4 W(o3)=5 W(o4)=2 W(o5)=3 W(o6)=1

max W(bi)=7o1 o2 o4 o5 o6k=3 o3

max W(bi)=6o1 o2 o4 o5 o6o3

o3

b1 b2 b3

b1 b2 b3

Figure 4.14: Heuristic Operator Distribution with Fixed k

We distribute the six operators uniformly across the three execution buckets. As already
mentioned, the performance of the plan depends on the most time-consuming bucket. In
our example, this is bucket 2, with W (b2) = 7 ms. Now, we exchange operators. First, at
bucket 1, no operator is exchanged because transferring o2 from b1 to b2 would increase the
maximum bucket costs. The same is true for a transfer of o3 from b2 to b1. However, we
can transfer o4 from b2 to b3 and reduce the maximum costs to W (b3) = 6 ms. Finally, we
require a final run over all buckets to check the termination condition.

As a result, one can solve both the P-CPV as well as the constrained P-CPV under
the restriction of a fixed number of execution buckets and thus, also with a fixed number
of threads. With this approach we can guarantee to overcome the problem of a possibly
large number of required threads.
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4.3.4 Operator-Aware Cost-Based Vectorization

Although the cost-based vectorization described so far significantly improves performance,
it has one drawback. When rewriting an instance-based plan into a cost-based vectorized
plan, we take only the costs of originally existing operators into account. Thus, the op-
timization objective is to minimize the number of execution buckets with lowest possible
maximum bucket execution costs. However, we neglected the overhead of additional oper-
ators such as Copy, And or Xor that are only used within vectorized plans. In conclusion, an
operator-aware rewriting approach is required in order to improve the standard cost-based
vectorization approach.

In detail, we use explicit cost comparisons for operators that are only used for vectorized
plans. With this concept, we can ensure that the performance is not hurt by costs of those
additional operators. We explain this using the Copy operator as an example.

Example 4.9 (Operator-Aware Cost Comparison). Assume the instance-based subplan
illustrated in Figure 4.15(a) and the given operator costs.

W(P) = n · 14
W(o1)=2

o2

W(o2)=3 W(o3)=5
o3o1

W(o4)=4
o4

(a) Instance-Based Subplan

Copy

W(cp) ≤ W(o3):
W(P) = (n + 2) · 5W(o1)=2

o2

W(o2)=3

W(o3)=5
o3

o1

W(o4)=4
o4

W(cp) > W(o3):
W(P) = (n + 2) · W(cp)

W(cp)

(b) Cost-Based Vectorized Subplan

Figure 4.15: Example Operator Awareness

The costs of processing n messages are then determined by W (P ) = n ·14 ms. In contrast,
the cost-based vectorized subplan that is shown in Figure 4.15(b) uses k = 3 + 1 execution
buckets and hence, it usually increases the throughput. For the exact cost analysis, we need
to distinguish two cases. First, if the costs of the Copy operator W (cp) are lower than the
maximum operator costs W (o3), we compute the total costs by W (P ) = (n + 2) · 5 ms.
Second, if W (cp) > W (o3), we need to compute the costs by W (P ) = (n + 2) ·W (cp).
While we always benefit from vectorization in the first case, we have a break-even point
for the vectorization benefit in the second case. In detail, if n → ∞ and W (cp) > 10 ms
(the costs for executing this subplan in an instance-based manner), it is advantageous to
execute the subplan (o1, o2, o3) as a single execution bucket because the costs of the Copy

operator are not amortized by the vectorization benefit.

We use those explicit cost comparisons (optimality conditions) between costs of addi-
tional operators and the instance-based execution of such a subplan whenever we deter-
mine parallel pipelines. Therefore, only the subplan—from the beginning of those parallel
pipelines to the temporal join at the end—is used for comparison.

In conclusion, the operator-aware cost-based vectorization is used within both the exact
and the heuristic computation approach. We use explicit cost comparisons in case of
subplans consisting of parallel pipelines because those require additional operators, which
we can now take into account as well. If statistics are available, this is a binary decision
for each subplan and hence, it can be efficiently computed. As a result, this approach
adds awareness of specific cases, where vectorization should not be applied for a subplan.
This ensures robustness of the cost-based vectorization of a single plan, in the sense that
it will never be slower than the instance-based execution.
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4.4 Cost-Based Vectorization for Multiple Plans

So far, we have described how to compute the cost-optimal vectorized plan for a single
deployed plan. While this approach significantly improves the performance of this plan, the
cost-based vectorization can also hurt the overall performance in case of multiple deployed
plans (independent) due to a possibly high number of execution buckets regarding all plans.
In conclusion, it is not appropriate to simply use the cost-based vectorization approach or
the fixed number of execution buckets for the set of all plans as well. In this section, we
present an approach that takes into account executions statistics of all deployed plans. As
a result, this approach achieves robustness in terms of the overall performance and hence,
allows for more predictable performance of the integration platform.

4.4.1 Problem Description

In many real-world scenarios, multiple independent plans Pi ∈ {P1, . . . , Ph} are deployed
within an integration platform that executes instances of these plans concurrently. Cost-
based vectorization overcomes the problems of full vectorization, i.e., the number of re-
quired threads and the work-cycle domination by single operators with regard to a single
deployed plan. When executing multiple cost-based vectorized plans concurrently, a sim-
ilar problem arises. Here, the number of threads required by all h plans depends on the
number of plans. In detail, it is upper-bounded by

∑h
i=1mi, where mi denotes the number

of operators of plan Pi.
In order to overcome this problem in case of a high number of deployed plans, we define

an extended vectorization problem. The core idea is to restrict the maximum number
of threads by K in the sense of a user-defined parameter. Then, we compute the fairest
distribution of all operators of the h plans across the K execution buckets according to the
current workload characteristics and execution statistics. First of all, we formally define
the extended cost-based vectorization problem for multiple plans.

Definition 4.4 (Cost-Based Multiple Plan Vectorization Problem (P-MPV)). Let P with
Pi ∈ {P1, . . . , Ph} denote a set of h plans. The P-MPV then describes the problem of find-
ing a restricted cost-optimal plan P ′′i with ki execution buckets for each Pi ∈ P according
to the P-CPV. There, the constraint of the maximum overall number of execution buckets
of
∑h

i=1 ki ≤ K must hold.

Obviously, when simply solving the standard cost-based optimization problem for each
single plan Pi, we might exceed the maximum number of execution buckets with

∑h
i=1 ki >

K. The following example illustrates this problem.

Example 4.10 (Problem when Solving the P-MPV). Assume three plans Pa, Pb and Pc
with different numbers of operators and monitored costs as shown in Figure 4.16. We
set the maximum total number of execution buckets to K = 7. Further, the P-CPV is
solved for each single plan using the heuristic computation approach. For this example,
we observe that we get

∑h
i=1 ki = 9 execution buckets and hence, we exceed the maximum

constraint of K = 7.

As a result, the P-MPV cannot be solved by applying the P-CPV for each single plan.
In contrast to restricting k, (see Subsection 4.3.3), the given maximum constraint K is
only an upper bound and therefore we have to consider more solution candidates. In
addition, we might not fully use the optimization potential if we simply use K/h buckets
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Figure 4.16: Problem of Solving P-CPV for all Plans

for each plan and compute the restricted vectorized plan accordingly. The major challenge
of solving the P-MPV is to determine the best distribution of all operators of the h different
plans across the maximum number of K execution buckets such that we get the highest
overall performance and do not exceed the maximum constraint. In the next subsection,
we present a computation approach that addresses this challenge.

4.4.2 Computation Approach

The core idea of computing the optimal operator distribution across buckets for multiple
plans is to use the costs of each plan in order to assign more execution buckets to more
cost-intensive plans. In detail, we use those costs to weight the maximum constraint K
of execution buckets and determine a local maximum constraint Ki for each plan Pi. We
use the plan execution time W (Pi) as well as the message arrival rate Ri (that can be
monitored as the number of plan instances per time period).

In a first step, we determine the local maximum constraintKi for each plan. If all h plans
would exhibit the same message arrival rate and execution times, we could compute it by
Ki = bK/hc. However, based on the monitored statistics, we determine the constraint by

Ki = 1 +

⌊
Ri ·W (Pi)∑h
j=1Rj ·W (Pj)

· (K − h)

⌋
, (4.19)

where Ki is at least one execution bucket and at most K execution buckets. Due to the
lower bound, a constraint of K < h (smaller than the number of plans) is invalid.

In a second step, after we have determined the local maximum constraints, we use a
heuristic computation approach to determine the cost-based operator distribution for each
plan. If the maximum constraint is not exceeded, we use the computed scheme. If the
used number of execution buckets ki is smaller than the local constraint, in a third step,
we further redistribute the Ki − ki open execution buckets across the remaining plans,
where the local constraint is exceeded.

In detail, Algorithm 4.4 illustrates our heuristic approach. First, we determine the local
maximum constraints and number of free buckets according to the statistics (lines 2-4).
Second, for each plan, we execute the heuristic cost-based plan vectorization (lines 5-10)
using the A-CPV. If the determined number of buckets is smaller than or equal to the
local maximum constraint, we accept this plan and add the remaining buckets to the free
buckets. Third, after all plans have been processed, we redistribute the remaining free
buckets according to the monitored statistics of the individual plans (lines 11-12) in an
upper-bounded fashion. Fourth, we use the heuristic cost-based plan vectorization but
restrict it to the extended maximum constraints (line 13-19) using the A-RCPV. Here, we
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Algorithm 4.4 Heuristic Multiple Plan Vectorization (A-HMPV)

Require: plans P , maximum constraint K
1: P ′ ← ∅, free← K
2: for i← 1 to h do // determine local maximum constraints for each plan

3: Ki ← 1 +

⌊
Ri·W (Pi)∑h

j=1Rj ·W (Pj)
· (K − h)

⌋
// 1 ≤ Ki ≤ K

4: free← free−Ki

5: for i← 1 to h do // cost-based plan vectorization for each plan
6: P ′i ← A-CPV (Pi)
7: if k′i ≤ Ki then
8: P ′ ← P ′ ∪ P ′i
9: P ← P − Pi

10: free← free+ (Ki − k′)
11: for i← 1 to |P | do // distribute remaining threads across remaining plans

12: Ki ← 1 +

⌈
Ri·W (Pi)∑h

j=1Rj ·W (Pj)
· (free− |P |)

⌉
13: for i← 1 to |P | do // plan vectorization restricting k′ for each remaining plan
14: if Ki ≤ free then
15: P ′i ← A-RCPV (Pi,Ki) // restricted cost-based plan vectorization
16: free← free−Ki

17: else
18: P ′i ← A-RCPV (Pi, free) // restricted cost-based plan vectorization
19: free← 0
20: return P ′

check that the number of free elements and hence, the global constraint, is not exceeded.
We use the following example to illustrate this algorithm.

Example 4.11 (Multiple Plan Vectorization). Recall Example 4.10 with the maximum
constraint of K = 7 and assume the following monitored execution statistics:

Pa : W (Pa) = 8 ms, Ra = 5 msg/s

Pb : W (Pb) = 17 ms, Rb = 2.5 msg/s

Pc : W (Pc) = 16 ms, Rc = 7 msg/s.

In a first step, we compute the local maximum constraint for the individual plans:

Pa : Ka = 1+

⌊
40

194.5
· 4
⌋

= 1, Pb : Kb = 1+

⌊
42.5

194.5
· 4
⌋

= 1, Pc : Kc = 1+

⌊
112

194.5
· 4
⌋

= 3.

In a second step, we compute the cost-based vectorized plan of each deployed plan and
check that the resulting number of execution buckets ki does not exceed Ki. Figure 4.17(a)
shows the result of this step. In detail, only Pc is accepted. Hence, we reduce the number
of free buckets from free = 7 to free = 4. Furthermore, in a third step, we distribute the
remaining buckets with

Pa : Ka = 1 +

⌈
40

82.5
· 2
⌉

= 2, Pb : Kb = 1 +

⌈
42.5

82.5
· 2
⌉

= 3.
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Figure 4.17: Heuristic Multiple Plan Vectorization

Finally, we execute the restricted cost-based plan vectorization with Ki as a parameter.
Figure 4.17(b) shows the result of this step, where Ka = 2 was used, but Kb = 2 because
for Pb, the local constraint exceeded the number of free buckets. As a result, we ensured
that the global maximum constraint was not exceeded.

This is a heuristic computation because (1) we directly assign free buckets (indepen-
dent of relative cost improvements) and (2) the order of considered plans might influence
the resulting distribution. However, it often solves this problem adequately. An exact
computation approach would use a while loop and redistribute free buckets as long as no
more changes are made. Just after this, we would restrict k explicitly. However, an exact
computation approach would require using the exhaustive cost-based computation.

Our heuristic algorithm has a time complexity of O(h ·m) because we call h times the
A-CPV that has a time complexity of O(m) (see Theorem 4.3). Furthermore, we might
call at most h times the heuristic restricted plan vectorization algorithm that has also a
linear time complexity of O(m).

In conclusion, the multiple plan vectorization takes into account the workload char-
acteristics in order to restrict the maximum number of used execution buckets. There,
plans with high load are preferred and get more execution buckets assigned to them. At
the same time, this algorithm applies the cost-based vectorization and hence, can ensure
near-optimal performance even in the case of large numbers of plans.

4.5 Periodical Re-Optimization

We have shown how to compute cost-based vectorized plans in case of both single and
multiple deployed plans. Those exhaustive and heuristic algorithms rely on continuous
gathering of execution statistic and periodical re-optimization in order to be aware of
changing workload characteristics. Finally, the whole vectorization approach is embedded
as a specific optimization technique into our general cost-based optimization framework.
Note that our transformation-based optimization algorithm (A-PMO, Subsection 3.3.1)
applies the cost-based vectorization after all other rewriting techniques, where techniques
for rewriting patterns to parallel flows are not used if vectorization is enabled.

With regard to the whole feedback loop of our general cost-based optimization frame-
work, there are two additional challenges that need to be addressed for vectorized plans.
First, if vectorization produces a plan that differs from the currently deployed plan, we
have to evaluate the re-optimization potential in the sense of the benefit of exchanging
plans. Second, if an exchange is beneficial or one of the other optimization techniques
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changed the current plan, there is a need for dynamic rewriting of vectorized plans due
to the required state migration of loaded message queues and intra-operator states. Both
challenges are addressed in the following.

Evaluating Re-Optimization Potential

If the current logical plan has been changed during optimization, we need to evaluate
the benefit of rewriting the physical plan during runtime. This is required because a
vectorized plan exhibits a state in the sense of all messages that are currently within the
standing process (operators and loaded queues) and thus, we cannot simply generate a new
physical plan. Hence, there is a trade-off between the overhead of exchanging the plan and
the benefit yielded by the newly computed best plan. In general, the same is true for the
general optimization framework as well. However, in contrast to the efficient inter-instance
plan change, this trade-off has much higher importance when rewriting vectorized plans
due to the need for state migration or flushing of pipelines.

The intuition behind our evaluation approach is to compare the costs of flushing the
pipelines of the current plan, with the estimated benefit we gain by using P ′′new instead of
P ′′cur for the next period ∆t. We restrict the cost comparison to ∆t because at the next
evaluation timestamp, we might revert the plan change due to changed execution statistics
and hence, we cannot estimate the benefit for a period longer than ∆t. Although we might
miss optimization opportunities in case of a constant workload, we use this approach in
order to ensure robustness of optimizer choices in terms of plan stability.

In detail, the costs of flushing the pipelines are affected by the number of messages in
the queues qi and the execution time of the most time-consuming operator. We determine
the queue cardinalities and compute the costs by

Wflush(P ′′cur) = W (bx) ·
x∑
i=1

|qi|+
|b|∑
i=x

W (bi) with W (bx) =
k

max
j=1

lbi∑
l=1

W (ol). (4.20)

These costs are given by the number of messages in front of the most time-consuming exe-
cution bucket multiplied by the costs of this bucket W (bx) plus the costs for the remaining
buckets after bx. Those are the approximated costs for flushing the whole pipeline. Note
that incremental rewriting (merging and splitting) is possible as well.

For computing the benefit of dynamic rewriting, we use the message rate R to compute
the number of processed messages by n = R ·∆t. Then, the benefit of exchanging plans
is given by

Wchange(P
′′) = (n+ |b|P ′′new

− 1) ·WP ′′new
(bx1)− (n+ |b|P ′′cur − 1) ·WP ′′cur(bx2), (4.21)

where Wchange < 0 holds by definition because the optimizer will only return a new plan
Pnew if W (Pnew) < W (Pcur). Finally, we would change plans if

Wflush +Wchange ≤ 0. (4.22)

We illustrate this evaluation approach with the following example.

Example 4.12 (Evaluating Rewriting Benefit). Assume the current plan shown in Fig-
ure 4.18(a). The figure also shows the statistics that were present when creating this plan
(t1) as well as the current state (t2) in the form of the numbers of messages in queues.
During the period ∆t = 10 s, average execution times changed (W (o2) = 4 and W (o5) = 4).
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Figure 4.18: Example Periodical Re-Optimization

Hence, we created the new plan shown in Figure 4.18(b). First, we determine the costs
for flushing the current pipeline, assuming the new statistics with

Wflush(P ′′cur) = 3 ·W (b2) + 5 ms + 4 ms = 30 ms.

Then, we compute the benefit of changing the plan by

Wchange = (n+ 5− 1) · 5 ms− (n+ 4− 1) · (4 ms + 3 ms) = −2 ms · n− 1 ms.

Subsequently, we use the monitored message rate R = 10.7 msg/s and the optimization period
∆t = 10 s as estimation for the number of processed messages n = 10.7 msg/s · 10 s = 107
during the next period and compare the costs with the benefit, by assuming full system
utilization, as follows:

(Wflush +Wchange = 30 ms + (−2 ms · 107− 1 ms)) ≤ 0.

Finally, we decide to exchange plans because in the next period ∆t, we will yield an im-
provement of 185 ms, including the overhead for rewriting.

If the evaluation of the rewriting benefit resulted in the decision to exchange plans, we
need to dynamically rewrite the existing plan during runtime. In the following, we explain
this step in more detail.

Dynamic Plan Rewriting

The major problem when rewriting a vectorized plan during runtime is posed by loaded
queues. One approach would be explicit state migration and state re-computation [ZRH04].
However, re-computation might is impossible for integration flows due to interactions with
external systems that have to be executed exactly once. Therefore, plan rewriting is real-
ized by stopping execution buckets and flushing of intermediate queues.

For example, in order to merge two execution buckets bi and bi+1 with a queue qi+1 in
between, we need to stop the execution bucket bi, while bucket bi+1 is still working. Over
time, we flush qi+1 and wait until it contains zero messages. We then merge the execution
buckets to bi, which contains an instance-based subplan with all operators of the merged
subplans, and simply remove qi+1. This concept can be used for bucket merging and
splitting, respectively and we never loose a message during dynamic plan rewriting.

Putting it all together, we introduced the general concept of vectorization as a control-
flow-oriented optimization technique that aims to improve the message throughput. Fur-
thermore, we generalized this concept to the cost-based plan vectorization and explained
how to take multiple deployed plans into account as well. Finally, we described how this
technique is embedded into our general cost-based optimization framework. Although, this
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approach was designed for multi- and many-core systems, in general, it can be extended
to the distributed case as well. There, extensions with regard to the communication costs
between several nodes as well as heterogeneous hardware (different execution times on dif-
ferent server nodes) would be required. However, in this distributed setting, the cost-based
vectorization would be even more important because the number of involved server nodes
could be reduced without sacrificing the degree of parallelism.

4.6 Experimental Evaluation

In this section, we provide experimental evaluation results for both the full vectorization
and the cost-based vectorization of integration flows. The major perspectives of this
evaluation are (1) the performance in terms of message throughput, (2) the influence on
latency times of single messages, as well as (3) the optimization overhead and influences
of parameterization. In general, the evaluation shows that:

• Significant performance improvements in the sense of increased message throughput
are achievable. The benefit of vectorization increases with increasing number of
operators, with increasing data size, and with increasing number of plan instances.

• The latency of single messages is moderately increased by vectorization. However,
due to Little’s Law [Lit61], in case of high load of messages, the total latency time
(including waiting time) is reduced by vectorization.

• The deployment and optimization overhead imposed by vectorization is moderate
as well. In addition to the influence of the parameters of periodical optimization,
also the cost-constraint-parameter λ has high influence on the resulting performance.
Typically, the default setting of λ = 0 leads to highest performance.

• The cost-based optimization typically finds the global optimal plan according to the
number of execution buckets. Thus, the number of buckets should not be restricted.

Finally, we can state that the cost-based vectorization achieves significant throughput
improvements, while accepting moderate additional latency for single messages. In con-
clusion, this concept can be applied by default if a high load of plan instances exists and
moderate latency time is acceptable. The theoretical optimality and latency guarantees
also hold under experimental performance evaluation.

The evaluation is structured as follows. First, we present the end-to-end comparison of
unoptimized and vectorized execution using our running example plans. Second, we use a
set of additional template plans in order to evaluate the aspects throughput improvement,
latency time, and optimization overhead in more detail on plans with variable number of
operators. Third, we present evaluation results with regard to multiple deployed plans.

Experimental Setting

We implemented the presented approach within our WFPE (workflow process engine). In
general, the WFPE uses compiled plans and an instance-based execution model. Then, we
integrated components for the full vectorization (VWFPE) and for the cost-based vectoriza-
tion (CBVWFPE). For this purpose, new deployment functionalities have been introduced
and several changes in the runtime environment were required because those plans are
executed in an interpreted fashion.
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We ran our experiments using the same platform as described in Section 3.6. Further,
we executed all experiments on synthetically generated XML data (using our DIPBench
toolsuite [BHLW08c]) due to only minor influence of the data distribution of real data sets
on the benefit achieved by vectorization because it is a control-flow-oriented optimization
technique. However, there are several aspects with influences on vectorization. In general,
we used five scale factors for all three execution approaches: the data size d of input
messages, the number of operators m, the time interval t between two arriving messages,
the number of plan instances n, and the maximum constraint of messages in a queue q.

End-to-End Comparison and Scalability

Similar to the general comparison experiment of optimized and unoptimized plan execu-
tion, which results are shown in Figure 3.22, we first evaluated the impact of vectorization
and cost-based vectorization compared to the unoptimized execution for our example use
case plans. In detail, we executed 20,000 plan instances for all asynchronous, data-driven
example plans (P1, P2, P5, and P7) and for each execution model. We fixed the cardinality
of input data sets to d = 1 (100 kB messages) and used the same workload configuration
(without workload changes and without correlations) as in the mentioned experiment of
Chapter 3. Note that the normal cost-based plan rewriting is orthogonal to vectorization,
where vectorization achieves additional improvements except for the effects of rewriting
patterns to parallel flows. In order to be focused on vectorization, we disable all other
optimization techniques. Furthermore, we fixed an optimization interval of ∆t = 5 min,
a sliding window size of ∆w = 5 min and EMA as the workload aggregation method. To
summarize, we consistently observe significant total execution time reductions (see Fig-
ure 4.19(a)) of 71% (P1), 72% (P2), 69% (P5), and 55% (P7). In contrast to Chapter 3, we
measured the scenario elapsed time (the latency time of the message sequence) because
for vectorized execution, the execution times of single plan instances cannot be aggregated
due to overlapping message execution (pipeline semantics).

(a) Scenario Elapsed Time (b) First Optimization Time

Figure 4.19: Use Case Comparison of Vectorization

First, the full vectorization approach leads to a significant reduction of the total elapsed
time for execution of the sequence of 20,000 plan instances. We achieved a speedup of factor
three for the plans P1, P2, and P5, while for the plan P7 we achieved a speedup of factor
two. Furthermore, the cost-based vectorization further improved the full vectorization by
about 10%. However, there are cases, where the cost-based vectorization caused only a
minor improvement because plans such as P1 are too restrictive with regard to merging
execution buckets (e.g., the combination of a Switch operator with specific paths is not
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allowed). For the cost-based vectorization, we used the introduced heuristic computation
approach with λ = 0, which changed the number of buckets (includes additional VMTM
operators) as follows: P1 : from 10 to 8 buckets, P2 : from 6 to 3 buckets, P5 : from 9
to 6 buckets, and P7 : from 18 to 3 buckets. Due to the absence of changing workload
characteristics, only the first invocation of the optimizer requires noteable optimization
time for merging buckets and flushing pipelines, while all subsequent re-optimization steps
take much less optimization time. Figure 4.19(b) shows this optimization time. Clearly,
the plan P7 required the highest optimization time but still takes less than a second, which
is negligible compared to the achieved total execution time reduction of over 40 min.

Second, scalability experiments have shown that the absolute improvement increases
with increasing data size but the relative improvement with increasing data size depends
on the used plan. There are plans with constant relative improvement (e.g., P1) and plans,
where the relative improvement decreases with increasing data size (e.g., P7). Further,
the relative improvement of both vectorization approaches increases with an increasing
number of executed plan instances until the point of full pipeline utilization is reached.
From thereon, the relative improvement stays constant.

In conclusion, we achieve performance improvements in the form of an increase of mes-
sage throughput. In addition, we observe that the absolute benefit increases with increas-
ing number of plan instances and with an increasing data size as well.

Performance and Throughput

In order to evaluate both vectorization approaches in more detail, we use a template plan
that can be extended to arbitrary numbers of operators. Essentially, we modeled a simple
sequence of six operators as shown in Figure 4.20.
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Figure 4.20: Evaluated Example Plan Pm

A message is received (Receive), prepared for a writing interaction (Assign), which
is then executed with the file outbound adapter (Invoke). Subsequently, the resulting
message (contains Orders and Orderlines) is modified by a Translation operator and
finally, the message is written to a specific directory (Assign, Invoke). We refer to this
as m = 5 because the Receive operator is removed during vectorization. When scaling
m up to m = 35, we simply copy the last five operators and reconfigure them as a chain
of m operators with direct data dependencies. All of the resulting Invoke operators refer
to different directories. We ran a series of five experiments (each repeated 20 times)
according to the already introduced scale factors. The results of these experiments are
shown in Figure 4.21.
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(a) Scalability with d (b) Variance with d
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Figure 4.21: Scalability Comparison with Different Influencing Factors

In Figure 4.21(a), we scaled the data size d of the XML input messages from 100 kB to
700 kB and measured the execution time (elapsed time) of 250 plan instances (n = 250)
needed by the three different execution models. There, we fixed m = 5, t = 0, n = 250 and
q = 50. We observe that all three execution models exhibit a linear scaling according to the
data size and that significant improvements can be achieved with vectorization. There, the
absolute improvement increases with increasing data size. Further, in Figure 4.21(b), we
illustrated the variance over all 20 repetitions of this sub-experiment. The variance of the
instance-based execution is minimal, while the variance of both vectorized models is worse
due to the unpredictable influence of thread scheduling by the operating system. Cost-
based vectorization exhibits a significantly lower variance than full vectorization because
we use fewer threads and therefore reduce the thread scheduling influence.

Now, we fix d = 1 (lowest improvement in 4.21(a)), t = 0, n = 250 and q = 50 in order
to investigate the influence of m. In Figure 4.21(d), we vary m from 5 to 35 operators, as
already mentioned for the experimental setup. Interestingly, not only the absolute but also
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the relative improvement of vectorization increases with increasing number of operators.
Figure 4.21(e) shows the impact of the time interval t between the initiation of two

plan instances. For that, we fixed d = 1, m = 5, n = 250, q = 50 and we varied t
from 10 ms to 70 ms. There is almost no difference between the full vectorization and the
cost-based vectorization. However, the absolute improvement between instance-based and
vectorized approaches decreases slightly with increasing t. The explanation is that the
time interval has no impact on the instance-based execution. In contrast, the vectorized
approach depends on t because the highest improvement is achieved with full pipeline
utilization.

Further, we analyze the influence of the number of instances n as illustrated in Fig-
ure 4.21(c). Here, we fixed d = 1, m = 5, t = 0, q = 50 and we varied n with
n ∈ {10, 100, 200, 300, 400, 500, 600, 700}. Basically, we observe that the relative improve-
ment between instance-based and vectorized execution increases when increasing n, due
to parallelism of plan instances. However, it is interesting to note that the fully vectorized
solution performs slightly better for small n. However, when increasing n, the cost-based
vectorized approach performs optimal because there the maximum queue constraint q is
reached and we observe the influence of the already mentioned convoy effect.

Figure 4.21(f) illustrates the influence of the maximum queue size q, which we varied
from 10 to 70. Here, we fixed d = 1, m = 5, t = 0 and n = 250. An increasing q slightly
decreases the execution time of vectorized plans. This is reasoned by (1) less request
notifications of waiting threads and (2) better load balancing by the thread scheduler.

Message Latency

Vectorization is a trade-off between message throughput improvement and increased la-
tency time of single messages. Therefore, we now investigate the latency of single messages.

Figure 4.22 illustrates the differences of the three execution models instance-based
(WFPE), vectorized (VWFPE) and cost-based vectorized (CBVWFPE) according to the latency
of single messages (including inbound waiting time) and the execution time of single mes-
sages (without inbound waiting time). Therefore, we fixed d = 1, t = 0, q = 50, and we
varied the number of operators m, similar to Figure 4.21(a). All results are illustrated as
error bars using the minimum, median (50% quartile) and maximum latency/execution
time, respectively. In this experiment, all n = 250 messages arrive simultaneously in the
system. The latency time includes the waiting time and execution time in the sense of
end-to-end latency. In contrast, the execution time shows how long it takes to process a
single message, without waiting time at the server inbound message queues.

First, we observe that the instance-based execution allows for lowest minimum latency
(first processed message), while both the vectorized as well as the cost-based vectorized
execution requires higher initial time for processing the first messages. This is caused by
queue management and synchronization between threads. It is important to note that
the cost-based vectorized model exhibit lower initial latencies. Further, we see that the
median and maximum latencies are higher for the instance-based execution model because
it is directly influenced by the reached throughput.

Second, it is important that the execution time of a single message is much smaller when
using the instance-based execution model rather than the vectorized model. The reason
is that the vectorized execution is dominated by the most time-consuming operator and
requires additional effort for thread queue management and synchronization. In addition,
for the used setting of a queue size of q = 50, most messages wait just in front of this
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(a) Latency WFPE (b) Execution Time WFPE

(c) Latency VWFPE (d) Execution Time VWFPE

(e) Latency CBVWFPE (f) Execution Time CBVWFPE

Figure 4.22: Latency Time and Execution Time of Single Messages (for n = 250)

most time-consuming operator. This waiting time at inter-bucket queues is included in the
execution time of the whole plan. Note that the cost-based vectorized execution is faster
than the full vectorization but with non-linear scaling because the number of execution
buckets changed with increasing number of operators. Finally, the median of instance-
based execution is close to the minimum, while for vectorized execution, it is close to the
maximum. The substantiation is that there are only few messages (the first messages of a
sequence) without any waiting time within inter-bucket queues when executing vectorized
plans, while for all other messages, execution times include these waiting times.

Deployment and Maintenance

Furthermore, we evaluated the deployment and vectorization overhead with increasing
number operators in a static manner (without dynamic plan rewriting).

First, we measured the costs for the plan vectorization algorithm (A-PV) and the period-
ically invoked cost-based plan vectorization algorithm (A-CPV). Figure 4.23 shows those
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Figure 4.23: Vectorization Deployment Overhead

results, where we varied the number of operators m because all other scale factors do not
influence the deployment and maintenance costs. In general, there is a high performance
improvement using vectorization with a factor of up to seven. It is caused by the different
deployment approaches. The WFPE uses a compilation approach, where Java classes are
generated from the integration flow specification. In contrast to this, the VWFPE as well as
the CBVWFPE uses interpretation approaches, where plans are built dynamically with the
A-PV. The VWFPE always outperforms CBVWFPE because both use the A-PV but CBVWFPE

additionally uses the A-CPV in order to find the optimal number of execution buckets
k. Note that the additional costs for the A-CPV (that cause a break-even point with
the standard WFPE) occur periodically during runtime. Here, we excluded the costs for
flushing the pipelines because it depends mainly on the maximum constraint of the queues
and on the costs of the most time-consuming operator. In conclusion, the vectorization
of integration flows shows better runtime as well as often better deployment time perfor-
mance with regard to plan generation. Even in the case where a deployment overhead
exists, it is negligible compared to the runtime improvement we gain by vectorization.

In conclusion, the deployment and maintenance overhead is moderate compared to the
yielded performance improvement. Recall the evaluation results from Figure 4.21. It is
important to note that the presented performance of the cost-based vectorized execution
model already includes the costs for periodical re-optimization and statistics maintenance.

Parameters of Periodic Optimization

The resulting performance improvement of vectorization in the presence of changing work-
load characteristics depends on the periodic re-optimization. This re-optimization can be
influenced by several parameters including the workload aggregation method, the sliding
time window size ∆w, the optimization period ∆t, and the maximum cost increase λ. In
this subsection, we evaluate the influence of λ with regard to the cost-based vectorization,
while the other parameters have already been evaluated in Chapter 3. Therefore, we con-
ducted an experiment, where we measured how increasing maximum costs influence the
number of execution buckets and thus, indirectly influence the elapsed time as well.

In a first sub-experiment, we fixed d = 1, t = 0, q = 50 and executed n = 250
messages with different λ and for different plans (with different numbers of operators m).
Figure 4.24(a) shows the influence of λ on the number of execution buckets k as well as on
the execution time. It is obvious that the number of execution buckets (annotated at the
top of each point) decreases with increasing λ because for each bucket, the sum of operator
costs must not exceed max + λ and hence, more operators can be executed by a single
bucket. Clearly, when increasing λ, the number of execution buckets cannot increase. In
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(a) Number of Operators m (b) Input Data Size d

Figure 4.24: Influence of λ with Different Numbers of Operators and Data Sizes

detail, we see the near-optimal solution with λ = 0. Typically, when increasing the number
of execution buckets from this point, the elapsed time increases. However, there are cases
such as the plan with m = 5, where we observe that the instance-similar execution (with
one bucket for all operators) performs better. The difference to traditional instance-based
execution is caused by (1) reused operator instances (e.g., pre-parsed XSLT stylesheets of
Translation operators), and (2) pipelined inbound processing. Further, for m = 20, we
see the optimal total execution time at λ = 10. Note that even in this case of k = 1, we
reach better performance than in the instance-based case because there are no synchronous
(blocking) calls through the whole engine but only within the single plan. In addition,
for small numbers of processed messages n, the instance-based execution model performs
worse due to the overhead of just-in-time compilation of generated plans. Furthermore,
we observe that the higher the number of operators m, the higher the influence of the
parameter λ. In conclusion, we typically find a very good solution with λ = 0, but when
required, this parameter can be used to easily adjust the degree of parallelism.

Furthermore, in the second sub-experiment, we used a single plan with m = 20, we fixed
t = 0, q = 50 and we executed n = 250 messages with different λ and for different data sizes
d ∈ {1, 4, 7} (in 100 kB). Figure 4.24(b) shows the results with regard to the execution
time as well as the number of execution buckets (annotated at the top of each point) when
varying λ. In general, we see similar behavior as in Figure 4.24(a) (for m = 20). The
different numbers of execution buckets for d = 1 and λ ∈ (0, 10) are caused by dynamically
monitored operator costs, which varied slightly. The major difference when comparing the
influence of varying the data size with the previous sub-experiment is that the data size
significantly increases the execution time of single operators. As a result, we observe that
we require higher values of λ to reduce the number of execution buckets. In conclusion,
λ should be configured with context knowledge about current workload characteristics.
We could overcome this workload dependency with a relative value of λ according to
the maximum operator costs. However, with λ as an absolute value, we can explicitly
determine the maximum work-cycle increase of the data flow graph.

In conclusion, there are several parameters with significant influence on the total exe-
cution time and on the behavior of cost-based vectorization. As a general heuristic, one
should use a maximum costs increase of λ = 0. This simplest configuration typically re-
sults in near-optimal throughput. However, if more context knowledge about the workload
is available, the described parameters can be used as tuning knobs.
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Plan with Restricted k

In order to reveal the characteristics of vectorizing multiple plans, we further evaluated the
influence of restricting the number of execution buckets. This is applied if the cost-based
vectorization exceeds this computed maximum number of execution buckets. All other
aspects of vectorization for multiple plans is a combination of already presented effects.

(a) Number of Operators m (b) Input Data Size d

Figure 4.25: Restricting k with Different Numbers of Operators and Data Sizes

The first sub-experiment analyzes the influence of the number of execution buckets on
the execution time of a message sequence with regard to varying number of plan operators
m. We fixed d = 1, t = 0, q = 50 and explicitly varied the number of execution buckets k.
Figure 4.25(a) shows the resulting execution time for a message sequence of n = 250. We
observe that, in a first part, an increasing number of execution buckets leads to decreasing
execution time. In a second part, a further increase of the number of execution buckets
led to an increasing execution time. As a result, there is an optimal number of execution
buckets, which increases depending on the number of operators. We annotated with k1, k2
and k3 the numbers of execution buckets that our A-CPV computed without restricting
k. Note that for m = 5, at most k = 5 execution buckets can be used.

In addition to this, we also analyzed the influence of the number of execution buckets
on the execution time with regard to different data sizes. Hence, we used the plan m = 20,
we fixed t = 0, q = 50 and we varied the data size d ∈ {1, 4, 7} (in 100 kB). Figure 4.25(b)
shows these results. We observe that the first additional execution bucket significantly
decrease the execution time, while after that, the execution time varies only slightly for an
increasing number of execution buckets. However, there is also an optimal point, where the
optimal number of execution buckets decreases with increasing data size due to increased
cache displacement. Again, we annotated the resulting number of execution buckets of
our A-CPV.

We might use randomized algorithms as heuristics for determining the number of buck-
ets k and for assigning operators to buckets. However, the presented experiments (Fig-
ure 4.25(a) and Figure 4.25(a)) show an interesting characteristic that prohibit such ran-
domized heuristics. While our cost-based vectorization approach finds the near-optimal
solution, a randomly chosen k might significantly decrease the performance, where the
influence of determining the best k increases with increasing number of operators.

In conclusion, the cost-based vectorization typically computes schemes, where k is close
to the optimal number of execution buckets with regard to minimal execution time of a
message sequence. Thus, we recommend using cost-based vectorization without restricting
k. However, for multiple deployed plans it is required to ensure the maximum constraint.
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4.7 Summary and Discussion

In this chapter, we introduced the control-flow-oriented optimization technique of plan
vectorization with the aim of throughput optimization for integration flows. We use the
term vectorization as an analogy to executing a vector of messages at a time by a standing
plan. Due to the dependency on the dynamic workload characteristics, we introduced the
cost-based plan vectorization as a generalization, where the costs of single operators are
taken into account and operators are merged to execution buckets. In detail, we presented
exhaustive and heuristic algorithms for computing the cost-optimal plan. Furthermore,
we showed how to use those algorithms in the presence of multiple deployed plans and
how this concept is embedded into our general cost-based optimization framework.

Based on our evaluation, we can state that significant throughput improvements are
possible. In comparison to full vectorization, the cost-based vectorization achieves even
better performance, reduces the latency of single messages, and ensures robustness in the
sense of minimizing the number of required threads. In conclusion, the concept of plan
vectorization is applicable in many different application areas. It is important to note
that the benefit of vectorization and hence, also cost-based vectorization, will increase
with the ongoing development of modern many-core processors because the gap between
CPU performance and main memory, IO, and network speed is increasing (Problem 4.1).

The main differences of our approach to prior work are (1) that we vectorize procedural
integration flows (imperative flow specifications) and that we (2) dynamically compute
the cost-optimal vectorized plan within our periodical re-optimization framework. This
enables the dynamic adaptation to changing workload characteristics in terms of the oper-
ator execution times. Despite the focus on procedural plans, the cost-based vectorization
approach, in general, can also be applied in the context of DSMS and ETL tools.

However, the vectorization approach has also some limitations that must be taken into
account when applying this optimization technique. First, vectorization is a trade-off
between throughput improvement and additional latency time. Thus, it should only be
applied if the optimization objective is throughput improvement or minimizing the latency
in the presence of high message rates rather than minimizing the latency time of single
messages. Second, for plans with complex procedural aspects, vectorization requires addi-
tional operators for synchronization and handling of the explicit data flow. This aspect is
explicitly taken into account by cost-based vectorization but might reduce the achievable
throughput improvement. Third, low cost plans with many less time-consuming operators
might also not benefit from vectorization due to the higher relative overhead of queue
management as well as thread synchronization and monitoring. Despite these general
limitations of vectorization, the cost-based vectorization can be applied by default due
to its hybrid model characteristics (full spectrum between instance-based and vectorized
execution) that takes the execution statistics into account. As already mentioned, the
concept of cost-based vectorization can also be extended to a distributed setting, where
operators are executed by different server nodes rather than only by different threads.

While the vectorization of integration flows is a control-flow-oriented optimization tech-
nique, the next chapter will address a data-flow-oriented optimization technique. However,
both techniques reduce the execution time of message sequences and thus, increase the
message throughput, where the benefit of both techniques can be combined.
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Similar to the vectorization of integration flows, in this chapter, we introduce the multi-
flow optimization [BHL10, BHL11] as a data-flow-oriented optimization technique that is
tailor-made for integration flows. This technique tackles the problem of expensive external
system access as well as it exploits the optimization potential that equivalent work (e.g.,
same queries to external systems) is done multiple times. The core idea is to horizontally
partition inbound message queues and to execute plan instances for message batches rather
than for individual messages. Therefore, this technique is applicable for asynchronous
data-driven integration flows, where message queues are used at the inbound side of the
integration platform. As a result, the message throughput is increased by reducing the
amount of work (external system access and local processing steps) done by the integration
platform. We call this technique multi-flow optimization because sequences of messages
that would initiate multiple plan instances are processed together.

In order to enable multi-flow optimization, in Section 5.1, we introduce the batch cre-
ation via horizontal message queue partitioning. Essentially, two major challenges arise
in the context of multi-flow optimization. In Section 5.2, we discuss the challenge of plan
execution on batches of messages. Furthermore, in Section 5.3, we describe how this op-
timization technique is embedded within the periodical re-optimization framework and
we address the challenge of computing the optimal waiting time with regard to message
throughput maximization. In addition, we provide formal analysis results such as opti-
mality and latency guarantees in Section 5.4. Finally, the experimental evaluation, which
is presented in Section 5.5, shows that significant performance improvements in the sense
of an increased message throughput are achieved by multi-flow optimization.

5.1 Motivation and Problem Description

In the context of integration platforms, especially in scenarios with huge numbers of plan
instances, the major optimization objective is throughput maximization [LZL07] rather
than the execution time minimization of single plan instances. The goal is (1) to maximize
the number of messages processed per time period, or synonymously in our context, (2) to
minimize the total execution time of a sequence of plan instances. Here, depending on the
application area, moderate latency times of single messages, in the orders of seconds to
minutes, are acceptable [UGA+09]. When addressing this general optimization objective,
the following concrete problems have to be considered:

Problem 5.1 (Expensive External System Access). External system access can be really
time-consuming caused by network latency (minimal roundtrip time), external query pro-
cessing, network traffic, and message transformations from external formats into internal
structures. Depending on the involved external systems and on the present infrastructure,
the fraction of these influences with regard to the required total access time may vary sig-
nificantly. However, in particular when accessing custom applications and services, data
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cannot be processed as a stream such that these influences are additive components rather
than being subsumed by the most time-consuming influence.

Problem 5.2 (Cache Coherency Problem). One solution to Problem 5.1 might be the
caching of results of external queries. However, this fails due to the integration of het-
erogeneous and highly distributed systems and applications (loosely coupled without any
notification mechanisms). In such distributed environments, caching is not applicable be-
cause the central integration platform cannot ensure that the cached data is consistent with
the data in the source systems [LZL07]. A similar problem is also known for caching proxy
servers, which might break client cache directives (RFC 3143) [CD01].

Due to this problem, other projects, such as the MT-Cache, use currency bounds (maxi-
mum time of caching certain data objects) [GLRG04]. However, they can only ensure weak
consistency, while for integration flows eventual consistency is needed as described in Sub-
section 2.3.2. Caching (without semantic cache invalidation) cannot ensure the properties
of (1) read-your-writes (consistency between a writing Invoke and a subsequent reading
Invoke of the same data object) and (2) session consistency (consistency between multiple
reading Invoke of the same data object) of eventual consistency [Vog08].

Problem 5.3 (Serialized External Behavior). Depending on the involved external systems,
we need to ensure the serial order of messages (see Problem 2.2 Message Outrun). For
example, this can be caused by referential integrity constraints within the target systems.
Thus, we need to guarantee monotonic reads and writes for individual data objects.

Given these problems, the optimization objective of throughput maximization has so far
only been addressed by leveraging a higher degree of parallelism, such as (1) intra-operator,
horizontal parallelism (data partitioning, see [BABO+09]), (2) inter-operator, horizontal
parallelism (explicit parallel subflows, see Chapter 3, [LZ05, SMWM06]), and (3) inter-
operator, vertical parallelism (pipelining of messages and message parts, see Chapter 4,
[PVHL09a, PVHL09b]). Although these techniques can significantly increase the resource
utilization and thus, increase the throughput, they do not reduce the executed work. We
use an example to illustrate the problem of expensive external system access and how
multi-flow optimization addresses this problem.

Example 5.1 (Instance-Based Orders Processing). Assume our example plan P2 (Fig-
ure 5.1(a)). The instance-based execution model initiates a new plan instance pi for each

Receive (o1)
[service: s5, out: msg1]

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Invoke (o6)
[service s3, in: msg5]

INNER

Qi

Qi:

SELECT *
FROM s4.Credit
WHERE Customer=? 

with
? = mi/Customer/Cname

(a) Example Plan P2
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(b) Instance-Based Plan Execution of P2

Figure 5.1: Example Instance-Based Plan Execution
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incoming message as shown in Figure 5.1(b). The Receive operator (o1) reads an order
message from the queue and writes it to a local variable. Then, the Assign operator (o2)
extracts the customer name of the received message via XPath and prepares a query with
this parameter. Subsequently, the Invoke operator (o3) queries the external system s4 in
order to load credit rating information for that customer. An isolated SQL query Qi per
plan instance (per message) is used. The Join operator (o4) merges the result message
with the received message (with the customer key as join predicate). Finally, the pair of
Assign and Invoke operators (o5 and o6) sends the result to system s3. We see that mul-
tiple orders from one customer (CustA: m1, m3) cause us to pose the same query (Invoke
operator o3) multiple times to the external system s4.

Due to the serialized execution of plan instances, we may end up with work done multiple
times, for all types of operators (interaction-oriented, data-flow-oriented as well as control-
flow-oriented operators). At this point, multi-flow optimization comes into play, where we
consider optimizing the sequence of plan instances. Our core idea is to periodically collect
incoming messages and to execute whole message batches with single plan instances. In the
following, we give an overview of the näıve, time-based approach as well as the horizontal
(value-based) message queue partitioning as batch creation strategies.

Näıve Time-Based Batch Creation

The underlying theme of the näıve (time-based) batching approach, as already proposed
in variations for distributed queries [LZL07, LX09], scan sharing [QRR+08], operator
scheduling strategies in DSMS [Sch07], and web service interactions [SMWM06, GYSD08b,
GYSD08a], is to periodically collect messages (that would initiate plan instances pi) using
a specific waiting time ∆tw and merge those messages to message batches bi. We then
execute a plan instance p′i of the modified (rewritten) plan P ′ for the message batch bi.
In the following, we revisit our example and illustrate that näıve (time-based) approach.

Example 5.2 (Batch-Orders Processing). Figure 5.2(b) shows the näıve approach, where
we wait for incoming messages during a period of time ∆tw and execute the collected
messages as a batch. For this purpose, P2 is rewritten to P ′2 (see Figure 5.2(a)), where in
this particular example only the prepared query has been modified.

Receive (o1)
[service: s5, out: msg1]

Assign (o2)
[in: msg1, out: msg2]

Join (o4)
[in: msg1,msg3, out: msg4]

Invoke (o3)
[service: s4, in: msg2, out: msg3]

Assign (o5)
[in: msg4, out: msg5]

Invoke (o6)
[service s3, in: msg5]

INNER

Qi

Qi (rewritten):

SELECT *
FROM 

s4.Credit
WHERE 

Customer IN(?)

(a) Example Plan P ′2
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o1 o3o2 o4 o6o5
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(b) Message Batch Plan Execution of P ′2

Figure 5.2: Example Message Batch Plan Execution

In this example, the first batch contains two messages (m1 and m2) and the second also
contains two messages (m3 and m4). In order to make use of batch processing, we extend
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the query of o3 (Invoke) such that additional information for all messages of the batch is
loaded from the external system, which led to an improvement due to fewer plan instances.

The näıve (time-based) approach mainly depends on the waiting time. An increasing
waiting time causes a larger number of messages in every batch and therefore it causes a
decreasing number of batch plan instances. As a result, the relative execution time per
message might decrease and message throughput increases. However, the näıve approach
has the following major drawback:

Problem 5.4 (Distinct Messages in the Batch). Due to the simple (time-based) model
of collecting messages, there might be multiple distinct messages in the batch according to
the attributes used by the operators of P ′. It follows that we need to rewrite the queries to
external systems. Figure 5.3 illustrates common cases of those queries.

R

SσA=100

Q:

(a) Original

R

SσA=100 ᴠ A=200

Q’:

R

SσA<100 ᴠ A<200

Q’:

(b) Disjunctive Query (w/o and w/ overlap)

R

SσA=x

Q:

service interface
get( x )

(c) Split Queries

Figure 5.3: Common Cases of Rewritten Queries to External Systems

Distinct messages in a batch implies two major problems. First, this might have negative
performance influence on the overall execution time. Suppose the external query shown in
Figure 5.3(a), where the attribute value x = 100 was extracted from a message. If we have
multiple distinct message according to this attribute in a batch, we insert a disjunctive
predicate into the query (Figure 5.3(b)). For equality predicates this leads to an increased
cardinality of intermediate results and thus the execution time of following operators suf-
fers. Due to possibly superlinear complexity (e.g., join or group-by) of following operators,
the execution time of a rewritten external query might be even higher than the total exe-
cution time of independent queries. In addition, due to the disjunctive predicate, the data
transfer over the network is unchanged. For range predicates, the rewritten queries are
faster if there is a partial overlap. In this case, also the amount of transferred data is
reduced.

Figure 5.4: Query Execution Times

Figure 5.4 shows the results of an experiment (warm) that investigates the influence of
rewritten queries on the (local) query execution time using a local (embedded) Derby in-
stance. It compares the execution times of a single original query (Q100), a batch of two
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original queries (Q100 + Q200) and the rewritten query with non-overlapping disjunctive
predicate (Q100+200). In addition, for both types of disjunctive queries the integration
platform must post-process the received data in order to ensure correctness by assigning
only partial results to the individual messages. Second, the rewriting of queries might not
be possible at all for certain service interfaces or custom applications such that a single
query for each distinct message in the batch must be used. For example, Figure 5.3(c)
shows a service interface with a single parameter, where the service implementation al-
ways uses the same query template such that the query cannot be rewritten by an external
client. Thus, the possible throughput improvement strongly depends on the number of dis-
tinct items in the batch. We cannot precisely estimate this influence of rewritten queries
due to missing knowledge about data properties of involved external systems [IHW04].

In conclusion, the näıve approach can hurt performance. Furthermore, it requires that
queries to external systems can be rewritten according to the different items in the batch.
This is not always possible when integrating arbitrary systems and applications.

Batch Creation via Horizontal Queue Partitioning

Due to Problem 5.4, we propose the concept of horizontal message queue partitioning11 as
batch creation strategy. The basic idea is to horizontally partition the inbound message
queues according to specific partitioning attributes ba. With such value-based partitioning,
all messages of a batch exhibit the same attribute value according to the partitioning
attribute. Thus, certain operators of the plan only need to access this attribute once for the
whole partition rather than for each individual message. The core steps are (1) to derive
the partitioning attributes from the integration flow, (2) to periodically collect messages
during an automatically computed waiting time ∆tw, (3) to read the first partition from
the queue and (4) to execute the messages of this partition as a batch with an instance
p′i of a rewritten plan P ′. Additionally, (5) we might need to ensure the serial order of
messages at the outbound side. In order to illustrate the core idea, we revisit our example.

Example 5.3 (Partitioned Batch-Orders Processing). Figure 5.5 reconsiders the example
for partitioned multi-flow execution. The rewritten plan P ′2 is equivalent to the instance-
based plan (Figure 5.1(a)) because (1) external queries require no rewriting at all, and (2)
plan rewriting is only required for multiple partitioning attributes.
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m1 [“CustA“]
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m2 [“CustB“]

m5 [“CustB“]
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∆tw
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b1 p’1:
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b2 p’2:

Q’2: SELECT * 
FROM s4.Credit 
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o1 o3o2 o4 o6o5

o1 o3o2 o4 o6o5

Figure 5.5: Partitioned Message Batch Execution P ′2

11Horizontal data partitioning [CNP82] is strongly applied in DBMS and distributed systems. Typically,
this is an issue of physical design [ANY04], where a table is partitioned by selection predicates (value).
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The incoming messages mi are partitioned according to the partitioning attribute customer
name that was extracted with ba = mi/Customer/Cname at the inbound side. A plan
instance of the rewritten plan P ′2 reads the first partition from the queue and executes the
single operators for this partition. Due to the equal values of the partitioning attribute, we
do not need to rewrite the query to the external system s4. Every batch contains exactly
one distinct attribute value according to ba. In total, we achieve performance benefits for
the Assign, as well as the Invoke operators. Thus, the throughput is further improved
because the execution time of such a batch does not include any distinct messages anymore.
Note that the incoming order of messages was changed (arrows in Figure 5.5) and therefore
needs to be serialized at the outbound side.

It is important to note that beside external queries (Invoke operator), also local oper-
ators (e.g., Assign and Switch) can directly benefit from horizontal partitioning. Parti-
tioning attributes are derived from the plan (e.g., query predicates, or switch expressions).
This benefit is caused by operation execution on partitions instead of on individual mes-
sages. A similar underlying concept is also used for pre-aggregation [IHW04] or early-
group-by [CS94]. In addition, all operators that work on partitions of equal messages
(e.g., loaded once from an external system) also need to be executed only once.

Our cost-based optimizer realizes the optimization objective of throughput maximiza-
tion by monitoring several statistics of the stream of incoming messages and by periodical
re-optimization, where the optimal waiting time ∆tw is computed. In case of low message
rates (no full utilization of the integration platform), the waiting time is decreased in order
to ensure low latency of single messages. As the message rate increases, the waiting time
is increased accordingly to increase the message throughput by processing more messages
per batch, while preserving maximum latency constraints for single messages.

MQO (Multi-Query Optimization) and OOP (Out-of-Order Processing) [LTS+08] have
already been investigated for other system types. In contrast to existing work, we present
the novel MFO approach that is tailor-made for integration flows and that maximizes
the throughput by employing horizontal message queue partitioning and computing the
optimal waiting time. MFO is also related to caching and the recycling of intermediate
results [IKNG09]. While caching might lead to use of outdated data, the partitioned ex-
ecution might cause reading more recent data of different objects. However, we cannot
ensure strong consistency by using asynchronous integration flows (decoupled from clients
with message queues) anyway. Furthermore, with regard to eventual consistency [Vog08],
we guarantee (1) monotonic writes, (2) monotonic reads with regard to individual data
objects12, (3) read-your-writes/session consistency, (4) semantic correctness as defined in
Definition 3.1, (5) that the temporal gap of up-to-dateness is at most equal to a given
latency constraint, and (6) that no outdated data is read. In contrast, caching cannot
guarantee read-your-writes/session consistency and that no outdated data is read. In con-
clusion, caching is advantageous if data of external sources is static and the amount of data
is rather small, while MFO is beneficial if data of external sources changes dynamically.

Finally, the major research challenges of MFO via horizontal partitioning are (1) to
enable plan execution of horizontally partitioned message batches and (2) to compute
the optimal waiting time ∆tw during periodical re-optimization. We address these two
challenges in Section 5.2 and Section 5.3, respectively.

12Both caching and MFO cannot ensure monotonic reads over multiple data objects due to different read
times of certain data objects.
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5.2 Horizontal Queue Partitioning

In order to enable plan execution of message partitions, several preconditions are required.
First, we describe the tailor-made message queue data structure partition tree. It enables
horizontal partitioning according to multiple attributes because a single plan might include
several predicates, where we can benefit from partitioning. Second, we explain changes of
the deployment process, which include (1) the derivation of partitioning attributes from
a given plan, (2) the derivation of the optimal partitioning scheme in case of multiple
attributes, and (3) the rewriting of plans according to the chosen partitioning scheme.

5.2.1 Maintaining Partition Trees

As the foundation for multi-flow optimization, we introduce the partition tree as a parti-
tioned message queue data structure. Essentially, this tree is a simplified multi-dimensional
B*-Tree (MDB-Tree) [SO82] with specific extensions, where the messages are horizontally
(value-based) partitioned. Similar to a traditional MDB-Tree, each tree level represents a
different partitioning attribute. The major difference to a traditional MDB-Tree is that
the partitions are sorted according to their timestamps of creation rather than according
to the key values of index attributes. This is reasoned by queuing semantics that imply a
temporal order. Thus, at each tree level, a list of partitions, unsorted with regard to the
attribute values, is stored. Formally, the partition tree is defined as follows:

Definition 5.1 (Partition Tree). The partition tree is an index for multi-dimensional
attributes. It contains h levels, where each level represents a partition attribute bai ∈
{ba1, ba2, . . . , bah}. For each attribute bai, a list of batches (partitions) b are maintained.
Those partitions are ordered according to their timestamps of creation tc(bi) with tc(bi−1) ≤
tc(bi) ≤ tc(bi+1). Only the last index level bah contains the queued messages. A partition
attribute has a type with type(bai) ∈ {value, value-list, range}.

Such a partition tree is used as our message queue representation. Similar to usual
message queues, it decouples the inbound adapters from the process engine in order to
enable receiving incoming messages even in the case of overload situations. For example,
such situations might be caused by (1) workload peaks, or (2) temporarily unavailable
target systems. Additionally, the partition tree realizes the horizontal queue partitioning.
We use an example in order to explain the structure of this partition tree more clearly.

Example 5.4 (Partition Tree). Assume two partitioning attributes ba1 (customer, value)
and ba2 (total price, range) that have been derived from a plan P . Figure 5.6 shows this
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Figure 5.6: Example Partition Tree
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example partition tree of height h = 2. On the first index level, the messages are partitioned
according to customer names ba1(mi), and on the second level, each partition is divided
according to the range of order total prices ba2(mi). Horizontal partitioning with the
temporal order of partitions reason the outrun of single messages. However, the messages
within an individual partition are still sorted according to their incoming order.

Based on the partition tree data structure, there are two fundamental maintenance
procedures of such a horizontally partitioned message queue:

• The enqueue operation is invoked by the inbound adapters whenever a message was
received and transformed into the internal representation. During message transfor-
mation, partitioning attributes are extracted with low cost as well. Algorithm 5.1
describes the enqueue operation. We use a thread monitor approach for synchro-
nization of those enqueue and dequeue operations in order to avoid any busy waiting.
Subsequently, if a partition with bal(mi) = ba(bi) already exists, the message is in-
serted; otherwise, a new partition is created and added at the end of the list. The
recursive insert operation depends on the partition type, where we distinguish node
partitions (index levels 1 to h− 1) and leaf partitions (last index level that contains
the messages). In case of a node partition, the algorithm part line 3 to line 13 is
used recursively, while in case of a leaf partition, the message is simply added to the
end of the list of messages in this partition.

• The process engine then periodically invokes the dequeue operation according to the
computed waiting time ∆tw. This dequeue operation removes and returns the first
top-level partition with b− ← b1. The removed partition exhibits the property of

being the oldest partition within the partition tree with tc(b1) = min
|b|
i=1 tc(bi), which

ensures that starvation of messages is impossible.

The operations enqueue and dequeue are invoked for each individual message. There-
fore, it is meaningful to discuss the worst-case complexity for both operations. Let sel(bai)

Algorithm 5.1 Partition Tree Enqueue (A-PTE)

Require: message mi, partitioning attribute values ba(mi), index level l
initialized counter c← 0, boolean SEB (serialized external behavior)

1: while
∑|b|

j=1|bj | > q do // ensure maximum queue constraint q
2: wait // wait for notifying dequeue() (without busy waiting)
3: for j ← |b| to 1 do // for each partition
4: if bal(mi) = ba(bj) then // if partition already exists
5: b+ ← bj
6: break
7: else if SEB then
8: c← c+ |bj | // count outrun messages for later serialization
9: if b+ = NULL then // if partition does not exist

10: b+ ← create partition with tc(b
+)← ti(mi)

11: b|b|+1 ← b+ // add as last partition
12: mi.c← c // zero in case of newly created partitions or for disabled SEB
13: b+.insert(mi, ba(mi), l − 1) // recursive insert
14: notify // notify waiting dequeue()
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denote the average selectivity of a single partitioning attribute. Thus, 1/sel(bai) repre-
sents the number of distinct values of this attribute, which is equivalent to the worst-case
number of partitions at index level i. These partitions are unsorted according to the parti-
tioning attribute. Thus, due to the resulting linear comparison of partitions at each index
level, the enqueue operation exhibits a worst-case time complexity of O(

∑h
i 1/sel(bai)).

In contrast to this, the dequeue operation exhibits a constant worst-case time complexity
of O(1) because it simply removes the first top-level partition. In conclusion, there is only
moderate overhead for maintaining partition trees if the selectivity is not too low.

However, in order to ensure robustness with regard to arbitrary selectivities, we extend
the basic structure of a partition tree to the hash partition tree. Figure 5.7 illustrates
an example of its extended queue data structure. Essentially, a hash partition tree is
a partition tree with a hash table as a secondary index structure over the partitioning
attribute values (primarily applicable for attribute types value and range).

ba1
(Customer)

tc(b5)

partition b5 [“CustB“] partition b1 [“CustA“]partition b2    [“CustC“]

tc(b2) tc(b1)>>

1
2
3

0
h(ba1) last first

Figure 5.7: Example Hash Partition Tree

This hash table is used in order to probe (get) if there already exist a value of a parti-
tioning attribute. If so, we insert the message into the corresponding partition; otherwise,
we create a new partition, append it at the end of the list and put a reference to this
partition into the hash table as well. Accordingly, the dequeue operation still gets the
first partition from the list but additionally removes the pointer to this partition from
the hash table. As a result, we reduced the complexity for both operations, enqueue and
dequeue—for the case, where no serialized external behavior (SEB) is required—to con-
stant time complexity of O(1). Despite, this probe possibility, for SEB, we additionally
need to determine the number of messages that have been outrun if a related partition
already exist. As a result, for the case, where SEB is required, the worst-case complexity
is still O(

∑h
i 1/sel(bai)) but we benefit if the partition does not exist already.

The requirement of serialized external behavior (SEB) implies the synchronization of
messages at the outbound side. Therefore, we extended the message structure by a counter
c with c ∈ Z+ to mi = (ti, ci, di, ai). If a message mi outruns another message mj during
the enqueue operation, its counter ci is incremented by one. The serialization at the
outbound side is then realized by comparing source message IDs similar to the serialization
concept of Chapter 4, and for each reordered message, the counter is decremented by
one. Thus, at the outbound side, we are not allowed to send message mi until ci = 0.
This counter-based serialization concept13 is required in addition to the concept of AND

and XOR serialization operators (introduced in Chapter 4) in order to allow out-of-order
execution rather than just parallel execution of concurrent operator pipelines. Despite this
serialization concept, we cannot execute message partitions in parallel because this would

13Counter-based serialization works also for CN:CM multiplicities between input and output messages,
where locally created messages get the counter of the input messages. For example, N:C multiplicities
arise if there are writing interactions in paths of a Switch operator. This is addressed by periodically
flushing the outbound queues, where all counters of messages that exceed lc are set to zero.
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not allow a discrete counting of outrun messages due to the possible outrun of partitions.

5.2.2 Deriving Partitioning Schemes

The partitioning scheme in terms of the optimal layout of the partition tree is derived
automatically. This includes (1) deriving candidate partitioning attributes from the given
plan and (2) to find the optimal partitioning scheme for the overall partition tree.

Candidate partition attributes are derived from the single operators oi of plan P . We
realize this by searching for attributes that are involved in predicates, expressions and
dynamic parameter assignments. This is a linear search over all operators with O(m).
Due to different semantics of those attributes, we distinguish between the following three
types of partitioning attributes, which have been introduced in Definition 5.1:

1. Value: This scheme causes a data partitioning by exact value. Thus, for all 1/sel
distinct values of this attribute, a partition is used. An example for this type is an
equality predicate of a query to an external system (Assign and Invoke operator).

2. Value List: Due to disjunctive predicates of external queries or local Switch opera-
tors, we can also use a list of exact values with or-semantics.

3. Range: According to range query predicates or inequalities range partitioning is used.
Examples for this type are expressions of Switch operators or range predicates of
queries to external systems (Assign and Invoke operator).

After having derived the set of candidate partitioning attributes and the type of each
partitioning attribute, we need to select candidates that are advantageous to use. First,
we remove all candidates, where a partitioning attribute refers to externally loaded data
because these attribute values are not present for incoming messages at the inbound side of
the integration platform. Second, we compare the benefit of using a partitioning attribute
(see Section 5.3) with a user-specified cost reduction threshold τ and remove all candidates
that are evaluated as being below this threshold.

Based on the set of partitioning attributes, we create a concrete partitioning scheme for
the partition tree. For h partitioning attributes, there are h! different partitioning schemes.
Due to this factorial complexity, we use a heuristic for finding the optimal scheme. The
intuition is to minimize the number of partitions in the index. Assuming no correlations14,
we order the index attributes according to their selectivities with

min
h∑
i=1

|b ∈ bai| iff sel(ba1) ≥ sel(bai) ≥ sel(bah). (5.1)

Hence, finding the best partitioning scheme exhibits a complexity of O(h log h) due to
the requirement of sorting the h partitioning attributes. Another approach would be to
take the additional costs of rewritten plans into account. However, the costs of additional
operators (splitting and merging of partitions) have shown to be negligible.

Example 5.5 (Minimizing the Number of Partitions). Recall Example 5.4 and assume
the partitioning attributes ba1 (customer, value) and ba2 (total price, range) as well

14The MFO approach works also for correlated partitioning attributes, where queue management might be-
come more expensive due to mis-estimated selectivities. Alternatively, the correlation table introduced
in Subsection 3.3.4 could be used for correlation-aware ordering of partitioning attributes.

138



5.2 Horizontal Queue Partitioning

as the monitored average value selectivities sel(ba1) = 1/3 and sel(ba2) = 1/10. This
results in two possible partitioning schemes with maximum partition numbers of |ba1, ba2| =
3 + 3 · 10 = 33 and |ba2, ba1| = 10 + 10 · 3 = 40. Thus, we select (ba1, ba2) as the best
partitioning scheme because sel(ba1) ≥ sel(ba2). For a given message subsequence, this
results in three instead of ten plan instances.

Having minimized the total number of partitions, we minimized the overhead of queue
maintenance and more importantly maximized the number of messages per top-level par-
tition, which reduces the number of required plan instances. The result is the optimal
partitioning scheme with regard to relative execution time and thus message throughput.

5.2.3 Plan Rewriting Algorithm

With regard to executing hierarchical message partitions, only slight changes of physical
operator implementations are necessary. All other changes are made on logical level when
rewriting a plan P to P ′ during the initial deployment or during periodical re-optimization.

For the purpose of plan rewriting, several integration flow meta model extensions are re-
quired. First, the message meta model is extended in such a way that an abstract message
can be either an atomic message or a message partition, where the latter is described by a
partitioning attribute bai as well as the type and the values of this partitioning attribute.
In addition, the message partition can be a node partition, which references child parti-
tions, or a leaf partition, which references atomic messages. All operators that benefit from
partitioning (e.g., Invoke, Assign, or Switch) are modified accordingly, while all other
operators transparently split the incoming message partition into all atomic messages, are
executed for each message, and then they repartition the messages after execution. Sec-
ond, the flow meta model is extended by two additional operators that are described in
Table 5.1. They represent inverse functionalities as shown in Figure 5.8.

Based on these two additional operators, the logical plan rewriting is realized with the
so-called split and merge approach. From a macroscopic view, a plan receives the top-
level partition, dequeued from the partition tree. Then, we can execute all operators that
benefit from the top-level partitioning attribute. Just before an operator that benefits
from a lower-level partition attribute, we need to insert a PSplit operator that splits the
top-level partition into the 1/sel(ba2) subpartitions (worst case) as well as an Iteration

operator (foreach) that iterates over these subpartitions. The sequence of operators that
benefit from this granularity are used as iteration body. After this iteration, we insert a
PMerge operator in order to merge the resulting partitions back to the top-level partition if
required (e.g., if a subsequent operator benefit from higher level partitioning attributes).

Table 5.1: Additional Operators for Partitioned Plan Execution

Name Description Input Output Complex

PSplit Reads a message partition, splits this par-
tition into the next level partitions, and re-
turns a directly accessible array of abstract
messages.

(1,1) (1,*) No

PMerge The inverse operation to a PSplit opera-
tor reads an array of message partitions and
groups this messages into a single partition.

(1,*) (1,1) No
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Figure 5.8: Inverse Operators PSplit and PMerge

Recall that if we have only one partition attribute, we do not need to apply split and
merge because each operator can work on a single partition level. We use an example to
illustrate the concept of split and merge.

Example 5.6 (Plan Rewriting). Assume a subplan P as shown in Figure 5.9(a). Here,
we receive a message from system s5, create a parameterized query, and request system
s4. Afterwards, we use an alternative switch path depending on an expression, and finally,
proceed with the rest of the plan. According to Example 5.5, we have derived the two
partitioning attributes ba1 (customer, value) and ba2 (total price, range).
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Figure 5.9: Example Plan Rewriting Using the Split and Merge Approach

If we use the partitioning scheme (ba1, ba2), we rewrite the plan as shown in Figure 5.9(b).
First, we insert a PSplit and an Iteration operator just before the Switch operator. As
a result, o2 and o3 benefit from the top-level partition, while o4 is executed for each sub-
partition of the top-level partition. Second, right after this Switch operator, a PMerge is
inserted as well, because subsequent operators benefit from the top level partition.

Algorithm 5.2 illustrates the plan rewriting. For simplicity of presentation, we use a
linear representation of the algorithm, while the realization of this is recursive according
to the hierarchy of sequences of complex and atomic operators. Essentially, this algorithm
consists of two parts. First, there is the dependency analysis that we have already de-
scribed in Subsection 3.2.1. Second, plan rewriting requires as input the operator sequence
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Algorithm 5.2 MFO Plan Rewriting (A-MPR)

Require: operator sequence o, partitioning scheme ba
1: D ← ∅
2: for i← 1 to |o| do // for each operator oi
3: // Part 1: Dependency Analysis
4: for j ← i to |o| do // for each following operator oj

5: if ∃oj
δ→ oi then // existing data dependency over data object var

6: D ← D ∪ d〈oj , var, oi〉 with d〈oj , var, oi〉 ← create dependency
7: // Part 2: Plan Rewriting
8: for k ← 1 to |D| do // for each dependency d
9: d〈oy, q, ox〉 ← dk

10: if oi ≡ oy then // oi is target of data dependency
11: if ba(oy, var) < ba(ox, var) then // oi benefits from lower-level partition
12: ox.insertAfter(os) with os ←createPSlit

13: oy.insertBefore(oiter) with oiter ←createIteration

14: bacur ← ba(oy, var)
15: for j ← i to |o| do // for each following operator oj
16: if ba(oj) = bacur or ba(oj) = NULL then
17: o.remove(oj)
18: oiter.insertLast(oj)
19: D.modify(oiter, oj) // change the old dependencies
20: else if ba(oj) < bacur then
21: recursive plan rewriting (lines 12-24)
22: else // ba(oj) > bacur
23: oj .insertBefore(om) with om ←createPMerge

24: break
25: return o

o, the derived partitioning scheme ba and the created set of dependencies D. For each
operator oi in o, we iterate over all dependencies in D followed by the main rewriting
rules. If the partitioning attribute of operator ox (source of the data and thus, target
of data dependency) is higher than the partitioning attribute of the source of the data
dependency oy, we insert a PSplit operator as well as an Iteration operator. We then
iterate over all following operators (including oy) and evaluate if they can be included
into the iteration body by comparing the partitioning attributes with ba(oj) = bacur. If
the required level is a lower-level attribute, we recursively invoke the insertion of PSplit
and Iteration operators. In contrast, if we determined an operator with a higher-level
attribute, we found the end of the current Iteration operator and insert a PMerge op-
erator. For binary operators (e.g., Join operator), there might be a difference between
partitioning attributes (for one side an Iteration was inserted). In this case, we do not
use a combined iteration but a direct positional lookup at the higher-level partition. A
single PSplit or PMerge operator can bridge multiple levels of the partitioning scheme
such that for plan rewriting, the lower, equal, and higher comparison is sufficient.

This algorithm is used whenever the partitioning scheme (derived from the plan) changes
during periodical re-optimization. Thus, although the algorithm is not executed during
each re-optimization step, it might be used during runtime and hence, it is worth to

141



5 Multi-Flow Optimization

mention its complexity. The A-MPR exhibits—similar to the plan vectorization algorithm
(A-PV, Subsection 4.2.2)—a cubic worst-case time complexity of O(m3) according to the
number of operatorsm. The rationale for this is the already analyzed dependency checking.
Note that the additional inner loop over following operators do not change this asymptotic
behavior because each operator is assigned only once to an inserted Iteration operator.

The split and merge approach realizes the transparent plan rewriting and thus enables
the execution of message partitions even in the case of multiple partitioning attributes.
The rewritten plan mainly depends on the cost-based derived partitioning scheme, which
neglects any additional costs of PSlit and PMerge operators. The reason for this opti-
mization objective is that the ordering of partitioning attributes has a higher influence
on the overall performance (partitioned queue maintenance and benefit by partitioning)
than the additional operators, because PSplit and PMerge are low-cost operators with
linear scalability with regard to the number of messages due to the efficient hash partition
tree data structure. In addition to the throughput improvement achieved by executing
operations on partitions of messages, the inserted Iteration operators offer further opti-
mization potential. In detail, the technique WC3: Rewriting Iterations to Parallel Flows,
described in Subsection 3.4.1, can be applied after the A-MPR in order to additionally
achieve a higher degree of parallelism that further increases the throughput.

To summarize, we discussed the necessary preconditions in order to enable the horizontal
message queue partitioning and the execution of operations on these message partitions. In
detail, we introduced the (hash) partition tree as a message queue data structure that al-
lows the hierarchical partitioning of messages according to certain partitioning attributes.
Furthermore, we introduced basic algorithms (1) for deriving candidate partitioning at-
tributes from a plan, (2) for deriving the optimal partitioning scheme of attributes, and (3)
for rewriting the plan according to this scheme. Only minor changes of operators and the
execution environment are necessary, while all other aspects are issues of logical optimiza-
tion and therefore, fit seamlessly into our cost-based optimization framework. Multi-flow
optimization now reduces to the challenge of computing the optimal waiting time.

5.3 Periodical Re-Optimization

The cost-based decision of the multi-flow optimization technique is to compute the optimal
waiting time ∆tw in order to adjust the trade-off between message throughput and latency
times of single messages according to the current workload characteristics. In this section,
we define the formal optimization objective, we explain the extended cost model and cost
estimation, we discuss the waiting time computation and finally, show how to integrate
this optimization technique into our cost-based optimization framework.

5.3.1 Formal Problem Definition

As described in Section 2.3.1, we assume a message sequence M = {m1,m2, . . . ,mn} of
incoming messages, where each message mi is modeled as a (ti, di, ai)-tuple, where ti ∈ Z+

denotes the incoming timestamp of the message, di denotes a semi-structured tree of name-
value data elements, and ai denotes a list of additional atomic name-value attributes. Each
message mi is processed by an instance pi of a plan P , and tout(mi) ∈ Z+ denotes the
timestamp when the message has been successfully executed. Here, the latency of a single
message TL(mi) is given by TL(mi) = tout(mi)− ti(mi).
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With regard to the optimization objective of throughput maximization, we need some
additional notation. The execution characteristics of a hypothetical finite message subse-
quence M ′ with M ′ ⊆M are described by two major statistics:

• Total Execution Time W (M ′): The total execution time of a finite message subse-
quence is determined by W (M ′) =

∑
W (p′) as the sum of the execution time of all

partitioned plan instances required to execute all messages mi ∈M ′.
• Total Latency Time TL(M ′): The total latency time of a finite message subsequence

is determined by TL(M ′) = tout(m|M ′|) − ti(m1) as the time between receiving the
first message until the last message has been executed (both with regard to the
subsequence M ′). This includes overlapping execution time and waiting time.

Following these prerequisites, we now formally define the multi-flow optimization problem.

Definition 5.2 (Multi-Flow Optimization Problem (P-MFO)). Maximize the message
throughput with regard to a hypothetical finite message subsequence M ′. The optimization
objective φ is to execute M ′ with minimal latency time:

φ = max
|M ′|
∆t

= minTL(M ′). (5.2)

There, two additional restrictions must hold:

1. Let lc denote a soft latency constraint that must not be exceeded in expectation. Then,
the condition ∀mi ∈M ′ : TL(mi) ≤ lc must hold.

2. The external behavior must be serialized according to the incoming message order.
Thus, the condition ∀mi ∈M ′ : tout(mi) ≤ tout(mi+1) must hold as well.

Finally, the P-MFO describes the search for the optimal waiting time ∆tw with regard to
φ and the given constraints.

Based on the horizontal partitioning of message queues, Figure 5.10 illustrates the basic
temporal aspects that need to be taken into account, for a scenario with partitioning
attribute selectivity of sel = 1.0.

W(P’)∆tw(P’)

T2T1

∆tw(P’) W(P’)

∆tw(P’) W(P’)

T3
time t

TL
^

mi
ti(mi) TL(mi)

tout(mi)

p’1
p’2
p’3

Ti:

p’i:

Figure 5.10: P-MFO Temporal Aspects (with ∆tw > W (P ′))

Essentially, an instance p′i of a rewritten plan P ′ is initiated periodically at Ti, where the
period is determined by the waiting time ∆tw. A message partition bi is then executed by
p′i with an execution time of W (P ′). Finally, we want to minimize the total latency time
T̂L(M ′) in order to solve the defined optimization problem. Comparing ∆tw and W (P ′),
we have to distinguish the following three cases:

• Case 1: ∆tw = W (P ′): We wait exactly for the period of time that is required for
executing partition bi before executing bi+1. This is the simplest model and results
in the full utilization by a single plan. As we will show this specific case can be one
desirable aim with regard to the optimization objective φ.
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• Case 2: ∆tw > W (P ′) (Figure 5.10): The execution time is shorter than the waiting
time. This can improve the throughput and is advantageous for multiple plans.

• Case 3: ∆tw < W (P ′): The waiting time is shorter than the execution time. Thus,
the result would be (1) temporally overlapping plan instances for different partitions
or (2) growing message queue sizes (increasing k′).

Problem 5.5 (Waiting Time Inconsistency). When computing the waiting time ∆tw, we
must prevent case 3 (∆tw < W (P ′)) because it would lead to the parallel execution of
plan instances, where we could not ensure serialization. Furthermore, there might be an
a-priori violated latency constraint with TL(M ′) ≥ lc or the latency constraint lc might be
set to impossible values with regard to the execution time W (P ′).

In order to overcome Problem 5.5, we define the validity condition: For a given latency
constraint lc, there must exist a waiting time ∆tw such that (0 ≤ W (P ′) ≤ ∆tw) ∧ (0 ≤
T̂L(M ′) ≤ lc); otherwise, the constraint is invalid. In other words, (1) we avoid case 3, and
(2) we check if the worst-case latency of a single message—in the sense of the estimated
total latency of 1/sel distinct partitions—fulfills the latency constraint lc.

5.3.2 Extended Cost Model and Cost Estimation

In order to estimate the costs of plan instances for specific batch sizes k′ with k′ = |bi|,
which is required for computing the optimal waiting time, we need to adapt the used cost
model for integration flows that has been described in Subsection 3.2.2. Basically, only
operators that benefit from partitioning require extensions.

The cost model extensions address the abstract costs as well as the execution time
because interaction-, control-flow-, and data-flow-oriented operators are affected by par-
titioning. Table 5.2 shows these extended costs C(o′i, k

′) and execution times W (o′i, k
′) in

detail. The extended costs of operators that directly benefit from partitioning, namely
Invoke, Receive, Switch, and Assign, are independent of the number of messages k′.
For example, the Invoke operator executes an external query once for the whole batch.
Further, also the Switch operator evaluates its path expressions on the partitioning at-
tribute and thus, for the whole batch rather than on individual messages. However, the
Switch operator recursively contains the extended costs of arbitrary child operators that
might benefit from partitioning or not. In contrast, the costs of all other operators (that
do not benefit from partitioning) linearly depend on the number of messages in the batch
k′. This is also true for Invoke, Receive, Switch, and Assign operators if they do not

Table 5.2: Extended Double-Metric Operator Costs for Message Partitions

Operator Abstract Execution Time W (o′i, k
′)

Name Costs C(o′i, k
′)

Invoke |dsin|+ |dsout| W (oi)
Receive |dsout| W (oi)

Switch |dsin|
n∑

i=1

P (pathi) ·

 i∑
j=1

W
(
exprpathj

)
+

mi∑
l=1

W
(
o′i,l, k

′)
Assign |dsin|+ |dsout| W (oi)

other C(oi) · k′ W (oi) · k′
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benefit from a partitioning attribute (e.g., for writing interactions of an Invoke opera-
tor). However, in some cases (e.g., operations on externally loaded data), all operators
can benefit from partitioning as well because they are inherently executed only once and
just expanded to the batch size if required (e.g., by the first binary operator that receives
a message partition as one of its inputs). For example, as we load data for a partition
of messages, we can execute any subsequent transformation of this loaded data also only
once.

For operators that do not benefit from partitioning, the abstract costs are computed by
C(o′i, k

′) = C(oi) · k′ and the execution time can be computed by W (o′i, k
′) = W (oi) · k′

or by W (o′i, k
′) = W (oi) · C(o′i, k

′)/C(oi). Finally, if k′ = 1, we get the instance-based
costs with C(o′i, k

′) = C(oi) and W (o′i, k
′) = W (oi). Thus, the instance-based execution

is a specific case of the execution of horizontally partitioned message batches. As a result,
theoretically, partitioning cannot cause any performance decrease of an operator.

In addition to the mentioned operators that can benefit from partitioning, there are
further operators that might also benefit from partitioning. Examples for these are the
Join, Selection, and Groupby operators. However, due to the partitioning of complete
messages (with tree-structured data) partitioning applies only to specific cases, where a
message has only a single tuple (to which the value of the partitioning attribute refers).
Hence, we do not consider these operators because the possible benefit is strongly limited.
Nevertheless, these operators could be included with benefit if streaming of message parts
(e.g., a part for each tuple) [PVHL09a, PVHL09b] is applied because, we could execute
Join, Selection, and Groupby operators efficiently on whole batches of these parts. We
use our example plan P2 in order to illustrate the overall cost estimation in detail.

Example 5.7 (Extended Cost Estimation). Recall the rewritten plan P ′2 (Figure 5.5) and
assume a number of k′ messages per message partition. Using the extended cost model, we
can estimate the execution time W (P ′2, k

′). The monitored average execution times W (oi)
are shown in the table in Figure 5.11. Now, we compute W (P ′2, k

′) as follows:

W (P ′2, k
′) =

m∑
i=1

W (o′i, k
′) = W (o1) +W (o2) +W (o3) +W (o4) · k′ +W (o5) · k′ +W (o6) · k′

= W (o1) +W (o2) +W (o3) + (W (o4) +W (o5) +W (o6)) · k′

The operators o1, o2, and o3 benefit from partitioning and hence, we assign costs that
are independent of k′, while costs of operators o4, o5, and o6 increase linearly with k′.
Using this cost function of P2 we can estimate the execution time for an arbitrary number

Operator oi Execution Time W (oi)

o1 0.01 s
o2 0.015 s
o3 0.3 s
o4 0.055 s
o5 0.02 s
o6 0.13 s

P 0.53 s

Figure 5.11: Relative Execution Time W (P ′2, k
′)/k′
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k′. Figure 5.11 illustrates the resulting relative execution time per message (analytical
consideration) with varying batch size k′ ∈ {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We
observe a decreasing relative execution time per message W (P ′2, k

′)/k′ with increasing k′,
and that this relative execution time asymptotically tends to a lower bound.

Using the double-metric cost model in combination with its extension for message par-
titions, we now can compute the total execution time W (M ′, k′) and the total latency
time TL(M ′, k′) of finite message subsequences M ′ (with undefined length) by assuming
d|M ′|/k′e = 1/sel instances of a partitioned plan (rounded up to numbers of instances).

• Total Execution Time W (M ′): The estimated total execution time Ŵ (M ′) of a
message subsequence is computed as the product of the estimated costs per instance
times the number of executed plan instances with

Ŵ (M ′, k′) = Ŵ (P ′, k′) ·
⌈
|M ′|
k′

⌉
, (5.3)

where Ŵ (P ′, k′) is computed as sum over the sequence of extended operator costs
with Ŵ (P ′, k′) =

∑m
i=1 Ŵ (o′, k′).

• Total Latency Time TL(M ′): In contrast, the estimated total latency time T̂L(M ′)
of a message subsequence is composed of the waiting time ∆tw and the execution
time Ŵ (P ′, k′). Thus, we compute it depending on the comparison between ∆tw
and Ŵ (P ′, k′) with

T̂L(M ′, k′) =


⌈
|M ′|
k′

⌉
·∆tw + Ŵ (P ′, k′) ∆tw ≥W (P ′, k′)

∆tw +
⌈
|M ′|
k′

⌉
· Ŵ (P ′, k′) otherwise.

(5.4)

Due to our defined validity condition, ∆tw < W (P ′, k′) is invalid. Hence, in the
following we use only the first case of Equation 5.4.

It follows directly that Ŵ (M ′, k′) ≤ T̂L(M ′, k′), where Ŵ (M ′, k′) + ∆tw = T̂L(M ′, k′)
is the specific case at ∆tw = W (P ′, k′). This means, the estimated total latency time
cannot be lower than the estimated total execution time because the latency time addi-
tionally includes the waiting time. Finally, the optimization objective φ of the P-MFO
is to minimize this total latency time function T̂L under all existing constraints. In the
following, we will explain how to compute the optimal waiting time ∆tw that achieves
this minimization for the general case of arbitrary cost models.

5.3.3 Waiting Time Computation

The intuition of computing the optimal waiting time ∆tw is that the waiting time—and
hence, the batch size k′—strongly influences the execution time of single plan instances.
The latency time then depends on that execution time. Figure 5.12 conceptually illustrates
the resulting two inverse influences that our computation algorithm exploits:

• Figure 5.12(a): For partitioned plans, an increasing waiting time ∆tw causes de-
creasing relative execution time per message W (P ′, k′)/k′ and total execution time
W (M ′, k′), which are both non-linear functions that asymptotically tend towards a
lower bound. In contrast, ∆tw has no influence on instance-based execution.
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Relative Execution Time 
W(P’,k’) / k’

Waiting 
Time ∆tw

instance-based

partitioned

lower bound

(a) ∆tw →W (P ′)/k′ Influence

Total Latency Time 
TL(M’)

Waiting 
Time ∆tw

instance-based

latency constraint lc

min TL partitioned (v1)

partitioned (v2)

total execution time W(M’,k’)
+ ∆tw

(b) ∆tw → TL(M ′) Influence

Figure 5.12: Search Space for Waiting Time Computation

• Figure 5.12(b): On the one side, an increasing waiting time ∆tw linearly increases
the latency time T̂L because the waiting time is directly included in T̂L. On the
other side, an increasing ∆tw causes a decreasing relative execution time and thus,
indirectly decreases T̂L because the execution time is included in T̂L. The result of
these two influences, in the general case of arbitrary extended cost functions, is a
non-linear total latency time function that has a local minimum (v1) or not (v2). In
any case, due to the validity condition, the total latency function is defined for the
closed interval TL(M ′, k′) ∈ [W (M ′, k′) + ∆tw, lc] and hence, both global minimum
and maximum exist. Given these characteristics, we compute the optimal waiting
time with regard to latency time minimization and hence, throughput maximization.

For waiting time computation, we need some additional notation. We monitor the in-
coming message rate R ∈ R and the value selectivity sel ∈ (0, 1] according to the partition-
ing attributes. For the sake of a simple analytical model, we only consider uniform value
distributions of the partitioning attributes. However, it can be extended via histograms for
value-based selectivities as well. The first partition will contain k′ = R ·sel ·∆tw messages.
For the i-th partition with i ≥ 1/sel, k′ is computed by k′ = R · ∆tw, independently of
the selectivity sel. A low selectivity implies many partitions bi but only few messages per
partition per time unit (|bi| = R · sel). However, the high number of partitions bi forces
us to wait longer (∆tw/sel) until the start of execution of such a partition such that the
batch size only depends on message rate R and the waiting time ∆tw.

Based on the relationship between the waiting time ∆tw and the number of messages
per batch k′, we can compute the waiting time, where T̂L is minimal by

∆tw | min T̂L(∆tw) ∧ Ŵ (M ′,∆tw) ≤ T̂L(M ′,∆tw) ≤ lc (5.5)

Using Equation 5.4 and assuming a fixed message rate R with 1/sel distinct items accord-
ing to the partitioning attribute, we can substitute k′ with R ·∆tw and get

T̂L(M ′, k′) =

⌈
|M ′|
k′

⌉
·∆tw +W (P ′, k′)

T̂L(M ′, R ·∆tw) =

⌈
|M ′|

R ·∆tw

⌉
·∆tw +W (P ′, R ·∆tw).

(5.6)

Finally, we set the cardinality of the hypothetical message subsequence to the worst case
by M ′ = k′/sel = (R · ∆tw)/sel (execution of all 1/sel distinct partitions, where each
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partition contains k′ messages), use Equation 5.6 and compute min T̂L with

∆tw | min T̂L(M ′, R ·∆tw) with T̂ ′L(M ′, R ·∆tw)∆tw = 0

T̂ ′′L(M ′, R ·∆tw)∆tw∆tw > 0,
(5.7)

where T̂ ′L and T̂ ′′L are the first and second partial deviation of the total latency function

T̂L with repect to ∆tw. If such a local minimum exists, we check the validity condition
of (0 ≤ W (P ′, k′) ≤ ∆tw) ∧ (0 ≤ T̂L ≤ lc). If ∆tw < W (P ′, k′), we search for ∆tw =
W (P ′, k′). Further, if T̂L > lc, we search for the specific ∆tw with T̂L(∆tw) = lc. If
such a local minimum does not exist, we use the lower border of the function interval to
compute ∆tw with

∆tw | min T̂L(M ′, R ·∆tw) with T̂L(M ′, R,∆tw) = W (M ′,∆tw ·R) + ∆tw, (5.8)

where this lower border of W (M ′, k′)+∆tw is given at ∆tw = W (P ′, k′), where W (P ′, k′)
depends itself on ∆tw. In dependence on the load situation, there might not be a valid
∆tw = W (P ′, k′) with ∆tw ≥ 0. In this overload situation, we compute the maximum
number of messages per batch k′′ by

k′′ | W (M ′, k′′) + ∆tw = TL(M ′, k′′) = lc. (5.9)

In this case, the waiting time is exactly ∆tw = W (P ′′, k′′) and thus we have a full uti-
lization. However, due to the overload situation, we do not execute the partition with
all collected messages k′ but only with the k′′ messages, while the k′ − k′′ messages are
reassigned to the end of the partition tree (and with regard to serialized external behavior,
the outrun counters are increased accordingly). This ensures lowest possible latency of
single messages. Thus, we achieve highest throughput, but the input queue size increases.
We use an example to illustrate this whole computation approach.

Example 5.8 (Waiting Time Computation). Recall the Example 5.7 and assume a fixed
message rate R = 4 msg/s (overload situation for instance-based execution due to W (P2) =
0.53 s ), a latency constraint lc = 200 s, and a selectivity of sel = 0.01. In order to compute
∆tw, we use the following T̂L function (w.r.t. Equation 5.6):

T̂L(M ′, R ·∆tw) =

⌈
|M ′|

R ·∆tw

⌉
·∆tw

+W (o1) +W (o2) +W (o3) + (W (o4) +W (o5) +W (o6)) ·R ·∆tw.

We then set M ′ = (R ·∆tw)/sel to the worst-case of k′ = R ·∆tw messages for all 1/sel
distinct partitions and thus get

T̂L(M ′, R ·∆tw) =

⌈
1

sel

⌉
·∆tw

+W (o1) +W (o2) +W (o3) + (W (o4) +W (o5) +W (o6)) ·R ·∆tw.

Based on this obtained function, we see that the deviation according to ∆tw will lead
to a constant function and thus, no local minimum exist. Hence, we determine ∆tw at
∆tw = W (P ′2, k

′) with

∆tw = W (P ′2, R ·∆tw)

∆tw = W (o1) +W (o2) +W (o3) + (W (o4) +W (o5) +W (o6)) ·R ·∆tw

∆tw =
1− (W (o4) +W (o5) +W (o6)) ·R

W (o1) +W (o2) +W (o3)
≈ 1.8056 s.
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Based on this waiting time, we compute the hypothetical total latency time of

T̂L(M ′, R,∆tw) =

⌈
1

sel

⌉
·∆tw +W (P ′, R ·∆tw)

= 100 · 1.8056 s +

(
0.325 + 0.205 · 4 1

s

)
· 1.8056 s ≈ 182.3656 s.

Finally, we check the validity conditions of (0 ≤W (P ′2, k
′) ≤ ∆tw)∧ (0 ≤ T̂L ≤ lc), where

we observe that all constraints are given15. Comparing instance-based and partitioned
execution with regard to executing for example |M | = 1,000 messages, we reduced the total
latency time from T̂L(M) = 1,000 · 0.53 s = 530 s (simplified due to overload situation) to⌈
1,000/(4 1

s) · 1.8056 s
⌉
· 1.8056 s + 1.8056 s = 252.784 s and the total execution time from

530 s to 250.978 s (W (M,k′) = T̂L(M,k′) + ∆tw because we computed ∆tw according to
the lower border of the defined interval).

The whole computation approach is designed for the general case of arbitrary cost
functions. Based on the observation that our concrete extended cost model only uses
two categories of operator costs (operators that are independent of k′ and operators that
depend linearly on k′), we use an efficient tailor-made waiting time computation algorithm
as a simplification of this computation approach. In contrast to the general solution of
computing the optimal waiting time, this algorithm does not require the derivation of the
latency time function.

Algorithm 5.3 Waiting Time Computation (A-WTC)

Require: rewritten plan P ′, message rate R, latency constraint lc, selectivity sel
1: ∆tw ← 0, k′ ← 0, W−(P ′)← 0, W+(P ′)← 0
2: for i← 1 to m do // for each operator oi
3: if W (o′i) is independent of k′ then
4: W−(P ′)←W−(P ′) +W (o′i)
5: else
6: W+(P ′)←W+(P ′) +W (o′i)

7: ∆tw ← W−(P ′)
1−W+(P ′)·R // ∆tw = W (P ′,∆tw ·R) = W−(P ′) +W+(P ′) ·∆tw ·R

8: TL ←
⌈

1
sel

⌉
·∆tw +W (P ′, R ·∆tw)

9: k′ ← R ·∆tw
10: if ¬(0 ≤W (P ′, k′) ≤ ∆tw) ∨ ¬(0 ≤ T̂L ≤ lc) then
11: k′ ← k′ | W (M ′, k′) + ∆tw = TL(M ′, k′) = lc // overload situation
12: return ∆tw,R, k′

Algorithm 5.3 illustrates this automatic waiting time computation approach for a given
message rate R, the latency constraint lc, and number of distinct items sel. First, there
are some initialization steps (line 1). Then, we iterate over the operators of the rewritten
plan P ′ (lines 2-6) in order to compute the costs W−(P ) that are independent of k′ and
the costs W+(P ) that depend linearly on k′. Using a simplified Equation 5.8, we compute

15In this example, the result depends on the message arrival rate R. For example, R = 10 msg/s would result
in an invalid waiting time ∆tw ≈ −0.3095 s. In this case we would try to compute T̂L(M ′, R ·∆tw) =
W (M ′,∆tw ·R) but would observe an overload situation and therefore, would proceed accordingly and
compute the maximum batch size k′′.
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the waiting time at the lower border of the defined TL function interval (line 7). Finally,
we compute the total latency time, the resulting number of messages per batch k′ and
check the validity condition in order to react on overload situations (line 8-11). Due to
the linear classification of operator costs and the analytical determination of ∆tw, this
algorithm exhibits a linear complexity of O(m) according to the number of operators m.

Despite the described simplification of waiting time computation, where we compute
the special case ∆tw = W (P ′, k′), it would not be sufficient to simply collect messages for
the execution time of the current message partition. Most importantly, this is reasoned
by horizontal (value-based) partitioning that leads to internal out-of-order execution. For
high message rates in combination with many distinct partitions, the average message
latency as well as the effective system output rate would degrade due to message synchro-
nization at the outbound side. By computing the waiting time or maximal partition size,
respectively, we flush oldest messages out of the system such that better average message
latency times and output rates are achieved and we also reduce the effort for outbound
message synchronization. Finally, we can also compute the global minimum for the general
case of arbitrary cost models.

In this subsection, we have described how to compute the optimal waiting time with
regard to minimizing the total latency time under a maximum latency constraint. This
maximizes the message throughput with regard to a single deployed plan. With regard
to multiple deployed plans this approach is applicable as well. However, changing the op-
timization objective to minimizing the total execution time under the maximum latency
constraint can lead to an even higher throughput because this minimizes potentially over-
lapping execution. However, the computation approach is realized similarly as for the case
of a single deployed plan despite the difference that we always try to determine the upper
border (lc) of the defined TL function interval rather than the lower border. Finally, the
waiting time computation is a central aspect of the multi-flow optimization technique and
of its integration into our general cost-based optimization framework.

5.3.4 Optimization Algorithm

Putting it all together, we now describe how the multi-flow optimization technique is
integrated into our general cost-based optimization framework. This includes changes of
the deployment process as well as the cost-based re-optimization.

The deployment process is modified such that it now additionally includes the auto-
matic derivation of partitioning attributes, as described in Subsection 5.2. Apart from
that, most aspects of the multi-flow optimization technique are integrated into the feed-
back loop of our cost-based optimization framework. The major issues are the derivation
of partitioning schemes, the rewriting of plans and the computation of the optimal waiting
time. First, according to the monitored selectivities of partitioning attributes that have
been derived during the initial deployment, we derive the optimal partitioning scheme in
case of multiple partitioning attributes. Second, if there are at least two attributes and
if we have found a new partitioning scheme during re-optimization, we rewrite the plan
according to this partitioning scheme in order to enable the execution of operations on
horizontally partitioned message batches. For a single partitioning attribute, rewriting is
not required because all operators can work transparently on a single partition level as
described in Subsection 5.2.3. This rewriting includes also the requirement of dynamic
state migration in the sense of transforming an existing partition tree that indexes col-
lected messages from one partitioning scheme into another scheme. In order to ensure the
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latency constraint and to avoid additional overhead for this transformation, we do not
use state migration but use two partition trees (with the two schemes) and the two plans
in parallel. New messages are enqueued into the new partition tree, while we execute
message partitions from the old partition tree with the old plan until this partition tree is
empty. When this termination condition is reached, we exchange plans and execute parti-
tions from the new partition tree. Third, during cost-based optimization, we estimate the
costs and compute the optimal waiting time with regard to minimizing the total latency
time. Note that there are several side effects between MFO and the overall cost-based
optimization. For example, there are bidirectional influences on cost estimation and plan
rewriting. Therefore, during optimization the MFO technique is applied before the oper-
ator specific rewriting techniques. This is a worst-case scenario (no other optimizations
applied) consideration with regard to the latency time and we benefit from subsequently
applied techniques (e.g., rewriting iterations, which have been introduced by MFO, to par-
allel flows). Finally, the computed waiting time ∆tw is used in order to asynchronously
issue instances of the rewritten plan.

To summarize, we discussed how to enable the execution of horizontally partitioned
message batches and how to compute the optimal waiting time with regard to the total
latency time minimization that implies message throughput maximization. Furthermore,
we explained how the overall multi-flow optimization technique is seamlessly integrated
into the general cost-based optimization framework.

5.4 Formal Analysis

In this section, we now formally analyze our solution of horizontal message queue par-
titioning and waiting time computation according to the defined multi-flow optimization
problem (P-MFO, see Definition 5.2). This includes (1) the optimality analysis with regard
to latency time minimization as well as the two additional restrictions of (2) the maximum
soft latency constraint for single messages and (3) the serialized external behavior.

5.4.1 Optimality Analysis

First of all, we analyze the optimality with regard to the computed waiting time ∆tw. In
detail, we discuss (1) the monotonically non-increasing execution time function that (2)
asymptotically tends towards a lower bound as shown in Figure 5.13.

Monotonically Non-Increasing Relative and Total Execution Time

Based on the extended cost model, we can give an optimality guarantee for W (P ′, k′) with
regard to the computed waiting time.

Theorem 5.1 (Optimality of Partitioned Execution). The horizontal message queue par-
titioning solves the P-MFO with optimality guarantees of minTL(M ′) and monotonically
non-increasing total execution time of

W (P ′, k′)

k′
· |M ′| ≤ W (P ′, k′ − 1)

k′ − 1
· |M ′| ≤W (P ) ·M ′, where k′ > 1. (5.10)

Proof. We compute the waiting time ∆tw, where minTL(M ′) under the given restrictions.
This determines the batch size k′ = R ·∆tw and ensures optimal throughput because the
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Execution Time

Waiting Time
∆tw

lower bound
Relative Execution Time W(P’,k’) / k’

Total Execution Time W(M’,k’)

W+(P)

W+(P)·|M’|

Figure 5.13: Monotonically Non-Increasing Execution Time with Lower Bound

total execution time is decreased as long as we benefit from it with regard to the total
latency time. The execution time W (P ′, k′) is computed by

W (P ′, k′) = W−(P ′) +W+(P ′) · k′, (5.11)

where W+(P ′) denote the costs (execution time) of operators that do not benefit from
partitioning, while W−(P ′) denotes the costs of operators that benefit from partitioning
(independent of k′). As a result, in the worst case, the execution time W (P ′, k′) increases
linearly with increasing k′. Thus, the relative execution time W (P ′, k′)/k′ is a monotoni-
cally non-increasing function with

∀k′, k′′ ∈ [1, |M ′|] : k′ < k′′ ⇒ W (P ′, k′)

k′
≥ W (P ′, k′′)

k′′
. (5.12)

If we now fix a certain |M ′|, this also implies that the total execution time W (M ′, k′) is a
monotonically non-increasing function with

W (M ′, k′) =
W (P ′, k′)

k′
· |M ′|. (5.13)

Then, it follows directly that

W (P ′, k′)

k′
≤ W (P ′, k′ − 1)

k′ − 1
≤W (P )

W (P ′, k′)

k′
· |M ′| ≤ W (P ′, k′ − 1)

k′ − 1
· |M ′| ≤W (P ) · |M ′|.

(5.14)

Hence, Theorem 5.1 holds.

This result of monotonic non-increasing relative and total execution time functions is
illustrated in Figure 5.13 as (strictly) monotonically decreasing function. However, due
to (1) integer batch sizes k′ and (2) a constant function in the case, where no operator
benefits from partitioning, the functions are, in general, monotonic non-increasing.

Lower Bound of Relative and Total Execution Time

In analogy to Amdahl’s law, where the fraction of a task (execution time) that cannot be
executed in parallel determines the upper bound for the reachable speedup, we compute
the lower bound of the relative and total execution times. The existence of this lower bound
was already discussed in Section 5.3. Now, we investigate this lower bound analytically.
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Theorem 5.2. The lower bound of relative and total execution times W (P ′, k′)/k′ and
W (M ′, k′)/k′ is given by W+(P ′) and W+(P ′) · |M ′|, respectively, as the costs that linearly
depend on k′.

Proof. Recall that the execution time W (P ′, k′) is computed by

W (P ′, k′) = W−(P ) +W+(P ) · k′, (5.15)

where, W−(P ′, k′) is independent of k′ by definition. If we now use the relative execution
time W (P ′, k′)/k′ and let k′ tend to ∞ with

lim
k′→∞

W (P ′, k′)

k′
= W+(P ′) with

W (P ′, k′)

k′
=
W−(P )

k′
+
W+(P ) · k′

k′

lim
k′→∞

W (M ′, k′)

k′
= W+(P ′) · |M ′|

with
W (M ′, k′)

k′
=

(
W−(P ′)

k′
+
W+(P ′) · k′

k′

)
· |M ′|,

(5.16)

we see that W (P ′, k′)/k′ asymptotically tends to W+(P ) and thus, it represents the lower
bound of the relative execution time, while the lower bound of the total execution time is
W+(P ) · |M ′|. Hence, Theorem 5.2 holds.

These lower bounds are shown in Figure 5.13 and they are the reason why minimizing
the total latency time leads to maximal message throughput because the additional benefit
in terms of lower execution time decreases with increasing waiting time.

5.4.2 Maximum Latency Constraint

Beside the property of optimality with regard to the message throughput, our waiting
time computation ensures that the restriction of the maximum latency constraint holds,
in expectation, at the same time as well.

Theorem 5.3 (Soft Guarantee of Maximum Latency). The waiting time computation
ensures that—for a given fixed message rate R—the latency time of a single message
TL(mi) with mi ∈M ′ will, in expectation, and for non-overload situations, not exceed the
maximum latency constraint lc with TL(mi) ≤ lc.

Proof. In the worst case, 1/sel distinct messages mi arrive simultaneously in the system.
Hence, the highest possible latency time TL(mi) is given by the total latency time 1/sel ·
∆tw + W (P ′, k′). Due to our validity condition of T̂L(M ′) ≤ lc with |M ′| = k′/sel, we
need to show that TL(mi) ≤ T̂L even for this worst case. Further, our validity condition
ensures that ∆tw ≥W (P ′, k′). Thus, we can write TL(mi) ≤ T̂L(∆tw ·R) as

1

sel
·∆tw +W (P ′, k′) ≤

⌈
|M ′|
k′

⌉
·∆tw +W (P ′, k′)

1

sel
·∆tw ≤ |M

′|
k′
·∆tw.

(5.17)

If we now substitute |M ′| by k′/sel (in the sense that the cardinality |M ′| is equal to the
number of partitions 1/sel times the cardinality of a partition k′), we get

1

sel
·∆tw ≤ |M

′|
k′

=
1

sel
·∆tw. (5.18)

153



5 Multi-Flow Optimization

Thus, for the worst case, TL(mi) = lc, while for all other cases, TL(mi) ≤ lc is true. Hence,
Theorem 5.3 holds.

Probability P(R’)

Message 
Rate R’

E(R’)

(a) Message Arrival Rate R′

Probability P(k’)

Batch Size 
k’

E(k’) with    E(k’) = Σ (ki’ · P(k’=ki’))

(b) Batch Size k′

Figure 5.14: Waiting Time Computation With Skewed Message Arrival Rate

So far, we have assumed a fixed message rate R. Now, we formally analyze the influence
of the assumption of a stochastic arrival rate R′ that exhibits a potentially skewed proba-
bility distribution D such as the Poisson distribution. Figure 5.14(a) illustrates the prob-
ability of a specific arrival rate (for a continuous arrival rate distribution function), while
Figure 5.14(b) illustrates the resulting batch sizes k′. Here, D can be a discrete or contin-
uous function, where the expected value E(R′) is computed as the probability-weighted
integral of continuous values or as the probability-weighted sum of discrete values, respec-
tively. For example, the discrete Poisson distribution is relevant because Xiao et al. argued
that the arrival process of workflow instances is typically Poisson-distributed [XCY06].
The main difference is that we now include uncertainty—in the form of an arbitrary mes-
sage rate—into the min T̂L computation because until now, we have used k′ = R ·∆tw as
batch size estimation. For D = poisson, the fixed arrival rate R is substituted with an
uncertain arrival rate R′ such that

k′ = R′ ·∆tw with PR(R′ = r) =
Rr

r!
· e−R, (5.19)

with an expected value of E(R′) = R. Due to the introduced uncertainty, we need to
extend Theorem 5.3 to skewed probability distributions functions.

Theorem 5.4 (Extended Soft Guarantee of Maximum Latency). The waiting time com-
putation ensures that—for a given uncertain message rate R′ with skewed probability dis-
tribution function D—the latency time of a single message TL(mi) with mi ∈ M ′ will, in
expectation, and for non-overload situations, not exceed the maximum latency constraint
lc with TL(mi) ≤ lc.

Proof. Recall the worst case of TL(M ′) = lc with

TL(M ′) =

⌈
|M ′|
k′

⌉
·∆tw +W (P ′, k′). (5.20)

There, the over- and underestimation of batch size k′ does affect the execution time
W (P ′, k′). Hence, the worst case is given, where ∆tw = W (P ′, k′). With regard to
the uncertain arrival rate, the average discrete over- and under-estimation of k′ is, in
expectation, equal with∑

k′i≤E(k′)

(
k′i · P (k′ = k′i)

)
=

∑
k′i≥E(k′)

(
k′i · P (k′ = k′i)

)
(5.21)
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because E(k′) =
∑∞

i=1 k
′
i · P (k′ = k′i). In order to show that the latency constraint lc is,

in expectation, not exceeded by skewed arrival rate distributions, we need to show that
the effects of overestimation W (P ′, k′ − 1) −W (P ′, k′) (lower execution time) amortize
the effects of underestimation W (P ′, k′ + 1) − W (P ′, k′) (higher execution time). The
composed effect ∆W (P ′) is computed by

∆W (P ′) =
(
W (P ′, k′ − 1)−W (P ′, k′)

)
+
(
W (P ′, k′ + 1)−W (P ′, k′)

)
=
(
W−(P ) +W+(P ) · (k′ − 1)− (W−(P ) +W+(P ) · k′)

)
+
(
W−(P ) +W+(P ) · (k′ + 1)− (W−(P ) +W+(P ) · k′)

)
= 0

(5.22)

Thus, for the worst case, the condition TL(M ′) = lc holds in expectation. Hence, Theo-
rem 5.4 holds.

This extended soft guarantee of maximum latency holds for both right-skewed and left-
skewed distributions functions due to the equal average over- and under-estimation. How-
ever, it is important to note that these guarantees of maximum latency are soft constraints
that hold, in expectation, and for non-overload situations, while changing workload char-
acteristics in combination with a long optimization interval ∆t might lead to temporarily
exceeding the latency constraint.

5.4.3 Serialized External Behavior

According to the requirement of serialized external behavior, we additionally might need
to serialize messages at the outbound side. We analyze once again the given maximum
latency guarantee with regard to arbitrary serialization concepts.

Theorem 5.5 (Serialized Behavior). Theorems 5.3 (Soft Guarantee of Maximum Latency)
and 5.4 (Extended Soft Guarantee of Maximum Latency) also hold for serialized external
behavior.

Proof. We need to prove that the condition TL(mi) ≤ T̂L(M ′) ≤ lc is true even in the
case, where we have to serialize the external behavior. Therefore, recall the worst case
(Theorem 5.3), where the latency time is given by

TL(mi) =
1

sel
·∆tw +W (P ′, k′). (5.23)

In that case, the message mi has not outrun other messages such that no serialization time
is required. For all other messages that exhibit a general latency time of

TL(mi) =

(
1

sel
− x
)
·∆tw +W (P ′, k′), (5.24)

where x denotes the number of partitions after the partition of mi, this message has
outrun at most x · k′ messages. Thus, additional serialization time of x ·∆tw+W ∗(P ′, k′)
is needed. In conclusion, we get

TL(mi) =

(
1

sel
− x
)
·∆tw +W ∗(P ′, k′) + x ·∆tw +W (P ′, k′)

=
1

sel
·∆tw +W (P ′, k′).

(5.25)
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Thus, TL(mi) ≤ T̂L(M ′) ≤ lc is true due to the subsumtion of W ∗(P ′, k′) by ∆tw because
the waiting time is longer than the execution time, for the valid case of ∆tw ≥W (P ′, k′).
This is also true for arbitrary serialization concepts. Hence, Theorem 5.5 holds.

Based on this formal analysis, we can state that the introduced waiting time compu-
tation approach (1) optimizes the message throughput by minimizing the total latency
time of a message subsequence, and ensures the additional restrictions of (2) a maximum
latency time constraint for single messages, and (3) the serialized external behavior.

5.5 Experimental Evaluation

In this section, we present experimental evaluation results with regard to the three evalu-
ation aspects of (1) optimization benefits/scalability, (2) optimization overheads, and (3)
latency guarantees under certain constraints. In general, the evaluation shows that:

• Message throughput improvements are yielded by minimizing the total latency time
of message sequences. Compared to the unoptimized case, the achieved relative
improvements decrease with increasing data sizes for some plans, while they stay
constant for other plans. In contrast, the relative improvement increases with in-
creasing batch sizes.

• The runtime optimization overhead for deriving partitioning schemes, rewriting
plans, and computing the optimal waiting time is moderate. In addition, the over-
head for horizontal partitioning of inbound message queues is, for moderate numbers
of distinct items, fairly low compared to commonly used transient message queues.

• Finally, the theoretical maximum latency guarantees for arbitrary distribution func-
tions also hold under experimental investigation. This stays true under the constraint
of serialized external behavior (additional serialization at the outbound side) as well.

The detailed description of our experimental findings is structured as follows. First, we
evaluate the end-to-end throughput improvement as well as the overheads of periodical re-
optimization. Second, we present scalability results with regard to increasing data sizes as
well as increasing batch sizes. Third, we analyze in detail the execution time with regard
to influencing factors such as message rate, selectivities, waiting time, and batch sizes.
Fourth, we present the influences on the latency time of single messages with and without
serialized external behavior and with arbitrary message rate distribution functions. Fifth
and finally, we discuss the runtime overhead of horizontal message queue partitioning.

Experimental Setting

We implemented the approach of MFO via horizontal partitioning within our Java-based
WFPE (workflow process engine) and integrated it into our general cost-based optimization
framework. This includes the partitioned message queue (partition tree and hash partition
tree), slightly changed operators (partition-awareness) as well as the algorithms for deriv-
ing partitioning attributes (A-DPA), rewriting of plans (A-MPR) and automatic waiting
time computation (A-WTC).

We ran our experiments on the same platform as described in Section 3.5 and we used
synthetically generated data sets. As integration flows under test, we use all asynchronous,
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data-driven integration flow use cases (plans P1, P2, P5, and P7), which have been de-
scribed in Section 2.4. Furthermore, we used the following scale factors: the number of
messages |M |, the message rate R, the selectivity according to the partitioning attribute
sel, the batch size k′, the message rate distribution function D, the maximum latency
constraint lc, and the data size d of input messages (in 100 kB).

End-to-End Comparison and Optimization Benefits

First of all, we investigate the end-to-end optimization benefit achieved by multi-flow opti-
mization and the related optimization overhead. We compared the multi-flow optimization
with no-optimization, while all other optimization techniques have been disabled. Similar
to the use case comparison in Section 3.5 and 4.6, we executed 20,000 plan instances for
each asynchronous, data-driven example plan (P1, P2, P5, and P7) and for both execution
models. We reused the same workload configuration as already presented (without cor-
relations and without workload changes). Furthermore, we fixed the cardinality of input
data sets to d = 1 (100 kB messages), an optimization interval of ∆t = 5 min, a sliding
window size of ∆w = 5 min and EMA as the workload aggregation method. With regard to
multi-flow optimization, we did not use the computed waiting time but directly restricted
the batch size to k′ = 10 in order to achieve comparable results across the different plans.

(a) Cumulative Execution Time (b) Cumulative Optimization Time

Figure 5.15: Use Case Comparison of Multi-Flow Optimization

Figure 5.15(a) shows the resulting total execution times. To summarize, we consistently
observe significant execution time reductions that have been achieved as follows:

• P1: The plan P1 benefits from MFO in several ways. First, the Switch opera-
tor o2 is executed once for a message batch because the switch expression attribute
/material/type is used as the only partitioning attribute. Furthermore, the Assign
operators o4, o6, and o8 are also executed only once because the result is exclusively
used by the partition-aware Invoke operators o7, and o9. These writing Invoke op-
erators show additional benefit because a single operator instance is used to process
all messages of a batch. Overall, this achieves a throughput improvement of 62%.

• P2: The plan P2 mainly benefits from executing the Invoke operator o3 and the
predecessor Assign operator o2 only once for a whole partition. There, the predicate
part /resultsets/resultset/row/A1 Custkey is used as the partitioning attribute.
Additional benefit is achieved by the final Assign and Invoke operators o5 and o6.
In total, an improvement of 53% has been achieved.
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• P5: The plan P5 shows the lowest benefit. There, the Switch operator o5 is exe-
cuted only once for a batch because the switch expression attribute /resultsets/

resultset/row/A1 Orderdate is used as partitioning attribute. Additional benefit
comes from the Assign and Invoke operators o8 and o9. However, we achieved only
an improvement of 25% because the Selection operators in front of the operators
that benefit from partitioning consume most of the time and significantly reduces
the cardinality of intermediate results.

• P7: In contrast to the other plans, plan P7 does not contain any partitioning at-
tribute candidate. Therefore, a system partitioning with sel = 1.0 is used (this
case is similar to the time-base batch creation strategy but without the drawback
of distinct messages in a batch). Many operators benefit from partitioning. First,
the queries to external systems are prepared only once (Assign operators o3, o6, o9,
and o11). Second, also the external queries and the subsequent schema mapping is
only executed once (Invoke operators o4, o7, o10, and o12 as well as Translation

operators o5, o8, o13). Third, additional benefit is achieved by the final Assign and
Invoke operators o18 and o19. In total, this led to an improvement of 30%.

Figure 5.15(b) illustrates the optimization overhead imposed by the cost-based multi-
flow optimization. This includes the derivation of partitioning attributes, the creation of
a partitioning scheme, the plan rewriting, as well as the continuous waiting time compu-
tation. Essentially, we observe that the overhead is moderate, where the differences are
mainly reasoned by the different numbers of operators.

Finally, based on the observed results, we can conclude that the multi-flow optimization
technique can be used by default (if small additional latency for single messages is accept-
able) because the throughput improvements clearly amortize the optimization overhead.
This is true for arbitrary asynchronous, data-driven integration flows because each flow
has at least one combination of writing Assign and Invoke operators.

Scalability

We now investigate the scalability of plan execution, which includes (1) the scalability
with increasing input data sizes and (2) the scalability with increasing batch sizes.

First, we used our example plans in order to investigate the scalability of optimization
benefits with increasing input data size. We reused the scalability experiment with increas-
ing data size from Section 3.5. In contrast to the already presented scalability results, we
now disabled all optimization techniques except multi-flow optimization. In detail, we ex-
ecuted 20,000 plan instances for the plans P1, P2, P5, and P7 and compared the optimized
plans with their unoptimized counterparts varying the input data size d ∈ {1, 2, 3, 4, 5, 6, 7}
(in 100 kB). Again, we varied the input data size of these plans (the size of the received
message) only but did not change the size of externally loaded data. Further, we fixed
a batch size of k′ = 10, an optimization interval of ∆t = 5 min, a sliding window size
of ∆w = 5 min and EMA as the workload aggregation method. The results are shown in
Figure 5.16. In general, the plans scale with increasing data size but with a decreasing
relative improvement. With regard to the different plans, we observe different scalability
behavior. The plan P1 scales best with increasing data size and shows almost constant
relative improvement because this plan mainly benefits from reduced costs for writing
interactions that linearly depend on the data size. Further, also plan P2 shows good scal-
ability with increasing data size. However, the relative improvement is decreasing because
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(a) Plan P1 (b) Plan P2

(c) Plan P5 (d) Plan P7

Figure 5.16: Use Case Scalability Comparison with Varying Data Size d

(a) Plan P1 (b) Plan P2

(c) Plan P5 (d) Plan P7

Figure 5.17: Use Case Scalability Comparison with Varying Batch Size k′

the size of loaded data (that would have an influence on the benefit) was not changed.
In contrast, plan P5 shows only a constant absolute improvement, which resulted in a

159



5 Multi-Flow Optimization

decreasing relative improvement because it mainly benefits from the reduced costs for the
Switch operator. However, this operator is executed after several Selection operators
that significantly reduced the amount of input data, which led to this almost constant
absolute improvement. Similarly, also plan P7 shows a decreasing relative improvement
because the size of external data was not changed. In conclusion, the scalability with
increasing data size strongly depends on how a plan benefits from partitioning.

Second, we investigated the scalability with increasing batch sizes k′. There, we reused
our example plans P1, P2, P5, and P7 and the workload configuration from the previous
experiment. For each example plan and compared the multi-flow optimization with no-
optimization varying the batch size k′ ∈ {1, 10, 20, 30, 40, 50, 60, 70}. Figure 5.17 shows
the results of this experiment. Essentially, we make three major observations. First, the
overhead for executing single-message-partitions is marginal. Despite the fact that MFO
theoretically cannot decrease the performance, there is some overhead due to horizontal
partitioning at the inbound side and additional message abstraction layers. However, the
experiments show that this overhead is negligible. As a result the multi-flow optimization
is robust in the sense that it ensures predictable performance even in special cases, where
we do not benefit from partitioning. Second, the theoretically analyzed monotonically
non-increasing total execution time function with increasing batch size and the existence
of a lower bound of the total execution time do also hold under experimental evaluation.
Third, we observe that the lower this lower bound (the higher the optimization potential),
the higher the batch size that is required until we asymptotically tend to this lower bound
(e.g., compare Figure 5.17(a) and Figure 5.17(c)). This effect is reasoned by the higher
relative amount of time that is logically shared among messages.

Execution Time

Until now we have evaluated the optimization benefit and scalability of multi-flow opti-
mization using restricted batch sizes k′. In this subsection, we investigate in detail the
inter-influences between arbitrary message arrival rates R, waiting times ∆tw, partition-
ing attribute selectivities sel and the resulting batch size k′. In addition, we evaluate the
effects of the resulting batch size k′ on the plan execution time W (P ′, k′).

(a) Execution Time W (P ′2, k
′) (b) Relative Execution Time W (P ′2, k

′)/k′

Figure 5.18: Execution Time W (P ′2, k
′) with Varying Batch Size k′

First, we evaluated the execution time of the resulting plan instance for message par-
titions compared to the unoptimized execution. We executed instances of plan P2 with
varying batch size k′ ∈ [1, 20], where we measured the total execution time W (P ′2, k

′)
(Figure 5.18(a)) and computed the relative execution time W (P ′2, k

′)/k′ (Figure 5.18(b)).

160



5.5 Experimental Evaluation

For comparison, the unoptimized plan was executed k′ times and we measured the total
execution time W (P2) · k′. This experiment has been repeated 100 times. Both unopti-
mized and optimized execution show a linear scalability with increasing batch size k′ with
the difference that for optimized execution, we observe a logical y-intercept that is higher
than zero. As a result, the unoptimized execution shows a constant relative execution
time, while the optimized execution shows a relative execution time that decreases with
increasing batch size and that tends towards a lower bound, which is given by the partial
plan costs of operators that do not benefit from partitioning. It is important to note
that (1) even for one-message-partitions the overhead is negligible and (2) that even small
numbers of messages within a batch significantly reduce the relative execution time.

Figure 5.19: Varying R and sel

Second, we evaluated the batch size k′ according to different (fixed interval) message
rates R, and selectivities sel in order to validate our assumptions about the batch size
estimation of k′ = R·∆tw under the influence of message queue partitioning. We processed
|M | = 100 messages with plan instances of P2, where all sub experiments were repeated
100 times with fixed waiting time of ∆tw = 10 s. Figure 5.19 shows the influence of the
message rate R on the average number of messages per batch. We observe (1) that the
higher the message rate, the higher the number of messages per batch, and (2) that the
selectivity determines the reachable upper bound. However, until this upper bound, the
batch size is independent of the selectivity because for higher selectivities we wait longer
(∆tw · 1/sel) until partition execution. Similarly, also an increasing waiting time showed
the expected behavior of linearly increasing batch sizes until the upper bound is reached.

Latency Time

Furthermore, we evaluated the latency influence of MFO. While the total latency time
of message sequences is directly related to the throughput and thus reduced anyway, the
latency time of single messages needs further investigation. In this subsection, we analyze
the given maximum latency guarantee and latency times in overload situations.

In detail, we executed |M | = 1,000 messages with plan P2 using a maximum latency
constraint of lc = 10 s and measured the latency time TL(mi) of single messages mi.
There, we fixed a selectivity of sel = 0.1, a message arrival rate of R = 5 msg/s, and
used different messages arrival rate distributions (fixed, poisson) as well as analyzed the
influence of serialized external behavior. In order to discuss the worst-case consideration,
we computed the waiting time ∆tw | TL(M ′ = k′/sel) = lc (that is typically only used
as a deescalation strategy). Here, ∆tw was computed as 981.26 ms because in the worst
case there are 1/sel = 10 different partitions plus the execution time of the last partition.
Note that the selectivity has no influence on the variance of message latency times but on
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(a) Fixed w/p SEB (b) Poisson w/o SEB (c) Fixed w/ SEB

Figure 5.20: Latency Time of Single Messages TL(mi)

the computed waiting time (the higher the number of distinct items, the lower the waiting
time). For both message arrival rate distribution functions D = fixed (see Figure 5.20(a))
and D = poisson (see Figure 5.20(b)), the constraint is rarely exceeded. Essentially, the
latency of single messages varies from almost zero to the latency constraint, where the
few missed constraints (illustrates as plus in the plots) are caused by variations of the
execution time. Note that the latency constraint is explicitly a soft constraint, where
we guarantee that it is not exceeded with statistical significance. The reason is that we
compute the waiting time based on our cost estimation. If the real execution costs vary
slightly around this estimate, there exist cases where the constraint is slightly exceeded as
well. Furthermore, the constraint also holds for serialized external behavior (SEB), where
all messages show more similar latency times (see Figure 5.20(c)) due to serialization at the
outbound side. Thus, there is a lower variance of the latency time of single messages. Note
that this is a worst-case scenario. Typically, we use a waiting time ∆tw atW (P ′, k′) = ∆tw
that results in much lower latency time for single messages.

Figure 5.21: Latency in Overload Situations

The maximum latency constraint of single messages cannot be ensured if we are in
overload situations. Therefore, we investigated the influence of the message rate R on
the average latency time of single messages TL(mi). We executed |M | = 1,000 messages
with a selectivity of sel = 1.0 for unoptimized and optimized plans varying the message
rate R ∈ [5 msg/s, 70 msg/s]. Figure 5.21 illustrates the results. For low message rates (no
overload situation), we observe a minimal average latency of about 220 ms for both plans.
For optimized plans, our optimizer achieved this by adjusting the waiting time to the
execution time of plan instances with batch size one. After the message rate exceeded
the execution time of the unoptimized plan, the average latency rapidly increases due
to growing input message queues and the related waiting time. In contrast, for MFO,
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the waiting time was adjusted according to the increased message rate, which led to
throughput improvements such that the optimized plan was able to process much higher
message rates16. Due to the lower bound of relative execution times, also the optimized
plan cannot cope with the increased message rate after a certain point. However, we
observe a slower degradation of the average latency due to more messages per batch,
decreasing relative execution time and thus, increased throughput.

Optimization Overhead

In addition to the end-to-end comparison, which already included all optimization over-
heads, we now investigate the runtime overhead in more detail. Most importantly, the
partitioned enqueue operation depends on the selectivity of partitioning attributes. There-
fore, we analyzed the overhead of the (hash) partition tree compared to the commonly used
transient message queue (no partitioning) with and without serialized external behavior.

(a) Without Serialized External Behavior (SEB) (b) With Serialized External Behavior (SEB)

Figure 5.22: Runtime Overhead for Enqueue Operations with Different Message Queues

We enqueued 20,000 messages (as required for the end-to-end comparison experiment)
with varying selectivities sel ∈ {0.0001, 0.001, 0.01, 0.1, 1.0} of the partitioning attribute
and measured the total execution time. This experiment was repeated 100 times. Fig-
ure 5.22 illustrates the results of this experiment using a log-scaled y-axis. Essentially, we
see that without serialized behavior (SEB), both the transient queue and the hash parti-
tion tree show constant execution time with regard to the selectivity and the overhead of
the hash partition tree is negligible. In contrast, the execution time of the normal par-
tition tree linearly increases with decreasing selectivity due to the linear probing over all
existing partitions for each enqueued message. Furthermore, we observe a similar behavior
under serialized external behavior except the fact that also the execution time of the hash
partition tree increases linearly with decreasing selectivity. This is caused by the required
counting of outrun messages (counter-based serialization strategy), where we need to scan
over all partitions in order to determine this counter for each enqueued message. How-
ever, for the whole comparison scenario, where 20,000 messages have been enqueued, the
overhead for this worst-case was 23.7 s (for 10,000 distinct partitions) which is negligible
compared to the achieved throughput. The enqueue operation is executed asynchronously
and hence, does not directly reduce the message throughput until a break-even point is

16When further increasing the message rate, the average latency of both, unoptimized and optimized
execution, tend to different upper bounds that are determined by the case, where all |M | messages
arrive simultaneously. For a message rate of 100 msg/s, we observed average latency times of 40.2 s
(unoptimized) and 11.7 s (optimized).
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reached, where the message rate is too high. For example, consider a message rate of
R = 20 msg/s, this break-even point occurs at ≈ 422,000 distinct partitions in the queue.

Side Effects of Optimization Techniques

Putting it all together, we conducted an additional experiment in order to evaluate the
influences between MFO, vectorization, and the other cost-based optimization techniques.

(a) Plan P1 (b) Plan P2

(c) Plan P5 (d) Plan P7

Figure 5.23: Use Case Scalability Comparison with Varying Data Size d

We reused our scalability experiment with increasing data size. In contrast to the already
presented scalability results, we now use the different cost-based optimization techniques
from Chapter 3-5 in combination with each other. In detail, we executed 20,000 plan
instances for the plans P1, P2, P5, and P7 and compared the optimized plans with their
unoptimized versions varying the input data size d ∈ {1, 4, 7} (in 100 kB). In contrast to
all other experiments of this chapter, we measured the elapsed scenario time (the total
latency time of the message sequence) rather than the total execution time because for
vectorized execution, the execution times of single plan instances cannot be aggregated
due to overlapping message execution (pipeline semantics). Furthermore, we varied the
input data size of these plans (the size of the received message) but did not change the
size of externally loaded data. We fixed a batch size of k′ = 10, an optimization interval
of ∆t = 5 min, a sliding window size of ∆w = 5 min and EMA as the workload aggrega-
tion method. The results (total elapsed time) are shown in Figure 5.23. Essentially, we
observe two major effects. First, the application of all optimization techniques consis-
tently shows the highest performance compared to single optimization techniques. Only
plan P2 performed slightly worse when using full optimization compared to vectorization
only, because the operators that benefit from partitioning are not part of the most time-
consuming bucket and thus, MFO introduces additional latency (although it reduces the
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total execution time), while not reducing the total latency time. However, for a data
size of d = 1 as an example, we achieved significant overall relative improvements of 82%
(P1), 72% (P2), 74% (P5), and 55% (P7). Second, we observe that typically, the highest
optimization benefits are achieved by vectorization and multi-flow optimization, where
these plans (P1, P2, and P5) do not have a high CPU utilization in the unoptimized case.
Hence, the optimization benefits are partially overlapping. In contrast, for plans such as
P7, where the local processing steps dominate the execution time (high CPU utilization),
the standard cost-based optimiztaion techniques have higher influence. In this case, the
different optimization benefits are not overlapping and hence the joint application achieves
significant improvements. Furthermore, we see different scalability of the different opti-
mization techniques with incresing data size according to the used plan. The application
of all optimization techniques balances these effects such that finally, we observe good
scalability with increasing data size for all plans with almost constant improvement. We
can conclude that, especially, with regard to the scalability and the maximum benefit, it
is advantageous to use all optimization techniques in combination.

Finally, we can state that MFO achieves significant throughput improvement by ac-
cepting moderate additional latency time for single messages. Furthermore, the serialized
external behavior can be guaranteed as well. Anyway, how much we benefit from MFO
depends on the used plans and on the concrete workload. The benefit of MFO is caused by
two main facts. First, even for one-message partitions, there is only a moderate runtime
overhead (Figures 5.18(b) and 5.22). Second, only a small number of messages is required
within one partition to yield a significant speedup (Figure 5.18(b)).

5.6 Summary and Discussion

To summarize, in this chapter, we introduced the data-flow-oriented multi-flow optimiza-
tion (MFO) technique for throughput maximization of integration flows. Both MFO and
the control-flow-oriented vectorization technique achieve throughput improvements. In
contrast to vectorization that relies on parallelization, MFO reduces executed work by
employing horizontal data partitioning of inbound message queues and executing plans
for batches of messages. First, we discussed the plan execution of message partitions that
includes the definition of the partition tree as a queue data structure for message partitions
as well as the automatic derivation of partitioning attributes, the derivation of partitioning
schemes, and the rewriting of plans. Second, we explained the required cost model exten-
sions, the computation of the optimal waiting time with regard to message throughput
improvement, and the integration into our overall cost-based optimization framework.

In conclusion of our formal analysis and experimental evaluation, the multi-flow opti-
mization technique achieves significant throughput improvement by accepting moderate
additional latency time for single messages. Furthermore, we guarantee constraints of
maximum latency for single messages and serialized external behavior. Thus, MFO is
applicable for arbitrary asynchronous, data-driven integration flows in many different ap-
plication areas. Finally, it is important to note that MFO and vectorization can already
be applied together in order to achieve the highest throughput due to the integration of
both techniques within the surrounding cost-based optimization framework.

Further, MFO opens several opportunities for further optimizations. Future work might
consider, for example, (1) the execution of partitions independent of their temporal order,
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(2) plan partitioning in the sense of compiling different plans for different partitioning at-
tribute values17, and (3) MFO for multiple plans by an extended waiting time computation
for scheduling overlapping plan executions with regard to the hardware environment.

The main differences of the MFO approach to prior work are twofold: First, the con-
cept of horizontal message queue partitioning simplifies the näıve (time-based) approach
because it can be applied also for local operators and no rewriting of queries and local
post-processing of query results is required. In addition, horizontal partitioned execution
leads to predictable and higher throughput. Second, the approach of computing the opti-
mal waiting time ensures the adaptation to current workload characteristics by adjusting
the waiting time according to throughput and latency time. In consequence, the MFO
approach can be applied in other domains as well. For example, it might be used for (1)
scan sharing, where queries are indexed according to predicate values [UGA+09], or (2)
for transient views over equivalent query predicates [ZLFL07].

Beside the achievable throughput improvements, MFO has also some limitations that
one should be aware of. First, while caching might lead to using outdated data, the
execution of message partitions might cause us to use data that is more current than it
was when the message arrived. Despite our guarantee of ensuring eventual consistency
as sketched in Subsection 5.1, both caching and MFO, cannot ensure monotonic reads
over multiple data objects, which might be a problem if there are hidden dependencies
between data objects within the external system. Second, if the number of distinct values
is too high, we will not benefit from partitioning due to the additional runtime overhead
(partitioned enqueue of messages, serialization at the outbound side) and a fairly low
maximum waiting time due to the worst-case latency time consideration according to the
number of partitions. However, with regard to the experimental evaluation, there are three
facts why we typically benefit from MFO. First, even for one-message partitions, there is
only a moderate runtime overhead. Second, throughput optimization is required if and
only if high message load (peaks) exists. In such cases, it is very likely that messages
with equal attribute values are in the queue. Third, only a small number of messages is
required within one partition to yield a significant speedup for different types of operators.

Finally, we consolidate the results from the Chapters 3-5. The general cost-based opti-
mization framework for integration flows, defined in Chapter 3, minimizes the average plan
execution time by employing control-flow- and data-flow-oriented optimization techniques
but it neglected the alternative optimization objective of throughput improvement. This
drawback has been addressed with the integration-flow-specific optimization techniques
vectorization (Chapter 4) and multi-flow optimization (Chapter 5). However, the periodi-
cal re-optimization algorithm has still several drawbacks. Most importantly, there are the
problems of (1) many unnecessary re-optimization steps, where we do not find a new plan
if workload characteristics have not changed, and (2) adaptation delays after a workload
change, where we use a suboptimal plan until re-optimization and miss optimization op-
portunities. To tackle these additional problems, in the following Chapter 6, we introduce
the concept of on-demand re-optimization.

17For example, correlated data inherently leads to data partitions, where each partition has specific statis-
tical characteristics and thus a different optimal plan [Pol05, BBDW05, TDJ10]. MFO in combination
with different plans for different data can address this within our cost-based optimization framework.
In addition, we can apply plan simplifications (e.g., remove Switch operators).
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The overall cost-based optimization framework used so far relies on incremental statistic
maintenance and periodical re-optimization to meet the high performance demands of in-
tegration flows and to overcome the problems of unknown statistics and changing workload
characteristics. The potential problems of (1) many unnecessary re-optimization steps and
(2) missed optimization opportunities due to adaptation delays are caused by the strict
separation of optimization, execution and statistic monitoring. In order to overcome these
major drawbacks of periodical re-optimization, in this chapter, we introduce the novel
concept of on-demand re-optimization.

Our aim is to reduce the overhead for statistics monitoring and re-optimization and
at the same time to adapt to changing workload characteristics as fast as possible. We
achieve this by extending the optimizer interface of our overall cost-based re-optimization
framework in the sense of modeling optimality of a plan by its optimality conditions
and triggering re-optimization only if workload changes violate these conditions. First,
we define the Plan Optimality Tree (PlanOptTree) and describe how to create such a
PlanOptTree for a given plan to model optimality of this plan by its optimality condi-
tions rather than considering the complete search space. We explain how to use it for
statistic maintenance and how this triggers re-optimization if optimality conditions are
violated. Second, we exploit these violated conditions for search space reductions dur-
ing re-optimization. In detail, we explain the directed re-optimization and the update of
PlanOptTrees after successful re-optimization. Finally, we describe how common opti-
mization techniques are extended in order to enable on-demand re-optimization and we
present experimental evaluation results, which compare the periodical re-optimization with
this novel on-demand re-optimization approach. According to the experimental evalua-
tion, we achieve improvements concerning re-optimization overhead as well as adaptation
sensibility and thus reduce the total execution time.

6.1 Motivation and Problem Description

Efficiency of integration flows is ensured by cost-based optimization in order to (1) ex-
ploit the full optimization potential and (2) to adapt to changing workload characteristics
[MSHR02, IHW04, BMM+04, DIR07, LSM+07, CC08, NRB09] such as varying cardinal-
ities, selectivities and execution times (for example, reasoned by unpredictable workloads
of external systems or temporal variations of network properties). With regard to the low
risk of re-optimization overhead and good optimization opportunities, the state-of-the-art
cost-based optimization models of integration flows are (1) the periodical re-optimization
(see Chapter 3) or (2) the optimize-always optimization model [SVS05, SMWM06]. Within
the optimize-always model optimization is triggered for each plan instance, which fails in
the case of many plan instances with rather small amounts of data per instance because
the optimization time can be even higher than the execution time of a single plan instance.

As mentioned in Subsection 2.2.4, there are fundamental differences to other system
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categories that reasoned the use of periodical re-optimization for integration flows. First,
integration flows are deployed once and executed many times, with rather small amounts
of data per instance. Hence, there is no need for mid-instance (inter- or intra-operator) re-
optimization. Second, in contrast to continuous-query-based systems, many independent
instances of an integration flow are executed over time. Thus, there is no need for state mi-
gration during plan rewriting. Further advantages are (1) the asynchronous optimization
independent of any instance execution, (2) the fact that all subsequent instances (until
the next plan change) rather than only the current query benefit from re-optimization,
and (3) the efficient inter-instance plan change without state migration. However, this
optimization model exhibits also major drawbacks, which we reveal in the following.

(2) missed optimization 
opportunity

Periodical
Re-Optimization

On-Demand
Re-Optimization

Execution Time 
per

Instance of Plan 
P, P’, P’’

Time

(1) many unnecessary 
re-optimization steps
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P P’ P’’

initial 
plan P
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∆t
re-optimization steps

(4) high-influence parameter 
optimization interval

(3) overhead of maintaining 
unnecessary statistics

Figure 6.1: Drawbacks of Periodical Re-Optimization

Figure 6.1 shows the execution time of plan instances that have been executed over time
in a scenario with two workload shifts. Re-optimization is triggered periodically using a pe-
riod ∆t, where we only find a new plan if a workload shift occurred meanwhile. We observe
the potential problems of (1) many unnecessary re-optimization steps, where each step is a
full re-optimization and (2) adaptation delays, where we miss optimization opportunities.
Furthermore, we might (3) maintain statistics that are not used by the optimizer and (4)
the chosen optimization interval has high influence on the execution time. Depending on
the optimization interval, periodical re-optimization can even degrade to the unoptimized
execution. To tackle these problems, we propose the on-demand re-optimization that di-
rectly reacts to workload shifts if a new plan is certain to be found. This implies only
necessary re-optimization steps and no missed optimization opportunities.

Example 6.1 (Periodical Plan Optimization). Recall our example plan P5 that consists of
m = 9 operators, which is illustrated in Figure 6.2. It receives messages from the system
s3, executes three Selection operators (according to different attributes). Subsequently,
a Switch operator routes the incoming messages with content-based predicates to schema
mapping Translation operators. Finally, the result is loaded into the system s6. For each
received message, conceptually, an independent instance of this plan is initiated. In order
to enable cost-based optimization, statistics are monitored for each operator. We assume
that re-optimization is periodically triggered with period ∆t, as shown in Figure 6.1. Dur-
ing this re-optimization, all gathered statistics are aggregated and used as cost estimates.
However, in this particular example, there are only few rewriting possibilities: In detail, the
sequence of Selection operators can be reordered according to their selectivities (optimality
conditions oc1-oc3; e.g., oc1 : sel(o2) ≤ sel(o3) with sel = |dsout1 |/|dsin1 |), and the paths
of the Switch operator can be reordered according to their cost-weighted path probabilities
(oc4). Each single re-optimization is a full optimization, where our transformation-based
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Figure 6.2: Example Plan P5 and Monitored Statistics

optimization algorithm A-PMO iterates over all operators and applies relevant optimiza-
tion techniques according to the operator type.

To summarize, the periodical re-optimization has several advantages that reason its
application instead of existing approaches from the area of adaptive query processing.
However, it exhibits four major drawbacks:

Problem 6.1 (Drawbacks of Periodical Re-Optimization18). First, the generic gathering
of statistics for all operators leads to the maintenance of statistics that might not be used
by the optimizer. Second, periodical re-optimization finds a new plan only if workload
characteristics have changed. Otherwise, we trigger many unnecessary invocations of the
optimizer that evaluates the complete search space. Third, if a workload change occurs,
it takes a while until re-optimization is triggered. Thus, during this adaptation delay, we
are using a suboptimal plan and we are missing optimization opportunities. Fourth, the
parameter ∆t has high influence on optimization and execution times and hence, parame-
terization requires awareness of changing workloads. We already presented experiments to
all of these four drawbacks in Section 3.5. Varying the parameter ∆t (e.g., Figure 3.21)
showed the spectrum from high re-optimization overheads to a degradation of the execution
time to the unoptimized case. In contrast, the generic gathering of statistics (e.g., Fig-
ure 3.26) requires further discussion because the overhead of our estimator is negligible.
However, including automatic parameter re-estimation techniques (e.g., for continuously
computing the optimal smoothing constant α of EMA) or using more complex workload
aggregation methods would significantly increase this overhead.

The drawbacks of periodical re-optimization and other optimization models are reasoned
by the underlying fundamental problem of the strict separation between optimization,
execution and statistics monitoring, which prevents the exchange of detailed information
about when and how to re-optimize. This problem of a black-box optimizer was recently re-
considered by Chaudhuri, who argued for rethinking the optimizer contract [Cha09] in the
context of DBMS. With regard to related work of the area of adaptive query processing, as

18Potential alternatives of periodical re-optimization such as on-idle re-optimization (re-optimization on
free cycles) or anticipatory re-optimization (prediction of workload shifts) also have these drawbacks.
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presented in Section 2.2, this underlying problem of a black-box optimizer makes directed
re-optimization impossible and the suboptimality of the current plan cannot be guaranteed
and thus unnecessary re-optimization steps might be triggered. This problem is also
present for approaches of parametric query optimization (PQO). Based on the assumption
of unknown query parameters and thus, uncertain statistics during query compilation time
(e.g., for stored procedures), PQO [INSS92, HS02, HS03] optimizes a given query into all
candidate plans by exhaustively determining the optimal plans for each possible parameter
combination (the complete search space) at compile time. The current statistics are used
to pick the plan that is optimal for the given parameters at execution time. In contrast
to full search space exploration, Progressive PQO (PPQO) [BBD09] aims to iteratively
explore the search space over multiple executions of the same query in order to reduce the
optimization overhead. Although this approach is advantageous compared to traditional
query optimization, it models the complete parameter search space instead of the search
space of an individual optimal plan, does not allow for directed re-optimization, does not
guarantee to find the optimal plan, and does not address the challenge of when and how
to trigger re-optimization.

The major research question is if we could exploit context knowledge from the optimizer,
in terms of optimality conditions of a deployed plan, to do just enough for re-optimization.
In order to address the mentioned problems, we introduce the on-demand re-optimization.

On-Demand Re-Optimization

Our vision of on-demand re-optimization is (1) to model optimality of a plan by its opti-
mality conditions rather than considering the complete search space, (2) to monitor only
statistics that are included in these conditions, and (3) to use directed re-optimization if
conditions are violated. We use an example to illustrate the idea.

Example 6.2 (On-Demand Re-Optimization). Assume a subplan P5(o2, o3) (Figure 6.3(a))
and a search space as shown in Figure 6.3(b), where the dimensions represent the selec-
tivities sel(o2) and sel(o3). In order to validate the optimality of the plan (o2, o3), we
continuously observe the optimality condition oc1 : sel(o2) ≤ sel(o3), where we only moni-
tor statistics included in such optimality conditions. If an optimality conditions is violated,
we can use directed re-optimization in order to determine the new optimal plan.
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(b) Plan Diagram of P5(o2, o3)
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Figure 6.3: Partitioning of a Plan Search Space

Note that we maintain the optimal plan and its optimality conditions (oc1-oc3) as shown
in Figure 6.3(c) for subplan (o2, o3, o4) but we do not explore the complete search space.
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We execute a full optimization only once during the initial deployment of an integration
flow. The optimizer contract is changed in a way that it returns the set of optimality
conditions. Thus, the resulting research challenge is how to organize these optimality con-
ditions for efficient statistic monitoring, condition evaluation, and directed re-optimization.
In contrast to existing passive structures such as matrix views [BMM+04] that are used
and maintained by the re-optimizer for selective operators, we propose an active structure,
the so-called Plan Optimality Tree (PlanOptTree), which is a data structure that models
optimality of a plan. It indexes operators and their related statistics, which are included
in optimality conditions. As a result, we maintain only required statistics and we can
continuously evaluate optimality conditions. Re-optimization is actively triggered only if
necessary—in this case, it is guaranteed that we will find a plan with lower costs. Here,
directed re-optimization is applied only for operators included in any violated conditions.

Example 6.3 (PlanOptTree POT(P5)). Figure 6.4 shows the PlanOptTree of plan P5.

o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

o4

|dsin1| |dsout1|
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≤

o6 o5 o7

W W W

P(A)
W(exprA)

P(B)
W(exprB)

≤(oc1) (oc2) (oc4)

Figure 6.4: PlanOptTree of Plan P5

It includes two optimality conditions (oc1, oc2) for expressing the order of the Selection

operators o2, o3 and o4 (see Figure 6.3(c)) according to their selectivities (oc3 of Ex-
ample 6.1 is omitted due to transitivity of conditions) and one condition (oc4) regarding
branch prediction of the Switch19 operator o5 according to the weighted path probabilities.

In the rest of this chapter, we explain in detail how to create, update, and use these
PlanOptTrees in order to enable the vision of on-demand re-optimization.

6.2 Plan Optimality Trees

In this section, we formally define the PlanOptTree and show how to create a PlanOptTree

for a given plan during the initial optimization of an integration flow. Further, we explain
how to use it for statistic maintenance and when to trigger re-optimization.

6.2.1 Formal Foundation

A PlanOptTree, which general structure is shown in Figure 6.5, models optimality condi-
tions of a plan and it is defined as follows:

Definition 6.1 (PlanOptTree). Let P denote the optimal plan with regard to the current
statistics. Further, let m denote the number of operators and let s denote the maximum
number of statistic types per operator. Then, the PlanOptTree is defined as a graph of
five strata representing all optimality conditions of P :

19For the Switch operator multiple versions of statistics are monitored. This includes the total execution
time W (oi) as well as the different execution times of all expression evaluations W (expri).
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Figure 6.5: General Structure of a PlanOptTree

1. RNode: The single root node refers to m′ with 1 ≤ m′ ≤ m operator nodes (ONode).

2. ONode: An operator node is identified by a node identifier nid and refers to s′ with
1 ≤ s′ ≤ s statistic nodes (SNode), where s denotes the maximum number of atomic
statistic types.

3. SNode: A statistic node exhibits one of the s atomic statistic types, where a single
type must not occur multiple times for one operator oi. Further, each SNode contains
a list of statistic tuples monitored for oi, a single aggregate, as well as a reference to
a list of CSNodes and a list of OCNodes.

4. CSNode: A complex statistic node is a mathematical expression using all referenced
parent SNodes or CSNodes as operands, where a CSNode can refer to SNodes of
different operators. Further, it refers to a list of complex statistic nodes (CSNode)
and a list of optimality condition nodes (OCNode). Hence, arbitrary hierarchies
of complex statistics are possible. In addition, CSNodes can be used to represent
constant values or externally loaded values.

5. OCNode: An optimality condition node is defined as a boolean expression op1 θ op2,
where θ denotes an arbitrary binary comparison operator and the operands op1 and
op2 refer to any CSNode or SNode, respectively. The optimality condition is defined
as violated if the expression evaluates to false.

The nodes of strata 1 and 2 are reachable over unidirectional references, while nodes of
strata 3-5 are defined as bidirectional references (children and parents).

Although the PlanOptTree is a graph, we call it a tree, because from the viewpoint of
statistic maintenance, only the tree from strata 1 to 3 is relevant, while from the viewpoint
of directed optimization, each optimality condition is the root of a tree from strata 5 to
3. All references to children and parents are maintained as sorted lists ordered by their
identifier. Conceptually, known index structures can be used instead of lists. Furthermore,
each node of stratum 4 and stratum 5 is reachable over multiple paths. For this reason,
a PlanOptTree includes a MEMO structure in order to mark subgraphs that have already
been evaluated. Finally, we are able to exploit the following four fundamental properties:

• Minimal Monitoring: The PlanOptTree includes only operators and statistics that
are included in any optimality condition. Thus, we can easily determine the relevant
statistics for minimal statistics monitoring (given by stratum 2 and stratum 3).
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• Optimality: The optimality of a plan is represented by the PlanOptTree. If and only
if any optimality condition is violated, we will find a plan with lower cost during
re-optimization. Thus, there is no need to trigger re-optimization until we detect
any violation (break-even point between optimality of different plans).

• Transitivity: If a statistic is included in multiple optimality conditions, we can lever-
age the transitivity of the comparison operators θ. Thus, the total number of required
optimality conditions can be reduced.

• Directed Optimization: If an optimality condition is violated, we are able to easily
determine the involved operators and the related optimization technique that pro-
duced this condition. Then, we only need to directly re-optimize those operators.

These properties hold for a complete PlanOptTree, while a set of partial PlanOptTrees
(here, partial is defined as a subset of optimality conditions) might include redundancy,
which stands in conflict with minimal monitoring and transitivity. We will revisit this
issue and explain its relevance for further optimization later on.

6.2.2 Creating PlanOptTrees

During the initial deployment of an integration flow, the full cost-based optimization is exe-
cuted once. There, the complete plan search space is evaluated and an initial PlanOptTree
is created. From this point, the PlanOptTree is used for incremental and directed re-
optimization only. In this subsection, we explain how to create this initial PlanOptTree.

Our standard (transformation-based) optimization algorithm A-PMO recursively iter-
ates over the hierarchy of sequences of atomic and complex operators (internal representa-
tion of a plan) and changes the current plan by applying relevant optimization techniques
according to the specific types of operators. In contrast, for on-demand re-optimization, we
changed the optimizer interface. Now, the optimizer does not only change the current plan
but additionally, each applied optimization technique returns also a partial PlanOptTree
that represents the optimality conditions for the subplan that was considered by this tech-
nique. This extension of optimization techniques is straightforward because the existing
cost functions and optimality conditions can be reused. For example, the technique WD4:
Early Selection Application creates a partial PlanOptTree when considering two operators.
This technique constructs the partial PlanOptTree using ONodes, SNodes, a specialized
CSNode Selectivity, and an OCNode.

The use of the fine-grained partial PlanOptTrees at the optimizer interface is advan-
tageous because during directed re-optimization, only subplans are considered and hence,
only partial PlanOptTrees can be returned. Thus, the solution to the challenge of creating
the initial PlanOptTree is to merge all partial PlanOptTrees to a minimal representation.

Example 6.4 (Merging Partial PlanOptTrees). Recall plan P5 and assume the two partial
PlanOptTrees (created for the operators o2 and o3) shown in Figures 6.6(a) and 6.6(b).
When merging those two partial PlanOptTrees, we see that operator o3 and its selectivity
(as a CSNode) are used by both partial PlanOptTrees. Hence, we add only o4 and all
of its child nodes from POT2 to POT1. When doing so, the dangling reference from the
new optimality condition to sel(o3) of POT2 is modified to refer to the existing selectivity
measure sel(o3) of POT1. Finally, we created the PlanOptTree shown in Figure 6.6(c).

Algorithm 6.1 describes the creation of a PlanOptTree in detail. We iterate over all
operators of a given subplan (lines 2-22). If an operator contains a subplan, we recursively
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Figure 6.6: Merging Partial PlanOptTrees

invoke this algorithm (line 4), where all subcalls can access the existing PlanOptTree

root. Otherwise, we apply all optimization techniques and obtain the resulting partial
PlanOptTree for the atomic operator (line 6). If no PlanOptTree exists so far, the first
partial PlanOptTree is used as root; otherwise, we merge the partial PlanOptTree with the
existing root (lines 7-22). When merging, we first clear the MEMO structure (line 11). Then,
we check for the existence of operators as well as statistic nodes, and we add the new nodes
if required. At the level of complex statistic nodes, we invoke the modifyDanglingRefs

in order to change the references of complex statistics and optimality conditions to the
existing PlanOptTree. We use the MEMO structure in order to mark already processed
paths of the new partial PlanOptTree. As a result, we guarantee a worst-case number

Algorithm 6.1 Initial PlanOptTree Creation (A-IPC)

Require: operator op, global variable root (initially set to NULL)
1: o ← op.getSequenceOfOperators()
2: for i← 1 to |o| do // for each operator oi
3: if type(oi) ∈ (Plan, Switch, Fork, Iteration, Undefined) then // complex
4: oi ← A-IPC(oi)
5: else // atomic
6: ppot← getPartialOptTree(oi)
7: if root = NULL then
8: root← ppot
9: else

10: // merge partial PlanOptTrees
11: clear memo
12: for all on ∈ ppot.onodes do // for each ONode on
13: if root.containsONode(on.nid) then
14: eon← root.getOperator(on.nid)
15: for all sn ∈ on.snodes do // for each SNode sn
16: if eon.containsSNode(sn.type) then
17: eson← eon.getSNode(sn.type)
18: modifyDanglingRefs(eon, eson, on, sn)
19: else
20: eon.snodes.add(sn)
21: else
22: root.onodes.add(on) // add operator subtree
23: return root
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of nodes within a PlanOptTree for a given plan, which indirectly implies the worst case
complexity for any operation that evaluates at most all nodes of such a PlanOptTree.

Theorem 6.1 (Worst-Case Complexity). The worst-case time and space complexity of a
PlanOptTree for a plan of m operators is O(m2).

Proof. Assume a plan P with m operators. A minimal PlanOptTree has at most m
ONodes, m · s SNodes, 2 · |oc| CSNodes (two complex statistics nodes for each binary
optimality condition), and |oc| OCNodes. Each operator can be included in one optimality
condition per dependency (in case of a data dependency this subsumes any temporal
dependency) and in one additional optimality condition for binary operators. Now, let
us assume a sequence of operators o. Then, an arbitrary operator oi with 1 ≤ i ≤ m
can—in the worst case—be the target of i− 1 dependencies δ−i , and it can be the source
of m− i dependencies δ+

i . Based on the equivalence of δ− = δ+ and thus, |δ−| = |δ+|, the
maximum number of optimality conditions is given by

|oc| =
m∑
i=1

(i− 1) +m =

m−1∑
i=1

i+m =
m · (m+ 1)

2
. (6.1)

Hence, Theorem 6.1 holds.

After we have created the initial PlanOptTree, we can apply the following two opti-
mizations with an additional single pass over all nodes of the PlanOptTree. However, for
simplicity of presentation and due to a small impact on our use cases, we did not apply
them in the examples.

• Collapsing Statistic Hierarchies (CSNodes): The hierarchies of statistic nodes of
partial PlanOptTrees are defined for each optimization technique with regard to
re-usability. Thus, there might be unnecessarily fine-grained CSNodes. We collapse
these hierarchies by merging CSNodes with their children if only a single child exists.
Similarly to the merging of prefix nodes within a patricia trie [Mor68] this can reduce
the number of levels of the PlanOptTree.

• Reusing Atomic Statistic Measures (SNodes): For operators of the PlanOptTree

with a data dependency between them, we reuse cardinalities across those oper-
ators in order to eliminate redundancy. Due to the data dependency, the out-
put cardinality of operator oi is equal to the input cardinality of operator oi+1

(|dsout(oi)| = |dsin(oi+1)|). Hence, we remove the latter SNode (|dsin(oi+1)|) and
modify the references. This requires awareness when updating the PlanOptTree af-
ter successful re-optimization, because the re-optimization might have changed the
ordering of operators and thus, also changed the data dependencies and statistics.

As a result of creating the initial PlanOptTree, we obtain a structure that represents
optimality of a plan with the properties sketched in Subsection 6.2.1. It includes all cost
conditions that must be satisfied for plan optimality with regard to the current statistics.
Thus, only the update of statistics can trigger re-optimization.

6.2.3 Updating and Evaluating Statistics

We use the PlanOptTree for statistics maintenance and for immediate evaluation of opti-
mality conditions. This triggers re-optimization if optimality conditions are violated.
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For on-demand re-optimization, we only maintain statistics that are required to evalu-
ate the optimality conditions. All other statistics are declined by the PlanOptTree such
that they are not stored and aggregated. When atomic statistics are updated, we also
maintain the aggregate, update the hierarchy of complex statistics measures, and evaluate
optimality conditions that are reachable children of this statistic node. Arbitrary work-
load aggregation methods, as described in Subsection 3.3.2, can be used for aggregation
of atomic statistics. Due to this incremental maintenance and immediate condition eval-
uation, the use of Exponential Moving Average (EMA) is most suitable because (1) it is
incrementally maintained and (2) no negative statistics maintenance (sliding window) is
necessary due to the exponentially decaying weights.

The näıve application of triggering re-optimization based on the incrementally moni-
tored statistics could lead to the problem of frequently changing plans.

Example 6.5 (Problem of Frequent Plan Changes). Assume the optimality condition of
sel(σA) ≤ sel(σB). There are two problems that can cause frequent plan changes (instabil-
ity). First, due to unknown statistics, we are only able to monitor conditional selectivities
sel(σA) and sel(σB|σA). If A and B are correlated, the optimality condition might be
violated even after re-optimization. Second, if the selectivities are constant but alternate
around equality with sel(σA) ≈ sel(σB), we would also change the plan back and forth. In
both cases, we would get frequent re-optimization steps that are not amortized.

We explicitly address this problem of missing robustness (instability) when triggering
re-optimization with the following strategies:

• Correlation Tables: As described in Subsection 3.3.4, we explicitly compute con-
ditional selectivities using a lightweight correlation table. Essentially, we maintain
selectivities over multiple versions of a plan, where we store and maintain a row
of atomic and conditional selectivities for each pair of operators with direct data
dependency within the current plan. Unless we see the second operator ordering,
we assume statistical independence. However, based on the maintenance of condi-
tional selectivities, we do not make a wrong decision based on correlation twice. For
on-demand re-optimization, the use of this correlation table is even more important.
The integration into the PlanOptTree is realized by a specific complex statistic node
(CSNode) Conditional Selectivity that maintains and reads the correlation table.

• Minimal Existence Time: We use the time period ∆t from periodical re-optimization
as minimal existence time of a plan. This means that no optimality conditions are
evaluated during ∆t after the last re-optimization. During this interval, we only col-
lect statistics but we do not aggregate and evaluate them. As a result, the adaptation
sensibility is reduced in order to avoid that re-optimization is triggered multiple times
in case that (1) we have not finished another asynchronous re-optimization step or
(2) the workload has changed abruptly and caused the violation of multiple optimal-
ity conditions with short delay. However, ∆t determines only the minimum period of
re-optimization and hence, can be set independently of the workload characteristics
(low-influence parameter). After that, we continuously check optimality conditions
and adapt faster to workload changes than periodical re-optimization does.

• Lazy Condition Violation: When evaluating an optimality condition, we might not
have seen all atomic statistics of a plan instance. Similar to known control strategies,
re-optimization is lazily triggered if the condition is violated

∑m′

1 s′ times, which is
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at least the number of monitored statistics of one plan instance, i.e., the number
of SNodes in the PlanOptTree (e.g., six in our example). The condition must be
violated by a relative threshold τ and a true evaluation resets this lazy count.

Algorithm 6.2 PlanOptTree Insert Statistics (A-PIS)

Require: operator id nid, stat type type, statistic value, global variable lastopt
1: if (on← root.getOperator(nid)) = NULL or (sn← on.getSNode(type)) = NULL then
2: return // statistic not required
3: sn.maintainAggregate(value)
4: ret← true
5: if (time−∆t) > lastopt then // min existence time
6: clear memo
7: for all cn ∈ sn.csnodes do // for each CSNode cn
8: if memo.contains(cs) then
9: continue

10: ret← ret and cs.computeStats(), memo.put(cs)
11: for all oc ∈ sn.ocnodes do // for each OCNode oc
12: if memo.contains(oc) then
13: continue
14: ret← ret and oc.isOptimal(), memo.put(oc)
15: if ¬ret then
16: A-PTR() // actively triggering re-optimization (start reopt thread)

Algorithm 6.2 illustrates the statistics maintenance using a PlanOptTree and shows how
to trigger re-optimization if workload characteristics change over time. Starting from the
root, we identify the operator node according to the given nid. We decline the maintenance
of a statistic if it is not required by the PlanOptTree (lines 1-2). Then, we get the
specific statistic node and maintain the aggregate (line 3). If the minimum existence time
is exceeded, we check the existing optimality conditions. For this purpose, we use our
MEMO structure, recursively compute complex statistic measures, and check all reachable
optimality conditions (lines 6-14). Materialization of complex statistics is applied with
awareness of the PlanOptTree structure in order to prevent anomalies (e.g., inconsistency
of statistics in one optimality condition). We do not miss any violated condition when
using the MEMO structure because this algorithm is executed for each atomic statistic value.
In case there is a violated optimality condition, we trigger re-optimization (line 16).

In conclusion, we evaluate optimality conditions as we gather new statistics, and re-
optimization is triggered only if optimality conditions are violated. In contrast to period-
ical re-optimization, this yields (1) minimal statistics maintenance, (2) the avoidance of
unnecessary re-optimization steps, and (3) an immediate adaptation to changing workload
characteristics, and hence, it results in a lower overall execution time.

6.3 Re-Optimization

Once re-optimization has been triggered by violated optimality conditions, we re-optimize
the current plan. This includes two major challenges. First, we apply directed re-
optimization rather than full re-optimization. Second, after successful re-optimization,
we incrementally update the existing PlanOptTree according to the new conditions.
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6 On-Demand Re-Optimization

6.3.1 Optimization Algorithm

Recall our search space shown in Figure 6.3. If certain optimality conditions are violated,
we apply directed re-optimization according to those violations. At this point, we know
the violated optimality conditions and the optimization techniques, which produced these
conditions. For directed re-optimization, we additionally need to determine the minimal
set of operators that should be reconsidered by those techniques. In this context, the
transitivity property of the PlanOptTree must be taken into account.

Example 6.6 (Determining Re-Optimization Search Space). Assume the PlanOptTree

of our example. During initial optimization, selectivities of sel(o2) = 0.2, sel(o3) = 0.3
and sel(o4) = 0.4 resulted in the optimality conditions shown in Figure 6.7(a).
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Figure 6.7: Determining Re-Optimization Potential

Re-optimization was triggered because the selectivity of operator o2 changed to sel(o2) =
0.45. Thus, we need to reconsider operators o2 and o3 during re-optimization. However,
due to the transitivity of optimality conditions, we evaluate operator o4 as well, because we
do not know in advance if the implicit optimality condition of sel(o2) ≤ sel(o4) still holds.
The PlanOptTree is traversed as shown in Figure 6.7(b) to determine that this transitive
condition is violated as well.

From a macroscopic view, we follow a bottom-up approach from the optimality condi-
tions to determine all operators for directed re-optimization. We start at each violated
optimality condition and traverse (without cycles) all other optimality conditions that
are reachable over transitivity connections. Such a transitivity connection is defined as
an atomic or complex statistic node connected with two or more optimality conditions.
Transitivity chains of arbitrary length are possible, where the end is given by the lack of
transitive connections or by the first condition that is still optimal.

Algorithm 6.3 illustrates how to trigger re-optimization. During statistics mainte-
nance, all violated optimality conditions are added to the set OC. When triggering re-
optimization, we traverse the logical transitivity chains for each optimality condition in
OC. For the left operator of the optimality condition, we check the transitivity filter (di-
rection of condition operands and its comparison operator) (line 4). If it holds, we check
the transitive optimality filter for this reachable optimality condition (line 5). If optimal-
ity is violated, we mark this OCNode as a transitively violated condition, add it to OC
(line 6) and proceed recursively along the left chain (line 7). This is done similarly for the
right operator of the optimality condition (lines 8-12). Finally, we invoke the optimizer
with the set OC. The optimizer uses the violated optimality conditions and all involved
operators (line 13). Despite the unidirectional references of strata 1 and 2, we can effi-
ciently determine these operators. After successful re-optimization, the PlanOptTree is
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Algorithm 6.3 PlanOptTree Trigger Re-Optimization (A-PTR)

Require: invalid optimality conditions OC
1: clear memo
2: for all oc ∈ OC do // for each OCNode
3: for all oc1 ∈ oc.op1.ocnodes do // for each OCNode of operand 1
4: if oc1.θ = oc.θ and oc1.op2 = oc.op1 then
5: if ¬oc1.isOptimal(oc1.op1.agg, oc.op2.agg) then
6: OC← OC ∪ oc1
7: rCheckTransitivity(oc, oc1.op1, left)
8: for all oc2 ∈ oc.op2.ocnodes do // for each OCNode of operand 2
9: if oc2.θ = oc.θ and oc2.op1 = oc.op2 then

10: if ¬oc2.isOptimal(oc2.op2.agg, oc.op1.agg) then
11: OC← OC ∪ oc2
12: rCheckTransitivity(oc, oc2.op2, right)
13: PPOT← optimizePlan(ptid,OC) // apply directed re-optimization

14: A-PPR(PPOT,OC) // update PlanOptTree

incrementally updated (line 14). It is important to note that the directed re-optimization
of operators involved in violated optimality conditions is equivalent to full re-optimization.

The directed re-optimization relies on monotonic cost functions. This ensures that no
local suboptima exist and that we will find the global optimum. The Picasso project
[RH05] showed that this assumption holds for complete cost diagrams over multiple al-
ternative plans of most queries [HDH07, HDH08, DBDH08]. In contrast, it always holds
for our cost model of integration flows with regard to a single plan (see Subsection 3.2.2).
However, due to the possibility of arbitrarily complex optimality conditions, even without
this property, we could still guarantee to trigger full re-optimization if a better plan exists.

Theorem 6.2 (Directed Re-Optimization). The directed re-optimization for all operators
o′ ∈ P that have been identified by violated optimality conditions oc′ of a PlanOptTree is
equivalent to the full re-optimization of all operators o ∈ P .

Proof. Assume all dependencies between operators o of plan P to be a directed graph
G = (V,A) of vertexes (operators) and arcs (dependencies). Then, the re-optimization of
P is a graph homomorphism f : G→ H. In order to prove Theorem 6.2, we show that

∀oi /∈ o′ :
(
vpre(oi) ∈ G ≡ vpre(oi) ∈ H

)
∧
(
vsuc(oi) ∈ G ≡ vsuc(oi) ∈ H

)
, (6.2)

where vpre(oi) denotes the set of predecessors of operator oi and vsuc(oi) denotes the set of
successors of oi. (1) If there exists a homomorphism f : G→ H such that

vj ≺ oi ∈ G ∧ oi ≺ vj ∈ H, (6.3)

then, the order vj ≺ oi is represented by an optimality condition oc with oi, vj ∈ oc or by a
transitive optimality condition toc with oi, vj ∈ toc. The same is true for successors of oi.
(2) All used cost functions are known to be monotonically non-decreasing w.r.t. the input
statistics. Hence, during re-optimization, f : G → H, the globally optimal solution will
be found. (3) Further, all operators o′ included in violated optimality conditions ∀oi ∈ oc′
or transitive optimality conditions ∀oi ∈ toc′ are used by f : G→ H. As a result,

@
(
oi /∈ o′ ∧

((
vpre(oi) ∈ G 6= vpre(oi) ∈ H

)
∨
(
vsuc(oi) ∈ G 6= vsuc(oi) ∈ H

)))
, (6.4)
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such that both directed re-optimization and full re-optimization results in the same plan.
Hence, Theorem 6.2 holds.

As a result of directed re-optimization, we minimized the re-optimization overhead for
large plans and for optimization techniques with a large search space.

6.3.2 Updating PlanOptTrees

Due to directed re-optimization, where we only consider a subset of all plan operators, we
need to incrementally update the existing PlanOptTree according to the rewritten plan.
The extension of the optimizer interface is based on returning partial PlanOptTrees.
Thus, after successful re-optimization, we incrementally update the PlanOptTree with
the partial PlanOptTrees of the newly created subplans. More precisely, the problem is
to update a given PlanOptTree that includes violated optimality conditions using a set of
given partial PlanOptTrees. The result of this update must be semantically equivalent to
a full creation from scratch (A-IPC).

We follow an approach called Partial PlanOptTree Replacement. We start bottom-up
from all violated optimality conditions and remove those OCNodes except for transitively
violated conditions because the new partial PlanOptTree is already aware of them. Subse-
quently, we traverse up the tree and remove all nodes that do not refer to at least one child
any longer. As a result, we remove all nodes included in violated optimality conditions.
Finally, we can apply the merging of partial PlanOptTrees for all new subplans similar to
creating the initial PlanOptTree.

Example 6.7 (Partial PlanOptTree Replacement). In Example 6.6, the optimality con-
dition sel(o2) ≤ sel(o3) and the transitive condition sel(o2) ≤ sel(o4) were violated. The
triggered re-optimization returned the partial PlanOptTree shown in Figure 6.8(a).

o4 o2

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o4) sel(o2)

≤

(a) New Partial POT

o2 o3

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o2) sel(o3)

≤

o4

|dsin1| |dsout1|

sel(o4)

≤

o2

|dsin1| |dsout1|

sel(o2)

≤

(b) POT during Replacement

o3 o4

|dsin1| |dsout1| |dsin1| |dsout1|

sel(o3) sel(o4)

≤

o2

|dsin1| |dsout1|

sel(o2)

≤

(c) POT after Replacement

Figure 6.8: Partial PlanOptTree Replacement

For an incremental update (Figure 6.8(b)), we remove the violated optimality condition
sel(o2) ≤ sel(o3), the selectivity sel(o2), operator o2 and its statistics but before deletion,
we copy the statistics to the new PlanOptTree. The additional arrows illustrate the traver-
sal paths. We then merge the new partial PlanOptTree with the remaining PlanOptTree.
Operator o4 and all of its conditions are reused and the result is the PlanOptTree shown
in Figure 6.8(c) representing plan optimality according to the statistics from Example 6.6.

Algorithm 6.4 illustrates the details of the incremental update approach. For each
optimality condition in the set of violated optimality conditions, we remove the OCNode
and reachable statistic nodes without children (lines 2-7). Then, we clear strata 1-2
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Algorithm 6.4 Update via Partial PlanOptTree Replacement (A-PPR)

Require: set of new partial PlanOptTrees PPOT, invalid optimality conditions OC
1: for all oc ∈ OC do // remove invalid optimality conditions
2: oc.op1.ocnodes.remove(oc)
3: if oc.op1.|ocnodes| = 0 and oc.op1.|csnodes| = 0 then
4: rremoveNodes(oc.op1) // recursive bottom-up
5: oc.op2.ocnodes.remove(oc)
6: if oc.op2.|ocnodes| = 0 and oc.op2.|csnodes| = 0 then
7: rremoveNodes(oc.op2) // recursive bottom-up
8: clearStrata12()
9: for all ppot ∈ PPOT do // merge new partial PlanOptTrees

10: mergePPOT(root, ppot) // see A-IPC lines 11-22

starting from the root with the same concept of removing nodes without any children.
Finally, we apply the merge algorithm (line 10) from Subsection 6.2.2.

With the aim of reuse, we could index plans and PlanOptTrees created over time by
their optimality constraints. This could avoid redundant directed re-optimization and
merging PlanOptTrees but we would still need to copy statistics. Due to the risk of (1)
maintenance overhead (e.g., plans, PlanOptTrees), (2) a potentially large search space, as
well as (3) low remaining optimization potential, we do not reuse plans. However, future
work might investigate this by combining on-demand re-optimization with (progressive)
parametric query optimization (PPQO) [BBD09] by iteratively creating possible plans of
the search space according to the optimality conditions and subsequently, reusing already
created plans.

To summarize, we have shown how to use the PlanOptTree for directed re-optimization
and how a PlanOptTree can be incrementally updated after successful re-optimization.
All algorithms presented rely on the extension of the optimizer interface by returning
partial PlanOptTrees or by directly rearranging the referenced PlanOptTree. Either way,
existing optimization techniques require modifications. In the following, we will explain
these modifications using selected optimization techniques from previous chapters.

6.4 Optimization Techniques

In order to illustrate the applicability of the PlanOptTree and the necessary modifications
of optimization techniques, we use examples to show how their optimality conditions can
be expressed with our approach. First, we describe the on-demand re-optimization for
common rewriting techniques (see Chapter 3). Second, we show how the concept of on-
demand re-optimization can be applied for cost-based vectorization (see Chapter 4) and
multi-flow optimization (see Chapter 5) as well.

6.4.1 Control-Flow- and Data-Flow-Oriented Techniques

For control-flow- and data-flow-oriented rewriting techniques, their already presented opti-
mality conditions can be reused as they are. In this subsection, we discuss the on-demand
re-optimization for the common data-flow-oriented example optimization techniques join
enumeration, eager group-by, and set operations with distinctness.
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Join Enumeration Example

Recall our join enumeration heuristic for the optimization technique WD10: Join Enumer-
ation, presented in Subsection 3.3.3, where we assumed a left-deep join tree (R on S) on T
of n = 3 data sets (without cross products and only one join implementation in the form
of a nested loop join) with the following n! = 6 possible plans:

Pa(opt) : (R on S) on T Pc : (R on T ) on S Pe : (S on T ) on R
Pb : (S on R) on T Pd : (T on R) on S Pf : (T on S) on R.

The costs of a (nested loop) join are computed by C(R on S) = |R|+ |R| · |S|. Further,
the join output cardinality can be derived by |R on S| = fR,S · |R| · |S| with a join filter
selectivity of fR,S = |R on S|/(|R| · |S|). Thus, the costs of the complete plan (R on S) on T
are given by C((R on S) on T ) = |R| + |R| · |S| + fR,S · |R| · |S| + fR,S · |R| · |S| · |T |.
Assuming variable selectivities and cardinalities, the optimality conditions for arbitrary
left-deep join trees (see Figure 6.9(a)) are specified as follows. First, fix two base relations
with the commutativity optimality condition of oc1 : |R| ≤ |S|. Second, the optimality of
executing R on S before ∗ on T is given if the following optimality condition holds:

oc2 : |R|+ |R| · |S|+ fR,S · |R| · |S|+ fR,S · |R| · |S| · |T |
≤|R|+ |R| · |T |+ fR,T · |R| · |T |+ fR,T · |R| · |T | · |S|.

oc′2 : |S|+ fR,S · |S|+ fR,S · |S| · |T | ≤ |T |+ fR,T · |T |+ fR,T · |T | · |S|,
(6.5)

where oc2 has been algebraically simplified to oc′2 by subtracting |R| and subsequently
dividing by |R|. Note that it is possible to monitor all cardinalities |R|, |S|, and |T |
but only the selectivities fR,S and f(RonS),T . To estimate fR,T , we need to derive it with
fR,T θ f(RonS),T , where θ is a mapping function representing the correlation. If we assume
statistical independence of selectivities, we can set fR,T = f(RonS),T

20.
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oc3

oc4

(a) Optimality Conditions
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|R| |S| |R  S| |*  T||T|

fR,S fR,T=f(R ⋈ S),T

C1 C2

≤
(oc1) (oc’2)

(b) Example POT (c) Complexity Analysis

Figure 6.9: Example Join Enumeration

The PlanOptTree for this example is illustrated in Figure 6.9(b). Here, the PlanOptTree
contains the two mentioned optimality conditions, which use a hierarchy of atomic and
complex statistics. All input cardinalities of base relations and the output cardinalities
of join operators are used in the form of atomic statistic nodes. The join selectivities
(complex statistic nodes) are computed from the atomic statistics. Both terms of the
inequality oc′2 are computed using atomic and complex statistics.

20Another approach would be to use serial histograms [Ioa93] or exact frequency matrices [Pol05].
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Finally, Figure 6.9(c) compares the number of alternative plans of the full search space
with the number of required optimality conditions, using a log-scaled y-axis. The search
space reduction (see Theorem 6.1 for the worst case consideration) is achieved by trans-
forming the problem of enumerating all possible plans into binary optimality conditions,
where costs in front of and after the considered subplan are equal. Note that the assump-
tion of transitivity does not necessarily require that the used cost model has the adjacent
sequence interchange (ASI) property [Moe09]. Figure 6.9(a) shows how this heuristic join
enumeration approach works for arbitrarily large left-deep join trees of n input data sets.
For this join tree type, the PlanOptTree has n−1 optimality decisions (shown as arrows).

Due to the restriction of checking only for plan optimality and due to arbitrary com-
plex optimality conditions, this concept of triggering re-optimization leads to the globally
optimal solution. In addition, the PlanOptTree allows for directed re-optimization. With
regard to an equivalent optimization result compared to full join enumeration (e.g., with
DPSize), n(n + 1)/2 optimality conditions are required and only a single reordering of
two join operators is applied during one re-optimization step and multiple of these steps
are required to find the global optimum. However, in case of heuristic join enumeration,
directed re-optimization can be used for all operators in one single re-optimization step
but we might not find the global optimum.

Eager Group-By Example

Similarly to the join enumeration example, assume a join of n data sets (with arbitrary
multiplicities) and a subsequent group-by, where the join predicate and group-by attributes
are equal with γF (X);A1

(R onR.A1=S.A1 S). With regard to the optimization technique
WD6: Early Group-by Application, there are 4n! (for n ≥ 2) possible plans. Without loss
of generality, we assume n = 2 and concentrate on the 4n! = 8 possibilities to arrange
group-by and join (for an invariant group-by the final γ in Pc-Pf can be omitted):

Pa(opt) : γ(R on S) Pc : γ((γR) on S) Pe : γ(R on (γS)) Pg : (γR) on (γS)
Pb : γ(S on R) Pd : γ(S on (γR)) Pf : γ((γS) on R) Ph : (γS) on (γR).

In addition to the join costs, the group-by costs are given by C(γ) = |R| + |R| · |R|/2.
Furthermore, the output cardinality in case of a single group-by attribute Ai, with a
domain DAi , is defined as 1 ≤ |γR| ≤ |DAi(R)|, while for an arbitrary number of group-by

attributes it is 1 ≤ |γR| ≤
∏|A|
i=1|DAi(R)|. Further, let us denote the group-by selectivity

with fγR = |γR|/|R|. The optimal plan Pa can then be represented with four optimality
conditions. First, the join order is expressed with oc1 : |R| ≤ |S|. Second, we use one
optimality condition for each single join input (oc2 and oc3, where we illustrate oc2 as an
example) and one condition for all join inputs (oc4):

oc2 : C(γ(R on S)) ≤
(
|R|+ |R|2/2

)
+ (fγR · |R|+ fγR · |R| · |S|)

+
(
f(γR),S · fγR · |R| · |S|+ (f(γR),S · fγR · |R| · |S|)2/2

)
oc4 : C(γ(R on S)) ≤

(
|R|+ |R|2/2

)
+
(
|S|+ |S|2/2

)
+ (fγR · |R|+ fγR · |R| · fγS · |S|)

with C(γ(R on S)) = (|R|+ |R| · |S|) +
(
fR,S · |R| · |S|+ (fR,S · |R| · |S|)2/2

)
.

(6.6)

Similar to the join example, we compute the join selectivity by f(γR),S θ fR,S and
assume independence with f(γR),S = fR,S . The group-by selectivity is computed by
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fγ((γR)onS) θ fγ(RonS)/fγ(R). If we assume independence for this group-by selectivity, we
have fγ((γR)onS) = 1 and can set fγ(RonS) = fγ(R). As a result, we can derive all variables
of the optimality conditions from statistics of the optimal plan.

≤

R S γ

|R| |S| |R S| | γ(R S)|

fR,S fγ(R ⋈ S)

C1 *C2

≤
(oc1) (oc2)

*C3

≤
(oc3)

≤
(oc4)

*C4

* |R|, |S| as additional input 

(a) Example POT

R S

γ

oc1

oc2 oc3

oc4

(b) Optimality Conditions (c) Complexity Analysis

Figure 6.10: Example Eager Group-By

Figure 6.10(a) shows the resulting PlanOptTree, where we omitted some connections
(*) to atomic statistic nodes for simplicity of presentation. Note that for eager group-by,
no transitivity is used. Furthermore, only the plan optimality is modeled rather than
the whole plan search space. Hence, only four optimality conditions are required per join
operator as shown in Figure 6.10(b). Accordingly, Figure 6.10(c) compares the number of
alternative plans of the full search space with the number of required optimality conditions.
The improvement is reasoned by the fact that for each join input, we just model if pre-
aggregation is advantageous or not.

Union Distinct Example

In contrast to join enumeration or eager group-by, there are many control-flow- and
data-flow-oriented optimization techniques with fairly simple optimality conditions and
thus, rather small PlanOptTrees. An example is the optimization technique WD11:
Setoperation-Type Selection (set operations with distinctness).

R S

U

R S

UM

sort(R) sort(S)

oc1

oc2

(a) Union Distinct Alternatives

≥

RUS

|R| |S| |R US|

C1 C2

(oc’2)
≤
(oc1)

(b) Example POT

Figure 6.11: Example Union Distinct

There are three alternative subplans for a union distinct R∪S. First, there is the normal
union distinct operator with costs that are given by C(R ∪ S) = |R|+ |S| · |R ∪ S|/2 (two
plans due to asymmetric costs), where |R| ≤ |R ∪ S| ≤ |R| + |S| holds. Second, we can
sort both inputs and apply a merge algorithm with costs of

C (sort(R) ∪M sort(S)) = |R|+ |S|+ |R| · log2|R|+ |S| · log2|S|. (6.7)
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For arbitrary cardinalities, the optimality conditions (Figures 6.11(a) and 6.11(b)) are

oc1 : |R| ≥ |S| and

oc2 : |R|+ |S| · |R ∪ S|
2

≤ |R|+ |S|+ |R| · log2|R|+ |S| · log2|S|.
(6.8)

After simplification of oc2, we obtain

oc′2 : |R ∪ S| ≤ 2

(
1 +
|R| · log2|R|
|S|

+ log2|S|
)

. (6.9)

Figure 6.11(b) illustrates the resulting PlanOptTree, where we monitor the input and
output cardinalities |R|, |S|, |R ∪ S| and we only have to check the two fairly simple
optimality conditions oc1 and oc′2, respectively. A similar concept is also used for example,
when deciding on nested-loop or sort-merge joins.

6.4.2 Cost-Based Vectorization

The concept of on-demand re-optimization can also seamlessly be applied to the control-
flow-oriented technique cost-based plan vectorization that has been presented in Chap-
ter 4. For this technique, the created PlanOptTree depends on the used algorithm and
optimization objective. In this subsection, we illustrate the on-demand re-optimization
for the, already discussed, constrained optimization objective of

φc =
m

min
k=1

k | ∀i ∈ [1, k] :

 lbi∑
j=1

W (oj)

 ≤W (omax) + λ, (6.10)

and the typically used heuristic computation approach (A-CPV), whose core idea is to
merge buckets in a first-fit (next-fit) manner.

Let o be a sequence of m operators that has been distributed to k execution buckets
bi with 1 ≤ k ≤ m. Plan optimality is then represented by 2k − 1 optimality conditions
with regard to the heuristic computation approach (A-CPV). First, for each bucket bi, the
total execution time of all included operators must be below the maximum cost constraint
with oc : W (bi) ≤W (omax) + λ. Second, for each bucket, except the first one, we check if
the first operator oi of this bucket bi still cannot be assigned to the previous bucket bi−1

with oci : W (bi−1) +W (oi) ≥W (omax) + λ. This optimality condition is reasoned by the
first-fit (next-fit) character of the A-CPV.

o1 o2 o3 o4 o5

W W W

W(b3)

≥ (oc2)

WW

W(b2)
max + λ

≤ (oc1) ≥ (oc3)

W(b1+) W(b2+)

< (oc4) < (oc5)

Figure 6.12: Example PlanOptTree of Cost-Based Vectorization
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The resulting PlanOptTree for a sequence of m = 5 operators that has been distributed
to k = 3 execution buckets is illustrated in Figure 6.12. With regard to cost-based vector-
ization, we need to include operator nodes for all operators, but only the execution time as
atomic statistic nodes. Furthermore, we use the complex statistic node W (omax) + λ and
the aggregated bucket execution costs W (bi) for each bucket with more than two opera-
tors. Then, there are three optimality conditions (oc1-oc3), which check that the bucket
execution costs (or operator execution costs) are below this maximum. In addition, two
optimality conditions (oc4 and oc5) are used in order to check if all operators belong to
the right bucket with regard to producing the same result as the A-CPV does.

Whenever one of the optimality conditions is violated, we trigger directed re-optimiza-
tion. In this case we know the operator or execution bucket, respectively, which reasoned
this violation. In contrast to the the full A-CPV, we directly start the cost-based plan
vectorization at this bucket and hence, might not need to evaluate all operators. However,
the worst-case time complexity of O(m) is not changed by the directed cost-based plan
vectorization because we might start directed re-optimization at the first operator o1.

6.4.3 Multi-Flow Optimization

Similarly to the cost-based vectorization, on-demand re-optimization can also be applied
to the data-flow-oriented optimization technique multi-flow optimization that has been
discussed in Chapter 5. It is based on the algorithms of deriving partitioning schemes
(A-DPA) and on the waiting time computation (A-WTC). Furthermore, we follow the
optimization objective of minimizing the total latency time with

φ = max
|M ′|
∆t

= minTL(M ′), (6.11)

where TL(M ′) is computed by

T̂L(M ′, k′) =

⌈
|M ′|
k′

⌉
·∆tw + Ŵ (P ′, k′). (6.12)

and Ŵ (P ′, k′) is computed by Ŵ (P ′, k′) = W−(P ′)+W+(P ′)·k′ for arbitrary k′ = R·∆tw.
Due to our specific cost model extension, this minimum is given at ∆tw = W (P ′,∆tw ·R)
such that we can compute ∆tw by ∆tw = W−(P ′)/(1−W+(P ′)·R). In order to ensure the
latency time constraint at the same time, we additionally evaluate the validity condition
of (0 ≤ W (P ′, k′) ≤ ∆tw) ∧ (0 ≤ T̂L ≤ lc). In general, there are different cases, which
reason different optimality conditions. Here, we concentrate on the default case, where
the computed waiting time fulfills the validity condition.

For a plan P with m = 5 operators and h = 2 partitioning attributes, there exist
h + 3 = 5 optimality conditions. First, h − 1 = 1 optimality conditions are required
with regard to the derivation of partitioning schemes, where we order the partitioning
attributes according to the monitored selectivities with oc1 : sel(ba1) ≥ sel(ba2). Second,
for this case of a valid waiting time, we require four optimality conditions—independent
of the number of partitioning attributes—in order to represent the validity condition with
oc2 : 0 ≤W (P ′, k′), oc3 : W (P ′, k′) ≤ ∆tw, oc4 : 0 ≤ T̂L, and oc5 : T̂L ≤ lc).

The PlanOptTree that represents these optimality conditions is shown in Figure 6.13.
Essentially, it contains operator nodes for all five operators. Only for operators with
partitioning attributes, we monitor the selectivity according to this attribute, while for all
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Figure 6.13: Example PlanOptTree of Multi-Flow Optimization

operators, we monitor the execution time. In addition, the message rate R is monitored
for the first operator of this plan. We use oc1 to express the ordering of the partition
tree. In contrast, for the validity condition, we require a hierarchy of complex statistic
nodes. First, we determine the cost components W−(P ′) and W+(P ′) according to the
defined cost model extension. Then, ∆tw is computed from these cost components and the
message rate. Furthermore, we compute the latency time and the execution time using
the determined waiting time ∆tw. Finally, we use the optimality conditions oc2-oc5 in
order to express the mentioned validity condition, where two more complex statistic nodes
(latency constraint lc and 0) are used as constant-value operands.

Once we triggered re-optimization, we can use the PlanOptTree for directed re-optimiza-
tion as well. There are three facets, where we can exploit the PlanOptTree. First, we
use the violated optimality conditions for the directed reordering of partitioning attributes
similarly to the ordering of selective operators. Second, with regard to the different cases of
computing ∆tw (minimum, default, exceeded latency), we can directly derive the case from
the violated optimality conditions and compute the waiting time ∆tw accordingly. Third,
after each executed partitioned plan instance, we determine the current (continuously
adapted) waiting time ∆tw by querying the corresponding complex statistic node. Most
importantly this allows for a workload adaptation with almost no adaptation delay as it
was introduced by the optimization interval ∆t. Therefore, we also solved the problem
that the maximum message latency time cannot be guaranteed if workload characteristics
change abruptly and if we use long optimization intervals.

6.4.4 Discussion

We generalize the main findings from the given example optimization techniques. First,
even when considering techniques with a large search space, only few optimality conditions
are required because we do not model the complete plan search space but only the condi-
tions of the optimal plan. Hence, all conditions are binary decisions of subplans and they
exploit the fact that costs of operators in front of and after that subplan are independent
of the rewriting decision. Second, only one optimality condition per dependency (plus one
condition for binary operators) is required to model plan optimality. As a result, those
conditions can be seamlessly integrated into existing memo structures that are typically
used during query optimization in DBMS (for an example, see the cascades framework in
MS SQL Server [BN08]). Third, due to the possibility of arbitrarily complex optimality
conditions, all kinds of optimization techniques can be integrated. For example, our op-
timizer uses (1) reordering techniques (e.g., switch path reordering, early selection, early

187



6 On-Demand Re-Optimization

projection, early translation, early group-by, join enumeration), (2) techniques that in-
sert or remove specific operators (e.g., execution pushdown, order-by insertion, rewriting
sequences/iteration to parallel flows), and (3) techniques that choose between different
physical operator implementations (e.g., join type selection, setoperation type selection).
Fourth, existing cost models (e.g., cost formulas and aspects such as correlation) can
be reused. Only the optimizer interface and the single optimization techniques require
some changes with regard to (1) expressing optimality with partial PlanOptTrees and (2)
allowing for directed re-optimization of subplans. We explained these modifications for
selected optimization techniques. In conclusion, the concept of on-demand re-optimization
is generally applicable for existing optimizer architectures as well.

6.5 Experimental Evaluation

In this section, we present selected experimental evaluation results comparing the on-
demand re-optimization with the periodical re-optimization that has been evaluated al-
ready in Chapter 3. Therefore, we concentrate on the comparison of the different opti-
mization models rather than comparing the on-demand re-optimization approach with the
unoptimized execution, or regarding the benefit of individual optimization techniques. In
general, the experiments show that:

• Most importantly, the cumulative costs of plan execution are reduced due to the fast
adaptation to changing workload characteristics that prevents missed optimization
opportunities. In addition to the fast adaptation, the total execution time does not
depend on the chosen optimization interval anymore.

• The re-optimization costs are typically reduced because re-optimization is only trig-
gered if required. Re-optimization might be triggered more frequently than for pe-
riodical re-optimization in case of continuously changing workload characteristics.
For this reason of ensuring robustness, the use of our lightweight correlation table
has higher importance as for the periodical re-optimization.

• For complex integration flows, directed re-optimization significantly improves the op-
timization time. This is especially true for optimization techniques with super-linear
time complexity, where the benefit of reducing the number of evaluated combinations
has huge impact on the overall optimization time.

• The overhead of evaluating optimality conditions for each monitored atomic statistic
is fairly low due to minimal statistic maintenance. Furthermore, this low overhead
is negligible compared to the cumulative execution time improvements.

In detail, the description of our experimental results is structured as follows. First, we
present the end-to-end comparison of on-demand re-optimization with periodical and no
optimization using simple and complex integration flows. We also show the scalability with
varying parameters. Second, we discuss the benefit of directed re-optimization and the
overhead of maintaining optimality conditions. Third, we explain the effects of correlation
and how we achieve robustness of on-demand re-optimization.

Experimental Setting

We implemented the on-demand re-optimization, within our WFPE (workflow process en-
gine). This includes the PlanOptTree data structure and related algorithms, as well as
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abstractions of statistics maintenance, cost estimation and re-optimization for enabling the
use of both alternative optimization models. Most importantly, we extended the optimizer
interface in the form of exchanging partial PlanOptTrees, which includes the modification
of optimization techniques in order to enable directed re-optimization. Furthermore, we
ran the experiments on the same platform as used within the rest of this thesis. With the
aim of simulating arbitrary changing workload characteristics, we synthetically generated
XML data sets with varying selectivities and cardinalities as input for our integration
flows.

Simple-Plan End-to-End Comparison

In a first series of experiments, we compared periodical re-optimization with on-demand
re-optimization (both asynchronous with inter-instance plan change). In order to conduct
a fair evaluation, we used our fairly simple example plan P5 because the benefit of on-
demand re-optimization increases with increasing plan complexity. Essentially, we reused
the end-to-end comparison experiment from Chapter 3, where we executed 100,000 in-
stances for the non-optimized plan as well as for both optimization approaches, and we
then measured re-optimization and plan execution times. The execution time already in-
cludes the synchronous statistic maintenance and the evaluation of optimality conditions
in case of on-demand re-optimization. During execution, we varied the selectivities of the
three selection operators (see Figure 6.14(a)) and the input cardinality (see Figure 6.14(b)).
The input data was generated without correlations. With regard to re-optimization, there
are four points (∗1, ∗2, ∗3, and ∗4) where a workload change (intersection points between
selectivities) reasons the change of the optimal plan. For periodical re-optimization, we
used a period of ∆t = 300 s, while for on-demand re-optimization, we used a minimum
existence time of ∆t = 1 s and a lazy condition evaluation count of ten.

Figure 6.14(c) shows the re-optimization times, while Figure 6.14(e) illustrates the cu-
mulative optimization time. There, we used the elapsed scenario time as the x-axis in
order to illustrate the characteristics of periodical re-optimization. We see that periodical
re-optimization requires many unnecessary optimization steps (36 steps), while on-demand
re-optimization is only triggered if a new plan will be found (6 steps). For workload shifts
∗2 and ∗3, two on-demand re-optimizations were triggered due to the two intersection
points of selectivities and the used exponential moving average, which caused a small
statistics adaptation delay that led to exceeding the lazy count before converging to the
final statistic measure. With a different parameterization, only one re-optimization was
triggered for each workload shift. Despite directed re-optimization, a single optimiza-
tion step is, on average, slightly slower than a full re-optimization step due to the small
optimization search space of the applied optimization techniques (selection reordering
and switch path reordering). The reason is that directed re-optimization requires some
constant additional efforts and benefits only if several operators can be ignored during
optimization. Further, the re-optimization time of this plan is dominated by the physical
plan compilation and the waiting time for the next possible exchange of plans (due to
the asynchronous optimization). As shown in Chapter 3, if we would use a larger ∆t for
periodical re-optimization, we would use suboptimal plans for a longer time and hence, we
would miss optimization opportunities. As a result, over time, on-demand re-optimization
yields optimization time improvements because it requires fewer re-optimization steps.

Figures 6.14(d) and 6.14(f) show the measured execution times. The different execution
times are caused by the changing workload characteristics in the sense of different input
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(a) Selectivity Variations (b) Input Data Size Variations

(c) Optimization Time (d) Execution Time

(e) Cumulative Optimization Time (f) Cumulative Execution Time

Figure 6.14: Simple-Flow Comparison Scenario

cardinalities and operator selectivities. When using periodical re-optimization, the often
re-occurring small peaks are caused by the numerous asynchronous re-optimization steps.
A major characteristic of periodical re-optimization is that after a certain workload shift,
it takes a while until periodical re-optimization is triggered. During this time, the plan
execution time is much longer than the execution time of the optimal plan. In contrast, on-
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demand re-optimization directly reacts to the workload change and switches plans. Hence,
over time, execution time reductions are yielded due to the fast adaptation. In order to
achieve this with periodical re-optimization, a really small ∆t is required. However, this
would increase the total re-optimization time. Finally, note that the small differences
of absolute execution times compared to Chapter 3 are caused by randomly generated
messages for this experiment according to the given selectivities.

Complex-Plan End-to-End Comparison

In addition to the simple-plan scenario, we executed a second series of experiments using
the more complex example plan P ′7. The difference of plan P ′7 compared to the already
introduced plan P7 is that we explicitly changed the join query type chain to a clique
type in order to have the possibility of arbitrary join reordering. This plan receives a data
set, loads data from four different systems, and executes schema transformations with
translation operators (XSLT scripts). Finally, the five data sets are joined using four join
operators and the result is sent to a fifth system. We executed 20,000 plan instances using
the input cardinalities shown in Figure 6.15(b) and the same parameter configurations as
for the simple plan scenario. For the four loaded data sets, we used input cardinalities of
d ∈ {2, 4, 8, 16} (in 100 kB). After every 2,000 instances, we changed the input cardinalities
of the four external systems round-robin as shown in Figure 6.15(a).

Regarding the results that are shown in Figures 6.15(c)-6.15(f), we observe similar char-
acteristics as within the simple-plan scenario. It is important to note that (1) the higher the
optimization opportunities of a plan, and (2) the higher the number of workload changes,
the higher the execution time improvements achieved by on-demand re-optimization due
to the higher importance of immediate adaptation (see Figures 6.15(d) and 6.15(f)). How-
ever, we restricted ourself to moderate differences of input data sizes in order to show only
this main characteristic rather than showing arbitrarily high improvements. Further, we
also observe, on average, higher re-optimization time improvements as within the simple-
plan comparison scenario due to the higher influence of immediate re-optimization and
directed re-optimization (see Figures 6.15(c) and 6.15(e)). The outliers for periodical re-
optimization have been cause by the Java garbage collection because our implementation
of the full join enumeration (DPSize) requires many temporary data objects, which are
lazily deleted if space is required. This effect is only visible for periodical re-optimization
because there, we used full join enumeration, where more objects have been created and the
join enumeration is invoked more often than our on-demand re-optimization. In conclu-
sion, the benefit of on-demand re-optimization increases with increasing plan complexity
and increasing frequency of workload changes.

Scalability

In order to investigate the influencing aspects such as the number of workload shifts wc,
the input data size d and the optimization interval ∆t in more detail, we conducted an
additional series of scalability experiments, where we varied these parameters. We compare
the unoptimized case with periodical and on-demand re-optimization using the cumulated
plan execution time, the cumulated optimization time, and the number of re-optimizations.
As the experimental setup, we executed 5,000 plan instances of P5 for each configuration,
where each workload shift switches between the two selectivity configurations of (sel(o2) =
0.8, sel(o3) = 0.6, sel(o4) = 0.1) and (sel(o2) = 0.1, sel(o3) = 0.6, sel(o4) = 0.8). As
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(a) Loaded Data Size Variations (b) Input Data Size Variations

(c) Optimization Time (d) Execution Time

(e) Cumulative Optimization Time (f) Cumulative Execution Time

Figure 6.15: Complex-Flow Comparison Scenario

default values, we used a number of workload shifts wc = 20, an input data size d = 4,
and an optimization interval of ∆t = 30 s. Figure 6.16 illustrates the results.

First, we varied the number of workload shifts wc ∈ [0, 30]. The unoptimized exe-
cution shows almost constant execution time (Figure 6.16(a)) except the configuration
with no workload shifts because the plan is not optimal for the whole scenario, while for
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Workload Shifts wc Input Data Size d Optimization Interval ∆t

(a) Cumulative Execution Time (b) Cumulative Execution Time (c) Cumulative Execution Time

(d) Cumulative Opt. Time (e) Cumulative Opt. Time (f) Cumulative Opt. Time

(g) Number of Re-Optimizations (h) Number of Re-Optimizations (i) Number of Re-Optimizations

Figure 6.16: Scalability of Plan P5 Varying Influencing Parameters

higher numbers of workload shifts the state alternate between optimal and non-optimal.
In contrast, on-demand re-optimization shows constant execution time, because it directly
reacts to any workload shift and the re-optimization time is no dominating factor, while
the execution time of periodical re-optimization degrades for increasing number of work-
load shifts because we use non-optimal plans more often. Clearly, the optimization time
of on-demand re-optimization increases with increasing number of workload shifts (Fig-
ures 6.16(d) and 6.16(g)), while periodical re-optimization required an almost constant
number of re-optimizations steps. The small increase of optimization steps is reasoned by
the increased total execution time.

Second, we varied the input data size d ∈ [1, 7] (in 100 kB). Due to the increas-
ing absolute optimization benefit per single optimizations step with increasing data size,
the absolute improvement of on-demand re-optimization also increases compared to the
unoptimized execution and periodical re-optimization (Figure 6.16(b)). On-demand re-
optimization shows a constant re-optimization time (Figure 6.16(e)) because the number
of workload shifts was fixed to wc = 20. In contrast, the optimization time of period-
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ical re-optimization increases due to the increasing total execution time because more
re-optimization steps have taken place (Figure 6.16(h)).

Third, we varied the optimization interval ∆t ∈ {1 s, 3 s, 6 s, 12 s, 24 s, 48 s, 92 s, 184 s}.
Obviously, the execution time of unoptimized execution, and on-demand re-optimization
are independent of this optimization interval (Figure 6.16(c)). The same is also true for
the optimization time and the number of optimization steps of on-demand re-optimization
(Figures 6.16(f) and 6.16(i)). In contrast, the optimization interval is a high-influence pa-
rameter for periodical re-optimization. For an increasing optimization interval, we observe
a degradation of the execution time because we miss more optimization opportunities due
to longer adaptation delays. Interestingly, for specific configurations, the execution time is
even significantly worse than the unoptimized execution because we switch to the optimal
plan just before the next workload shift occurs. However, if we further increase the opti-
mization interval, the execution time converges to the unoptimized case. The benefit of
on-demand re-optimization mainly depends the benefit of applied optimization techniques.
For really short optimization intervals of several seconds, we observe the best configuration
of periodical re-optimization, which is still slower than on-demand re-optimization. For
these configurations, we observe a significant increase of the cumulative re-optimization
time because the number of re-optimization steps increased up to 544.

Finally, we can summarize that on-demand re-optimization always lead to the low-
est execution time, where we observed execution time reductions compared to periodical
re-optimization of up-to 44.7%. However, the maximum benefit depends on applied opti-
mization techniques, where in this setting we only used selection re-ordering. Furthermore,
on-demand re-optimization shows much better robustness of execution time when varying
the tested influencing aspects.

Directed Re-Optimization Benefit

In addition, we evaluated the benefit of directed re-optimization, where we re-used the
different plans from Chapter 3 that included a varying number of join operators with
m = {2, 4, 6, 8, 10, 12, 14} as a clique query (all directly connected). We compared the
optimization time of (1) the full join enumeration using the standard DPSize algorithm
[Moe09], (2) our join enumeration heuristic with quadratic time complexity that we use
if the number of joins exceed eight joins (see Section 3.3.2), and (3) our directed re-
optimization that only takes operators into account that are included in violated optimal-
ity conditions. Before optimization, we randomly generated statistics for input cardinal-
ities and join selectivities. For directed re-optimization, we used an optimized plan and
randomly changed the statistics of one join. The experiment was repeated 100 times.

Figure 6.17: Directed Join Enumeration Benefit
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Figure 6.17 illustrates the results using a log-scaled y-axis. The optimization time of
full join enumeration increases exponentially, while for both heuristic and directed re-
optimization, the optimization time increases almost linearly (slightly super-linearly). In
addition, directed re-optimization is even faster than the heuristic enumeration because
we only reorder quantifiers of violated optimality conditions. Due to randomly generated
statistics, on average, we take fewer operators into consideration, while still ensuring to
find the global optimal solution over multiple re-optimization steps. As a result, with
increasing plan complexity, the relative benefit of directed re-optimization increases.

On-Demand Re-Optimization Overhead

We additionally evaluated the overheads of statistics maintenance and of the PlanOptTree
algorithms. Here, all experiments were repeated 100 times. It is important to note that
both overheads were already included in the end-to-end comparison, where they have been
amortized by the execution time improvements in several orders of magnitude.

(a) Statistic Maintenance (b) Algorithm Overhead

Figure 6.18: Overhead of PlanOptTrees

Figure 6.18(a) illustrates the statistic maintenance overhead comparing our Estimator
component (used for periodical re-optimization) versus our PlanOptTree (used for on-
demand re-optimization), which both use statistics of all 100,000 plan instances of the
simple-plan comparison scenario at the granularity of single operators (2,100,000 atomic
statistic tuples). For both models, we used the exponential moving average as aggregation
method. The costs include the transient maintenance of aggregates for all operators as
well as the aggregation itself. Full Monitoring refers to periodical re-optimization, where
all statistics of all operators are gathered by the Estimator. Min Monitoring refers to
a hypothetical scenario, where we know the required statistics and maintain only these
statistics with the Estimator. The relative improvement of Min Monitoring to Max Moni-
toring is the benefit we achieve by maintaining only relevant statistics, where the absolute
benefit depends on the used workload aggregation method. In contrast, POT Monitoring
refers to the use of our PlanOptTree. Although the PlanOptTree declines unnecessary
statistics, it is slower than full monitoring because for each statistic tuple, we compute
the hierarchy of complex statistics and evaluate optimality conditions. Therefore, we dis-
tinguish three variants of the POT monitoring: POT refers to the monitoring without
condition evaluation, while POT2 (without the MEMO structure) and POT3 (with the MEMO

structure) show the overhead of continuously evaluating the optimality conditions. It is
important to note that the use of the MEMO structure is counterproductive in this scenario
due to the rather simple optimality conditions and additional overhead for updating and
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evaluating the MEMO structure. However, due to the requirement of robustness, we use the
POT3 configurations for all end-to-end comparison scenarios. Furthermore, we show only
the total statistic maintenance time because these times scale linear with an increasing
number of statistic tuples due to the use of the incremental EMA aggregation method. Fi-
nally, compared to the performance benefit of on-demand re-optimization, the overhead
for statistic maintenance is negligible.

Additionally, we evaluated the algorithm overhead when creating, using and updating
PlanOptTrees. There, we used the already described POT3 configuration. Figure 6.18(b)
illustrates the results, varying the number of operators m of a plan and hence, indi-
rectly varying the number of optimality conditions. The PlanOptTree is created over all
m operators (where we simulated the actual optimization techniques and directly pro-
vided the partial PlanOptTrees), while triggering re-optimization and the subsequent
update of the PlanOptTree addressed violated optimality conditions only, which depend
on the randomly changed statistics. We observe a moderate execution time, where the
creation and the update of PlanOptTrees were dominated by the merging of partial
PlanOptTrees. Due to the different numbers of addressed optimality conditions the up-
date of PlanOptTrees is more efficient than the creation of an initial PlanOptTree. It
is important to note the almost linear scaling of creating PlanOptTree, triggering re-
optimization and updating PlanOptTrees. In conclusion, the overhead of PlanOptTree

algorithms is fairly low and can be neglected as well because it is only required for initial
deployment or during on-demand re-optimization.

Robustness

Compared to periodical re-optimization, on-demand re-optimization is more sensitive with
regard to workload changes because it directly reacts on detected violated optimality con-
ditions. According to the robustness of optimization benefits, there are two major effects
that are worth mentioning. First, the on-demand re-optimization does not require the
specification of an optimization interval. Therefore, it is more robust to arbitrary work-
load changes compared to periodical re-optimization as shown in Figure 6.16. Second,
for on-demand re-optimization there is a higher risk of frequently changing plans due to
correlated data or almost equal selectivities that alternate around equality (see Exam-
ple 6.5). Therefore, we introduced the strategies of the correlation table, minimum ex-
istence time and lazy condition evaluation. The minimum existence time simply ensures
a lower bound of time between two subsequent re-optimization steps and thus, linearly
reduces the number of re-optimization steps. Furthermore, the strategy of lazy condition
evaluation overcomes the problem of almost equal selectivities. While the effects of these
two strategies are fairly obvious, the use of the correlation table requires a more detailed
discussion using a series of experiments.

Therefore, we reused the correlation experiment of Chapter 3 in order to evaluate the
on-demand re-optimization on correlated data with and without the use of our lightweight
correlation table. We executed 100,000 instances of our example plan P5 and compared
the resulting execution time. We used a minimum existence time of ∆t = 5 s, a lazy
condition evaluation count of ten, and a re-optimization threshold of τ = 0.001. Fig-
ure 6.19(a) recaps the conditional selectivities P (o2), P (o3|o2), and P (o4|o2 ∧ o3) of the
three Selection operators (with P (o3|¬o2) = 1 and P (o4|¬o2 ∨ ¬o3) = 1), which lead to
a strong dependence (correlation) of o3 on o2 as well as of o4 on o2 and o3.

Figures 6.19(c) and 6.19(b) illustrate the resulting optimization times and execution
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(a) Selectivity Variations (b) Execution Time

(c) Optimization Time (d) Cumulative Execution Time

Figure 6.19: Simple-Flow Correlation Comparison Scenario

times with and without the use of our correlation table. We observe that without the use
of the correlation table, the optimization technique selection reordering assumes statis-
tical independence and thus, changed the plan back and forth, even in case of constant
workload characteristics. Due to the direct triggering of re-optimization by on-demand re-
optimization, overall 1,345 re-optimization steps have been executed. In addition to this
re-optimization overhead, the permanent change between suboptimal and optimal plans
led to a degradation of the execution time because non-optimal plans were used for long
time horizons. In contrast, when using our correlation table, the required re-optimization
steps were reduced to nine. It is important to note that, in case of using the correlation ta-
ble, a single workload change triggers several re-optimization steps because we allow only
one operator reordering per optimization step in order to learn the conditional selectivities
stepwise, which reduce the risk for cyclic re-optimizations. However, over time, the condi-
tional selectivity estimates converge to the real selectivities. Finally, as a combination of
the reduced number of re-optimization steps and the prevention of using suboptimal plans
due to unknown correlation, we achieved a 7% overall improvement with regard to the
cumulative execution time (see Figure 6.19(d)). In conclusion, the use of our correlation
table ensures robustness in the presence of correlated data or conditional probabilities,
which has high importance when using on-demand re-optimization.

197



6 On-Demand Re-Optimization

6.6 Summary and Discussion

The periodical re-optimization exhibits the drawbacks of (1) full monitoring of all oper-
ator statistics regardless if they are used by the optimizer or not, (2) many unnecessary
periodical re-optimization steps, where for each step a full optimization is executed, (3)
missed optimization opportunities due to potentially slow workload adaptation, and (4)
the optimization period ∆t as a high-influence parameter, whose configuration requires
context knowledge of the integration flows as well as knowledge of the frequency of work-
load changes. These drawbacks are mainly reasoned by the strict separation between
optimizer, statistics monitoring and plan execution.

In this chapter, we presented the concept of on-demand re-optimization to overcome
these drawbacks. We introduced the PlanOptTree that models optimality of the current
plan by exploiting context knowledge from the optimizer. With this approach, statistics
are monitored according to optimality conditions and directed re-optimization is triggered
if and only if such a condition is violated. In conclusion, this approach always reduces the
total execution time because (1) if the workload does not change, we avoid unnecessary re-
optimization steps, and (2) if there are workload changes, we do not miss any optimization
opportunities due to direct re-optimization, while the overhead for evaluating optimality
conditions is negligible. In addition, it allows for predictable performance without the
need for elaborate parameterization. In conclusion, on-demand re-optimization has the
same advantages but overcomes the disadvantages of periodical re-optimization.

However, on-demand re-optimization has also some limitations. Most importantly, the
on-demand re-optimization is more sensitive with regard to workload changes than period-
ical re-optimization is. On the one side this is advantageous because we directly adapt to
these changes and therefore, reduce the execution time. On the other side, more care with
regard to robustness (stability) is required. For example, correlation-awareness is required
because otherwise, we might result in frequent plan changes, which hurt performance. For
this reason, we introduce the concepts of correlation tables, minimal existence time, and
lazy condition violation, which ensures robustness of on-demand re-optimization.

In conclusion of our experimental evaluation, the on-demand re-optimization, in com-
parison to periodical re-optimization, achieves additional cumulative execution time im-
provements, while it requires much less re-optimization steps and therefore, significantly
reduces the total optimization overhead. Furthermore, there are plenty issues for future
work. This includes, for example, the investigation of (1) the extension of inter-instance
re-optimization to intra-instance re-optimization (mid-query re-optimization) in order to
support ad-hoc integration flows or long running plan instances, (2) specific approaches
for directed re-optimization with regard to complex optimization techniques (e.g., join
enumeration, eager group-by), and (3) the combination of progressive parametric query
optimization with on-demand re-optimization in order to reuse generated physical plans.
Although the on-demand re-optimization approach is tailor-made for integration flows that
are deployed once and executed many times, it is also applicable in other areas. Exam-
ples for these areas are continuous queries in DSMS, re-occurring queries in DBMS, and
incremental maintenance of data mining results.
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I can’t change the direction of the wind,
but I can adjust my sails to always reach my destination.

— Jimmy Dean

From the reactive perspective of an integration platform, we cannot change the workload
characteristics (the direction of the wind) in the sense of incoming messages that initiate
plan instances of integration flows. However, we can incrementally maintain execution
statistics and use these for the cost-based optimization of integration flows (the adjustment
of sails) in order to improve their execution time, latency and thus, the message throughput
(in order to reach the destination). This allows the workload-based adjustment of the
current plan and thus, for continuous adaptation to changing workload characteristics.

Based on emerging requirements of complex integration tasks that (1) stretch beyond
simple read-only applications, (2) involve many types of heterogeneous systems and appli-
cations, and (3) require fairly complex procedural aspects, typically, imperative integration
flows are used for specification and execution of these tasks. In this context, we observe
that many independent instances of such integration flows with rather small amounts of
data per instance are executed over time in order to achieve (1) high consistency between
data of operational systems or (2) high up-to-dateness of analytical query results in data
warehouse infrastructures. In addition to this high load of flow instances, the perfor-
mance of source systems depends on the execution time and availability of synchronous
data-driven integration flows. For these reasons, there are high performance demands on
integration platforms that execute imperative integration flows.

To tackle this problem of high performance requirements on the execution of integration
flows, we introduced the cost-based optimization of these imperative integration flows. In
detail, we described the fundamentals of cost-based optimization including novel tech-
niques such as the first entirely defined cost model for imperative integration flows, a
transformation-based rewriting algorithm with several search space reduction approaches,
the asynchronous periodical re-optimization as well as techniques for workload adaptation
and handling of correlated data. Essentially, this cost-based optimizer exploits the major
integration flow specific characteristics of being deployed once and executed many times
with rather small amounts of data per instance. In addition, we introduced several control-
flow and data-flow-oriented optimization techniques, where we adapted on the one side
techniques from data management systems, and programming language compilers as well
as on the other side, we defined techniques tailor-made for integration flows. Addition-
ally, we described in detail two novel optimization techniques for throughput optimization
of integration flows, namely the cost-based vectorization and the multi-flow optimization.
Finally, we introduced the novel concept of on-demand re-optimization of integration flows
that overcomes the major drawbacks of periodical re-optimization, while still exploiting
the major characteristics of integration flows. Our experiments showed that significant ex-
ecution time and throughput improvements are possible, while only moderate additional
optimization overhead is required.
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Existing approaches before this thesis either used the rule-based optimize-once model,
where the integration flow is only optimized once during the initial deployment, or the
optimize-always model, where optimization is triggered for each plan instance. In contrast,
we presented the first entire cost-based optimizer for imperative integration flows using the
cost-based optimization models of periodical and on-demand re-optimization. The major
advantage of these new optimization models is robustness in terms of (1) high optimization
opportunities that allows (2) the adaptation to changing workload characteristics with (3)
low risk of optimization overheads.

Beside the investigation of additional optimization techniques, we see four major re-
search challenges regarding future work of the cost-based optimization of integration flows:

• Mid-Instance Optimization: Our asynchronous re-optimization model is based on the
assumption of many plan instances with rather small amounts of data per instance.
In order to make it also suitable for (1) long running plan instances and (2) ad-
hoc integration flows (as required for situational BI and mashup integration flows),
an extension to synchronous mid-instance re-optimization would be necessary. The
challenge is to define a hybrid model for both use cases of integration flows.

• Multi-Objective Optimization: We focused on the optimization objectives of execu-
tion time and throughput. However, facing new requirements, this might be extended
by multiple objectives including for example, monetary measures, execution and la-
tency time, throughput, energy consumption, resiliency or transactional guarantees.

• Optimization of Multiple Deployed Plans: The cost-based optimization of integration
flows—with few exceptions—aims to optimize a single deployed plan. However,
typically, multiple different integration flows are deployed and concurrently executed
by the integration platform. The major question is if we could exploit the knowledge
about workload characteristics of all plans and their inter-influences for more efficient
scheduling of plan instances or influence-aware plan rewriting.

• Optimization of Distributed Integration Flows: With regard to load balancing and
the emerging trend towards virtualization, distributed integration flows might be
used as well. The resulting research challenge is to optimize the entire distributed
integration flow, rather than just the subplans of local server nodes. One aspect of
this might be the extension of cost-based vectorization to the distributed case.

Thus, we can conclude that there are many directions for future work in this new field
of the cost-based optimization of integration flows. Similarly to cost-based query optimiza-
tion, this might be a starting point for the continuous development of new execution and
optimization techniques:

”In my view, the query optimizer was the first attempt at what we call auto-
nomic computing or self-managing, self-timing technology. Query optimizers
have been 25 years in development, with enhancements of the cost-based query
model and the optimization that goes with it, and a richer and richer variety
of execution techniques that the optimizer chooses from. We just have to keep
working on this. It’s a never-ending quest for an increasingly better model and
repertoire of optimization and execution techniques. So the more the model can
predict what’s really happening in the data and how the data is really organized,
the closer and closer we will come [to the ideal system].”

— Patricia G. Selinger, IBM Research – Almaden, 2003 [Win03]

200



Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,
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[BHLW09c] Matthias Böhm, Dirk Habich, Wolfgang Lehner, and Uwe Wloka. Sys-
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[BMK08] Alexander Böhm, Erich Marth, and Carl-Christian Kanne. The Demaq
System: Declarative Development of Distributed Applications. In SIGMOD
Conference, pages 1311–1314, 2008.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and
Jennifer Widom. Adaptive Ordering of Pipelined Stream Filters. In SIG-
MOD Conference, pages 407–418, 2004.

[BMS05] Jen Burge, Kamesh Munagala, and Utkarsh Srivastava. Ordering Pipelined
Query Operators with Precedence Constraints. Technical Report 2005-40,
Stanford InfoLab, 2005.

[BN08] Nicolas Bruno and Rimma V. Nehme. Configuration-Parametric Query
Optimization for Physical Design Tuning. In SIGMOD Conference, pages
941–952, 2008.

204



Bibliography

[BPA06] Biörn Biörnstad, Cesare Pautasso, and Gustavo Alonso. Control the Flow:
How to Safely Compose Streaming Services into Business Processes. In
IEEE SCC, pages 206–213, 2006.

[Bro09] Juliane Browne. Brewer’s CAP Theorem, 2009. http://www.

julianbrowne.com/article/viewer/brewers-cap-theorem.

[BW04] Shivnath Babu and Jennifer Widom. StreaMon: An Adaptive Engine for
Stream Query Processing. In SIGMOD Conference, pages 931–932, 2004.
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