8,008 research outputs found

    Scanning electrochemical microscopy as a local probe of oxygen permeability in cartilage

    Get PDF
    The use of scanning electrochemical microscopy, a high-resolution chemical imaging technique, to probe the distribution and mobility of solutes in articular cartilage is described. In this application, a mobile ultramicroelectrode is positioned close (not, vert, similar1 μm) to the cartilage sample surface, which has been equilibrated in a bathing solution containing the solute of interest. The solute is electrolyzed at a diffusion-limited rate, and the current response measured as the ultramicroelectrode is scanned across the sample surface. The topography of the samples was determined using Ru(CN)64−, a solute to which the cartilage matrix was impermeable. This revealed a number of pit-like depressions corresponding to the distribution of chondrocytes, which were also observed by atomic force and light microscopy. Subsequent imaging of the same area of the cartilage sample for the diffusion-limited reduction of oxygen indicated enhanced, but heterogeneous, permeability of oxygen across the cartilage surface. In particular, areas of high permeability were observed in the cellular and pericellular regions. This is the first time that inhomogeneities in the permeability of cartilage toward simple solutes, such as oxygen, have been observed on a micrometer scale

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    A scanning ion conductance microscopy assay to investigate interactions between cell penetrating peptides and pore-suspending membranes

    Get PDF
    Die Rasterionenleitfähigkeitsmikroskopie (scanning ion conductance microscopy, SICM) stellt eine kontaktfreie Methode zur Ermittlung sowohl der Topographie als auch lokalen Ionenleitfähigkeit einer Oberfläche dar. Besonders vorteilhaft ist die Vermeidung mechanischer Beeinflussung bei der Untersuchung flexibler Strukturen, z.B. Lipiddoppelschichten wie Zellen oder künstlich erzeugter Lipidmembranen. Porenüberspannende Membranen (pore-suspending membranes, PSMs) verbinden als ein Beispiel für Modellsysteme eine hohe Stabilität mit lateraler Mobilität und dem Vorhandensein wässriger Kompartimente ober- und unterhalb der Doppelschicht, wie sie auch in der Natur gefunden werden. Ein wichtiges Forschungsgebiet stellt die Untersuchung der Wechselwirkung von Peptiden, besonders zellpenetrierenden Peptiden (cell penetrating peptides, CPPs), mit Lipiden und anderen Membranbestandteilen dar. Häufig untersuchte Beispiele sind Melittin, Hauptbestandteil des Giftes der Honigbiene Apis mellifera, sowie Penetratin, dritte Helix der Antennapedia Homöodomäne von Drosophila melanogaster. Generalisierte Protokolle zur Herstellung lösungsmittelfreier PSMs werden vorgestellt. Riesige unilamellare Vesikel (giant unilamellar vesicles, GUVs) unterschiedlicher Lipidzusammensetzung wurden hierzu auf porösem Siliziumnitrid (Si3N4), welches mit Cholesterylpolyethylenoxythiol (CPEO3, hydrophob) bzw. Mercaptoethanol (ME, hydrophil) funktionalisiert worden war, gespreitet. Verwendet wurden GUVs aus reinen Phosphatidylcholin (PC)-Lipiden sowie aus Mischungen von PC-Lipiden mit Cholesterol und PC-Lipiden mit Phosphatidylserin (PS)-Lipiden. Der Erfolg des Spreitvorgangs wurde durch Abbilden mittels konfokaler Rasterlasermikroskopie (confocal laser scanning microscopy, CLSM) und SICM verifiziert. Der Hauptteil dieser Arbeit behandelte die Entwicklung und Anwendung CLSM- und SICM-basierter CPP-Titrationsassays zur Aufklärung des Einflusses der Substratfunktionalisierung und der Lipidzusammensetzung der Membranen auf die Wechselwirkung zwischen Melittin bzw. Penetratin und den Lipiddoppelschichten. CLSM-Experimente wurden mit Melittin auf allen zur Verfügung stehenden PSMs sowohl auf hydrophob als auch hydrophil funktiona-lisierten Substraten durchgeführt, während Penetratin auf den drei unterschiedlichen PSMs auf hydrophil funktionalisierten Substraten verwendet wurde. Ein Reißen der Membranen wurde im Fall hydrophil funktionalisierter Substrate für beide Peptide im Bereich von 1–3 µM beobachtet. Bei hydrophob funktionalisierten Substraten induzierte eine dreifach geringere Melittinkonzentration die Zerstörung der Membranen. Sowohl auf hydrophob als auch auf hydrophil funktionalisierten Substraten wurde bei einem Cholesterolanteil von 10% eine Erhöhung der zum Reißen notwendigen Melittinkonzentratin erhalten, während bei 20% PS-Anteil eine Verschiebung zu geringeren Konzentrationen evident wurde. SICM-Experimente wurden mit Melittin auf PC/Cholesterol-PSMs auf hydrophob und hydrophil funktionalisierten Substraten und mit reinen PC-PSMs auf hydrophil funktionalisierten Membranen durchgeführt. Es wurden keine signifikanten Konzentrationsunterschiede beobachtet; die gefundenen Konzentrationsbereiche jedoch stimmten mit denen der CLSM-Experimente überein. Darüberhinaus wurde vor dem Reißen der Membranen ein Ansteigen der Porentiefe gefunden, das mit einer erhöhten Membranpermeabilität korrespondiert

    Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides with experiment and theory

    Get PDF
    Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies

    Development of multifunctional nano-probes for neuroscience research

    Get PDF
    The contribution of nanotechnology to the field of Neuroscience is increasing exponentially. In order to understand the relationship of structure to function at the cellular level, and to decipher the mysteries of nervous system, development of new tools to manipulate and measure cellular function at a local level is necessary. It is a continuing challenge to develop easily fabricated, multipurpose nano-probes which are able to target neural nanostructures for the local manipulation and measurement of functional responses. This thesis is focused on the fabrication, characterisation and implementation of a nano-pipette on a Scanning Ion Conductance Microscopy (SICM). The nano-pipette mounted on a SICM set-up acts as a proximity sensor for non-contact imaging of cellular features. SICM platform to accommodate electrochemical experiments is discussed. In particular, the development of a novel electrochemical probe, fabricated by pyrolytic decomposition of carbon within a quartz nano-pipette is discussed. This method is simple and carbon nano-electrodes of variable size can be fabricated in a single step. The nano-pipette‘s distance controlled feedback system was exploited for local delivery of chemicals to neuronal structures. Experimental and theoretical data are compared in order to calculate the concentration of molecules at the tip of the nano-pipette as a function of the driving force (voltage or pressure) and distance. The quantitative delivery of molecules from a 100 nm nano-pipette is demonstrated. In particular capsaicin-filled nano-pipette is used to trigger capsaicin-sensitive TRPV1 receptors in sensory neurons and transfected cells. Finally some preliminary results for the future development and potential application of nano-pipettes are shown. The nano-pipette is easily fabricated and is shown to be multi-functional. It provides an invaluable tool in the investigation of the nano-physiology of neurons. The SICM multipoint delivery competence can contribute to the various endeavours in drug discovery and to the yield of in vitro pharmacological assays.Open Acces

    Scanning Ion Conductance Microscopy for Single Cell Imaging and Analysis

    Get PDF
    Most biological experiments are performed on an ensemble of cells under the assumption that all cells are identical. However, recent evidence from single cells studies reveals that this assumption is incorrect. Individual cells within the same generation may differ dramatically, and these differences have important consequences for the health and function of the entire living body. I have used Scanning Ion Conductance Microscopy (SICM) for imaging and analysis of topographical change of single cell membrane, which is difficult to be revealed by optical microscopes. Morphological change in the fixed and live HeLa cell membrane during endocytosis of conjugated polymer nanoparticles was studied. Results demonstrated SICM is a powerful tool to study the interaction between nanoparticle and cell membrane during internalization of nanoparticles through the membrane. This research can improve our fundamental understanding of cellular behavior and will be helpful for drug delivery applications. Based on conventional SICM, we have developed a novel method to simultaneous map the topography and potential distributions of the single living cells membranes. At the first step, multifunctional nanopipettes (nanopore/nanoelectrode) have been fabricated and characterized. To demonstrate the potential sensing capability and understand the mechanism, I measured the ionic current and local electric potential change during translocation of 40 nm charged gold nanoparticles. Our results reveal the capability of the multifunctional probe for the highly sensitive detection of the ionic current and local electrical potential changes during the translocation of the charged entity through the nanopore. From the potential change, we revealed the dynamic assembly of GNPs before entering the nanopore. The experimental results are also nicely explained by the finite element method based numerical simulation results. At the second step, I have measured the surface potential of living cell membrane at selected locations. Very recently, I have obtained results to show that we can map the extracellular membrane potential distribution of the complicated living cell membrane with sub-micron spatial resolution.This new imaging technique can help biologist to explore the extracellular potential distribution of varieties of cells quantitatively.These studies will have impacts on several biomedical applications such as regenerative repair and cancer treatment

    Changes in single K+ channel behavior through the lipid phase transition

    Get PDF
    We show that the activity of an ion channel is strictly related to the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid disordered and the solid ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins
    • …
    corecore