126 research outputs found

    Inferring evolution of gene duplicates using probabilistic models and nonparametric belief propagation

    Get PDF
    Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.https://doi.org/10.1186/1471-2164-14-S1-S1

    Power in numbers : in silico analysis of multigene families in Arabidopsis thaliana

    Get PDF

    Computational Hybrid Systems for Identifying Prognostic Gene Markers of Lung Cancer

    Get PDF
    Lung cancer is the most fatal cancer around the world. Current lung cancer prognosis and treatment is based on tumor stage population statistics and could not reliably assess the risk for developing recurrence in individual patients. Biomarkers enable treatment options to be tailored to individual patients based on their tumor molecular characteristics. To date, there is no clinically applied molecular prognostic model for lung cancer. Statistics and feature selection methods identify gene candidates by ranking the association between gene expression and disease outcome, but do not account for the interactions among genes. Computational network methods could model interactions, but have not been used for gene selection due to computational inefficiency. Moreover, the curse of dimensionality in human genome data imposes more computational challenges to these methods.;We proposed two hybrid systems for the identification of prognostic gene signatures for lung cancer using gene expressions measured with DNA microarray. The first hybrid system combined t-tests, Statistical Analysis of Microarray (SAM), and Relief feature selections in multiple gene filtering layers. This combinatorial system identified a 12-gene signature with better prognostic performance than published signatures in treatment selection for stage I and II patients (log-rank P\u3c0.04, Kaplan-Meier analyses). The 12-gene signature is a more significant prognostic factor (hazard ratio=4.19, 95% CI: [2.08, 8.46], P\u3c0.00006) than other clinical covariates. The signature genes were found to be involved in tumorigenesis in functional pathway analyses.;The second proposed system employed a novel computational network model, i.e., implication networks based on prediction logic. This network-based system utilizes gene coexpression networks and concurrent coregulation with signaling pathways for biomarker identification. The first application of the system modeled disease-mediated genome-wide coexpression networks. The entire genomic space were extensively explored and 21 gene signatures were discovered with better prognostic performance than all published signatures in stage I patients not receiving chemotherapy (hazard ratio\u3e1, CPE\u3e0.5, P \u3c 0.05). These signatures could potentially be used for selecting patients for adjuvant chemotherapy. The second application of the system modeled the smoking-mediated coexpression networks and identified a smoking-associated 7-gene signature. The 7-gene signature generated significant prognostication specific to smoking lung cancer patients (log-rank P\u3c0.05, Kaplan-Meier analyses), with implications in diagnostic screening of lung cancer risk in smokers (overall accuracy=74%, P\u3c0.006). The coexpression patterns derived from the implication networks in both applications were successfully validated with molecular interactions reported in the literature (FDR\u3c0.1).;Our studies demonstrated that hybrid systems with multiple gene selection layers outperform traditional methods. Moreover, implication networks could efficiently model genome-scale disease-mediated coexpression networks and crosstalk with signaling pathways, leading to the identification of clinically important gene signatures

    An Inferential Framework for Network Hypothesis Tests: With Applications to Biological Networks

    Get PDF
    The analysis of weighted co-expression gene sets is gaining momentum in systems biology. In addition to substantial research directed toward inferring co-expression networks on the basis of microarray/high-throughput sequencing data, inferential methods are being developed to compare gene networks across one or more phenotypes. Common gene set hypothesis testing procedures are mostly confined to comparing average gene/node transcription levels between one or more groups and make limited use of additional network features, e.g., edges induced by significant partial correlations. Ignoring the gene set architecture disregards relevant network topological comparisons and can result in familiar

    Bayesian inference for protein signalling networks

    Get PDF
    Cellular response to a changing chemical environment is mediated by a complex system of interactions involving molecules such as genes, proteins and metabolites. In particular, genetic and epigenetic variation ensure that cellular response is often highly specific to individual cell types, or to different patients in the clinical setting. Conceptually, cellular systems may be characterised as networks of interacting components together with biochemical parameters specifying rates of reaction. Taken together, the network and parameters form a predictive model of cellular dynamics which may be used to simulate the effect of hypothetical drug regimens. In practice, however, both network topology and reaction rates remain partially or entirely unknown, depending on individual genetic variation and environmental conditions. Prediction under parameter uncertainty is a classical statistical problem. Yet, doubly uncertain prediction, where both parameters and the underlying network topology are unknown, leads to highly non-trivial probability distributions which currently require gross simplifying assumptions to analyse. Recent advances in molecular assay technology now permit high-throughput data-driven studies of cellular dynamics. This thesis sought to develop novel statistical methods in this context, focussing primarily on the problems of (i) elucidating biochemical network topology from assay data and (ii) prediction of dynamical response to therapy when both network and parameters are uncertain

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Learning neural algorithms with graph structures

    Get PDF
    Graph structures, like syntax trees, social networks, and programs, are ubiquitous in many real world applications including knowledge graph inference, chemistry and social network analysis. Over the past several decades, many expert-designed algorithms on graphs have been proposed with nice theoretical properties. However most of them are not data-driven, and will not benefit from the growing scale of available data. Recent advances in deep learning have shown strong empirical performances for images, texts and signals, typically with little domain knowledge. However the combinatorial and discrete nature of the graph data makes it non-trivial to apply neural networks in this domain. Based on the pros and cons of these two, this thesis will discuss several aspects on how to build a tight connection between neural networks and the classical algorithms for graphs. Specifically: - Algorithm inspired deep graph learning: The existing algorithms provide an inspiration of deep architecture design, for both the discriminative learning and generative modeling of graphs. Regarding the discriminative representation learning, we show how the graphical model inference algorithms can inspire the design of graph neural networks for chemistry and bioinformatics applications, and how to scale it up with the idea borrowed from steady states algorithms like PageRank; for generative modeling, we build an HSMM inspired neural segmental generative modeling for signal sequences; and for a class of graphs, we leverage the idea of attribute grammar for syntax trees to help regulate the deep networks. - Deep learning enhanced graph algorithms: the algorithm framework has procedures that can be enhanced by learnable deep network components. We demonstrate by learning the heuristic function in greedy algorithms with reinforcement learning for combinatorial optimization problems over graphs, such as vertex cover and max cut, and optimal touring problem for real world applications like fuzzing. - Towards Inductive reasoning with graph structures: As the algorithm structure generally provides a good inductive bias for the problem, we take an initial step towards inductive reasoning for such structure, where we make attempts to reason about the loop invariant for program verification and the reaction templates for retrosynthesis structured prediction.Ph.D
    corecore