
LEARNING NEURAL ALGORITHMS WITH GRAPH STRUCTURES

A Dissertation
Presented to

The Academic Faculty

By

Hanjun Dai

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology

May 2020

Copyright c© Hanjun Dai 2020

LEARNING NEURAL ALGORITHMS WITH GRAPH STRUCTURES

Approved by:

Dr. Le Song, Advisor
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Richard Vuduc
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Duen Horng (Polo) Chau
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Pushmeet Kohli
DeepMind
Alphabet Inc.

Dr. John Schulman
OpenAI
OpenAI Inc.

Date Approved: December 03, 2019

To my beloved Mom, Dad, Yiting, and Luna.

ACKNOWLEDGEMENTS

I am so fortunate to have Le Song as my Ph.D. thesis advisor. I still remember five years

ago when I first began my graduate study, I had no idea what kind of topics I should work

on. I worked hard during my first year, but I wasn’t getting anywhere. While I was stuck

in the pit of self-doubt, my advisor pointed the way forward. Not only was it novel and

challenging, but it also fit my personal interests and strengths. What’s more, my advisor

inspires me greatly with his sharp mind and rich experience. His high standards on the

algorithmic contribution and state-of-the-art outcome will always guide me on how to be a

good researcher.

Throughout my internships during my graduate studies, I am extremely grateful to have

many great mentors and colleagues. I will never forget my first internship here in Atlanta

advised by Huiming Qu, who is both kind and thoughtful. She had been a great help

and support to me when I was going through a tough time back then. In addition, I really

cherish the unique opportunity to work with Zornitsa Kozareva and Alexander Smola. They

showed me how the industrial-scale research looks like. Moreover, I highly enjoy the close

collaboration with John Schulman, whose talent in algorithm and engineering will always

be my pursuit. Last but not least, Pushmeet Kohli demonstrates to me what a thriving team

should look like with his invaluable insights and strong interpersonal skills.

I would like to express my deepest appreciation to Richard Vuduc and Duen Horng

(Polo) Chau for being my thesis committee members. The completion of my thesis would

not have been possible without their unparalleled support and ingenious suggestions.

Particularly helpful to me during this time were my labmates as well as friends, namely

Bo Dai, Nan Du, Weiyang Liu, Zhen Liu, Yichen Wang, Bo Xie, Yuyu Zhang. It is one of

my most precious memories to burn the midnight oil with them from one paper submission

deadline to another. Besides every inspiring discussion we had, I also had a great pleasure

to have casual chats or to hang out with them. Thanks for adding so much color to my

iv

Ph.D. studies.

I also wish to thank my direct collaborators. They are Ahmet Cecen, Binghong Chen,

Xinshi Chen, Connor Coley, Xin Gao, Po-Sen Huang, Elias Khalil, Thomas Kipf, Chengtao

Li, Shuang Li, Yujia Li, Mayur Naik, Xujie Si, Rishabh Singh, Harsh Shrivastava, Yingtao

Tian, Rakshit Trivedi, Ramzan Umarov, Chenglong Wang, Yuan Yang, Yan-Ming Zhang.

None of the thesis projects can be made without them.

Thanks should also go to other friends I met at Georgia Tech, namely Joyce Gao, Lina

Hu, Xiaojia Jia, Yaoyao Jia, Mengfan Jiang, Jiasen Lu, Zhaoyang Lv, Jingwei Qi, Hang

Su, Fei Wang, Ke Wang, Hang Wu, Zhaoming Wu, Jianwei Yang, Li Yi, and Yiyang Zhu.

It was great meeting them at Georgia Tech. I will always remember the happiness we

shared and the help they provided me with. I would also like to specially thank other senior

Gatech students Zhengyi Hu, Zhongtian Jiang, Yongchao Liu, Yijie Wang, Zheng Yong for

providing various kinds of help to help me settle down during first year.

Also a special thank should give to my host family Allen McDonald and Ann Carter,

who offered great help and warm throughout the past 5 years. They make Atlanta feel like

a second hometown to me.

Finally, I cannot leave Georgia Tech without mentioning my parents and my wife.

They’ve provided relentless support in every way I could imagine with encouragement

and patience. They help me learn what’s the most important things in life, and they never

wavered in their support for me. Special thanks to my family members.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xiv

List of Figures .xviii

Chapter 1: Introduction . 1

1.1 Connecting deep learning with discrete algorithms 3

1.1.1 Part I: Algorithm inspired Deep Learning 3

1.1.2 Part II: Deep Learning enhanced algorithms 4

1.1.3 Part III: Towards Reasoning with Graphs 4

1.2 Organization of the thesis . 5

Chapter 2: Literature survey . 6

2.1 Graph representation learning . 6

2.2 Graph generative modeling . 7

2.3 Combinatorial optimization over graphs 9

2.4 Reasoning with graphs . 10

PART I: Algorithm inspired deep learning for graphs 12

Chapter 3: Discriminative graph representation learning 13

vi

3.1 Introduction . 13

3.2 Backgrounds . 16

3.3 Model for a Structured Data Point . 19

3.4 Embedding Latent Variable Models . 20

3.4.1 Embedding Mean-Field Inference 21

3.4.2 Embedding Loopy Belief Propagation 24

3.4.3 Embedding Other Variational Inference 25

3.5 Discriminative Training . 25

3.6 Experiments . 27

3.6.1 Benchmark structure datasets . 28

3.6.2 Harvard Clean Energy Project(CEP) dataset 31

3.7 Summary . 33

Chapter 4: Stochastic large scale graph embedding 34

4.1 Introduction . 34

4.2 Iterative Algorithms over Graphs . 37

4.3 The Algorithm Learning Problem . 39

4.3.1 Steady-state operator and linking function 40

4.3.2 Finding steady-state . 40

4.3.3 Specific parameterization for TΘ and g 41

4.3.4 The optimization problem . 42

4.4 Learning Algorithm . 42

4.4.1 Stochastic Fixed-Point Gradient Descent 43

vii

4.4.2 Complexity analysis . 44

4.5 Experiments . 45

4.5.1 Algorithm-learning: connectivity 47

4.5.2 Algorithm Learning: PageRank 47

4.5.3 Algorithm Learning: mean-field inference 49

4.5.4 Application: node classification 50

4.5.5 Scalability . 53

4.6 Summary . 54

Chapter 5: Segmental sequence generative modeling 56

5.1 Introduction . 56

5.2 Model Architecture . 59

5.3 sequential variational autoencoder . 61

5.4 Learning via stochastic distributional penalty method 63

5.4.1 Updating Q̃ . 64

5.4.2 Updating θ and ψ . 66

5.4.3 Optimizing Dynamic Programming 68

5.5 Experiments . 69

5.5.1 Segmentation Accuracy . 70

5.5.2 Reconstruction . 73

5.6 Summary . 73

Chapter 6: Graph generative modeling with syntax and semantics guidance . . . 75

6.1 Introduction . 75

viii

6.2 Background . 78

6.2.1 Variational Autoencoder . 78

6.2.2 Context Free Grammar and Attribute Grammar 79

6.3 Syntax-Directed Variational Autoencoder 81

6.3.1 Stochastic Syntax-Directed Decoder 81

6.3.2 Structure-Based Encoder . 85

6.3.3 Model Learning . 85

6.4 Experiments . 86

6.4.1 Settings . 86

6.4.2 Training Details . 87

6.4.3 Reconstruction Accuracy and Prior Validity 88

6.4.4 Bayesian Optimization . 90

6.4.5 Predictive performance of latent representation 91

6.4.6 Diversity of generated molecules 92

6.4.7 Visualizing the Latent Space . 93

6.5 Summary . 94

PART II: Deep learning enhanced graph algorithms 95

Chapter 7: Learning heuristics in greedy algorithms 96

7.1 Introduction . 96

7.2 Common Formulation for Greedy Algorithms on Graphs 100

7.3 Representation: Graph Embedding . 102

7.3.1 Structure2Vec . 102

ix

7.3.2 Parameterizing Q̂(h(S), v; Θ) . 103

7.4 Training: Q-learning . 105

7.4.1 Reinforcement learning formulation 105

7.4.2 Learning algorithm . 106

7.5 Experimental Evaluation . 108

7.5.1 Comparison of solution quality . 111

7.5.2 Generalization to larger instances 112

7.5.3 Scalability & Trade-off between running time and approximation
ratio . 112

7.5.4 Experiments on real-world datasets 113

7.5.5 Discovery of interesting new algorithms 114

7.6 Summary . 114

Chapter 8: Extensions of learning greedy algorithms over graphs 115

8.1 Hierarchical action space for graph adversarial attack 115

8.1.1 Problem statement . 115

8.1.2 Main formulation . 117

8.2 Optimal graph touring for program and App testing 120

8.2.1 Problem statement . 120

8.2.2 An RL formulation for graph exploration 121

PART III: Towards inductive reasoning with graph structures 123

Chapter 9: Reasoning the loop invariant for program verification 124

9.1 Introduction . 124

x

9.2 Background . 126

9.3 End-to-End Reasoning Framework . 128

9.3.1 The reasoning process of a human expert 128

9.3.2 Programming the reasoning procedure with neural networks 130

9.4 Learning . 134

9.4.1 Reinforcement learning setup . 135

9.4.2 Training of the learning agent . 137

9.5 Experiments . 137

9.5.1 Dataset . 138

9.5.2 Finding loop invariants from scratch 139

9.5.3 Ablation study . 140

9.5.4 Boosting the search with pre-training 141

9.5.5 Attention visualization . 143

9.5.6 Discussion of limitations . 143

9.6 Summary . 143

Chapter 10:Retrosynthesis prediction with conditional graph logic network . . . 144

10.1 Introduction . 144

10.2 Background . 147

10.3 Conditional Graph Logic Network . 148

10.4 Model Design . 150

10.4.1 Decomposable design of p(T |O) 151

10.4.2 Graph Neuralization for v1, v2 and w2 152

xi

10.5 MLE with Efficient Inference . 154

10.6 Experiment . 157

10.6.1 Main results . 159

10.6.2 Interpret the predictions . 160

10.6.3 Large scale experiments on USPTO-full 161

10.6.4 Ablation study of design choices 162

10.6.5 Per-category performance . 163

10.6.6 Reaction conditional performance 163

10.6.7 Effect of beam size . 164

10.7 Summary . 165

Chapter 11:Conclusion . 166

11.1 Contribution and impact of the thesis work 166

11.2 Limitation and future work . 167

Appendix A: Derivation of embedding for graphical model inference algorithms 170

A.1 Derivation of the Fixed-Point Condition for Mean-Field Inference 171

A.2 Derivation of the Fixed-Point Condition for Loopy BP 172

Appendix B: Syntax, semantics and attribute grammar in SD-VAE 174

B.1 Grammar for Program Syntax . 174

B.2 Grammar for Molecule Syntax . 174

B.3 Examples of SMILES semantics . 176

B.4 Dependency graph introduced by attribute grammar 177

xii

Appendix C: Experimental details of S2V-DQN 178

C.1 Set Covering Problem . 178

C.2 Experimental Results on Realistic Data . 179

C.2.1 Minimum Vertex Cover . 179

C.2.2 Maximum Cut . 180

C.2.3 Traveling Salesman Problem . 180

C.2.4 Set Covering Problem . 181

C.3 Experiment Details . 183

C.3.1 Problem instance generation . 183

C.3.2 Full results on solution quality . 184

C.3.3 Full results on generalization . 184

C.3.4 Experiment Configuration of S2V-DQN 187

C.3.5 Stabilizing the training of S2V-DQN 187

C.3.6 Convergence of S2V-DQN . 188

C.3.7 Complete time v/s approximation ratio plots 188

C.3.8 Additional analysis of the trade-off between time and approx. ratio . 189

C.3.9 Visualization of solutions . 191

C.3.10 Detailed visualization of learned MVC strategy 191

C.3.11 Experiment Configuration of PN-AC 192

References . 218

xiii

LIST OF TABLES

3.1 Mean AUC on string classification datasets 29

3.2 Statistics [217] of graph benchmark datasets. |V | is the # nodes while |E|
is the # edges in a graph. #labels equals to the number of different types of
nodes. 30

3.3 Test prediction performance on CEP dataset. WL lv-k stands for Weisfeiler-
lehman with degree k. 33

4.1 Multi-class node classification Dataset statistics as reported in [130]. 46

4.2 Multi-label node classification Dataset statistics 46

4.3 Transductive learning of PageRank on Barabasi-Albert graphs with differ-
ent sizes and hyperparameters (m = 1, 4). We report MAE on 50% held-out
nodes. 49

4.4 Inductive learning of PageRank on Barabasi-Albert graphs, trained on graph
with same hyper-parameters. 49

4.5 Multi-label classification in Amazon product dataset. We report both Micro-
F1 and Macro-F1 on held-out test set. 50

4.6 Multi-label classification in small datasets. We report both Micro-F1 and
Macro-F1 on held-out test set. 51

4.7 Inductive node classification using PPI dataset. 52

5.1 Error rate of segmentation. We report both the mean and standard deviation. 72

xiv

6.1 Reconstructing Accuracy and Prior Validity estimated using Monte Carlo
method. Our proposed method (SD-VAE) performance significantly better
than existing works. * We also report the reconstruction % grouped by
number of statements (3, 4, 5) in parentheses. 88

6.2 Predictive performance using encoded mean latent vector. Test LL and
RMSE are reported. 92

6.3 Diversity as statistics from pair-wise distances measured as 1− s, where s
is one of the similarity metrics. So higher values indicate better diversity.
We show mean ± stddev of

(
100
2

)
pairs among 100 molecules. We report

results from GVAE and our SD-VAE, because CVAE has very low valid
priors and thus failed in this evaluation protocol. 92

6.4 Interpolation between two valid programs (the top and bottom ones in brown)
where each program occupies a row. Programs in red are with syntax errors.
Statements in blue are with semantic errors such as referring to unknown
variables. Rows without coloring are correct programs. Observe that when
a model passes points in its latent space, our proposed SD-VAE enforces
both syntactic and semantic constraints while making visually more smooth
interpolation. In contrast, CVAE makes both kinds of mistakes, GVAE
avoids syntactic errors but still produces semantic errors, and both methods
produce subjectively less smooth interpolations. 93

7.1 Definition of reinforcement learning components for each of the three prob-
lems considered. 106

7.2 S2V-DQN’s generalization ability. Values are average approximation ratios over
1000 test instances. These test results are produced by S2V-DQN algorithms
trained on graphs with 50-100 nodes. 112

7.3 Realistic data experiments, results summary. Values are average approximation
ratios. 114

9.1 Ablation study for different configurations of CODE2INV. 141

10.1 Dataset information. 159

10.2 Reaction and template set information. 159

10.3 Top-k exact match accuracy. 159

xv

10.4 Top-k accuracy on USPTO-full. 161

10.5 Ablation study on USPTO-50k with different representations. 162

C.1 MAXCUT results on the ten instances described in C.2.2; values reported
are cut weights of the solution returned by each method, where larger values
are better (best in bold). Bottom row is the average approximation ratio
(lower is better). 181

C.2 TSPLIB results: Instances are sorted by increasing size, with the number
at the end of an instance’s name indicating its size. Values reported are
the cost of the tour found by each method (lower is better, best in bold).
Bottom row is the average approximation ratio (lower is better). 182

C.3 S2V-DQN’s generalization on MVC problem in ER graphs. 184

C.4 S2V-DQN’s generalization on MVC problem in BA graphs. 185

C.5 S2V-DQN’s generalization on MAXCUT problem in ER graphs. 185

C.6 S2V-DQN’s generalization on MAXCUT problem in BA graphs. 185

C.7 S2V-DQN’s generalization on TSP in random graphs. 185

C.8 S2V-DQN’s generalization on TSP in clustered graphs. 185

C.9 S2V-DQN’s generalization on SCP with edge probability 0.05. 187

C.10 S2V-DQN’s generalization on SCP with edge probability 0.1. 187

C.11 S2V-DQN’s configuration used in Experiment. 187

C.12 Minimum Vertex Cover (100 graphs with 200-300 nodes): Trade-off be-
tween running time and approximation ratio. An “Approx. Ratio of Best
Solution” value of 1.x% means that the solution found by CPLEX if given
the same time as a certain heuristic (in the corresponding row) is x% worse,
on average. “Additional Time Needed” in seconds is the additional amount
of time needed by CPLEX to find a solution of value at least as good as
the one found by a given heuristic; negative values imply that CPLEX finds
such solutions faster than the heuristic does. Larger values are better for
both metrics. The values in parantheses are the number of instances (out of
100) for which CPLEX finds some solution in the given time (for “Approx.
Ratio of Best Solution”), or finds some solution that is at least as good as
the heuristic’s (for “Additional Time Needed”). 190

xvi

C.13 Maximum Cut (100 graphs with 200-300 nodes): please refer to the caption
of Table C.12. 190

xvii

LIST OF FIGURES

3.1 Building latent variable models (LVM) from structured string and general
graph data. Y is the supervised information, which can be real number (for
regression) or discrete integer (for classification). 19

3.2 10-fold cross-validation accuracies on graph classification benchmark datasets.
The ‘sp’ in the figure stands for shortest-path. 30

3.3 PCE value distribution and sample molecules from CEP dataset. Hydro-
gens are not displayed. 31

3.4 Details of training and prediction results for DE-MF and DE-LBP with
different number of fixed point iterations. 32

4.1 Overview of proposed graph steady-state learning algorithm. In stage I, we
update the classifier f̂v and steady-state operator TΘ with 1-hop neighbor-
hood of stochastic samples; in stage II, the embeddings ĥv are updated by
stochastic fixed point iterations. 35

4.2 Graph connectivity experiment. 46

4.3 Algorithm learning for PageRank and Mean Field Inference. Error is mea-
sured using Mean Absolute Error (MAE). 47

4.4 Results on scalability experiments. We compare both the time needed per
update, as well as number of samples required for convergence in PageRank
experiments with large Barabasi-Albert random graphs. 50

4.5 The document classification accuracy on benchmark citation networks. . . 52

xviii

5.1 Synthetic experiment results. Different background colors represent the
segmentations with different labels. In the top row, the black curve shows
the raw signal. (a) The Sine data set is generated by a HSMM with 3 hid-
den states, where each one has a corresponding sine function; (b) Similar
to 5.1a, but the segments are generated from Gaussian processes with dif-
ferent kernel functions. The first two rows are our algorithms which almost
exact locate every segment. 58

5.2 Graphical models of HSMM and R-HSMM. Different from classical HSMM,
the R-HSMM has two-level emission structure with recurrent dependency. 59

5.3 Segmentation results on Human activity and Drosophila datasets. Different
background colors represent the segmentations with different labels. In the
top row, the black cure shows the signal sequence projected to the first
principle component. The following two rows are our algorithms which
almost exact locate every segment. (a) The Human activity data set contains
12 hidden states, each of which corresponds to a human action; (b) The
Drosophila data set contains 11 hidden states, each of which corresponds
to a drosophila action. 71

5.4 Reconstruction illustration. The generative RNNs (decoders) are asked to
reconstruct the signals from only the discrete labels and durations (which
are generated from encoder). 74

6.1 Illustration on left shows the hierarchy of the structured data decoding
space w.r.t different works and theoretical classification of corresponding
strings from formal language theory. SD-VAE, our proposed model with
attribute grammar reshapes the output space tighter to the meaningful tar-
get space than existing works. On the right we show a case where CFG is
unable to capture the semantic constraints, since it successfully parses an
invalid program. 78

6.2 Bottom-up syntax and semantics check in compilers. 80

6.3 On-the-fly generative process of SD-VAE in order from (a) to (g). Steps:
(a) stochastic generation of attribute; (b)(f)(g) constrained sampling with
inherited attributes; (c) unconstrained sampling; (d) synthesized attribute
calculation on generated subtree. (e) lazy evaluation of the attribute at root
node. 82

6.4 Visualization of reconstruction. The first column in each figure presents
the target molecules. We first encode the target molecules, then sample the
reconstructed molecules from their encoded posterior. 89

xix

6.5 On the left are best programs found by each method using Bayesian Op-
timization. On the right are top 3 closest programs found by each method
along with the distance to ground truth (lower distance is better). Both our
SD-VAE and CVAE can find similar curves, but our method aligns better
with the ground truth. In contrast the GVAE fails this task by reporting
trivial programs representing linear functions. 91

6.6 Best top-3 molecules and the corresponding scores found by each method
using Bayesian Optimization. 91

6.7 Latent Space visualization. We start from the center molecule and decode
the neighborhood latent vectors (neighborhood in projected 2D space). . . 94

7.1 Illustration of the proposed framework as applied to an instance of Minimum Ver-
tex Cover. The middle part illustrates two iterations of the graph embedding, which
results in node scores (green bars). 97

7.2 Approximation ratio on 1000 test graphs. Note that on MVC, our performance is
pretty close to optimal. In this figure, training and testing graphs are generated
according to the same distribution. 111

7.3 Time-approximation trade-off for MVC and MAXCUT. In this figure, each dot
represents a solution found for a single problem instance, for 100 instances. For
CPLEX, we also record the time and quality of each solution it finds, e.g. CPLEX-
1st means the first feasible solution found by CPLEX. 113

8.1 Illustration of applying hierarchical Q-function to propose adversarial at-
tack solutions. Here adding a single edge at is decomposed into two de-
cision steps a(1)

t and a(2)
t , with two Q-functions Q1∗ and Q2∗, respectively.

. 117

8.2 Overview of our meta exploration model for exploring a known but com-
plicated graph structured environment. The GGNN [145] module captures
the graph structures at each step, and the representations of each step are
pooled together to form a representation of the exploration history. 121

9.1 A program with a correctness assertion and a loop invariant that suffices to
prove it. 128

9.2 An example from our benchmarks. ∗ denotes non-deterministic choice. . . . 129

9.3 Overall framework of neuralizing loop invariant inference. 130

xx

9.4 Diagram for source code graph as external structured memory. We convert
a given program into a graph G, where nodes correspond to syntax ele-
ments, and edges indicate the control flow, syntax tree structure, or variable
linking. We use embedding neural network to get structured memory f(G). 132

9.5 Examples of programs in SyGuS challenge dataset (after converting to C). . 138

9.6 Comparison of CODE2INV with state-of-the-art solvers on benchmark dataset.139

9.7 (a) and (b) are verification costs of pre-trained model and untrained model;
(c) and (d) are attention highlights for two example programs. 142

10.1 Chemical reactions and the retrosynthesis templates. The reaction centers
are highlighted in each participant of the reaction. These centers are then
extracted to form the corresponding template. Note that the atoms belong
to the reaction side products (the dashed box in figure) are missing. 147

10.2 Retrosynthesis pipeline with GLN. The three dashed boxes from top to bot-
tom represent set of templates T , subgraphsF and moleculesM. Different
colors represent retrosynthesis routes with different templates. The dashed
lines represent potentially possible routes that are not observed. Reaction
centers in products O are highlighted. 151

10.3 Example successful predictions. 160

10.4 Example failed predictions. 160

10.5 Reaction center prediction visualization. Red atoms indicate positive match
scores, while blue ones having negative scores. The darkness of the color
shows the magnitude of the score. Green parts highlight the substructure
match between molecules and center structures. 160

10.6 Reaction distribution over 10 types. 163

10.7 Top-10 accuracy per each reaction type. 163

10.8 Top-10 accuracy per reaction class, when the reaction class is given during
training. 164

10.9 Top-k accuracy with different beam sizes. 164

10.10Inference speed with different beam sizes. 164

10.11Top-k accuracy of reaction center and template. 164

xxi

B.1 Example of cross-serial dependencies (CSD) that exhibits in SMILES lan-
guage. 176

C.1 Approximation ratio on 1000 test graphs. Note that on MVC, our perfor-
mance is pretty close to optimal. In this figure, training and testing graphs
are generated according to the same distribution. 186

C.2 S2V-DQN convergence measured by the held-out validation performance. . 194

C.3 Time-approximation trade-off for MVC, MAXCUT and SCP. In this figure,
each dot represents a solution found for a single problem instance. For
CPLEX, we also record the time and quality of each solution it finds. For
example, CPLEX-1st means the first feasible solution found by CPLEX. . . 195

C.4 Minimum Vertex Cover: an optimal solution to an ER graph instance found
by S2V-DQN. Selected node in each step is colored in orange, and nodes in
the partial solution up to that iteration are colored in black. Newly covered
edges are in thick green, previously covered edges are in red, and uncovered
edges in black. We show that the agent is not only picking the node with
large degree, but also trying to maintain the connectivity after removal of
the covered edges. For more detailed analysis, please see Appendix C.3.10. 196

C.5 Maximum Cut: an optimal solution to ER graph instance found by S2V-
DQN. Nodes are partitioned into two sets: white or black nodes. At each
iteration, the node selected to join the set of black nodes is highlighted in
orange, and the new cut edges it produces are in green. Cut edges from
previous iteration are in red (Best viewed in color). It seems the agent will
try to involve the nodes that won’t cancel out the edges in current cut set. . 196

C.6 Traveling Salesman Problem. Left: optimal tour to a “random” instance
with 18 points (all edges are red), compared to a tour found by our method
next to it. For our tour, edges that are not in the optimal tour are shown in
green. Our tour is 0.07% longer than an optimal tour. Right: a “clustered”
instance with 15 points; same color coding as left figure. Our tour is 0.5%
longer than an optimal tour. (Best viewed in color). 196

C.7 Step-by-step comparison between our S2V-DQN and two greedy heuris-
tics. We can see our algorithm will also favor the large degree nodes, but
it will also do something smartly: instead of breaking the graph into sev-
eral disjoint components, our algorithm will try the best to keep the graph
connected. 197

xxii

SUMMARY

Graph structures, like syntax trees, social networks, and programs, are ubiquitous in

many real world applications including knowledge graph inference, chemistry and social

network analysis. Over the past several decades, many expert-designed algorithms on

graphs have been proposed with nice theoretical properties. However most of them are not

data-driven, and will not benefit from the growing scale of available data. Recent advances

in deep learning have shown strong empirical performances for images, texts and signals,

typically with little domain knowledge. However the combinatorial and discrete nature of

the graph data makes it non-trivial to apply neural networks in this domain. Based on the

pros and cons of these two, this thesis will discuss several aspects on how to build a tight

connection between neural networks and the classical algorithms for graphs. Specifically:

• Algorithm inspired deep graph learning The existing algorithms provide an inspi-

ration of deep architecture design, for both the discriminative learning and generative

modeling of graphs. Regarding the discriminative representation learning, we show

how the graphical model inference algorithms can inspire the design of graph neural

networks for chemistry and bioinformatics applications, and how to scale it up with

the idea borrowed from steady states algorithms like PageRank; for generative mod-

eling, we build an HSMM inspired neural segmental generative modeling for signal

sequences; and for a class of graphs, we leverage the idea of attribute grammar for

syntax trees to help regulate the deep networks.

• Deep learning enhanced graph algorithms the algorithm framework has proce-

dures that can be enhanced by learnable deep network components. We demonstrate

by learning the heuristic function in greedy algorithms with reinforcement learning

for combinatorial optimization problems over graphs, such as vertex cover and max

cut, and optimal touring problem for real world applications like fuzzing.

xxiii

• Towards Inductive reasoning with graph structures As the algorithm structure

generally provides a good inductive bias for the problem, we take an initial step

towards inductive reasoning for such structure, where we make attempts to reason

about the loop invariant for program verification and the reaction templates for ret-

rosynthesis structured prediction.

Keywords: Deep learning, Graph representation learning, Structured generative mod-

eling, Structured prediction, Reinforcement learning, Chemistry/Bioinformatics applica-

tions, Program understanding.

xxiv

CHAPTER 1

INTRODUCTION

Graphs are ubiquitous in many real world applications. In chemical engineering, the

molecules can be represented by graphs with atoms as nodes and bonds as edges; in knowl-

edge graph, entities and corresponding relationships form a graph; in social network, users

and their interactions can also be characterized as graphs. Despite the convenience of such

representation, the discrete and combinatorial nature of the graphs also brings many diffi-

culties into various machine learning problems.

Difficulties in learning with graphs Here we briefly mention some difficulties people

will generally meet when dealing with graphs.

• Representation Learning: learning to represent the graphs into fixed dimensional vec-

tor is nontrivial. Unlike images where we can represent them as fixed dimensional ten-

sors, different graphs have different sizes and structures. Also the real-world graphs

consist of millions to billions of nodes, which also challenges the scalability and effi-

ciency of the learning algorithm.

• Generative modeling: Generating the graphs is also tricky. While continuous data like

images can be noise tolerant, discrete graphs typically have to be accurate. For example,

typically a Carbon node in a molecule can have degree of at most 4. Generating such

structures with minor perturbations that violate the constraints will completely fail the

graphs obtained. Also, the combinatorial and discrete nature of graphs makes it hard to

apply gradient based adjustments during the generation procedure.

• Combinatorial Optimization Real-world problems like ads targeting, package deliver-

ing can be formulated as combinatorial optimization on graphs, such as Minimum Vertex

1

Cover, Traveling Salesman Problem, etc. Unfortunately they are all NP-complete, which

means there’s no known polynomial time algorithm.

Fortunately, over the past decades, researchers have designed algorithms with nice the-

oretical properties for many of these problems. To list a few:

Exemplar human designed algorithms for graphs

• Weisfeiler-Lehman (WL) graph isomorphism test: the WL algorithm [238] was de-

signed to check whether the two graphs are isomorphic. The algorithm works in an

iterative fashion, where in each iteration, each node updates its label with the concate-

nation of neighboring labels. In the end the set of labels are used to distinguish between

the graphs. Such idea have been applied into a family of graph kernels called WL graph

kernel [207], which hashes the output of WL algorithm to get the explicit feature maps.

• Greedy Algorithm for Minimum Vertex Cover (MVC): The MVC problem asks to

pick a minimum set of nodes in a graph, such that all the edges have at least one end in

this set. To construct a solution for MVC, the greedy algorithm works by sequentially

picking the two ends of uncovered edges with maximum degree, and remove the two

nodes and associated edges. Such algorithm guarantees the maximum approximation

ratio of 2 (i.e., at most pick twice as many as number of nodes in optimal solution).

Such algorithms are very efficient and also effective in many cases. However they have

their own limitations: WL kernel requires very high dimensional feature maps, and may

not be informative enough as the features are unsupervised; greedy algorithms for MVC

may perform worse than branch and bound even in the time limited setting. Also both of

these methods are not data driven, which cannot fully exploit the benefit from the big data.

Deep learning has shown superior performances in many domains, including computer

vision, natural language, and speech. Though the theoretical aspect of its representation

2

power is not fully understood, typically the deep learning methods are considered to be

flexible and having rich representation power.

Based on above discussion, it is natural to ask the question: can we tightly integrate

such human designed algorithms and deep learning to tackle the difficult problems in graph

learning? In this thesis work, we are trying to answer this question.

1.1 Connecting deep learning with discrete algorithms

In this document, we focus on three aspects of such connection:

1.1.1 Part I: Algorithm inspired Deep Learning

According to the universal approximation theorem [52], the neural network with one hid-

den layer can fit continuous functions, but it didn’t state the learnability problem. Thus it

is often important to design neural network with right inductive bias [17]. The human de-

signed discrete algorithms encode the expert knowledge into the computation procedures,

which provide us the inspiration of such design. In this part, we will how the human de-

signed algorithms can inspire us to tackle both the representation learning and generative

modeling in the graph structured domain.

Representation Learning We connect both WL kernel and graphical model inference al-

gorithms with new design of graph neural networks named structure2vec. With the

inspiration from PageRank [171], we present SSE, which scale up this discriminative rep-

resentation into graphs with hundreds millions of nodes.

Generative Modeling We study the generation problem of both sequences and tree/graphs.

For sequence generation, we borrow the idea of Hidden-Semi Markov Model (HSMM) and

present our r-HSMMwhich models the generation of segments using Recurrent Neural Net-

works (RNN). For tree/graph generation, we focus on a set of problems which have explicit

syntax and semantics, such as ASTs for representing programs, or SMILES 1 for represent-

1https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

3

ing molecules. Our method SD-VAE borrows the idea of syntax-directed translation [1] in

compiler theory, which regulates the semantics in deep generative models.

1.1.2 Part II: Deep Learning enhanced algorithms

The simplicity of some algorithms often comes with low capacity. With the integration

of deep learning into submodules of these algorithms, one can typically get boosted per-

formance. In this part, we present a method to learn the heuristic functions inside greedy

algorithms. Specifically, we tackle a set of NP-complete problems on graphs, where the

algorithmic steps are defined by greedy algorithm. We learn the heuristics using graph

neural networks jointly with reinforcement learning (RL), which we name our method as

S2V-DQN. Such generic algorithm has a range of applications in the combinatorial opti-

mization domain. We extended our approach into security domain, namely the adversarial

attack [173] problem in combinatorial space, and program/App testing problem [58].

1.1.3 Part III: Towards Reasoning with Graphs

The above two sections have discussed the situations where we have an algorithm at hand,

and the remaining is how to apply the algorithm better with deep learning on structural data.

With such good inductive bias, we can typically obtain better generalization ability with

smaller sample complexity. This procedure can be viewed as deductive reasoning. On the

contrary, the inductive reasoning requires the ability to summarize from the observations

and conclude the generic knowledge or rules. Such ability of ’creativity’ is one of the key

differences between human intelligence and artificial intelligence.

In this part, we extend the scope by viewing the algorithms as combinatorial structures.

In mathematics or computer science view, the algorithms are instructions with dependency.

Such dependency can be defined with computation graphs, and we can thus represent the

algorithms with graphs. There could be other structural views of the algorithms. If we ex-

press the algorithm as programs, then one example of this inductive reasoning is program

synthesis. The problem of structured prediction is also relevant. The classical methods

4

like structured SVM [227] typically has a candidate set of outputs (typically obtained us-

ing dynamic programming), which reduces the decision space. However such dynamic

programming structure may not exist in more generic settings.

Here we take an initial step to tackle this problem, where we treat the logic rules as

graphs and focus on the problem of inferring loop invariants for program synthesis. In pro-

gram verification, the loops are typically unrolled with maximum number of steps. With

the help of loop invariant, one can provide more efficient and stronger analysis of the pro-

gram. We name it as code2inv, as it takes a piece of source code and directly infer the

loop invariant. Such initial attempt uses RL with specially designed reward function.

The above work composes logic expressions from scratch. Typically in real world

applications, it would be more feasible to select set of inductive rules from a candidate

pool. We demonstrate this idea for the retrosynthesis prediction problem in chemistry. The

retrosynthesis is the reverse problem of reaction prediction. In reaction prediction, we are

asked to predict the outcome compounds given the reactants. In retrosynthesis, the desired

outcome is given and we are asked to predict the reactants. This is abductive reasoning,

as the desired outcome typically doesn’t have the side products, which are necessary in

chemical reaction. Our work brings the chemical knowledge into play, where the chemical

reaction rules server as the templates for reducing the decision space. This work combines

such logic reasoning with deep learning on molecule structures.

1.2 Organization of the thesis

The following of the document will be organized in this way: in Chapter 2, we present

the existing works in the related areas, such as representation learning, generative learning,

and combinatorial optimization on graph. Then in Part I and II, we will talk about how

the human designed algorithms and deep learning can benefit from each other. In the third

part, we will present our initial attempts to inductive reasoning with structures. Finally in

Chapter 11, we conclude and discuss about future research directions.

5

CHAPTER 2

LITERATURE SURVEY

In this chapter, we will discuss the related works in different graph learning problems.

2.1 Graph representation learning

Graphs and networks are commonly used data structure for representing the real-world

relationships, e.g., molecular 3D structure networks, knowledge graphs, publication net-

works, social and communication networks, etc.. Analysis based on the network structured

data, including prediction over nodes, edges, and the whole graph, becomes more and

more attractive and has been applied to many problems. Most of these tasks rely on em-

bedding the graph/network information into vectors, which is essential to the success of

these applications. This topic is typically referred as graph or network embedding, i.e., the

representation graphs into vector space.

A typical solution for the representation of nodes and edges in graph relies on the

hand-crafted domain-specific features. Regardless of the tedious effort and requirement

for expert knowledge for feature engineering, such hand-crafted features may not be ef-

fective to capture the properties of the graph for the specific target tasks. In literature,

various spectral methods [51, 226, 19] have been proposed. Since these algorithms relies

on matrix decomposition of the adjacent matrix, both their memory and computational cost

become prohibitive for large-scale networks, which may contains millions or billions of

nodes. Meanwhile, as explained in [224, 90], these algorithms only preserves the first-

order neighborhood information in the resulted embeddings, where the higher-order struc-

tural information is abandoned.

Recently, the deep learning techniques open a new view for graph embedding. One

promising direction is preserving some desired properties of the graph through approximat-

6

ing the corresponding statistics with embeddings. Specifically, the DeepWalk [177] extends

the word2vec [154] in NLP to graph embeddings, which tries to preserve the co-occurrence

between nodes in the local structure obtained by random walks. Different heuristics, such

as biased random walk model [90] or first and second order proximity [224] have been

proposed later. However, the capacity of these models might be limited due to: i), the long

range information might not be easily incorporated in a computational or statistical efficient

way (via longer random walks or high-order proximity); ii), these models are featureless

and trained unsupervisedly, i.e., independent to the down-streaming tasks, therefore, the

obtained embeddings may be inferior in capturing the relevant information to the labels.

Another set of work relies on the convolution operator over graphs, which has been

showing their effectiveness in capturing the long-range information in graph in real-world

applications. By treating the convolution in spatial domain, the graph neural networks

(GNNs) [193] proposed a general framework of performing neural network operators over

structured data. However it utilizes Almeida-Pineda algorithm for optimization, which

limits the scalability of the model. Following this, several work has been proposed to scale

up the training procedure, by unrolling the convolution operator with several predefined

convolution layers [71, 145, 168, 14, 55, 83, 140, 99, 229]. Such expansion could be

understood as an approximation to the Almeida-Pineda algorithm with finite-depth neural

network, therefore, alleviating the computational burden. The graph convolution has also

been raised in spectrum domain [34, 130, 63].

However, the above mentioned algorithms still cannot achieve the speed requirement

for graphs with hundreds of millions of nodes.

2.2 Graph generative modeling

Generating naturally looking images have been a hot topic in computer vision, especially

since the invention of generative models like Variational AutoEncoder (VAE [129]) and

Generative Adversarial Network (GAN [88]). However, unlike images which can be repre-

7

sented with tensors in continuous space, the graphs are discrete and combinatorial, which

makes it tricky to apply GAN (though there have been several attemps, e.g., NetGAN [26]

which is based on SeqGAN [246]).

When the graphs have language representation with explicit syntax and semantics, one

can typically reduce it to the sequence generation problem. This has been well studied

under the seq2seq [219] framework that models the generation of sequence as a series of

token choices parameterized by recurrent neural networks (RNNs). From there, CVAE [86]

is a representative work of such paradigm for the chemical molecule generation, using the

SMILES line notation [237] for representing molecules. Several improvements have been

proposed, including an extra validator model [109], data augmentation [25], active learn-

ing [108] and reinforcement learning [93]. However, because of the lack of formalization of

syntax and semantics serving as the restriction of the particular structured data, underfitted

general-purpose string generative models will often lead to invalid outputs [22]. For the

considerations of computational cost and model generality, context-free grammars (CFG)

have been taken into account in the decoder parametrization. For instance, in molecule

generation tasks, [137] proposes a grammar variational autoencoder (GVAE) in which the

CFG of SMILES notation is embedded into the decoder. With the advances of tree based

decoder [253, 174, 7, 68], the model generates the parse trees directly in a top-down di-

rection, by repeatedly expanding any nonterminal with its production rules. Note that such

VAE based frameworks not only allow sequence modeling, but can also be used to generate

the junction trees [111] and adjacency matrix in graphs like GraphVAE [131].

The other line of works following the idea of auto-regressive distribution modeling.

These models generate the graph nodes (and edges) one by one, following the auto-regressive

parameterization. Representative works include GraphRNN [245], GCPN [244], Deep

Graph Generator [146], etc.. However, such parameterization may not be scalable for gen-

erating large graphs, as the computation cost is typically O(E(V +E)) which is quadratic

to the number of edges.

8

2.3 Combinatorial optimization over graphs

Combinatorial optimization problems over graphs arising from numerous application do-

mains, such as social networks, transportation, communications and scheduling, are NP-

hard, and have thus attracted considerable interest from the theory and algorithm design

communities over the years. Traditional approaches to tackling an NP-hard graph opti-

mization problem have three main flavors: exact algorithms, approximation algorithms and

heuristics. Exact algorithms are based on enumeration or branch-and-bound with an integer

programming formulation, but are generally prohibitive for large instances. On the other

hand, polynomial-time approximation algorithms are desirable, but may suffer from weak

optimality guarantees or empirical performance, or may not even exist for inapproximable

problems. Heuristics are often fast, effective algorithms that lack theoretical guarantees,

and may also require substantial, problem-specific research and trial-and-error on the part

of algorithm designers.

Machine learning for combinatorial optimization. Recently, there has been some sem-

inal work on using deep architectures to learn heuristics for combinatorial problems, in-

cluding the Traveling Salesman Problem [230, 20, 89]. However, the architectures used in

these works are generic, not yet effectively reflecting the combinatorial structure of graph

problems. As we show later, these architectures often require a huge number of instances

in order to learn to generalize to new ones. Furthermore, existing works typically use the

policy gradient for training [20], a method that is not particularly sample-efficient. While

methods [230, 20] can be used on graphs with different sizes – a desirable trait – they

require manual, ad-hoc input/output engineering to do so (e.g. padding with zeros).

Reinforcement learning is used to solve a job-shop flow scheduling problem in [252].

Boyan and Moore [31] use regression to learn good restart rules for local search algorithms.

Both of these methods require hand-designed, problem-specific features, a limitation with

the learned graph embedding.

9

Machine learning for branch-and-bound. Learning to search in branch-and-bound is

another related research thread. This thread includes machine learning methods for branch-

ing [138, 126], tree node selection [100, 190], and heuristic selection [191, 125]. In com-

parison, our work promotes an even tighter integration of learning and optimization.

Deep learning for continuous optimization. In continuous optimization, methods have

been proposed for learning an update rule for gradient descent [10, 144] and solving black-

box optimization problems [41]; these are very interesting ideas that highlight the possibil-

ities for better algorithm design through learning.

2.4 Reasoning with graphs

In this section, we focus on the literature of inductive reasoning with graph structures.

There has been a long history in the logic reasoning and format method literature. Due to

the limited space, what we will cover here mainly include the recent advances in the area

of program synthesis and program learning. More specific related works will be covered in

the later sections where we will introduce our works in detail.

Automatically synthesizing a program from its specification has been a key challenge

problem since Manna and Waldinger’s work [153]. In this context, syntax-guided synthesis

(SyGuS) [5] was proposed as a common format to express these problems. Besides several

implementations of SyGuS solvers [94, 6, 194, 5], a number of probabilistic techniques

have been proposed to model syntactic aspects of programs and to accelerate synthesis[24,

152, 167]. While logical program synthesis approaches guarantee semantic correctness,

they are chiefly limited by their scalability and requirement of rigorous specifications.

There have been several attempts to learn general programs using neural networks. One

large class of projects includes those attempting to use neural networks to accelerate the

discovery of conventional programs [16, 163, 64, 174]. Most existing works only consider

specifications which are in the form input-output examples, where weak supervision [147,

40, 35] or more fine grained trace information is provided to help training. In our setting,

10

there is no supervision for the ground truth loop invariant, and the agent needs to be able

to compose a loop invariant purely from trial-and-error. Drawing inspiration from both

programming languages and embedding methods, we build up an efficient learning agent

that can perform end-to-end reasoning, in a way that mimics human experts.

11

PART I: Algorithm inspired deep

learning for graphs

In this part, we will cover several of our works that are inspired by the human designed

algorithm patterns. In Chapter 3 and 4, we present the discriminative feature learning over

graphs, which take the inspiration from graphical model inference algorithms and steady

state algorithms like PageRank; in Chapter 5 and 6, we study the generative modeling of

structured data, for both sequences and tree/graphs, in which we built upon classical models

like Hidden-Semi Markov Models and classical algorithms like syntax directed translation.

12

CHAPTER 3

DISCRIMINATIVE GRAPH REPRESENTATION LEARNING

Kernel classifiers and regressors designed for structured data, such as sequences, trees and

graphs, have significantly advanced a number of interdisciplinary areas such as compu-

tational biology and drug design. Typically, kernels are designed beforehand for a data

type which either exploit statistics of the structures or make use of probabilistic generative

models, and then a discriminative classifier is learned based on the kernels via convex opti-

mization. However, such an elegant two-stage approach also limited kernel methods from

scaling up to millions of data points, and exploiting discriminative information to learn

feature representations.

We propose, structure2vec, an effective and scalable approach for structured

data representation based on the idea of embedding latent variable models into feature

spaces, and learning such feature spaces using discriminative information. Interestingly,

structure2vec extracts features by performing a sequence of function mappings in a

way similar to graphical model inference procedures, such as mean field and belief propa-

gation. In applications involving millions of data points, we showed that structure2vec

runs 2 times faster, produces models which are 10, 000 times smaller, while at the same time

achieving the state-of-the-art predictive performance.

3.1 Introduction

Structured data, such as sequences, trees and graphs, are prevalent in a number of interdis-

ciplinary areas such as protein design, genomic sequence analysis, and drug design [195].

To learn from such complex data, we have to first transform such data explicitly or implic-

itly into some vectorial representations, and then apply machine learning algorithms in the

resulting vector space. So far kernel methods have emerged as one of the most effective

13

tools for dealing with structured data, and have achieved the state-of-the-art classification

and regression results in many sequence [142, 232] and graph datasets [80, 28].

The success of kernel methods on structured data relies crucially on the design of kernel

functions — positive semidefinite similarity measures between pairs of data points [196].

By designing a kernel function, we have implicitly chosen a corresponding feature repre-

sentation for each data point which can potentially has infinite dimensions. Later learning

algorithms for various tasks and with potentially very different nature can then work exclu-

sively on these pairwise kernel values without the need to access the original data points.

Such modular structure of kernel methods has been very powerful, making them the most

elegant and convenient methods to deal with structured data. Thus designing kernel for

different structured objects, such as strings, trees and graphs, has always been an important

subject in the kernel community. However, in the big data era, this modular framework has

also limited kernel methods in terms of their ability to scale up to millions of data points,

and exploit discriminative information to learn feature representations.

For instance, a class of kernels are designed based on the idea of “bag of structures”

(BOS), where each structured data point is represented as a vector of counts for elemen-

tary structures. The spectrum kernel and variants for strings [142], subtree kernel [183],

graphlet kernel [208] and Weisfeiler-lehman graph kernel [207] all follow this design prin-

ciple. In other words, the feature representations of these kernels are fixed before learning,

with each dimension corresponding to a substructure, independent of the supervised learn-

ing tasks at hand. Since there are many unique substructures which may or may not be

useful for the learning tasks, the explicit feature space of such kernels typically has very

high dimensions. Subsequently algorithms dealing with the pairwise kernel values have to

work with a big kernel matrix squared in the number of data points. The square depen-

dency on the number of data points largely limits these BOS kernels to datasets of size just

thousands.

A second class of kernels are based on the ingenious idea of exploiting the ability of

14

probabilistic graphical models (GM) in describing noisy and structured data to design ker-

nels. For instance, one can use hidden Markov models for sequence data, and use pairwise

Markov random fields for graph data. The Fisher kernel [107] and probability product ker-

nel [110] are two representative instances within the family. The former method first fits a

common generative model to the entire dataset, and then uses the empirical Fisher informa-

tion matrix and the Fisher score of each data point to define the kernel; The latter method

instead fits a different generative model for each data point, and then uses inner products

between distributions to define the kernel. Typically the parameterization of these GM ker-

nels are chosen before hand. Although the process of fitting generative models allow the

kernels to adapt to the geometry of the input data, the resulting feature representations are

still independent of the discriminative task at hand. Furthermore, the extra step of fitting

generative models to data can be a challenging computation and estimation task by itself,

especially in the presence of latent variables. Very often in practice, one finds that BOS

kernels are easier to deploy than GM kernels, although the latter is supposed to capture the

additional geometry and uncertainty information of data.

In this chapter, we wish to revisit the idea of using graphical models for kernel or feature

space design, with the goal of scaling up kernel methods for structured data to millions of

data points, and allowing the kernel to learn the feature representation from label informa-

tion. Our idea is to model each structured data point as a latent variable model, then embed

the graphical model into feature spaces [211, 214], and use inner product in the embedding

space to define kernels. Instead of fixing a feature or embedding space beforehand, we will

also learn the feature space by directly minimizing the empirical loss defined by the label

information. The resulting embedding algorithm, structure2vec, runs in a scheme

similar to graphical model inference procedures, such as mean field and belief propagation.

Instead of performing probabilistic operations (such as sum, product and renormalization),

the algorithm performs nonlinear function mappings in each step, inspired by kernel mes-

sage passing algorithm in [213, 212]. Furthermore, structure2vec is also different

15

from the kernel message passing algorithm in several aspects. First, structure2vec

deals with a different scenario, i.e., learning similarity measure for structured data. Sec-

ond, structure2vec learns the nonlinear mappings using the discriminative informa-

tion. And third, a variant of structure2vec can run in a mean field update fashion,

different from message passing algorithms.

Besides the above novel aspects, structure2vec is also very scalable in terms of

both memory and computation requirements. First, it uses a small and explicit feature

map for the nonlinear feature space, and avoids the need for keeping the kernel matrix.

This makes the subsequent classifiers or regressors order of magnitude smaller compared

to other methods. Second, the nonlinear function mapping in structure2vec can

be learned using stochastic gradient descent, allowing it to handle extremely large scale

datasets. Finally in experiments, we show that structure2vec compares favorably to

other kernel methods in terms of classification accuracy in medium scale sequence and

graph benchmark datasets including SCOP and NCI. Furthermore, structure2vec can

handle extremely large data set, such as the 2.3 million molecule dataset from Harvard

Clean Energy Project, run 2 times faster, produce model 10, 000 times smaller and achieve

state-of-the-art accuracy. These strong empirical results suggest that the graphical models,

theoretically well-grounded methods for capturing structure in data, combined with em-

bedding techniques and discriminative training can significantly improve the performance

in many large scale real-world structured data classification and regression problems.

3.2 Backgrounds

We denote by X a random variable with domain X , and refer to instantiations of X by the

lower case character, x. We denote a density on X by p(X), and denote the space of all

such densities by P . We will also deal with multiple random variables, X1, X2, . . . , X`,

with joint density p(X1, X2, . . . , X`). For simplicity of notation, we assume that the do-

mains of all Xt, t ∈ [`] are the same, but the methodology applies to the cases where they

16

have different domains. In the case when X is a discrete domain, the density notation

should be interpreted as probability, and integral should be interpreted as summation in-

stead. Furthermore, we denote by H a hidden variable with domain H and distribution

p(H). We use similar notation convention for variable H and X .

Kernel Methods. Suppose the structured data is represented by χ ∈ G. Kernel methods

owe the name to the use of kernel functions, k(χ, χ′) : G × G 7→ R, which are sym-

metric positive semidefinite (PSD), meaning that for all n > 1, and χ1, . . . , χn ∈ G, and

c1, . . . , cn ∈ R, we have
∑n

i,j=1 cicjk(χi, χj) > 0. A signature of kernel methods is that

learning algorithms for various tasks and with potentially very different nature can work ex-

clusively on these pairwise kernel values without the need to access the original data points.

Kernels for Structured Data. Each kernel function will correspond to some feature map

φ(χ), where the kernel function can be expressed as the inner product between feature

maps, i.e., k(χ, χ′) = 〈φ(χ), φ(χ′)〉. For structured input domain, one can design kernels

using counts on substructures. For instance, the spectrum kernel for two sequences χ and

χ′ is defined as [142]

k(χ, χ′) =
∑

s∈S
#(s ∈ χ)#(s ∈ χ′) (3.1)

where S is the set of possible subsequences, #(s ∈ x) counts the number occurrence of

subsequence s in x. In this case, the feature map φ(χ) = (#(s1 ∈ χ),#(s2 ∈ χ), ...)>

corresponds to a vector of dimension |S|. Similarly, the graphlet kernel [208] for two

graphs χ and χ′ can also be defined as (3.1), but S is now the set of possible subgraphs,

and #(s ∈ χ) counts the number occurrence of subgraphs. We refer to this class of kernels

as “bag of structures” (BOS) kernel.

Kernels can also be defined by leveraging the power of probabilistic graphical mod-

els. For instance, the Fisher kernel [107] is defined using a parametric model p(χ|θ∗)

17

around its maximum likelihood estimate θ∗, i.e., k(χ, χ′) = U>χ I
−1Uχ′ , where Uχ :=

∇θ=θ∗ log p(χ|θ) and I = EG[UGU>G] is the Fisher information matrix. Another clas-

sical example along the line is the probability product kernel [110]. Different from the

Fisher kernel based on generative model fitted with the whole dataset, the probability prod-

uct kernel is calculated based on the models p(χ|θ) fitted to individual data point, i.e.,

k(χ, χ′) =
∫
G p(τ |θχ)ρp(τ |θχ′)ρdτ where θχ and θχ′ are the maximum likelihood parame-

ters for data point χ and χ′ respectively. We refer to this class of kernels as the “graphical

model” (GM) kernels.

Hilbert Space Embedding of Distributions. Hilbert space embeddings of distributions

are mappings of distributions into potentially infinite dimensional feature spaces [211],

µX := EX [φ(X)] =

∫
X
φ(x)p(x)dx : P 7→ F (3.2)

where the distribution is mapped to its expected feature map, i.e., to a point in a feature

space. Kernel embedding of distributions has rich representational power. Some feature

map can make the mapping injective [216], meaning that if two distributions, p(X) and

q(X), are different, they are mapped to two distinct points in the feature space. For in-

stance, when X = Rd, the feature spaces of many commonly used kernels, such as the

Gaussian RBF kernel exp(−‖x− x′‖2
2), can make the embedding injective.

Alternatively, one can treat an injective embedding µX of a density p(X) as a sufficient

statistic of the density. Any information we need from the density is preserved in µX : with

µX one can uniquely recover p(X), and any operation on p(X) can be carried out via a

corresponding operation on µX with the same result. For instance, this property will allow

us to compute a functional f : P 7→ R of the density using the embedding only, i.e.,

f(p(x)) = f̃(µX) (3.3)

18

Y	 =	 active/inactive

𝐻"𝐻# 𝐻$𝐻% 𝐻&

𝑋# 𝑋% 𝑋$ 𝑋" 𝑋&

Y

A G C T A
A G C T A

(a) LVM for string data

Y	 =	 Energy	 level

𝑋"

𝑋#
𝑋$

𝐻$

𝐻"

𝐻#

𝐻&

Y

𝑋&

(b) LVM for graph data

Figure 3.1: Building latent variable models (LVM) from structured string and general graph
data. Y is the supervised information, which can be real number (for regression) or discrete
integer (for classification).

where f̃ : F 7→ R is a corresponding function applied on µX . Similarly the property can

also be generalized to operators. For instance, applying an operator T : P 7→ Rd to a

density can also be equivalently carried out using its embedding, i.e.,

T ◦ p(x) = T̃ ◦ µX , (3.4)

where T̃ : F 7→ Rd is the alternative operator working on the embedding. In our later

sections, we will extensively exploit this property of injective embeddings, by assuming

that there exists a feature space such that the embeddings are injective.

3.3 Model for a Structured Data Point

Without loss of generality, we assume each structured data point χ is a graph, with a set

of nodes V = {1, . . . , V } and a set of edges E . We will use xi to denote the value of the

attribute for node i. We note the node attributes are different from the label of the entire

data point. For instance, each atom in a molecule will correspond to a node in the graph,

and the node attribute will be the atomic number, while the label for the entire molecule

can be whether the molecule is a good drug or not. Other structures, such as sequences and

trees, can be viewed as special cases of general graphs.

We will model the structured data point χ as an instance drawn from a graphical model.

19

More specifically, we will model the label of each node in the graph with a variable Xi,

and furthermore, associate an additional hidden variable Hi with it. Then we will define a

pairwise Markov random field on these collection of random variables

p({Hi} , {Xi}) ∝
∏
i∈V

Φ(Hi, Xi)
∏

(i,j)∈E

Ψ(Hi, Hj) (3.5)

where Ψ and Φ are nonnegative node and edge potentials respectively. In this model, the

variables are connected according to the graph structure of the input data point. That is to

say, we use the graph structure of the input data directly as the conditional independence

structure of an undirected graphical model. Figure 3.1 illustrates two concrete examples in

constructing the graphical models for strings and graphs. One can design more complicated

graphical models which go beyond pairwise Markov random fields, and consider longer

range interactions with potentials involving more variables. We will focus on pairwise

Markov random fields for simplicity of representation.

We note that such a graphical model is built for each individual data point, and the con-

ditional independence structures of two graphical models can be different if the two data

points χ and χ′ are different. Furthermore, we do not observe the value for the hidden vari-

ables {Hi}, which makes the learning of the graphical model potentials Φ and Ψ even more

difficult. Thus, we will not pursue the standard route of maximum likelihood estimation,

and rather we will consider the sequence of computations needed when we try to embed

the posterior of {Hi} into a feature space.

3.4 Embedding Latent Variable Models

We embed the posterior marginal p(Hi| {xi}) of a hidden variable using φ(Hi), i.e.,

µi =

∫
H
φ(hi)p(hi| {xi})dhi. (3.6)

20

The exact form of φ(Hi) and the parameters in MRF p(Hi| {xi}) is not fixed at the moment,

and we will learn them later using supervision signals for the ultimate discriminative tar-

get. For now, we will assume that φ(Hi) ∈ Rd is a finite dimensional feature space, and the

exact value of d will determined by cross-validation in later experiments. However, com-

pute the embedding is a very challenging task for general graphs: it involves performing an

inference in graphical model where we need to integrate out all variables expect Hi, i.e.,

p(Hi| {xi}) =

∫
HV−1

p(Hi, {hj} | {xj})
∏
j∈V\i

dhj. (3.7)

Only when the graph structure is a tree, exact computation can be carried out efficiently

via message passing [175]. Thus in the general case, approximate inference algorithms,

e.g., mean field inference and loopy belief propagation (BP), are developed. In many appli-

cations, however, these variational inference algorithms exhibit excellent empirical perfor-

mance [166]. Several theoretical studies have also provided insight into the approximations

made by loopy BP, partially justifying its application to graphs with cycles [234, 242].

In the following subsection, we will explain the embedding of mean field and loopy

BP. More detailed mathematical derivations can be found in Appendix A. We show that the

iterative update steps in these algorithms, which are essentially minimizing approximations

to the exact free energy, can be simply viewed as function mappings of the embedded

marginals using the alternative view in (3.3) and (3.4).

3.4.1 Embedding Mean-Field Inference

The vanilla mean-field inference tries to approximate p({Hi} | {xi}) with a product of in-

dependent density components p({Hi} | {xi}) ≈
∏

i∈V qi(hi) where each qi(hi) ≥ 0 is a

valid density, such that
∫
H qi(hi)dhi = 1. Furthermore, these density components are found

21

by minimizing the following variational free energy [234],

min
q1,...,qd

∫
Hd

∏
i∈V

qi(hi) log

∏
i∈V qi(hi)

p({hi} | {xi})
∏
i∈V

dhi.

One can show that the solution to the above optimization problem needs to satisfy the

following fixed point equations for all i ∈ V

log qi(hi) =ci + log(Φ(hi, xi)) +
∑
j∈N (i)

∫
H
qj(hj) log(Ψ(hi, hj)Φ(hj, xj))dhj

=c′i + log Φ(hi, xi) +
∑
j∈N (i)

∫
H
qj(hj) log Ψ(hi, hj)dhj

where c′i = ci +
∑

j∈N (i)

∫
qj(hj) log Φ(hj, xj)dhj . Here N (i) are the set of neighbors of

variable Hi in the graphical model, and ci is a constant. The fixed point equations in (3.8)

imply that qi(hi) is a functional of a set of neighboring marginals {qj}j∈N (i), i.e.,

qi(hi) = f
(
hi, xi, {qj}j∈N (i)

)
. (3.8)

If for each marginal qi, we have an injective embedding µ̃i =
∫
H φ(hi)qi(hi)dhi. Then,

using similar reasoning as in (3.3), we can equivalently express the fixed point equation

from an embedding point of view, i.e., qi(hi) = f̃(hi, xi, {µ̃j}j∈N (i)), and consequently

using the operator view from (3.4), we have

µ̃i = T̃ ◦
(
xi, {µ̃j}j∈N (i)

)
. (3.9)

For the embedded mean field (3.9), the function f̃ and operator T̃ have complicated non-

linear dependencies on the potential functions Ψ, Φ, and the feature mapping φ which is

unknown and need to be learned from data. Instead of first learning the Ψ and Φ, and then

working out T̃ , we will pursue a different route where we directly parameterize T̃ and later

22

Algorithm 1 Embedded Mean Field

1: Input: parameter W in T̃
2: Initialize µ̃(0)

i = 0, for all i ∈ V
3: for t = 1 to T do
4: for i ∈ V do
5: li =

∑
j∈N (i) µ̃

(t−1)
i

6: µ̃
(t)
i = σ(W1xi +W2li)

7: end for
8: end for . fixed point equation

update
9: return {µ̃Ti }i∈V

Algorithm 2 Embedding Loopy BP

1: Input: parameter W in T̃1 and T̃2

2: Initialize ν̃(0)
ij = 0, for all (i, j) ∈ E

3: for t = 1 to T do
4: for (i, j) ∈ E do
5: ν̃tij = σ(W1xi +

W2

∑
k∈N (i)\j ν̃

(t−1)
ki)

6: end for
7: end for
8: for i ∈ V do
9: µ̃i = σ(W3xi +

W4

∑
k∈N (i)\j ν̃

(T)
ki)

10: end for
11: return {µ̃i}i∈V

learn it with supervision signals.

In terms of the parameterization, we will assume µ̃i ∈ Rd where d is a hyperparameter

chosen using cross-validation. For T̃ , one can use any nonlinear function mappings. For

instance, we can parameterize it as a neural network

µ̃i = σ
(
W1xi +W2

∑
j∈N (i)

µ̃j

)
(3.10)

where σ(·) := max{0, ·} is a rectified linear unit applied elementwisely to its argument, and

W = {W1,W2}. The number of the rows in W equals to d. With such parameterization,

the mean field iterative update in the embedding space can be carried out as Algorithm 1.

We could also multiply µ̃i with V to rescale the range of message embeddings if needed. In

fact, with or without V , the functions will be the same in terms of the representation power.

Specifically, for any (W, V), we can always find another ‘equivalent’ parameters (W′, I)

where W′ = {W1,W2V }.

23

3.4.2 Embedding Loopy Belief Propagation

Loopy belief propagation is another variational inference method, which essentially opti-

mizes the Bethe free energy taking pairwise interactions into account [243],

min
{qij}(i,j)∈E

−
∑

i(|N (i)| − 1)
∫
H qi(hi) log qi(hi)

Φ(hi,xi)
dhi

+
∑

i,j

∫
H2 qij(hi, hj) log

qij(hi,hj)

Ψ(hi,hj)Φ(hi,xi)Φ(hj ,xj)
dhidhj

subject to pairwise marginal consistency constraints:
∫
H qij(hi, hj)dhj = qi(hi),

∫
H qij(hi,

hj)dhj = qi(hi), and
∫
H qi(hi)dhi = 1. One can obtain the fixed point condition for the

above optimization for all (i, j) ∈ E ,

mij(hj) ∝
∫
H

∏
k∈N (i)\j

mki(hi)Φi(hi, xi)Ψij(hi, hj)dhi,

qi(hi) ∝ Φ(hi, xi)
∏

j∈N (i)

mji(hi). (3.11)

where mij(hj) is the intermediate result called the message from node i to j. Furthermore,

mij(hj) is a nonnegative function which can be normalized to a density, and hence can also

be embedded.

Similar to the reasoning in the mean field case, the (3.11) implies the messages mij(hj)

and marginals qi(hi) are functionals of messages from neighbors, i.e.,

mij(hj) = f
(
hj, xi, {mki}k∈N (i)\j

)
, qi(hi) = g

(
hi, xi, {mki}k∈N (i)

)
.

With the assumption that there is an injective embedding for each message ν̃ij =
∫
φ(hj)mij

(hj)dhj and for each marginal µ̃i =
∫
φ(hi)qi(hi)dhi, we can apply the reasoning from (3.3)

and (3.4), and express the messages and marginals from the embedding view,

ν̃ij = T̃1 ◦
(
xi, {ν̃ki}k∈N (i)\j

)
, µ̃i = T̃2 ◦

(
xi, {ν̃ki}k∈N (i)

)
. (3.12)

24

We will also use parametrization for loopy BP embedding similar to the mean field case,

i.e., neural network with rectified linear unit σ. Specifically, assume ν̃ij ∈ Rd, µ̃i ∈ Rd

ν̃ij = σ
(
W1xi +W2

∑
k∈N (i)\j

ν̃ki

)
, µ̃i = σ

(
W3xi +W4

∑
k∈N (i)

ν̃ki

)
(3.13)

where W = {W1,W2,W3,W4} are matrices with appropriate sizes. Note that one can use

other nonlinear function mappings to parameterize T̃1 and T̃2 as well. Overall, the loopy

BP embedding updates is summarized in Algorithm 2.

With similar strategy as in mean field case, we will learn the parameters in T̃1 and T̃2

later with supervision signals from the discriminative task.

3.4.3 Embedding Other Variational Inference

In fact, there are many other variational inference methods, with different forms of free

energies or different optimization algorithms, resulting different message update forms,

e.g., double-loop BP [249], damped BP [156], tree-reweightd BP [233], and generalized

BP [243]. The proposed embedding method is a general technique which can be tailored

to these algorithms. The major difference is the dependences in the messages. For the

details of embedding of these algorithms, please refer to the Appendix section of original

paper [55].

3.5 Discriminative Training

Similar to kernel BP [213, 212] and kernel EP [113], our current work exploits feature

space embedding to reformulate graphical model inference procedures. However, different

from the kernel BP and kernel EP, in which the feature spaces are chosen beforehand and

the conditional embedding operators are learned locally, our approach will learn both the

feature spaces, the transformation T̃ , as well as the regressor or classifier for the target

values end-to-end using label information.

25

Specifically, we are provided with a training dataset D = {χn, yn}Nn=1, where χn is

a structured data point and yn∈Y , where Y = R for regression or Y = {1, . . . , K} for

classification problem, respectively. With the feature embedding procedure introduced in

Section 3.4, each data point will be represented as a set of embeddings {µ̃ni }i∈Vn ∈ F . Now

the goal is to learn a regression or classification function f linking {µ̃ni }i∈Vn to yn.

More specifically, in the case of regression problem, we will parametrize function f(χn)

as u>σ(
∑Vn

i=1 µ̃
n
i), where u ∈ Rd is the final mapping from summed (or pooled) embed-

dings to output. The parameters u and those W involved in the embeddings are learned by

minimizing the empirical square loss

min
u,W

∑N

n=1

(
yn − u>σ

(∑Vn

i=1
µ̃ni

))2

. (3.14)

Note that each data point will have its own graphical model and embedded features due

to its individual structure, but the parameters u and W, are shared across these graphical

models.

In the case of K-class classification problem, we denote z is the 1-of-K representation

of y, i.e., z ∈ {0, 1}K , zk = 1 if y = k, and zi = 0, ∀i 6= k. By adopt the softmax loss, we

obtain the optimization for embedding parameters and discriminative classifier estimation:

min
u={uk}Kk=1,W

N∑
n

K∑
k=1

−zkn log ukσ

(
Vn∑
i=1

µ̃ni

)
, (3.15)

where u = {uk}Kk=1, uk ∈ Rd are the parameters for mapping embedding to output.

The same idea can also be generalized to other discriminative tasks with different loss

functions. As we can see from the optimization problems (3.14) and (3.15), the objective

functions are directly related to the corresponding discriminative tasks, and so as to W and

u. Conceptually, the procedure starts with representing each datum by a graphical model

constructed corresponding to its individual structure with sharing potential functions, and

then, we embed these graphical models with the same feature mappings. Finally the em-

26

Algorithm 3 Discriminative Embedding
Input: Dataset D = {χn, yn}Nn=1, loss function l(f(χ), y).
Initialize U0 = {W0,u0} randomly.
for t = 1 to T do

Sample {χt, yt} uniform randomly from D.
Construct latent variable model p({H t

i}|χn) as (3.5).
Embed p({H t

i}|χn) as {µ̃ni }i∈Vn by Algorithm 1 or 2 with Wt−1.
Update Ut = Ut−1 + λt∇Ut−1l(f(µ̃n;Ut−1), yn).

end for
return UT = {WT ,uT}

bedded marginals are aggregated with a prediction function for a discriminative task. The

shared potential functions, feature mappings and final prediction functions are all learned

together for the ultimate task with supervision signals.

We optimize the objective (3.14) or (3.15) with stochastic gradient descent for scala-

bility consideration. However, other optimization algorithms are also applicable, and our

method does not depend on this particular choice. The gradients of the parameters W

are calculated recursively similar to recurrent neural network for sequence models. In our

case, the recursive structure will correspond the message passing structure. The overall

framework is illustrated in Algorithm 3.

3.6 Experiments

Below we first compare our method with algorithms using prefixed kernel on string and

graph benchmark datasets. Then we focus on Harvard Clean Energy Project dataset which

contains 2.3 million samples. We demonstrate that while getting comparable performance

on medium sized datasets, we are able to handle millions of samples, and getting much bet-

ter when more training data are given. The two variants of structure2vec are denoted

as DE-MF and DE-LBP, which stands for discriminative embedding using mean field or

loopy belief propagation, respectively.

Our algorithms are implemented with C++ and CUDA, and experiments are carried

out on clusters equipped with NVIDIA Tesla K20. The original code is available on

27

https://github.com/Hanjun-Dai/graphnn. A new reimplementation using PyTorch is also

available at https://github.com/Hanjun-Dai/pytorch structure2vec.

3.6.1 Benchmark structure datasets

We compare our algorithm on string benchmark datasets with the kernel method with ex-

isting sequence kernels, i.e., the spectrum string kernel [142], mismatch string kernel [143]

and fisher kernel with HMM generative models [107]. On graph benchmark datasets, we

compare with subtree kernel [183] (R&G, for short), random walk kernel[80, 231], shortest

path kernel [29], graphlet kernel[208] and the family of Weisfeiler-Lehman kernels (WL

kernel) [207]. After getting the kernel matrix, we train SVM classifier or regressor on top.

We tune all the methods via cross validation, and report the average performance.

Specifically, for structured kernel methods, we tune the degree in {1, 2, . . . , 10} (for mis-

match kernel, we also tune the maximum mismatch length in {1, 2, 3}) and train SVM

classifier [37] on top, where the trade-off parameter C is also chosen in {0.01, 0.1, 1, 10}

by cross validation. For fisher kernel that using HMM as generative model, we also tune

the number of hidden states assigned to HMM in {2, . . . , 20}.

For our methods, we simply use one-hot vector (the vector representation of discrete

node attribute) as the embedding for observed nodes, and use a two-layer neural network

for the embedding (prediction) of target value. The hidden layer size b ∈ {16, 32, 64} of

neural network, the embedding dimension d ∈ {16, 32, 64} of hidden variables and the

number of iterations t ∈ {1, 2, 3, 4} are tuned via cross validation. We keep the number of

parameters small, and use early stopping [82] to avoid overfitting in these small datasets.

String Dataset

Here we do experiments on two string binary classification benchmark datasets. The first

one (denoted as SCOP) contains 7329 sequences obtained from SCOP (Structural Clas-

sification of Proteins) 1.59 database [9]. Methods are evaluated on the ability to detect

28

https://github.com/Hanjun-Dai/graphnn
https://github.com/Hanjun-Dai/pytorch_structure2vec

members of a target SCOP family (positive test set) belonging to the same SCOP super-

family as the positive training sequences, and no members of the target family are available

during training. We use the same 54 target families and the same training/test splits as

in remote homology detection [136]. The second one is FC and RES dataset (denoted as

FC RES) provided by CRISPR/Cas9 system, on which the task it to tell whether the guide

RNA will direct Cas9 to target DNA. There are 5310 guides included in the dataset. Details

of this dataset can be found in [67, 76]. We use two variants for spectrum string kernel:

1) kmer-single, where the constructed kernel matrix K(s)
k only consider patterns of length

k; 2) kmer-concat, where kernel matrix K(c) =
∑k

i=1K
(s)
k . We also find the normalized

kernel matrix KNorm
k (x, y) = Kk(x,y)√

Kk(x,x)Kk(y,y)
helps.

Table 3.1: Mean AUC on string classification datasets
FC RES SCOP

kmer-single 0.7606±0.0187 0.7097±0.0504
kmer-concat 0.7576±0.0235 0.8467±0.0489
mismatch 0.7690±0.0197 0.8637±0.1192
fisher 0.7332±0.0314 0.8662±0.0879
DE-MF 0.7713±0.0208 0.9068±0.0685
DE-LBP 0.7701±0.0225 0.9167±0.0639

Table 3.1 reports the mean AUC of different algorithms. We found two variants of

structure2vec are consistently better than the string kernels. Also, the improvement

in SCOP is more significant than in FC RES. This is because SCOP is a protein dataset

and its alphabet size |Σ| is much larger than that of FC RES, an RNA dataset. Further-

more, the dimension of the explicit features for a k-mer kernel is O(|Σ|k), which can make

the off-diagonal entries of kernel matrix very small (or even zero) with large alphabet

size and k. That’s also the reason why kmer-concat performs better than kmer-single.

structure2vec learns a discriminative feature space, rather than prefix it beforehand,

and hence does not have this problem.

29

75

80

85

90

ac
cu

ra
cy

MUTAG

55

60

65

70

75

80

85

ac
cu

ra
cy

NCI1

55

60

65

70

75

80

85

ac
cu

ra
cy

NCI109

10

20

30

40

50

60

ac
cu

ra
cy

ENZYMES

55

60

65

70

75

80

85

ac
cu

ra
cy

DD

WL subtree WL edge WL sp R&G p-rand walk Rand walk Graphlet sp DE-MF DE-LBP

Figure 3.2: 10-fold cross-validation accuracies on graph classification benchmark datasets.
The ‘sp’ in the figure stands for shortest-path.

Table 3.2: Statistics [217] of graph benchmark datasets. |V | is the # nodes while |E| is the
edges in a graph. #labels equals to the number of different types of nodes.

size avg |V | avg |E| #labels
MUTAG 188 17.93 19.79 7
NCI1 4110 29.87 32.3 37
NCI109 4127 29.68 32.13 38
ENZYMES 600 32.63 62.14 3
D&D 1178 284.32 715.66 82

Graph Dataset

We test the algorithms on five benchmark datasets for graph kernel: MUTAG, NCI1,

NCI109, ENZYMES and D&D. MUTAG [62]. NCI1 and NCI109 [235] are chemical

compounds dataset, while ENZYMES [29] and D&D [66] are of proteins. The task is to

do multi-class or binary classification. We show the statistics of these datasets in Table 3.2.

The results of baseline algorithms are taken from [207] since we use exactly the same

setting here. From the accuracy comparison shown in Figure 3.2, we can see the proposed

embedding methods are comparable to the alternative graph kernels, on different graphs

30

PCE range
0 5 10

#s
am

pl
es

#104

0

0.5

1

1.5

2

2.5
PCE distribution

(a) PCE distribution (b) Sample molecules

Figure 3.3: PCE value distribution and sample molecules from CEP dataset. Hydrogens
are not displayed.

with different number of labels, nodes and edges. Also, in dataset D&D which consists

of 82 different types of labels, our algorithm performs much better. As reported in [207],

the time required for constructing dictionary for the graph kernel can take up to more than

a year of CPU time in this dataset, while our algorithm can learn the discriminative em-

bedding efficiently from structured data directly without the construction of the handcraft

dictionary.

3.6.2 Harvard Clean Energy Project(CEP) dataset

The Harvard Clean Energy Project [97] is a theory-driven search for the next generation

of organic solar cell materials. One of the most important properties of molecule for this

task is the overall efficiency of the energy conversion process in a solar cell, which is

determined by the power conversion efficiency (PCE). The Clean Energy Project (CEP)

performed expensive simulations for the 2.3 million candidate molecules on IBM’s World

Community Grid, in order to get this property value. So using machine learning approach to

accurately predict the PCE values is a promising direction for the high throughput screening

and discovering new materials.

In this experiment, we randomly select 90% of the data for training, and the rest 10%

for testing. This setting is similar to [178], except that we use the entire 2.3m dataset here.

31

0.5 1 1.5
#iterations #106

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

CEP test error

DE-MF-iter-1
DE-MF-iter-2
DE-MF-iter-3
DE-MF-iter-4
DE-LBP-iter-1
DE-LBP-iter-2
DE-LBP-iter-3
DE-LBP-iter-4

(a) Test error vs iterations

0 2 4 6 8 10 12
PCE range

0

0.1

0.2

0.3

0.4

0.5

M
A

E

Prediction quality

(b) Prediction quality

Figure 3.4: Details of training and prediction results for DE-MF and DE-LBP with different
number of fixed point iterations.

Since the data is distributed unevenly (see Figure 3.3), we resampled the training data (but

not the test data) to make the algorithm put more emphasis on molecules with higher PCE

values, in order to make accurate prediction for promising candidate molecules. Since

the traditional kernel methods are not scalable, we make the explicit feature maps for WL

subtree kernel by collecting all the molecules and creating dictionary for the feature space.

The other graph kernels, like edge kernel and shortest path kernel, are having too large

feature dictionary to work with. We use RDKit [139] to extract features for atoms (nodes)

and bonds (edges).

The mean absolute error (MAE) and root mean square error (RMSE) are reported in

Table 3.3. We found utilizing graph information can accurately predict PCE values. Also,

our proposed two methods are working equally well. Although WL tree kernel with degree

6 is also working well, it requires 10, 000 times more parameters than structure2vec

and runs 2 times slower. The preprocessing needed for WL tree kernel also makes it difficult

to use in large datasets.

To understand the effect of the inference embedding in the proposed algorithm frame-

work, we further compare our methods with different number of fixed point iterations in

Figure 3.4. It can see that, higher number of fixed point iterations will lead to faster con-

vergence, though the number of parameters of the model in different settings are the same.

32

Table 3.3: Test prediction performance on CEP dataset. WL lv-k stands for Weisfeiler-
lehman with degree k.

test MAE test RMSE # params
Mean Predictor 1.9864 2.4062 1
WL lv-3 0.1431 0.2040 1.6m
WL lv-6 0.0962 0.1367 1378m
DE-MF 0.0914 0.1250 0.1m
DE-LBP 0.0850 0.1174 0.1m

The mean field embedding will get much worse result if only one iteration is executed.

Compare to the loopy BP case with same setting, the latter one will always have one more

round message passing since we need to aggregate the messages from edge to node in the

last step. And also, from the quality of prediction we find that, though making slightly

higher prediction error for molecules with high PCE values due to insufficient data, our

algorithms are not overfitting the ‘easy’ (i.e., the most popular) range of PCE values.

3.7 Summary

We propose, structure2vec, an effective and scalable approach for structured data rep-

resentation based on the idea of embedding latent variable models into feature spaces, and

learning such feature spaces using discriminative information. Interestingly, our method

extracts features by performing a sequence of function mappings in a way similar to graph-

ical model inference procedures, such as mean field and belief propagation. Our method

provides a nice example for the general strategy of combining the strength of existing algo-

rithms for graphical models with the deep learning approach, which we believe will become

common in many other learning tasks.

However, the current method is not scalable for large graphs, as the runtime for each

update is O(L(V + E)) with a L-layer structure2vec for graph of V nodes and E.

In the next chapter, we will discuss how to leverage fixed point algorithms to scale up the

embedding method.

33

CHAPTER 4

STOCHASTIC LARGE SCALE GRAPH EMBEDDING

Many graph analytics problems can be solved via iterative algorithms where the solutions

are often characterized by a set of steady-state conditions. Different algorithms respect to

different set of fixed point constraints, so instead of using these traditional algorithms, can

we learn an algorithm which can obtain the same steady-state solutions automatically from

examples, in an effective and scalable way? How to represent the meta learner for such

algorithm and how to carry out the learning? In this chapter, we propose an embedding

representation for iterative algorithms over graphs, and design a learning method which

alternates between updating the embeddings and projecting them onto the steady-state con-

straints. We demonstrate the effectiveness of our framework using a few commonly used

graph algorithms, and show that in some cases, the learned algorithm can handle graphs

with more than 100,000,000 nodes in a single machine.

4.1 Introduction

Graphs and networks arise in various real-world applications and machine learning prob-

lems, such as social network analysis [99] and molecule screening [97, 71, 140]. Many

graph analytics problems can be solved via iterative algorithms according to the graph

structure, and the solutions of the algorithms are often characterized by a set of steady-state

conditions. For instance, the PageRank [171] score of a node in a graph can be computed

iteratively by averaging the scores of its neighbors, until the node score and this neighbor

averaging are approximately equal. Mean field inference for the posterior distribution of a

variable in a graphical model can be updated iteratively by aggregating the messages from

its neighbors until the posterior is approximately equal to the results of the aggregation

operator. More generally, the intermediate representation hv for each node v in the node

34

!"

#$

ℎ&'

((#∗, #&,)

Stochastic update of #$ and !"

Stage I

ℎ&' ……

Stochastic fixed point iteration for steady-state constraints

Stage II1-hop mini-batch I 1-hop mini-batch II 1-hop mini-batch III

update #$ and !"
freeze	ℎ&'

update	ℎ&'
freeze #$ and !"

Figure 4.1: Overview of proposed graph steady-state learning algorithm. In stage I, we
update the classifier f̂v and steady-state operator TΘ with 1-hop neighborhood of stochastic
samples; in stage II, the embeddings ĥv are updated by stochastic fixed point iterations.

set V is updated iteratively according to an operator T as

h(t+1)
v ← T

(
{h(t)

u }u∈N (v)

)
, ∀t > 1, and

h(0)
v ← constant, ∀v ∈ V (4.1)

until the steady-state conditions are met

h∗v = T
(
{h∗u}u∈N (v)

)
, ∀v ∈ V . (4.2)

Variants of graph neural network (GNN) [193], like GCN [130], neural message pass-

ing network [83], GATs [229] etc., perform fixed T rounds of updates to Eq (4.1) without

respecting the steady state. Thus for learning algorithms like PageRank or mean field infer-

ence, a large T is required. In such case, both the computational cost and gradient updates

will become problematic. Also note that due to the batch-update nature of GNN family

models, multiple rounds of update over all nodes are needed. These two limitations make

them not scalable and effective enough, regarding the computational cost and convergence.

In this chapter, instead of designing algorithms for each individual graph problem, we

take a different perspective, and ask the question: Can we design a learning framework for

a diverse range of graph problems that learns the algorithm over large graphs achieving

the steady-state solutions efficiently and effectively? Furthermore, how to represent the

35

meta learner for such algorithm and how to carry out the learning of these algorithms? In

this chapter we propose a stochastic learning framework of algorithm design based on the

idea of embedding the intermediate representation of an iterative algorithm over graphs

into vector spaces, and then learn such algorithms using example outputs from the desired

algorithms to be learned.

More specifically, in our framework, each node in the graph will maintain an embed-

ding vector, and these embedding vectors will be updated using a parameterized operator

Tθ where the parameters θ will be learned. Furthermore, following each embedding update

step, the embedding will also be projected towards the steady state constraint space, gradu-

ally enforcing the steady-state conditions. As illustrated in Figure 4.1, both of the two steps

are stochastic, which only requires 1-hop neighborhood for the update. We argue that such

1-hop stochasticity is key to the efficiency and effectiveness. Most of the GNN variants

(e.g., [145]) need O(T (|V| + |E|)) computational cost and memory consumption per each

round of parameter update. For large graphs, this would be quite expensive. [99] attempts

the mini-batch update using T -hops neighborhood of sampled mini-batch of nodes. How-

ever, the neighborhood size grows exponentially with respect to T . As in the idea of six

degrees of separation, T = 6 would already include all the nodes in the social network.

We note that this new algorithm is significantly different from the traditional graph

embedding settings where the goal is to learn representations (or features) for nodes in a

graph for classification. In contrast, our goal is to efficiently learn an algorithm which

can run in a large graph and can respect specific condition with physical meaning. The

successive stochastic projection of the embeddings onto the steady-state condition, which

is not present in previous graph embedding methods, is a crucial step in our algorithm, and

creates an important inductive bias which allows us to generalize the learned steady-state

algorithm output to the entire network and even to a different network.

We showed that our framework can be adapted to learn the steady-state of a few com-

monly used graph algorithms, namely the detection of connected components, PageRank

36

scores, mean field inference, and node labeling problem over graphs. We conducted sys-

tematical comparison between the learned algorithms and several existing algorithms to

demonstrate the benefits in terms of both effectiveness and scalability on both randomly

generated graphs and real-world graphs. In particular, in the PageRank problem, the learned

algorithm can easily handle graphs with more than 100,000,000 nodes in a single machine.

4.2 Iterative Algorithms over Graphs

Many iterative algorithms over graphs can be formulated into the form of Eq (4.1) and

the solutions satisfy a requirement of the form of Eq (4.2). More specifically, for a graph,

G = (V , E), with node set V and edge set E , the iterative algorithm framework can be

instantiated as follows

• Graph component detection problem. We want to find all nodes within the same

connected component as source node s ∈ V . This task can be solved by iteratively

propagating the label at node s to other nodes

y(t+1)
v = max

u∈N (v)
y(t)
u , y

(0)
s = 1, y(0)

v = 0, ∀v ∈ V

where N (v) denotes the set of neighbors of v. At algorithm step t = 0, the label

y
(0)
s at node s are set to 1 (infected) and 0 for all other nodes. The steady state is

achieved when nodes in the same connected component as s are infected. That is

y∗v = maxu∈N (v) y
∗
u.

• PageRank scores for node importance. We want to estimate the importance of each

node in a graph. The scores can be initialized to 0 (r(0)
v ← 0,∀v ∈ V) and updated

iteratively as

r(t+1)
v ← (1− λ)

|V|
+

λ

|N (v)|
∑

u∈N (v)

r(t)
u , ∀v ∈ V .

37

The steady-state scores r∗v will satisfy the relation r∗v = (1−λ)
|V| + λ

|N (v)|
∑

u∈N (v) r
∗
u.

• Mean field inference in graphical model. We want to approximate the marginal dis-

tributions of a set of variables xv in a graph model defined on G. That is p({xv}v∈V) ∝∏
v∈V φ(xv)

∏
(u,v)∈E φ(xu, xv) where φ(xv) and φ(xu, xv) are the node and edge po-

tential respectively. The marginal approximation q(xv) can be obtained in an iterative

fashion by the following mean field update

q(t+1)(xv)← φ(xv)
∏

u∈N (v)

exp

(∫
u

q(t)(xu) log φ(xu, xv)du

)
,

with the steady-state q∗(xv) = φ(xv)
∏

u∈N (v) exp
(∫

u
q∗(xu) log φ(xu, xv)du

)
.

• Compute long range graph convolution features. We want to extract long range

features from graph and use that figure to capture the relation between graph topology

and external labels. One possible parametrization of graph convolution features hv

can be updated from zeros initialization as

h(t+1)
v ← σ

W1xv +W2

∑
u∈N (v)

h(t)
u

where σ is a nonlinear elementwise operation, and W1,W2 are the parameters of the

operator. The steady state is characterized as h∗v ← σ
(
W1xv +W2

∑
u∈N (v) h

∗
u

)
.

Then the labeling function f(h∗v) for each node is determined by the feature h∗v.

Typically, to learn these iterative algorithms with GNN family models, we need to run many

iterations in order for them to converge to the steady-state solutions. Especially when the

graph scale gets large, a large number of iterations are needed, making the GNNs very

computationally intensive and slow. In the following, we will formulate a generic learning

problem for designing a faster algorithms for these scenarios.

38

4.3 The Algorithm Learning Problem

In this section we propose a framework of algorithm design based on the idea of embedding

the intermediate representation of an iterative algorithm over graphs into vector spaces, and

then learn such algorithms using example outputs from the desired algorithms to be learned.

More specially, we assume that we have collected the output of an iterative algorithm

T over a single large graph1. The training dataset consists of the input graph G = (V , E),

and the output of the algorithm for a subset of nodes, V(y) ⊆ V from the graph:

D =
{
f ∗v := f(h∗v) |h∗v = T

[
{h∗u}u∈N (v)

]
, v ∈ V(y)

}
. (4.3)

In the dataset, h∗v is the quantity in the algorithm which satisfies the steady-state conditions,

and f(·) is an additional labeling function which takes the steady-state quantity and pro-

duces the final label for each node. In the case where h∗v is the output of an algorithm, we

can think of f(·) is the identity function.

Given the above dataset D from previous run of the algorithm, the goal is to learn a

parameterized algorithm AΘ such that the output of the algorithm can mimic the output of

the original algorithm T . That is the learned algorithmAΘ produces { f̂v }v∈V(y) = AΘ[G],

which are close to f ∗v according to some loss function `(f ∗v , f̂v).

Overall, the algorithm learning problem for AΘ can be formulated into the following

optimization problem

min
Θ

∑
v∈V(y)

`(f ∗v , f̂v)

s.t. { f̂v }v∈V(y) = AΘ[G] (4.4)

In the above general statement of the learning problem, we have not specified the actual

1Our method can also be used for the cases where data are collected from multiple graphs. In this case,
we can view multiple graphs as a single big graph with a collection of connected components.

39

form of the algorithm and the parametrization of the algorithm step. In the following sec-

tion we will explain our design of fast iterative algorithm which can be learned.

The design goal of our model will focus on two key aspects: respect steady-state con-

ditions and learn fast. Thus the core of our model is a steady-state operator TΘ between

vector embedding representation of nodes, and a link function mapping the embedding to

the algorithm output. Furthermore, the embeddings are obtained by solving the steady-state

operator stochastically, making it very efficient for large scale graph problems.

4.3.1 Steady-state operator and linking function

We will associate each node in the graph with an unknown vector embedding representation

ĥv ∈ Rd, and the core of our algorithm is a parameterized operator, TΘ, for enforcing

steady-state relations between these embeddings. Given a link function f̂(hv), our model

makes predictions on the algorithm outputs by the following operations

output :
{
f̂v := f̂(ĥv)

}
v∈V

s.t. ĥv = TΘ

[
{ĥu}u∈N (v)

]
(4.5)

In our model, the steady-state operator TΘ and the linking function f̂ is not fixed before

hand, and their parameters will be learned from dataset D in Eq (4.3). Furthermore, the

vector embeddings ĥv need to be found from Eq (4.5), after which the embeddings are used

for making predictions about the algorithm outputs via f̂ . Thus, we need an algorithm for

finding the (approximate) steady-state of Eq (4.5).

4.3.2 Finding steady-state

Here we use an iterative algorithm to find the steady-state of Eq (4.5). The algorithm

will execute in a similar fashion as randomized Gauss-Seidel method which updates one

unknown variable at the time according to the steady-state equation. Adapting the scheme

40

to our case, we will start all {ĥv}v∈V from some constant, and then update the embedding

one at at time. That is

ĥv ← constant for all v ∈ V

for v sampled from V: ĥv ← TΘ

[
{ĥu}u∈N (v)

]
We note that in this randomized scheme, the embeddings {ĥv}v∈V are updated in an asyn-

chronous fashion. Furthermore, each time the update is also carried out only one hop for

the sampled node v. This makes it very efficient compared to synchronous update over

the entire graph for T hops. For comparison, the synchronous update will amount to a

computational complexity of O(T (|V|+ |E|)) which quickly becomes prohibitive for large

graphs. Instead, our steady-state finding algorithm is carried out using mini-batches.

4.3.3 Specific parameterization for TΘ and g

The operator TΘ and link function g can come from general nonlinear function class. The

operator TΘ enforces the steady-state condition of node embeddings based on 1-hop local

neighborhood information. Due to the variety of graph structures, this function should

be able to handle different number of inputs (i.e., different number of neighbor nodes)

and be invariant to the ordering of these neighbors. In our work, we use the following

parameterization:

TΘ

[
{ĥu}u∈N (v)

]
= W1σ

W2

[
xv,

∑
u∈N (v)

[ĥu, xu]
] (4.6)

where σ(·) is element-wise activation function, such as commonly used Sigmoid or ReLU.

W1 and W2 are the weight matrices. xv is the optional feature representation of nodes, such

as observations in Markov Random Field (MRF). In general, a two-layer neural network

formulation as above would be enough for most cases. But one can also use problem-

specific parameterization for better performance.

For prediction function g, it takes the node embeddings as inputs, and predicts the

41

corresponding algorithm outputs. We also adopt a two-layer neural network, i.e.,

g(ĥv) = σ
(
V >2 ReLU(V >1 ĥv)

)
, (4.7)

where V1, V2 are parameters of g(·). σ(·) is a task-specific activation function. For linear

regression this is the identity function σ(x) = x. For multi-class classification problem,

σ(·) is softmax which would output a probabilistic simplex.

4.3.4 The optimization problem

Thus the overall optimization problem for learning our model can be formulated as

min
{Wi,Vi}2i=1

L
(
{Wi, Vi}2

i=1

)
:=

1

|Vy|
∑
v∈V(y)

`(f ∗v , g(ĥv))

s.t. ĥv = TΘ

[
{ĥu}u∈N (v)

]
,∀v ∈ V . (4.8)

In the next section, we will introduce an alternating algorithm to solve the above opti-

mization problem. The algorithm will alternate between using most current model to find

the embeddings and make prediction, and using the gradient of the loss with respect to

{W1,W2, V1, V2} for update these parameters.

4.4 Learning Algorithm

It should be emphasized that directly applying the vanilla stochastic gradient descent re-

quires visiting all the nodes in the graph many times due to the constraints in Eq. (4.8),

making the reduction of the cost via stochastic gradient computation in vain. As we dis-

cussed in Section 4.3.2, this step is actually the computation bottleneck. In this section, we

present a scalable algorithm which exploits the stochasticity in both equilibrium constraints

and the objective in Eq. (4.8) to learn the parameters. Then, we provide the analysis of the

computational and memory complexity in detail to show how our proposed approach could

42

save the computation in Section 4.4.2.

4.4.1 Stochastic Fixed-Point Gradient Descent

In fact, the optimization Eq. (4.8) can be understood as improving the policy which mini-

mizing the cost that is proportional to f ∗. The fix-point equation characterizes the dynamic

programming whose solution is steady state ĥv for each node. Comparing to the reinforce-

ment learning (RL), it plays a similar role as “value function”. With these estimations of

the steady states, we minimize the cost by updating the parameters in TΘ and g, which can

be understood as a similar role as “policy” in RL. Based on such understanding, we design

our algorithm inspired by the policy iteration in reinforcement learning [220]. Furthermore,

to reduce the complexity in the first stage for estimating, we introduce an extra randomness

over the constraints and solve it approximately through stochastic fixed point iteration.

Stochastic gradient descent for “policy” improvement. Specifically, at k-th round in the

stochastic optimization, once we have
{
ĥkv

}
v∈V

satisfying the steady-state equation, i.e.,

ĥkv = TΘ

[
{ĥku}u∈N (v)

]
,∀v ∈ V , we have the gradient estimators as

∂L
∂Wi

= Ê

∂`
(
f ∗v , g

(
ĥkv

))
∂g
(
ĥkv

) ∂g
(
ĥkv

)
∂Wi

 ,
∂L
∂Vi

= Ê

∂`
(
f ∗v , g

(
ĥkv

))
∂ĥkv

∂TΘ

[
{ĥku}u∈N (v)

]
∂Vi

 ,
where the expectation Ê [·] is taken w.r.t. uniform distribution over labeled nodes V(y). With

such treatment, we can update the parameters, i.e., {W1,W2, V1, V2}, as vanilla stochastic

gradient descent.

Stochastic fixed-point iteration for “value” estimation. However, it is prohibitive to

solve the steady-state equation exactly in large-scale graph with millions of vertices since

it requires visiting all the nodes in the graph. Therefore, we introduce the extra randomness

on the constraints for sampling the constraints to tackle the groups of equations approxi-

43

Algorithm 4 Learning with Stochastic Fixed Point Iteration

1: Initialize W1,W2, V1, V2, {ĥv}v∈V randomly
2: for k = 1 to K do
3: for th = 1 to nh do
4: Sample Ṽ = {v1, v2, . . . , vN} ∈ V
5: Use Eq. (4.9) to update embedding ĥvi , ∀vi ∈ Ṽ
6: end for
7: for tf = 1 to nf do
8: Sample Ṽ(y) = {v1, v2, . . . , vM} ∈ V(y)

9: {Wi ← Wi − η ∂L
∂Wi
}2
i=1, {Vi ← Vi − η ∂L∂Vi}

2
i=1

10: end for
11: end for

mately. This technique is very effective in dealing with infinite constraints in approximately

solving MDP [60, 61].

Specifically, in k-th step, we first sample a set of nodes Ṽ = {v1, v2, . . . , vN} ∈ V from

the entire node set rather of the labeled set. For stability, we update the new embedding of

vi by moving average in following form:

ĥvi ← (1− α)ĥvi + αTΘ

[
{ĥu}u∈N (vi)

]
,∀vi ∈ Ṽ . (4.9)

The overall algorithm is summarized in Algorithm 4. The whole iterative process will run

K steps or untill convergence. During each macro iteration, the two stages can also have

multiple inner loops. Specifically, let nf be the number of inner loops for “policy” improve-

ment, and nh be the number of inner loops in “value” estimation.During the experiment we

found that, having more fixed point iterations, i.e., nh > nf helps the model converge faster

and achieve better generalization.

We name our algorithm Stochastic Steady-state Embedding (SSE), due to its stochas-

ticity nature and steady-state enforcement.

4.4.2 Complexity analysis

In this section, we briefly analyze the computation and memory complexity of Algorithm 4.

44

In “policy” improvement stage, assume the labeled set V(y) is an unbiased sample from

V , then the computational cost is Θ(M |E|
|V|), since we only need 1-hop nodes to update.

Here we use the average node degree in graph to calculate the expected number of edges in

each mini-batch. Similarly, in “value” estimation stage, we have Θ(N |E||V|). So in summary,

the computational cost in each iteration is just proportional to the number of edges in each

mini-batch.

The memory cost of our algorithm is also smaller compared to the existing graph neural

networks. Regardless of necessary memory held by parameters W1,2, V1,2 and node/edge

features, the dominating part is the persistent node embedding matrix {ĥv}v∈V which

takes O(|V|) space. This is also much cheaper than most GNN-family models which

take O(T |V|) space, due to the requirement of storing intermediate embeddings for back-

propagation use.

4.5 Experiments

In this section, we experimentally demonstrate the effectiveness and efficiency of learning

various graph algorithms. We compare our proposed algorithm with some of the GNN

variants who have the fixed finite number of propagations T , using experiments with both

transductive and inductive settings. In transductive setting, we compare with GCN [130],

a localized first-order approximation of spectral graph convolutions and structure2vec [55]

which mimics the graphical model inference algorithms to obtain feature representation.

The number of propagation steps is tuned in T ∈ {1, . . . , 7} for them. In inductive setting,

we compare with GraphSage [99] and its variants. For our proposed algorithm, We tune

the number of inner loops for SGD and fixed point iterations nf , nh ∈ {1, 5, 8}, to balance

the parameter learning and fixed point constraint satisfaction.

We demonstrate the effectiveness of the proposed algorithm in capturing steady-state in-

formation with learning graph algorithms, i.e., the graph connectivity detection, PageRank,

and Mean Field Inference on graphical model, where the global-range steady information

45

(a) Graph consists of two disjoint chains.

1 2 3 4 5 6 7
T

65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 /
%

Component Identification w.r.t different T

GCN
SSE

(b) Accuracy w.r.t. different T.

Figure 4.2: Graph connectivity experiment.

is the key for success, in Section 4.5.1, 4.5.2 and 4.5.3, respectively. We also show the

comparison on benchmark datasets in Section 4.5.4, where we can achieve comparable or

better accuracy. Finally we show our advantage in terms of scalability in Section 4.5.5.

Table 4.1: Multi-class node classification Dataset statistics as reported in [130].

Dataset # Nodes # Edges # Classes # Features Label rate

Citeseer 3,327 4,732 6 3,703 3.6%
Cora 2,708 5,429 7 1,433 5.2%

Pubmed 19,717 44,338 3 500 0.3%

Table 4.2: Multi-label node classification Dataset statistics

Dataset # Nodes # Edges # Labels Label type Graph type

BlogCatalog 10,312 333,983 39 membership social network
PPI(transductive) 3,890 76,584 50 Bio-states protein

Wikipedia 4,777 184,812 40 POS-tag word-net
Amazon 334,863 925,872 58 product type co-purchasing

PPI(inductive) 56,944 818,716 121 Bio-states protein

The real-world dataset used are shown in Table 4.1 and Table 4.2. The multi-class

classification datasets are from [130], where the multi-label classification datasets are from

[90], [99] and SNAP website. Datasets in Table 4.1 and also the inductive PPI dataset have

extra node features. When available, we use the same train/valid/test split as in original

paper.

46

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of training

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AE

 (s
ca

le
d)

Blogcatalog PageRank test MAE

GCN
structure2vec

S2V-degree
SSE

(a) PageRank on BlogCatalog

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of training

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AE

 (s
ca

le
d)

Pubmed PageRank test MAE

GCN
structure2vec

S2V-degree
SSE

(b) PageRank on Pubmed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
AE

Mean Field test MAE
GCN
structure2vec
SSE

(c) Mean-Field Inference for
MRF

Figure 4.3: Algorithm learning for PageRank and Mean Field Inference. Error is measured
using Mean Absolute Error (MAE).

4.5.1 Algorithm-learning: connectivity

The graph we constructed contains 2 disjoint chains. Each chain is a connected component

which contains 1,000 nodes and 999 edges. Figure 4.2a illustrates the graph we created.

The algorithm needs to know the multi-hop structure, in order to identify the component ID

for a certain node. In this transductive setting, we use 10% nodes with labels for training,

and the rest for testing. With proper parameter tuning, the GCN and structure2vec can

achieve 96% accuracy in distinguishing two components, while our SSE gets 99%.

In Figure 4.2b, we vary the T of GCN, and report its test performance. Since our pro-

posed algorithm doesn’t have the dependency over T , we simply include it as a reference.

We can see as T gets larger, the GCN model converges to better solution by taking longer

range of information, while the computational cost increases linearly with T . Also through

this experiment we find it is not only computationally more efficient, but also experimen-

tally more effective in learning the steady-states.

4.5.2 Algorithm Learning: PageRank

In this task, we learn to predict the PageRank scores for each node in the network graph.

In our experiment we use the default value (which is 0.85) for the damping factor.

Real-world graphs: We take the Blogcatalog and Pubmed graphs for evaluation. For each

dataset, we first run the PageRank algorithm using networkx [98]. Since the raw PageRank

47

scores are normalized to a probabilistic simplex, we rescale it by multiplying the total

number of nodes. This avoids some precision issue of the float numbers. In transductive

setting, we reserve 10% nodes for held-out evaluation, and vary the training set size from

10% to 90% of the total nodes. We also modify the vanilla structure2vec model to use

degree-weighted message aggregation, denoted as S2V-degree, for better performance in

PageRank prediction task.

The quantitative results are shown in Figure 4.3a and 4.3b, respectively. We can see

from the figure that, our proposed algorithm can achieve almost perfect fitting results on all

the two datasets, even with only 10% nodes for training. However, although we’ve shown

that with larger T the GCN can match our performance in Section 4.5.1, it is not effec-

tive in current experiment. Simply making T larger will cause problem for both gradient

propagation and memory consumption, and thus it is not effective. The modified baseline

S2V-degree performs the second best, so we compare with it in detail on Barabasi-Albert

random graphs in next part.

Barabasi-Albert random graphs: To evaluate how the performance varies as graph size

grows, we further carry out experiments on Barabasi-Albert (BA) graphs. We vary the

number of nodes n ∈ {1k, 10k, 100k, 1m, 10m}, and use two different parameters m = 1

and m = 4 for BA model. It is known that when m = 1 the graph has diameter of O(log n)

and for m ≥ 2 it is O(log n/ log log n) [27]. Thus for m = 1, it is more challenging since

the number of hops of information need is larger.

In transductive setting, we split the nodes equally into training and test set; in inductive

setting, the training is performed in a single graph, while the algorithm is asked to gener-

alize to new graphs from the same distribution. For S2V-degree we set T = 5 due to the

consideration of feasibility. The transductive and inductive results are shown in Table 4.3

and 4.4, respectively. As is expected, the MAE inm = 4 setting is lower than that inm = 1

setting. Our proposed algorithm achieves almost perfect MAE and increases slightly when

the prediction task becomes more and more challenging as the size of graph increasing to

48

Table 4.3: Transductive learning of PageRank on Barabasi-Albert graphs with different
sizes and hyperparameters (m = 1, 4). We report MAE on 50% held-out nodes.

m=1

nodes 1k 10k 100k 1m 10m

S2V-degree 0.0652 0.0843 0.1444 0.4012 0.4954
SSE 0.0041 0.0054 0.0075 0.0088 0.0162

m=4

nodes 1k 10k 100k 1m 10m

S2V-degree 0.0138 0.0165 0.0347 0.0944 0.1223
SSE 0.0043 0.0051 0.0056 0.0065 0.0083

Table 4.4: Inductive learning of PageRank on Barabasi-Albert graphs, trained on graph
with same hyper-parameters.

m=1

nodes 1k 10k 100k 1m 10m

S2V-degree 0.0783 0.0956 0.1931 0.4532 0.5254
SSE 0.0062 0.0074 0.0073 0.0097 0.0202

m=4

nodes 1k 10k 100k 1m 10m

S2V-degree 0.0172 0.0193 0.0394 0.1243 0.1527
SSE 0.0057 0.0063 0.0066 0.0079 0.0101

10m nodes. In comparison, the performance of S2V-degree is significantly worse, espe-

cially when graph size grows. This is because T = 5 propagations cannot capture enough

long range information. We emphasize that for large graphs with 10m nodes, it is also hard

for batch algorithm like S2V-degree to converge and generalize well.

4.5.3 Algorithm Learning: mean-field inference

To further evaluate the ability of our proposed algorithm in capturing the steady-state infor-

mation, we design a task to fit the posteriors from the mean-field (MF) inference algorithm.

Here we define a lattice graph over a 128×128 grid. Specifically, we focus on the pair-wise

Markov Random Field graphical model:

P ({Hv}, {xv}) ∝
∏
v∈V

Φ(Hv,xv)
∏

(u,v)∈E

Ψ(Hu,Hv) (4.10)

where xv is the observation and Hv is the latent variable. The mean-field score for each

Hv is a vector calculated using the UGM toolset 2. The task is to learn the mean-field score

q(Hv) for each node over a 128 × 128 lattice with xv set to be binary with a Gaussian

perturbation. The posterior in this case can be understood as steady-state that is expressed

by nonlinear fixed point equation. We test the learned mean-field scores on the 10% of the

vertices and vary the size of training set sampled from the remaining vertices.

2https://www.cs.ubc.ca/ schmidtm/Software/UGM.html

49

Table 4.5: Multi-label classification in Amazon product dataset. We report both Micro-F1
and Macro-F1 on held-out test set.

Amazon Micro-F1/% Macro-F1/%

Methods 1% 2% 3% 4% 5% 6% 7% 8% 9% 1% 2% 3% 4% 5% 6% 7% 8% 9%

structure2vec 70.27 74.54 77.18 79.95 80.97 81.58 82.71 83.27 83.55 66.62 70.07 74.74 76.43 77.62 78.65 79.92 80.13 80.11
GCN 70.39 73.58 77.61 80.34 82.03 83.23 84.25 85.1 85.68 66.16 71.01 74.56 77.11 78.97 80.5 81.36 82.15 82.75
SSE 78.36 81.06 82.61 83.79 84.59 85.08 85.68 86.57 87.13 75.07 77.67 79.03 79.86 81.14 81.59 82.39 83.13 84.03

100k 1m 10m 100m
nodes

102

103

104

105

Ti
m

e
/ m

s

* * ***

Time per update in Barabasi-Albert graphs

SSE
S2V-1
GCN-1
S2V-5
GCN-5

(a) Wall-clock time per round
of update. The (*) in the
figure denotes the out-of-
memory error.

104 105 106 107 108 109

samples

0.0
0.5
1.0
1.5
2.0
2.5
3.0

RM
SE

SSE-train
SSE-test
S2V-train
S2V-test

(b) Convergence on BA
graphs with number of
nodes=1,000,000 and m=1.

104 105 106 107 108 109

samples

0.0

0.5

1.0

1.5

2.0

RM
SE

SSE-train
SSE-test
S2V-train
S2V-test

(c) Convergence on BA
graphs with number of
nodes=1,000,000 and m=4.

Figure 4.4: Results on scalability experiments. We compare both the time needed per
update, as well as number of samples required for convergence in PageRank experiments
with large Barabasi-Albert random graphs.

From Figure 4.3c we can see, our proposed algorithm still works best regarding the

MAE metric, and can achieve better results with fewer labeled vertices. Here the fixed point

equations are nonlinear, which is different from the PageRank experiment. The baseline

algorithms can also achieve good performance with more supervision.

4.5.4 Application: node classification

Transductive setting:

To demonstrate the effectiveness of addressing steady-state information, we conduct

experiments on a large graph dataset, namely the Amazon product co-purchasing network

dataset [241]3. Among the 75,149 product types, we select those with at least 5,000 prod-

ucts. This results in 58 labels finally.

From Table 4.5 we can see the SSE outperforms the baselines by a large margin. We

also observed that in Amazon dataset, GNN-family models benefit more from more super-

3http://snap.stanford.edu/data/com-Amazon.html.

50

vision, due to the larger model capacity. Our proposed method achieves the best perfor-

mance, regardless of the amount of supervision available. This suggests that our algorithm

can effectively utilize the global-range information of graph structure.

To make the comparison comprehensive, we also conduct experiments on small bench-

mark datasets that are commonly used in the literature. We show that in the graphs where

the diameter is small, existing algorithms can do pretty good, since local information is al-

most equivalent to global-range information. Nonetheless, our SSE can still achieve com-

parable performance in this scenario.

Table 4.6: Multi-label classification in small datasets. We report both Micro-F1 and Macro-
F1 on held-out test set.

Blogcatalog Micro-F1/% Macro-F1/%

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%

structure2vec 35.05 36.65 38.43 39.35 40.48 40.89 42.56 42.58 42.61 19.78 22.39 23 25.16 25.89 26.96 26.86 27.46 27.69
GCN 36.80 38.42 39.47 40.88 40.88 41.69 42.06 42.43 42.50 19.31 20.96 20.43 22.3 21.86 22.14 23.06 23.2 23.43
SSE 33.90 36.42 36.80 37.39 37.91 37.92 38.58 39.10 40.28 19.88 22.68 22.88 23.89 23.89 24.08 24.38 25.12 24.99

PPI Micro-F1/% Macro-F1/%

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%

structure2vec 19.86 23.19 24.73 25.46 25.29 27.79 27.75 28.32 28.99 15.14 15.94 18.32 18.41 19.04 20.41 20.56 22.01 23.83
GCN 18.85 22.52 25.40 26.36 26.52 27.80 27.96 28.28 28.44 16.03 17.09 19.01 20.45 21.01 21.62 23.50 23.29 24.13
SSE 19.17 22.04 23.64 23.64 25.24 24.44 26.36 26.20 27.16 15.58 17.79 18.36 19.30 20.99 20.16 22.64 22.80 22.63

Wikipedia Micro-F1/% Macro-F1/%

Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%

structure2vec 47.94 50.24 49.98 50.76 52.45 53.54 53.21 54.07 54.95 11.53 11.63 12.38 13.05 14.12 16.65 16.80 17.37 17.27
GCN 46.94 49.14 49.61 48.82 49.61 49.92 49.61 51.02 50.55 11.30 11.64 12.41 12.32 13.11 12.98 13.47 13.87 14.34
SSE 46.94 49.76 51.33 51.44 51.18 52.91 54.32 54.33 55.26 13.63 13.70 16.00 16.26 16.33 16.41 17.00 17.33 17.42

For multi-label classification, the evaluation metric we used here is Micro-F1 and

Macro-F1 score. We tuned the hyperparameters for all the algorithms on 10% of train-

ing nodes, and then trained the model on full training set. The dimension of the embedding

is set to 128. The results are shown in Table 4.6. We achieve the best results in Wikipedia,

while getting comparable performances on the other two. In dataset like Blogcatalog, a

small local neighborhood would be enough to infer the group membership of users in this

friendship network, thus our approach would not benefit from taking global-range of in-

formation into account. However, in the Wikipedia dataset where we achieves the best

Micro-F1 and Macro-F1 scores, it is important to know long range information to get a

consensus among POS-tag labeling.

51

Citeseer Cora Pubmed0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 /
%

MLP accuracy:
Citeseer : 46.50%
Cora : 55.10%
Pubmed : 71.40%

Classification Accuracy on Citation Networks
GCN
structure2vec
SSE

Figure 4.5: The document classification accuracy on
benchmark citation networks.

Table 4.7: Inductive node classifica-
tion using PPI dataset.

Method Micro-F1

GraphSAGE-GCN 0.500

GraphSAGE-mean 0.598

GraphSAGE-LSTM 0.612

GraphSAGE-pool 0.600

SSE 0.836

For document classification, each node in the citation graph represents the correspond-

ing document. Different from the above multi-label classification, here the documents have

auxiliary bag-of-words features. Since the document classes are mutually exclusive, we

train all the models with Cross Entropy loss. The edges (undirected) are formed by the

citation relationship between articles. We use the same training/validation/test splits as

in [130]. During training, only 20 instances per class are provided with corresponding la-

bels. We report the test classification accuracy in Figure 4.5. When possible, we include the

baselines’ performances directly from previously published results [130]. From the figure

we can see, the proposed SSE performs the best in Citeseer dataset, while being slightly

worse than other GNN models in Cora and Pubmed dataset, respectively. We’ve also in-

clude the results that using the node feature with multi-layer perceptron (MLP). The MLP

doesn’t consider any graph structure into consideration, which serves a sanity check.

Inductive setting:

In this setting, we use the PPI dataset from GraphSage [99], which contains 56,944

nodes (for proteins) and 818,716 edges (for their interactions). It is a multi-label classifica-

tion tasks, where each protein can have at most 121 labels. Each protein is associated with

additional 50-dimensional features. We use the same train/valid/test split as in [99].

Table 4.7 shows the results. The GraphSage results are taken from the original paper,

52

since we are using the exactly same setting. We can see regarding the Micro-F1 metric,

our proposed SSE achieves much better performance. We show that, since GraphSage is

trained using mini-batch of nodes within T -hops, it is not effective enough to capture the

steady-state information, which in this case seems essential.

4.5.5 Scalability

In this section, we demonstrate that the proposed algorithm is very efficient for large-scale

graphs in terms of both convergence speed and execution time.

Time per update

All the algorithms are executed on a 16-core cluster with 256GB memory. We evaluate the

wall-clock time cost per update. For baselines GCN and structure2vec, this corresponds to

one feedforward and back propagation round with T -step embedding propagation on entire

graph; for our method, this corresponds to nf + nh mini-batch updates. Here we focus on

models in GNN family. For GCN and structure2vec, we compare with T = 1 and T = 5;

while in our method, nf = 1 and nh = 5.

The task we choose here is PageRank in Section 4.5.2. The graphs we evaluate on are

generated using Barabasi-Albert model with m = 4 as its parameter. We vary the number

of nodes in {100k, 1m, 10m, 100m}, and report the time in milliseconds in Figure 4.4a.

The results show our algorithm takes almost constant time for each update, due to its

stochasticity nature. As graph size grows, the time cost for GCN and structure2vec grows

linearly. For graph with 100m nodes, storing the intermediate updates and gradients for

T = 5 in structure2vec is no longer feasible 4.

4Note that for open source implementation of GCN, the Tensorflow limits the # elements in sparse matrix.
That’s why it cannot work on graphs with 10m nodes.

53

Convergence

Here we compare the number of samples required for different algorithms to converge to a

good solution. Figure 4.4b and 4.4c show the curves. We take the Barabasi-Albert graphs

with 1,000,000 node and two different settings of m = 1 and m = 4, and fit with the

PageRank scores on 50% nodes. We also visualize the test error convergence curve on the

held-out 50% nodes. Both training and test curves report the RMSE (root mean square

error), since we use this metric for optimization.

We compare with S2V-degree with T = 5, which achieves second best results in Sec-

tion 4.5.2. For our algorithm, each round of updates requires 256×(nf+nh) samples. Here

256 is the mini-batch size we used, while S2V-degree needs the whole graph per update.

From the figures we can see our proposed algorithm converges much faster than the

S2V, in terms of number of samples. The number of samples required by our algorithm

is equivalent to only scanning through the entire training set for 4 or 5 passes. While for

S2V-degree, it requires hundreds or thousands of passes to converge. Also note that, S2V-

degree with T = 5 gets much worse test error in the case when m = 1, due to its limited

ability for capturing steady-state information.

4.6 Summary

In this chapter, we presented SSE, an algorithm that can learn many steady-state algorithms

over graphs. Different from graph neural network family models, SSE is trained stochas-

tically which only requires 1-hop information, but can capture fixed point relationships

efficiently and effectively. We demonstrate this in both synthetic and real-world bench-

mark datasets, with transductive and inductive experiments for learning various graph al-

gorithms. The algorithm also scales well up to 100m nodes with much less training effort.

Future work includes investigation in learning more complicated graph algorithms, as well

as distributed training.

54

So far we have mostly focused on discriminative setting where the supervision is avail-

able. In the following chapters, we will present several unsupervised generative modeling

methods which employs the algorithm structure as design bias.

55

CHAPTER 5

SEGMENTAL SEQUENCE GENERATIVE MODELING

Segmentation and labeling of high dimensional time series data has wide applications in

behavior understanding and medical diagnosis. Due to the difficulty of obtaining a large

amount the label information, realizing this objective in an unsupervised way is highly

desirable. Hidden Semi-Markov Model (HSMM) is a classical tool for this problem. How-

ever, existing HSMM and its variants typically make strong generative assumptions on the

observations within each segment, thus their ability to capture the nonlinear and complex

dynamics within each segment is limited. To address this limitation, we propose to incor-

porate the Recurrent Neural Network (RNN) as the generative process of each segment,

resulting the Recurrent HSMM (R-HSMM). To accelerate the inference while preserving

accuracy, we designed a structure encoding function to mimic the exact inference. By gen-

eralizing the penalty method to distribution space, we are able to train the model and the

encoding function simultaneously. We also demonstrate that the R-HSMM significantly

outperforms the previous state-of-the-art on both the synthetic and real-world datasets.

5.1 Introduction

Segmentation and labeling of time series data is an important problem in machine learn-

ing and signal processing. Given a sequence of observations {x1, x2, . . . , xT}, we want

to divide the T observations into several segments and label each segment simultaneously,

where each segment consists of consecutive observations. The supervised sequence seg-

mentation or labeling techniques have been well studied in recent decades [219, 134, 39].

However, for complicated signals, like human activity sensor data, accurately annotating

the segmentation boundary or the activity type would be prohibitive. Therefore, it is ur-

gent to develop unsupervised algorithms that can jointly learn segmentation and labeling

56

information directly from the data without supervisions. Figure 5.1 provides an illustration

which we are focus on.

The Hidden Semi-Markov Model (HSMM) [164] is a powerful model for such task. It

eliminates the implicit geometric duration distribution assumptions in HMM [247], thus al-

lows the state to transit in a non-Markovian way. Most of the HSMM variants make strong

parametric assumptions on the observation model [179, 117, 247]. This makes the learning

and inference simple, but ignores the nonlinear and long-range dependency within a seg-

ment. Take the human activity signals as an example. The movements a person performs

at a certain time step would rely heavily on the previous movements, like the interleaving

actions of left hand and right hand in swimming, or more complicated dependency like

shooting after jumping in playing basketball. Some models have been proposed to tackle

this problem [81, 75, 149], but are limited in linear case.

Since people have justified RNN’s ability in modeling nonlinear and complicated de-

pendencies [219, 69], we introduce the recurrent neural emission model into HSMM for

capturing various dependencies within each segment to address such issue. However, the

flexibility of recurrent neural model comes with prices: it makes the exact Expectation-

Maximization (EM) algorithm computationally too expensive.

To speed up the learning and inference, we exploit the variational encoder (VAE) frame-

work [129]. Specifically, we propose to use bidirectional RNN (bi-RNN) encoder. Such

architecture will mimic the forward-backward algorithm, and hence is expected to capture

similar information as in exact posterior calculation.

It should be emphasized that due to the discrete nature of the latent variables in our

model, the algorithm proposed in [129] and its extension on time-series models [77, 135]

are not directly applicable. There are plenty of work proposed based on stochastic neu-

ron [225, 21, 157, 182, 91, 42] to remedy such issue. However, none of these off-the-shelf

methods are easy to achieve good performance according to our experiment: the hundreds

or thousands layers of stochastic neuron (which is equal to the length of sequence), together

57

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

100 200 300 400 500 600 700 800 900 1000 1100 1200

-2

-1

0

1

2

gr
ou

nd
T

ru
th

S1 S2 S3

(a) Sine

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

100 200 300 400 500 600 700 800 900 1000 1100 1200

-5

0

5

gr
ou

nd
T

ru
th

S1 S2 S3

(b) Gaussian Process
Figure 5.1: Synthetic experiment results. Different background colors represent the seg-
mentations with different labels. In the top row, the black curve shows the raw signal.
(a) The Sine data set is generated by a HSMM with 3 hidden states, where each one has
a corresponding sine function; (b) Similar to 5.1a, but the segments are generated from
Gaussian processes with different kernel functions. The first two rows are our algorithms
which almost exact locate every segment.

with the switching generative RNN, make the encoding function very sensitive, and thus,

extremely difficult to train fully on unsupervised setting. We propose a solution, stochas-

tic distributional penalty method, which introduces auxiliary distributions to separate the

decoding R-HSMM and encoding bi-RNN in training procedure, and thus, reduces the

learning difficulty for each component. This novel algorithm is general enough and can be

applied to other VAE with discrete latent variables, which can be of independent interest.

We emphasize that the proposed algorithm is maximizing exact the nagative Helmholtz

variational free energy. It is different from [116] in which a lower bound of the variational

free energy is proposed as the surrogate to be maximized for convenience.

We experimentally justified our algorithm on the synthetic datasets and three real-world

datasets, namely the segmentation tasks for human activity, fruit fly behavior and heart

sound records. The R-HSMM with Viterbi exact inference significantly outperforms basic

HSMM and its variants, demonstrating the generative model is indeed flexible. Moreover,

the trained bi-RNN encoder also achieve similar state-of-the-art performances to the ex-

act inference, but with 400 times faster inference speed, showing the proposed structured

encoding function is able to mimic the exact inference efficiently.

58

B

A
π

d1 d2 d3 d4 d5

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

θ

(a) Classical Hidden Semi-Markov Model.

B
d1 d2 d3 d4 d5

z1 z2 z3 z4 z5

A
π
θrnn

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

(b) Recurrent Hidden Semi-Markov Model.

Figure 5.2: Graphical models of HSMM and R-HSMM. Different from classical HSMM,
the R-HSMM has two-level emission structure with recurrent dependency.

5.2 Model Architecture

Given a sequence x = [x1, x2, . . . , x|x|], where xt ∈ Rm is anm dimensional observation at

time t, our goal is to divide the sequence into meaningful segments. Thus, each observation

xt will have the corresponding label zt ∈ Z, where Z = {1, 2, . . . , K} is a finite discrete

label set and K is predefined. The label sequence z = [z1, z2, . . . , z|x|] should have the

same length of x.

Besides labels, HSMM will associate each position t with additional variable dt ∈ D =

{1, 2, . . . , D}, where dt is known as duration variable and D is the maximum possible

duration. The duration variable can control the number of steps the current hidden state

will remain. We use d to denote the duration sequence. We also use notation xt1:t2 to

denote the substring [xt1 , xt1+1, . . . , xt2] of x. Without ambiguity, we use z as a segment

label, and d as the duration.

Explicit Duration Hidden Markov Model. Similar to HMM, this model treats the

pair of (z, d) as ‘macro hidden state’. The probability of initial macro state is defined as

P (z, d) = P (z)P (d|z). We use the notation πz , P (z) and P (d|z) , Bz,d to parametrize

the initial probability and duration probability, respectively. Ai,j , P (zt = i|zt−1 =

j, dt−1 = 1) is the state transition probability on the segment boundary. Here π ∈ RK is in

K-dimensional simplex. For each hidden state z, the corresponding rows Bz,: and Az,: are

also in probability simplex. Here we assume the multinomial distribution for P (d|z).

In EDHMM, the transition probability of macro hidden state P (zt, dt|zt−1, dt−1) is de-

59

composed by P (zt|zt−1, dt−1)P (dt|zt, dt−1) and thus can be defined as:

P (zt|zt−1, dt−1) =

Azt−1,zt if dt−1 = 1

I(zt=zt−1) if dt−1 > 1

;P (dt|zt, dt−1) =

Bzt,dt if dt−1 = 1

I(dt=dt−1−1) if dt−1 > 1

.

(5.1)

The graphical model is shown in Figure 5.2a.

Recurrent Hidden Semi-Markov Model. For the simplicity of explanation, we focus

our algorithm on the single sequence first. It is straightforward to apply the algorithm for

dataset that has multiple sequences. Given the parameters {π,A,B}, the log-likelihood of

a single observation sequence x can be written as below,

L(x) = log
∑
z,d

πz1Bz1,d1

|x|∏
t=2

P (zt|zt−1, dt−1)P (dt|zt, dt−1)P (x|z,d), (5.2)

where P (x|z,d) is the emission probability. To define P (x|z,d), we further denote

the sequence variable s = [s1, s2, . . . , s|s|] to be the switching position (or the beginning)

of segments. Thus s1 = 1, and si = si−1 + dsi−1
and |s| is the number of segments.

Traditional HSMM assumes P (x|z,d) =
∏|x|

t=1 P (xt|zt), which ignores the dependency

and some degree of dynamics exhibited in each segment. While in this chapter, we use

RNN as the generative model to capture the dependent emission probability. Specifically,

for the i-th segment starting from position si, the corresponding generative process is

P (xsi:si+dsi−1|zsi , dsi) =

si+dsi−1∏
t=si

P (xt|xsi:t−1, zsi) =

si+dsi−1∏
t=si

P (xt|ht, zsi) (5.3)

where we assume that the dependency of history before time step j can be captured by a

vector hj ∈ Rh. As in RNN, we use a recurrent equation to formulate the history vector,

ht = σ(W (zsi)xt−1 + V (zsi)ht−1 + b(zsi)). (5.4)

Finally, in this model, P (x|z,d) =
∏|s|

i=1 P (xsi:si+dsi−1|zsi , dsi) is computed by the product

60

of generative probabilities for each segment. In Eq. 5.4, W ∈ Rm×h is a weight matrix

capturing the last observation xt−1, and V ∈ Rh×h is for the propagation of history ht−1.

The b is a bias term. The superscript zsi indexes the RNN we used for the corresponding

segment. The segments with different labels are generated using different RNNs. So we

should maintain K RNNs. σ(·) is a nonlinear activation function. We use tanh in our

experiments.

At the time step t, we assume a diagonal multivariate gaussian distribution over the

conditional likelihood, where the mean and covariance matrix are the output of RNN, i.e.,

P (xt|ht, zsi) ∼ N (xt;µ = U
(zsi)
µ ht + b

(zsi)
µ ,Σ = Diag(exp(U

(zsi)

Σ ht + b
(zsi)

Σ))) (5.5)

The matrices Uµ, UΣ ∈ Rm×h are used for parametrizing the mean and covariance at each

time step j, given the history information. bµ, bΣ ∈ Rm are bias terms. For simplicity, let’s

use θrnn = {θ(1)
rnn, θ

(2)
rnn, . . . , θ

(K)
rnn} to denote the collection of parameters in each RNN. On

the boundary case, i.e., the starting point of each segment, we simply set ht = 0, which can

be viewed as the setting according to the prior knowledge (bias terms) of RNN.

The above formulation indicates that the generative model P (xt|ht, zsi) depends not

only on the last step observation xt−1, but also the last hidden state ht−1, which is together

captured in Eq. 5.4. In summary, we denote all the parameters in the proposed R-HSMM

as θ = {π,A,B, θrnn}. The corresponding graphical model is shown in Figure 5.2b.

5.3 sequential variational autoencoder

To obtain the posterior or MAP in the proposed R-HSMM, the classical forward-backward

algorithm or Viterbi algorithm needs to solve one dynamic programming per sample, which

makes the inference costly, especially for the long sequence with thousands of timestamps.

So instead, we treat the Bayesian inference from optimization perspective, and obtain the

61

posterior by maximizing the negative Helmholtz variational free energy [239, 251, 54],

max
Q(z,d|x)∈P

LθQ(x) := EQ(z,d|x) [logPθ(x, z,d)− logQ(z,d|x)] , (5.6)

over the space of all valid densities P . To make the optimization (5.6) tractable, the vari-

ational autoencoder restricts the feasible sets to be some parametrized density Qψ, which

can be executed efficiently comparing to the forward-backward algorithm or Viterbi al-

gorithm. However, such restriction will introduce extra approximation error. To reduce

the approximation error, we use a structured model, i.e., bidirectional RNN, to mimic

the dynamic programming in forward-backward algorithm. Specifically, in the forward-

backward algorithm, the forward message αt(zt, dt) and backward message βt(zt, dt) can

be computed recursively, and marginal posterior at position t depends on both αt(zt, dt) and

βt(zt, dt). Similarly, in bi-RNN we embed the posterior message with RNN’s latent vector,

and marginal posterior is obtained from the latent vectors of two RNNs at the same time

step t. Let ψ = {ψ−−−→RNN1
, ψ←−−−RNN2

,Wz ∈ Rh×K ,Wd ∈ Rh×D} be the parameters of bi-RNN

encoder, the Qψ is decomposed as:

Qψ(z,d|x) = Q(z1|h1;ψ)Q(d1|z1, h1;ψ)

|x|∏
t=2

Q(zt|dt−1, ht;ψ)Q(dt|zt, dt−1, ht;ψ) (5.7)

where ht = [
−−−→
RNN1(x1:t),

←−−−
RNN2(xt:|x|)] is computed by bi-RNN. We use multinomial dis-

tributions Q(zt|ht;ψ) =M(softmax(W>
z ht)) and Q(dt|zt, ht;ψ) =M(softmax(W>

d ht)).

The dependency over dt−1 ensures that the generated segmentation (z,d) is valid according

to Eq. 5.1. For example, if we sampled duration dt−1 > 1 from Qψ at time t − 1, then dt

and zt should be deterministic. In our experiment, we use LSTM [103] as the recursive

units in bi-RNN.

Since with any fixed θ, the negative Helmholtz variational free energy is indeed the

62

lower bound of the marginal likelihood, i.e.,

logPθ(x) ≥ L(θ, ψ;x) := EQψ(z,d|x)[logPθ(x, z,d)− logQψ(z,d|x)], (5.8)

therefore, we can treat it as a surrogate of the marginal log-likelihood and learn θ jointly

with approximate inference, i.e.,

max
θ,ψ

1

N

N∑
n=1

L(θ, ψ;x(n)) (5.9)

It should be emphasized that due to the discrete nature of latent variables in our model,

the algorithm proposed in [129] is not directly applicable, and its extension with stochastic

neuron reparametrization [21, 182, 91, 42] cannot provide satisfied results for our model

according to our experiments. Therefore, we extend the penalty method to distribution

space to solve optimization (5.9).

5.4 Learning via stochastic distributional penalty method

As we discussed, learning the sequential VAE with stochastic neuron reparametrization

in unsupervised setting is extremely difficult, and none the off-the-shelf techniques can

provide satisfied results. In this section, we introduce auxiliary distribution into (5.9) and

generalize the penalty method [23] to distribution space.

Specifically, we first introduce an auxiliary distribution Q̃(z,d|x) for each x and refor-

mulate the optimization (5.9) as

max
θ,ψ,{Q̃(z,d|x(n))}Nn=1

1

N

N∑
n=1

EQ̃(z,d|x(n))

[
logPθ(x

(n), z,d)− log Q̃(z,d|x(n))
]
, (5.10)

s.t. KL
(
Q̃(z,d|x(n))||Qψ(z,d|x(n))

)
= 0, ∀x(n), n = 1, . . . , N.

We enforce the introduced Q̃(z,d|x) equals to Qψ(z,d|x) in term of KL-divergence,

so that the optimization problems (5.9) and (5.10) are equivalent. Because of the non-

63

Algorithm 5 Learning sequential VAE with stochastic distributional penalty method

1: Input: sequences {x(n)}Nn=1

2: Randomly initialize ψ(0) and θ0 = {π0, A0, B0, θ0
rnn}

3: for λ = 0, . . . ,∞ do
4: for t = 0 to T do
5: Sample {x(n)}Mn=1 uniformly from dataset with mini-batch size M .
6: Get {z(n),d(n)}Mn=1 with θt by dynamic programming in (5.13).
7: Update πt+1, At+1, Bt+1 using rule (5.16).
8: θt+1

rnn = θtrnn,−γt 1
M

∑M
n=1∇θtrnnL̃λ(θ, ψ|x(n))

9: ψt+1 = ψt − ηt 1
M

∑M
n=1∇ψtL̃λ(θ, ψ|x(n)) . bi-rnn sequence to sequence

learning
10: end for
11: end for

negativity of KL-divergence, itself can be viewed as the penalty function, we arrive the

alternative formulation of (5.10) as

max
θ,ψ,{Q̃(z,d|x(n))}Nn=1

1

N

N∑
n=1

L̃λ(θ, ψ|x(n)) (5.11)

L̃λ(θ, ψ|x) = EQ̃(z,d|x)

[
logPθ(x, z,d)− log Q̃(z,d|xi)

]
−λKL

(
Q̃(z,d|x)||Qψ(z,d|x)

)
and λ ≥ 0. Obviously, as λ → ∞, KL(Q̃(z,d|x)||Qψ(z,d|x)) must be 0, otherwise

the L̃∞(θ, ψ|x) will be −∞ for arbitrary θ, ψ. Therefore, the optimization (5.11) will be

equivalent to problem (5.10). Following the penalty method, we can learn the model with

λ increasing from 0 to ∞ gradually. The entire algorithm is described in Algorithm 5.

Practically, we can set λ = {0,∞} and do no need the gradually incremental, while still

achieve satisfied performance. For each fixed λ, we optimize Q̃ and the parameters θ, ψ

alternatively. To handle the expectation in the optimization, we will exploit the stochastic

gradient descent. The update rules for θ, ψ and Q̃ derived below.

5.4.1 Updating Q̃

In fact, fix λ, Qψ and Pθ in optimization (5.11), the optimal solution Q̃∗(z,d|x) for each x

has closed-form.

64

Theorem 1 Given fixed λ,Qψ and Pθ, Q̃∗(z,d|x) ∝ Qψ(z,d|x)
λ

1+λPθ(x, z,d)
1

1+λ achieves

the optimum in (5.11).

Proof Take the functional derivative of L̃ w.r.t. Q̃ and set it to zeros,

∇Q̃L̃ = logPθ(x, z,d) + λ logQ(z,d|x)− (1 + λ) log Q̃(z,d|x) = 0,

we obtain 1
1+λ

logPθ(x, z,d) + λ
1+λ

logQ(z,d|x) = log Q̃(z,d|x). Take exponential on

both sides, we achieve the conclusion.

In fact, because we are using the stochastic gradient for updating θ and ψ later, Q̃∗(z,d|x)

is never explicitly computed and only samples from it are required. Recall the fact that

Qψ(z,d|x) has a nice decomposition 5.7, we can multiply its factors into each recursion

step and still get the same complexity as original Viterbi algorithm for MAP or sampling.

Specifically, let’s define αt(j, r) to be the best joint log probability of prefix x1:t and its

corresponding segmentation which has the last segment with label j and duration r, i.e.,

αt(j, r) , max
z1:t,d1:t

log Q̃(z1:t,d1:t|x1:t), s.t. zt = j, dt = dt−r = 1, dt−r+1 = r (5.12)

here t ∈ {1, 2, . . . , |x|}, j ∈ Z, r ∈ D. Then we can recursively compute the entries in α

as below:

αt(j, r) =

αt−1(j, r − 1) + 1
1+λ

log(
Bj,r
Bj,r−1

P (xt|xt−r+1:t−1, z = j)) r > 1, t > 1

+ λ
1+λ

log
Qψ(dt−r+1=r|z=j,x)

Qψ(dt−r+1=r−1|z=j,x)
;

maxi∈Z\j maxr′∈D αt−1(i, r′) + 1
1+λ

log(Ai,jBj,1P (xt|z = j)) r = 1, t > 1

+ λ
1+λ

logQψ(zt−r+1 = j, dt−r+1 = r|x);

λ
1+λ

logQψ(z1 = j, d1 = r|x) + 1
1+λ

log(πjBj,1P (x1|z = j)); r = 1, t = 1

0. otherwise
(5.13)

65

To construct the MAP solution, we also need to keep a back-tracing array βt(j, r) that

records the transition path from αt−1(i, r′) to αt(j, r). The sampling from Q̃(z,d|x) also

can be completed with almost the same style forwards filtering backwards sampling algo-

rithm, except replacing the max-operator by sum-operator in α propagation [165].

Without considering the complexity of computing emission probabilities, the dynamic

programming needs time complexity O (|x|K2 + |x|KD) [248] and O(|x|K) memory.

We explain the details of optimizing the time and memory requirements in Section 5.4.3.

Remark: When λ = ∞, the Q̃(z,d|x) will be exactly Qψ(z,d|x) and the algorithm will

reduce to directly working on Qψ(z,d|x) without the effect from Pθ(x, z,d). Therefore,

it is equivalent to obtaining MAP or sampling of the latent variables z,d from Qψ(z,d|x),

whose cost is O(|x|K). In practical, to further accelerate the computation, we can follow

such strategy to generate samples when λ is already large enough, and thus, the effect of

Pθ(x, z,d) is negligible.

5.4.2 Updating θ and ψ

With the fixed Q̃(z,d|x), we can update the θ and ψ by exploiting stochastic gradient de-

scent algorithm to avoid scanning the whole training set. Sample a mini-batch of sequences

{xn}Mn=1 with size M � N , we proceed to update {θ, ψ} by optimizing the Monte Carlo

approximation of (5.11),

max
θ,ψ

1

M

M∑
n=1

logPθ(x
(n), z(n),d(n)) + λ logQψ(z(n),d(n)|x(n)), (5.14)

where {z(n),d(n)} is the MAP or a sample of Q̃(z,d|x(n)). Note that the two parts related

to θ and ψ are separated now, we can optimize them easily.

Update θ: Finding parameters to maximize the likelihood needs to solve the constrained

66

optimization shown below

max
θ

1

M

M∑
n=1

(
log π

z
(n)
1

+

|s|∑
i=2

logA
z
(n)
si−1

,z
(n)
si

+

|s|∑
i=1

B
z
(n)
si

,d
(n)
si

+

si+d
(n)
si
−1∑

j=si

logP (x
(n)
j |h

(n)
j , z(n)

si ; θrnn)

)
(5.15)

where {π,A,B} are constrained to be valid probability distribution. We use stochastic

gradient descent to update θrnn in totally K RNNs. For parameters π,A,B which are

restricted to simplex, the stochastic gradient update will involve extra projection step. To

avoid such operation which may be costly, we propose the closed-form update rule derived

by Lagrangian,

πi =

∑M
n=1 I(z

(n)
1 = i)

m
, Ai,j =

∑M
n=1

∑|s(n)|−1
t=1 I(z(n)

st = i and z(n)
st+1 = j)∑M

n=1 |s(n)| −M
(5.16)

Bj,r =

∑M
n=1

∑|s(n)|
t=1 I(d(n)

st = r and z(n)
st = j)∑M

n=1 |s(n)|

Since we already have the segmentation solution, the total number of training samples

equals to the number of observations in dataset. Different RNNs use different parameters,

and train on different parts of observations. This makes it easy for parallel training.

Update ψ: Given fixed λ, logQψ(z(n),d(n)|x(n)) is essentially the sequence to sequence

likelihood, where the input sequence is x and output sequence is {z,d}. Using the form of

Qψ in Eq 5.7, this likelihood can be decomposed by positions. Thus we can conveniently

train a bi-RNN which maximize the condition likelihood of latent variables by stochastic

gradient descent.

Remark: We can get multiple samples {z,d} for each x from Q̃(z,d|x) to reduce the vari-

ance in stochastic gradient. In our algorithm, the samples of latent variable come naturally

from the auxiliary distributions (which are integrated with penalty method), rather than the

derivation from lower bound of objective [225, 182, 158].

67

5.4.3 Optimizing Dynamic Programming

Squeeze the memory requirement

In this section, we show that the Eq. 5.13 can be computed in a memory efficient way.

Specifically, the dynamic programming procedure can be done with O(|x|K) memory re-

quirement, and caching for precomputed emission probabilities requiresO(D2K) memory.

Update forward variable α Note that in Eq. 5.13, when r > 1, we can update αt(j, r)

deterministically. So it is not necessary to keep the records for r > 1.

Specifically, let’s only record αt(j, 1), and do the updates in a similar way as in Eq. 5.13.

The only difference is that, when constructing the answer, i.e., the last segment solution, we

need to do a loop over all possible z and d in order to find the best segmentation solution.

It is easy to see that the memory consumption is O(|x|K).

Caching emission probability At each time step t, we compute P (xt+r|xt:t+r−1, z = j)

for each j ∈ Z and r ∈ D. That is to say, we compute all the emission probabilities of

observations starting from time t, and within max possible durationD. This can be done by

performing feed-forward of K RNNs. After that, storing these results will requireO(KD)

space. For simplicity, we let etj,r = P (xt+r|xt:t+r−1, z = j), where et ∈ RK×D.

Note that, at a certain time step t, we would require the emission probability of obser-

vations P (xt|xt−r+1:t−1, z = j) for some j ∈ Z and r ∈ D. In this case, the corresponding

first observation is xt−r. That is to say, we should keep et−D+1, . . . , et at time step t. This

makes the memory consumption goes to O(KD2)

Squeeze the time complexity

In Eq. 5.13, the most expensive part is when r = 1 and t > 1. If we solve this in a naive

way, then this step would require expensive O(|x|K2D) for time complexity.

68

Here we adopt similar technique as in [248]. Let γt(i) = maxr′∈D αt−1(i, r′), then:

αt(j, r) = max
i∈Z

max
r′∈D

αt1(i, r
′) +

1

1 + λ
log(Ai,jBj,1P (xt|z = j)) (5.17)

+
λ

1 + λ
logQψ(zt−r+1 = j, dt−r+1 = r|x)

= max
i∈Z

γt−1(i) +
1

1 + λ
log(Ai,jBj,1P (xt|z = j)) (5.18)

+
λ

1 + λ
logQψ(zt−r+1 = j, dt−r+1 = r|x)

This reduces the complexity to be O(|x|K2).

5.5 Experiments

Baselines We compare with classical HSMM and two popular HSMM variants. The first

one is Hierarchical Dirichlet-Process HSMM (HDP-HSMM) [117], which is the nonpara-

metric Bayesian extension to the traditional HSMM that allows infinite number of hidden

states; the second one is called subHSMM [115], which uses infinite HMM as the emission

model for each segment. This model also has two-level of latent structure. It considers

the dependency within each segment, which is a stronger algorithm than HDP-HSMM.

We also compare with the CRF autoencoder (CRF-AE) [8], which uses markovian CRF as

recognition model and conditional i.i.d.model for reconstruction. Comparing to HSMM,

this model ignores the segmentation structures in modeling and is more similar to HMM.

Evaluation Metric We evaluate the performance of each method via the labeling ac-

curacy. Specifically, we compare the labels of each single observations in each testing

sequence. Since the labels are unknown during training, we use KM algorithm [162] to

find the best mapping between predicted labels and ground-truth labels.

Settings Without explicitly mentioned, we report the mean of average accuracy for each

of the sequence. We report the mean accuracy in Table 5.1. We set the truncation of max

69

possible duration D to be 400 for all tasks.

For the HDP-HSMM and subHSMM, the observation distributions are initialized as

standard Multivariate Gaussian distributions. The duration is modeled by the Poisson dis-

tribution. We tune the concentration parameters α, γ ∈ {0.1, 1, 3, 6, 10}. The hyperparam-

eters are learned automatically. For subHSMM, we tune the truncation threshold of the

second level infinite HMM from {2 . . . 15}.

For CRF-AE, we extend the origin model for the continuous observations, and learn all

parameters similar to [151]. We use mixture of Gaussians to model the emission, where

the number of mixtures is tuned in {1, . . . , 10}.

For the proposed R-HSMM, we use Adam [127] to train the K generative RNN and bi-

RNN encoder. To make the learning tractable for long sequences, we use back propagation

through time (BPTT) with limited budget. We also tune the dimension of hidden vector in

RNN, the L2-regularization weights and the stepsize. We implemented with CUDA that

parallelized for different RNNs, and conduct experiments on K-20 enabled cluster. We in-

clude both the R-HSMM with the exact MAP via dynamic programming (rHSMM-dp) and

sequential VAE with forward pass (rHSMM-fw) in experiments. In all tasks, the rHSMM-

fw achieves almost the same performance to rHSMM-dp, but 400 times faster, showing the

bi-RNN is able to mimic the forward-backward algorithm very well with efficient compu-

tation.

5.5.1 Segmentation Accuracy

Synthetic Experiments We first evaluate the proposed method on two 1D synthetic

sequential data sets. The first data set is generated by a HSMM with 3 hidden states,

where π,A,B are designed beforehand. A segment with hidden state z is a sine function

λz sin(ωzx+ ε1) + ε2, where ε1 and ε2 are Gaussian random noises. Different hidden states

use different scale parameters λz and frequency parameters ωz. The second data set also

has 3 hidden states, where the segment with hidden state z is sampled from a Gaussian

70

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

1

1.5

gr
ou

nd
T

ru
th

Walk Walk upstairs Walk downstairs Sitting Standing Laying

Stand to sit Sit to stand Sit to lie Lie to sit Stand to lie Lie to stand

(a) Human activity (b) Drosophila

Figure 5.3: Segmentation results on Human activity and Drosophila datasets. Different
background colors represent the segmentations with different labels. In the top row, the
black cure shows the signal sequence projected to the first principle component. The fol-
lowing two rows are our algorithms which almost exact locate every segment. (a) The
Human activity data set contains 12 hidden states, each of which corresponds to a human
action; (b) The Drosophila data set contains 11 hidden states, each of which corresponds to
a drosophila action.

process (GP) with kernel function kz(x, y). Different hidden states employ different kernel

functions. The specific kernel functions used here are k1(x, y) = exp{−min(| x−y |, |x+

y|)2/10}, k2(x, y) = exp{−(x−y)2/10} and k3(x, y) = (5−|x−y|)I{(5−|x−y|) < 5}.

For both of the Sine and GP data sets, the duration of a segment is randomly sampled from

a distribution defined on {1, ..., 100}, which depends on the hidden states. Thus, the seg-

mentation task corresponds to finding out different functions embedded in the sequences.

We visualize the segmentation results of ground truth and three competitors on Sine

and GP data sets in Figure 5.1a and Figure 5.1b respectively, and report the numerical

results in Table 5.1. As we can see, R-HSMM provides much better results on even small

segments, dramatically outperforms HSMM variants and CRF-AE. Also note that, the sine

function depicts short term dependencies, while Gaussian process has long dependency

that determined by the kernel bandwidth. This demonstrates the ability of R-HSMM in

capturing the long or short term dependencies.

71

Table 5.1: Error rate of segmentation. We report both the mean and standard deviation.
Methods SINE GP HAPT Drosophila Heart PN-Full

rHSMM-dp 2.67 ± 1.13% 12.46 ± 2.79% 16.38 ± 5.03% 36.21 ± 1.37% 33.14 ± 7.87% 31.95 ± 4.32%

rHSMM-fw 4.02 ± 1.37% 13.13 ± 2.89% 17.74 ± 7.64% 35.79 ± 0.51% 33.36 ± 8.10% 32.34 ± 3.97%

HSMM 41.85 ± 2.38% 41.15 ± 1.99% 41.59 ± 8.58% 47.37 ± 0.27% 50.62 ± 4.20 % 45.04 ± 1.87%

subHSMM 18.14 ± 2.63% 24.81 ± 4.63% 22.18 ± 4.45% 39.70 ± 2.21% 46.67 ± 4.22% 43.01 ± 2.35%

HDP-HSMM 42.74 ± 2.73% 41.90 ± 1.58% 35.46 ± 6.19% 43.59 ± 1.58% 47.56 ± 4.31% 42.58 ± 1.54%

CRF-AE 44.87 ± 1.63% 51.43 ± 2.14% 49.26 ± 10.63% 57.62 ± 0.22% 53.16 ± 4.78% 45.73 ± 0.66%

Human activity This dataset which is collected by [185] consists of signals collected

from waist-mounted smartphone with accelerometers and gyroscopes. Each of the volun-

teers is asked to perform a protocol of activities composed of 12 activities (see Figure 5.3a

for the details). Since the signals within an activity type exhibit high correlation, it is nat-

ural for RNN to model this dependency. We use these 61 sequences, where each sequence

has length around 3000. Each observation is a 6 dimensional vector, consists of triaxial

measures from accelerometers and gyroscopes.

Figure 5.3a shows the ground truth and the segmentation results of all methods. Both

rHSMM-dp and rHSMM-fw almost perfectly recover the true segmentation. They can

also capture the transition activity types, e.g., stand to lie or sit to lie. The HSMM, HDP-

HSMM and CRF-AE makes some fragmental but periodical segmentations for walking,

caused by lacking the dependency modeling within a segment. The subHSMM also has

similar problem, possibly due to the limited ability of HMM generative model.

Drosophila Here we study the behavior patterns of drosophilas. The data was collected

by [118] with two dyes, two cameras and some optics to track each leg of a spontaneously

behaving fruit fly. The dimension of observation in each timestamp is 45, which consists

of the raw features and some higher order features.

Physionet The heart sound records, usually represented graphically by phonocardiogram

(PCG), are key resources for pathology classification of patients. We collect data from

PhysioNet Challenge 2016 [215], where each observation has been labeled with one of

72

the four states, namely Diastole, S1, Systole and S2. We experiment with both the raw

signals and the signals after feature extraction. Regarding the raw signals (Heart dataset),

we collect 7 1-dimensional sequences of length around 40000. The feature-rich dataset

(PN-Full) contains 2750 sequences, where each of them consists of 1500 4-dimensional

observations. We do 5-fold cross validation for PN-Full. As the results shown in Table 5.1,

our algorithm still outperforms the baselines significantly. Also for such long raw signal

sequences, the speed advantage of bi-RNN encoder over Viterbi is more significant. Viterbi

takes 8min to do one inference, while bi-RNN only takes several seconds. Our framework

is also flexible to incorporate prior knowledge, like the regularity of heart state transition

into HSMM.

5.5.2 Reconstruction

In this section, we examine the ability of learned generative model by visualizing the recon-

structed signals. Given a sequence x, we use recognition model to get the latent variables

z and d, then use learned K generative RNNs to generate signals within each segment.

For the ease of visualization, we show the results on 1D signal dataset in Fig. 5.4a and

Fig. 5.4b.

From Fig. 5.4 we can see the generative RNN correctly captures different characteristics

from signals of different segment labels, such as different frequencies and scales in Sine

dataset, or the different variance patterns in GP dataset. This is essential to distinguish

between different segments.

5.6 Summary

We presented the R-HSMM, a generalization of HSMM by incorporating recurrent neu-

ral generative model as the emission probability. To eliminate the difficulty caused by

such flexible and powerful model in inference, we introduced the bi-RNN as the encoding

distribution via the variational autoencoder framework to mimic the forward-backward al-

73

-4

-3

-2

-1

0

1

2

3

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-2

-1

0

1

2

O
rig

in

(a) Reconstruction illustration on Sine
dataset.

-5

0

5

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-6

-4

-2

0

2

4

6

O
rig

in

(b) Reconstruction illustration on GP dataset.

Figure 5.4: Reconstruction illustration. The generative RNNs (decoders) are asked to re-
construct the signals from only the discrete labels and durations (which are generated from
encoder).

gorithm. To deal with the difficulty of training VAE containing discrete latent variables,

we proposed a novel stochastic distributional penalty method. We justified the modeling

power of the proposed R-HSMM via segmentation accuracy and reconstruction visualiza-

tion. From the comprehensive comparison, the proposed model significantly outperforms

the existing models. It should be emphasized that the structured bi-RNN encoder yields

similar performance as the exact MAP inference, while being 400 times faster. Future

work includes further speeding up of our algorithm, as well as generalizing our learning

algorithm to other discrete variational autoencoder.

So far, we have demonstrated the HSMM model structure for sequences. In the next

section, we will show how to leverage compiler algorithms for graph structure generative

modeling.

74

CHAPTER 6

GRAPH GENERATIVE MODELING WITH SYNTAX AND SEMANTICS

GUIDANCE

Deep generative models have been enjoying success in modeling continuous data. How-

ever it remains challenging to capture the representations for discrete structures with formal

grammars and semantics, e.g., computer programs and molecular structures. How to gener-

ate both syntactically and semantically correct data still remains largely an open problem.

Inspired by the theory of compiler where the syntax and semantics check is done via syntax-

directed translation (SDT), we propose a novel syntax-directed variational autoencoder

(SD-VAE) by introducing stochastic lazy attributes. This approach converts the offline

SDT check into on-the-fly generated guidance for constraining the decoder. Comparing to

the state-of-the-art methods, our approach enforces constraints on the output space so that

the output will be not only syntactically valid, but also semantically reasonable. We evalu-

ate the proposed model with applications in programming language and molecules, includ-

ing reconstruction and program/molecule optimization. The results demonstrate the effec-

tiveness in incorporating syntactic and semantic constraints in discrete generative models,

which is significantly better than current state-of-the-art approaches.

6.1 Introduction

Recent advances in deep representation learning have resulted in powerful probabilistic

generative models which have demonstrated their ability on modeling continuous data,

e.g., time series signals [169, 56] and images [180, 121]. Despite the success in these

domains, it is still challenging to correctly generate discrete structured data, such as graphs,

molecules and computer programs. Since many of the structures have syntax and semantic

formalisms, the generative models without explicit constraints often produces invalid ones.

75

Conceptually an approach in generative model for structured data can be divided in

two parts, one being the formalization of the structure generation and the other one be-

ing a (usually deep) generative model producing parameters for stochastic process in that

formalization. Often the hope is that with the help of training samples and capacity of

deep models, the loss function will prefer the valid patterns and encourage the mass of the

distribution of the generative model towards the desired region automatically.

Arguably the simplest structured data are sequences, whose generation with deep model

has been well studied under the seq2seq [219] framework that models the generation of se-

quence as a series of token choices parameterized by recurrent neural networks (RNNs).

Its widespread success has encourage several pioneer works that consider the conversion

of more complex structure data into sequences and apply sequence models to the repre-

sented sequences. [86] (CVAE) is a representative work of such paradigm for the chemical

molecule generation, using the SMILES line notation [237] for representing molecules.

However, because of the lack of formalization of syntax and semantics serving as the re-

striction of the particular structured data, underfitted general-purpose string generative

models will often lead to invalid outputs. Therefore, to obtain a reasonable model via such

training procedure, we need to prepare large amount of valid combinations of the structures,

which is time consuming or even not practical in domains like drug discovery.

To tackle such a challenge, one approach is to incorporate the structure restrictions

explicitly into the generative model. For the considerations of computational cost and

model generality, context-free grammars (CFG) have been taken into account in the de-

coder parametrization. For instance, in molecule generation tasks, [137] proposes a gram-

mar variational autoencoder (GVAE) in which the CFG of SMILES notation is incorporated

into the decoder. The model generates the parse trees directly in a top-down direction, by

repeatedly expanding any nonterminal with its production rules. Although the CFG pro-

vides a mechanism for generating syntactic valid objects, it is still incapable to regularize

the model for generating semantic valid objects [137]. For example, in molecule gener-

76

ation, the semantic of the SMILES languages requires that the rings generated must be

closed; in program generation, the referenced variable should be defined in advance and

each variable can only be defined exactly once in each local context (illustrated in Fig 6.1b).

All the examples require cross-serial like dependencies which are not enforceable by CFG,

implying that more constraints beyond CFG are needed to achieve semantic valid produc-

tion in VAE.

In the theory of compiler, attribute grammars, or syntax-directed definition has been

proposed for attaching semantics to a parse tree generated by context-free grammar. Thus

one straightforward but not practical application of attribute grammars is, after generating

a syntactic valid molecule candidate, to conduct offline semantic checking. This process

needs to be repeated until a semantically valid one is discovered, which is at best computa-

tionally inefficient and at worst infeasible, due to extremely low rate of passing checking.

As a remedy, we propose the syntax-direct variational autoencoder (SD-VAE), in which a

semantic restriction component is advanced to the stage of syntax tree generator. This al-

lows the generator with both syntactic and semantic validation. The proposed syntax-direct

generative mechanism in the decoder further constraints the output space to ensure the se-

mantic correctness in the tree generation process. The relationships between our proposed

model and previous models can be characterized in Figure 6.1a.

Our method brings theory of formal language into stochastic generative model. The

contribution of this chapter can be summarized as follows:

• Syntax and semantics enforcement: We propose a new formalization of semantics that

systematically converts the offline semantic check into online guidance for stochastic

generation using the proposed stochastic lazy attribute. This allows us effectively ad-

dress both syntax and semantic constraints.

• Efficient learning and inference: Our approach has computational cost O(n) where n is

the length of structured data. This is the same as existing methods like CVAE and GVAE

which do not enforce semantics in generation. During inference, the SD-VAE runs with

77

CVAE

Structured	data	decoding	space

molecules

programs

(arbitrary	string)

(a) Illustrations of structured data decoding
space

Context Free Grammar (CFG):
program -> stat ‘;’ stat
stat -> var ‘=‘ num | var ‘=‘ var ‘+’ num
var -> ’A’ | ‘B’ | ... | ‘Z’
num -> ‘0’ | ‘1’ | ... | ‘9’

Start	symbol

Nonterminals

Terminals ERROR:	undefined	variable!

Limitation	of	CFG	for	semantics

program

stat stat

var var varnum num

A = 1 ; B = C + 2

(b) CFG parses program ‘A=1;B=C+2’

Figure 6.1: Illustration on left shows the hierarchy of the structured data decoding space
w.r.t different works and theoretical classification of corresponding strings from formal
language theory. SD-VAE, our proposed model with attribute grammar reshapes the output
space tighter to the meaningful target space than existing works. On the right we show a
case where CFG is unable to capture the semantic constraints, since it successfully parses
an invalid program.

semantic guiding on-the-fly, while the existing alternatives generate many candidates for

semantic checking.

• Strong empirical performance: We demonstrate the effectiveness of the SD-VAE through

applications in two domains, namely (1) the subset of Python programs and (2) molecules.

Our approach consistently and significantly improves the results in evaluations including

generation, reconstruction and optimization.

6.2 Background

Before introducing our model and the learning algorithm, we first provide some background

knowledge which is important for understanding the proposed method.

6.2.1 Variational Autoencoder

The variational autoencoder [129, 186] provides a framework for learning the probabilis-

tic generative model as well as its posterior, respectively known as decoder and encoder.

We denote the observation as x, which is the structured data in our case, and the latent

variable as z. The decoder is modeling the probabilistic generative processes of x given

the continuous representation z through the likelihood pθ(x|z) and the prior over the latent

78

variables p(z), where θ denotes the parameters. The encoder approximates the posterior

pθ(z|x) ∝ pθ(x|z)p(z) with a model qψ(z|x) parametrized by ψ. The decoder and en-

coder are learned simultaneously by maximizing the evidence lower bound (ELBO) of the

marginal likelihood, i.e.,

L (X; θ, ψ) :=
∑
x∈X

Eq(z|x) [log pθ(x|z)p(z)− log qψ(z|x)] ≤
∑
x∈X

log

∫
pθ(x|z)p(z)dz,

(6.1)

where X denotes the training datasets containing the observations.

6.2.2 Context Free Grammar and Attribute Grammar

Context free grammar A context free grammar (CFG) is defined as G = 〈V ,Σ,R, s〉,

where symbols are divided into V , the set of non-terminal symbols, Σ, the set of terminal

symbols and s ∈ V , the start symbol. HereR is the set of production rules. Each production

rule r ∈ R is denoted as r = α → β for α ∈ V is a nonterminal symbol, and β =

u1u2 . . . u|β| ∈ (V
⋃

Σ)∗ is a sequence of terminal and/or nonterminal symbols.

Attribute grammar To enrich the CFG with “semantic meaning”, [133] formalizes

attribute grammar that introduces attributes and rules to CFG. An attribute is an attachment

to the corresponding nonterminal symbol in CFG, written in the format 〈v〉.a for v ∈ V .

There can be two types of attributes assigned to non-terminals inG: the inherited attributes

and the synthesized attributes. An inherited attribute depends on the attributes from its

parent and siblings, while a synthesized attribute is computed based on the attributes of its

children. Formally, for a production u0 → u1u2 . . . u|β|, we denote I(ui) and S(ui) be the

sets of inherited and synthesized attributes of ui for i ∈ {0, . . . , |β|}, respectively.

A motivational example

We here exemplify how the above defined attribute grammar enriches CFG with non-

context-free semantics. We use the following toy grammar, a subset of SMILES that gen-

79

<s>

<atom>1 <atom>2‘C’

<digit><bond>‘C’ ‘C’ <bond> <digit>

‘-’ ‘1’ ‘-’ ‘1’

Start Symbol

Non TerminalsTerminalsTree Edge

Synthesized
Attribute

Synthesize
dependency

CFG	Parsing	for	syntax

<digit>

<s>

<atom>1 <atom>2‘C’

<digit><bond>‘C’ ‘C’ <bond>

‘-’ ‘1’ ‘-’ ‘1’

C-1CC-1

Syntax	Check

Semantics	Check

matched={‘-1’}	∩	{‘-1’}
ok=True

set={‘-1’}

val=‘-’ val=‘1’val=‘1’val=‘-’

set={‘-1’}

Attribute	Grammar	for	semantics

Figure 6.2: Bottom-up syntax and semantics check in compilers.

erates either a chain or a cycle with three carbons:

Production Semantic Rule

〈s〉 → 〈atom〉1 ‘C’ 〈atom〉2 〈s〉.matched← 〈atom〉1.set
⋂
〈atom〉2.set,

〈s〉.ok← 〈atom〉1.set = 〈s〉.matched = 〈atom〉2.set

〈atom〉 → ‘C’ | ‘C’ 〈bond〉 〈digit〉 〈atom〉.set← ∅ | concat(〈bond〉.val, 〈digit〉.val)

〈bond〉 → ‘-’ | ‘=’ | ‘#’ 〈bond〉.val← ‘-’ | ‘=’ | ‘#’

〈digit〉 → ‘1’ | ‘2’ | ... | ‘9’ 〈digit〉.val← ‘1’ | ‘2’ ... | ‘9’

where we show the production rules in CFG with→ on the left, and the calculation of

attributes in attribute grammar with← on the left. Here we leverage the attribute grammar

to check (with attribute matched) whether the ringbonds come in pairs: a ringbond gen-

erated at 〈atom〉1 should match the bond type and bond index that generated at 〈atom〉2,

also the semantic constraint expressed by 〈s〉.ok requires that there is no difference be-

tween the set attribute of 〈atom〉1 and 〈atom〉2. Such constraint in SMILES is known as

cross-serial dependencies (CSD) [33] which is non-context-free [209]. See Appendix B.3

for more explanations. Figure 6.2 illustrates the process of performing syntax and seman-

tics check in compilers. Here all the attributes are synthetic, i.e., calculated in a bottom-up

direction.

So generally, in the semantic correctness checking procedure, one need to perform

80

bottom-up procedures for calculating the attributes after the parse tree is generated. How-

ever, in the top-down structure generating process, the parse tree is not ready for semantic

checking, since the synthesized attributes of each node require information from its chil-

dren nodes, which are not generated yet. Due to such dilemma, it is nontrivial to use

the attribute grammar to guide the top-down generation of the tree-structured data. One

straightforward way is using acceptance-rejection sampling scheme, i.e., using the decoder

of CVAE or GVAE as a proposal and the semantic checking as the threshold. It is obvious

that since the decoder does not include semantic guidance, the proposal distribution may

raise semantically invalid candidate frequently and thus waste the computational cost.

6.3 Syntax-Directed Variational Autoencoder

As described in Section 6.2.2, directly using attribute grammar in an offline fashion (i.e.,

after the generation process finishes) is not efficient to address both syntax and semantics

constraints. In this section we describe how to bring forward the attribute grammar online

and incorporate it into VAE, such that our VAE addresses both syntactic and semantic

constraints. We name our proposed method Syntax-Directed VAE (SD-VAE).

6.3.1 Stochastic Syntax-Directed Decoder

By scrutinizing the tree generation, the major difficulty in incorporating the attributes gram-

mar into the processes is the appearance of the synthesized attributes. For instance, when

expanding the start symbol 〈s〉, none of its children is generated yet. Thus their attributes

are also absent at this time, making the 〈s〉.matched unable to be computed. To enable

the on-the-fly computation of the synthesized attributes for semantic validation during tree

generation, besides the two types of attributes, we introduce the stochastic lazy attributes

to enlarge the existing attribute grammar. Such stochasticity transforms the corresponding

synthesized attribute into inherited constraints in generative procedure; and lazy linking

mechanism sets the actual value of the attribute, once all the other dependent attributes are

81

<s>

<atom>1 <atom>2‘C’

~

𝑝"(𝑟|<s>, 𝒯(())

sa~ℬ"(𝑠𝑎|<s>, 𝒯(())

1 0

<atom>2‘C’

sa=1

<digit><bond>‘C’

‘C’

𝑝"(𝑟|<atom>1, 𝒯(.))

<s>

X

<atom>2‘C’

sa=1

<atom>1

<s>

sa=1

‘C’

<atom>1
sa=1~

𝑝"(𝑟|<bond>, 𝒯(/))~

‘-’ ‘=’ ‘#’

……

‘1’ ‘9’……

𝑝"(𝑟|<digit>, 𝒯(0))~

<digit><bond>

<digit><bond>‘C’

‘-’ ‘1’

<atom>1

<atom>2‘C’

sa=1<s>

sa=1

val=‘1’val=‘-’

set={‘-1’}

<digit><bond>‘C’

‘-’ ‘1’

<atom>1
<atom>2‘C’

sa=1<s>

sa=1

val=‘1’val=‘-’

set={‘-1’}

matched={‘-1’}

<digit><bond>‘C’

‘-’ ‘1’

<atom>1 ‘C’

sa=1<s>
sa=1

val=‘1’val=‘-’

set={‘-1’}

matched={‘-1’}

<digit><bond>‘C’ ‘C’

<atom>2

matched
={‘-1’}

~𝑝"(𝑟|<atom>2, 𝒯(2))

X

<digit><bond>‘C’

‘-’ ‘1’

<atom>1 ‘C’

sa=1<s>
sa=1

val=‘1’val=‘-’

set={‘-1’}

matched={‘-1’}

<atom>2

matched={‘-1’}

‘C’

‘-’ ‘=’ ‘#’

xxxxxx

‘1’ ‘9’……

X X X

<digit><bond> ~
𝑝"(𝑟|<bond>, 𝒯(3)) 𝑝"(𝑟|<digit>, 𝒯(4))

matched={‘-1’}

Probability
Simplex

SamplingInherited
Attribute

Stochastic
Lazy Attribute

Generated
Partial Tree

Banned
option

~

X 𝒯(5)

(a)																																																			(b) (c)																																																			(d)

(e)																																																				(f) (g)

Figure 6.3: On-the-fly generative process of SD-VAE in order from (a) to (g). Steps: (a)
stochastic generation of attribute; (b)(f)(g) constrained sampling with inherited attributes;
(c) unconstrained sampling; (d) synthesized attribute calculation on generated subtree. (e)
lazy evaluation of the attribute at root node.

ready. We demonstrate how the decoder with stochastic lazy attributes will generate se-

mantic valid output through the same pedagogical example as in Section 6.2.2. Figure 6.3

visually demonstrates this process.

The tree generation procedure is indeed sampling from the decoder pθ(x|z), which can

be decomposed into several steps that elaborated below:

i) stochastic predetermination: in Figure 6.3(a), we start from the node 〈s〉 with the

synthesized attributes 〈s〉.matched determining the index and bond type of the ringbond

that will be matched at node 〈s〉. Since we know nothing about the children nodes right

now, the only thing we can do is to ‘guess’ a value. That is to say, we associate a stochastic

attribute 〈s〉.sa ∈ {0, 1}Ca ∼
∏Ca

i=1 B(sai|z) as a predetermination for the sake of the

absence of synthesized attribute 〈s〉.matched, where B(·) is the Bernoulli distribution.

Here Ca is the maximum cardinality possible 1 for the corresponding attribute a. In above

example, the 0 indicates no ringbond and 1 indicates one ringbond at both 〈atom〉1 and

〈atom〉2, respectively.

ii) constraints as inherited attributes: we pass the 〈s〉.sa as inherited constraints to

1Note that setting threshold for Ca assumes a mildly context sensitive grammar (e.g., limited CSD).

82

Algorithm 6 Decoding with Stochastic Syntax-Directed Decoder
1: Global variables: CFG: G = (V ,Σ,R, s), decoder network parameters θ
2: procedure GENTREE(node, T)
3: Sample stochastic lazy attribute node.sa ∼ Bθ(sa|node, T) . when introduced on
node

4: Sample production rule r = (α→ β) ∈ R ∼ pθ(r|ctx, node, T). . The
conditioned variables encodes the semantic constraints in tree generation.

5: ctx← RNN(ctx, r) . update context vector
6: for i = 1, . . . , |β| do
7: vi ← Node(ui, node, {vj}i−1

j=1) . node creation with parent and siblings’
attributes

8: GenTree(vi, T) . recursive generation of children nodes
9: Update synthetic and stochastic attributes of node with vi . Lazy linking

10: end for
11: end procedure

the children of node 〈s〉, i.e., 〈atom〉1 and 〈atom〉2 to ensure the semantic validation in the

tree generation. For example, Figure 6.3(b) ‘sa=1’ is passed down to 〈atom〉1.

iii) sampling under constraints: without loss of generality, we assume 〈atom〉1 is gen-

erated before 〈atom〉2. We then sample the rules from pθ(r|〈atom〉1, 〈s〉, z) for expanding

〈atom〉1, and so on and so forth to generate the subtree recursively. Since we carefully

designed sampling distribution that is conditioning on the stochastic property, the inherited

constraints will be eventually satisfied. In the example, due to the 〈s〉.sa = ‘1’, when

expanding 〈atom〉1, the sampling distribution pθ(r|〈atom〉1, 〈s〉, z) only has positive mass

on rule 〈atom〉 → ‘C’ 〈bond〉 〈digit〉.

iv) lazy linking: once we complete the generation of the subtree rooted at 〈atom〉1,

the synthesized attribute 〈atom〉1.set is now available. According to the semantic rule for

〈s〉.matched, we can instantiate 〈s〉.matched = 〈atom〉1.set = {‘-1’}. This linking

is shown in Figure 6.3(d)(e). When expanding 〈atom〉2, the 〈s〉.matched will be passed

down as inherited attribute to regulate the generation of 〈atom〉2, as is demonstrated in

Figure 6.3(f)(g).

In summary, the general syntax tree T ∈ L(G) can be constructed step by step,

within the languages L(G) covered by grammar G. In the beginning, T (0) = root, where

83

root.symbol = s which contains only the start symbol s. At step t, we will choose an non-

terminal node in the frontier2 of partially generated tree T (t) to expand. The generative

process in each step t = 0, 1, . . . can be described as:

1. Pick node v(t) ∈ Fr(T (t)) where its attributes needed are either satisfied, or are

stochastic attributes that should be sampled first according to Bernoulli distribution

B(·|v(t), T (t));

2. Sample rule r(t) = α(t) → β(t) ∈ R according to distribution pθ(r
(t)|v(t), T (t)),

where v(t).symbol = α(t), and β(t) = u
(t)
1 u

(t)
2 . . . u

(t)

|β(t)|, i.e., expand the nonterminal

with production rules defined in CFG.

3. T (t+1) = T (t)
⋃
{(v(t), u

(t)
i)}|β

(t)|
i=1 , i.e., grow the tree by attaching β(t) to v(t). Now

the node v(t) has children represented by symbols in β(t).

The above process continues until all the nodes in the frontier of T (T) are all terminals after

T steps. Then, we obtain the Algorithm 6 for sampling both syntactic and semantic valid

structures.

In fact, in the model training phase, we need to compute the likelihood pθ(x|z) given x

and z. The probability computation procedure is similar to the sampling procedure in the

sense that both of them requires tree generation. The only difference is that in the likelihood

computation procedure, the tree structure, i.e., the computing path, is fixed since x is given;

While in the sampling procedure, it is sampled following the learned model. Specifically,

the generative likelihood can be written as:

pθ(x|z) =
T∏
t=0

pθ(rt|ctx(t), node(t), T (t))Bθ(sat|node(t), T (t)) (6.2)

where ctx(0) = z and ctx(t) = RNN(rt, ctx
(t−1)). Here RNN can be commonly used

LSTM, etc..
2Here frontier is the set of all nonterminal leaves in current tree.

84

6.3.2 Structure-Based Encoder

As we introduced in section 6.2, the encoder, qψ(z|x) approximates the posterior of the

latent variable through the model with some parametrized function with parameters ψ.

Since the structure in the observation x plays an important role, the encoder parametrization

should take care of such information. The recently developed deep learning models [71,

55, 140] provide powerful candidates as encoder. However, to demonstrate the benefits of

the proposed syntax-directed decoder in incorporating the attribute grammar for semantic

restrictions, we will exploit the same encoder in [137] for a fair comparison later.

We provide a brief introduction to the particular encoder model used in [137] for a self-

contained purpose. Given a program or a SMILES sequence, we obtain the corresponding

parse tree using CFG and decompose it into a sequence of productions through a pre-order

traversal on the tree. Then, we convert these productions into one-hot indicator vectors, in

which each dimension corresponds to one production in the grammar. We will use a deep

convolutional neural networks which maps this sequence of one-hot vectors to a continuous

vector as the encoder.

6.3.3 Model Learning

Our learning goal is to maximize the evidence lower bound in Eq 6.1. Given the encoder,

we can then map the structure input into latent space z. The variational posterior q(z|x)

is parameterized with Gaussian distribution, where the mean and variance are the output

of corresponding neural networks. The prior of latent variable p(z) = N (0, I). Since

both the prior and posterior are Gaussian, we use the closed form of KL-divergence that

was proposed in [129]. In the decoding stage, our goal is to maximize pθ(x|z). Using the

Equation (6.2), we can compute the corresponding conditional likelihood. During training,

the syntax and semantics constraints required in Algorithm 6 can be precomputed.

In practice, we observe no significant time penalty measured in wall clock time com-

pared to previous works.

85

6.4 Experiments

Code is available at https://github.com/Hanjun-Dai/sdvae.

We show the effectiveness of our proposed SD-VAE with applications in two domains,

namely programs and molecules. We compare our method with CVAE [86] and GVAE [137].

CVAE only takes character sequence information, while GVAE utilizes the context-free

grammar. To make a fair comparison, we closely follow the experimental protocols that

were set up in [137]. The training details are included in Section 6.4.2.

Our method gets significantly better results than previous works. It yields better re-

construction accuracy and prior validity by large margins, while also having comparative

diversity of generated structures. More importantly, the SD-VAE finds better solution in

program and molecule regression and optimization tasks. This demonstrates that the con-

tinuous latent space obtained by SD-VAE is also smoother and more discriminative.

6.4.1 Settings

Here we first describe our datasets in detail. The programs are represented as a list of

statements. Each statement is an atomic arithmetic operation on variables (labeled as v0,

v1, · · · , v9) and/or immediate numbers (1, 2, . . . , 9). Some examples are listed below:

v3=sin(v0);v8=exp(2);v9=v3-v8;v5=v0*v9;return:v5

v2=exp(v0);v7=v2*v0;v9=cos(v7);v8=cos(v9);return:v8

Here v0 is always the input, and the variable specified by return (respectively v5 and

v8 in the examples) is the output, therefore it actually represent univariate functions f :

R → R. Note that a correct program should, besides the context-free grammar specified

in Appendix B.1, also respect the semantic constraints. For example, a variable should

be defined before being referenced. We randomly generate 130, 000 programs, where each

consisting of 1 to 5 valid statements. Here the maximum number of decoding steps T = 80.

We hold 2000 programs out for testing and the rest for training and validation.

86

https://github.com/Hanjun-Dai/sdvae

For molecule experiments, we use the same dataset as in [137]. It contains 250, 000

SMILES strings, which are extracted from the ZINC database [86]. We use the same

split as [137], where 5000 SMILES strings are held out for testing. Regarding the syntax

constraints, we use the grammar specified in Appendix B.2, which is also the same as [137].

Here the maximum number of decoding steps T = 278.

For our SD-VAE, we address some of the most common semantics:

Program semantics We address the following: a) variables should be defined before

use, b) program must return a variable, c) number of statements should be less than 10.

Molecule semantics The SMILES semantics we addressed includes: a) ringbonds

should satisfy cross-serial dependencies, b) explicit valence of atoms should not go beyond

permitted. For more details about the semantics of SMILES language, please refer to Ap-

pendix B.3. By addressing the most common semantics to harness the deep networks, it

can greatly reshape the output domain of decoder [105].

6.4.2 Training Details

Since our proposed SD-VAE differentiate itself from previous works (CVAE, GVAE) on

the formalization of syntax and semantics, we therefore use the same deep neural network

model architecture for a fair comparison. In encoder, we use 3-layer one-dimension con-

volution neural networks (CNNs) followed by a full connected layer, whose output would

be fed into two separate affine layers for producing µ and σ respectively as in reparame-

terization trick; and in decoder we use 3-layer RNNs followed by a affine layer activated

by softmax that gives probability for each production rule. In detail, we use 56 dimensions

the latent space and the dimension of layers as the same number as in [137]. As for imple-

mentation, we use [137]’s open sourced code for baselines, and implement our model in

PyTorch framework 3. In a 10% validation set we tune the following hyper parameters and

report the test result from setting with best valid loss. For a fair comparison, all tunings are

3http://pytorch.org/

87

also conducted in the baselines.

We use ReconstructLoss + αKLDivergence as the loss function for training. A

natural setting is α = 1, but [137] suggested in their open-sourced implementation4 that

using α = 1/LatentDimension would leads to better results. We explore both settings.

6.4.3 Reconstruction Accuracy and Prior Validity

Table 6.1: Reconstructing Accuracy and Prior Validity estimated using Monte Carlo
method. Our proposed method (SD-VAE) performance significantly better than existing
works. * We also report the reconstruction % grouped by number of statements (3, 4, 5) in
parentheses.

Program Zinc SMILES

Methods Reconstruction %* Valid Prior % Reconstruction % Valid Prior %

SD-VAE 96.46 (99.90,99.12,90.37) 100.00 76.2 43.5
GVAE 71.83 (96.30, 77.28, 41.90) 2.96 53.7 7.2
CVAE 13.79 (40.46, 0.87, 0.02) 0.02 44.6 0.7

We use the held-out dataset to measure the reconstruction accuracy of VAEs. For prior

validity, we first sample the latent representations from prior distribution, and then evaluate

how often the model can decode into a valid structure. Since both encoding and decoding

are stochastic in VAEs, we follow the Monte Carlo method used in [137] to do estimation:

a) reconstruction: for each of the structured data in the held-out dataset, we encode it

10 times and decoded (for each encoded latent space representation) 25 times, and report

the portion of decoded structures that are the same as the input ones; b) validity of prior: we

sample 1000 latent representations z ∼ N (O, I). For each of them we decode 100 times,

and calculate the portion of 100,000 decoded results that corresponds to valid Program or

SMILES sequences.

Program We show in the left part of Table 6.1 that our model has near perfect

reconstruction rate, and most importantly, a perfect valid decoding program from prior.

This huge improvement is due to our model that utilizes the full semantics that previous

4https://github.com/mkusner/grammarVAE/issues/2

88

work ignores, thus in theory guarantees perfect valid prior and in practice enables high

reconstruction success rate. For a fair comparison, we run and tune the baselines in 10% of

training data and report the best result. In the same place we also report the reconstruction

successful rate grouped by number of statements. It is shown that our model keeps high

rate even with the size of program growing.

SMILES Since the settings are exactly the same, we include CVAE and GVAE

results directly from [137]. We show in the right part of Table 6.1 that our model produces

a much higher rate of successful reconstruction and ratio of valid prior. Figure 6.4 also

demonstrates some decoded molecules from our method. Note that the results we reported

have not included the semantics specific to aromaticity into account. If we use the kekulized

form of SMILES to train the model, then the valid portion of prior can reach 97.3%.

O

NH

O

NH

O

NH2
+

Target

O NH

S

OH

NH2
+S

Decoded:1

O

NH

S

O

NH2
+

Decoded:2

O NH

S

OH

NH2
+S

Decoded:3

O

NH

S

O

NH2
+

Decoded:4

NH+

OH

S

Br

Target

NH+

OH

S

Br

Decoded:1

NH+

OH

S

Br

Decoded:2

NH+

OH

S

Br

Decoded:3

NH+

OH

S

Br

Decoded:4

O

O

NH

F

Target

O

N

O

NH

F

Decoded:1

O

N

O

NH

F

Decoded:2

O

O

NH

F

Decoded:3

O

N

O

NH

F

Decoded:4

N

NH

O

O

Cl

Target

N

NH

O

O

Cl

Decoded:1

N

NH

O

O

Cl

Decoded:2

N

NH

O

O

Cl

Decoded:3

NH

O

O

Cl

Decoded:4

O

O O
O

O
N

O

Target

O

O O
O

O
N

O

Decoded:1

O

O O
O

O
N

O

Decoded:2

O

O O
O

O
N

O

Decoded:3

O

O

O

O

O

N

O

Decoded:4

N

N NH

Target

N

N NH

Decoded:1

N

N NH

Decoded:2

O

N
NH

Decoded:3

O

N
NH

Decoded:4

NH

N

NN

N

Target

NH

N

NN

N

Decoded:1

O

N

NN

N

Decoded:2

NH

N

NN

N

Decoded:3

NH

N

NN

N

Decoded:4

O O

N

N

N
NH+

Target

O

O

N

N

N

NH+

Decoded:1

O

O

N

N

N

NH+

Decoded:2

O O

N

N

N
NH+

Decoded:3

O O

N

N

N
NH+

Decoded:4

NH

O

NH

O

O

N

Target

NH

O

NH

O

O

N

Decoded:1

NH

O

NH

O

O

N

Decoded:2

NH

O

NH

O

O

N

Decoded:3

NH

O

NH

O

O

N

Decoded:4

O

NH
N

NH
N

N

NH

F

Target

O

NH
N

NH
N

N

NH

F

Decoded:1

O

NH
N

NH
N

N

NH

F

Decoded:2

O

NH
N

NH
N

N

NH

F

Decoded:3

O

NH
N

NH
N

N

NH

F

Decoded:4

N

O

O

NHN

Cl

O

Target

N

O

O

NHN

Cl

O

Decoded:1

N

O

O

NHN

Cl

O

Decoded:2

N

O

O

NHN

Cl

O

Decoded:3

N

O

O

NHN

Cl

O

Decoded:4

O

O

N

N

N

Target

O

O

N

N

N

Decoded:1

O

O

N

N

N

Decoded:2

O

O

N

N

N

Decoded:3

O

O

N

N

N

Decoded:4

Figure 6.4: Visualization of reconstruction. The first column in each figure presents the
target molecules. We first encode the target molecules, then sample the reconstructed
molecules from their encoded posterior.

89

6.4.4 Bayesian Optimization

One important application of VAEs is to enable the optimization (e.g., find new structures

with better properties) of discrete structures in continuous latent space, and then use de-

coder to obtain the actual structures. Following the protocol used in [137], we use Bayesian

Optimization (BO) to search the programs and molecules with desired properties in latent

space. The Bayesian optimization is used for searching latent vectors with desired target

property. For example, in symbolic program regression, we are interested in finding pro-

grams that can fit the given input-output pairs; in drug discovery, we are aiming at finding

molecules with maximum drug likeness. To get a fair comparison with baseline algorithms,

we follow the settings used in [137].

Specifically, we first train the variational autoencoder in an unsupervised way. After

obtaining the generative model, we encode all the structures into latent space. Then these

vectors and corresponding property values (i.e., estimated errors for program, or drug like-

ness for molecule) are used to train a sparse Gaussian process with 500 inducing points.

This is used later for predicting properties in latent space. Next, 5 iterations of batch

Bayesian optimization with the expected improvement (EI) heuristic is used for proposing

new latent vectors. In each iteration, 50 latent vectors are proposed. After the proposal, the

newly found programs/molecules are then added to the batch for next round of iteration.

During the proposal of latent vectors in each iteration, we perform 100 rounds of de-

coding and pick the most frequent decoded structures. This helps regulate the decoding

due to randomness, and increase the chance for baselines algorithms to propose valid ones.

Finding program In this application the models are asked to find the program which is

most similar to the ground truth program. Here the distance is measured by log(1 + MSE),

where the MSE (Mean Square Error) calculates the discrepancy of program outputs, given

the 1000 different inputs v0 sampled evenly in [−5, 5]. In Figure 6.5 we show that our

method finds the best program to the ground truth one compared to CVAE and GVAE.

Molecules Here we optimize the drug properties of molecules. In this problem, we

90

Ground Truth

SD-VAE

GVAE

CVAE

-4 -2 2 4

-3

-2

-1

1

2

3

Method Program Score

v7=5+v0;v5=cos(v7);return:v5 0.1742
CVAE v2=1-v0;v9=cos(v2);return:v9 0.2889

v5=4+v0;v3=cos(v5);return:v3 0.3043

v3=1/5;v9=-1;v1=v0*v3;return:v3 0.5454
GVAE v2=1/5;v9=-1;v7=v2+v2;return:v7 0.5497

v2=1/5;v5=-v2;v9=v5*v5;return:v9 0.5749

v6=sin(v0);v5=exp(3);v4=v0*v6;return:v6 0.1206
SD-VAE v5=6+v0;v6=sin(v5);return:v6 0.1436

v6=sin(v0);v4=sin(v6);v5=cos(v4);v9=2/v4;return:v4 0.1456

Ground Truth v1=sin(v0);v2=exp(v1);v3=v2-1;return:v3 —

Figure 6.5: On the left are best programs found by each method using Bayesian Optimiza-
tion. On the right are top 3 closest programs found by each method along with the distance
to ground truth (lower distance is better). Both our SD-VAE and CVAE can find similar
curves, but our method aligns better with the ground truth. In contrast the GVAE fails this
task by reporting trivial programs representing linear functions.

ask the model to optimize for octanol-water partition coefficients (a.k.a log P), an im-

portant measurement of drug-likeness of a given molecule. As [86] suggests, for drug-

likeness assessment log P is penalized by other properties including synthetic accessibility

score [73]. In Figure 6.6 we show the the top-3 best molecules found by each method,

where our method found molecules with better scores than previous works. Also one can

see the molecule structures found by SD-VAE are richer than baselines, where the latter

ones mostly consist of chain structure.

CVAE GVAE SDVAE

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1.98 1.42 1.19 2.94 2.89 2.80 4.04 3.50 2.96

Figure 6.6: Best top-3 molecules and the corresponding scores found by each method using
Bayesian Optimization.

6.4.5 Predictive performance of latent representation

The VAEs also provide a way to do unsupervised feature representation learning [86]. In

this section, we seek to to know how well our latent space predicts the properties of pro-

grams and molecules. After the training of VAEs, we dump the latent vectors of each

structured data, and train the sparse Gaussian Process with the target value (namely the

91

Table 6.2: Predictive performance using encoded mean latent vector. Test LL and RMSE
are reported.

Program Zinc

Method LL RMSE LL RMSE

CVAE -4.943 ± 0.058 3.757 ± 0.026 -1.812 ± 0.004 1.504 ± 0.006
GVAE -4.140 ± 0.038 3.378 ± 0.020 -1.739 ± 0.004 1.404 ± 0.006

SD-VAE -3.754 ± 0.045 3.185 ± 0.025 -1.697 ± 0.015 1.366 ± 0.023

error for programs and the drug-likeness for molecules) for regression. We test the per-

formance in the held-out test dataset. In Table 6.2, we report the result in Log Likelihood

(LL) and Regression Mean Square Error (RMSE), which show that our SD-VAE always

produces latent space that are more discriminative than both CVAE and GVAE baselines.

This also shows that, with a properly designed decoder, the quality of encoder will also be

improved via end-to-end training.

6.4.6 Diversity of generated molecules

Table 6.3: Diversity as statistics from pair-wise distances measured as 1−s, where s is one
of the similarity metrics. So higher values indicate better diversity. We show mean±stddev
of
(

100
2

)
pairs among 100 molecules. We report results from GVAE and our SD-VAE,

because CVAE has very low valid priors and thus failed in this evaluation protocol.

Similarity Metric MorganFp MACCS PairFp TopologicalFp

GVAE 0.92 ± 0.10 0.83 ± 0.15 0.94 ± 0.10 0.71 ± 0.14
SD-VAE 0.92 ± 0.09 0.83 ± 0.13 0.95 ± 0.08 0.75 ± 0.14

Inspired by [22], here we measure the diversity of generated molecules as an assessment

of the methods. The intuition is that a good generative model should be able to generate

diverse data and avoid mode collapse in the learned space. We conduct this experiment

in the SMILES dataset. We first sample 100 points from the prior distribution. For each

point, we associate it with a molecule, which is the most frequent occurring valid SMILES

decoded (we use 50 decoding attempts since the decoding is stochastic). We then, with

one of the several molecular similarity metrics, compute the pairwise similarity and report

92

the mean and standard deviation in Table 6.3. We see both methods do not have the mode

collapse problem, while producing similar diversity scores. It indicates that although our

method has more restricted decoding space than baselines, the diversity is not sacrificed.

This is because we never rule-out the valid molecules. And a more compact decoding space

leads to much higher probability in obtaining valid molecules.

6.4.7 Visualizing the Latent Space

We seek to visualize the latent space as an assessment of how well our generative model is

able to produces a coherent and smooth space of program and molecules.

Program Following [30], we visualize the latent space of program by interpolation

between two programs. More specifically, given two programs which are encoded to pa and

pb respectively in the latent space, we pick 9 evenly interpolated points between them. For

each point, we pick the corresponding most decoded structure. In Table 6.4 we compare

our results with previous works. Our SD-VAE can pass though points in the latent space

that can be decoded into valid programs without error and with visually more smooth in-

terpolation than previous works. Meanwhile, CVAE makes both syntactic and semantic

errors, and GVAE produces only semantic errors (reference of undefined variables), but

still in a considerable amount.

Table 6.4: Interpolation between two valid programs (the top and bottom ones in brown)
where each program occupies a row. Programs in red are with syntax errors. Statements in
blue are with semantic errors such as referring to unknown variables. Rows without color-
ing are correct programs. Observe that when a model passes points in its latent space, our
proposed SD-VAE enforces both syntactic and semantic constraints while making visually
more smooth interpolation. In contrast, CVAE makes both kinds of mistakes, GVAE avoids
syntactic errors but still produces semantic errors, and both methods produce subjectively
less smooth interpolations.

CVAE GVAE SD-VAE

v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9
v8=cos(3);v7=exp(7);v5=v7*v0;v9=v9/v6;return:v9 v3=cos(8);v6=exp(9);v6=v8*v0;v9=v2/v6;return:v9 v6=cos(7);v8=exp(9);v2=v8*v0;v9=v2/v6;return:v9
v4=cos(3);v8=exp(3);v2=v2*v0;v9=v8/v6;return:v9 v3=cos(8);v6=2/8;v6=v5*v9;v5=v8v5;return:v5 v6=cos(7);v8=exp(9);v3=v8*v0;v9=v3/v8;return:v9
v6=cos(3);v8=sin(3);v5=v4*1;v5=v3/v4;return:v9 v3=cos(6);v6=2/9;v6=v5+v5;v5=v1+v6;return:v5 v6=cos(7);v8=v6/9;v1=7*v0;v7=v6/v1;return:v7
v9=cos(1);v7=sin(1);v3=v1*5;v9=v9+v4;return:v9 v5=cos(6);v1=2/9;v6=v3+v2;v2=v5-v6;return:v2 v6=cos(7);v8=v6/9;v1=7*v6;v7=v6+v1;return:v7
v6=cos(1);v3=sin(10;;v9=8*v8;v7=v2/v2;return:v9 v5=sin(5);v3=v1/9;v6=v3-v3;v2=v7-v6;return:v2 v6=cos(7);v8=v6/9;v1=7*v8;v7=v6+v8;return:v7
v5=exp(v0;v4=sin(v0);v3=8*v1;v7=v3/v2;return:v9 v1=sin(1);v5=v5/2;v6=v2-v5;v2=v0-v6;return:v2 v6=exp(v0);v8=v6/2;v9=6*v8;v7=v9+v9;return:v7
v5=exp(v0);v1=sin(1);v5=2*v3;v7=v3+v8;return:v7 v1=sin(1);v7=v8/2;v8=v7/v9;v4=v4-v8;return:v4 v6=exp(v0);v8=v6-4;v9=6*v8;v7=v9+v8;return:v7
v4=exp(v0);v1=v7-8;v9=8*v3;v7=v3+v8;return:v7 v8=sin(1);v2=v8/2;v8=v0/v9;v4=v4-v8;return:v4 v6=exp(v0);v8=v6-4;v9=6*v6;v7=v9+v8;return:v7
v4=exp(v0);v9=v6-8;v6=2*v5;v7=v3+v8;return:v7 v6=exp(v0);v2=v6-4;v8=v0*v1;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v6;v7=v4+v8;return:v7
v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7 v6=exp(v0);v8=v6-4;v4=4*v8;v7=v4+v8;return:v7

93

SMILES For molecules, we visualize the latent space in 2 dimensions. We first em-

bed a random molecule from the dataset into latent space. Then we randomly generate 2

orthogonal unit vectors A. To get the latent representation of neighborhood, we interpolate

the 2-D grid and project back to latent space with pseudo inverse of A. Finally we show

decoded molecules. In Figure 6.7, we present two of such grid visualizations. Subjec-

tively compared with figures in [137], our visualization is characterized by having smooth

differences between neighboring molecules, and more complicated decoded structures.

NH

N

C+

SH

N

NH

N

N+

SH

C+

N

N
N+

H2N

NH

N

OH

NH

NH

N

N+

NH2

C+

HO

C+

NH

N

O

NH

N
N

N

NH

N

O

NH

N
N

N

NH

N

O

NH

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N

NH

N

N

N

N

NH

N

N

N

N

NH

C+

N

N+

SH

N

N

NH

N

N+

OH

C+

OH

N

O

NH
N

N+

OH

Cl

NH

N

NH

N
N N

NH

N

NH

N
S

N

NH

N

NHN

N

NH

N

N

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N

N

NN

N
NH

N

N
N

N

NH

NH

N

N

F

Cl

Cl

O

NH
N

N
NH2

F

Cl

O
NH

N

NH

OH

N

NHN

NH

N

N

N NH

N

NH

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N

N

NN

N

N

NN

N

NH

O

N

N

NH2

F

Cl

O

NH

N

NH

N
OH

C+

OH
SH

NH

N

NH

N
N

NH

N

NH

N
S

N

NH

N

N

N

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N

N

NN

N
N

N

N

N

N

O

N+HO

Cl

NH NH
N

N
NH2

O

OH

NH

N

NH

N
N

NH

N

N

N

N

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N

N

NN

N
N

N

N

N

N

N N

OH

C+

Cl

N

OH

NH O

N

O-

H

NH

N

N

N

O

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

N

NN

N
N

N

N N

N

N

N

N

N

N

N

NH

OH
O

OH

S

O

NHO

N O
N

N

N

N

O
NN

N

NH
NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

NH

N

NN

N

S

N

NN

N
N

N

N N

N

N

N

N

S

N

N

N

N

N

N+

N
O

N

N

N- O

O

NN

N

O
NN

N

O
NN

N

O
NN

N

O

N

NN

N

NH

N

NN

N

NH

N

NN

N

S

N
N

N N
S

N

NH

N
N

HO

N

N

N

N

N

NH

NN

N

N

ON

N

S

N
O

NN

N

SH

N
O

NN

N S

O
NN

N

O
NN

N

O
NN

N

O
NN

N

O

N

NN

N

NH

N
N

N N

NH

N
N

N N

N

N

N

N

N

N

NH

NN

N

N

N
H

N

N
N

N

HS

NH

N

N
N

N

HS

NH

N
O

NN

N S

N
O

NN

N S

O
NN

N

O

N

N N

O

N

N N

O

N

N N

O
N

N

N

N

N

H

H

S

N

N

N

N

NH

N

N

N
S

H

S

N

N

N
S

H

N
N

N

N

N

N
N

N

Cl

N

N
N

N

HS

NH

N

N
N

N

HS

NH

N
O

NN

N S
N

O

N

N N

O

N

N N

O

N

N N O

NH

N

O

N

N O

N

N

N SN

N

N

N

H

SN

N

N

N

H

N

N

N

H

H

N
N

N

N
Cl

H2N

N
N

N

N
Cl

Cl

N

N

N

N

SH
Cl

N

N

N

N

SH
Cl

N

O

N

N N
N

O

NH

N

O

NH

N

O

NH

N

HO

O

N

N

O

N

N

H

S

N

O+

H

OH

N

N

N

H

H

OH

N

O

NH2

O+

H

N
N

N

N
OH

H2N

N

N

N

N

SH
Cl

N

N

N

N

S
SH

N

N

N

N N H

N

NHN
HS

OH

N
O

NH

N

OH

N
O

NH

N

OH

O

N

N

OH+

S

OH

O

N

N

NC-

H

OH

O

N

N

H

OH

N

N

O-

NH2

N

N
H2N

N

O

OH

H

HO

N

O

H2N

O+

O

O

O

NH+

NH+

F

O

O

O

NH+

NH+

F

O

N

OH

O

C+NH2
+

O

O

O

N

ONHC+
NH2

+

O

O

O

N
NH+

F
O

O

NH+

F

OH

O

O

Cl

NH+

F

O

Cl

NH+

O

F

N

O

F

NH+

O

F

N

O

Cl

O

NH2
+F

F

F

O

Cl

O

NH2
+F

F

F

O

Cl

NH2
+

F

F

F

O

Cl
NH3

+

F

F

F

O

O

O

NH+

NH+F

O

O

O

NH+

NH+F

O

O

O

O

N
NH+

F

F O

O

NH+

F
F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O

Cl

NH+

O

F

F

F

O

O

F

NH+

F

F

F

N

O

F

NH2
+

F

F

F

N

O

F

O

NH2
+

F

F

F

O

Cl
NH2

+

F

F

O

Cl
NH3

+

F

F

F

O

S

O

O
NH+

NH+

F

F

O

O

O
C+

C+

F

F

O

O
NH

NH+

F

F

F

O

O

N
NH+

F
F

F

O

O

NH+

F
F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O

F

NH+

F

F

F

N

O

F

NH+

F

F

F

N

O

F

O

NH+

F

F

F

O

F

O

NH+

F

F

F

O

Cl

NH+

FF

N

O

SO

O
C+

NH2
+

F

F

F

O

O
NH

C+

NH2
+

F

F

F

O

O

N
NH+

F
F

F

O

O

NH+

F
F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O

F

NH+

F

F

F

N

O

F

O

NH+

F

F

F

O

HO
NH+

F

F

F

O

Cl
NH+

F

F

F

N

O

SH O

O

N

NH+

F

F

F

O

O

O

N

NH2
+

O

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

N

O

F

NH+

F

F

F

N

O

HO

O

NH+

F

F

F

O

OH
NH+

F

F

F N

H

O

S
NH

NH+

F

F

F

O

O
NH2

+

F

F

Cl

O

O
NH2

+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

N

O

OH

NH+

F

F

F

N

O

Cl
NH+

F

F

F N

H

O

S

N

NH+

F

FCl

S

O

O
NH2

+

F

F

Cl

O

O
NH2

+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

N

O

NH+

F

F

F

O

OH
NH+

F

F

F N

H

O

SH O

O

NH

N

NH2
+

F

F

F

N

O

O
NH2

+

F

F

Cl

O

O
NH2

+

F

F

Cl

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O

O

NH+

F

F

F

O

O

NH2
+

F

F

F

O

S

NH2
+

F

F

F

O

N

N

S

O

O

N

NH+

F

F
NH

N

O

NH2
+

F

F

Cl

N

O

O
NH2

+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O
NH2

+ F

F

F

H

O

NH2
+

F

F

F

N

O
N

S

O

O

N

NH+

F

Cl
H2N

N

N

S

N-

NH2
+

F

F

Cl
NH

O

O
NH2

+

F

F

Cl
N

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O
NH+

F

F
O

O

NH2
+

F

F

O

O

S
NH2

+

F

F

F

O

NH+

F

F

F

N

N

SH

O

O
NH

N NH2
+

F

F

N

HN

N
N

SH

OH

O

NH

NNH2
+

F
O

N

N NH+

F
F

NH

O

NH+

F

F

FNH

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O NH+

F

F

F

O

O

S
NH2

+

F

F

F

O

O

S
NH2

+

F

F

F

O

O

S
NH2

+

F

F

F

O

O

S
NH2

+

F

F

F

O

O

NH2
+

F

F

F

O

NH+

F

F

F

N

SH

O

HO

NH

N
NH2

+

F

OH

NH

NH2

N
SH

OH

O

NH

N

NH2
+

F

O

N

N

N

S

NH
NH2

+ F

F
NH2

NH

N

N

N

NH+

F

F

F
NH

O

N

NNH2
+F

F
H2N

N

O

O
N

SNH+F

F
H2N

NH2

O

O

N

S

NH+

F

F

F
O

O

N
S

NH2
+

F

F

F

O

O

N
S

NH2
+

F

F

F

O

O

NH
NH2

+

F

F

F

O

O

NH

NH2
+

F

F

F

O

O

NH2
+

F

F

F

O

N

NH2
+

F

F

F

N

S

O

O NH

N
NH2

+ F

F
N

NH

N

SH O+

NH+

F

F

NH

N

N

SH

N-NH2
+F

F

N
N

N

S

NH

NH+

NH

F

NH N

N

NH

N NH+

F OH

NH2

N O

N
S

NH2
+F

F
H2N

O

O

O

S
O O

O

O O

N

S

NH2
+

F

F

F

O

O

N
S

NH
NH+

NH

F

F

O

O

NH2
+

F

F

O

C-

N
O

C-

N

Figure 6.7: Latent Space visualization. We start from the center molecule and decode the
neighborhood latent vectors (neighborhood in projected 2D space).

6.5 Summary

In this chapter we propose a new method to tackle the challenge of addressing both syn-

tax and semantic constraints in generative model for structured data. The newly proposed

stochastic lazy attribute presents a the systematical conversion from offline syntax and se-

mantic check to online guidance for stochastic generation, and empirically shows consistent

and significant improvement over previous models with similar computational cost.

So far we have introduced several ways to inspire deep graph learning with the classical

algorithms. In next part, we will cover the deep learning enhanced graph algorithms.

94

PART II: Deep learning enhanced

graph algorithms

Some of the human designed algorithms capture the right inductive bias of the problem,

but one potential issue is their capacity. For example, in greedy algorithms the human

designed heuristics are often not generic, and may fail in some special cases. Fortunately,

such algorithms still provide a good framework, and the submodules like the heuristic

functions inside the greedy algorithm can be potentially enhanced with deep learning.

In this part, we will focus on a set of problems over graphs that can be better tackled

with deep learning enhanced algorithms.

95

CHAPTER 7

LEARNING HEURISTICS IN GREEDY ALGORITHMS

The design of good heuristics or approximation algorithms for NP-hard combinatorial op-

timization problems often requires significant specialized knowledge and trial-and-error.

Can we automate this challenging, tedious process, and learn the algorithms instead? In

many real-world applications, it is typically the case that the same optimization problem

is solved again and again on a regular basis, maintaining the same problem structure but

differing in the data. This provides an opportunity for learning heuristic algorithms that

exploit the structure of such recurring problems. In this chapter, we propose a unique com-

bination of reinforcement learning and graph embedding to address this challenge. The

learned greedy policy behaves like a meta-algorithm that incrementally constructs a solu-

tion, and the action is determined by the output of a graph embedding network capturing the

current state of the solution. We show that our framework can be applied to a diverse range

of optimization problems over graphs, and learns effective algorithms for the Minimum

Vertex Cover, Maximum Cut and Traveling Salesman problems.

7.1 Introduction

Combinatorial optimization problems over graphs arising from numerous application do-

mains, such as social networks, transportation, telecommunications and scheduling, are

NP-hard, and have thus attracted considerable interest from the theory and algorithm de-

sign communities over the years. In fact, of Karp’s 21 problems in the seminal paper on

reducibility [119], 10 are decision versions of graph optimization problems, while most of

the other 11 problems, such as set covering, can be naturally formulated on graphs. Tra-

ditional approaches to tackling an NP-hard graph optimization problem have three main

flavors: exact algorithms, approximation algorithms and heuristics. Exact algorithms are

96

State Embedding the graph + partial solution Greedy node selection

1st iteration

2nd iteration

Θ

Θ

ΘΘ

Θ

Θ

Θ

ΘΘ

Θ

ReLuReLu

ReLuReLu

Embed
graph

Greedy: add
best node

Embed
graph

Greedy: add
best node

Figure 7.1: Illustration of the proposed framework as applied to an instance of Minimum Vertex
Cover. The middle part illustrates two iterations of the graph embedding, which results in node
scores (green bars).

based on enumeration or branch-and-bound with an integer programming formulation, but

may be prohibitive for large instances. On the other hand, polynomial-time approxima-

tion algorithms are desirable, but may suffer from weak optimality guarantees or empirical

performance, or may not even exist for inapproximable problems. Heuristics are often

fast, effective algorithms that lack theoretical guarantees, and may also require substantial

problem-specific research and trial-and-error on the part of algorithm designers.

All three paradigms seldom exploit a common trait of real-world optimization prob-

lems: instances of the same type of problem are solved again and again on a regular basis,

maintaining the same combinatorial structure, but differing mainly in their data. That is,

in many applications, values of the coefficients in the objective function or constraints can

be thought of as being sampled from the same underlying distribution. For instance, an

advertiser on a social network targets a limited set of users with ads, in the hope that they

spread them to their neighbors; such covering instances need to be solved repeatedly, since

the influence pattern between neighbors may be different each time. Alternatively, a pack-

age delivery company routes trucks on a daily basis in a given city; thousands of similar

optimizations need to be solved, since the underlying demand locations can differ.

Despite the inherent similarity between problem instances arising in the same domain,

classical algorithms do not systematically exploit this fact. However, in industrial settings,

97

a company may be willing to invest in upfront, offline computation and learning if such a

process can speed up its real-time decision-making and improve its quality. This motivates

the main problem we address:

Problem Statement: Given a graph optimization problem G and a distribution D of

problem instances, can we learn better heuristics that generalize to unseen instances

from D?

Recently, there has been some seminal work on using deep architectures to learn heuris-

tics for combinatorial problems, including the Traveling Salesman Problem [230, 20, 89].

However, the architectures used in these works are generic, not yet effectively reflecting

the combinatorial structure of graph problems. As we show later, these architectures often

require a huge number of instances in order to learn to generalize to new ones. Further-

more, existing works typically use the policy gradient for training [20], a method that is not

particularly sample-efficient. While the methods in [230, 20] can be used on graphs with

different sizes – a desirable trait – they require manual, ad-hoc input/output engineering to

do so (e.g. padding with zeros).

In this chapter, we address the challenge of learning algorithms for graph problems

using a unique combination of reinforcement learning and graph embedding. The learned

policy behaves like a meta-algorithm that incrementally constructs a solution, with the ac-

tion being determined by a graph embedding network over the current state of the solution.

More specifically, our proposed solution framework is different from previous work in the

following aspects:

1. Algorithm design pattern. We will adopt a greedy meta-algorithm design, whereby

a feasible solution is constructed by successive addition of nodes based on the graph struc-

ture, and is maintained so as to satisfy the problem’s graph constraints. Greedy algorithms

are a popular pattern for designing approximation and heuristic algorithms for graph prob-

lems. As such, the same high-level design can be seamlessly used for different graph

optimization problems.

98

2. Algorithm representation. We will use a graph embedding network, which is

called structure2vec (S2V) [55], to represent the policy in the greedy algorithm. This

novel deep learning architecture over the instance graph “featurizes” the nodes in the graph,

capturing the properties of a node in the context of its graph neighborhood. This allows the

policy to discriminate among nodes based on their usefulness, and generalizes to problem

instances of different sizes. This contrasts with recent approaches [230, 20] that adopt a

graph-agnostic sequence-to-sequence mapping that does not fully exploit graph structure.

3. Algorithm training. We will use fitted Q-learning to learn a greedy policy that is

parametrized by the graph embedding network. The framework is set up in such a way that

the policy will aim to optimize the objective function of the original problem instance di-

rectly. The main advantage of this approach is that it can deal with delayed rewards, which

here represent the remaining increase in objective function value obtained by the greedy

algorithm, in a data-efficient way; in each step of the greedy algorithm, the graph embed-

dings are updated according to the partial solution to reflect new knowledge of the benefit

of each node to the final objective value. In contrast, the policy gradient approach of [20]

updates the model parameters only once w.r.t. the whole solution (e.g. the tour in TSP).

The application of a greedy heuristic learned with our framework is illustrated in Fig-

ure 7.1. To demonstrate the effectiveness of the proposed framework, we apply it to

three extensively studied graph optimization problems. Experimental results show that our

framework, a single meta-learning algorithm, efficiently learns effective heuristics for each

of the problems. Furthermore, we show that our learned heuristics preserve their effective-

ness even when used on graphs much larger than the ones they were trained on. Since many

combinatorial optimization problems, such as the set covering problem, can be explicitly

or implicitly formulated on graphs, we believe that our work opens up a new avenue for

graph algorithm design and discovery with deep learning.

99

7.2 Common Formulation for Greedy Algorithms on Graphs

We will illustrate our framework using three optimization problems over weighted graphs.

Let G(V,E,w) denote a weighted graph, where V is the set of nodes, E the set of edges

and w : E → R+ the edge weight function, i.e. w(u, v) is the weight of edge (u, v) ∈ E.

These problems are:

• Minimum Vertex Cover (MVC): Given a graph G, find a subset of nodes S ⊆ V such

that every edge is covered, i.e. (u, v) ∈ E ⇔ u ∈ S or v ∈ S, and |S| is minimized.

• Maximum Cut (MAXCUT): Given a graph G, find a subset of nodes S ⊆ V such that

the weight of the cut-set
∑

(u,v)∈C w(u, v) is maximized, where cut-set C ⊆ E is the set

of edges with one end in S and the other end in V \ S.

• Traveling Salesman Problem (TSP): Given a set of points in 2-dimensional space, find

a tour of minimum total weight, where the corresponding graphG has the points as nodes

and is fully connected with edge weights corresponding to distances between points; a

tour is a cycle that visits each node of the graph exactly once.

We will focus on a popular pattern for designing approximation and heuristic algo-

rithms, namely a greedy algorithm. A greedy algorithm will construct a solution by sequen-

tially adding nodes to a partial solution S, based on maximizing some evaluation function

Q that measures the quality of a node in the context of the current partial solution. We will

show that, despite the diversity of the combinatorial problems above, greedy algorithms for

them can be expressed using a common formulation. Specifically:

1. A problem instance G of a given optimization problem is sampled from a distribution

D, i.e. the V , E and w of the instance graph G are generated according to a model or

real-world data.

2. A partial solution is represented as an ordered list S = (v1, v2, . . . , v|S|), vi ∈ V , and

S = V \ S the set of candidate nodes for addition, conditional on S. Furthermore, we

use a vector of binary decision variables x, with each dimension xv corresponding to a

100

node v ∈ V , xv = 1 if v ∈ S and 0 otherwise. One can also view xv as a tag or extra

feature on v.

3. A maintenance (or helper) procedure h(S) will be needed, which maps an ordered list

S to a combinatorial structure satisfying the specific constraints of a problem.

4. The quality of a partial solution S is given by an objective function c(h(S), G) based on

the combinatorial structure h of S.

5. A generic greedy algorithm selects a node v to add next such that v maximizes an eval-

uation function, Q(h(S), v) ∈ R, which depends on the combinatorial structure h(S) of

the current partial solution. Then, the partial solution S will be extended as

S := (S, v∗), where v∗ := argmaxv∈S Q(h(S), v), (7.1)

and (S, v∗) denotes appending v∗ to the end of a list S. This step is repeated until a

termination criterion t(h(S)) is satisfied.

In our formulation, we assume that the distribution D, the helper function h, the termination

criterion t and the cost function c are all given. Given the above abstract model, various

optimization problems can be expressed by using different helper functions, cost functions

and termination criteria:

• MVC: The helper function does not need to do any work, and c(h(S), G) = − |S|. The

termination criterion checks whether all edges have been covered.

• MAXCUT: The helper function divides V into two sets, S and its complement S =

V \S, and maintains a cut-set C = {(u, v) | (u, v) ∈ E, u ∈ S, v ∈ S}. Then, the cost is

c(h(S), G) =
∑

(u,v)∈C w(u, v), and the termination criterion does nothing.

• TSP: The helper function will maintain a tour according to the order of the nodes in

S. The simplest way is to append nodes to the end of partial tour in the same order as

S. Then the cost c(h(S), G) = −
∑|S|−1

i=1 w(S(i), S(i + 1)) − w(S(|S|), S(1)), and the

termination criterion is activated when S = V . Empirically, inserting a node u in the

101

partial tour at the position which increases the tour length the least is a better choice. We

adopt this insertion procedure as a helper function for TSP.

An estimate of the quality of the solution resulting from adding a node to partial solution S

will be determined by the evaluation functionQ, which will be learned using a collection of

problem instances. This is in contrast with traditional greedy algorithm design, where the

evaluation function Q is typically hand-crafted, and requires substantial problem-specific

research and trial-and-error. In the following, we will design a powerful deep learning

parameterization for the evaluation function, Q̂(h(S), v; Θ), with parameters Θ.

7.3 Representation: Graph Embedding

Since we are optimizing over a graph G, we expect that the evaluation function Q̂ should

take into account the current partial solution S as it maps to the graph. That is, xv = 1 for

all nodes v ∈ S, and the nodes are connected according to the graph structure. Intuitively,

Q̂ should summarize the state of such a “tagged” graphG, and figure out the value of a new

node if it is to be added in the context of such a graph. Here, both the state of the graph

and the context of a node v can be very complex, hard to describe in closed form, and may

depend on complicated statistics such as global/local degree distribution, triangle counts,

distance to tagged nodes, etc. In order to represent such complex phenomena over combi-

natorial structures, we will leverage a deep learning architecture over graphs, in particular

the structure2vec of [55], to parameterize Q̂(h(S), v; Θ).

7.3.1 Structure2Vec

We first provide an introduction to structure2vec. This graph embedding network

will compute a p-dimensional feature embedding µv for each node v ∈ V , given the cur-

rent partial solution S. More specifically, structure2vec defines the network archi-

tecture recursively according to an input graph structure G, and the computation graph

of structure2vec is inspired by graphical model inference algorithms, where node-

102

specific tags or features xv are aggregated recursively according to G’s graph topology.

After a few steps of recursion, the network will produce a new embedding for each node,

taking into account both graph characteristics and long-range interactions between these

node features. One variant of the structure2vec architecture will initialize the em-

bedding µ(0)
v at each node as 0, and for all v ∈ V update the embeddings synchronously at

each iteration as

µ(t+1)
v ← F

(
xv, {µ(t)

u }u∈N (v), {w(v, u)}u∈N (v) ; Θ
)
, (7.2)

where N (v) is the set of neighbors of node v in graph G, and F is a generic nonlinear

mapping such as a neural network or kernel function.

Based on the update formula, one can see that the embedding update process is carried

out based on the graph topology. A new round of embedding sweeping across the nodes

will start only after the embedding update for all nodes from the previous round has fin-

ished. It is easy to see that the update also defines a process where the node features xv

are propagated to other nodes via the nonlinear propagation function F . Furthermore, the

more update iterations one carries out, the farther away the node features will propagate

and get aggregated nonlinearly at distant nodes. In the end, if one terminates after T iter-

ations, each node embedding µ(T)
v will contain information about its T -hop neighborhood

as determined by graph topology, the involved node features and the propagation function

F . An illustration of two iterations of graph embedding can be found in Figure 7.1.

7.3.2 Parameterizing Q̂(h(S), v; Θ)

We now discuss the parameterization of Q̂(h(S), v; Θ) using the embeddings from S2V. In

particular, we design F to update a p-dimensional embedding µv as:

µ(t+1)
v ← relu

(
θ1xv + θ2

∑
u∈N (v)

µ(t)
u + θ3

∑
u∈N (v)

relu(θ4w(v, u))
)
, (7.3)

103

where θ1 ∈ Rp, θ2, θ3 ∈ Rp×p and θ4 ∈ Rp are the model parameters, and relu is the

rectified linear unit (relu(z) = max(0, z)) applied elementwise to its input. The summa-

tion over neighbors is one way of aggregating neighborhood information that is invariant

to permutations over neighbors. For simplicity of exposition, xv here is a binary scalar

as described earlier; it is straightforward to extend xv to a vector representation by incor-

porating any additional useful node information. To make the nonlinear transformations

more powerful, we can add some more layers of relu before we pool over the neighboring

embeddings µu.

Once the embedding for each node is computed after T iterations, we will use these

embeddings to define the Q̂(h(S), v; Θ) function. More specifically, we will use the em-

bedding µ(T)
v for node v and the pooled embedding over the entire graph,

∑
u∈V µ

(T)
u , as

the surrogates for v and h(S), respectively, i.e.

Q̂(h(S), v; Θ) = θ>5 relu([θ6

∑
u∈V

µ(T)
u , θ7 µ

(T)
v]) (7.4)

where θ5 ∈ R2p, θ6, θ7 ∈ Rp×p and [·, ·] is the concatenation operator. Since the embedding

µ
(T)
u is computed based on the parameters from the graph embedding network, Q̂(h(S), v)

will depend on a collection of 7 parameters Θ = {θi}7
i=1. The number of iterations T for

the graph embedding computation is usually small, such as T = 4.

The parameters Θ will be learned. Previously, [55] required a ground truth label for

every input graph G in order to train the structure2vec architecture. There, the output

of the embedding is linked with a softmax-layer, so that the parameters can by trained end-

to-end by minimizing the cross-entropy loss. This approach is not applicable to our case

due to the lack of training labels. Instead, we train these parameters together end-to-end

using reinforcement learning.

104

7.4 Training: Q-learning

We show how reinforcement learning is a natural framework for learning the evaluation

function Q̂. The definition of the evaluation function Q̂ naturally lends itself to a reinforce-

ment learning (RL) formulation [220], and we will use Q̂ as a model for the state-value

function in RL. We note that we would like to learn a function Q̂ across a set of m graphs

from distribution D, D = {Gi}mi=1, with potentially different sizes. The advantage of the

graph embedding parameterization in our previous section is that we can deal with different

graph instances and sizes seamlessly.

7.4.1 Reinforcement learning formulation

We define the states, actions and rewards in the reinforcement learning framework as fol-

lows:

1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already

represented nodes in the tagged graph with their embeddings, the state is a vector in

p-dimensional space,
∑

v∈V µv. It is easy to see that this embedding representation of

the state can be used across different graphs. The terminal state Ŝ will depend on the

problem at hand;

2. Transition: transition is deterministic here, and corresponds to tagging the node v ∈ G

that was selected as the last action with feature xv = 1;

3. Actions: an action v is a node of G that is not part of the current state S. Similarly,

we will represent actions as their corresponding p-dimensional node embedding µv, and

such a definition is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost

function after taking action v and transitioning to a new state S ′ := (S, v). That is,

r(S, v) = c(h(S ′), G)− c(h(S), G), (7.5)

105

Table 7.1: Definition of reinforcement learning components for each of the three problems
considered.

Problem State Action Helper function Reward Termination

MVC subset of nodes selected so far add node to subset None -1 all edges are covered
MAXCUT subset of nodes selected so far add node to subset None change in cut weight cut weight cannot be improved
TSP partial tour grow tour by one node Insertion operation change in tour cost tour includes all nodes

and c(h(∅), G) = 0. As such, the cumulative reward R of a terminal state Ŝ coincides

exactly with the objective function value of the Ŝ, i.e. R(Ŝ) =
∑|Ŝ|

i=1 r(Si, vi) is equal

to c(h(Ŝ), G);

5. Policy: based on Q̂, a deterministic greedy policy π(v|S) := argmaxv′∈S Q̂(h(S), v′)

will be used. Selecting action v corresponds to adding a node of G to the current partial

solution, which results in collecting a reward r(S, v).

Table 7.1 shows the instantiations of the reinforcement learning framework for the three

optimization problems considered herein. We let Q∗ denote the optimal Q-function for

each RL problem. Our graph embedding parameterization Q̂(h(S), v; Θ) from Section 7.3

will then be a function approximation model for it, which will be learned via n-step Q-

learning.

7.4.2 Learning algorithm

In order to perform end-to-end learning of the parameters in Q̂(h(S), v; Θ), we use a com-

bination of n-step Q-learning [220] and fitted Q-iteration [188], as illustrated in Algo-

rithm 7. We use the term episode to refer to a complete sequence of node additions starting

from an empty solution, and until termination; a step within an episode is a single action

(node addition).

Standard (1-step) Q-learning updates the function approximator’s parameters at each

step of an episode by performing a gradient step to minimize the squared loss:

(y − Q̂(h(St), vt; Θ))2, (7.6)

where y = γmaxv′ Q̂(h(St+1), v′; Θ) + r(St, vt) for a non-terminal state St. The n-step

106

Q-learning helps deal with the issue of delayed rewards, where the final reward of interest

to the agent is only received far in the future during an episode. In our setting, the final

objective value of a solution is only revealed after many node additions. As such, the 1-

step update may be too myopic. A natural extension of 1-step Q-learning is to wait n steps

before updating the approximator’s parameters, so as to collect a more accurate estimate

of the future rewards. Formally, the update is over the same squared loss (7.6), but with a

different target, y =
∑n−1

i=0 r(St+i, vt+i)+γmaxv′ Q̂(h(St+n), v′; Θ). The fitted Q-iteration

approach has been shown to result in faster learning convergence when using a neural

network as a function approximator [188, 159], a property that also applies in our setting, as

we use the embedding defined in Section 7.3.2. Instead of updating the Q-function sample-

by-sample as in Equation (7.6), the fitted Q-iteration approach uses experience replay to

update the function approximator with a batch of samples from a dataset E, rather than

the single sample being currently experienced. The dataset E is populated during previous

episodes, such that at step t+n, the tuple (St, at, Rt,t+n, St+n) is added to E, withRt,t+n =∑n−1
i=0 r(St+i, at+i). Instead of performing a gradient step in the loss of the current sample

as in (7.6), stochastic gradient descent updates are performed on a random sample of tuples

drawn from E.

It is known that off-policy reinforcement learning algorithms such as Q-learning can be

more sample efficient than their policy gradient counterparts [92]. This is largely due to

the fact that policy gradient methods require on-policy samples for the new policy obtained

after each parameter update of the function approximator.

107

Algorithm 7 Q-learning for the Greedy Algorithm
1: Initialize experience replay memoryM to capacity N

2: for episode e = 1 to L do

3: Draw graph G from distribution D

4: Initialize the state to empty S1 = ()

5: for step t = 1 to T do

6: vt =

random node v ∈ St, w.p. ε

argmaxv∈St Q̂(h(St), v; Θ), otherwise

7: Add vt to partial solution: St+1 := (St, vt)

8: if t ≥ n then

9: Add tuple (St−n, vt−n, Rt−n,t, St) toM

10: Sample random batch from B
iid.∼ M

11: Update Θ by SGD over (7.6) for B

12: end if

13: end for

14: end for

15: return Θ

7.5 Experimental Evaluation

Instance generation. To evaluate the proposed method against other approximation/heuristic

algorithms and deep learning approaches, we generate graph instances for each of the three

problems. For the MVC and MAXCUT problems, we generate Erdős-Renyi (ER) [72]

and Barabasi-Albert (BA) [3] graphs which have been used to model many real-world net-

works. For a given range on the number of nodes, e.g. 50-100, we first sample the number

of nodes uniformly at random from that range, then generate a graph according to either

ER or BA. For the two-dimensional TSP problem, we use an instance generator from the

DIMACS TSP Challenge [114] to generate uniformly random or clustered points in the 2-D

108

grid. We refer the reader to the Appendix C.3.1 for complete details on instance generation.

We have also tackled the Set Covering Problem, for which the description and results are

deferred to Appendix C.1.

Structure2Vec Deep Q-learning. For our method, S2V-DQN, we use the graph

representations and hyperparameters described in Appendix C.3.4. The hyperparameters

are selected via preliminary results on small graphs, and then fixed for large ones. Note

that for TSP, where the graph is fully-connected, we build the K-nearest neighbor graph

(K = 10) to scale up to large graphs. For MVC, where we train the model on graphs with

up to 500 nodes, we use the model trained on small graphs as initialization for training on

larger ones. We refer to this trick as “pre-training”, which is illustrated in Figure C.2.

Pointer Networks with Actor-Critic. We compare our method to a method, based on

Recurrent Neural Networks (RNNs), which does not make full use of graph structure [20].

We implement and train their algorithm (PN-AC) for all three problems. The original

model only works on the Euclidian TSP problem, where each node is represented by its

(x, y) coordinates, and is not designed for problems with graph structure. To handle other

graph problems, we describe each node by its adjacency vector instead of coordinates. To

handle different graph sizes, we use a singular value decomposition (SVD) to obtain a rank-

8 approximation for the adjacency matrix, and use the low-rank embeddings as inputs to

the pointer network.

Baseline Algorithms. Besides the PN-AC, we also include powerful approximation

or heuristic algorithms from the literature. These algorithms are specifically designed for

each type of problem:

• MVC: MVCApprox iteratively selects an uncovered edge and adds both of its end-

points [172]. We designed a stronger variant, called MVCApprox-Greedy, that greedily

picks the uncovered edge with maximum sum of degrees of its endpoints. Both algo-

rithms are 2-approximations.

• MAXCUT: We include MaxcutApprox, which maintains the cut set (S, V \S) and moves

109

a node from one side to the other side of the cut if that operation results in cut weight

improvement [132]. To make MaxcutApprox stronger, we greedily move the node that

results in the largest improvement in cut weight. A randomized, non-greedy algorithm,

referred to as SDP, is also implemented based on [85]; 100 solutions are generated for

each graph, and the best one is taken.

• TSP: We include the following approximation algorithms: Minimum Spanning Tree

(MST), Farthest insertion (Farthest), Cheapest insertion (Cheapest), Closest insertion

(Closest), Christofides and 2-opt. We also add the Nearest Neighbor heuristic (Nearest);

see [13] for algorithmic details.

Details on Validation and Testing. For S2V-DQN and PN-AC, we use a CUDA K80-

enabled cluster for training and testing. Training convergence for S2V-DQN is discussed

in Appendix C.3.6. S2V-DQN and PN-AC use 100 held-out graphs for validation, and we

report the test results on another 1000 graphs. We use CPLEX[106] to get optimal solutions

for MVC and MAXCUT, and Concorde [12] for TSP (details in Appendix C.3.1). All

approximation ratios reported in this chapter are with respect to the best (possibly optimal)

solution found by the solvers within 1 hour. For MVC, we vary the training and test graph

sizes in the ranges {15–20, 40–50, 50–100, 100–200, 400–500}. For MAXCUT and TSP,

which involve edge weights, we train up to 200–300 nodes due to the limited computation

resource. For all problems, we test on graphs of size up to 1000–1200.

During testing, instead of using Active Search as in [20], we simply use the greedy

policy. This gives us much faster inference, while still being powerful enough. We mod-

ify existing open-source code to implement both S2V-DQN 1 and PN-AC 2. Our code is

publicly available 3.

1https://github.com/Hanjun-Dai/graphnn
2https://github.com/devsisters/pointer-network-tensorflow
3https://github.com/Hanjun-Dai/graph comb opt

110

15-20 40-50 50-100 100-200 400-500
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
MVCApprox
MVCApprox-Greedy

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
SDP
MaxcutApprox

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
Farthest
2-opt
PN-AC
Cheapest
Christofides
Closest
Nearest
MST

(a) MVC BA (b) MAXCUT BA (c) TSP random

Figure 7.2: Approximation ratio on 1000 test graphs. Note that on MVC, our performance is
pretty close to optimal. In this figure, training and testing graphs are generated according to the
same distribution.

7.5.1 Comparison of solution quality

To evaluate the solution quality on test instances, we use the approximation ratio of each

method relative to the optimal solution, averaged over the set of test instances. The approx-

imation ratio of a solution S to a problem instance G isR(S,G) = max(OPT (G)
c(h(S))

, c(h(S))
OPT (G)

),

where c(h(S)) is the objective value of solution S, andOPT (G) is the best-known solution

value of instance G.

Figure 7.2 shows the average approximation ratio across the three problems; other graph

types are in Figure C.1 in the appendix. In all of these figures, a lower approximation ratio

is better. Overall, our proposed method, S2V-DQN, performs significantly better than other

methods. In MVC, the performance of S2V-DQN is particularly good, as the approximation

ratio is roughly 1 and the bar is barely visible.

The PN-AC algorithm performs well on TSP, as expected. Since the TSP graph is es-

sentially fully-connected, graph structure is not as important. On problems such as MVC

and MAXCUT, where graph information is more crucial, our algorithm performs signifi-

cantly better than PN-AC. For TSP, The Farthest and 2-opt algorithm perform as well as

S2V-DQN, and slightly better in some cases. However, we will show later that in real-world

TSP data, our algorithm still performs better.

111

7.5.2 Generalization to larger instances

The graph embedding framework enables us to train and test on graphs of different sizes,

since the same set of model parameters are used. How does the performance of the learned

algorithm using small graphs generalize to test graphs of larger sizes? To investigate this,

we train S2V-DQN on graphs with 50–100 nodes, and test its generalization ability on

graphs with up to 1200 nodes. Table 7.2 summarizes the results, and full results are in

Appendix C.3.3.

Table 7.2: S2V-DQN’s generalization ability. Values are average approximation ratios over 1000
test instances. These test results are produced by S2V-DQN algorithms trained on graphs with
50-100 nodes.

Test Size 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200
MVC (BA) 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062

MAXCUT (BA) 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
TSP (clustered) 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065

We can see that S2V-DQN achieves a very good approximation ratio. Note that the

“optimal” value used in the computation of approximation ratios may not be truly optimal

(due to the solver time cutoff at 1 hour), and so CPLEX’s solutions do typically get worse

as problem size grows. This is why sometimes we can even get better approximation ratio

on larger graphs.

7.5.3 Scalability & Trade-off between running time and approximation ratio

To construct a solution on a test graph, our algorithm has polynomial complexity ofO(k|E|)

where k is number of greedy steps (at most the number of nodes |V |) and |E| is number of

edges. For instance, on graphs with 1200 nodes, we can find the solution of MVC within

11 seconds using a single GPU, while getting an approximation ratio of 1.0062. For dense

graphs, we can also sample the edges for the graph embedding computation to save time, a

measure we will investigate in the future.

Figure 7.3 illustrates the approximation ratios of various approaches as a function of

112

running time. All algorithms report a single solution at termination, whereas CPLEX re-

ports multiple improving solutions, for which we recorded the corresponding running time

and approximation ratio. Figure C.3 (Appendix C.3.7) includes other graph sizes and types,

where the results are consistent with Figure 7.3.

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

(a) MVC BA 200-300 (b) MAXCUT BA 200-300

Figure 7.3: Time-
approximation trade-off
for MVC and MAXCUT. In
this figure, each dot repre-
sents a solution found for a
single problem instance, for
100 instances. For CPLEX,
we also record the time
and quality of each solution
it finds, e.g. CPLEX-1st
means the first feasible
solution found by CPLEX.

Figure 7.3 shows that, for MVC, we are slightly slower than the approximation algo-

rithms but enjoy a much better approximation ratio. Also note that although CPLEX found

the first feasible solution quickly, it also has much worse ratio; the second improved solu-

tion found by CPLEX takes similar or longer time than our S2V-DQN, but is still of worse

quality. For MAXCUT, the observations are still consistent. One should be aware that

sometimes our algorithm can obtain better results than 1-hour CPLEX, which gives ratios

below 1.0. Furthermore, sometimes S2V-DQN is even faster than the MaxcutApprox, al-

though this comparison is not exactly fair, since we use GPUs; however, we can still see

that our algorithm is efficient.

7.5.4 Experiments on real-world datasets

In addition to the experiments for synthetic data, we identified sets of publicly available

benchmark or real-world instances for each problem, and performed experiments on them.

A summary of results is in Table 7.3, and details are given in Appendix C.2. S2V-DQN

significantly outperforms all competing methods for MVC, MAXCUT and TSP.

113

Table 7.3: Realistic data experiments, results summary. Values are average approximation ratios.

Problem Dataset S2V-DQN Best Competitor 2nd Best Competitor

MVC MemeTracker 1.0021 1.2220 (MVCApprox-Greedy) 1.4080 (MVCApprox)
MAXCUT Physics 1.0223 1.2825 (MaxcutApprox) 1.8996 (SDP)
TSP TSPLIB 1.0475 1.0800 (Farthest) 1.0947 (2-opt)

7.5.5 Discovery of interesting new algorithms

We further examined the algorithms learned by S2V-DQN, and tried to interpret what

greedy heuristics have been learned. We found that S2V-DQN is able to discover new and

interesting algorithms which intuitively make sense but have not been analyzed before. For

instance, S2V-DQN discovers an algorithm for MVC where nodes are selected to balance

between their degrees and the connectivity of the remaining graph (Appendix Figures C.4

and C.7). For MAXCUT, S2V-DQN discovers an algorithm where nodes are picked to

avoid cancelling out existing edges in the cut set (Appendix Figure C.5). These results

suggest that S2V-DQN may also be a good assistive tool for discovering new algorithms,

especially in cases when the graph optimization problems are new and less well-studied.

7.6 Summary

We presented an end-to-end machine learning framework for automatically designing greedy

heuristics for hard combinatorial optimization problems on graphs. Central to our approach

is the combination of a deep graph embedding with reinforcement learning. Through exten-

sive experimental evaluation, we demonstrate the effectiveness of the proposed framework

in learning greedy heuristics as compared to manually-designed greedy algorithms. The

excellent performance of the learned heuristics is consistent across multiple different prob-

lems, graph types, and graph sizes, suggesting that the framework is a promising new tool

for designing algorithms for graph problems.

In next chapter, we will show several extensions of this greedy algorithm learning

framework to real-world application scenarios.

114

CHAPTER 8

EXTENSIONS OF LEARNING GREEDY ALGORITHMS OVER GRAPHS

In this chapter, we present two extensions of the deep learning enhanced greedy graph algo-

rithm framework. In Section 8.1, we formulate the graph adversarial attack as a combina-

torial optimization problem, in which a hierarchical action variant of S2V-DQN is adopted.

In Section 8.2, a set of real-world applications are formulated as exploration over graph,

in which a policy-gradient based method is introduced. This chapter will mainly cover the

overview of problem modeling and technical contributions, and more details can be found

in the original papers [57, 58].

8.1 Hierarchical action space for graph adversarial attack

Deep learning on graph structures has shown exciting results in various applications. How-

ever, few attentions have been paid to the robustness of such models, in contrast to nu-

merous research work for image or text adversarial attack and defense. In this chapter, we

focus on the adversarial attacks that fool deep learning models by modifying the combina-

torial structure of data. We mainly focus on a reinforcement learning based attack method

that learns the generalizable attack policy, while only requiring prediction labels from the

target classifier. For the further proposed attack methods based on genetic algorithms and

gradient descent in the scenario where additional prediction confidence or gradients are

available, we ask readers to refer to the original paper.

8.1.1 Problem statement

Given a learned classifier f and an instance from the dataset (G, c, y) ∈ D, the graph

adversarial attacker g(·, ·) : G × D 7→ G asks to modify the graph G = (V,E) into

115

G̃ = (Ṽ , Ẽ), such that

max
G̃

I(f(G̃, c) 6= y)

s.t. G̃ = g(f, (G, c, y))

I(G, G̃, c) = 1. (8.1)

Here I(·, ·, ·) : G × G × V 7→ {0, 1} is an equivalency indicator that tells whether two

graphs G and G̃ are equivalent under the classification semantics.

In this paper, we focus on the modifications to the discrete structures. The attacker g is

allowed to add or delete edges from G to construct the new graph. Such type of actions are

rich enough, since adding or deleting nodes can be performed by a series of modifications

to the edges. Also modifying the edges is harder than modifying the nodes, since choosing

a node only requires O(|V |) complexity, while naively choosing an edge requires O(|V |2).

Since the attacker is aimed at fooling the classifier f , instead of actually changing

the true label of the instance, the equivalency indicator should be defined first to restrict

the modifications an attacker can perform. We use two ways to define the equivalency

indicator:

1) Explicit semantics. In this case, a gold standard classifier f ∗ is assumed to be accessible.

Thus the equivalency indicator I(·, ·, ·) is defined as:

I(G, G̃, c) = I(f ∗(G, c) = f ∗(G̃, c)), (8.2)

where I(·) ∈ {0, 1} is an indicator function.

2) Small modifications. In many cases when explicit semantics is unknown, we will ask the

116

!"($)

!&(')

……
!"(()

!&(()
)'∗

+,-
(',/)

……

)/∗
+,0

(',/)

S2V Module)'∗	value S2V)/∗	valueargmax
7

)'∗ (89, :)

:9(')

argmax
7

)/∗ (89, :9' , :)

:9(/)

:9
89 89;'

Figure 8.1: Illustration of applying hierarchical Q-function to propose adversarial attack
solutions. Here adding a single edge at is decomposed into two decision steps a(1)

t and a(2)
t ,

with two Q-functions Q1∗ and Q2∗, respectively.

attacker to make as few modifications as possible within a neighborhood graph:

I(G, G̃, c) =I(|(E − Ẽ) ∪ (Ẽ − E)| < m)

· I(Ẽ ⊆ N (G, b))). (8.3)

In the above equation, m is the maximum number of edges that allowed to modify, and

N (G, b) = {(u, v) : u, v ∈ V, d(G)(u, v) <= b} defines the b-hop neighborhood graph,

where d(G)(u, v) ∈ {1, 2, . . .} is the distance between two nodes in graph G.

8.1.2 Main formulation

Given an instance (G, c, y) and a target classifier f , we model the attack procedure as a

Finite Horizon Markov Decision ProcessM(m)(f,G, c, y). The definition of such MDP is

as follows:

• Action As we mentioned in Sec 8.1, the attacker is allowed to add or delete edges in the

graph. So a single action at time step t is at ∈ A ⊆ V ×V . However, simply performing

actions in O(|V |2) space is too expensive. We will shortly show how to use hierarchical

action to decompose this action space.

• State The state st at time t is represented by the tuple (Ĝt, c), where Ĝt is a partially

modified graph with some of the edges added/deleted from G.

• Reward The purpose of the attacker is to fool the target classifier. So the non-zero

117

reward is only received at the end of the MDP, with reward being

r
(
(G̃, c)

)
=

1 : f(G̃, c) 6= y

−1 : f(G̃, c) = y

(8.4)

In the intermediate steps of modification, no reward will be received. That is to say,

r(st, at) = 0,∀t = 1, 2, . . . ,m − 1. In PBA-C setting where the prediction confidence

of the target classifier is accessible, we can also use r
(
(G̃, c)

)
= L(f(G̃, c), y) as the

reward.

• Terminal Once the agent modifies m edges, the process stops. For simplicity, we focus

on the MDP with fixed length. In the case when fewer modification is enough, we can

simply let the agent to modify the dummy edges.

Given the above settings, a sample trajectory from this MDP will be: (s1, a1, r1, . . . , sm,

am, rm, sm+1), where s1 = (G, c), st = (Ĝt, c), ∀t ∈ {2, . . . ,m} and sm+1 = (G̃, c). The

last step will have reward rm = r(sm, am) = r
(
(G̃, c)

)
and all other intermediate rewards

are zero: rt = 0, ∀t ∈ {1, 2, . . . ,m − 1}. Since this is a discrete optimization problem

with a finite horizon, we use Q-learning to learn the MDPs. In our preliminary experiments

we also tried with policy optimization methods like Advantage Actor Critic, but found

Q-learning works more stable. So below we focus on the modeling with Q-learning.

Q-learning is an off-policy optimization where it fits the Bellman optimality equation

directly as below:

Q∗(st, at) = r(st, at) + γmax
a′

Q∗(st+1, a
′). (8.5)

This implicitly suggests a greedy policy:

π(at|st;Q∗) = arg max
at

Q∗(st, at). (8.6)

118

In our finite horizon case, γ is fixed to 1. Note that directly operating the actions inO(|V |2)

space is too expensive for large graphs. Thus we propose to decompose the action at ∈ V ×

V into at = (a
(1)
t , a

(2)
t), where a(1)

t , a
(2)
t ∈ V . Thus a single edge action at is decomposed

into two ends of this edge. The hierarchical Q-function is then modeled as below:

Q1∗(st, a
(1)
t) = max

a
(2)
t
Q2∗(st, a

(1)
t , a

(2)
t)

Q2∗(st, a
(1)
t , a

(2)
t) = r

(
st, at = (a

(1)
t , a

(2)
t)
)

+

max
a
(1)
t+1
Q1∗(st, a

(1)
t+1). (8.7)

In the above formulation, Q1∗ and Q2∗ are two functions that implement the original Q∗.

An action is considered as completed only when a pair of (a
(1)
t , a

(2)
t) is chosen. Thus the

reward will only be valid after a(2)
t is made. It is easy to see that such decomposition

has the same optimality structure as in Eq (8.5), but making an action would only require

O(2× |V |) = O(|V |) complexity. Figure 8.1 illustrates this process.

Take a further look at Eq (8.7), since only the reward in last time step is non-zero, and

also the budget of modification m is given, we can explicitly unroll the Bellman equations

as:

Q∗1,1(s1, a
(1)
1) = max

a
(2)
1
Q∗1,2(s1, a

(1)
1 , a

(2)
1)

Q∗1,2(s1, a
(1)
1 , a

(2)
1) = max

a
(1)
2
Q∗2,1(s2, a

(1)
2)

. . .

Q∗m,1(sm, a
(1)
m) = max

a
(2)
m
Q∗m,2(sm, a

(1)
m , a

(2)
m)

Q∗m,2(sm, a
(1)
m , a(2)

m) = r(G̃, c) (8.8)

To make notations compact, we still use Q∗ = {Q∗t,1|2}mt=1 to denote the Q-function.

Since each sample in the dataset defines an MDP, it is possible to learn a separate Q func-

tion for each MDP M
(m)
i (f,Gi, ci, yi), i = 1, . . . , N . However, we here focus on a more

119

practical and challenging setting, where only one Q∗ is learned. The learned Q-function is

thus asked to generalize or transfer over all the MDPs:

max
θ

N∑
i=1

Et,a=arg maxat Q
∗(at|st;θ)[r

(
(G̃i, ci)

)
], (8.9)

where Q∗ is parameterized by θ. From here, we can utilize the technique introduced in

Chapter 7 to train the attacking model. The inference framework is depicted in Figure 8.1.

For more details on the experiments, please refer to the original paper [57].

8.2 Optimal graph touring for program and App testing

This section considers the problem of efficient exploration of unseen environments, a key

challenge in AI. We propose a ‘learning to explore’ framework where we learn a policy

from a distribution of environments. At test time, presented with an unseen environment

from the same distribution, the policy aims to generalize the exploration strategy to visit

the maximum number of unique states in a limited number of steps. We particularly focus

on environments with graph-structured state-spaces that are encountered in many important

real-world applications like software testing and map building. We formulate this task as a

reinforcement learning problem where the ‘exploration’ agent is rewarded for transitioning

to previously unseen environment states and employ a graph-structured memory to encode

the agent’s past trajectory.

8.2.1 Problem statement

We consider two different exploration settings. The first setting concerns exploration in

an unknown environment, where the agent observes a graph at each step, with each node

corresponding to a visited unique environment state, and each edge corresponding to an

experienced transition. In this setting, the graph grows in size during an episode, and the

agent maximizes the speed of this growth.

120

GGNN GGNN GGNN

t

Evolving
graph
memory

GGNN

Simulator

Simulator
feedback

domain specific actions
such as test cases for programs, or click/scroll events for app exploration

𝜋 𝑥# 𝐹(ℎ#))

GGNN readout
on visible graph

𝜇)
(*)

𝜇+
(*)

𝜇,
(*)

L

𝜇)
(-)

𝜇+
(-)

𝜇,
(-)

Message
Passing
steps

Attentive
aggregation

𝐺* 𝐺) 𝐺+ 𝐺,

current

history

unseen

𝒢: graph to be
explored

Figure 8.2: Overview of our meta exploration model for exploring a known but complicated
graph structured environment. The GGNN [145] module captures the graph structures at
each step, and the representations of each step are pooled together to form a representation
of the exploration history.

The second setting is about exploration in a known but complex environment, and is

motivated by program testing. In this setting, we have access to the program source code

and thus also its graph structure, where the nodes in the graph correspond to the pro-

gram branches and edges correspond to the syntactic and semantic relationship between

branches. The challenge here is to reason about and understand the graph structure, and

come up with the right actions to increase graph coverage. Each action corresponds to a test

input which resides in a huge action space and has rich structures. Finding such valuable

inputs is highly non-trivial in automated testing literature [84, 202, 203, 36, 141], because

of challenges in modeling complex program semantics for precise logical reasoning.

8.2.2 An RL formulation for graph exploration

We formalize both settings with the same formulation. See Figure 8.2 for illustration.

At each step t, the agent observes a graph Gt−1 = (Vt−1, Et−1) and a coverage mask

ct−1 : Vt−1 7→ {0, 1}, indicating which nodes have been covered in the exploration process

so far. The agent generates an action xt, the environment takes this action and returns a

new graph Gt = (Vt, Et) with a new ct. In the first setting above, the coverage mask ct is 1

for any node v ∈ Vt as the graph only contains visited nodes. While in the second setting,

the graph Gt is constant from step to step, and the coverage mask ct(v) = 1 if v is covered

in the past by some actions and 0 otherwise. We set the initial observation for t = 0 to be

121

c0 mapping any node to 0, and in the first exploration setting G0 to be an empty graph.

The exploration process for a graph structured environment can be seen as a finite hori-

zon Markov Decision Process (MDP), with the number of actions or steps T being the

budget for exploration.

Action: The space for actions xt is problem specific. We used the letter x instead

of the more common letter a to highlight that these actions are sometimes closer to the

typical inputs to a neural network, which lives in an exponentially large space with rich

structures, than to the more common fixed finite action spaces in typical RL environments.

In particular, for testing programs, each action is a test input to the program, which can be

text (sequences of characters) or images (2D array of characters).

Our task is to provide a sequence of T actions x1, x2, . . . , xT to maximize an exploration

objective. An obvious choice is the number of unique nodes (environment states) covered,

i.e.
∑

v∈VT cT (v). To handle different graph sizes during training, we further normalize this

objective by the maximum possible size of the graph |V|1, which is the number of nodes in

the underlying full graph (for the second exploration setting this is the same as |VT |). We

therefore get the objective in (8.10).

max
{x1,x2,...,xT }

∑
v∈VT

cT (v)/|V| (8.10)
rt =

∑
v∈Vt

ct(v)/|V| −
∑
v∈Vt−1

ct−1(v)/|V|,

(8.11)

Reward: Given the above objective, we can define the per-step reward rt as in (8.11). It

is easy to verify that
∑T

t=1 rt =
∑

v∈VT cT (v)/|V|, i.e., the cumulative reward of the MDP

is the same as the objective in (8.10), as
∑

v∈V0 c0(v) = 0. In this definition, the reward at

time step t is given to only the additional coverage introduced by the action xt.

State: Instead of feeding in only the observation (Gt, ct) at each step to the agent, we

use an agent state representation that contains the full interaction history in the episode

ht = {(xτ , Gτ , cτ)}t−1
τ=0, with x0 = ∅. An agent policy maps each ht to an action xt.

1When it is unknown, we can simply divide the reward by T to normalize the total reward.

122

PART III: Towards inductive reasoning

with graph structures

So far we have discussed the situations where we have an algorithm at hand, and how

can we integrate the deep learning better for the specific tasks. This procedure can be

viewed as deductive reasoning. In this section, we are taking a different perspective, where

we want the neural network to create the algorithm structures. This can be seen as an

inductive reasoning procedure.

Algorithms are specifications of computation steps with dependencies. From this as-

pect, the algorithm itself is with graph structure. Thus in this section, we are extending

the view of structures from the domain of applications into more generic aspect, i.e., the

structures of computation. However, the inductive reasoning is typically hard. Like causal

reasoning, there could be multiple plausible explanations of the observations. Sometime it

is even hard to find such one.

In the following part of the document, we are taking an initial attempt towards this

direction, where in Chapter 9 we first view the logic rules as one of the simplest form

of algorithms we are going to reason about. Following this, we extend further in this

direction, where we tackle the problem of retrosynthesis in Chapter 10. As will be shown

in Chapter 9, the reinforcement learning is a straightforward but not sample efficient way

of performing such reasoning. In the retrosynthesis work, we explore more sample efficient

way of performing reasoning about the structures.

123

CHAPTER 9

REASONING THE LOOP INVARIANT FOR PROGRAM VERIFICATION

A fundamental problem in program verification concerns inferring loop invariants. The

problem is undecidable and even practical instances are challenging. Inspired by how hu-

man experts construct loop invariants, we propose a reasoning framework CODE2INV that

constructs the solution by multi-step decision making and querying an external program

graph memory block. By training with reinforcement learning, CODE2INV captures rich

program features and avoids the need for ground truth solutions as supervision. Compared

to previous learning tasks in domains with graph-structured data, it addresses unique chal-

lenges, such as a binary objective function and an extremely sparse reward that is given

by an automated theorem prover only after the complete loop invariant is proposed. We

evaluate CODE2INV on a suite of 133 benchmark problems and compare it to three state-

of-the-art systems. It solves 106 problems compared to 73 by a stochastic search-based

system, 77 by a heuristic search-based system, and 100 by a decision tree learning-based

system. Moreover, the strategy learned can be generalized to new programs: compared to

solving new instances from scratch, the pre-trained agent is more sample efficient.

9.1 Introduction

The growing ubiquity and complexity of software has led to a dramatic increase in software

bugs and security vulnerabilities that pose enormous costs and risks. Program verification

technology enables programmers to prove the absence of such problems at compile-time

before deploying their program. One of the main activities underlying this technology

involves inferring a loop invariant—a logical formula that constitutes an abstract specifi-

cation of a loop—for each loop in the program. Obtaining loop invariants enables a broad

and deep range of correctness and security properties to be proven automatically by a va-

124

riety of program verification tools spanning type checkers, static analyzers, and theorem

provers. Notable examples include Microsoft Code Contracts for .NET programs [74] and

the Verified Software Toolchain spanning C source code to machine language [11].

Many different approaches have been proposed in the literature to infer loop invariants.

The problem is undecidable, however, and even practical instances are challenging, which

greatly limits the benefits of program verification technology. Existing approaches suffer

from key drawbacks: they are purely search-based, or they use hand-crafted features, or

they are based on supervised learning. The performance of search-based approaches is

greatly hindered by their inability to learn from past mistakes. Hand-crafted features limit

the space of possible invariants, e.g., [79] is limited to features of the form x ± y ≤ c

where c is a constant, and thus cannot handle invariants that involve x+ y ≤ z for program

variables x, y, z. Finally, obtaining ground truth solutions needed by supervised learning is

hindered by the undecidability of the loop invariant generation problem.

In this chapter, we propose CODE2INV, an end-to-end learning-based approach to infer

loop invariants. CODE2INV has the ability to automatically learn rich latent representations

of desirable invariants, and can avoid repeating similar mistakes. Furthermore, it lever-

ages reinforcement learning to discover invariants by partial feedback from trial-and-error,

without needing ground truth solutions for training.

The design of CODE2INV is inspired by the reasoning exercised by human experts.

Given a program, a human expert first maps the program to a well-organized structural rep-

resentation, and then composes the loop invariant step by step. Based on such reasoning,

different parts of the representation get highlighted at each step. To mimic this procedure,

we utilize a graph neural network model (GNN) to construct the structural external memory

representation of the program. The multi-step decision making is implemented by an au-

toregressive model, which queries the external memory using an attention mechanism. The

decision at each step is a syntax- and semantics-guided decoder which generates subparts

of the loop invariant.

125

CODE2INV employs a reinforcement learning approach since it is computationally in-

tensive to obtain ground truth solutions. Although reinforcement learning algorithms have

shown remarkable success in domains like combinatorial optimization [20, 123], our set-

ting differs in two crucial ways: first, it has a non-continuous objective function (i.e., a

proposed loop invariant is correct or not); and second, the positive reward is extremely

sparse and given only after the correct loop invariant is proposed, by an automated theorem

prover [161]. We therefore model the policy learning as a multi-step decision making pro-

cess: it provides a fine-grained reward at each step of building the loop invariant, followed

by continuous feedback in the last step based on counterexamples collected by the agent

itself during trial-and-error learning.

We evaluate CODE2INV on a suite of 133 benchmark problems from recent works [65,

170, 79] and the 2017 SyGuS program synthesis competition [5]. We also compare it

to three state-of-the-art systems: a stochastic search-based system C2I [204], a heuristic

search-based system LOOPINVGEN [170], and and a decision tree learning-based system

ICE-DT [79]. CODE2INV solves 106 problems, versus 73 by C2I, 77 by LOOPINVGEN,

and 100 by ICE-DT. Moreover, CODE2INV exhibits better learning, making orders-of-

magnitude fewer calls to the theorem prover than these systems.

9.2 Background

We formally define the loop invariant inference and learning problems by introducing

Hoare logic [102], which comprises a set of axioms and inference rules for proving pro-

gram correctness assertions. Let P and Q denote predicates over program variables and let

S denote a program. We say that Hoare triple {P} S {Q} is valid if whenever S begins

executing in a state that satisfies P and finishes executing, then the resulting state satisfies

Q. We call P and Q the pre-condition and post-condition respectively of S. Hoare rules

allow to derive such triples inductively over the structure of S. The rule most relevant for

126

our purpose is that for loops:

P ⇒ I (pre) {I ∧B} S {I} (inv) (I ∧ ¬B)⇒ Q (post)
{P} while B do S {Q}

Predicate I is called a loop invariant, an assertion that holds before and after each iteration,

as shown in the premise of the rule. We can now formally state the problem:

Problem 1 (Loop Invariant Inference): Given a pre-condition P , a post-condition Q and

a program S containing a single loop, can we find a predicate I to make {P} S {Q} valid?

Given a candidate loop invariant, it is straightforward for an automated theorem prover

such as Z3 [161] to check whether the three conditions denoted pre, inv, and post in the

premise of the above rule hold, and thereby prove the property asserted in the conclusion of

the rule. If any of the three conditions fails to hold, the theorem prover returns a concrete

counterexample witnessing the failure.

The loop invariant inference problem is undecidable. Moreover, even seemingly simple

instances are challenging, as we illustrate next using the program in Figure 9.1(a). The

goal is to prove that assertion (y > 0) holds at the end of the program, for every input value

of integer variable y. In this case, the pre-condition P is true since the input value of y

is unconstrained, and the post-condition Q is (y > 0), the assertion to be proven. Using

predicate (x < 0 ∨ y > 0) as the loop invariant I suffices to prove the assertion, as shown

in Figure 9.1(b). Notation φ[e/x] denotes the predicate φ with each occurrence of variable

x replaced by expression e. This loop invariant is non-trivial to infer. The reasoning is

simple in the case when the input value of y is non-negative, but far more subtle in the case

when it is negative: regardless of how negative it is at the beginning, the loop will iterate

at least as many times as to make it positive, thereby ensuring the desired assertion upon

finishing. Indeed, a state-of-the-art loop invariant generator LOOPINVGEN [170] crashes

on this problem instance after making 1,119 calls to Z3, whereas CODE2INV successfully

generates it after only 26 such calls.

127

x := −50;
while (x < 0) {

x := x+ y;
y := y + 1 }

assert(y > 0)

(a) An example program.

(b) A desirable loop invariant I is a predicate over x, y such that:

∀x, y :

true ⇒ I[−50/x] (pre)

I ∧ x < 0 ⇒ I[(y + 1)/y, (x+ y)/x] (inv)
I ∧ x ≥ 0 ⇒ y > 0 (post)

(c) The desired loop invariant is (x < 0 ∨ y > 0).

Figure 9.1: A program with a correctness assertion and a loop invariant that suffices to
prove it.

The central role played by loop invariants in program verification has led to a large body

of work to automatically infer them. Many previous approaches are based on exhaustive

bounded search using domain-specific heuristics and are thereby limited in applicability

and scalability [47, 192, 95, 206, 205, 2, 65, 78]. A different strategy is followed by data-

driven approaches proposed in recent years [204, 79, 170]. These methods speculatively

guess likely invariants from program executions and check their validity. In [79], decision

trees are used to learn loop invariants with simple linear features, e.g. a ∗ x + b ∗ y < c,

where a, b ∈ {−1, 0, 1}, c ∈ Z. In [170], these features are generalized by systematic

enumeration. In [204], stochastic search is performed over a set of constraint templates.

While such features or templates perform well in specific domains, however, they may fail

to adapt to new domains. Moreover, even in the same domain, they do not benefit from

past experiences: successfully inferring the loop invariant for one program does not speed

up the process for other similar ones. We hereby formulate the second problem we aim to

address:

Problem 2 (Loop Invariant Learning): Given a set of programs {Si} ∼ P that are

sampled from some unknown distribution P , can we learn from them and generalize the

strategy we learned to other programs {S̃i} that are from the same distribution?

9.3 End-to-End Reasoning Framework

9.3.1 The reasoning process of a human expert

128

1 int main() {

2 int x = 0, y = 0;

3 while (*) {

4 if (*) {

5 x++;

6 y = 100;

7 } else if (*) {

8 if (x >= 4) {

9 x++;

10 y++;

11 }

12 if (x < 0) y--;

13 }

14 }

15 assert(x < 4 || y > 2);

16 }

Figure 9.2: An example from our bench-
marks. ∗ denotes non-deterministic choice.

We start out by illustrating how a human

expert might typically accomplish the task of

inferring a loop invariant. Consider the ex-

ample in Figure 9.2 chosen from our bench-

marks.

An expert usually starts by reading the as-

sertion (line 15), which contains variables x

and y, then determines the locations where

these two variables are initialized, and then

focuses on the locations where they are up-

dated in the loop. Instead of reasoning

about the entire assertion at once, an ex-

pert is likely to focus on updates to one

variable at a time. This reasoning yields

the observation that x is initialized to zero

(line 2) and may get incremented in each it-

eration (line 5,9). Thus, the sub goal “x

< 4” may not always hold, given that the loop iterates non-deterministically. This

in turn forces the other part “y > 2” to be true when “x >= 4”. The only

way x can equal or exceed 4 is to execute the first if branch 4 times (line 4-

6), during which y is set to 100. Now, a natural guess for the loop invariant is

“x < 4 || y >= 100”. The reason for guessing “y >= 100” instead of “y

<= 100” is because part of the proof goal is “y > 2”. However, this guess

will be rejected by the theorem prover. This is because y might be decreased

by an arbitrary number of times in the third if-branch (line 12), which hap-

pens when x is less than zero; to avoid that situation, “x >= 0” should also

be part of the loop invariant. Finally, we have the correct loop invariant:

129

!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Figure 9.3: Overall framework of neuralizing loop invariant inference.

“(x >= 0) && (x < 4 || y >= 100)”, which suffices to prove the assertion.

We observe that the entire reasoning process consists of three key components: 1)

organize the program in a hierarchical-structured way rather than a sequence of tokens;

2) compose the loop invariant step by step; and 3) focus on a different part of the program

at each step, depending on the inference logic, e.g., abduction and induction.

9.3.2 Programming the reasoning procedure with neural networks

We propose to use a neural network to mimic the reasoning used by human experts as

described above. The key idea is to replace the above three components with corresponding

differentiable modules:

• a structured external memory representation which encodes the program;

• a multi-step autoregressive model for incremental loop invariant construction; and

• an attention component that mimics the varying focus in each step.

As shown in Figure 9.3, these modules together build up the network that constructs

loop invariants from programs, while being jointly trained with reinforcement learning

described in Section 9.4. At each step, the neural network generates a predicate. Then,

given the current generated partial tree, a TreeLSTM module summarizes what have been

generated so far, and the summarization is used to read the memory using attention. Lastly,

130

the summarization together with the read memory is fed into next time step. We next

elaborate upon each of these three components.

Structured external memory

The loop invariant is built within the given context of program. Thus it is natural to encode

the program as an external memory module. However, in contrast to traditional memory

networks [218, 155], where the memory slots are organized as a linear array, the informa-

tion contained in a program has rich structure. A chain LSTM over program tokens can in

principle capture such information but it is challenging for neural networks to understand

with limited data. Inspired by [4], we instead use a graph-structured memory representa-

tion. Such a representation allows to capture rich semantic knowledge about the program

such as its control-flow and data-flow.

More concretely, we first convert a given program into static single assignment (SSA)

form [53], and construct a control flow graph, each of whose nodes represents a single

program statement. We then transform each node into an abstract syntax tree (AST) rep-

resenting the corresponding statement. Thus a program can be represented by a graph

G = (V,E), where V contains terminals and nonterminals of the ASTs, and the set of

edges is denoted as E = {(e(i)
x , e

(i)
y , e

(i)
t)}|E|i=1. The directed edge (e

(i)
x , e

(i)
y , e

(i)
t) starts from

node e(i)
x to e(i)

y , with e(i)
t ∈ {1, 2, . . . , K} representing edge type. In our construction, the

program graph contains 3 different edge types (and 6 after adding reversed edges).

To convert the graph into vector representation, we follow the general message passing

operator introduced in graph neural network (GNN) [193] and its variants [71, 55, 4].

Specifically, the graph network will associate each node v ∈ V with an embedding vector

µv ∈ Rd. The embedding is updated iteratively using the general neighborhood embedding

as follows:

µ(l+1)
v = h({µ(l)

u }u∈N k(v),k∈{1,2,...,K}) (9.1)

Here h(·) is a nonlinear function that aggregates the neighborhood information to update

131

SSA nodeNon-terminalsTerminals

<loop>

y1

<

1000

<assign>

x2

=

+

x1 y1

<assign>

y2

=

+

y1 1

x y

Source Code

Graph Representation

<loop>

y1

<

1000

<assign>

=

+

y1

<assign>

y2

=

+

y1 1

y

Neural Graph Embedding

x2

x1

x
!"($)

!"&
($'&)

!"(
($'&)

Variable linkAST edgeControl flow

Vector
representation

)(*)

*

message passing operator

$ = &,… , .

……

Structured
External Memory

Figure 9.4: Diagram for source code graph as external structured memory. We convert
a given program into a graph G, where nodes correspond to syntax elements, and edges
indicate the control flow, syntax tree structure, or variable linking. We use embedding
neural network to get structured memory f(G).

the embedding. N k(v) is the set of neighbor nodes connected to v with edge type k, i.e.,

N k(v) = {u|(u, v, k) ∈ E}. Such process will be repeated for L steps, and the node

embedding µv is set to µ
(L)
v ,∀v ∈ V . Our parameterization takes the edge types into

account. The specific parameterization used is shown below:

µ(l+1),k
v = σ(

∑
u∈N k(v) W2µ

(l)
u),∀k ∈ {1, 2, . . . , K} (9.2)

µ(l+1)
v = σ(W3[µ

(l+1),1
v , µ

(l+1),2
v , . . . , µ

(l+1),K
v]) (9.3)

with the boundary case µ(0)
v = W1xv. Here xv represents the syntax information of node

v, such as token or constant value in the program. Matrices W1,2,3 are learnable model

parameters, and σ is some nonlinear activation function. Figure 9.4 shows the construction

of graph structured memory using iterative message passing operator in Eq (9.1). f(G) =

{µv}v∈V denotes the structured memory.

Multi-step decision making process

A loop invariant itself is a mini-program that contains expressions and logical operations.

Without loss of generality, we define the loop invariant to be a tree T , in a form with

132

conjunctions of disjunctions:

T = (T1 || T2 . . .) && (Tt+1 || Tt+2 . . .) && . . . (. . . TT−1|| TT) (9.4)

Each subtree Tt is a simple logic expression (i.e., x < y * 2 + 10 - z). Given

this representation form, it is natural to use Markov decision process (MDP) to model

this problem, where the corresponding T -step finite horizon MDP is defined as MG =

(s1, a1, r1, s2, a2, . . . , sT). Here st, at, rt represent the state, action and reward at time step

t = 1, . . . , T − 1, respectively. Here we describe the state and action used in the inference

model, and describe the design of reward and termination in Section 9.4.

action: As defined in Eq (9.4), a loop invariant tree T consists of multiple subtrees {Tt}.

Thus we model the action at time step t as at = (opt, Tt), where opt can either be ||

or &&. That is to say, at each time step, the agent first decides whether to attach the

subexpression Tt to an existing disjunction, or create a new disjunction and add it to the list

of conjunctions. We use T (<t) to denote the partial tree generated by time t so far. So the

policy π(T |G) is decomposed into:

π(T |G) =
T∏
t=1

π(at|T (<t), G) =
T∏
t=1

π(opt, Tt|T (<t), G) (9.5)

where T (<1) is empty at the first step. The generation process of subtree Tt is also an

autoregressive model implemented by LSTM. However, generating a valid program is non-

trivial, since strong syntax and semantics constraints should be enforced. Recent advances

in neural program synthesis [174, 137] utilize formal language information to help the gen-

eration process. Here we use the Syntax-Directed decoder proposed in [59] to guarantee

both the syntax and semantics validity. Specifically,

• Syntax constraints: The AST generation follows the grammar of loop invariants de-

scribed in Eq 9.4. Operators such as +, -, * are non-terminal nodes in the AST while

operands such as constants or variables are leaf nodes.

133

• Semantic constraints: We regulate the generated loop invariant to be meaningful. For

example, a valid loop invariant must contains all the variables that appear in the given

assertion. Otherwise, the missing variables can take arbitrary values, causing the asser-

tion to be violated. In contrast to offline checking which discards invalid programs after

generation, such online regulation restricts the output space of the program generative

model, which in turn makes learning efficient.

state: At time step t = 1, the state is simply the weighted average of structured memory

f(G). At each later time step t > 1, the action at should be conditioned on graph memory,

as well as the partial tree generated so far. Thus st = (G, T (<t)).

Memory query with attention

At different time steps of inference, a human usually focuses on different parts of program.

Thus the attention mechanism is a good choice to mimic such process. Specifically, at time

step t, to summarize what we have generated so far, we use TreeLSTM [223] to embed

the partial tree T (<t). Then the embedding of partial tree vT (<t) = TreeLSTM(T (<t)) is

used as the query to read the structured memory f(G). Specifically, read(f(G),vT (<t)) =∑
v∈V αvµv and αv =

expµ>v vT (<t)∑
v∈V expµ>v vT (<t)

are the corresponding attention weights.

9.4 Learning

The undecidability of the loop invariant generation problem hinders the ability to obtain

ground truth solutions as supervisions for training. Inspired by recent advances in combi-

natorial optimization [20, 123], where the agent learns a good policy by trial-and-error, we

employ reinforcement learning to learn to propose loop invariants. Ideally, we seek to learn

a policy π(T |G) that proposes a correct loop invariant T for a program graph G. However,

directly solving such a model is practically not feasible, since:

• In contrast to problems tackled by existing work, where the objective function is rela-

tively continuous (e.g., tour length of traveling salesman problem), the proposed loop

134

invariant only has binary objective (i.e., correct or not). This makes the loss surface of

the objective function highly non-smooth.

• Finding the loop invariant is a bandit problem where the binary reward is given only after

the invariant is proposed. Also, in contrast to two player games [210] where a default

policy (e.g., random rollout) can be used to estimate the reward, it is a single player game

with an extremely sparse reward.

To tackle the above two challenges, the multi-step decision making model proposed in

Section 9.3.2 is used, where a fine-grained reward is also designed for each step. In the

last step, a continuous feedback is provided based on the counterexamples collected by the

agent itself.

9.4.1 Reinforcement learning setup

Section 9.3.2 defines the state and action representation used for inference. We next de-

scribe our setup of the environment which is important to properly train a reinforcement

learning agent.

Reward Design

In each intermediate step t ∈ 1, . . . , T − 1, an intermediate reward rt is given to regulate

the generation process. For example, a subexpression should be non-trivial, and it should

not contradict T (<t). In the last step, the generated loop invariant T is given to a theorem

prover, which returns success or failure. In the latter case, the theorem prover also tells

which step (pre, inv, post) failed, and provides a counterexample. The failure step can be

viewed as a “milestone” of the verification process, providing a coarse granularity feed-

back. To achieve continuous (i.e. fine granularity) reward within each step, we exploit

the counterexamples collected so far. For instance, the ratio of passed examples is a good

indicator of the learning progress. Specifically, our reward function consists of two parts:

early reward and continuous reward.

135

Early reward The early reward constitutes quick feedback obtained by performing light-

weight structure checks during the process of loop invariant generation. The goal is to

quickly remove meaningless predicates that are trivially true (e.g. ”e==e”) or false (e.g.

”e¡e”) or missing variables (e.g. ”1¡2”), or simple contradictions like ”e1¡e2 && e1¿e2”.

Early reward is computed at the end of each action; if the partially generated invariant

fails to pass the above checks, the generation process terminates immediately by return-

ing a large negative reward -4; otherwise, a positive reward 0.5 is given. Note that one

promising future work could be taking advantage of UNSAT cores from counterexamples

to identify contradictory parts of the candidate invariant. These contradictory parts will be

”non-trivial” contradictions, compared to trivial patterns we have considered.

Continuous reward The goal of continuous reward is to reflect proof progress smoothly.

It is computed after the loop invariant is generated and is based on three kinds of coun-

terexamples. Let cepre, ceinv, cepost denote the sets of counterexamples accumulated so far

at the pre, inv, post step, respectively. Similarly, let passpre, passinv, passpost be the sets

of counterexamples passed by current loop invariant candidate. The continuous reward is

modeled as a function that takes these six sets of counterexamples as input and produces

a scalar value. We used a simple but effective function, that is, the sum of ratios. Specif-

ically, in the case no new counterexample is introduced, we used the sum of passed ratios

of counterexamples:
|passpre|
|cepre|

+
|passinv|
|ceinv|

+
|passpost|
|cepost|

When a new counterexample is returned, we used the staged sum:

|passpre|
|cepre|

+ [passpre = cepre]
|passinv|
|ceinv|

+ [passpre = cepre][passinv = ceinv]
|passpost|
|cepost|

where [·] is Iverson bracket. It examines counterexamples in an ordered way (i.e. pre, inv,

post) so that counterexamples in the next step are considered only after all counterexamples

136

in the previous step get passed. When we get the highest continuous reward, which is 3,

we invoke the theorem prover to verify the current loop invariant candidate; if the theorem

prover accepts it, then a correct loop invariant is found; otherwise, a new counterexample is

returned, and we recompute the continuous reward according to the above reward function.

termination: There are several conditions that may trigger the termination of tree genera-

tion: (1) the agent executes the “stop” action, see in Figure 9.3; (2) the generated tree has

the maximum number of branches allowed; or (3) the agent generates an invalid action.

9.4.2 Training of the learning agent

We use advantage actor critic (A2C) to train the above reinforcement learning policy.

Specifically, let θ = {Wi} be the parameters in graph memory representation f(·; θ), and

φ be the parameter used in π(at|T (<t), G;φ), our objective is to maximize the expected

policy reward:

max
θ,φ

Eπ(opt,Tt|T (<t),G;φ)(
T∑
t′=t

γt
′−trt′ − b(T (<t), G;ψ)) (9.6)

The baseline function b(T (<t), G;ψ) parameterized by ψ is used to estimate the expected

return, so as to reduce the variance of policy gradient. Eπ,t‖
∑T

t′=t γ
t′−trt′−b(T (<t), G;ψ)‖

is the objective to be minimized over. We simply apply two layer fully connected neural

network to predict the expected return. γ is the discounting factor. Since the MDP is finite

horizon, we use γ = 1 to address the long-term reward.

9.5 Experiments

We evaluate CODE2INV on a suite of 133 benchmark programs from recent works [65,

170, 79] and the 2017 SyGuS competition [221].1 Each program consists of three parts:

a number of assumption or assignment statements, one loop which contains nested if-else

1Our code and data are publicly available from https://github.com/PL-ML/code2inv

137

statements with arithmetic operations, and one assertion statement.

By default, the embedding size used throughout this chapter is 128. Batch size is set to

10. To compute the graph structured external memory representation, we run the message

passing operator (as described in Equation (9.1)) for 20 steps. Learning rate is set to 0.001

and fixed. We maintain a circular buffer for the counterexamples. The buffer size is set to

100, i.e., we remove the old counterexamples when the buffer size is exceeded (although we

seldom reached the 100 limit in our experiments). We use the counterexample to compute

continuous feedback only after we collect 5 or more of them.

9.5.1 Dataset

Our dataset is collected from recent literature [65, 79] and the 2017 SyGuS competi-

tion [221]. Dillig et al. [65] create a suite of 46 C programs for evaluation of loop invariant

inference, on top of which Garg et al. [79] introduce 40 more benchmarks. The 2017 Sy-

GuS competition consists of 74 benchmarks, which is in the SMT-LIB like format [181].

We manually convert benchmarks from SyGus competition to C programs, which have

some overlaps with the above two benchmark suite, so we remove the overlapped ones.

Figure 9.5 shows some example programs in the SyGuS challenge dataset.

Figure 9.5: Examples of programs in SyGuS challenge dataset (after converting to C).

We first evaluate CODE2INV as an out-of-the-box solver, i.e., without any training or

138

0 10 20 30 40 50 60 70 80 90 100110
instances solved

100

101

102

103

Z3

 q
ue

rie
s

C2I
LoopInvGen
ICE-DT
Code2Inv

(a) verification cost by each solver

0 10 20 30 40 50 60 70 80 90 100110
instances solved

100

101

102

103

104

105

106

ca

nd
id

at
es

 g
en

er
at

ed

C2I
Code2Inv

(b) sample complexity of C2I and CODE2INV

Figure 9.6: Comparison of CODE2INV with state-of-the-art solvers on benchmark dataset.

fine-tuning with respect to the dataset. We then conduct an ablation study to justify various

design choices. Finally, we evaluate the impact of training CODE2INV on a similar dataset.

9.5.2 Finding loop invariants from scratch

In this section, we study the capability of CODE2INV with no training, that is, using it

as an out-of-the-box solver. We compare CODE2INV with three state-of-the-art solvers:

C2I [204], which is based on stochastic search; LOOPINVGEN [170], which searches a con-

junctive normal form over predicates synthesized by an underlying engine, ESCHER [2];

and ICE-DT [79], which learns a decision tree over manually designed features (e.g. pred-

icate templates). The last two solvers are the winners of the invariant synthesis track of the

SyGuS 2017 and 2016 competitions, respectively.

A uniform metric is needed to compare the different solvers since they can leverage

diverse performance optimizations. For instance, CODE2INV can take advantage of GPUs

and TPUs, and C2I can benefit from massive parallelization. Instead of comparing absolute

running times, we observe that all four solvers are based on the Z3 theorem prover [161]

and rely on the counterexamples from Z3 to adjust their search strategy. Therefore, we

compare the number of queries to Z3, which is usually the performance bottleneck for

verification tasks. We run all solvers on a single 2.4 GHz AMD CPU core up to 12 hours

139

and using up to 4 GB memory for each program.

Figure 9.6a shows the number of instances solved by each solver and the corresponding

number of queries to Z3. CODE2INV solves the largest number of instances, which is 106. In

contrast, ICE-DT, LOOPINVGEN and C2I solve 100, 77 and 74 instances, respectively. ICE-

DT heavily relies on predicate templates designed by human experts, which are insufficient

for 19 instances that are successfully solved by CODE2INV. Furthermore, to solve the same

amount of instances, CODE2INV costs orders of magnitude fewer queries to Z3 compared

to the other solvers.

We also run CODE2INV using the time limit of one hour from the 2017 SyGuS compe-

tition. CODE2INV solves 92 instances within this time limit with the same hardware con-

figuration. While it cannot outperform existing state-of-the-art solvers based on absolute

running times, however, we believe its speed can be greatly improved by (1) pre-training on

similar programs, which we show in Section 9.5.4; and (2) an optimized implementation

that takes advantage of GPUs or TPUs.

CODE2INV is most related to C2Isince both use accumulated counterexamples to adjust

the sample distribution of loop invariants. The key difference is that C2I uses MCMC

sampling whereas CODE2INV learns using RL. Figure 9.6b shows the sample complexity,

i.e., number of candidates generated before successfully finding the desired loop invariant.

We observe that CODE2INV needs orders of magnitude less samples which suggests that it

is more efficient in learning from failures.

9.5.3 Ablation study

We next study the effectiveness of two key components in our framework via ablation

experiments: counterexamples and attention mechanism. We use the same dataset as in

Section 9.5.2. Table 9.1 shows our ablation study results. We see that besides providing a

continuous reward, the use of counterexamples (CE) significantly reduces the verification

cost, i.e., number of Z3 queries. On the other hand, the attention mechanism helps to reduce

140

the training cost, i.e., number of parameter updates. Also, it helps to reduce the verification

cost modestly. CODE2INV achieves the best performance with both components enabled—

the configuration used in other parts of our evaluation.

Additionally, to test the effectiveness of neural graph embedding, we study a simpler

encoding, that is, viewing a program as a sequence of tokens and encoding the sequence

using an LSTM. The performance of this setup is shown in the last row of Table 9.1. With

a simple LSTM embedding, CODE2INV solves 13 fewer instances and, moreover, requires

significantly more parameter updates.

Table 9.1: Ablation study for different configurations of CODE2INV.

configuration #solved instances max #Z3 queries max #parameter updates

without CE, without attention 91 415K 441K
without CE, with attention 94 147K 162K
with CE, without attention 95 392 337K
with CE, with attention 106 276 290K

LSTM embedding + CE + attention 93 32 661K

9.5.4 Boosting the search with pre-training

We next address the question: given an agent that is pre-trained on programs Ptrain =

{pi} ∼ P , can the agent solve new programs Ptest = {p̃i} ∼ P faster than solving from

scratch? We prepare the training and testing data as follows.

Data augmentation We augment the training dataset on top of the set of programs that

CODE2INV can solve. Given a program, we first randomly select an integer K ranging from

1 to 5, which is the number of confounding variables to insert. Then, we initialize each

newly created variable with a value ranging from -100 and 100. After that, we insert a

statement after each statement in the loop body. The newly inserted statement only uses

confounding variables and constants so that any valid loop invariant in the original program

is still valid after augmentation. The lvalue of the statement is randomly and uniformly

sampled from confounding variables, and for the rvalue expression of statement, we first

randomly choose a depth (either 1 or 2) for the AST tree of the expression, then randomly

141

0 100 200 300 400 500
instances solved

100

101

102

Z3

 q
ue

rie
s

untrained
pretrained

(a) with 1 confounding vari-
able

0 100 200 300 400
instances solved

100

101

102

Z3

 q
ue

rie
s

untrained
pretrained

(b) with 5 confounding vari-
ables

(c) attention for invariant a ==
b

(d) attention for the first part
of invariant: c ¿= -1 && n ¿=
1

Figure 9.7: (a) and (b) are verification costs of pre-trained model and untrained model; (c)
and (d) are attention highlights for two example programs.

and uniformly pick an operator from { +, −, ∗ }, and operands from confounding variables

and constants ranging between -100 and 100. For each program and each chosen parameter

K, we repeat the above process a 100 times.

Finally, 90% of them serves as Ptrain, and the rest are used for Ptest. After pre-training

the agent on Ptrain for 50 epochs, we save the model and then reuse it for “fine tuning” (or

active search [20]), i.e., the agent continues the trial-and-error reinforcement learning, on

Ptest. Figure 9.7a and Figure 9.7b compare the verification costs between the pre-trained

model and untrained model on datasets augmented with 1 and 5 confounding variables, re-

spectively. We observe that, on one hand, the pre-trained model has a clear advantage over

the untrained model on either dataset; but on the other hand, this gap reduces when more

confounding variables are introduced. This result suggests an interesting future research

direction: how to design a learning agent to effectively figure out loop invariant related

variables from a potentially large number of confounding variables.

142

9.5.5 Attention visualization

Figure 9.7c and 9.7d show the attention highlights for two example programs. The original

highlights are provided on the program graph representation described in Section 9.3.2.

We manually converted the graphs back to source code for clarity. Figure 9.7c shows

an interesting example for which CODE2INV learns a strategy of showing the assertion

is actually not reachable, and thus holds trivially. Figure 9.7d shows another interesting

example for which CODE2INV performs a form of abductive reasoning.

9.5.6 Discussion of limitations

We conclude our study with a discussion of limitations. For most of the instances that

CODE2INV fails to solve, we observe that the loop invariant can be expressed in a compact

disjunctive normal form (DNF) representation, which is more suited for the decision tree

learning approach with hand-crafted features. However, CODE2INV is designed to produce

loop invariants in the conjunctive normal form (CNF). The reduction of loop invariants

from DNF to CNF could incur an exponential blowup in size. An interesting future research

direction concerns designing a learning agent that can flexibly switch between these two.

9.6 Summary

We studied the problem of learning loop invariants for program verification. Our proposed

end-to-end reasoning framework learns to compose the solution automatically without any

supervision. It solves a comparable number of benchmarks as the state-of-the-art solvers

while requiring much fewer queries to a theorem prover. Moreover, after being pre-trained,

it can generalize the strategy to new instances much faster than starting from scratch.

In the next chapter, we will provide another probabilistic way of learning inductive rules

from the data, which is supposed to be more sample efficient than reinforcement learning

based methods.

143

CHAPTER 10

RETROSYNTHESIS PREDICTION WITH CONDITIONAL GRAPH LOGIC

NETWORK

Retrosynthesis is one of the fundamental problems in organic chemistry. The task is to

identify reactants that can be used to synthesize a specified product molecule. Recently,

computer-aided retrosynthesis is finding renewed interest from both chemistry and com-

puter science communities. Most existing approaches rely on template-based models that

define subgraph matching rules, but whether or not a chemical reaction can proceed is not

defined by hard decision rules. In this work, we propose a new approach to this task using

the Conditional Graph Logic Network, a conditional graphical model built upon graph neu-

ral networks that learns when rules from reaction templates should be applied, implicitly

considering whether the resulting reaction would be both chemically feasible and strategic.

We also propose an efficient hierarchical sampling to alleviate the computation cost. While

achieving a significant improvement of 8.1% over current state-of-the-art methods on the

benchmark dataset, our model also offers interpretations for the prediction.

10.1 Introduction

Retrosynthesis planning is the procedure of identifying a series of reactions that lead to

the synthesis of target product. It is first formalized by E. J. Corey [49] and now becomes

one of the fundamental problems in organic chemistry. Such problem of “working back-

wards from the target” is challenging, due to the size of the search space–the vast numbers

of theoretically-possible transformations–and thus requires the skill and creativity from

experienced chemists. Recently, various computer algorithms [43] work in assistance to

experienced chemists and save them tremendous time and effort.

The simplest formulation of retrosynthesis is to take the target product as input and

144

predict possible reactants 1. It is essentially the “reverse problem” of reaction prediction.

In reaction prediction, the reactants (sometimes reagents as well) are given as the input and

the desired outputs are possible products. In this case, atoms of desired products are the

subset of reactants atoms, since the side products are often ignored (see Fig 10.1). Thus

models are essentially designed to identify this subset in reactant atoms and reassemble

them to be the product. This can be treated as a deductive reasoning process. In sharp

contrast, retrosynthesis is to identify the superset of atoms in target products, and thus is an

abductive reasoning process and requires “creativity” to be solved, making it a harder prob-

lem. Although recent advances in graph neural networks have led to superior performance

in reaction prediction [112, 45, 32], such advances do not transfer to retrosynthesis.

Computer-aided retrosynthesis designs have been deployed over the past years since

[48]. Some of them are completely rule-based systems [222] and do not scale well due

to high computation cost and incomplete coverage of the rules, especially when rules are

expert-defined and not algorithmically extracted [43]. Despite these limitations, they are

very useful for encoding chemical transformations and easy to interpret. Based on this,

the retrosim [46] uses molecule and reaction fingerprint similarities to select the rules to

apply for retrosynthesis. Other approaches have used neural classification models for this

selection task [200]. On the other hand, recently there have also been attempts to use the

sequence-to-sequence model to directly predict SMILES 2 representation of reactants [150,

120] (and for the forward prediction problem, products [198, 199]). Albeit simple and

expressive, these approaches ignore the rich chemistry knowledge and thus require huge

amount of training. Also such models lack interpretable reasoning behind their predictions.

The current landscape of computer-aided synthesis planning motivated us to pursue an

algorithm that shares the interpretability of template-based methods while taking advantage

of the scalability and expressiveness of neural networks to learn when such rules apply. In

this chapter, we propose Conditional Graph Logic Network towards this direction, where

1We will focus on this “single step” version of retrosynthesis in this chapter.
2https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html.

145

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

chemistry knowledge about reaction templates are treated as logic rules and a conditional

graphical model is introduced to tolerate the noise in these rules. In this model, the variables

are molecules while the synthetic relationships to be inferred are defined among groups of

molecules. Furthermore, to handle the potentially infinite number of possible molecule

entities, we exploit the neural graph embedding in this model.

Our contribution can be summarized as follows:

1) We propose a new graphical model for the challenging retrosynthesis task. Our model

brings both the benefit of the capacity from neural embeddings, and the interpretability

from tight integration of probabilistic models and chemical rules.

2) We propose an efficient hierarchical sampling method for approximate learning by ex-

ploiting the structure of rules. Such algorithm not only makes the training feasible, but

also provides interpretations for predictions.

3) Experiments on the benchmark datasets show a significant 8.1% improvement over ex-

isting state-of-the-art methods in top-one accuracy.

Other related work: Recently there have been works using machine learning to en-

hance the rule systems. Most of them treat the rule selection as multi-class classifica-

tion [200] or hierarchical classification [18] where similar rules are grouped into subcat-

egories. One potential issue is that the model size grows with the number of rules. Our

work directly models the conditional joint probability of both rules and the reactants using

embeddings, where the model size is invariant to the rules.

On the other hand, researchers have tried to tackle the even harder problem of multi-step

retrosynthesis [201, 197] using single-step retrosynthesis as a subroutine. So our improve-

ment in single-step retrosynthesis could directly transfer into improvement of multi-step

retrosynthesis [46].

146

F

F

F

O

O

OF

F

F

O

F

F

F

O

O

O

O O

N
H

O

O

F

F

F

O

F

F

F

NH

NH

NH

O
O

O

O

N

O

O

O

O

O

C:4
N:5

C:1

O:2

C:3 F

F

F

O
C:1

O:2

C:3

C:4 N:5+

C:2
C:1

N:4
C:3

C:5

S

O
O

O

C:1
C:2

C:3
N:4

C:5+S

O

OONH
O

O

O

O

H2N

NH

C O S
O O

C F O
F FC

Retrosynthesis TemplatesReactions

heteroatom alkylation and arylation

acylation and related processes

Figure 10.1: Chemical reactions and the retrosynthesis templates. The reaction centers are
highlighted in each participant of the reaction. These centers are then extracted to form
the corresponding template. Note that the atoms belong to the reaction side products (the
dashed box in figure) are missing.

10.2 Background

A chemical reaction can be seen as a transformation from set of N reactant molecules

{Ri}Ni=1 to an outcome molecule O. Without loss of generality, we work with single-

outcome reactions in this chapter, as this is a standard formulation of the retrosynthetic

problem and multi-outcome reactions can be split into multiple single-outcome ones. We

refer to the set of atoms changed (e.g., bond being added or deleted) during the reaction

as reaction centers. Given a reaction, the corresponding retrosynthesis template T is repre-

sented by a subgraph pattern rewriting rule 3

T := oT → rT1 + rT2 + . . .+ rTN(T), (10.1)

where N(·) represents the number of reactant subgraphs in the template, as illustrated

in Figure. 10.1. Generally we can treat the subgraph pattern oT as the extracted reaction

center from O, and rTi , i ∈ 1, 2, . . . , N(T) as the corresponding pattern inside i-th reactant,

though practically this will include neighboring structures of reaction centers as well.

We first introduce the notations to represent these chemical entities:

• Subgraph patterns: we use lower case letters to represent the subgraph patterns.

• Molecule: we use capital letters to represent the molecule graphs. By default, we use
3Commonly encoded using SMARTS/SMIRKS patterns

147

O for an outcome molecule, and R for a reactant molecule, or M for any molecule in

general.

• Set: sets are represented by calligraphic letters. We use M to denote the full set of

possible molecules, T to denote all extracted retrosynthetic templates, and F to denote

all the subgraph patterns that are involved in the known templates. We further use Fo to

denote the subgraphs appearing in reaction outcomes, and Fr to denote those appearing

in reactants, with F = Fo
⋃
Fr.

Task: Given a production or target molecule O, the goal of a one-step retrosynthetic anal-

ysis is to identify a set of reactant molecules R ∈ P(M) that can be used to synthesize

the target O. Here P(M) is the power set of all moleculesM.

10.3 Conditional Graph Logic Network

Let I[m ⊆M] : F ×M 7→ {0, 1} be the predicate that indicates whether subgraph pattern

m is a subgraph inside molecule M . This can be checked via subgraph matching. Then

the use of a retrosynthetic template T : oT → rT1 + rT2 + . . .+ rTN(T) for reasoning about a

reaction can be decomposed into two-step logic. First,

I. Match template: φO(T) := I[oT ⊆ O] · I[T ∈ T], (10.2)

where the subgraph pattern oT from the reaction template T is matched against the product

O, i.e., oT is a subgraph of the product O. Second,

II. Match reactants: φO,T (R) := φO(T) · I[|R| = N(T)] ·
∏N(T)

i=1 I[rTi ⊆ Rπ(i)], (10.3)

where the set of subgraph patterns {r1, . . . , rN(T)} from the reaction template are matched

against the set of reactantsR. The logic is that the size of the set of reactantR has to match

the number of patterns in the reaction template T , and there exists a permutation π(·) of the

elements in the reactant set R such that each reactant matches a corresponding subgraph

148

pattern in the template.

Since there will still be uncertainty in whether the reaction is possible from a chemi-

cal perspective even when the template matches, we want to capture such uncertainty by

allowing each template/or logic reasoning rule to have a different confidence score. More

specifically, we will use a template score function w1(T,O) given the product O, and the

reactant score function w2(R, T, O) given the template T and the product O. Thus the

overall probabilistic models for the reaction template T and the set of molecules R are

designed as

I. Match template: p(T |O) ∝ exp (w1(T,O)) · φO(T), (10.4)

II. Match reactants: p(R|T,O) ∝ exp (w2(R, T, O)) · φO,T (R). (10.5)

Given the above two step probabilistic reasoning models, the joint probability of a

single-step retrosythetic proposal using reaction template T and reactant setR can be writ-

ten as

p (R, T |O) ∝ exp (w1 (T,O) + w2 (R, T, O)) · φO (T)φO,T (R) , (10.6)

In this energy-based model, whether the graphical model (GM) is directed or undirected

is a design choice. We will present our directed GM design and the corresponding parti-

tion function in Sec 10.4 shortly. We name our model as Conditional Graph Logic Net-

work (GLN) (Fig. 10.2), as it is a conditional graphical model defined with logic rules,

where the logic variables are graph structures (i.e., molecules, subgraph patterns, etc.). In

this model, we assume that satisfying the templates is a necessary condition for the ret-

rosynthesis, i.e., p (R, T |O) 6= 0 only if φO (T) and φO,T (R) are nonzero. Such restriction

provides sparse structures into the model, and makes this abductive reasoning feasible.

Reaction type conditional model: In some situations when performing the retrosyn-

thetic analysis, the human expert may already have a certain type c of reaction in mind. In

149

this case, our model can be easily adapted to incorporate this as well:

p(R, T |O, c) ∝ exp (w1 (T,O) + w2 (R, T, O)) · φO (T)φO,T (R) I[T ∈ Tc] (10.7)

where Tc is the set of retrosynthesis templates that belong to reaction type c.

Remark: Similar to the proposed model, the Markov logic network (MLN) [187] is an al-

ternative to introduce uncertainty into logic rules. However, there is significant difference

in the way the retrosynthetic templates are treated. The proposed model considers the tem-

plates as separate variables that will be inferred for the target molecules together with the

reactions. The explicit probabilistic modeling of templates makes it more straightforward

to interpret the prediction. The MLN instead sets the logic rules (the templates) as features

in the energy-based model, i.e., p (R|O) ∝ exp
(∑

T∈T wT,OφO (T) + wT,R,OφO,T (R)
)
,

upon which the template inference is not well-defined. Moreover, our model will also lead

to efficient sampling and inference, avoiding the MCMC on combinatorial space P (M)

in the MLN, which accelerates the model learning.

So in summary:

• GLN is a directed graphical model while MLN is undirected.

• MLN treats the predicates of logic rules as latent variables, and the inference task is to

get the posterior of them. While in GLN, the task is the structured prediction, and the

predicates are implemented with subgraph matching.

• Due to the above two, GLN can be implemented with efficient hierarchical sampling.

However for MLN, generally the expensive MCMC in combinatorial space is needed for

both training and inference.

10.4 Model Design

Although the model we defined so far has some nice properties, the design of the com-

ponents plays a critical role in capturing the uncertainty in the retrosynthesis. We first

150

𝑝(𝑜|𝑂)

𝑝(𝑟 |𝑂, 𝑜)

𝑝(ℛ|𝑂, 𝑇)

𝑇 ≔ 𝑜 → {𝑟}

𝒯

ℱ

ℳ

Figure 10.2: Retrosynthesis pipeline with GLN. The three dashed boxes from top to bottom
represent set of templates T , subgraphsF and moleculesM. Different colors represent ret-
rosynthesis routes with different templates. The dashed lines represent potentially possible
routes that are not observed. Reaction centers in products O are highlighted.

describe a decomposable design of p(T |O) in Sec. 10.4.1, for learning and sampling effi-

ciency consideration; then in Sec. 10.4.2 we describe the parameterization of the scoring

functions w1, w2 in detail.

10.4.1 Decomposable design of p(T |O)

Depending on how specific the reaction rules are, the template set T could be as large as

the total number of reactions in extreme case. Thus directly model p(T |O) can lead to

difficulties in learning and inference. By revisiting the logic rule defined in Eq. (10.2), we

can see the subgraph pattern oT plays a critical role in choosing the template. Since we

represent the templates as T = (oT →
{
rTi
}N(T)

i=1
), it is natural to decompose the energy

function w1(T,O) in Eq. (10.4) as w1(T,O) = v1

(
oT , O

)
+ v2

({
rTi
}N(T)

i=1
, O
)

. Mean-

while, recall the template matching rule is also decomposable, so we obtain the resulting

template probability model as:

p(T |O) = p(oT ,
{
rTi
}N(T)

i=1
|O) (10.8)

= 1
Z(O)

(
exp

(
v1(oT , O)

)
· I
[
oT ∈ O

]) (
exp

(
v2

({
rTi
}N(T)

i=1
, O
))
· I[(oT →

{
rTi
}N(T))∈T]

i=1

)
,

151

where the partition function Z (O) is defined as:

Z (O) =
∑

o∈F exp (v1(o,O)) · I [o ∈ O] ·
(∑

{r}∈P(F) exp (v2 ({r} , O)) · I[(o→ {r}) ∈ T]
)

(10.9)

Here we abuse the notation a bit to denote the set of subgraph patterns as {r}.

With such decomposition, we can further speed up both the training and inference for

p(T |O), since the number of valid reaction centers per molecule and number of templates

per reaction center are much smaller than total number of templates. Specifically, we can

sample T ∼ p(T |O) by first sampling reaction center p(o|O) ∝ exp (v1(o,O)) · I [o ∈ O]

and then using p({r} |O, o) ∝ exp (v2 ({r} , O))·I[(o→ {r}) ∈ T] to choose the subgraph

patterns for reactants. In the end we obtain the templated represented as (o→ {r}).

In the literature there have been several attempts for modeling and learning p(T |O),

e.g., multi-class classification [200] or multiscale model with human defined template hier-

archy [18]. The proposed decomposable design follows the template specification naturally,

and thus has nice graph structure parameterization and interpretation as will be covered in

the next subsection.

Finally the directed graphical model design of Eq. (10.6) is written as

p(R, T |O) = 1
Z(O)Z(T,O)

exp
((
v1

(
oT , O

)
+ v2

({
rTi
}N(T)

i=1

)
+ w2 (R, T, O)

))
· φO (T)φO,T (R)

(10.10)

whereZ(T,O) =
∑
R∈P(M) exp (w2(R, T, O))·φO,T (R) sums over all subsets of molecules.

10.4.2 Graph Neuralization for v1, v2 and w2

Since the arguments of the energy functionsw1, w2 are molecules, which can be represented

by graphs, one natural choice is to design the parameterization based on the recent advances

in graph neural networks (GNN). Here we first present a brief review of the general form

of GNNs, and then explain how we can utilize them to design the energy functions.

The graph embedding is a function g : M
⋃
F 7→ Rd that maps a graph into d-

152

dimensional vector. We denoteG = (VG, EG) as the graph representation of some molecule

or subgraph pattern, where VG = {vi}|V
G|

i=1 is the set of atoms (nodes) and the set of bonds

(edges) is EG = {ei = (e1
i , e

2
i)}
|EG|
i=1 . We represent each undirected bond as two directional

edges. Generally, the embedding of the graph is computed through the node embeddings

hvi that are computed in an iterative fashion. Specifically, let h0
vi

= xvi initially, where xvi

is a vector of node features, like the atomic number, aromaticity, etc. of the corresponding

atom. Then the following update operator is applied recursively:

hl+1
v = F (xv,

{
(hlu, xu→v

}
u∈N (v)

) where xu→v is the feature of edge u→ v. (10.11)

This procedure repeats for L steps. While there are many design choices for the so-called

message passing operator F , we use the structure2vec [55] due to its simplicity and

efficient c++ binding with RDKit. Finally we have the parameterization

hl+1
v = σ(θ1xv + θ2

∑
u∈N (v)

hlu + θ3

∑
u∈N (v)

σ(θ4xu→v)) (10.12)

where σ(·) is some nonlinear activation function, e.g., relu or tanh, and θ = {θ1, . . . , θ4}

are the learnable parameters. Let the node embedding hv = hLv be the last output of F ,

then the final graph embedding is obtained via averaging over node embeddings: g(G) =

1
|VG|

∑
v∈VG hv. Note that attention [229] or other order invariant aggregation can also be

used for such aggregation.

With the knowledge of GNN, we introduce the concrete parametrization for each com-

ponent:

• Parameterizing v1: Given a molecule O, v1 can be viewed as a scoring function

of possible reaction centers inside O. Since the subgraph pattern o is also a graph, we

parameterize it with inner product, i.e., v1(o,O) = g1(o)>g2(O). Such form can be treated

as computing the compatibility between o and O. Note that due to our design choice,

v1(o,O) can be written as v1(o,O) =
∑

v∈VO h
>
v g1(o). Such form allows us to see the

153

contribution of compatibility from each atom in O.

• Parameterizing v2: The size of set of subgraph patterns
{
rTi
}N(T)

i=1
varies for differ-

ent template T . Inspired by the DeepSet [250], we use average pooling over the embeddings

of each subgraph pattern to represent this set. Specifically,

v2(
{
rTi
}N(T)

i=1
, O) = g3(O)>

 1

N(T)

N(T)∑
i=1

g4(rTi))

 (10.13)

• Parameterizing w2: This energy function also needs to take the set as input. Fol-

lowing the same design as v2, we have

w2(R, T, O) = g5(O)>

(
1

|R|
∑
R∈R

g6(R)

)
. (10.14)

Note that our GLN framework isn’t limited to the specific parameterization above and

is compatible with other parametrizations. For example, one can use condensed graph of

reaction [104] to represent R as a single graph. Other chemistry specialized GNNs [112,

83] can also be easily applied here. For the ablation study on these design choices, please

refer to Section 10.6.4.

10.5 MLE with Efficient Inference

Given dataset D = {(Oi, Ti,Ri)}|D|i=1 with |D| reactions, we denote the parameters in

w1 (T,O) , w2 (T,R, O) as Θ = (θ1, θ2), respectively. The maximum log-likelihood es-

timation (MLE) is a natural choice for parameter estimation. Since ∀ (O, T,R) ∼ D,

φO (T) = 1 and φO,T (R) = 1, we have the MLE optimization as

max
Θ

` (Θ) := ÊD [log p (R|T,O) p (T |O)] (10.15)

= ÊD [w1 (T,O) + w2 (R, T, O)− logZ (O)− logZ (O, T)] ,

154

The gradient of ` (Θ) w.r.t. Θ can be derived4 as

∇Θ` (Θ) = ÊD [∇Θw1 (T,O)]− ÊOET |O [∇Θw1 (T,O)] (10.16)

+ÊD [∇Θw2 (R, T, O)]− ÊO,TER|T,O [∇Θw2 (R, T, O)] ,

where ET |O [·] and ER|O,T [·] stand for the expectation w.r.t. current model p (T |O) and

p (R, T |O), respectively. With the gradient estimator (10.16), we can apply the stochastic

gradient descent (SGD) algorithm for optimizing (10.15).

Efficient inference for gradient approximation: Since R ∈ P(M) is a combinatorial

space, generally the expensive MCMC algorithm is required for sampling from p (R|T,O)

to approximate (10.16). However, this can be largely accelerated by scrutinizing the logic

property in the proposed model. Recall that the matching between template and reactants

is the necessary condition for p (R, T |O) ≥ 0 by design.

On the other hand, given O, only a few templates T with reactants R have nonzero

φO (T) and φO,T (R). Then, we can sample T andR by importance sampling on restricted

supported templates instead of MCMC over P (M). Rigorously, given O, we denote the

matched templates as TO and the matched reactants based on T asRT,O, where

TO = {T : φO (T) 6= 0,∀T ∈ T } andRT,O = {R : φO,T (R) 6= 0,∀R ∈P (M)}

(10.17)

Then, the importance sampling leads to an unbiased gradient approximation ∇̂Θ` (Θ) as il-

lustrated in Algorithm 8. To make the algorithm more efficient in practice, we have adopted

the following accelerations:

• 1) Decomposable modeling of p(T |O) as described in Sec. 10.4.1;

• 2) Cache the computed TO andR (T,O) in advance.

In a dataset with 5×104 reactions, |TO| is about 80 and |RT,O| is roughly 10 on average.

Therefore, we reduce the actual computational cost to a manageable constant. We further

4We adopt the conventions 0 log 0 = 0 [50], which is justified by continuity since x log x→ 0 as x→ 0.

155

Algorithm 8 Importance Sampling for ∇̂Θ` (Θ)

1: Input (R, T, O) ∼ D, p (R|T,O) and p (T |O).
2: Construct TO according to φO (T).
3: Sample T̃ ∝ exp (w1 (T,O)) , ∀T ∈ TO in hierarchical way, as in Sec. 10.4.1.
4: ConstructRT,O according to φO,T (R).
5: Sample R̃ ∝ exp (w2 (R, T, O)).
6: Compute stochastic approximation ∇̂Θ` (Θ) with sample

(
R, T, R̃, T̃ , O

)
by (10.16).

reduce the computation cost of sampling by generating the T and R uniformly from the

support. Although these samples only cover the support of the model, we avoid the calcula-

tion of the forward pass of neural networks, achieving better computational complexity. In

our experiment, such an approximation already achieves state-of-the-art results. We would

expect recent advances in energy based models would further boost the performance, which

we leave as future work to investigate.

Remark onRT,O: Note that to get all possible sets of reactants that match the reaction

template T and product O, we can efficiently use graph edit tools without limiting the

reactants to be known in the dataset. This procedure works as follows: given a template

T = oT → rT1 + . . .+ rTN ,

1) Enumerate all matches between subgraph pattern oT and target product O.

2) Instantiate a copy of the reactant atoms according to rT1 , . . . , r
T
N for each match.

3) Copy over all of the connected atoms and atom properties from O.

This process is a routine in most Cheminformatics packages. In this chapter runReactants

from RDKit with the improvement of stereochemistry handling 5 is used to realize this.

Further acceleration via beam search: Given a product O, the prediction involves

finding the pair (R, T) that maximizes p(R, T |O). One possibility is to first enumerate

T ∈ T (O) and thenR ∈ RT,O. This is acceptable by exploiting the sparse support property

induced by logic rules.

A more efficient way is to use beam search with size k. Firstly we find k reaction

5https://github.com/connorcoley/rdchiral.

156

https://github.com/connorcoley/rdchiral

centers {oi}ki=1 with top v1(o,O). Next for each o ∈ {oi}ki=1 we score the corresponding

v2({r} , O) · I [(o→ {r}) ∈ T]. In this stage the top k pairs {(oTj , {r
Tj
i })}kj=1 (i.e., the

templates) that maximize v1(o|O) + v2({r} , O) are kept. Finally using these templates,

we choose the best R ∈
⋃k
j=1RTj ,O that maximizes total score w1 (T,O) + w2 (R, T, O).

Fig. 10.2 provides a visual explanation.

10.6 Experiment

Dataset: We mainly evaluate our method on a benchmark dataset named USPTO-50k,

which contains 50k reactions of 10 different types in the US patent literature. We use ex-

actly the same training/validation/test splits as [46], which contain 80%/10%/10% of the

total 50k reactions. Table 10.1 contains the detailed information about the benchmark.

Additionally, we also build a dataset from the entire USPTO 1976-2016 to verify the scal-

ability of our method.

Baselines: Baseline algorithms consist of rule-based ones and neural network-based ones,

or both. The expertSys is an expert system based on retrosynthetic reaction rules, where

the rule is selected according to the popularity of the corresponding reaction type. The

seq2seq [150] and transformer [120] are neural seq2seq learning model [219] implemented

with LSTM [103] or Transformer [228]. These models encode the canonicalized SMILES

representation of the target compound as input, and directly output canonical SMILES of

reactants. We also include some data-driven template-based models. The retrosim [46]

uses direct calculation of molecular similarities to rank the rules and resulting reactants.

The neuralsym [200] models p(T |O) as multi-class classification using MLP. All the re-

sults except neuralsym are obtained from their original reports, since we have the same

experiment setting. Since neuralsym is not open-source, we reimplemented it using their

best reported ELU512 model with the same method for parameter tuning.

Evaluation metric: The evaluation metric we used is the top-k exact match accuracy,

which is commonly used in the literature. This metric compares whether the predicted set

157

of reactants are exactly the same as ground truth reactants. The comparison is performed

between canonical SMILES strings generated by RDKit.

Setup of GLN: We use rdchiral [44] to extract the retrosynthesis templates from the train-

ing set. After removing duplicates, we obtained 11,647 unique template rules in total for

USPTO-50k. These rules represent 93.3% coverage of the test set. That is to say, for each

test instance we try to apply these rules and see if any of the rules gives exact match. Thus

this is the theoretical upper bound of the rule-based approach using this particular degree

of specificity, which is high enough for now. For more information about the statistics of

these rules, please refer to Table 10.2.

We train our model for up to 150k updates with batch size of 64. It takes about 12

hours to train with a single GTX 1080Ti GPU. We tune embedding sizes in {128, 256},

GNN layers {3, 4, 5} and GNN aggregation in {max, mean, sum} using validation set. The

preprocessing of TO andRT,O is relatively expensive, since theoretically the subgraph iso-

morphism check is NP-hard. However, since the processing is embarrassingly paralleliz-

able, it took about 1 hour on a cluster with 48 CPU cores for 50k reactions. We implement

the entire model using pytorch. The optimizer we used is Adam [128] with a fixed learning

rate of 1e−3 and a gradient clip of 5.0. In all the experiments, the graph embedding module

is implemented using s2v [55]. The best embedding size we used has size of 256 for repre-

senting each molecule or subgraph structure, and relu is used as nonlinear activation func-

tion. For the aggregation used in g(·), in DeepSet module used for representation of rTi
N(T)

i=1

for a specific T , or in DeepSet module for molecule set R, we tried {max, sum, average}-

pooling, and found the performance is about the same. We use average-pooling since it

offers the scoring of each node embedding within the graphs. The visualization in Fig 10.5

relies on this trick.

Our code is released at https://github.com/Hanjun-Dai/GLN.

158

https://github.com/Hanjun-Dai/GLN

Table 10.1: Dataset infor-
mation.

USPTO 50k

train 40,008
val 5,001
test 5,007

rules 11,647
reaction types 10

Table 10.2: Reaction and
template set information.

Rule coverage 93.3%
unique centers 9,078

Avg. # centers per mol 29.31
Avg. # rules per mol 83.85

Avg. # reactants 1.71

Table 10.3: Top-k exact match accuracy.

Top-k accuracy %

methods 1 3 5 10 20 50

Reaction class unknown

transformer[120] 37.9 57.3 62.7 / / /
retrosim[46] 37.3 54.7 63.3 74.1 82.0 85.3

neuralsym[200] 44.4 65.3 72.4 78.9 82.2 83.1
GLN 52.5 69.0 75.6 83.7 89.0 92.4

Reaction class given as prior

expertSys[150] 35.4 52.3 59.1 65.1 68.6 69.5
seq2seq[150] 37.4 52.4 57.0 61.7 65.9 70.7
retrosim[46] 52.9 73.8 81.2 88.1 91.8 92.9

neuralsym[200] 55.3 76.0 81.4 85.1 86.5 86.9
GLN 64.2 79.1 85.2 90.0 92.3 93.2

10.6.1 Main results

We present the top-k exact match accuracy in Table 10.3, where k ∈ {1, 3, 5, 10, 20, 50}.

We evaluate both the reaction class unknown and class conditional settings. Using the

reaction class as prior knowledge represents some situations where the chemists already

have an idea of how they would like to synthesize the product.

In all settings, our proposed GLN outperforms the baseline algorithms. And particularly

for top-1 accuracy, our model performs significantly better than the second best method,

with 8.1% higher accuracy with unknown reaction class, and 8.9% higher with reaction

class given. This demonstrates the advantage of our method in this difficult setting and

potential applicability in reality.

Moreover, our performance in the reaction class unknown setting even outperforms

expertSys and seq2seq in the reaction conditional setting. Since the transformer paper

didn’t report top-k performance for k > 10, we leave it as blank. Meanwhile, [120] also

reports the result when training using training+validation set and tuning on the test set.

With this extra priviledge, the top-1 accuracy of transformer is 42.7% which is still worse

159

OHNH

O
S

O

O

NH

O

Cl

Cl

O

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O
O

O
N

NH
2

O

OH

S

O

O

NH

O

Cl

Cl
NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O

NH
2

O

NH

N

O

O

NH

O
S

O

O

NH

O

Cl

Cl
O

OH

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O
O

O
N

NH
2

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O

NH
2

O

NH

N

O

O

O

OH

S

O

O

NH

O

Cl

Cl

Ground truth

Similarity=0.9

Correct

Similarity=0.9

Figure 10.3: Example successful predictions.

Ground truth

Similarity=0.82

Similarity=0.87

Similarity=0.82

N

N

NH

F

NH S

O

O

F

O

N

S

O

O

I

N

NH

F

NH S

O

O

F

O

N

S

O

O

N

N

N

NH

F

NH S

O

O

F

O

N

S

O

O
S

O

O

NH

F

O

OH

F
N

NH2

N

N

S

O

O

N

N

NH

F

NH S

O

O

F

O

N

S

O

O NH

O

F

NH S

O

O

F
N

N

S

O

O
O

NH

N

N

NH

F

NH S

O

O

F

O

N

S

O

O

S

O

O

NH

F

O

OH

F
N

NH2

N

N

S

O

O

Figure 10.4: Example failed predictions.

M
ol

ec
ul

es
Ce

nt
er

s

Top-1 prediction Bottom-1 prediction True reaction core Top-1 prediction Bottom-1 prediction True reaction core

Figure 10.5: Reaction center prediction visualization. Red atoms indicate positive match
scores, while blue ones having negative scores. The darkness of the color shows the mag-
nitude of the score. Green parts highlight the substructure match between molecules and
center structures.

than our performance. This shows the benefit of our logic powered deep neural network

model comparing to purely neural models, especially when the amount of data is limited.

Since the theoretical upper bound of this rule-based implementation is 93.3%, the top-

50 accuracy for our method in each setting is quite close to this limit. This shows the

probabilistic model we built matches the actual retrosynthesis target well.

10.6.2 Interpret the predictions

Visualizing the predicted synthesis: In Fig 10.3 and 10.4, we visualize the ground truth

reaction and the top 3 predicted reactions. For each reaction, we also highlight the corre-

sponding reaction cores (i.e., the set of atoms get changed). This is done by matching the

subgraphs from predicted retrosynthesis template with the target compound and generated

160

reactants, respectively. Fig 10.3 shows that our correct prediction also gets almost the same

reaction cores predicted as the ground truth. In this particular case, the explanation of our

prediction aligns with the existing reaction knowledge.

Fig 10.4 shows a failure mode where none of the top-3 prediction matches. In this case

we calculated the similarity between predicted reactants and ground truth ones using Dice

similarity from RDKit. We find these are still similar in the molecule fingerprint level,

which suggests that these predictions could be the potentially valid but unknown ones in

the literature.

Visualizing the reaction center prediction: Here we visualize the prediction of prob-

abilistic modeling of reaction center. This is done by calculating the inner product of each

atom embedding in target molecule with the subgraph pattern embedding. Fig 10.5 shows

the visualization of scores on the atoms that are part of the reaction center. The top-1

prediction assigns positive scores to these atoms (red ones), while the bottom-1 prediction

(i.e., prediction with least probability) assigns large negative scores (blue ones). Note that

although the reaction center in molecule and the corresponding subgraph pattern have the

same structure, the matching scores differ a lot. This suggests that the model has learned

to predict the activity of substructures inside molecule graphs.

10.6.3 Large scale experiments on USPTO-full

Table 10.4: Top-k accuracy on USPTO-full.

retrosim neuralsym GLN

top-1 32.8 35.8 39.3

top-10 56.1 60.8 63.7

To see how this method scales up

with the dataset size, we create a

large dataset from the entire set

of reactions from USPTO 1976-

2016. There are 1,808,937 raw reactions in total. For the reactions with multiple products,

we duplicate them into multiple ones with one product each. After removing the duplica-

tions and reactions with wrong atom mappings, we obtain roughly 1M unique reactions,

which are further divided into train/valid/test sets with size 800k/100k/100k.

161

Table 10.5: Ablation study on USPTO-50k with different representations.

s2v-3 GGNN MPNN GIN ECFP s2v-0 s2v-1 s2v-2
top-1 52.6 51.6 50.4 51.8 51.9 40.7 47.0 51.3
top-10 83.1 81.8 83.2 83.3 81.5 78.1 80.4 82.2

We train on single GPU for 3 days and report with the model having best validation

accuracy. The results are presented in Table 10.4. We compare with the best two baselines

from previous sections. Despite the noisiness of the full USPTO set relative to the clean

USPTO-50k, our method still outperforms the two best baselines in top-k accuracies.

10.6.4 Ablation study of design choices

Our GLN provides a general graphical model to retrosynthesis problem, which is compati-

ble with many reasonable choices of the representation of graphs. In addition to S2V with

3 layers (s2v-3) we used in this chapter, we provide more ablation studies using different

widely used GNNs and different number of “message-passing” layers.

The rationale behind the choices are: 1) the GNNs should be able to take both atom

and bond features into consideration; 2) according to [240], the family of message-passing

GNNs should have similar representation power as WL graph isomorphism check at best.

We adopt the s2v in this chapter since it satisfies these requirements. Meanwhile, it comes

with efficient c++ binding of RDKit.

We use 2 layers of GNN by default, or use -k after the name in Table 10.5 to denote

k-layer design. We can see that most variations of GNNs can achieve similar performances

with enough number of message-passing like propagations. Based on this, for the ex-

periment on the full USPTO dataset we simply use ECFP-2 provided by RDKit, as it is

WL-isomorphism check based method with enough expressiveness [240] but faster to run.

Besides the choice of GNN, we also compare the choices of v1, v2 and w2 mentioned in

Section 10.4.2. Basically all these functions are comparing the compatibility of two vectors

~x, ~y. In this chapter, we simply used inner-product ~x>~y. Here we also studiedMLP ([~x, ~y])

162

Class Fraction %

1 30.3
2 23.8
3 11.3
4 1.8
5 1.3
6 16.5
7 9.2
8 1.6
9 3.7
10 0.5

Figure 10.6: Reaction dis-
tribution over 10 types.

1 2 3 4 5 6 7 8 9 10
Reaction types

0

20

40

60

80

Ac
cu

ra
cy

/%

Accuracy per category when reaction type is unknown
retrosim
neuralsym
GLN

Figure 10.7: Top-10 accuracy per each reaction type.

and bilinear ~x>A~y. For top-1, the inner-prod, MLP and bilinear gets 52.6, 52.7 and 53.5,

respectively. So our GLN could be further improved with better design choices.

10.6.5 Per-category performance

We study the performance per each reaction category. Following the setting of baseline

methods, we report the top-10 accuracy. As is shown in Table 10.6, the distribution of

reaction types is highly unbalanced. From Fig 10.7 we can see our performances are better

than retrosim in most classes, including the most common cases like class 1 and 2, or rare

cases like class 4 or 8. This shows that our performance is not obtained by overfitting to

one particular category of reactions. Such property is also important, as the retrosynthesis

could involve rare reactions that haven’t been well studied in the literature.

10.6.6 Reaction conditional performance

In Figure 10.8 we show the per-class performance when the reaction type is given as prior.

As is shown Table 10.6, the distribution of reaction types is not uniform, where some

reactions only get less than 5% of the total data. In this case, it is important to have a

flexible model that can take the reaction type into account. Training one model per each

reaction class is not a good idea in this case due to the imbalance of distribution.

From Figure 10.8 we can see our performances are comparable to retrosim in all classes,

163

1 2 3 4 5 6 7 8 9 10
Reaction types

0

20

40

60

80

100

Ac
cu

ra
cy

/%

Accuracy per category when reaction type is given
expertSys
seq2seq
retrosim
neuralsym
GLN

Figure 10.8: Top-10 accuracy per reaction class, when the reaction class is given during
training.

1 3 5 10 20 50
Top-k

40

50

60

70

80

90

Ac
cu

ra
cy

/%

beam-1
beam-3

beam-5
beam-10

beam-20
beam-50

Figure 10.9: Top-k accuracy
with different beam sizes.

1 3 5 10 20 50
Beam size

0

10

20

30

40

50

Re

ac
tio

n
/s

Figure 10.10: Inference
speed with different beam
sizes.

1 3 5 10 20 50
Top-k

50

60

70

80

90

100

Ac
cu

ra
cy

/%

Reaction center acc
Template acc

Figure 10.11: Top-k accu-
racy of reaction center and
template.

while being much better than expertSys and seq2seq. Even in rare classes like class 9 or

10, we can still get best or second best performance. This shows the effectiveness and the

flexibility of our GLN.

10.6.7 Effect of beam size

Beam size In Section. 10.6.1 we reported the top-k accuracy with beam size of 50, since k is

at most 50. Here we study the performance of GLN using different beam sizes. Figure 10.9

shows the top-k accuracy for different k and different beam sizes. Overall the performance

gets consistently better with larger beam sizes, for all top-k predictions. We can also see

that the top-1 accuracy improved about 10% from beam size 1 (i.e., greedy inference) to

164

beam size 3. Note that the curve of beam size s flattened after top-s predictions, since

generally it didn’t produce more predictions than s.

We also report the speed for inference in Figure 10.10. Such information during in-

ference is averaged over 5,007 test predictions. The majority of the time is spent during

applying the template via the call to RDKit, thus the time required grows up linearly with

the beam size, as the number of RDKit calls grows linearly with the beam size.

Accuracy of p(T |O) In Figure 10.11 we show the accuracy of p(T |O), which decom-

poses into the reaction center identification accuracy and the template selection accuracy

related to that reaction center. Here the beam size is fixed to 50. Predicting the reaction

center is relatively easy and GLN achieves 99% top-20 accuracy. These results indicate that

the current bottleneck in performance is in the template selection part, which is reasonably

good now but can definitely be further improved by capturing more reaction features.

10.7 Summary

Evaluation: Retrosynthesis usually does not have a single right answer. Evaluation in

this work is to reproduce what is reported for single-step retrosynthesis. This is a good,

but imperfect benchmark, since there are potentially many reasonable ways to synthesize a

single product.

Limitations: We share the limitations of all template-based methods. In our method, the

template designs, more specifically, their specificities, remain as a design art and are hard

to decide beforehand. Also, the scalability is still an issue since we rely on subgraph

isomorphism during preprocessing.

Future work: The subgraph isomorphism part can potentially be replaced with predictive

model, while during inference the fast inner product search [96] can be used to reduce com-

putation cost. Also actively building templates or even inducing new ones could enhance

the capacity and robustness.

165

CHAPTER 11

CONCLUSION

The ubiquitous graph structures have been used in many real-world applications including

Chemistry, Bioinformatics, Social Networks, etc.. With the emerging of big data in these

domains, efficient and expressive methods are needed for representation learning, genera-

tive modeling, as well as the combinatorial optimization.

Our thesis work has tightly connected the neural networks with the classical algorithms

for graphs in the following aspects:

• using the existing algorithms to provide the inspiration of deep architecture design;

• enhancing the procedures of existing algorithm frameworks with deep learning;

• performing inductive reasoning over structured data.

11.1 Contribution and impact of the thesis work

Contribution The projects have been done in this thesis have made contributions in both

academic and industrial domains. Our works have contributed to the modeling, learning

and also new angles of several applications in graph learning domain, respectively.

• Modeling: Our work has created new models for multiple problems. These include a

new form of graph neural network for supervised learning, a new generative model with

autoregressive dependency structure for sequence modeling and a new graphical model

with logic rules for structured prediction.

• Learning: We proposed a new stochastic learning method for large scale graph em-

bedding based on fixed point iteration and a Q-learning based framework for a family of

graph combinatorial optimization.

166

• New angles with state-of-the-art results: Our work has achieved state-of-the-art results

that provides new angles for several problem domains. For loop invariant prediction, we

build a general purpose tool with RL that requires little human effort. For retrosynthesis,

we made a novel combination of deep graph learning with reaction template logics that

outperforms seq2seq based methods.

Impact The thesis work has also received recognitions from the academia and industry.

Specifically, the academic awards include best paper award in NIPS workshop in molecules

and materials, and spotlight paper in NIPS 2017 and NeurIPS 2018. Our work has been

covered in medias including Gatech CSE News, Cybersecurity Lectures, National Science

Review, NVIDIA, etc. Also, some of our work has been officially integrated into deep

learning package for graphs like Deep Graph Library (DGL [236]), which enables training

on large graphs with millions of nodes.

11.2 Limitation and future work

Despite the progress we have made, there are still many limitations of the current thesis

work, in which we will address in our future work.

Probabilistic modeling of graph The tractable probabilistic model of structured data

often has limited form, e.g., autoregressive. Such modeling will also limit the optimization

and inference algorithms associated. A more general model would be the energy based

models that can specify a broad family of distributions. However, such flexibility doesn’t

come for free. The corresponding inference and learning will also be more challenging.

Optimization in discrete space In general, the combinatorial optimization is NP-hard.

Though empirically methods like reinforcement learning, imitation learning, etc., has achieved

improvements in some aspects, a smarter search algorithm will be needed in the end.

167

Understanding symbolic structures With the representation learning over graphs, peo-

ple can handle symbolic forms like programs, logics, etc.. However, there is still gap

between semantic meaning and syntax form of the representation. For example, a recur-

sion in program will be subtle in its syntactic representation, but should be quite different

in semantic space. Bridging the gap between these two will help both the representation

learning, as well as symbolic reasoning.

Inductive/causal inference Having structural prior knowledge will greatly help with the

generalization or even extrapolation. However, manually specifying such priors would be

prohibitive in general. Though we have made several attempts in this direction in part III,

the problem is yet resolved, in terms of sample efficiency and scalability.

168

Appendices

169

APPENDIX A

DERIVATION OF EMBEDDING FOR GRAPHICAL MODEL INFERENCE

ALGORITHMS

By recognizing inference as computational expressions, inference machines [189] incorpo-

rate learning into the messages passing inference for CRFs. More recently, [101, 254, 148]

designed specific recurrent neural networks and convolutional neural networks for imitat-

ing the messages in CRFs. Although these methods share the similarity, i.e., bypassing

learning potential function, to the proposed framework, there are significant differences

comparing to the proposed framework.

The most important difference lies in the learning setting. In these existing messages

learning work [101, 254, 148, 38], the learning task is still estimating the messages repre-

sented graphical models with designed function forms, e.g., RNN or CNN, by maximizing

loglikelihood. While in our work, we represented each structured data as a distribution,

and the learning task is regression or classification over these distributions. Therefore, we

treat the embedded models as samples, and learn the nonlinear mapping for embedding,

and regressor or classifier, f : P → Y , over these distributions jointly, with task-dependent

user-specified loss functions.

Another difference is the way in constructing the messages forms, and thus, the neu-

ral networks architecture. In the existing work, the neural networks forms are constructed

strictly follows the message updates forms (3.8) or (3.11). Due to such restriction, these

works only focus on discrete variables with finite values, and is difficult to extend to con-

tinuous variables because of the integration. However, by exploiting the embedding point

of view, we are able to build the messages with more flexible forms without losing the de-

pendencies. Meanwhile, the difficulty in calculating integration for continuous variables is

no longer a problem with the reasoning (3.3) and (3.4).

170

A.1 Derivation of the Fixed-Point Condition for Mean-Field Inference

In this section, we derive the fixed-point equation for mean-field inference in Section 3.4.

As we introduced, the mean-field inference is indeed minimizing the variational free en-

ergy,

min
q1,...,qd

L({qi}di=1) :=

∫
Hd

∏
i∈V

qi(hi) log

∏
i∈V qi(hi)

p({hi} | {xi})
∏
i∈V

dhi.

Plug the MRF (3.5) into objective, we have

L({qi}di=1) =−
∫
Hd

∏
i∈V

qi(hi)

(
log Φ(hi, xi)+

∑
j∈N (i)

log (Ψ(hi, hj)Φ(hj, xj))

+
∑
k/∈N (i)

log

(∏
(k,l)∈E

Ψ(hk, hl)Φ(hk, xk)

))∏
i∈V

dhi +
∑
i∈V

∫
H
qi(hi) log qi(hi)dhi

= −
∫
qi(hi) log Φ(hi, xi)dhi +

∑
i∈V

∫
H
qi(hi) log qi(hi)dhi

−
∑
j∈N (i)

∫
qi(hi)

(∫
qj(hj) log (Ψ(hi, hj)Φ(hj, xj)) dhj

)
dhi + ci (A.1)

where ci = −
∫ ∏

k/∈N (i) qk(hk)
(∑

k/∈N (i) log
(∏

(k,l)∈E Ψ(hk, hl)Φ(hk, xk)
))∏

k/∈N (i) dhk.

Take functional derivatives of L({qi}di=1) w.r.t. qi(hi), and set them to zeros, we obtain the

fixed-point condition in Section 3.4,

log qi(hi) = ci + log Φ(hi, xi) +
∑
j∈N (i)

∫
qj(hj) log (Ψ(hi, hj)Φ(hj, xj)) dhj. (A.2)

This fixed-point condition could be further reduced due to the independence between

171

hi and xj given hj , i.e.,

log qi(hi) = ci + log Φ(hi, xi) +
∑
j∈N (i)

∫
qj(hj) log Ψ(hi, hj)dhj

+
∑
j∈N (i)

∫
qj(hj) log Φ(hj, xj)dhj

= c′i + log Φ(hi, xi) +
∑
j∈N (i)

∫
qj(hj) log Ψ(hi, hj)dhj, (A.3)

where c′i = ci +
∑

j∈N (i)

∫
qj(hj) log Φ(hj, xj)dhj .

A.2 Derivation of the Fixed-Point Condition for Loopy BP

The derivation of the fixed-point condition for loopy BP can be found in [243]. However,

to keep the paper self-contained, we provide the details here. The objective of loopy BP is

min
{qij}(i,j)∈E

−
∑
i

(|N (i)| − 1)

∫
H
qi(hi) log

qi(hi)

Φ(hi, xi)
dhi +

∑
i,j

∫
H2

qij(hi, hj) log
qij(hi, hj)

Ψ(hi, hj)Φ(hi, xi)Φ(hj, xj)
dhidhj

s.t.
∫
H
qij(hi, hj)dhj = qi(hi),

∫
H
qij(hi, hj)dhj = qi(hi),

∫
H
qi(hi)dhi = 1.

Denote λij(hj) is the multiplier to marginalization constraints
∫
H qij(hi, hj)dhi−qj(hj) =

0, the Lagrangian is formed as

L({qij}, {qi}, {λij}, {λji}) = −
∑
i

(|N (i)| − 1)

∫
H
qi(hi) log

qi(hi)

Φ(hi, xi)
dhi

+
∑
i,j

∫
H2

qij(hi, hj) log
qij(hi, hj)

Ψ(hi, hj)Φ(hi, xi)Φ(hj, xj)
dhidhj

−
∑
i,j

∫
H
λij(hj)

(∫
H
qij(hi, hj)dhi − qj(hj)

)
dhj

−
∑
i,j

∫
H
λji(hi)

(∫
H
qij(hi, hj)dhj − qi(hi)

)
dhi

172

with normalization constraints
∫
H qi(hi)dhi = 1. Take functional derivatives of

L({qij}, {qi}, {λij}, {λji}) with respect to qij(hi, hj) and qi(hi), and set them to zero, we

have

qij(hi, hj) ∝ Ψ(hi, hj)Φ(hi, xi)Φ(hj, xj) exp(λij(hj) + λji(hi)),

qi(hi) ∝ Φ(hi, xi) exp

(∑
k∈N (i) λki(hi)

|N (i)| − 1

)
.

We set mij(hj) =
qj(hj)

Φ(hi,xi) exp(λij(hj))
, therefore,

∏
k∈N (i)

mki(hi) ∝ exp

(∑
k∈N (i) λki(hi)

|N (i)| − 1

)
.

Plug it into qij(hi, hj) and qi(hi), we recover the loopy BP update for marginal belief and

exp(λji(hi)) =
qi(hi)

Φ(hi, xi)mji(hi)
∝

∏
k∈N(i)\j

mki(hi).

The update rule for message mij(hj) can be recovered using the marginal consistency con-

straints,

mij(hj) =
qj(hj)

Φ(hi, xi) exp(λij(hj))
=

∫
H qij(hi, hj)dhi

Φ(hi, xi) exp(λij(hj))

= Φ(hj, xj) exp(λij(hj))

∫
HΨ(hi, hj)Φ(hi, xi) exp(λji(hi))dhi

Φ(hi, xi) exp(λij(hj))

∝
∫
H

Ψ(hi, hj)Φ(hi, xi)
∏

k∈N(i)\j

mki(hi)dhi.

Moreover, we also obtain the other important relationship between mij(hj) and λji(hi)

by marginal consistency constraint and the definition of mij(hj),

mij(hj) ∝
∫

Ψ(hi, hj)Φ(hj, xj) exp(λji(hi))dhi.

173

APPENDIX B

SYNTAX, SEMANTICS AND ATTRIBUTE GRAMMAR IN SD-VAE

B.1 Grammar for Program Syntax

The syntax grammar for program is a generative contest free grammar starting with 〈program〉.

〈program〉 → 〈stat list〉

〈stat list〉 → 〈stat〉 ‘;’ 〈stat list〉 | 〈stat〉

〈stat〉 → 〈assign〉 | 〈return〉

〈assign〉 → 〈lhs〉 ‘=’ 〈rhs〉

〈return〉 → ‘return:’ 〈lhs〉

〈lhs〉 → 〈var〉

〈var〉 → ‘v’ 〈var id〉

〈digit〉 → ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈rhs〉 → 〈expr〉

〈expr〉 → 〈unary expr〉 | 〈binary expr〉

〈unary expr〉 → 〈unary op〉 〈operand〉 | 〈unary func〉 ‘(’ 〈operand〉 ‘)’

〈binary expr〉 → 〈operand〉 〈binary op〉 〈operand〉

〈unary op〉 → ‘+’ | ‘-’

〈unary func〉 → ‘sin’ | ‘cos’ | ‘exp’

〈binary op〉 → ‘+’ | ‘-’ | ‘*’ | ‘/’

〈operand〉 → 〈var〉 | 〈immediate number〉

〈immediate number〉 → 〈digit〉 ‘.’ 〈digit〉

〈digit〉 → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

B.2 Grammar for Molecule Syntax

Our syntax grammar for molecule is based on OpenSMILES standard, a context free gram-

mar starting with 〈s〉.

174

〈s〉 → 〈atom〉

〈smiles〉 → 〈chain〉

〈atom〉 → 〈bracket atom〉 | 〈aliphatic organic〉 | 〈aromatic organic〉

〈aliphatic organic〉 → ‘B’ | ‘C’ | ‘N’ | ‘O’ | ‘S’ | ‘P’ | ‘F’ | ‘I’ | ‘Cl’ | ‘Br’

〈aromatic organic〉 → ’c’ | ’n’ | ’o’ | ’s’

〈bracket atom〉 → ‘[’ 〈bracket atom (isotope)〉 ‘]’

〈bracket atom (isotope)〉 → 〈isotope〉 〈symbol〉 〈bracket atom (chiral)〉

| 〈symbol〉 〈bracket atom (chiral)〉

| 〈isotope〉 〈symbol〉 | 〈symbol〉

〈bracket atom (chiral)〉 → 〈chiral〉 〈bracket atom (h count)〉

| 〈bracket atom (h count)〉

| 〈chiral〉

〈bracket atom (h count)〉 → 〈h count〉 〈bracket atom (charge)〉

| 〈bracket atom (charge)〉

| 〈h count〉

〈bracket atom (charge)〉 → 〈charge〉

〈symbol〉 → 〈aliphatic organic〉 | 〈aromatic organic〉

〈isotope〉 → 〈digit〉 | 〈digit〉 〈digit〉 | 〈digit〉 〈digit〉 〈digit〉

〈digit〉 → ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’

〈chiral〉 → ‘@’ | ‘@@’

〈h count〉 → ‘H’ | ‘H’ 〈digit〉

〈charge〉 → ’-’ | ’-’ 〈digit〉 | ’+’ | ’+’ 〈digit〉

〈bond〉 → ‘-’ | ‘=’ | ‘#’ | ‘/’ | ‘\’

〈ringbond〉 → 〈digit〉

〈branched atom〉 → 〈atom〉 | 〈atom〉 〈branches〉 | 〈atom〉 〈ringbonds〉

| 〈atom〉 〈ringbonds〉 〈branches〉

〈ringbonds〉 → 〈ringbonds〉 〈ringbond〉 | 〈ringbond〉

〈branches〉 → 〈branches〉 〈branch〉 | 〈branch〉

〈branch〉 → ’(’ 〈chain〉 ’)’ | ’(’ 〈bond〉 〈chain〉 ’)’

175

COc1ccc(N2CCn3c2nn(CC(N)=O)c(=O)c3=O)cc1

Ringbond	matching	crossed	with	each	other

Figure B.1: Example of cross-serial dependencies (CSD) that exhibits in SMILES lan-
guage.

〈chain〉 → 〈branched atom〉 | 〈chain〉 〈branched atom〉

| 〈chain〉 〈bond〉 〈branched atom〉

B.3 Examples of SMILES semantics

Here we provide more explanations of the semantics constraints that contained in SMILES

language for molecules.

Specifically, the semantics we addressed here are:

1. Ringbond matching: The ringbonds should come in pairs. Each pair of ringbonds has

an index and a bond-type associated. What the SMILES semantics requires is exactly the

same as the well-known cross-serial dependencies (CSD) in formal language. CSD also

appears in some natural languages, such as Dutch and Swiss-German. Another example

of CSD is a sequence of multiple different types of parentheses where each separately

balanced disregarding the others. See Figure B.1 for an illustration.

2. Explicit valence control: Intuitively, the semantics requires that each atom cannot have

too many bonds associated with it. For example, a normal carbon atom has maximum

valence of 4, which means associating a Carbon atom with two triple-bonds will violate

the semantics.

176

B.4 Dependency graph introduced by attribute grammar

Suppose there is a production r = u0 → u1u2 . . . u|β| ∈ R and an attribute ui.a we

denote the dependency set Dr(ui.a) = {uj.b|uj.b is required for calculating ui.a}. The

union of all dependency sets D(att)
T =

⋃
r∈T ,ui∈rD

r(ui.a) induces a dependency graph,

where nodes are the attributes and directed edges represents the dependency relationships

between those attributes computation. Here T is an (partial or full) instantiation of the

generated syntax tree of grammar G. Let Dr(ui) = {uj|∃a, b : uj.b ∈ Dr(ui.a)} and

DT =
⋃
r∈T ,ui∈rD

r(ui), that is, DT is constructed from D(att)
T by merging nodes with the

same symbol but different attributes, we call D(att)
T is noncircular if the corresponding DT

is noncircular.

In our paper, we assume the noncircular property of the dependency graph. Such prop-

erty will be exploited for top-down generation in our decoder.

177

APPENDIX C

EXPERIMENTAL DETAILS OF S2V-DQN

C.1 Set Covering Problem

We also applied our framework to the classical Set Covering Problem (SCP). SCP is inter-

esting because it is not a graph problem, but can be formulated as one. Our framework is

capable of addressing such problems seamlessly, as we will show in the coming sections of

the appendix which detail the performance of S2V-DQN as compared to other methods.

Set Covering Problem (SCP): Given a bipartite graph G with node set V := U ∪ C,

find a subset of nodes S ⊆ C such that every node in U is covered, i.e. u ∈ U ⇔ ∃s ∈ S s.t.

(u, s) ∈ E, and |S| is minimized. Note that an edge (u, s), u ∈ U , s ∈ C, exists whenever

subset s includes element u.

Meta-algorithm: Same as MVC; the termination criterion checks whether all nodes in

U have been covered.

RL formulation: In SCP, the state is a function of the subset of nodes of C selected so

far; an action is to add node of C to the partial solution; the reward is -1; the termination

criterion is met when all nodes of U are covered; no helper function is needed.

Baselines for SCP: We include Greedy, which iteratively selects the node of C that is

not in the current partial solution and that has the most uncovered neighbors in U [132].

We also used LP, another O(log |U|)-approximation that solves a linear programming re-

laxation of SCP, and rounds the resulting fractional solution in decreasing order of variable

values (SortLP-1 in [176]).

178

C.2 Experimental Results on Realistic Data

In this section, we show results on realistic instances for all four problems. In particular,

for MVC and SCP, we used the MemeTracker graph to formulate network diffusion op-

timization problems. For MAXCUT and TSP, we used benchmark instances that arise in

physics and transportation, respectively.

C.2.1 Minimum Vertex Cover

As mentioned in the introduction, the MVC problem is related to the efficient spreading of

information in networks, where one wants to cover as few nodes as possible such that all

nodes have at least one neighbor in the cover. The MemeTracker graph 1 is a network of

who-copies-whom, where nodes represent news sites or blogs, and a (directed) edge from

u to v means that v frequently copies phrases (or memes) from u. The network is learned

from real traces in [87], having 960 nodes and 5000 edges. The dataset also provides the

average transmission time ∆u,v between a pair of nodes, i.e. how much later v copies

u’s phrases after their publication online, on average. As done in [124], we use these

average transmission times to compute a diffusion probability P (u, v) on the edge, such

that P (u, v) = α · 1

∆u,v

, where α is a parameter of the diffusion model. In both MVC and

SCP, we use α = 0.1, but results are consistent for other values we have considered. For

pairs of nodes that have edges in both directions, i.e. (u, v) and (v, u), we take the average

probability to obtain an undirected version of the graph, for which MVC is defined.

Following the widely-adopted Independent Cascade model (see [70] for example), we

sample a diffusion cascade from the full graph by independently keeping an edge with

probability P (u, v). We then consider the largest connected component in the graph as a

single training instance, and train S2V-DQN on a set of such sampled diffusion graphs. The

aim is to test the learned model on the (undirected version of the) full MemeTracker graph.

Experimentally, an optimal cover has 473 nodes, whereas S2V-DQN finds a cover with
1http://snap.stanford.edu/netinf/#data

179

474 nodes, only one more than the optimum, at an approximation ratio of 1.002. In com-

parison, MVCApprox and MVCApprox-Greedy find much larger covers with 666 and 578

nodes, at approximation ratios of 1.408 and 1.222, respectively.

C.2.2 Maximum Cut

A library of Maximum Cut instances is publicly available 2, and includes synthetic and

realistic instances that are widely used in the optimization community (see references at

library website). We perform experiments on a subset of the instances available, namely

ten problems from Ising spin glass models in physics, given that they are realistic and

manageable in size (the first 10 instances in Set2 of the library). All ten instances have 125

nodes and 375 edges, with edge weights in {−1, 0, 1}.

To train our S2V-DQN model, we constructed a training dataset by perturbing the in-

stances, adding random Gaussian noise with mean 0 and standard deviation 0.01 to the

edge weights. After training, the learned model is used to construct a cut-set greedily on

each of the ten instances, as before.

Table C.1 shows that S2V-DQN finds near-optimal solutions (optimal in 3/10 instances)

that are much better than those found by competing methods.

C.2.3 Traveling Salesman Problem

We use the standard TSPLIB library [184] which is publicly available 3. We target 38

TSPLIB instances with sizes ranging from 51 to 318 cities (or nodes). We do not tackle

larger instances as we are limited by the memory of a single graphics card. Nevertheless,

most of the instances addressed here are larger than the largest instance used in [20].

We apply S2V-DQN in “Active Search” mode, similarly to [20]: no upfront training

phase is required, and the reinforcement learning algorithm 7 is applied on-the-fly on each

instance. The best tour encountered over the episodes of the RL algorithm is stored.

2http://www.optsicom.es/maxcut/#instances
3http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

180

Table C.1: MAXCUT results on the ten instances described in C.2.2; values reported are
cut weights of the solution returned by each method, where larger values are better (best in
bold). Bottom row is the average approximation ratio (lower is better).

Instance OPT S2V-DQN MaxcutApprox SDP

G54100 110 108 80 54
G54200 112 108 90 58
G54300 106 104 86 60
G54400 114 108 96 56
G54500 112 112 94 56
G54600 110 110 88 66
G54700 112 108 88 60
G54800 108 108 76 54
G54900 110 108 88 68
G5410000 112 108 80 54

Approx. ratio 1 1.02 1.28 1.90

Table C.2 shows the results of our method and six other TSP algorithms. On all but 6

instances, S2V-DQN finds the best tour among all methods. The average approximation

ratio of S2V-DQN is also the smallest at 1.05.

C.2.4 Set Covering Problem

The SCP is also related to the diffusion optimization problem on graphs; for instance, the

proof of hardness in the classical [122] paper uses SCP for the reduction. As in MVC, we

leverage the MemeTracker graph, albeit differently.

We use the same cascade model as in MVC to assign the edge probabilities, and sample

graphs from it in the same way. Let RG(u) be the set of nodes reachable from u in a

sampled graph G. For every node u in G, there are two corresponding nodes in the SCP

instance, uC ∈ C and uU ∈ U . An edge exists between uC ∈ C and vU ∈ U if and only

if v ∈ RG(u). In other words, each node in the sampled graph G has a set consisting of

the other nodes that it can reach in G. As such, the SCP reduces to finding the smallest set

of nodes whose union can reach all other nodes. We generate training and testing graphs

according to this same process, with α = 0.1.

181

Table C.2: TSPLIB results: Instances are sorted by increasing size, with the number at the
end of an instance’s name indicating its size. Values reported are the cost of the tour found
by each method (lower is better, best in bold). Bottom row is the average approximation
ratio (lower is better).

Instance OPT S2V-DQN Farthest 2-opt Cheapest Christofides Closest Nearest MST

eil51 426 439 467 446 494 527 488 511 614
berlin52 7,542 7,542 8,307 7,788 9,013 8,822 9,004 8,980 10,402
st70 675 696 712 753 776 836 814 801 858
eil76 538 564 583 591 607 646 615 705 743
pr76 108,159 108,446 119,692 115,460 125,935 137,258 128,381 153,462 133,471
rat99 1,211 1,280 1,314 1,390 1,473 1,399 1,465 1,558 1,665
kroA100 21,282 21,897 23,356 22,876 24,309 26,578 25,787 26,854 30,516
kroB100 22,141 22,692 23,222 23,496 25,582 25,714 26,875 29,158 28,807
kroC100 20,749 21,074 21,699 23,445 25,264 24,582 25,640 26,327 27,636
kroD100 21,294 22,102 22,034 23,967 25,204 27,863 25,213 26,947 28,599
kroE100 22,068 22,913 23,516 22,800 25,900 27,452 27,313 27,585 30,979
rd100 7,910 8,159 8,944 8,757 8,980 10,002 9,485 9,938 10,467
eil101 629 659 673 702 693 728 720 817 847
lin105 14,379 15,023 15,193 15,536 16,930 16,568 18,592 20,356 21,167
pr107 44,303 45,113 45,905 47,058 52,816 49,192 52,765 48,521 55,956
pr124 59,030 61,623 65,945 64,765 65,316 64,591 68,178 69,297 82,761
bier127 118,282 121,576 129,495 128,103 141,354 135,134 145,516 129,333 153,658
ch130 6,110 6,270 6,498 6,470 7,279 7,367 7,434 7,578 8,280
pr136 96,772 99,474 105,361 110,531 109,586 116,069 105,778 120,769 142,438
pr144 58,537 59,436 61,974 60,321 73,032 74,684 73,613 61,652 77,704
ch150 6,528 6,985 7,210 7,232 7,995 7,641 7,914 8,191 9,203
kroA150 26,524 27,888 28,658 29,666 29,963 32,631 31,341 33,612 38,763
kroB150 26,130 27,209 27,404 29,517 31,589 33,260 31,616 32,825 35,289
pr152 73,682 75,283 75,396 77,206 88,531 82,118 86,915 85,699 90,292
u159 42,080 45,433 46,789 47,664 49,986 48,908 52,009 53,641 54,399
rat195 2,323 2,581 2,609 2,605 2,806 2,906 2,935 2,753 3,163
d198 15,780 16,453 16,138 16,596 17,632 19,002 17,975 18,805 19,339
kroA200 29,368 30,965 31,949 32,760 35,340 37,487 36,025 35,794 40,234
kroB200 29,437 31,692 31,522 33,107 35,412 34,490 36,532 36,976 40,615
ts225 126,643 136,302 140,626 138,101 160,014 145,283 151,887 152,493 188,008
tsp225 3,916 4,154 4,280 4,278 4,470 4,733 4,780 4,749 5,344
pr226 80,369 81,873 84,130 89,262 91,023 98,101 100,118 94,389 114,373
gil262 2,378 2,537 2,623 2,597 2,800 2,963 2,908 3,211 3,336
pr264 49,135 52,364 54,462 54,547 57,602 55,955 65,819 58,635 66,400
a280 2,579 2,867 3,001 2,914 3,128 3,125 2,953 3,302 3,492
pr299 48,191 51,895 51,903 54,914 58,127 58,660 59,740 61,243 65,617
lin318 42,029 45,375 45,918 45,263 49,440 51,484 52,353 54,019 60,939
linhp318 41,345 45,444 45,918 45,263 49,440 51,484 52,353 54,019 60,939

Approx. ratio 1 1.05 1.08 1.09 1.18 1.2 1.21 1.24 1.37

182

Experimentally, we test S2V-DQN and the other baseline algorithms on a set of 1000

test graphs. S2V-DQN achieves an average approximation ratio of 1.001, only slightly

behind LP, which achieves 1.0009, and well ahead of Greedy at 1.03.

C.3 Experiment Details

C.3.1 Problem instance generation

Minimum Vertex Cover

For the Minimum Vertex Cover (MVC) problem, we generate random Erdős-Renyi (edge

probability 0.15) and Barabasi-Albert (average degree 4) graphs of various sizes, and use

the integer programming solver CPLEX 12.6.1 with a time cutoff of 1 hour to compute op-

timal solutions for the generated instances. When CPLEX fails to find an optimal solution,

we report the best one found within the time cutoff as “optimal”. All graphs were generated

using the NetworkX 4 package in Python.

Maximum Cut

For the Maximum Cut (MAXCUT) problem, we use the same graph generation process as

in MVC, and augment each edge with a weight drawn uniformly at random from [0, 1]. We

use a quadratic formulation of MAXCUT with CPLEX 12.6.1. and a time cutoff of 1 hour

to compute optimal solutions, and report the best solution found as “optimal”.

Traveling Salesman Problem

For the (symmetric) 2-dimensional TSP, we use the instance generator of the 8th DIMACS

Implementation Challenge 5 [114] to generate two types of Euclidean instances: “random”

instances consist of n points scattered uniformly at random in the [106, 106] square, while

4https://networkx.github.io/
5http://dimacs.rutgers.edu/Challenges/TSP/

183

“clustered” instances consist of n points that are clustered into n/100 clusters; generator

details are described in page 373 of [114].

To compute optimal TSP solutions for both TSP, we use the state-of-the-art solver,

Concorde 6 [12], with a time cutoff of 1 hour.

Set Covering Problem

For the SCP, given a number of node n, roughly 0.2n nodes are in node-set C, and the rest

in node-set U . An edge between nodes in C and U exists with probability either 0.05 or

0.1, which can be seen as “density” values, and commonly appear for instances used in

optimization papers on SCP [15]. We guarantee that each node in U has at least 2 edges,

and each node in C has at least one edge, a standard measure for SCP instances [15]. We

also use CPLEX 12.6.1. with a time cutoff of 1 hour to compute a near-optimal or optimal

solution to a SCP instance.

C.3.2 Full results on solution quality

Table C.1 is a complete version of Table 7.2 that appears in the main text.

C.3.3 Full results on generalization

The full generalization results can be found in Table C.3, C.4, C.5, C.6, C.7, C.8 , C.9

and C.10.

Table C.3: S2V-DQN’s generalization on MVC problem in ER graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0032 1.0883 1.0941 1.0710 1.0484 1.0365 1.0276 1.0246 1.0111
40-50 1.0037 1.0076 1.1013 1.0991 1.0800 1.0651 1.0573 1.0299

50-100 1.0079 1.0304 1.0570 1.0532 1.0463 1.0427 1.0238
100-200 1.0102 1.0095 1.0136 1.0142 1.0125 1.0103
400-500 1.0021 1.0027 1.0057

6http://www.math.uwaterloo.ca/tsp/concorde/

184

Table C.4: S2V-DQN’s generalization on MVC problem in BA graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0016 1.0027 1.0039 1.0066 1.0093 1.0106 1.0125 1.0150 1.0491
40-50 1.0027 1.0051 1.0092 1.0130 1.0144 1.0161 1.0170 1.0228

50-100 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062
100-200 1.0016 1.0020 1.0019 1.0021 1.0026 1.0060
400-500 1.0025 1.0026 1.0030

Table C.5: S2V-DQN’s generalization on MAXCUT problem in ER graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0034 1.0167 1.0407 1.0667 1.1067 1.1489 1.1885 1.2150 1.1488
40-50 1.0127 1.0154 1.0089 1.0198 1.0383 1.0388 1.0384 1.0534

50-100 1.0112 1.0024 1.0109 1.0467 1.0926 1.1426 1.1297
100-200 1.0005 1.0021 1.0211 1.0373 1.0612 1.2021
200-300 1.0106 1.0272 1.0487 1.0700 1.1759

Table C.6: S2V-DQN’s generalization on MAXCUT problem in BA graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0119 1.0176 1.0276 1.0357 1.0386 1.0335 1.0411 1.0331
40-50 1.0107 1.0119 1.0139 1.0144 1.0119 1.0039 1.0085 0.9905

50-100 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
100-200 1.0166 1.0183 1.0166 1.0104 1.0166 1.0156
200-300 1.0420 1.0394 1.0290 1.0319 1.0244

Table C.7: S2V-DQN’s generalization on TSP in random graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0147 1.0511 1.0702 1.0913 1.1022 1.1102 1.1124 1.1156 1.1212
40-50 1.0533 1.0701 1.0890 1.0978 1.1051 1.1583 1.1587 1.1609

50-100 1.0701 1.0871 1.0983 1.1034 1.1071 1.1101 1.1171
100-200 1.0879 1.0980 1.1024 1.1056 1.1080 1.1142
200-300 1.1049 1.1090 1.1084 1.1114 1.1179

Table C.8: S2V-DQN’s generalization on TSP in clustered graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0214 1.0591 1.0761 1.0958 1.0938 1.0966 1.1009 1.1012 1.1085
40-50 1.0564 1.0740 1.0939 1.0904 1.0951 1.0974 1.1014 1.1091

50-100 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065
100-200 1.1009 1.0979 1.1013 1.1059 1.1048 1.1091
200-300 1.1012 1.1049 1.1080 1.1067 1.1112

185

15-20 40-50 50-100 100-200 400-500
Number of nodes in train/test graphs

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
MVCApprox
MVCApprox-Greedy

15-20 40-50 50-100 100-200 400-500
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
MVCApprox
MVCApprox-Greedy

(a) MVC ER (b) MVC BA

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
SDP
MaxcutApprox

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
SDP
MaxcutApprox

(c) MAXCUT ER (d) MAXCUT BA

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
Farthest
2-opt
PN-AC
Cheapest
Christofides
Closest
Nearest
MST

15-20 40-50 50-100 100-200 200-300
Number of nodes in train/test graphs

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
Farthest
2-opt
PN-AC
Cheapest
Christofides
Closest
Nearest
MST

(e) TSP random (f) TSP clustered

15-20 40-50 50-100 100-200 500-600
Number of nodes in train/test graphs

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
Greedy
LP

15-20 40-50 50-100 100-200 500-600
Number of nodes in train/test graphs

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
im

at
io

n
ra

tio
 to

 o
pt

im
al

S2V-DQN
PN-AC
Greedy
LP

(g) SCP 0.1 (h) SCP 0.05

Figure C.1: Approximation ratio on 1000 test graphs. Note that on MVC, our performance
is pretty close to optimal. In this figure, training and testing graphs are generated according
to the same distribution.

186

Table C.9: S2V-DQN’s generalization on SCP with edge probability 0.05.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0170 1.0436 1.1757 1.3910 1.6255 1.8768 2.1339 3.0574

40-50 1.0039 1.0083 1.0241 1.0452 1.0647 1.0792 1.0858 1.0775

50-100 1.0056 1.0199 1.0382 1.0614 1.0845 1.0821 1.0620

100-200 1.0147 1.0270 1.0417 1.0588 1.0774 1.0509

200-300 1.0273 1.0415 1.0828 1.1357 1.2349

Table C.10: S2V-DQN’s generalization on SCP with edge probability 0.1.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0015 1.0200 1.0369 1.0795 1.1147 1.1290 1.1325 1.1255 1.0805

40-50 1.0048 1.0137 1.0453 1.0849 1.1055 1.1052 1.0958 1.0618

50-100 1.0090 1.0294 1.0771 1.1180 1.1456 1.2161 1.0946

100-200 1.0231 1.0394 1.0564 1.0702 1.0747 2.5055

200-300 1.0378 1.0517 1.0592 1.0556 1.3192

C.3.4 Experiment Configuration of S2V-DQN

The node/edge representations and hyperparameters used in our experiments is shown in

Table C.11. For our method, we simply tune the hyperparameters on small graphs (i.e., the

graphs with less than 50 nodes), and fix them for larger graphs.

Table C.11: S2V-DQN’s configuration used in Experiment.

Problem Node tag Edge feature Embedding size p T Batch size n-step
Minimum Vertex Cover 0/1 tag N/A 64 5 128 5

Maximum Cut 0/1 tag edge length; end node tag 64 3 64 1
Traveling Salesman Problem coordinates; 0/1 tag; start/end node edge length; end node tag 64 4 64 1

Set Covering Problem 0/1 tag N/A 64 5 64 2

C.3.5 Stabilizing the training of S2V-DQN

For the learning rate, we use exponential decay after a certain number of steps, where the

decay factor is fixed to 0.95. We also anneal the exploration probability ε from 1.0 to 0.05

in a linear way. For the discounting factor used in MDP, we use 1.0 for MVC, MAXCUT

and SCP. For TSP, we use 0.1.

187

We also normalize the intermediate reward by the maximum number of nodes. For

Q-learning, it is also important to disentangle the actual Q with obsolete Q̃, as mentioned

in [160].

Also for TSP with insertion helper function, we find it works better with negative ver-

sion of designed reward function. This sounds counter intuitive at the beginning. However,

since typically the RL agent will bias towards most recent rewards, flipping the sign of

reward function suggests a focus over future rewards. This is especially useful with the in-

sertion construction. But it shows that designing a good reward function is still challenging

for learning combinatorial algorithm, which we will investigate in our future work.

C.3.6 Convergence of S2V-DQN

In Figure C.2, we plot our algorithm’s convergence with respect to the held-out validation

performance. We first obtain the convergence curve for each type of problem under every

graph distribution. To visualize the convergence at the same scale, we plot the approximate

ratio.

Figure C.2 shows that our algorithm converges nicely on the MVC, MAXCUT and SCP

problems. For the MVC, we use the model trained on small graphs to initialize the model

for training on larger ones. Since our model also generalizes well to problems with different

sizes, the curve looks almost flat. For TSP, where the graph is essentially fully connected,

it is harder to learn a good model based on graph structure. Nevertheless, as shown in

previous section, the graph embedding can still learn good feature representations with

multiple embedding iterations.

C.3.7 Complete time v/s approximation ratio plots

Figure C.3 is a superset of Figure 7.3, including both graph types and three graph size

ranges for MVC, MAXCUT and SCP.

188

C.3.8 Additional analysis of the trade-off between time and approx. ratio

Tables C.12 and C.13 offer another perspective on the trade-off between the running time of

a heuristic and the quality of the solution it finds. We ran CPLEX for MVC and MAXCUT

for 10 minutes on the 200-300 node graphs, and recorded the time and value of all the

solutions found by CPLEX within the limit; results shown next carry over to smaller graphs.

Then, for a given method M that terminates in T seconds on a graph G and returns a solution

with approximation ratio R, we asked the following 2 questions:

1. If CPLEX is given the same amount of time T for G, how well can CPLEX do?

2. How long does CPLEX need to find a solution of same or better quality than the one the

heuristic has found?

For the first question, the column “Approx. Ratio of Best Solution” in Tables C.12 and C.13

shows the following:

– MVC (Table C.12): The larger values for S2V-DQN imply that solutions we find quickly

are of higher quality, as compared to the MVCApprox/Greedy baselines.

– MAXCUT (Table C.13): On most of the graphs, CPLEX cannot find any solution at all

if given the same time as S2V-DQN or MaxcutApprox. SDP (solved with state-of-the-

art CVX solver) is so slow that CPLEX finds solutions that are 10% better than those

of SDP if given the same time as SDP (on ER graphs), which confirms that SDP is not

time-efficient. One possible interpretation of the poor performance of SDP is that its

theoretical guaranteed of 0.87 is in expectation over the solutions it can generate, and so

the variance in the approximation ratios of these solutions may be very large.

For the second question, the column “Additional Time Needed” in Tables C.12 and C.13

shows the following:

– MVC (Table C.12): The larger values for S2V-DQN imply that solutions we find are

harder to improve upon, as compared to the MVCApprox/Greedy baselines.

189

– MAXCUT (Table C.13): On ER (BA) graphs, CPLEX (10 minute-cutoff) cannot find

a solution that is better than those of S2V-DQN or MaxcutApprox on many instances

(e.g. the value (59) for S2V-DQN on ER graphs means that on 41 = 100 − 59 graphs,

CPLEX could not find a solution that is as good as S2V-DQN’s). When we consider

only those graphs for which CPLEX could find a better solution, S2V-DQN’s solutions

take significantly more time for CPLEX to beat, as compared to MaxcutApprox and SDP.

The negative values for SDP indicate that CPLEX finds a solution better than SDP’s in a

shorter time.

Table C.12: Minimum Vertex Cover (100 graphs with 200-300 nodes): Trade-off between
running time and approximation ratio. An “Approx. Ratio of Best Solution” value of 1.x%
means that the solution found by CPLEX if given the same time as a certain heuristic (in the
corresponding row) is x% worse, on average. “Additional Time Needed” in seconds is the
additional amount of time needed by CPLEX to find a solution of value at least as good as
the one found by a given heuristic; negative values imply that CPLEX finds such solutions
faster than the heuristic does. Larger values are better for both metrics. The values in
parantheses are the number of instances (out of 100) for which CPLEX finds some solution
in the given time (for “Approx. Ratio of Best Solution”), or finds some solution that is at
least as good as the heuristic’s (for “Additional Time Needed”).

Approx. Ratio of Best Solution Additional Time Needed
ER BA ER BA

S2V-DQN 1.09 (100) 1.81 (100) 2.14 (100) 137.42 (100)

MVCApprox-Greedy 1.07 (100) 1.44 (100) 1.92 (100) 0.83 (100)

MVCApprox 1.03 (100) 1.24 (98) 2.49 (100) 0.92 (100)

Table C.13: Maximum Cut (100 graphs with 200-300 nodes): please refer to the caption of
Table C.12.

Approx. Ratio of Best Solution Additional Time Needed
ER BA ER BA

S2V-DQN N/A (0) 1081.45 (1) 8.99 (59) 402.05 (34)

MaxcutApprox 1.00 (48) 340.11 (3) -0.23 (50) 218.19 (57)

SDP 0.90 (100) 0.84 (100) -6.06 (100) -5.54 (100)

190

C.3.9 Visualization of solutions

In Figure C.4, C.5 and C.6, we visualize solutions found by our algorithm for MVC, MAX-

CUT and TSP problems, respectively. For the ease of presentation, we only visualize small-

size graphs. For MVC and MAXCUT, the graph is of the ER type and has 18 nodes. For

TSP, we show solutions for a “random” instance (18 points) and a “clustered” one (15

points).

For MVC and MAXCUT, we show two step by step examples where S2V-DQN finds

the optimal solution. For MVC, it seems we are picking the node which covers the most

edges in the current state. However, in a more detailed visualization in Appendix C.3.10,

we show that our algorithm learns a smarter greedy or dynamic programming like strategy.

While picking the nodes, it also learns how to keep the connectivity of graph by scarifying

the intermediate edge coverage a little bit.

In the example of MAXCUT, it is even more interesting to see that the algorithm did

not pick the node which gives the largest intermediate reward at the beginning. Also in the

intermediate steps, the agent seldom chooses a node which would cancel out the edges that

are already in the cut set. This also shows the effectiveness of graph state representation,

which provides useful information to support the agent’s node selection decisions. For

TSP, we visualize an optimal tour and one found by S2V-DQN for two instances. While

the tours found by S2V-DQN differ slightly from the optimal solutions visualized, they

are of comparable cost and look qualitatively acceptable. The cost of the tours found by

S2V-DQN is within 0.07% and 0.5% of optimum, respectively.

C.3.10 Detailed visualization of learned MVC strategy

In Figure C.7, we show a detailed comparison with our learned strategy and two other

simple heuristics. We find that the S2V-DQN can learn a much smarter strategy, where the

agent is trying to maintain the connectivity of graph during node picking and edge removal.

191

C.3.11 Experiment Configuration of PN-AC

We implemented PN-AC to the best of our capabilities. Note that it is quite possible that

there are minor differences between our implementation and [20] that might have resulted

in performance not as good as reported in that paper.

For experiments of PN-AC across all tasks, we follow the configurations provided

in [20]: a) For the input data, we use mini-batches of 128 sequences with 0-paddings

to the maximal input length (which is the maximal number of nodes) in the training data.

b) For node representation, we use coordinates for TSP, so the input dimension is 2. For

MVC, MAXCUT and SCP, we represent nodes based on the adjacency matrix of the graph.

To get a fixed dimension representation for each node, we use SVD to get a low-rank ap-

proximation of the adjacency matrix. We set the rank as 8, so that each node in the input

sequence is represented by a 8-dimensional vector. c) For the network structure, we use

standard single-layer LSTM cells with 128 hidden units for both encoder and decoder parts

of the pointer networks. d) For the optimization method, we train the PN-AC model with

the Adam optimizer [127] and use an initial learning rate of 10−3 that decay every 5000

steps by a factor of 0.96. e) For the glimpse trick, we exactly use one-time glimpse in our

implementation, as described in the original PN-AC paper. f) We initialize all the model

parameters uniformly random within [−0.08, 0.08] and clip the L2 norm of the gradients

to 1.0. g) For the baseline function in the actor-critic algorithm, we tried the critic network

in our implementation, but it hurts the performance according to our experiments. So we

use the exponential moving average performance of the sampled solution from the pointer

network as the baseline.

Consistency with the results from [20] Though our TSP experiment setting is not

exactly the same as [20], we still include some of the results directly here, for the sake

of completeness. We applied the insertion heuristic to PN-AC as well, and all the results

reported in this chapter are with the insertion heuristic. We compare the approximation

ratio reported by [20] verses which reported by our implementation. For TSP20: 1.02 vs

192

1.03 (reported in this chapter); TSP50: 1.05 vs 1.07 (reported in this chapter); TSP100:

1.07 vs 1.09 (reported in this chapter). Note that we have variable graph size in each

setting (where the original PN-AC is only reported on fixed graph size), which makes the

task more difficult. Therefore, we think the performance gap here is pretty reasonable.

193

103 104

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ap
pr

ox
 r

at
io

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-400-500

103 104 105

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ap
pr

ox
 r

at
io

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-400-500

(a) MVC ER (b) MVC BA

103 104 105

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 r

at
io

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

103 104 105

minibatch training

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ap
pr

ox
 r

at
io

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

(c) MAXCUT ER (d) MAXCUT BA

102 103 104

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 r

at
io

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

102 103 104

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 r

at
io

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

(e) TSP random (f) TSP clustered

103 104 105

minibatch training

1

1.5

2

2.5

3

3.5

ap
pr

ox
 r

at
io

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-500-600

103 104 105

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ap
pr

ox
 r

at
io

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-500-600

(g) SCP 0.1 (h) SCP 0.05

Figure C.2: S2V-DQN convergence measured by the held-out validation performance.

194

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(a) MVC ER 50-100 (b) MVC ER 100-200 (c) MVC ER 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(d) MVC BA 50-100 (e) MVC BA 100-200 (f) MVC BA 200-300

10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

10 1 100 101 102

Time (s)

1.00

1.05

1.10

1.15

1.20

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

100 101 102

Time (s)

0.975

1.000

1.025

1.050

1.075

1.100

1.125

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd

(g) MAXCUT ER 50-100 (h) MAXCUT ER 100-200 (i) MAXCUT ER 200-300

10 2 10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd

10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

(j) MAXCUT BA 50-100 (k) MAXCUT BA 100-200 (l) MAXCUT BA 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(m) SCP 0.05 50-100 (n) SCP 0.05 100-200 (o) SCP 0.05 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.5

2.0

2.5

3.0

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(p) SCP 0.1 50-100 (q) SCP 0.1 100-200 (r) SCP 0.1 200-300

Figure C.3: Time-approximation trade-off for MVC, MAXCUT and SCP. In this figure,
each dot represents a solution found for a single problem instance. For CPLEX, we also
record the time and quality of each solution it finds. For example, CPLEX-1st means the
first feasible solution found by CPLEX.

195

Figure C.4: Minimum Vertex Cover: an optimal solution to an ER graph instance found by
S2V-DQN. Selected node in each step is colored in orange, and nodes in the partial solution
up to that iteration are colored in black. Newly covered edges are in thick green, previously
covered edges are in red, and uncovered edges in black. We show that the agent is not
only picking the node with large degree, but also trying to maintain the connectivity after
removal of the covered edges. For more detailed analysis, please see Appendix C.3.10.

Figure C.5: Maximum Cut: an optimal solution to ER graph instance found by S2V-DQN.
Nodes are partitioned into two sets: white or black nodes. At each iteration, the node
selected to join the set of black nodes is highlighted in orange, and the new cut edges it
produces are in green. Cut edges from previous iteration are in red (Best viewed in color).
It seems the agent will try to involve the nodes that won’t cancel out the edges in current
cut set.

Figure C.6: Traveling Salesman Problem. Left: optimal tour to a “random” instance with
18 points (all edges are red), compared to a tour found by our method next to it. For our
tour, edges that are not in the optimal tour are shown in green. Our tour is 0.07% longer
than an optimal tour. Right: a “clustered” instance with 15 points; same color coding as
left figure. Our tour is 0.5% longer than an optimal tour. (Best viewed in color).

196

S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (0) step (1)
S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (2) step (3)
S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (4) step (5)
S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (6) step (7)
S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (8) step (9)
S2V-DQN Greedy-Node Greedy-Edge S2V-DQN Greedy-Node Greedy-Edge

step (10) step (11)

Figure C.7: Step-by-step comparison between our S2V-DQN and two greedy heuristics.
We can see our algorithm will also favor the large degree nodes, but it will also do some-
thing smartly: instead of breaking the graph into several disjoint components, our algorithm
will try the best to keep the graph connected.

197

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, techniques,” Addison
wesley, vol. 7, no. 8, p. 9, 1986.

[2] A. Albarghouthi, S. Gulwani, and Z. Kincaid, “Recursive program synthesis,” in
Proceedings of the International Conference on Computer Aided Verification (CAV),
2013.

[3] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Re-
views of modern physics, vol. 74, no. 1, p. 47, 2002.

[4] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent pro-
grams with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[5] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,”
in Proceedings of Formal Methods in Computer-Aided Design (FMCAD), 2013.

[6] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program synthesis
via divide and conquer,” in Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2017.

[7] D. Alvarez-Melis and T. S. Jaakkola, “Tree-structured decoding with doubly-recurrent
neural networks,” 2016.

[8] W. Ammar, C. Dyer, and N. A. Smith, “Conditional random field autoencoders for
unsupervised structured prediction,” in Advances in Neural Information Processing
Systems, 2014, pp. 3311–3319.

[9] A. Andreeva, D. Howorth, S. E. Brenner, T. J. Hubbard, C. Chothia, and A. G.
Murzin, “Scop database in 2004: Refinements integrate structure and sequence
family data,” Nucleic acids research, vol. 32, no. suppl 1, pp. D226–D229, 2004.

[10] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N.
de Freitas, “Learning to learn by gradient descent by gradient descent,” in Advances
in Neural Information Processing Systems, 2016, pp. 3981–3989.

[11] A. W. Appel, “Verified Software Toolchain,” in Proceedings of the 20th European
Symposium on Programming (ESOP), 2011.

[12] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Concorde TSP solver, 2006.

198

[13] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The traveling salesman
problem: a computational study. Princeton university press, 2011.

[14] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Advances
in Neural Information Processing Systems, 2016, pp. 1993–2001.

[15] E. Balas and A. Ho, “Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study,” Combinatorial Optimization,
pp. 37–60, 1980.

[16] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deepcoder:
Learning to write programs,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[17] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M.
Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational
inductive biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261,
2018.

[18] J. L. Baylon, N. A. Cilfone, J. R. Gulcher, and T. W. Chittenden, “Enhancing ret-
rosynthetic reaction prediction with deep learning using multiscale reaction classi-
fication,” Journal of chemical information and modeling, vol. 59, no. 2, pp. 673–
688, 2019.

[19] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation,” The University of Chichago, Tech. Rep. TR-2002-01, 2002,
http://www.cs.uchicago.edu/research/publications/techreports/TR-2002-01.

[20] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial
optimization with reinforcement learning,” CoRR, vol. abs/1611.09940, 2016.

[21] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432,
2013.

[22] M. Benhenda, “Chemgan challenge for drug discovery: Can ai reproduce natural
chemical diversity?” arXiv preprint arXiv:1708.08227, 2017.

[23] D. P. Bertsekas, Nonlinear Programming, Second. Belmont, MA: Athena Scien-
tific, 1999.

[24] P. Bielik, V. Raychev, and M. Vechev, “Phog: Probabilistic model for code,” in
Proceedings of the International Conference on Machine Learning, 2016.

199

[25] E. J. Bjerrum, “Smiles enumeration as data augmentation for neural network mod-
eling of molecules,” arXiv preprint arXiv:1703.07076, 2017.

[26] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan: Generating
graphs via random walks,” arXiv preprint arXiv:1803.00816, 2018.

[27] B. Bollobás and O. Riordan, “The diameter of a scale-free random graph,” Combi-
natorica, vol. 24, no. 1, pp. 5–34, 2004.

[28] K. M. Borgwardt, “Graph kernels,” PhD thesis, Ludwig-Maximilians-University,
Munich, Germany, 2007.

[29] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs.,” in Proc.
Intl. Conf. Data Mining, 2005, pp. 74–81.

[30] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio,
“Generating sentences from a continuous space,” arXiv preprint arXiv:1511.06349,
2015.

[31] J. Boyan and A. W. Moore, “Learning evaluation functions to improve optimization
by local search,” Journal of Machine Learning Research, vol. 1, no. Nov, pp. 77–
112, 2000.

[32] J. Bradshaw, M. J. Kusner, B. Paige, M. H. Segler, and J. M. Hernández-Lobato,
“A generative model for electron paths,” 2018.

[33] J. Bresnan, R. M. Kaplan, S. Peters, and A. Zaenen, “Cross-serial dependencies in
dutch,” 1982.

[34] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[35] R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli, “Leveraging grammar
and reinforcement learning for neural program synthesis,” in International Confer-
ence on Learning Representations, 2018.

[36] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades
later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[37] C. Chang and C. Lin, LIBSVM: A library for support vector machines, Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[38] L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun, “Learning deep structured
models,” arXiv preprint arXiv:1407.2538, 2014.

200

[39] X. Chen, X. Qiu, C. Zhu, and X. Huang, “Gated recursive neural network for chi-
nese word segmentation,” in Proceedings of Annual Meeting of the Association for
Computational Linguistics, 2015.

[40] X. Chen, C. Liu, and D. Song, “Towards synthesizing complex programs from
input-output examples,” in International Conference on Learning Representations,
2018.

[41] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, and N. de
Freitas, “Learning to learn for global optimization of black box functions,” arXiv
preprint arXiv:1611.03824, 2016.

[42] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent neural net-
works,” arXiv preprint arXiv:1609.01704, 2016.

[43] C. W. Coley, W. H. Green, and K. F. Jensen, “Machine learning in computer-aided
synthesis planning,” Accounts of Chemical Research, vol. 51, no. 5, pp. 1281–1289,
May 15, 2018.

[44] C. W. Coley, W. H. Green, and K. F. Jensen, “Rdchiral: An rdkit wrapper for han-
dling stereochemistry in retrosynthetic template extraction and application,” 2019.

[45] C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green, R.
Barzilay, and K. F. Jensen, “A graph-convolutional neural network model for the
prediction of chemical reactivity,” Chemical Science, vol. 10, no. 2, pp. 370–377,
Jan. 2, 2019.

[46] C. W. Coley, L. Rogers, W. H. Green, and K. F. Jensen, “Computer-assisted ret-
rosynthesis based on molecular similarity,” ACS Central Science, vol. 3, no. 12,
pp. 1237–1245, 2017.

[47] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant generation
using non-linear constraint solving,” in Proceedings of the International Confer-
ence on Computer Aided Verification (CAV), 2003.

[48] E. Corey and W. T. Wipke, “Computer-assisted design of complex organic synthe-
ses,” Science, vol. 166, no. 3902, pp. 178–192, 1969.

[49] E. J. Corey, “The logic of chemical synthesis: Multistep synthesis of complex car-
bogenic molecules (nobel lecture),” Angewandte Chemie International Edition in
English, vol. 30, no. 5, pp. 455–465, 1991.

[50] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

201

[51] T. F. Cox and M. A. A. Cox, Multidimensional Scaling. London: Chapman and
Hall, 1994.

[52] B. C. Csáji, “Approximation with artificial neural networks,”

[53] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Trans. Program. Lang. Syst., vol. 13, no. 4, 1991.

[54] B. Dai, N. He, H. Dai, and L. Song, “Provable bayesian inference via particle mirror
descent,” in Proceedings of the 19th International Conference on Artificial Intelli-
gence and Statistics, 2016, pp. 985–994.

[55] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent variable mod-
els for structured data,” in International conference on machine learning, 2016,
pp. 2702–2711.

[56] H. Dai, B. Dai, Y.-M. Zhang, S. Li, and L. Song, “Recurrent hidden semi-markov
model,” 2017.

[57] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack
on graph structured data,” arXiv preprint arXiv:1806.02371, 2018.

[58] H. Dai, Y. Li, C. Wang, R. Singh, P.-S. Huang, and P. Kohli, “Learning transferable
graph exploration,” in Advances in Neural Information Processing Systems, 2019,
pp. 2514–2525.

[59] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed variational au-
toencoder for structured data,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

[60] D. P. De Farias and B. Van Roy, “The linear programming approach to approximate
dynamic programming,” Operations research, vol. 51, no. 6, pp. 850–865, 2003.

[61] ——, “On constraint sampling in the linear programming approach to approxi-
mate dynamic programming,” Mathematics of operations research, vol. 29, no. 3,
pp. 462–478, 2004.

[62] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C.
Hansch, “Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity,”
J Med Chem, vol. 34, pp. 786–797, 1991.

202

[63] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in Neural Information
Processing Systems, 2016, pp. 3837–3845.

[64] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. rahman Mohamed, and P. Kohli,
“Robustfill: Neural program learning under noisy i/o,” in Proceedings of the Inter-
national Conference on Machine Learning, 2017.

[65] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant generation via
abductive inference,” in Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), 2013.

[66] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-enzymes
without alignments,” J Mol Biol, vol. 330, no. 4, pp. 771–783, 2003.

[67] J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde, I. Smith, M.
Sullender, B. L. Ebert, R. J. Xavier, and D. E. Root, “Rational design of highly
active sgrnas for crispr-cas9-mediated gene inactivation,” Nature biotechnology,
vol. 32, no. 12, pp. 1262–1267, 2014.

[68] L. Dong and M. Lapata, “Language to logical form with neural attention,” arXiv
preprint arXiv:1601.01280, 2016.

[69] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, “Re-
current marked temporal point processes: Embedding event history to vector,” in
KDD, 2016.

[70] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha, “Scalable influence estimation
in continuous-time diffusion networks,” in NIPS, 2013.

[71] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molec-
ular fingerprints,” in Advances in Neural Information Processing Systems, 2015,
pp. 2215–2223.

[72] P. Erdos and A Rényi, “On the evolution of random graphs,” Publ. Math. Inst.
Hungar. Acad. Sci, vol. 5, pp. 17–61, 1960.

[73] P. Ertl and A. Schuffenhauer, “Estimation of synthetic accessibility score of drug-
like molecules based on molecular complexity and fragment contributions,” Jour-
nal of cheminformatics, vol. 1, no. 1, p. 8, 2009.

[74] M. Fahndrich and F. Logozzo, “Static contract checking with abstract interpreta-
tion,” in Proceedings of the 2010 International Conference on Formal Verification
of Object-Oriented Software, 2010.

203

[75] E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Nonparametric bayesian
learning of switching linear dynamical systems,” in Advances in Neural Informa-
tion Processing Systems, 2009, pp. 457–464.

[76] N. Fusi, I. Smith, J. Doench, and J. Listgarten, “In silico predictive modeling of
crispr/cas9 guide efficiency,” bioRxiv, 2015.

[77] Y. Gao, E. W. Archer, L. Paninski, and J. P. Cunningham, “Linear dynamical neural
population models through nonlinear embeddings,” in Advances in Neural Informa-
tion Processing Systems, 2016, pp. 163–171.

[78] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust framework for
learning invariants,” in Proceedings of the International Conference on Computer
Aided Verification (CAV), 2014.

[79] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants using deci-
sion trees and implication counterexamples,” in Proceedings of the ACM Sympo-
sium on Principles of Programming Languages (POPL), 2016.

[80] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and ef-
ficient alternatives,” in Proc. Annual Conf. Computational Learning Theory, B.
Schölkopf and M. K. Warmuth, Eds., Springer, 2003, pp. 129–143.

[81] Z. Ghahramani and G. E. Hinton, “Variational learning for switching state-space
models,” Neural computation, vol. 12, no. 4, pp. 831–864, 2000.

[82] R. C. S. L. L. Giles, “Overfitting in neural nets: Backpropagation, conjugate gra-
dient, and early stopping,” in Advances in Neural Information Processing Systems
13: Proceedings of the 2000 Conference, MIT Press, vol. 13, 2001, p. 402.

[83] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural mes-
sage passing for quantum chemistry,” arXiv preprint arXiv:1704.01212, 2017.

[84] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,”
in Proceedings of the Network and Distributed System Security Symposium, NDSS
2008, San Diego, California, USA, 10th February - 13th February 2008, 2008.

[85] M. Goemans and D. P. Williamson, “Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming,” Journal of
the ACM, vol. 42, no. 6, pp. 1115–1145, 1995.

[86] R. Gómez-Bombarelli, D. Duvenaud, J. M. Hernández-Lobato, J. Aguilera-Iparraguirre,
T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using
a data-driven continuous representation of molecules,” arXiv preprint arXiv:1610.02415,
2016.

204

[87] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring networks of diffusion
and influence,” in Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2010, pp. 1019–1028.

[88] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural
Information Processing Systems, 2014, pp. 2672–2680.

[89] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska,
S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al., “Hybrid com-
puting using a neural network with dynamic external memory,” Nature, vol. 538,
no. 7626, pp. 471–476, 2016.

[90] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
KDD, 2016.

[91] S. Gu, S. Levine, I. Sutskever, and A. Mnih, “Muprop: Unbiased backpropagation
for stochastic neural networks,” arXiv preprint arXiv:1511.05176, 2015.

[92] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-prop: Sample-
efficient policy gradient with an off-policy critic,” arXiv preprint arXiv:1611.02247,
2016.

[93] G. L. Guimaraes, B. Sanchez-Lengeling, P. L. C. Farias, and A. Aspuru-Guzik,
“Objective-reinforced generative adversarial networks (organ) for sequence gener-
ation models,” arXiv preprint arXiv:1705.10843, 2017.

[94] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-free pro-
grams,” in Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), 2011.

[95] S. Gulwani and N. Jojic, “Program verification as probabilistic inference,” in Pro-
ceedings of the ACM Symposium on Principles of Programming Languages (POPL),
2007.

[96] R. Guo, S. Kumar, K. Choromanski, and D. Simcha, “Quantization based fast inner
product search,” in Artificial Intelligence and Statistics, 2016, pp. 482–490.

[97] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S.
Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik,
“The harvard clean energy project: Large-scale computational screening and design
of organic photovoltaics on the world community grid,” The Journal of Physical
Chemistry Letters, vol. 2, no. 17, pp. 2241–2251, 2011.

205

[98] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and
function using networkx,” Los Alamos National Laboratory (LANL), Tech. Rep.,
2008.

[99] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024–
1034.

[100] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch and bound al-
gorithms,” in Advances in Neural Information Processing Systems, 2014, pp. 3293–
3301.

[101] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-based inspi-
ration of novel deep architectures,” arXiv preprint arXiv:1409.2574, 2014.

[102] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications
of the ACM, vol. 12, no. 10, Oct. 1969.

[103] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[104] F. Hoonakker, N. Lachiche, A. Varnek, and A. Wagner, “Condensed graph of reac-
tion: Considering a chemical reaction as one single pseudo molecule,”

[105] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing, “Harnessing deep neural networks
with logic rules,” arXiv preprint arXiv:1603.06318, 2016.

[106] IBM, CPLEX User’s Manual, Version 12.6.1, version Version 12.6.1, 2014.

[107] T. S. Jaakkola and D. Haussler, “Exploiting generative models in discriminative
classifiers,” in Advances in Neural Information Processing Systems 11, M. S. Kearns,
S. A. Solla, and D. A. Cohn, Eds., MIT Press, 1999, pp. 487–493.

[108] D. Janz, J. van der Westhuizen, and J. M. Hernández-Lobato, “Actively learning
what makes a discrete sequence valid,” arXiv preprint arXiv:1708.04465, 2017.

[109] D. Janz, J. van der Westhuizen, B. Paige, M. J. Kusner, and J. M. Hernández-
Lobato, “Learning a generative model for validity in complex discrete structures,”
arXiv preprint arXiv:1712.01664, 2017.

[110] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” J. Mach.
Learn. Res., vol. 5, pp. 819–844, 2004.

[111] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational autoencoder for
molecular graph generation,” arXiv preprint arXiv:1802.04364, 2018.

206

[112] W. Jin, C. Coley, R. Barzilay, and T. Jaakkola, “Predicting organic reaction out-
comes with weisfeiler-lehman network,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 2607–2616.

[113] W. Jitkrittum, A. Gretton, N. Heess, S. M. A. Eslami, B. Lakshminarayanan, D.
Sejdinovic, and Z. Szabó, “Kernel-based just-in-time learning for passing expec-
tation propagation messages,” in Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The
Netherlands, 2015, pp. 405–414.

[114] D. S. Johnson and L. A. McGeoch, “Experimental analysis of heuristics for the
stsp,” in The traveling salesman problem and its variations, Springer, 2007, pp. 369–
443.

[115] M. Johnson and A. Willsky, “Stochastic variational inference for bayesian time
series models,” in Proceedings of the 31st International Conference on Machine
Learning (ICML-14), 2014, pp. 1854–1862.

[116] M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta, and R. P. Adams,
“Structured vaes: Composing probabilistic graphical models and variational au-
toencoders,” arXiv preprint arXiv:1603.06277, 2016.

[117] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden semi-markov
models,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 673–701,
2013.

[118] J. Kain, C. Stokes, Q. Gaudry, X. Song, J. Foley, R. Wilson, and B. de Bivort, “Leg-
tracking and automated behavioural classification in drosophila,” Nature communi-
cations, vol. 4, p. 1910, 2013.

[119] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of com-
puter computations, Springer, 1972, pp. 85–103.

[120] P. Karpov, G. Godin, and I Tetko, “A transformer model for retrosynthesis,” 2019.

[121] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[122] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through
a social network,” in KDD, ACM, 2003, pp. 137–146.

[123] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial op-
timization algorithms over graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 6348–6358.

207

[124] E. B. Khalil, B. Dilkina, and L. Song, “Scalable diffusion-aware optimization of
network topology,” in Knowledge Discovery and Data Mining (KDD), 2014.

[125] E. B. Khalil, B. Dilkina, G. Nemhauser, S. Ahmed, and Y. Shao, “Learning to
run heuristics in tree search,” in 26th International Joint Conference on Artificial
Intelligence (IJCAI), 2017.

[126] E. B. Khalil, P. Le Bodic, L. Song, G. L. Nemhauser, and B. N. Dilkina, “Learning
to branch in mixed integer programming.,” in AAAI, 2016, pp. 724–731.

[127] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[128] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[129] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[130] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[131] ——, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.

[132] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.

[133] D. E. Knuth, “Semantics of context-free languages,” Theory of Computing Systems,
vol. 2, no. 2, pp. 127–145, 1968.

[134] L. Kong, C. Dyer, and N. A. Smith, “Segmental recurrent neural networks,” arXiv
preprint arXiv:1511.06018, 2015.

[135] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters,” arXiv preprint
arXiv:1511.05121, 2015.

[136] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie, “Profile-
based string kernels for remote homology detection and motif extraction,” Journal
of bioinformatics and computational biology, vol. 3, no. 03, pp. 527–550, 2005.

[137] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoen-
coder,” arXiv preprint arXiv:1703.01925, 2017.

[138] M. G. Lagoudakis and M. L. Littman, “Learning to select branching rules in the
dpll procedure for satisfiability,” Electronic Notes in Discrete Mathematics, vol. 9,
pp. 344–359, 2001.

208

[139] G Landrum, Rdkit: Open-source cheminformatics (2013), 2012.

[140] T. Lei, W. Jin, R. Barzilay, and T. Jaakkola, “Deriving neural architectures from
sequence and graph kernels,” arXiv preprint arXiv:1705.09037, 2017.

[141] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for increasing grey-
box fuzz testing coverage,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, 2018, pp. 475–485.

[142] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: A string kernel for
SVM protein classification,” in Proceedings of the Pacific Symposium on Biocom-
puting, Singapore: World Scientific Publishing, 2002, pp. 564–575.

[143] C. Leslie, E. Eskin, J. Weston, and W. S. Noble, “Mismatch string kernels for SVM
protein classification,” in Advances in Neural Information Processing Systems 15,
S. Becker, S. Thrun, and K. Obermayer, Eds., vol. 15, Cambridge, MA: MIT Press,
2002.

[144] K. Li and J. Malik, “Learning to optimize,” arXiv preprint arXiv:1606.01885, 2016.

[145] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

[146] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative
models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[147] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao, “Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision,” in Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 2017, pp. 23–33.

[148] G. Lin, C. Shen, I. Reid, and A. van den Hengel, “Deeply learning the messages in
message passing inference,” in Advances in Neural Information Processing Systems
(NIPS’15), 2015.

[149] S. W. Linderman, A. C. Miller, R. P. Adam, D. M. Blei, L. Paninski, and M. J. John-
son, “Recurrent switching linear dynamical systems,” arXiv preprint arXiv:1610.08466,
2016.

[150] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen, S. Ho, J.
Sloane, P. Wender, and V. Pande, “Retrosynthetic reaction prediction using neu-
ral sequence-to-sequence models,” ACS Central Science, vol. 3, no. 10, pp. 1103–
1113, 2017.

209

[151] K. S. M. Schmidt, Crfchain: Matlab code for chain-structured conditional random
fields with categorical features. 2008.

[152] C. Maddison and D. Tarlow, “Structured generative models of natural source code,”
in Proceedings of the International Conference on Machine Learning, 2014.

[153] Z. Manna and R. J. Waldinger, “Toward automatic program synthesis,” in Commu-
nications of the ACM, 1971.

[154] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[155] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value
memory networks for directly reading documents,” in Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), 2016.

[156] T. Minka, “The EP energy function and minimization schemes,” See www. stat.
cmu. edu/minka/papers/learning. html, August, 2001.

[157] A. Mnih and K. Gregor, “Neural variational inference and learning in belief net-
works,” arXiv preprint arXiv:1402.0030, 2014.

[158] A. Mnih and D. J. Rezende, “Variational inference for monte carlo objectives,”
arXiv preprint arXiv:1602.06725, 2016.

[159] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[160] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[161] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2008.

[162] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal
of SIAM, vol. 5, no. 1, pp. 32–38, 1957.

[163] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine, “Neural sketch learning for con-
ditional program generation,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

[164] K. P. Murphy, “Hidden semi-markov models (hsmms),” 2002.

210

[165] K. P. Murphy, Machine learning: a probabilistic perspective. MIT Press, 2012.

[166] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approxi-
mate inference: An empirical study,” in UAI, 1999, pp. 467–475.

[167] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language model for code,”
in Proceedings of the International Conference on Software Engineering (ICSE),
2015.

[168] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks
for graphs,” in Proceedings of The 33rd International Conference on Machine
Learning, 2016, pp. 2014–2023.

[169] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[170] S. Padhi, R. Sharma, and T. Millstein, “Data-driven precondition inference with
learned features,” in Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), 2016.

[171] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” Stanford InfoLab, Tech. Rep., 1999.

[172] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity. New Jersey: Prentice-Hall, 1982.

[173] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Prac-
tical black-box attacks against machine learning,” in Proceedings of the 2017 ACM
on Asia conference on computer and communications security, ACM, 2017, pp. 506–
519.

[174] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli, “Neuro-
symbolic program synthesis,” arXiv preprint arXiv:1611.01855, 2016.

[175] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufman, 1988.

[176] D. Peleg, G. Schechtman, and A. Wool, “Approximating bounded 0-1 integer linear
programs,” in Theory and Computing Systems, 1993., Proceedings of the 2nd Israel
Symposium on the, IEEE, 1993, pp. 69–77.

[177] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” arXiv preprint arXiv:1403.6652, 2014.

211

[178] E. O. Pyzer-Knapp, K. Li, and A. Aspuru-Guzik, “Learning from the harvard clean
energy project: The use of neural networks to accelerate materials discovery,” Ad-
vanced Functional Materials, vol. 25, no. 41, pp. 6495–6502, 2015.

[179] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[180] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[181] M. Raghothaman and A. Udupa, “Language to specify syntax-guided synthesis
problems,” 2014.

[182] T. Raiko, M. Berglund, G. Alain, and L. Dinh, “Techniques for learning binary
stochastic feedforward neural networks,” arXiv preprint arXiv:1406.2989, 2014.

[183] J. Ramon and T. Gärtner, “Expressivity versus efficiency of graph kernels,” in Pro-
ceedings of the first international workshop on mining graphs, trees and sequences,
2003, pp. 65–74.

[184] G. Reinelt, “Tsplib—a traveling salesman problem library,” ORSA journal on com-
puting, vol. 3, no. 4, pp. 376–384, 1991.

[185] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-aware
human activity recognition using smartphones,” Neurocomputing, vol. 171, pp. 754–
767, 2016.

[186] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” in Proceedings of the 31st In-
ternational Conference on Machine Learning (ICML-14), 2014, pp. 1278–1286.

[187] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning,
vol. 62, no. 1-2, pp. 107–136, 2006.

[188] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient neu-
ral reinforcement learning method,” in European Conference on Machine Learning,
Springer, 2005, pp. 317–328.

[189] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell, “Learning message-passing infer-
ence machines for structured prediction,” in Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 2737–2744.

[190] A. Sabharwal, H. Samulowitz, and C. Reddy, “Guiding combinatorial optimization
with uct,” in CPAIOR, Springer, 2012, pp. 356–361.

212

[191] H. Samulowitz and R. Memisevic, “Learning to solve QBF,” in AAAI, 2007.

[192] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Non-linear loop invariant gen-
eration using Gröbner bases,” in Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), 2004.

[193] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” Neural Networks, IEEE Transactions on, vol. 20, no. 1,
pp. 61–80, 2009.

[194] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in Pro-
ceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Houston, Texas, USA, 2013, ISBN: 978-
1-4503-1870-9.

[195] B. Schölkopf, K. Tsuda, and J.-P. Vert, Kernel Methods in Computational Biology.
Cambridge, MA: MIT Press, 2004.

[196] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge, MA: MIT Press,
2002.

[197] J. S. Schreck, C. W. Coley, and K. J. Bishop, “Learning retrosynthetic planning
through self-play,” arXiv preprint arXiv:1901.06569, 2019.

[198] P. Schwaller, T. Gaudin, D. Lanyi, C. Bekas, and T. Laino, ““found in transla-
tion”: Predicting outcomes of complex organic chemistry reactions using neural
sequence-to-sequence models,” Chemical science, vol. 9, no. 28, pp. 6091–6098,
2018.

[199] P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. Bekas, and A. A. Lee, “Molecular
transformer for chemical reaction prediction and uncertainty estimation,” Nov. 6,
2018.

[200] M. H. S. Segler and M. P. Waller, “Neural-symbolic machine learning for retrosyn-
thesis and reaction prediction,” Chemistry – A European Journal, vol. 23, no. 25,
pp. 5966–5971, May 2, 2017.

[201] M. H. Segler, M. Preuss, and M. P. Waller, “Planning chemical syntheses with deep
neural networks and symbolic ai,” Nature, vol. 555, no. 7698, p. 604, 2018.

[202] K. Sen, “DART: directed automated random testing,” in Hardware and Software:
Verification and Testing - 5th International Haifa Verification Conference, HVC
2009, Haifa, Israel, October 19-22, 2009, Revised Selected Papers, 2009, p. 4.

213

[203] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,”
in Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, 2005, pp. 263–272.

[204] R. Sharma and A. Aiken, “From invariant checking to invariant inference using
randomized search,” in Proceedings of the International Conference on Computer
Aided Verification (CAV), 2014.

[205] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simplifying loop invariant genera-
tion using splitter predicates,” in Proceedings of the International Conference on
Computer Aided Verification (CAV), 2011.

[206] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori, “A data
driven approach for algebraic loop invariants,” in Proceedings of the European
Symposium on Programming (ESOP), 2013.

[207] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research,
vol. 12, no. Sep, pp. 2539–2561, 2011.

[208] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt,
“Efficient graphlet kernels for large graph comparison,” in Proc. Intl. Conference
on Artificial Intelligence and Statistics, M. Welling and D. van Dyk, Eds., Society
for Artificial Intelligence and Statistics, 2009.

[209] S. M. Shieber, “Evidence against the context-freeness of natural language,” 1985.

[210] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of Go without
human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[211] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A hilbert space embedding for
distributions,” in Algorithmic learning theory, Springer, 2007, pp. 13–31.

[212] L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin, “Kernel belief propaga-
tion,” in Proc. Intl. Conference on Artificial Intelligence and Statistics, ser. JMLR
workshop and conference proceedings, vol. 10, 2011.

[213] L. Song, A. Gretton, and C. Guestrin, “Nonparametric tree graphical models,” in
13th Workshop on Artificial Intelligence and Statistics, ser. JMLR workshop and
conference proceedings, vol. 9, 2010, pp. 765–772.

214

[214] L. Song, J. Huang, A. J. Smola, and K. Fukumizu, “Hilbert space embeddings
of conditional distributions,” in Proceedings of the International Conference on
Machine Learning, 2009.

[215] D. Springer, L. Tarassenko, and G. Clifford, “Logistic regression-hsmm-based heart
sound segmentation,” 2015.

[216] B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf, “In-
jective Hilbert space embeddings of probability measures,” in Proc. Annual Conf.
Computational Learning Theory, 2008, pp. 111–122.

[217] M. Sugiyama and K. Borgwardt, “Halting in random walk kernels,” in Advances in
Neural Information Processing Systems, 2015, pp. 1630–1638.

[218] S. Sukhbaatar, J. Weston, R. Fergus, et al., “End-to-end memory networks,” in
Neural Information Processing Systems, 2015.

[219] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–
3112.

[220] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press,
1998.

[221] SyGuS Competition, http://sygus.seas.upenn.edu/SyGuS-COMP2017.html, 2017.

[222] S. Szymkuc, E. P. Gajewska, T. Klucznik, K. Molga, P. Dittwald, M. Startek, M.
Bajczyk, and B. A. Grzybowski, “Computer-assisted synthetic planning: The end
of the beginning,” Angew. Chem., Int. Ed., vol. 55, no. 20, pp. 5904–5937, 2016.

[223] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from
tree-structured long short-term memory networks,” in Proceedings of the Associa-
tion for Computational Linguistics (ACL), 2015.

[224] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-
mation network embedding,” in Proceedings of the 24th International Conference
on World Wide Web, International World Wide Web Conferences Steering Commit-
tee, 2015, pp. 1067–1077.

[225] Y. Tang and R. R. Salakhutdinov, “Learning stochastic feedforward neural net-
works,” in Advances in Neural Information Processing Systems, 2013, pp. 530–
538.

[226] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” Science, vol. 290, pp. 2319–2322, 2000.

215

[227] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” Journal of machine learning
research, vol. 6, no. Sep, pp. 1453–1484, 2005.

[228] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[229] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[230] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 2692–2700.

[231] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and K. M. Borgwardt,
“Graph kernels,” Journal of Machine Learning Research, 2010, In press.

[232] S. V. N. Vishwanathan and A. J. Smola, “Fast kernels for string and tree matching,”
in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun,
and K. Obermayer, Eds., Cambridge, MA: MIT Press, 2003, pp. 569–576.

[233] M. Wainwright, T. Jaakkola, and A. Willsky, “Tree-reweighted belief propagation
and approximate ML estimation by pseudo-moment matching,” in 9th Workshop
on Artificial Intelligence and Statistics, 2003.

[234] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and
variational inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1
– 2, pp. 1–305, 2008.

[235] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor spaces for chem-
ical compound retrieval and classification,” Knowledge and Information Systems,
vol. 14, no. 3, pp. 347–375, 2008.

[236] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C.
Ma, et al., “Deep graph library: Towards efficient and scalable deep learning on
graphs,” arXiv preprint arXiv:1909.01315, 2019.

[237] D. Weininger, “Smiles, a chemical language and information system. 1. introduc-
tion to methodology and encoding rules,” Journal of chemical information and
computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[238] B. Weisfeiler and A. A. Lehman, “A reduction of a graph to a canonical form
and an algebra arising during this reduction,” Nauchno-Technicheskaya Informat-
sia, vol. 2, no. 9, pp. 12–16, 1968.

216

[239] P. M. Williams, “Bayesian conditionalisation and the principle of minimum infor-
mation,” British Journal for the Philosophy of Science, vol. 31, no. 2, pp. 131–144,
1980.

[240] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural net-
works?” arXiv preprint arXiv:1810.00826, 2018.

[241] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213,
2015.

[242] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in
Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Diet-
terich, and V. Tresp, Eds., MIT Press, 2001, pp. 689–695.

[243] J. Yedidia, W. Freeman, and Y. Weiss, “Bethe free energy, kikuchi approxima-
tions and belief propagation algorithms,” Mitsubishi Electric Research Laborato-
ries, Tech. Rep., 2001.

[244] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional policy
network for goal-directed molecular graph generation,” in Advances in Neural In-
formation Processing Systems, 2018, pp. 6410–6421.

[245] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn: Generating
realistic graphs with deep auto-regressive models,” arXiv preprint arXiv:1802.08773,
2018.

[246] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial
nets with policy gradient,” in Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[247] S.-Z. Yu, “Hidden semi-markov models,” Artificial Intelligence, vol. 174, no. 2,
pp. 215–243, 2010.

[248] S.-Z. Yu and H. Kobayashi, “An efficient forward-backward algorithm for an explicit-
duration hidden markov model,” Signal Processing Letters, IEEE, vol. 10, no. 1,
pp. 11–14, 2003.

[249] A. L. Yuille, “Cccp algorithms to minimize the bethe and kikuchi free energies:
Convergent alternatives to belief propagation,” Neural Computation, vol. 14, no. 7,
pp. 1691–1722, Jul. 2002.

[250] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola, “Deep sets,” in Advances in neural information processing systems, 2017,
pp. 3391–3401.

217

[251] A. Zellner, “Optimal Information Processing and Bayes’s Theorem,” The American
Statistician, vol. 42, no. 4, Nov. 1988.

[252] W. Zhang and T. G. Dietterich, “Solving combinatorial optimization tasks by rein-
forcement learning: A general methodology applied to resource-constrained schedul-
ing,” Journal of Artificial Intelligence Reseach, vol. 1, pp. 1–38, 2000.

[253] X. Zhang, L. Lu, and M. Lapata, “Top-down tree long short-term memory net-
works,” arXiv preprint arXiv:1511.00060, 2015.

[254] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. Torr, “Conditional random fields as recurrent neural networks,” arXiv preprint
arXiv:1502.03240, 2015.

218

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Connecting deep learning with discrete algorithms
	Part I: Algorithm inspired Deep Learning
	Part II: Deep Learning enhanced algorithms
	Part III: Towards Reasoning with Graphs

	Organization of the thesis

	Literature survey
	Graph representation learning
	Graph generative modeling
	Combinatorial optimization over graphs
	Reasoning with graphs

	PART I: Algorithm inspired deep learning for graphs
	Discriminative graph representation learning
	Introduction
	Backgrounds
	Model for a Structured Data Point
	Embedding Latent Variable Models
	Embedding Mean-Field Inference
	Embedding Loopy Belief Propagation
	Embedding Other Variational Inference

	Discriminative Training
	Experiments
	Benchmark structure datasets
	Harvard Clean Energy Project(CEP) dataset

	Summary

	Stochastic large scale graph embedding
	Introduction
	Iterative Algorithms over Graphs
	The Algorithm Learning Problem
	Steady-state operator and linking function
	Finding steady-state
	Specific parameterization for TH and g
	The optimization problem

	Learning Algorithm
	Stochastic Fixed-Point Gradient Descent
	Complexity analysis

	Experiments
	Algorithm-learning: connectivity
	Algorithm Learning: PageRank
	Algorithm Learning: mean-field inference
	Application: node classification
	Scalability

	Summary

	Segmental sequence generative modeling
	Introduction
	Model Architecture
	sequential variational autoencoder
	Learning via stochastic distributional penalty method
	Updating Q
	Updating T and Y
	Optimizing Dynamic Programming

	Experiments
	Segmentation Accuracy
	Reconstruction

	Summary

	Graph generative modeling with syntax and semantics guidance
	Introduction
	Background
	Variational Autoencoder
	Context Free Grammar and Attribute Grammar

	Syntax-Directed Variational Autoencoder
	Stochastic Syntax-Directed Decoder
	Structure-Based Encoder
	Model Learning

	Experiments
	Settings
	Training Details
	Reconstruction Accuracy and Prior Validity
	Bayesian Optimization
	Predictive performance of latent representation
	Diversity of generated molecules
	Visualizing the Latent Space

	Summary

	PART II: Deep learning enhanced graph algorithms
	Learning heuristics in greedy algorithms
	Introduction
	Common Formulation for Greedy Algorithms on Graphs
	Representation: Graph Embedding
	Structure2Vec
	Parameterizing Q(hs, v; H

	Training: Q-learning
	Reinforcement learning formulation
	Learning algorithm

	Experimental Evaluation
	Comparison of solution quality
	Generalization to larger instances
	Scalability & Trade-off between running time and approximation ratio
	Experiments on real-world datasets
	Discovery of interesting new algorithms

	Summary

	Extensions of learning greedy algorithms over graphs
	Hierarchical action space for graph adversarial attack
	Problem statement
	Main formulation

	Optimal graph touring for program and App testing
	Problem statement
	An RL formulation for graph exploration

	PART III: Towards inductive reasoning with graph structures
	Reasoning the loop invariant for program verification
	Introduction
	Background
	End-to-End Reasoning Framework
	The reasoning process of a human expert
	Programming the reasoning procedure with neural networks

	Learning
	Reinforcement learning setup
	Training of the learning agent

	Experiments
	Dataset
	Finding loop invariants from scratch
	Ablation study
	Boosting the search with pre-training
	Attention visualization
	Discussion of limitations

	Summary

	Retrosynthesis prediction with conditional graph logic network
	Introduction
	Background
	Conditional Graph Logic Network
	Model Design
	Decomposable design of p(T|O)
	Graph Neuralization for v1,v2 and w2

	MLE with Efficient Inference
	Experiment
	Main results
	Interpret the predictions
	Large scale experiments on USPTO-full
	Ablation study of design choices
	Per-category performance
	Reaction conditional performance
	Effect of beam size

	Summary

	Conclusion
	Contribution and impact of the thesis work
	Limitation and future work

	Derivation of embedding for graphical model inference algorithms
	Derivation of the Fixed-Point Condition for Mean-Field Inference
	Derivation of the Fixed-Point Condition for Loopy BP

	Syntax, semantics and attribute grammar in SD-VAE
	Grammar for Program Syntax
	Grammar for Molecule Syntax
	Examples of SMILES semantics
	Dependency graph introduced by attribute grammar

	Experimental details of S2V-DQN
	Set Covering Problem
	Experimental Results on Realistic Data
	Minimum Vertex Cover
	Maximum Cut
	Traveling Salesman Problem
	Set Covering Problem

	Experiment Details
	Problem instance generation
	 Full results on solution quality
	Full results on generalization
	Experiment Configuration of S2V-DQN
	Stabilizing the training of S2V-DQN
	Convergence of S2V-DQN
	Complete time v/s approximation ratio plots
	Additional analysis of the trade-off between time and approx. ratio
	Visualization of solutions
	Detailed visualization of learned MVC strategy
	Experiment Configuration of PN-AC

	References

