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Abstract 
 

Computational Hybrid Systems for  
Identifying Prognostic Gene Markers of Lung Cancer 

 
Ying-Wooi Wan 

 
Lung cancer is the most fatal cancer around the world. Current lung cancer prognosis and 

treatment is based on tumor stage population statistics and could not reliably assess the risk for 
developing recurrence in individual patients. Biomarkers enable treatment options to be tailored 
to individual patients based on their tumor molecular characteristics.  To date, there is no 
clinically applied molecular prognostic model for lung cancer.  Statistics and feature selection 
methods identify gene candidates by ranking the association between gene expression and 
disease outcome, but do not account for the interactions among genes. Computational network 
methods could model interactions, but have not been used for gene selection due to 
computational inefficiency.  Moreover, the curse of dimensionality in human genome data 
imposes more computational challenges to these methods.  

We proposed two hybrid systems for the identification of prognostic gene signatures for 
lung cancer using gene expressions measured with DNA microarray.  The first hybrid system 
combined t-tests, Statistical Analysis of Microarray (SAM), and Relief feature selections in 
multiple gene filtering layers. This combinatorial system identified a 12-gene signature with 
better prognostic performance than published signatures in treatment selection for stage I and II 
patients (log-rank P<0.04, Kaplan-Meier analyses). The 12-gene signature is a more significant 
prognostic factor (hazard ratio=4.19, 95% CI: [2.08, 8.46], P<0.00006) than other clinical 
covariates. The signature genes were found to be involved in tumorigenesis in functional 
pathway analyses. 

The second proposed system employed a novel computational network model, i.e., 
implication networks based on prediction logic. This network-based system utilizes gene 
coexpression networks and concurrent coregulation with signaling pathways for biomarker 
identification. The first application of the system modeled disease-mediated genome-wide 
coexpression networks. The entire genomic space were extensively explored and 21 gene 
signatures were discovered with better prognostic performance than all published signatures in 
stage I patients not receiving chemotherapy (hazard ratio>1, CPE>0.5, P < 0.05). These 
signatures could potentially be used for selecting patients for adjuvant chemotherapy.  The 
second application of the system modeled the smoking-mediated coexpression networks and 
identified a smoking-associated 7-gene signature. The 7-gene signature generated significant 
prognostication specific to smoking lung cancer patients (log-rank P<0.05, Kaplan-Meier 
analyses), with implications in diagnostic screening of lung cancer risk in smokers (overall 
accuracy=74%, P<0.006). The coexpression patterns derived from the implication networks in 
both applications were successfully validated with molecular interactions reported in the 
literature (FDR<0.1). 

Our studies demonstrated that hybrid systems with multiple gene selection layers 
outperform traditional methods.  Moreover, implication networks could efficiently model 
genome-scale disease-mediated coexpression networks and crosstalk with signaling pathways, 
leading to the identification of clinically important gene signatures.   
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Chapter 1   

Introduction 

For the past decades, cancer has been the major health problem to industrialized countries around 

the world.  Among all types of cancers, lung cancer is the leading cause of cancer-related deaths 

[3].  Treatment failure will lead to death in lung cancer.  Currently, surgery is the foremost 

treatment option for patients with stage I non-small cell lung cancer (NSCLC).  However, 35–

50% of stage I NSCLC patients will relapse within 5 years [4, 5].  It remains a critical challenge 

to determine the risk for recurrence in early-stage lung cancer patients.  Patients at high risk for 

recurrence might benefit from adjuvant chemotherapy, whereas those with a low risk for tumor 

recurrence might be spared from the side effects of chemotherapy. Following this, another 

critical issue in clinics is to determine an individual patient’s predisposition to a specific 

anticancer drug. The emerging use of biomarkers may enable physicians to make treatment 

decisions based on the specific characteristics of individual patients and their tumor, instead 

merely of on population statistics [6].   

Microarray technologies present a convenient platform for scientists and clinical 

investigators to gain new insights into biology and ultimately for developing clinical applications 

[7].  The advancements in microarray technologies lead to promising achievements in the 

molecular prediction of individual clinical outcome. Two successful examples include the 

commercial gene tests for breast cancer, Oncotype DX [8] and MammaPrint [9, 10]. There have 

been a few studies on lung cancer signatures and molecular prognosis by transcriptional profiling 

[2, 11-17].  To date, there is no fully-validated and clinically applied model for predicting lung 

cancer recurrence [18].   
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On the other hand, microarray technologies pose a few challenges in computational 

techniques for molecular prognosis and diagnosis researches [19].  The first challenge is the high 

dimensionality of the data.  A typical microarray experiment would be able to profile up to tens 

of thousands of genes.  This nature of microarray data has complicated major diagnostic and 

prognostic breakthroughs [20] and puts a premium on innovative feature selection and data 

mining methods.  Feature selection methods allow us to select a subset of predictive genes as 

biomarkers.  With the discovered biomarkers, we could construct a faster, cost-effective 

prognostic or diagnostic classifier with improved performance [21].  The main objective of 

feature selection is to remove irrelevant features and retain only the informative features.  

Nevertheless, the search of the optimal subset of informative features in the space of all features 

is NP-hard.  This hard problem becomes more difficult when the microarray data is also small in 

sample size and clouded with noisy biological confounding effects [22].  

The most intuitive approach to identify candidate marker genes is to rank genes 

according to their association with the clinical outcome and select the top ranked genes.  

However, studies had shown that individual genes showing strong association with the outcome 

are not necessarily good classifiers [23-25].  Moreover, instead of functioning alone, genes and 

proteins interact with one another to form modular machines [26].  Ranking-based approaches 

that evaluate each gene individually could not model interactions among genes.  Therefore, with 

the completion of the Human Genome Project, understanding the networks of interactions among 

genes had become increasingly important to reveal the molecular basis of disease for biomarker 

identification [27]. 

Currently, various techniques had been applied to microarray studies to identify 

biomarkers and construct molecular classifier.  To discovery predictive gene signatures, 

statistical methods and feature selection methods is simple and efficient but would not account 

for the complex interactive machinery among genes.  On the other hand, network-based 

approaches overcome the limitations of statistical and feature selection methods by providing a 

closer modeling of genetic interactive nature.  However, they might suffer from computational 

complexities.  Once the set of signature genes had been identified, construction of the molecular 

classifier poses another set of challenges.  These challenges include assessment of the classifiers’ 

robustness [19] and the true biological validity of the findings [28].  Combining the limitations of 
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various methods with challenges originated from microarray data discussed above, it remains an 

open problem in this research domain to develop a methodology to efficiently identify a set of 

predictive genes as the biomarker for molecular prognosis or diagnosis.  

In this dissertation, we proposed two computational hybrid systems as the robust platform 

to identify prognostic gene signatures for lung cancer molecular prognosis.  The first hybrid 

system combined multiple traditional statistics and feature selection methods in different stages 

for gene filtering.  The second hybrid model integrated a novel network model, i.e. the 

implication networks based on prediction logic.  The integration of the network models in the 

second system incorporates the information of gene interactions with major signaling hallmarks 

in the identification of prognostic gene signatures.  To examine the proposed hybrid system 

methodologies, three studies were carried out.  The first study examined the first combinatorial 

framework with traditional statistics and feature selection methods.  It demonstrated that the 

combinatorial scheme of using different traditional methods to filter genes in multiple stages 

identify better gene signatures when applying these methods alone.  The second hybrid system 

that is built upon the innovative implication networks was investigated in the second and the 

third study.  The second study employed the network-based system to explore the prognostic 

signatures discovery in the whole genomic scale.  Extensive gene signatures for lung cancer with 

better prognostication than all published signatures were identified in this study.  Instead of the 

entire genome, the third study applied the network-based model in a smaller scope: genes 

significantly associated with lung cancer survival and smoking status.  This leads to the 

identification of prognostic gene signatures specific to the smoking lung cancer patients.  The 

implication networks efficiently and accurately model gene coexpression patterns perturbed by 

the disease outcome or other factor, such as smoking status.  Furthermore, it leads to 

identification of prognostic genes tightly involved in signaling pathway. 

The remainder of the proposal is organized as follows.  Chapter 2 presents the related 

work with focuses on various gene selection methods.  These methods would be described and 

their strengths and weakness would be summarized and discussed.  Chapter 3 describes the first 

study of hybrid models with statistical and feature selection methods. Chapter 4 includes the 

second study with the integration of implication networks in the hybrid model in genomic scale.   

Chapter 5 presents the study of using the implication networks in the identification of a smoking-
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associated signature.  Chapter 6 compares the implication networks employed in our studies with 

two network models, i.e. Boolean implication networks and Bayesian networks.  Finally, the last 

chapter, Chapter 7 discusses the contributions of our studies and the future works for the 

methodology. 

  



 

Chapter 2   
Related Work 

In recent two decades, with advancements in high-throughput biotechnologies and knowledge in 

genomic profiling such as microarray technologies, researches are able to investigate prognostic 

factors of cancer using genomic data such as gene expression values.  These studies involved 

identification of gene signatures as biomarkers, construction of molecular prognostic models 

using the identified biomarkers, and validation of the findings for clinical applications.  This 

chapter provides a review of the methods and works related to our studies.  Since public data was 

use in our studies, a brief description of the few data sets used is included at the end of the 

chapter.  The first three sections will discuss the methods for genomic signatures identification in 

three categories: ranking-based gene selection methods (2.1), network-based methods (2.2), and 

regularized linear models (2.3).  A thorough discussions on the few major methods reviewed in 

the first three sections is given in Section 2.4.  Statistical methods and bioinformatics tools used 

to validate the survival and biological aspect of the computational findings will be discussed in 

Section 2.5.  Section 2.6 describes of the few public data sets used in our studies.  Finally, we 

summarize the chapter with Section 2.7. 
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2.1 Ranking-based Gene Selection Methods 

2.1.1 Introduction 

In several microarray studies, genes are ranked according to their association with the clinical 

outcome, and the top ranked genes are identified as the gene signature and included in the 

prognostic classifier [8, 11, 12, 15, 29, 30].  The top rank genes could be either a fixed number of 

top tanked genes (such as top 10% of the ranked list).  Alternatively, a threshold can be set on 

the ranking criterion and the genes whose criterion exceeds the threshold are selected as 

signature genes.  Methods to study and rank the association of genes could be grouped into two 

major categories: statistical methods and traditional feature selection methods.  This section will 

briefly describe various methods found in these two categories. 

 

2.1.2 Statistical Methods 

The traditional practice to study the gene association to the clinical outcome from microarray 

data is to identified genes that differentially expressed between two clinical states, for example 

between the disease state and normal state.  One approach to identified differentially expressed 

genes is to compute the gene expression fold change between the two states for each gene and 

assess the observed fold change with statistical significance test.  The commonly used statistical 

significance test is the conventional t-tests, which provides the probability (P) that the computed 

changes in expression occurred by chance [31]. Genes that pass certain predetermined threshold 

of fold change and statistical significance constitute the list of prognostic genes [32].   

 Microarray data is usually small in sample size with large number of genes.  This poses a 

challenge in determining significance level using P-value from conventional t-test.  For example, 

the traditional statistical significant level of P = 0.05 will lead to discovery of 1,000 false 

positive genes by chance in a microarray experiment with 20,000 genes.  On the other hand, a 

more stringent threshold such as P = 0.001 will decrease false positives but result in high false 

negatives which will lead to failure in discovering a lot predictive genes [33].  It is a multiple 

hypothesis testing problem to determine if a gene has significantly different changes amongst 

large number of other genes.  Multiple testing correction methods such as Bonferroni correction 
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is too conservative to be applied in microarray experiment.  For example, it would require a gene 

with P < 0.05/20,000 in order to be declared significant, which is so small that hardly any genes 

could achieve that threshold.  Therefore, statistical methods used to control the false discovery 

rate (FDR) are used instead. Such a method commonly used in microarray analysis is significant 

analysis of microarrays (SAM) [34]. 

 SAM is used to identify genes with statistically significant changes in two different 

biological states.  It accounts for the multiple hypothesis testing problems in microarray analysis 

by estimating the FDR for the set of significant genes based on permutation test. In SAM, a 

modified t-test, or known as gene-specific t-test is used.  For each gene, it computes the ratio 

change in gene expression relative to standard deviation, known as the “relative difference”: 
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where )(ixI and )(ixU are defined as the mean expression for gene (i) in states I and U, 

respectively.  s(i) is the standard deviation in expression for gene (i) and s0 is a positive constant 

used to ensure the relative difference d(i) is independent of the gene expression. 

 The procedure carried out in SAM is depicted in Fig. 2.1, the observed relative 

differences for all the n genes are ranked into ascending order.  Null distribution of the relative 

difference of each gene is generated by random permutations of samples’ class labels for π times.  

In each iteration p, null relative difference dp(i) for each genes are ranked into ascending order as 

well.  From the null distribution of relative differences, the expected relative difference dE(i) for 

gene (i) is computed by averaging the null relative differences from all iterations: 

 
π

π∑ == 1
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E

id
id  (2)  

The expected relative differences are then ranked into ascending order and plotted against 

the observed relative differences.  From the scatter plot, genes with differences between the 

observed and expected relative differences greater than the threshold delta (Δ) are identified as 

significant genes (or known as “called significant” genes),   which could be defined as the set T: 

 { }Δ>−= )()(: ididiT E  (3)  
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In each iteration, falsely discovered genes are those whose null relative difference dp(i) 

exceeds the horizon cutoffs (du and dl) of observed relative difference for genes called 

significant found from the scatter plot.  

The estimated FDR relative to the set of significant genes T is defined as the ratio of the 

average number of genes falsely discovered from all π permutations over the total number of 

genes called significant.  Mathematically, this could be represented as: 

 
T

dlidorduidi

FDR

p pp

π

π∑ =
<>

=

1
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 (4)  

 

 
Figure 2.1. Procedures of SAM 

  

In data analysis involved survival outcome, such as survival status after surgery, censored 

cases often occur often due to failure in follow up.  Using SAM or other discrete-class learning 

methods, they need to be removed from the analysis as the exact survival outcome for these 

observations were not known.  In microarray data analyses where observations are limited, it’s 
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important to include as many available observations as possible to strengthen the statistical 

power of the study.  Therefore, methods that could include all observations yet accounting for 

censored cases would be preferred from methods that redefine the problem as binary class 

problem by removing censored cases.  Statistical survival analysis methods such as Cox 

proportional hazard model would account for censored cases.  Univariate Cox proportional 

hazard model analyzes how each gene changes relative to survival status.  Gene that passed 

certain predefined significance threshold or ranked tops according to the statistical significance 

would be identified as interesting genes that are related to survival outcome [11, 15].   

Cox proportional hazard model, or usually known as Cox model, is a regression model 

proposed by D.R. Cox [35].  It’s commonly used in survival analysis to study the relationships 

between predictors (or known as covariates) and the survival outcome.   In survival analysis, the 

hazard at time t, is the probability of an event (such as death) at time t, given survival up to time t 

[36], which can be defined as: 

 
t

tth
  timestartingrisk at  subjects ofnumber 

 at timeevent   thengexperienci subjects ofnumber )( =  (5)  

 In univariate Cox model, the hazard definition is extended to be proportional hazard, 

which is the probability of an event at time t, given survival up to time t, and for a specific value 

of a predictor, x: 

 )exp()()|( 0 xthxth ⋅×= β  (6)  

where h0(t) is known as baseline hazard function. It is the probability that subjects will 

experience the event when the predictor is zero. Hazards for observations of two survival states 

could be defined as: 

 )exp()()|( 101 xthxxth ⋅×== β  (7)  

 )exp()()|( 202 xthxxth ⋅×== β  (8)  

Thus, the ratio of the two hazards is obtained by: 
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Assume the change of the predictors is one unit; it gives us the estimated degree of effect of the 

predictor on survival, known as hazard ratio: 
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 )exp(β=HR  (10)  

The statistical significance of the estimated hazard ratio is assessed by Wald test, under 

the hypothesis that the coefficient (β) is zero [37], which is analogous to the fact that the 

predictors has no effect on survival giving a HR of 1.  Nevertheless, the number of genes is much 

larger than the number of samples available.  The value indicates the significance of the genes 

ranked by univariate Cox model need to be corrected for multiple hypothesis testing. 

 

2.1.3 Feature Selection Methods 

Traditional feature selection methods used in machine learning applications are not commonly 

employed in genomic studies.  Random forest is one of the feature selection methods used to 

select predictive genes in genomic studies [38-41].  Random forest uses both bagging and 

random variable selections in the algorithm to construct the ensemble of classification trees.  

Specifically, each of the classification trees is built using a bootstrap sample of the data, and each 

split of the tree is based on a random subset of the variables [42].  Random forest could be used 

for variable selection because in addition to classifications, random forest assesses the 

importance of each variable in the algorithm.  The decrease in a tree splitting criterion, the Gini 

index and the decrease of permutation accuracy are implemented in random forest as measures to 

evaluate the importance of variables with respect to the outcome [43, 44].  The out-of-bag (OOB) 

error rate from the classification could be used as a criterion to select the final set of variables 

through an iteration random forests [38].  Since the tree split is based on random subset of 

variables on a bootstrapped sample, it enables random forest to work efficiently in microarray 

data where number of variables (genes) is much larger than the number of observations [38].  

Random forest could select a smaller set of variables which could also achieve comparable 

prediction performance than other classifiers with larger set of variables [39, 41, 44], especially 

in data with large amount of noise.  These properties of random forest are preferred in genomic 

studies with noisy high-throughput microarray data.  One issue with random forest is the stability 

of the results given [38].  Multiple sets of selected variables that are equally good in 

classification performance would be produced by random forest.  The lack of uniqueness and 

overlapping genes in the resulting selected genes will lead to questions on the biological 

interpretability of the results [45].  
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Principle Component Analysis (PCA) is another common method used to reduce the 

feature space dimensionality by transforming the data to a new coordinate system, or feature 

space.  Each coordinate (called the principle component) is a linear combination of the original 

features [46].  The first few principle components yield the greatest variance present in all the 

original features and hence usually selected as the new feature for classification.  One 

disadvantage of the projection method is that all of the original input features need to be retained 

[47].   It was proposed to perform gene selection through a variable selection strategy based on 

PCA [48].  A variation of PCA, such as the generalized and nonlinear kernel PCA (KPCA) was 

also proposed to reduce dimension of the microarray gene expression data prior to classification 

[49].   

Relief is another method that could be used for feature selection because it would assess 

the importance of each variable in differentiating samples between two classes and provide the 

ranking accordingly.  The first Relief algorithm was proposed by Kira and Rendell [50].  An 

extended version with more reliable probabilities estimation was later proposed by Kononenko et 

al. [51], known as Relief-F.  In the extended version, instead of calculating the weight of features 

based on the nearest hit and miss of the randomly selected sample, k-nearest hits and k-nearest 

misses of the randomly selected sample are used.  As depicted in Fig. 2.2, Relief evaluates the 

importance of a variable by repeatedly sampling an instance and checking the value of the given 

variable for the k-nearest instances from the same and different classes.  The values of the 

variables of the nearest neighbors are compared to the sampled instance and used to update the 

relevance weights for each variable.   

 

 

1. set all weights W[A] := 0.0; 
2. for  i := 1 to n do 
3. begin 
4.      randomly select an instance R; 
5.      find nearest hit H and nearest miss M; 
6.      for A:= 1 to #all_attributes do 
7.           W[A] := W[A] – diff(A, R, H)/n + diff(A,R, M)/n; 
8. end; 

 
Figure 2.2. The Relief algorithm [51]. 
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An approximation of the weight of attribute A computed by Relief could be written as: 

  (11)  
hit) nearest-k | A of value tP(differen  - 

 miss) nearest-k | A of value tP(differen =W[A] 

When the algorithm stops, Relief assigns more weight to those variables that have the 

same value for instances from the same class and differentiate between instances from different 

classes [52, 53].  

 

2.1.4 Discussion 

Among the few ranking-based gene selection methods, t-test and fold change is the simplest and 

most intuitive technique in selecting genes differentially expressed with respect to disease 

outcome.  However, it is sensitive to the gene-specific variances and the estimates suffer more in 

small sample [54, 55].  These gene-specific variances were adjusted in SAM through a new 

statistics measurement, the gene-specific t-test, or known as the relative difference [34]. 

Moreover, with t-test, multiple testing problem arises from the large number of genes in 

microarray data and poses high risk in false positive.  To address to this problem, repeated 

measurements of statistics from permutations are used in SAM to control for amount of false 

positives.  Nevertheless, the permutations cause SAM more computationally expensive than t-

test.  Instead of evaluating the differentiation of expression between two disease states, 

univariate Cox model evaluates the discriminative power of genes with respect to survival 

outcome, which is over a series of time points.  This is the strength of univariate Cox model over 

t-test and SAM in studies involved survival data.  Theoretically, SAM could be generalized to 

implement survival analysis method by defining the gene-specific t-test in a different way.  

There is no available tool for such implementation.  

Small sample size is one of the key challenges in microarray data studies.  To obtain less 

biased estimates from small sample, machine learning methods such as random forest and Relief 

employed randomization and repeated measurements.  When sample size is small, bagging with 

bootstrapped aggregating was shown to be able to improve the performance of unstable 

estimators, such as the classification and regression tree (CART) [56].  Random forest employs 

bagging in the algorithm and have shown to provide good performance in microarray data with 
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small samples and large variables [38].  Random forest is more flexible as it could be used to 

rank the genes by providing a variable importance measure for each gene and also could provide 

a subset of predictive genes through classifications.  This presents a convenient framework for 

removing redundant genes.  On the hand, Relief does not remove redundant features.  In term of 

computational time, Relief is faster than random forest and other feature selection methods as it 

avoids any exhaustive or heuristic combinatorial search.  The Relief algorithm is in linear time to 

the number of features and number of samples selected.  Although Relief has been applied in a 

wide aspect of applications, ranging from feature selection before model constructions to provide 

feature importance guide in other algorithm [57], it is not commonly used in microarray studies. 

  

 

2.2 Network-based Methods 

2.2.1 Introduction 

Fundamental mechanisms of molecular functions are based on interactions among genes and 

proteins [26, 58].  Therefore, it’s important to understand the genes interaction networks in order 

to gain further insights to the relationships between genes and diseases.  Molecular network 

analysis using computational network models has led to promising applications in identifying 

new disease genes [59], discovering disease-related sub-networks [60], and classifying diseases 

[61].  Computational network models that have been developed for molecular network analysis 

can be roughly categorized into three classes: logical model to demonstrate the state of entities 

(genes/proteins) at anytime as a discrete level; continuous models to represent real-valued 

molecular network processes and activities over continuous timescale; and single-molecule 

models to simulate small regulatory networks and mechanisms [62].   Since our studies involved 

implementing novel computational network models in biomarkers discovery using microarray 

data, a few logical network models commonly used for molecular network studies will be briefly 

discussed in this section. 
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2.2.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are computational models consist of set of highly 

interconnected nodes.  The structure and functions of ANNs are modeled with the motivation 

from the biological neural systems, where each node in the ANNs portray the biological neurons 

[63].  ANNs are typically organized in layers of nodes, where each node interconnected with one 

another with a connected line.  The lines represent the relationships between the nodes and each 

connection has an associated weight to describe the strength of the relationship.  ANNs are 

generally described in three layers: input layer, hidden layer, and output layer (Fig 2.3).  The 

input layer contains nodes to which the input is presented.  The output layer is where the final 

predictions/ answers are retrieved.  The hidden layer, which could contain more than one layer, is 

where the processing is done on the incoming data and feed the output to the next layer.   

 

 
Figure 2.3. Structural diagram of a general artificial neural network. 

 

 To construct an ANN model representing the data, back-propagation algorithm is the 

most common algorithm used to learn the weights.  Specifically, the algorithm starts with a 

random weight, then iterates through the training data set and updates the weights to reduce the 

error on each observation.  The algorithm stops when weights converge, or when the error rate 

passes a certain threshold [63, 64].  Once the weights are learned, the modeled ANN could be 

used to obtain prediction on new input.  An example of this process in software high-risk 

program detection is given in Fig. 2.4.  The training phase of modeling an ANN is relatively time 

consuming, but the prediction phase is typically straightforward and fast [63].  The learning rate 

parameter in the back propagation algorithm could be tuned to control the speed of the training 
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process.  However, it would affect the generalization of the constructed ANN, leading to over-

fitting the data or too generalized with low precision. 

Artificial neural networks were first used in artificial intelligence applications to interpret 

complex real-world problems, such as speech synthesis, facial recognition, and handwriting 

recognition [63].  Nowadays, ANNs could be found in a wide range of applications, including 

applications in biomedical fields and microarray studies.  A few examples include modeling 

classifier for diagnostic or prognostic prediction [65-68], learning and modeling interactions 

among genes from expression data [69] .   

 

 
Figure 2.4. Construction of artificial neural networks for high-risk programs detection. [64] 
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2.2.3 Bayesian Networks 

Bayesian networks, which also known as Bayesian belief networks or belief networks, are 

graphical models used to represent the joint probability distributions of a set of random variables 

and the conditional dependence relationships among the variables based on Bayesian probability.  

Bayesian networks have been a popular framework for encoding uncertain knowledge in expert 

systems [70].  Bayesian networks had been applied and shown to be useful in various 

applications, ranging from manufacturing control, price forecasting, diagnosis, automated vision, 

to bioinformatics [71-74] .  

Bayesian network is a directed acyclic graph (DAG) where the nodes representing 

random variables and edges representing direct relationships between the connected variables.  

In the Bayesian network, each node has an associated conditional probability table (CPT) 

denoting the conditional probabilities of the node given all possible combinations of its parents.  

For nodes without parent, prior probability of the node is specified [75].  Markov assumptions on 

conditional independence among variables are hold in Bayesian networks.  Markov assumptions 

state that variable Xi is considered independent of its non-descendants, given its parents and joint 

distribution could be decomposed into the product form [76].  For a given set of random 

variables X = {X1, …, Xn}, the joint distributions represented by the Bayesian networks could 

thus be defined as:  

  (12)  ∏
=

=
n

i
i

G
in XXPXXP
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where PaG(Xi) is the set of parents of Xi in the Bayesian network.  Fig. 2.5 gives an 

example of the Bayesian network with five variables. 

 

 
Figure 2.5. An example of Bayesian network structure. 
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The Markov independencies among the variable in the Bayesian network in Fig 2.5 are 

I(A;E), I(B;D | A,E), I(C; A,D,E|B), I(D;B,C,E|A), and I(E;A,D).  The joint distribution of the five 

variables specified by the Bayesian network is: 

  (13)  P(E)*  A)|P(D*  D)|P(C*  E)A,|P(B*  P(A) = E) D, C,B,P(A,

A scoring function is used to evaluate how well a built Bayesian network matches the 

data.  The score computed could be used as the criterion in the Bayesian network that best 

represent the probability distributions of the attributes in the data.  Given a sufficiently large 

number of instances, the learning procedure will converge and lead to the exact network 

structure up to the correct equivalence class [77].  This process of searching for the optimal 

network in the space of directed acyclic graphs is a NP-hard problem.  Multiple search 

algorithms such as hill-climbing, beam search, or simulated annealing could be used to search for 

the optimal network. Although these methods provide only suboptimal solution, in which only 

the local maximal Bayesian network is obtained, it had been shown to give good performance in 

practice.  Another approach for more efficient learning process is sparse candidate algorithm 

[77], in which a subset of variables was chosen as the set of candidate parents and the search was 

restricted to networks in which the candidate parents of a variable can be its parents.    

Bayesian networks could be used to interpret causal relationships among variables by 

imposing more stringent interpretation of the edges: the parents of a variable are its immediate 

causes. In the causal interpretation, variable is considered independent of its earlier causes, given 

the values of its parents.  This is known as the causal Markov assumptions.  This causal 

interpretation of Bayesian networks is a natural interpretation for biological models. For 

example, in genetic pedigree: once we know the genetic makeup of the individual’s parents, the 

genetic makeup of her ancestors is not informative about her own genetic makeup. [76]. 

 

2.2.4 Implication Networks 

Similar as Bayesian networks described in the last section, implication networks are also 

probabilistic graphical models representing the relationships among the variables. In the 

implication network, each node represents a variable and the edge between pair of nodes 

represents the type of implications existing between the pair of variables.  Instead of acyclic as in 
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Bayesian networks, implication networks allow cyclic relation, which is an important property 

over Bayesian networks for biological networks studies. 

 The first formalism of implication networks was proposed by Liu and Desmarais [78], 

which is based on binomial distribution.  This formalism had not been applied to any aspect of 

biological studies.  Another formalism of implication networks based on prediction logic was 

proposed by Guo et al. [1], where prediction logic based on formal logic rules was used to derive 

successful implication relations.   

There exist six implication relations between any pair of dichotomous variables (Fig. 2.6).   

 
Figure 2.6. Six most important implication rules relating two dichotomous variables. 

 

Each table in Fig 2.6 is a contingency table (Table 2.1) where each cell represents the 

number of co-occurrences.  For example, cell NA˄B indicates the number of samples where both 

variables A and variable B are true.  The shaded cells of the contingency tables in Fig. 2.6 

represent the errors for the corresponding implication rule.  For example, A˄¬B is the error cell 

for the implication rule , N A˄¬B  represents the number of error occurrences.  Cell A˄¬B is 

erroneous for the rule because in an ideal case, if the implication  is the true 

BA ⇒

BA ⇒ BA ⇒
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relationships between A and B, then we would never expect to find the contradiction case where 

A is true but not B. 

 

Table 2.1. Contingency table of two variables for N empirical samples. 

 B ¬B 
A NA˄B NA˄¬B 

¬A N¬A˄B N¬A˄¬B 
  

 

To derive the implication relation between each pair of variables in the dataset, a 

modified U-Optimality method [79] was used in the implication induction algorithm (Fig. 2.7).   

The Implication Induction Algorithm by Guo et al. [1] 
Begin 

Set a significant level ∇ and a minimal Umin min

For nodei, i∈[0, vmax – 1] and nodej, j∈[i+1, vmax] 
(Note: vmax is the total number of nodes) 

For all empirical case samples N 
Compute a contingency table as in Fig. 2.6 

N11 N12 Mij = N21 N22 
For each relation type k out of the six cases, find the solution  

Max Up Subject 
to 

Max Up  ≥ Umin 
≥ ∇  p∇ min

               ∇ >  ∇cellserror cellserror  -non
If the solution exists, then return a type k relation 

End 

 

 
Figure 2.7. Implication induction algorithm based on prediction logic. 

 In the contingency table Mij of the induction algorithm (Fig. 2.7), N11 indicates number 

of samples where both i and j occur to be true, N12 is when i is true but not j, N21 is when j is true 

but not i, and N22 is when both i and j are not true.  

In the induction algorithm, Up is the scope of the implication rule, representing the 

portion of the data covered by the implication relation, and p∇  is the precision of the implication 

rule, representing the prediction success of the corresponding implication relation. For a single 

 



2. Related Work  20 

error cell, where Nij is the number of error occurrences, scope Up, and precision  are defined 

as: 

p∇

 2
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For the rule types where there are multiple error cells, they are defined as: 
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where ωij = 1 for error cells; otherwise, ωij = 0. 

 

Based on the contingency table for variable A and B (MAB) (Table 2.1), the scope and 

precision for each of the six implication rules in Fig. 2.6 are defined as follows. 

For positive implication, , BA⇒
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Similarly, for forward negative implication, BA ¬⇒ , 
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For inverse negative implication, BA⇒¬ , 
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For negative implication, BA ¬¬ ⇒ , 

 
2
*

N

NN
UU BA

BABA
¬

==
∧¬¬⇒¬  (24)  

 
BA

BA
BABA UN

N

¬⇒¬

∧¬

∧¬¬⇒¬ −=∇=∇
*

1  (25)  

For positive equivalence, , BA ⇔
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And for negative equivalence, BA ¬⇔ , 
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In the implication induction algorithm, the minimum requirement for the scope (Umin) and 

precision ( ) must be positive values for an implication rule.  They are the parameters used 

to control the significance level for an implication rule.  In our studies, we defined the minimum 

requirement for these two parameters to be at least 95% significant (P < 0.05) from one-tail Z-

test based on the sample size.  In this induction algorithm (Fig. 2.7), the minimum requirements 

min∇
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for deriving an implication rule are set for both scope and precision, which is different from the 

original U-Optimality [79] method, where the minimum requirement is set for precision alone. 

An implication rule has high precision when the number of error occurrences is a small 

portion of the data covered by the implication rule.  An implication rule is successfully derived 

from the algorithm if it has the maximum scope, Up and it satisfies the constraint that its scope 

(Up) and precision (  ) are greater than the required minimum values, Umin and p∇ min∇ , 

respectively.  To simplify the computations of the maximization problem, the precision  

value of every error cell must be greater than that of the non-error cells for the corresponding 

implication rule [1]. 

ij∇

The complexity of the induction algorithm is O(Nv2), where N is the sample size and v is 

the number of variables in the dataset (i.e. nodes in the implication networks) [1].   

 To represent the strength of the implication relation for the connecting pair of variables, a 

weight is estimated based on conditional probability.  Since each implication rule has a logically 

equivalent rule, another weight for the corresponding logical equivalence should be estimated.  

Both weights could be derived at the same time by the induction algorithm [1].  Let WI be the 

weight associated with the implication rule, '
IW

A

is the weight associated with its logical 

equivalence.  For example, for implication rule , its logical equivalence is B⇒ AB ¬¬ ⇒ .  

Their respective weights are defined as: 
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Given a quintuple representing the implication rule I: 

  (32)  >=<∈ ',,,,, IIconant WWNNRIII &&

where I&& represents the set of all possible implication rules, R represents the implication rule type, 

WI and '
IW are the weight functions mapping the antecedent node Nant and consequent node Ncon 

 

of the implication rule and their negations to the real number between 0 and 1, which are defined 

as: 
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 ]1,0[: →× conantI N  NW  (33) 

 

 

 (34)  

 

The formalism of implication networks based on pred

eory and statistics, which provides conceptual value of prediction analysis in constructing and 

evaluat

 Networks 

orks, Boolean implication networks  were 

eta-analysis of microarray data for 

]1,0[:' →¬×¬ conantI N  NW

iction logic integrates formal logic 

th

ing useful statements, particularly in complex multinomial problems with moderate 

sample sizes [1].  This feature is essential for clinical applications, in which many clinical 

parameters are multinomial and the patient sample size is small.  The implication induction 

algorithm in Fig. 2.7 is general for discrete datasets. With the expansion of the contingency table 

Mij, implication rules can be induced for multinomial datasets, where error cells are those with 

the highest precision ( ij∇ values) and satisfying all the constraints.  The proposition can then be 

induced according to the error set. 

 

2.2.5 Boolean Implication

Recently, another formalism of implication netw

constructed to model gene interactions networks in a m

multiple species [80].  The implication relations in the Boolean implication networks were 

induced based on scatter plots of expression between two genes.  On the scatter plots of gene 

expressions, a threshold was automatically determined using StepMiner algorithm [81] to 

discretize the gene expression level as ‘high’ or ‘low’.  Based on the discretized levels, the 

scatter plot is partitioned into four quadrants and the implication relation between the two genes 

is derived based on the number of data points (occurrences) in the quadrants. The partitioned 

scatter plot with four quadrants is analogous to the contingency tables in Fig. 2.6 and Table 2.1, 

where the ‘low’ and ‘high’ expression of gene A corresponds to ¬A and A respectively. In order 

to derive a successful implication rule between the pair of genes for the Boolean implication 

networks, two statistics were tested.  The first statistic tests if the observed number of 

occurrences in the sparse quadrant (error cell) is significantly less than the expected number of 

occurrences under an independent model, given the relative distribution of low and high values 

of both genes.  The second statistic estimates the maximum likelihood of the error rate for the 
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number of occurrences in the error cell.  For example, if the error cell for genes A and B is where 

both A and B is low, the observed and expected number of occurrences in the error cell is: 

 
BA

Nobsreved ¬∧¬=  (35)  

N

NN
N

N

N

N

N
expected

 

 BA ¬¬
 (36)  

*
BA ¬¬

== *)*(

tatistics and the error rate are thus defined as: 

 

The first s

expected
observed-expected statistic =  (37)  

 )ved  (38)  (*21
BA

N
obser

N
observedrate error

¬¬
+=

An implication rule representing the pair of genes is successfu

equation (37) is greater than 3 and the error rate is less than 0.1.  

ls reviewed above falls into the first class of computational models for 

lysis [62], which are logical models.  Logical models are suitable for 

rly complex and difficult to be interpreted.  It is like a “black box” 

where t

 lly derived if the statistic in 

 

2.2.6 Discussion 

The four network mode

regulatory network ana

modeling the interactions among genes from microarray data as they require the least amount of 

data compared with other network models, such as single-molecule network models.  Although 

the logical models are abstract and could only provide qualitative insight to the interactions, they 

are simpler to be studied.  Other benefits shared by logical models reviewed above are that they 

provide good performance in learning from noisy data and provide a framework for inferring 

predictions [63, 82, 83].   

There are a few limitations with ANNs. The first argument about ANNs is that the 

modeled networks are ove

he weights learned are hard to be understood by humans compared with other rule-based 

classifiers [63, 84].  Although it is computationally difficult, the knowledge about the weights 

learned could be retrieved in the form of Causal Indices (CI) [84].  Another shortcoming about 

ANNs is that they will over-fit the training data and generalize to new data poorly when the 

sample size is small.  Furthermore, as discussed earlier, it is time consuming in training the 
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ide causal relationships 

betwee

derived from data.  Implication networks are not as commonly known in the research 

domain

weights of the networks.  This makes modeling genome-wide gene interactions with ANNs 

computationally challenging.  To our knowledge, there are no applications for the complete 

modeling for gene-gene interactions for the whole human genome.  On the other hand, unlike 

implication networks where the gene expression values would need to be discretized into binary 

scale, ANNs could model the interactions of genes at continuous form.  

Bayesian network is more commonly known and preferred in molecular network analysis 

[58, 73, 74].  Bayesian networks are preferred because it could prov

n pair of genes.  More importantly, the noise inherent to biological data could be 

accommodated by the probabilistic nature of the formalism of Bayesian networks [74].  A causal 

interpretation for Bayesian networks had been utilized to predict genome-wide protein-protein 

interactions [73] and model cellular networks [72].  However, it is not viable to evaluate all 

possible networks as the number of possible networks grows exponentially in the number of 

genes under consideration.  Furthermore, owing to the Markov assumption hold in Bayesian 

networks, it is not always possible to determine the causal relationships between nodes, i.e., the 

direction of the edges [85]. More importantly, the acyclic Bayesian network structure was unable 

to model feedback loops, which are essential in signaling pathways [74] and genetic networks 

[86-88]. To overcome the acyclic limitation, a more complex scheme, dynamic Bayesian 

networks, was explored for modeling temporal microarray data [89, 90].  On the other hand, 

implication networks could model cyclic relations.  Therefore, the cyclic implication network is 

more suitable for studying relationships and interactions of biological networks than Bayesian 

networks.   

Implication networks and Bayesian networks are both belief networks formalized based 

on statistics 

 as Bayesian networks.  The latest applications of implication networks in the research 

domain are the Boolean implication networks, which are proposed as a computational platform 

for genomic evolution of genes interactions and discovery of novel biological relations among 

genes [80].  It was shown that implication networks is computationally efficient and feasible to 

be applied to construct genome-wide networks [80].  Moreover, implications networks are 

suitable for genes networks representation because both the symmetric and asymmetric 

relationships between pair of genes could be represented with the six implication rules [80], 
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where asymmetric relationships could be represented by the first four implication rules 

( BA ⇒ , BA ¬⇒ , BA⇒¬ , and BA ¬¬ ⇒ ); symmetric relationships could be represented by 

positive equivalence ( BA ⇔ ) and negative equivalence ( BA ¬⇔ ). 

 

 

2.3 Regularized Linear Models 

odels are used to study the effects of multiple factors on the response 

ct a prediction model.  In microarray studies, linear models such as 

ew observed data.  In 

fitting 

2.3.1 Introduction 

In general context, linear m

variable or used to constru

ANOVA or ordinary least square (OLS) linear regression models were used to analyze gene 

expression changes or to construct classification models [91, 92].   In this section, we will briefly 

review the general properties of linear models and their shortcomings in microarray analyses 

through descriptions of two specific regularized linear regression models.  

A few properties were desired in linear models for genomic studies.  The first property is 

to have a good fit in the modeling data but also accurate prediction in n

the regression model, when the number of predictors is relatively large, the fitted models 

will tempt to overfit the data available but predict poorly in new observed data.  The curse of 

dimensionality phenomenon with the large p (number of predictors) small n (number of samples) 

found in microarray data not only posts a challenge in fitting the models but also makes the over 

fitting problem worse [93].  Shrinkage methods were recommended to avoid the overfitting 

problem in fitting the regression model in small data sets [94].  The second property desired is to 

select the whole group of genes sharing the same biological pathway instead of individual genes 

[95].  Furthermore, since most genomic studies involve construction of patient classification 

model using the set of genes selected, it is desired for linear models to have a property where the 

gene selection method is built into the classification procedure.  In this section, lasso and elastic 

net, the two regression-based methods with these properties, will be discussed. 
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2.3.2 asso 

lute shrinkage and selection operator) is a linear regression method proposed by 

 a regularization for OLS linear regression.  Linear regression model is a model 

 

vector of estimated coefficients 

Suppose that we have a data of n samples: (xi, yi), i = 1, 2, …, n, where x  = (xi1, …, xip)  

e coefficients by 

minimi

 

OLS often fits the given data well but performs poorly in

methods for the coefficient estimations were desired.  Lasso was proposed as an alternative 

stimat

L

Lasso (least abso

Tibshirani [96] as

used to obtain a predicted response ŷ  with liner combinations of p predictors x1, … , xp, which 

could be formulated as: 

 ppxxy βββ ˆ...ˆˆˆ 110 +++=  (39) 

The model fitting procedures produce the )ˆ ...., ,ˆ ,ˆ(ˆ
10 pββββ = .  

i T

are the predictors and yi are the responses.  OLS linear regression estimates th

zing the residual squared error: 

 
⎤⎡

−= ∑ ∑
n

OLS xy 2)(minargˆ ββ  (40) ⎥
⎦

⎢
⎣ =i j

ijji
1β

  future data.  Thus, alternative 

e ion method through regularizing the OLS regression model by adding a L1-norm penalty.  

In other words, lasso estimates the coefficients by minimizing the residuals sum of squares 

subject to a bound on the L1-norm of the coefficients: 

 )0( ,    subject to,  )(minargˆ
1

2 ∑∑ ∑ ≥≤⎥
⎦

⎤
⎢
⎣

⎡
−=

=

n

i j j
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hich is equivalent to solving the following problem: 

ji
lasso ttxy βββ

β
 (41) 

w

⎥
⎦

⎤
⎢
⎣
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=i j

ijji xy
β

)( min
1

 
⎡

+− ∑
j

j

n

βλβ   2  (42)  

Due to the L1-norm constraint, lasso will assign a zero

variables, causing these variables being “dropped out” from the regression model automatically.  

Thus, l

 coefficient to some of the 

asso could also be treated as a method for variable selection.   

The criterion ∑ ∑
=

−
n

i j
ij

equation ms elliptical contours centered around . Take 

ji xy
1

2)( β in equation (41) is equivalent to the quadratic 

)ˆ( OLST X ββ − that for)ˆ( TOLS Xββ − OLSβ̂
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an exam tures as shown in ple with two fea Fig. 2.8A.  The L1-norm constraint 21 ββ + forms the 

rotated sq the corner, the corresponding coefficient will be zero (β2 in 

this example), which is analogous to dropping the corresponding variable out of the model, 

providing a mechanism for automatic variable selection.  In practice, one can tune the parameter 

t in order for the contours to meet the constraint.  As a comparison, the L2-norm penalty 

employed in the ridge regression could not provide variable selection mechanism because the 

constraint 2
2

2
1 ββ +  forms a circle instead of a square (Fig. 2.8B), in which there is no corner 

for the contours to hit and hence zero coefficients will rarely occur [96]. 

rotated square.  The solution to the above equation is the first point where the contours meet the 

uare.  When it happens at 

 
 

 

2.3.3 

Elastic ne by Zou and Hastie [97] is another regularized regression model that could 

e used f selection by taking the advantage of both lasso and ridge regression.  In 

on is done through the combination of L1-norm and L2-norm. The 

Figure 2.8. Geometry of the coefficient estimation for (A) lasso and (B) ridge regression. 

Elastic Net 

t proposed 

or variable b

elastic net, regularizati

coefficients are estimated by minimizing the residuals sum of squares subject to a bound on a 

function with L1- and L2-norm of the coefficients: 

 ⎥
⎦

⎤
⎢
⎣

⎡
++−= ∑∑∑ ∑

= j

2
j21

1

2      )( minargˆ βλβλββ
β j

j

n

i j
ij  ji

naiveEN xy  (43) 

which is equivalent to: 

 



2. Related Work  29 

 

 

12

2

1

2)(minargˆ

λλ
λαβαβα

ββ
β

+
=≤+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

∑∑

∑ ∑
=

     with,t   )-(1 to subject

 ,xy 

j

2
j

j
j

n

i j
ijji

naiveEN

 (44)  

 

The combined constraints for elastic net (at α = 0.5) forms a diamond circle as compared with 

the rotating square by lasso and circle by ridge regression in the two-dimensional example (Fig. 

2.9). 

 
 

 

The addition of the L2-norm penalty provides grouping effects in addition to the variable 

selection feature provided by the L1-norm penalty.  In lasso, if multiple variables are closely 

portant and highly correlated to one another, only one of them will be selected and the other 

will be

Figure 2.9. Two-dimensional contour plot of elastic net penalty at α=0.5 (----) as compared with
lasso penalty ( ….. ) and ridge penalty( -- -- --). 

im

 dropped out from the model.  This is inappropriate for genomic studies as the groups of 

genes sharing the same biological pathway are desired to be identified together as they all 

function as a whole.  However, the problem of multicollinearity phenomenon in regression exists 

as the groups of genes sharing same biological pathway are highly correlated to one another.  

With the L2-norm penalty, the group of highly related variables will all be retained in the model 

with a more stable estimation; while the unimportant variables will be dropped out from the 

model with the L1-norm penalty.  With the combined advantages from both penalties, elastic net 

is preferred than lasso in genetic studies for variable selections, such as identification of multiple 

genetic variants from the whole genome [98].   
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uble shrinkage causes the estimation to perform 

well on

 

.3.4 Discussion 

rized linear models reviewed, lasso is simpler to be interpreted compared 

utationally lighter.  However, lasso performs poorly in data with high 

.4 Critiques of Gene Selection Methods and Our Proposed 
Frameworks 

ds are the easiest to be implemented.  Despite the efficient 

Empirical studies showed that the estimation done in obtaining the naiveENβ̂  from 

equation (44) incurs double shrinkage [97].  Do

ly when the problem is close to either lasso or ridge regression.  Thus, it’s known as the 

naïve elastic net.  In order to correct the double shrinkage problem, a more stable estimation for 

elastic net is obtained by rescaling the naïve elastic net coefficients: 

 naiveENEN βλβ ˆ)1(ˆ
2+=  (45) 

 

2

Between the two regula

to elastic net and comp

collinearity [99] and select only one out of the group of genes sharing the same biological 

pathway.  Although elastic net is more complex, is has all the three properties desired for linear 

models in genomic studies introduced at the beginning of the section.  Elastic net performs better 

than lasso and provide groups mechanism leading to selection of genes sharing the same 

pathways.  The grouping effects of elastic net could sometime turn into drawback of the method 

as it would lead to selection of highly redundant genes and incapable of providing small subset 

of predictive genes.  

 

 

2

Among the various gene selection methods discussed in the previous three sections, ranking-

based gene selection metho

computation time and scalability to the large dimension, ranking-based methods evaluate genes 

in isolation, without considering the effect of interactions among genes.  Regularized linear 

model could capture the interaction effects among genes.  However, the interactions limited to 

linear relationships.  Since genes function through a series of complex interactions, the non-

linear network models would be more appropriate to model the biological networks, such as gene 

regulations and genetic pathways.  Compared with network-based methods, regularized linear 
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ly, implication networks allow cyclic relations.  This property makes 

plica

On the other hand, network-based methods could provide a 

closer 

using s

models provide better computational complexity; but more computationally expensive than 

ranking-based methods. 

 Implication networks are computationally efficient and easier to be interpreted than 

ANNs.  Most important

im tion networks more appropriate than Bayesian networks in studying genomic networks 

where feedback loop is common.  Nonetheless, implication networks are more computationally 

heavier than ranking-based methods. 

In summary, ranking-based methods are simple, scalable but do not account for true 

interconnecting nature among genes.  

representation of the true phenomenon among genes but are much more computationally 

intensive.  Therefore, we proposed combinatorial framework with different gene selection 

methods in multiple stages in order to systematically exploit the benefits while avoiding the 

drawbacks of various methods for novel gene signatures identification and better molecular 

prognosis. The first proposed combinatorial framework employed a combination of traditional 

statistics and feature selection methods.  These methods include t-test, SAM, and Relief feature 

selection.  The second proposed framework was built upon novel computational network models, 

i.e., implication networks.  Implication networks efficiently model genome-wide coexpression 

networks and allow us to utilize signaling pathways for identifying prognostic genes signatures.   

Survival prediction classifiers were constructed using the identified biomarkers to predict 

clinical outcome in individual patients.  Prognostic performance of the classifiers is evaluated 

tatistical methods such as Kaplan-Meier (KM) analysis and concordance probability of 

estimate (CPE).  Topological structure of the coexpression networks derived from implication 

networks were evaluated and confirmed with reported molecular interactions in literature.  

Bioinformatics tools were used to validate the clinical and biological aspects of the 

computational findings.  These methods and tools will be introduced in the next section. 
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2.5 alidation Methods and Tools 

d by our works and studies is to apply the findings for clinical use in 

ease prognosis.  In order to apply the findings for clinical use, we 

e signature identified and the survival prediction model 

aplan-Meier (KM) survival analysis and concordance 

 function from lifetime data  [100].  In KM analysis, the survival function is 

estimat

V

2.5.1 Introduction 

A common objective share

the future, such as for dis

should confirm if the computational findings agree to the true biological phenomenon.  Due to 

the high cost and risk involves in in-vivo studies, the computational findings would be first 

evaluated using statistical methods, bioinformatics tools, or information obtained from genomic 

databases before the in-vivo studies.  In this section, we will discuss the methods used to 

evaluate the performance of the prognostic model, the interactions revealed by computational 

network models, and the biological relevance of the gene sets identified.  

 

2.5.2 Prognostic Evaluation 

To evaluate the clinical value of the gen

construct, statistical methods such as K

probability estimate (CPE) would be used to validate if the prediction obtained agreed to the true 

survival outcome. 

Kaplan-Meier (KM) survival analysis is a non-parametric statistical method used to 

estimate a survival

ed based on the life-table of the data, where survival time of patients could be of different 

length [101].  In collecting clinical outcomes from patients, it is hard to have stringent control on 

patients over time and therefore some patients who are valid at the beginning of the study would 

become invalid from one particular time onwards.  For example, contacts with certain patients 

were lost before their death.  These patient samples would be considered censored cases. 

Therefore, analysis methods that could consider censoring samples over the time series are 

important in survival analysis.  Table 2.2 gives an example of the life- table. 
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Table 2.2. An example of life-table. 

No. of months in 
study 

No. of patients  No. of patients  No. of patients  
censored at risk who died 

0-5 10 0 0 
5
12-15 

0 5 
 3 

-12 10 1 1 
8 1 2 

16-2 2 0 
21-30 1 0 

  

KM analysis is also known as the product limit estimator.  Based on the life-table, the 

survival probability of each interval is estimated as the ratio of number of survival patients over 

number of patients at risk.  If  ni is the number of patients at risk just prior to time ti and di is the 

number of patients died at time ti, the KM estimate of survival at time t is the non-parametric 

maximum likelihood estimate S(t), which is the product of survival probability of intervals prior 

to time t:  

 ∏
<

−
= ii dn

tS )(ˆ  (46) 
tt ii

n
 

The plot of the estimated survival function is a s

example of KM curve of the estimated based on life table in Table 2.2 is shown in Fig 2.10.  

eries of declining horizontal steps.  An 

 
Figure 2.10. Example of Kaplan-Meier curve estimated based on life-table in Table 2.2. 

 

, the 

Mantel-Cox log-rank test could be used to evaluate the statistical significance between the 

surviva

When comparing survival functions of multiple groups estimated from KM analysis

l curves for different groups [101].  For example, if the prognostic classifier predicts 

patients into two groups, a KM analysis could be used to estimate the survival function of each 
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predicted group and log-rank test is used to test if the two groups are significantly different in 

terms of survival.  Fig 2.11 give an example of comparing two KM curves. 

 
Figure 2.11. An example of comparing two Kaplan-Meier curves. 

 

In gener  the predicted 

outcom s of a nonlinear statistical model agreed with the actual outcomes.  Concordance 

probab

al, concordance probability (CPE) is used to evaluate how

e

ility of a pair of bivariate observations (X1, T1) and (X2, T2) is thus defined as: 

 )|( 1212, XXTTPK TX ≥>=  (47) 

In our studies, we used Cox proportional hazard model to estimate the risk sc

 

ores of each 

bject.  Therefore, we would like to evaluate how the risk

agreed

 

re T is the response variable (the actual survival outcomes of patient samples) and βTx 

orresponds to risk scores obtained from the Cox model.   

isk scores.  To resolve the asymptotic 

nature 

su  scores obtained from our model 

 with the actual survival outcomes of patient samples.  In order to evaluate how 

concordant the risk scores estimated is to the actual survival outcomes, the CPE proposed by 

Gonen and Heller could be used [102].  This estimation is focused on Cox model and is defined 

as: 

 )|()( 2112 xxTTPK TT βββ ≥>=  (48) 

whe

c

In their estimation, partial likelihood estimator β̂  is used to substitute β and the empirical 

distribution of βTx  is used to represent the distribution of r

of the Cox partial likelihood estimator, a kernel function is used for smoothing.  The final 

estimator used in obtaining the concordance probability of the model obtained would be purely 

based on the regression coefficients and covariates from Cox model, without the patients’ 
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ctual survival outcome (it’s as good as the random chance of tossing the 

coin).  

.3 Gene Coexpression Networks Assessment 

networks are evaluated on 

false discovery rates evaluate 

1 were used to evaluate the precision and 

FDR o

survival time and outcomes.  Therefore, this estimation is not sensitive to the censoring cases in 

the patient samples.   

If the CPE obtained is close to 0.5, it indicates that model has poor predictive 

performance on the a

 The model showed better predictive performance when the CPE is approaching closer to 

1.   

 

2.5

The gene coexpression networks derived from the implication 

precision, false discovery rate (FDR), and stability.  Precision and 

the biological relevance of the derived coexpression networks.  Stability examines if the derived 

coexpression relations were stable or unpredictable.  

Five gene set collections (positional, curated, motif, computational, and Gene Oncology) 

and canonical pathway databases from the MSigDB

f the derived coexpression networks.  A coexpression relation was considered a true 

positive (TP) if the pair of genes belongs to the same gene set or pathway in any investigated 

database.  If a pair of genes does not share any gene set or pathway, the coexpression relation 

was considered a false positive (FP). A coexpression relation was labeled as non-discriminatory 

(ND) if at least one gene in the pair is not annotated in a database [103].  Coexpression relations 

labeled as ND were excluded in the evaluation as they were not confirmed.  

Precision and q-value of the coexpression networks are defined as: 

 TP
FPTP +

=Precision  (49)  

FPTP
FPvalueq
+

=−  (50)   

 

To generate the null distributions of precisions and 

samples in the test data were randomly permuted for 1,000 iterations and the coexpression 

networks were derived based on the permuted data.  From the null statistics, the statistical 

                                                

q-values, class labels of patient 

 
1 http://www.broadinstitute.org/gsea/msigdb/collections.jsp 
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signific

relations obtained from the original data that are retrieved by 

using o

o confirm if the interactions obtained from the computational network models truly exists in 

nd public genes/protein interactions databases would be 

d in the literature. The databases and software toolsets weigh and integrate information 

from n

                                                

ance (P) of the precision is indicated by the chance of getting higher precision from the 

null distribution.  The FDR of the disease-mediated coexpression networks is the average of q-

value from the null distribution.    

The stability of the computationally derived coexpression networks was evaluated with 

different subsets of patient samples from the training set in 100 iterations. The stability is defined 

as the portion of the coexpression 

nly a random subset of the training data and the full test data. 

 

2.5.4 Topological Validation 

T

biological context, bioinformatics tools a

used. 

Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, CA) is a 

proprietary web-based curated database which provides contents of gene and protein interactions 

reporte

umerous sources, including experimental repositories and text collections from published 

literature.  Therefore, IPA allows researchers to derive curated molecular interactions, including 

both physical and functional interactions, and pathway relevance. In studies related to our work, 

IPA enables us to delineate molecular networks of genes interacting with the set of gene 

interested and identify the most significant biological processes and functions from the networks 

delineated from core analysis.  Pathway Studio2 is another bioinformatics application like IPA to 

allow user to carry out pathway analysis based on curated data from literature.  Literature 

available in Pathway Studio is extracted from PubMed by MedScan application.  STRING 8 

(Search Tool for the Retrieval of Interacting Genes/Proteins) is a similar tool as IPA that 

retrieves protein/gene interactions reported in the literature [104].  Compared with STRING 8, 

IPA is more commonly used in industrial sectors, such as pharmaceutical firms because 

interactions included in the database are manually curated by scientist from reported literature; 

while interactions found in the STRING 8 database include predicted interactions and 

interactions resulted from automatic literature-mining searches. On the other hand, STRING 8 is 
 

2 http://www.ariadnegenomics.com/products/pathway-studio/ 
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Genes and Genomes (KEGG) [105, 106], NCI pathway 

teract

ene set enrichment analysis (GSEA) allows assessment of gene sets in the genome-wide 

ide gene expression of a set of samples and 

embers in the gene set 

                                                

freely available and also includes a URL-based programming interface that allows researchers to 

query STRING from their applications.   

 The interactions derived from the computational network model could be confirmed 

against databases of known interactions among genes.  A few recognized gene interaction 

databases include Kyoto Encyclopedia of 

in ions database (PID)3 , and PubMed.  The former two databases present gene pathways 

maps and molecular networks in diagrams.  The latter one, PubMed, is primarily a web-based 

portal developed by National Centre for Biotechnology Information (NCBI) at National Library 

of Medicine (NLM) of U.S. National Institutes of Health (NIH).  It comprises millions of 

citations for literature from MEDLINE, life science journals, biomedical journals, and books.  

From PubMed, users could view the related literatures on the genes interested and their 

respective interactions.  From PubMed, users could also be redirected to specific information of 

the interactions retrieved from the Gene database under NCBI. 

 

2.5.5 Gene Set Enrichment Analysis 

G

expression profiles [107].  Based on the genome-w

their respective phenotype, GSEA would determine how well the m

correlated to the phenotypes.  Specifically, according to the differential expression between the 

two, GSEA maintained a ranked list of genes (L).  By going through the ranked list L, a 

measurement called enrichment score (ES) would be computed for each gene set using running-

sum statistics with weighted correlation of the genes with the phenotype. ES reflects the degree 

to which a gene set is overrepresented to both ends of L.   The statistical significance of the 

computed ES is indicated by a nominal P-value estimated by randomly permuting the samples 

phenotypes.  If a gene set is significantly overrepresented with respect to the phenotypes (either 

one or both), then it would have extreme ES at both ends of the ranked list L, as shown in Fig. 

2.12. 

 
3 http://pid.nci.nih.gov/ 
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GSEA also allows eva paring the 

enrichment of multiple gene sets against one another in the input genom ion 

profile

2.6 ata Used in Experiments 

n profiles of lung cancer patients were used 

es were quantified with Affymetrix 

with Affymetrix HG-U133A on 442 lung 

adenoc

Figure 2.12. An example of enrichment plot for a gene set. 

luation of multiple gene sets at once, which is com

e-wide express

s.  This multiple gene sets comparison is actually a multiple comparison problem.  In 

order to correct the measurements (ES) according to multiple hypotheses testing, the phenotype 

labels were randomly permuted.  A normalized enrichment score (NES) for each gene set is 

generated by averaging enrichment scores from all permutations. Statistical significance of the 

NES corresponding to each gene set is indicated by false discovery rate (FDR) in the permutation 

analysis by permuting the phenotypes [107].  The gene set that gets high absolute NES and low 

FDR compared with other signatures implies that it is more significantly enriched than others in 

the provided gene expression profiles. 

 

 

D

Four sets of published microarray gene expressio

throughout our studies. All four sets of gene expression profil

GeneChip® human genome expression arrays.   

The first set is the largest lung cancer microarray data publicly available till date.  It 

contains gene expression profiles quantified 

arcinoma patient samples obtained from a multi-center microarray study of lung cancer 

published by Shedden et al, which also known as the Director’s Challenge Study[2].   This study 
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cohort is composed of four data sets (University of Michigan, H. Lee Moffitt Cancer 

Center, Memorial Sloan-Kettering Cancer Center, and Dana-Farber Cancer Institute) contributed 

by six institutions. The raw microarray data are available from caArray website4.  The second set 

contains 130 adenocarcinoma and squamous cell lung cancer samples published by Raponi et al. 

[17]. The third set contains 111 non-small cell lung carcinoma samples published by Bild et al. 

[13].   Table 2.3 provides a summary on the data and clinical characteristics of each cohort. The 

fourth set contains expressions quantified with Affymetrix HG-U133A on 164 airway epithelial 

cells from current and former smokers published by Spira et al. [108].  This cohort is composed 

of lung cancer patients and smokers without lung cancer.  It was particular used in our study of a 

smoking-associate signature and separated into independent training and test sets.  Table 2.4 

gives a summary of patient characteristics in each set. 

 

Table 2.3. Characteristics summary of three lung cancer patients cohorts. 

Director’s Challenge Study[2] Raponi et al. [17] Bild et al. [13]  
(n=442)  (n=130) (n=111) 

Affymetrix GeneChip® HG-U133A HG-U133A HG-U133 Plus 2 
Histology 
     Adenocarcinoma 

hs) 
67 (10) 65 (10) 

 

 
100% 

  
 52% 

     Squamous cell 
low-up (mont

 
47 34

100% 
 

48% 
31 Median fol

Age (mean, s.d.) 64 (10) 
50% Sex (% male) 63% 57% 

Tumor Stage    
     Stage I 62% 56% 60% 
     Stage II 22% 

15% 
26% 
18% 

16% 
22%      Stage III 

      Stage IV - - 2% 
     Unknown 1% - - 

 

 

 

 

 

 

 
                                                 

 
4 https://array.nci.nih.gov/caarray/project/details.action?project.id=182 
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Table 2.4. Patient characteristics from Spira et al [108]. 

 Training ( n=77) Test 1 (n=52) Test 2 (n=35) 
Age (mean, s.d.) 64 (11) 57 (14) 55 (16) 
Sex (% male) 
L

78% 75%
 

 
 

69% 
 ung Cancer Histology 

1 ) 2 ) 1 ) 
83% 0) 75% 0) 78% 8) 
2% (1/40) 5% (1/18) 

or Stage 

30 ) 7% (1/15) 14% 14) 
13% 15) 

30% (10/33) 47% (7/15) 36% (5/14) 
 
 21% /14) 

     Small Cell 5% (6/40 5% (5/20 7% (3/18
     Non-small Cell 
     Unknown 

 (33/4  (15/2  (14/1
- 

Small Cell Tum    
     Limited 3 (3/6) 4 2 
     Extensive 3 (3/6) 1 1 
NSCLC Tumor Stage    
     Stage I % (10/33  (2/
     Stage II -  (2/ - 
     Stage III 
     Stage IV 39% (13/33) 33% (5/15) 29% (4/14) 
     Unknown - -  (3

 

 

2.7 ummary 

eviewed current methods and tools used in gene signature identification 

.  Having studied current approaches and 

ng cancer prognosis and chemoresponse 

predict

ond methodology based on gene 

S

In this chapter, we had r

and prognostic prediction using microarray data

problems in these methods, we proposed two methodologies to efficiently discover prognostic 

gene signatures for lung cancer molecular prognosis.   

We first proposed a hybrid system comprised of statistical and machine learning feature 

selection methods to identify gene signatures for lu

ion, which will be presented in Chapter 3.  From the review of the numerous state-of-the-

art ranking-based gene selection methods used in microarray studies, each method had their 

strengths while other methods missing.  Therefore, we hypothesized that through a framework of 

a systematic multiple-stage gene filtering approach, we could exploit the strengths from various 

methods and lead to identification of predictive biomarkers.  

In order to incorporate the interactive machinery of gene functions and signaling pathway 

information in biomarker discovery, we proposed the sec
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coexpression networks modeled with implication networks.  Implication networks were chosen 

over Bayesian networks and ANNs because it could be efficiently constructed and unlike 

Bayesian networks, it allows formation of cyclic relations.  In Chapter 4, the network-based 

approach was studied at the genome-wide scale.  Extensive study was carried out to examine the 

performance of the network-based approach when it was applied alone or in combination with 

feature selection methods. In Chapter 5, the network-based approach was studied on a smaller 

pool of genes: the genes that are associated with smoking and lung cancer survival.  Chapter 6 

evaluates the performance of the implication networks employed in our studies in comparison 

with the Boolean implication networks. 

 



 

Chapter 3  
Hybrid Models Identified Gene 
Signatures for Lung Cancer Prognosis 
and Chemoresponse Prediction 

As discussed in Chapter 2, ranking-based methods are simple to be implemented for gene 

selection.  Statistics methods such as t-test and SAM scale efficiently to large number genes and 

control for false positive genes.  However, it usually leads to fairly large gene sets (~102).  

Feature selection methods such as Relief incorporate the classification in the evaluation of gene 

predictive performance.  Nonetheless, it’s computationally heavier than statistics methods and 

thus does not scale well to the whole genome. 

 In this chapter, we present our first proposed hybrid system for efficient prognostic gene 

signature identification.  The proposed hybrid system combined traditional statistics and feature 

selection methods in multiple stages to identify predictive gene signatures for lung cancer 

prognosis.  This system has a few appealing characteristics.  The first appealing characteristic is 

that it exploits of the strengths of each gene selection methods while avoiding the drawbacks in 

the systematic integration.  The second characteristic of the system is that it leads to 

identification of small set of genes with high prognostic performance.  Smaller size of gene 

signatures will not only reduce the time and cost of further validation but also make the clinical 

application more feasible.   

  The proposed hybrid system identified a 12-gene and 15-gen lung cancer prognostic 

signatures.  These two signatures are more accurate compared with previously published 

42 
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signatures in the largest lung adenocarcinoma data samples (n = 442) [2].  Moreover, the 12-gene 

signature could identify stage I and stage II patients who might benefit from adjuvant 

chemotherapy and who could be spared from it.  This implies that the 12-gene signature could be 

used to select treatment for stage I and II patients.  Quantitative RT-PCR analyses of independent 

NSCLC tissue samples confirmed the gene expression patterns of these two signatures. 

Functional pathway analysis revealed that the signature genes had interactions with well 

established cancer hallmarks, indicating the important roles of the signature genes in tumor 

initiation and progression. The 12-gene signature also accurately predicted chemoresistance and 

chemosensitivity to Cisplatin, Carboplatin, Paclitaxel (Taxol), Etoposide, Gefitinib and Erlotinib 

in a panel of 60 cancer cell lines (NCI-60). 

 The remainder of this chapter is organized as follows.  Section 3.1 illustrates the 

methodology of the proposed hybrid system.  The experiment design is presented in Section 3.2.  

Section 3.3 describes the identification of various gene signatures using the proposed system.  

Survival prediction performance of the identified signatures is presented in Section 3.4 to 3.6.  

Section 3.7 presents the survival prediction of early stage patients.  Section 3.8 presents 

implications of the 12-gene signature in treatment selection for stage I and II NSCLC.  Section 

3.9 compares the identified gene signatures with clinical and demographical parameters.  Our 

gene signatures were compared with published lung cancer signatures in Section 3.10.  Section 

3.11 confirms the expression patterns of the identified genes.  Section 3.12 shows the 

chemoresponse prediction capability provided by the 12-gene signature.  Functional pathway of 

the 12-gene signature can be found in Section 3.13.  The last section, Section 3.14 discusses the 

study and concludes the chapter. 

 

 

3.1 Methodology 

We developed a hybrid system with combination of traditional statistics and feature selection 

methods for the identification of gene signatures and lung cancer prognosis.  As depicted in Fig. 

3.1, the proposed system comprised the following steps: 1) Selection a pool of candidate genes 

from the whole genome using statistical methods. 2) Ranked the pool of candidate genes with 

Relief feature selection.  3) From the top ranked gene, one gene was added at each step to the 
 

 



3. Hybrid Models Identified Gene Signatures for Lung Cancer Prognosis and  
Chemoresponse Prediction  44 

gene set, until the classification accuracy could not be improved by adding one more gene, the 

gene set is the prognostic gene signature identified.  Specifically, this could be interpreted as a 

system with two phases, with statistical methods in the first phase and step-wise forward 

selection with feature selection in the second phase. 

 

Expression Profiles of the whole 
Genome

Pool of Candidate Genes

Ranked Candidate Genes

Statistical Methods

Relief

Prognostic Classifier

From top, add one at a time

Prognostic Gene Signature

No

Yes
Accuracy 
Increased?

 
Figure 3.1. Hybrid system with traditional raking-based gene selection methods.  

 

 This hybrid system utilize the statistical methods in the first phase because statistical 

methods is more computational efficient in large scale.  Step-wise forward feature selection with 

in the second phase allows us to obtain the smallest set of genes with the optimized prognostic 

performance. 

 

 

 

 

 

 

 



3. Hybrid Models Identified Gene Signatures for Lung Cancer Prognosis and  
Chemoresponse Prediction  45 

3.2 Prognostic Model System 

In order to take advantage of different algorithms of gene selection, hybrid models of different 

methods in different stages are needed for biomarker discovery and good disease classification.  

In this study, we combined statistical methods and machine learning algorithms to identify 

prognostic biomarkers of lung adenocarcinoma.  The 442 lung adenocarcinoma patient samples 

from the Director’s Challenge Study [2] were used in this study.  The UM & HLM cohorts from 

the sample formed the training set (n = 256), whereas the samples from MSK (n = 104) and the 

DFCI (n = 82) formed two independent test sets. 

In general, the hybrid systems examined in this study included three phases (Fig 3.2):  1) 

identification of a small set of signature genes by combining statistical methods and feature 

selection methods from genome-scale transcriptional profiles of the training cohort,  2) 

construction of a classifier to predict overall survival in lung cancer patients, and 3) validation of 

the gene expression-based prognostic model in two independent patient cohorts.  The model 

validation and evaluation of the identified gene signature were also compared with over 

previously published lung cancer prognostic signatures on the two independent test sets.  

Specifically, in the first phase, two combinatorial schemes were studied by joining statistical 

methods and feature selection algorithms.  The first scheme was combination of pooled-variance 

t-test and Relief algorithm. The second scheme was combination of Significance Analysis of 

Microarrays (SAM) [34], different-variance t-test, and Relief algorithm.  A functional pathway 

analysis after the previous two schemes was carried out to explore the biological functions 

shared by the gene sets.  Since signatures identified from various approaches performed 

differently in different classifiers, Cox model and Naïve Bayes classifiers were used to model the 

prognostic model to predict overall survival in lung cancers. 
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Figure 3.2. Overview of the hybrid model to molecular prognosis. 

 

3.3 Identification of 15-, 12-, and 16-gene Signature 

Three combinatorial schemes with multiple gene selection methods were adopted to examine the 

hybrid system for prognostic signatures identification.  In the first scheme, t-test was used to 

select candidate genes from 22,283 probes quantified on the training cohort (n = 256) in the first 

phase. The pooled-variance t-test selected 689 genes with significant differential expression (P < 
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0.01) between the low-risk groups (patient who survived longer than 5 years) and high-risk 

(those who died within 5 years following surgery) groups.  Twenty-seven censored cases with 

follow-up time less than 5 years were removed from this analysis due to the uncertainty of 

patient post-operative status.  In order to refine the gene set into a more feasible size for clinical 

application, Relief algorithm implemented in WEKA 3.4 was used to rank each of these 689 

genes in terms of the power to separate low-risk and high-risk groups.  On the ranked list, step-

wise forward selection was used to identify a gene subset with the highest prognostication 

accuracy. Specifically, starting from the top ranked gene, one gene was added at each step to the 

gene set, until the classification accuracy could not be improved by adding one more gene. At 

each step, the gene set was used to classify good-prognosis and poor-prognosis groups with Cox 

model, with median risk score of the training set as the cutoff for stratification.  On the ranked 

list of the 689 genes, the process stopped when the addition of a new gene did not increase the 

Cox model stratification after the top 15-gene set.  As a result, a 15-gene signature (Table 3.1) 

was identified. 

In the second scheme, a combination of t-test and SAM was then used to select candidate 

prognostic with a predefined false discovery rate. Specifically, a different-variance t-test selected 

718 genes with significant differential expression (P < 0.01) between the two prognosis groups.  

With false discovery rate (FDR) of 25% (delta = 0.46), SAM selected 1,431 genes that 

significantly differentiated the two prognostic groups.  There were 583 genes selected by both t-

tests and SAM, and these were considered the set of candidate prognostic genes for the next 

stage of the analysis.  In the next step where gene set was further refined, similar approach as 

adopted in the first scheme discussed above was employed. Relief algorithm implemented in 

WEKA 3.4 was used to rank these 583 genes and forward selection was used to select the most 

signature genes starting from the top ranked gene. The gene set was used to classify good-

prognosis and poor-prognosis groups with Naïve Bayes algorithm.  The forward selection 

process stopped when the addition of a new gene did not increase the classification accuracy as 

evaluated in a 10-fold cross validation.  As a result, a 12-gene signature (Table 3.2) was 

identified as the most accurate prognostic genes from the set of candidate genes for overall 

survival prediction. 
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The third approach combined all the steps adopted in the first two approaches with a 

biological functional pathway analysis.   Specifically, functional pathway analysis was done on 

the 15-gene and 12-gene signatures using IPA.  By comparing the biological functions of 15- and 

12-gene signatures, there were 16 genes sharing the same functions (Table 3.4).  As a result, the 

16 genes with common functions were selected as the signature gene (Table 3.3). 

 

Table 3.1. List of 15-gene signature. 

 

Probe Set ID Gene Functions Classification 
204854_at GPR162 /// 

LEPREL2 
Collagen biosynthesis, folding, and assembly Metabolism 

206150_at CD27 B-cell activation and immunoglobulin synthesis; 
signaling transduction 

Oncogene 

205171_at PTPN4 Cell growth, differentiation, mitotic cycle, and 
oncogenic transformation 

Oncogene 

201107_s_at THBS1 Cell-to-cell and cell-to-matrix interactions. Oncogene 

210762_s_at DLC1 A candidate tumor suppressor gene Oncogene 
218340_s_at UBA6 Ubiquitin-activating protein Protein Degradation 
211327_x_at HFE Iron absorption Signaling Transduction 
208772_at ANKHD1  Unknown Structure 
211603_s_at ETV4 Cellular movement Transcription 
207296_at ZNF343 Unknown Transcription 

214717_at DKFZp434H1419 Unknown N/A 
213779_at EMID1 Unknown N/A 
215598_at TTC12 Binding N/A 
201581_at TXNDC13 Cell redox homeostasis, electron transport chain N/A 
205308_at FAM164A Unknown N/A 
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Table 3.2. List of 12-gene signature. 

Probe Set ID Gene Protein Functions Classification 
212041_at ATP6V0D1 ATPase Metabolism 
222078_at PKLR Pyruvate kinase Metabolism 
219808_at SCLY Catalyzes the decomposition of L-selenocysteine to L-

alanine and elemental selenium 
Metabolism 

209420_s_at SMPD1 Converts sphingomyelin to ceramide Metabolism 
210762_s_at DLC1 A candidate tumor suppressor gene Oncogene 
204524_at PDPK1 Cell signal protein Oncogene 
218833_at ZAK Cell signal protein Oncogene 
208855_s_at STK24 Protein kinase Signaling Transduction 

208775_at XPO1 Mediates nuclear export of cellular proteins Signaling Transduction 

46142_at LMF1 Maturation of specific proteins in the endoplasmic 
reticulum 

Structure 

205308_at FAM164A Unknown N/A 
221685_s_at CCDC99 Cell cycle Signaling Transduction 

 

Table 3.3. List of 16-gene signature. 

Probe Set ID Gene Functions Classification 

206150_at CD27 B-cell activation and immunoglobulin synthesis; 
signaling transduction 

Oncogene 

205171_at PTPN4 Cell growth, differentiation, mitotic cycle, and 
oncogenic transformation 

Oncogene 

201107_s_at THBS1 Cell-to-cell and cell-to-matrix interactions. Oncogene 

211327_x_at HFE Iron absorption Signaling Transduction 
211603_s_at ETV4 Cellular movement Transcription 
201581_at TXNDC13 Cell redox homeostasis, electron transport chain N/A 
212041_at ATP6V0D1 Atpase Metabolism 
222078_at PKLR Pyruvate kinase Metabolism 
219808_at SCLY Catalyzes the decomposition of L-selenocysteine 

to L-alanine and elemental selenium 
Metabolism 

209420_s_at SMPD1 Converts sphingomyelin to ceramide Metabolism 
210762_s_at DLC1 A candidate tumor suppressor gene Oncogene 
204524_at PDPK1 Cell signal protein Oncogene 
218833_at ZAK Cell signal protein Oncogene 
208855_s_at STK24 Protein kinase Signaling Transduction 
208775_at XPO1 Nuclear protein transport Signaling Transduction 
46142_at LMF1 Maturation of specific proteins in the endoplasmic 

reticulum 
Structure 
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Table 3.4. Comparison of biological functions between the 12- and 15-gene signatures with curated 
database. 

Category Category 12-gene 15-gene Common 

Diseases and 
Disorders 

Cancer    
Cardiovascular Disease    
Connective Tissue Disorders    
Dermatological Diseases and Conditions    
Genetic Disorder    
Hematological Disease    
Hepatic System Disease    
Immunological Disease    
Infection Mechanism    
Inflammatory Disease    
Inflammatory Response    
Metabolic Disease    
Neurological Disease    
Reproductive System Disease    
Respiratory Disease    
Skeletal and Muscular Disorders    

Molecular and 
Cellular 

Functions 

Amino Acid Metabolism    
Antigen Presentation    
Carbohydrate Metabolism    
Cell Cycle    
Cell Death    
Cell Morphology    
Cell Signaling    
Cell-To-Cell Signaling and Interaction    
Cellular Assembly and Organization    
Cellular Compromise    
Cellular Development    
Cellular Function and Maintenance    
Cellular Growth and Proliferation    
Cellular Movement    
DNA Replication, Recombination, and Repair    
Drug Metabolism    
Gene Expression    
Lipid Metabolism    
Molecular Transport    
Nucleic Acid Metabolism    
Post-Translational Modification    
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Protein Synthesis    
Protein Trafficking    
RNA Trafficking    
Small Molecule Biochemistry    

Physiological 
System 

Development 
and Function 

Cardiovascular System Development and Function    
Cell-mediated Immune Response    
Hematological System Development and Function    
Immune Cell Trafficking    
Nervous System Development and Function    
Organ Development    
Skeletal and Muscular System Development and 
Function    
Tissue Development    
Tumor Morphology    
Visual System Development and Function    

 

 

3.4 Survival Prediction Using 15-gene Prognostic Model 

Using expression profiles of the 15 genes as predictors, a prognostic classifier was constructed to 

stratify patients into low- and high-risk of failure in survival (i.e. death) using a multivariate Cox 

proportional hazard model.  The Cox model of overall survival was constructed based on the 15-

gene signature, with each gene variable as a covariate. In the UM & HLM training samples (n = 

256), a survival risk score was generated for every patient, with a higher risk score representing a 

greater probability of death.  From the gene expression-defined risk scores in the training cohort, 

median of the risk score (value of -1.79) was identified as the cut-off to stratify patients into low- 

and high-risk groups.  The constructed training model and the cut-off value were then applied to 

the two validation sets.  In all three patient cohorts, the 15-gene defined model stratified patients 

into prognostic groups with distinct overall survival (log-rank P < 0.03; Fig. 3.3)   
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Figure 3.3. Kaplan-Meier analysis of the 15-gene signature on patients on all stages. 

 

3.5 Survival Prediction Using 12-gene Prognostic Model 

To predict overall survival using the 12-gene signatures, expression profiles of the identified 12 

genes were used as predictors in a prognostic classifier to stratify patients into low-risk (5-year 

survival) and high-risk (non-5-year survival) groups.  The Naïve Bayes classifier implemented in 

WEKA 3.4 was used in the classification on UM & HLM training samples (low-risk n = 104; 

high-risk n = 125).  Twenty-seven censored cases without sufficient follow-up information were 

removed in the model construction.  Priors estimated by the model are 0.45 for low-risk class and 

0.55 for high-risk class.  Other parameters of the trained Naïve Bayes model, including the mean 

and standard deviation for each of the 12 genes in both low- and high-risk groups, are listed in 

Table 3.5.   

Table 3.5. Parameters estimated in the 12-gene Naive Bayes classifier. 

Gene (attribute) 
Low-risk 

mean ( Liμ ) 

Low-risk 
standard 

deviation ( Liσ ) 

High-risk 
mean ( Hiμ ) 

High-risk 
standard 

deviation ( Hiσ ) 
LMF1 101.6708 31.6461 88.6869 29.5986 
DLC1 868.5886 578.3862 648.4284 530.6969 
PKLR 14.3474 6.872 11.002 5.5501 
ATP6V0D1 1388.054 398.6874 1209.6369 325.7233 
CCDC99 277.1923 56.2284 300.0086 60.678 
SCLY 58.3824 13.2988 63.6222 13.7703 
PDPK1 297.6373 117.3514 253.7384 103.0455 
FAM164A 264.8707 106.5128 223.8295 96.6066 
SMPD1 278.5686 84.5316 239.3571 65.4393 
XPO1 1674.3741 344.9824 1824.6274 400.4278 
ZAK 132.694 67.7063 159.0546 79.1456 
STK24 2248.6647 529.6098 2457.9982 576.496 
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The Naïve Bayes classifier computes the posterior probability of death within 5 years 

after surgery in each patient. This posterior probability represents the risk for tumor recurrence in 

patients, since recurrence is the major cause of treatment failure (i.e. death) in lung cancer.  

Based on the posterior probability, a patient is classified into the high-risk group if the value is 

greater than 0.5; or into the low-risk group otherwise.  The training model was evaluated in a 10-

fold cross validation. Without parameter re-estimation, this model was then used to predict 

posterior probability representing the risk for tumor recurrence in each patient in two test sets 

(MSK and DFCI), as well as the censored cases left out of the model construction.  The 

distribution of the posterior probability of 442 patients in this study was illustrated in Fig. 3.4A.  

After obtaining the predicted outcomes, Kaplan-Meier (KM) analysis was carried out to estimate 

the average survival probability at the 5-year mark following surgery. Results show that high-

risk posteriors from the prognostic model are strongly associated with the 5-year survival 

probabilities (Fig. 3.4B).  Patients with a high probability of tumor recurrence tend to be more 

likely to have treatment failure after surgery.  This indicates that the high-risk posterior 

probability computed by the model is a good prognostic factor of lung cancer survival.  The wide 

95% confidence interval at posteriors ranging from 0.35 to 0.6 (Fig. 3.4B) might be due to the 

small sample size in this distribution (Fig. 3.4A).  Furthermore, a posterior of 0.5 means that the 

chance of tumor recurrence is random, which also leads to a looser confidence interval. 

Using the prognostic categorization scheme described above, the 12-gene signature 

separated patients into high- and low-risk groups with significantly distinct (log-rank P = 6.96e-

7) post-operative survival on the training cohort in Kaplan-Meier analysis (Fig. 3.5A). This 

scheme generated significant patient stratification on independent validation sets MSK (log-rank 

P = 9.88e-4; Fig. 3.5B) and DFCI (log-rank P = 2.57e-4; Fig. 3.5C).   
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Figure 3.4. Association of the 12-gene risk score algorithm and lung cancer survival. (A) Histogram 
showing the distribution of the risk scores (posterior probabilities of high-risk) in the whole studied 
cohort. (B) Average rate of death at five years after surgery corresponding to 12-gene risk score (posterior 
probability).  The dotted lines represent 95% confidence interval. 

 

 
Figure 3.5. Kaplan-Meier analysis of the 12-gene prognostic classification in lung cancer patients. 

 

 

3.6 Survival Prediction Using 16-gene Prognostic Model 

A prognostic classifier was constructed using the expressions of the 16-gene signature to stratify 

patients into low- and high-risk of death using a multivariate Cox proportional hazard model 

with a similar approach adopted for 15-gene prognostic model.  With the 16 genes as a 

covariates, a survival risk score was generated for patients in the UM & HLM training samples 
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(n = 256).  From the distribution of gene expression-defined risk scores in the training cohort, the 

3rd quartile (value of -1.5724) was identified as the cut-off to stratify patients into low- and high-

risk groups.  Then, the constructed training model and the cut-off value were applied to the two 

validation sets.  In all three patient cohorts, the 16-gene prognostic model stratified patients into 

prognostic groups with distinct overall survival (log-rank P < 0.03; Fig. 3.6) 

 

 
Figure 3.6. Prognostic performance of the 16-gene signature in patients on all stages. 

 

 

3.7 Survival Prediction for Stage I NSCLC Patients 

In current practice, treatment for patients diagnosed with NSCLC is based on AJCC tumor stage.  

Surgical resection to remove the tumor is the major treatment option for stage I NSCLC patients. 

However, about 35-50% of stage I NSCLC patients will develop and die from tumor recurrence 

within the five years following surgery [4, 5]. On the other hand, stage IB patients who received 

surgical resection followed by adjuvant chemotherapy showed improved survival rate [30].  

Thus, we sought to explore whether the 15-, 12-, and 16-gene expression-defined prognostic 

classifier could identify specific high-risk patients with stage I tumors for the aggressive 

adjuvant chemotherapy.  

 

Results show that the 15-gene prognostic signature could identify high-risk patients with 

stage I tumors on training cohort (results not shown) and DFCI test cohort (log-rank P = 0.02; 

Fig 3.7B) but not on the MSK Stage I patients (log-rank P = 0.12; Fig 3.7A) and the stage IA 

patients in the combined cohort of MSK and DFCI (results not shown).  The 15-gene prognostic 
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model could also separate high- and low-risk groups (log-rank P = 0.008) within stage IB 

patients in the combined test sets (Fig. 3.7C).   

 

 
Figure 3.7. Prognostic performance of the 15-gene signature in stage I patients. 

 

The 16-gene prognostic signature performed similarly as the 15-gene model in stage I 

patients.  The 16-gene prognostic model generated significant stratifications in patients with 

stage I tumors on training cohort (results not shown) and DFCI test cohort (log-rank P = 0.01; 

Fig 3.8B), but not on the MSK test cohort (log-rank P = 0.34; Fig 3.8A) and the stage IA patients 

in the combined test cohort (result not shown).  The 16-gene prognostic model also separated 

high- and low-risk groups (log-rank P = 0.02) within stage IB patients in the combined test sets 

(Fig. 3.8C). 

 

 
Figure 3.8. Prognostic performance of the 16-gene signature in stage I patients. 
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The 12-gene prognostic signature could reliably identify high-risk patients with stage I 

tumors on both the training cohort (results not shown) and two independent test cohorts (log-rank 

P = 0.04; Fig. 3.9A, Fig. 3.9B).  The prognostic model also separated high- and low-risk groups 

(log-rank P = 4.73e-3) within stage IB patients in the combined test sets (Fig. 3.9C).  

 

 
Figure 3.9. Prognostic performance of the 12-gene signature in stage I patients. 

 

These results demonstrate that the identified 12-gene signature is independent of the 

current AJCC staging system.  Result from the KM analyses that the 12-gene signature could 

stratify Stage I patients into two significantly distinct survival groups demonstrate that the 12-

gene signature provides more precise prognosis than the current AJCC staging system. Using the 

12-gene model, stage I NSCLC patients could be advised to receive adjuvant chemotherapy 

according to the expression profiles of the 12 signature genes. 

 

 

3.8 Treatment Selection for Stage I and II NSCLC Patients 
with the 12-gene Signature 

Among the three prognostic models constructed, 12-gene prognostic model was the only model 

that generated significant stratification on the stage I patients in both the training cohort (results 

not shown) as well as two test cohorts (Fig 3.10).  Therefore, we further assessed whether the 12-

gene signature could be used for treatment selection for stage I and II NSCLC patients.  Patients 

who did not receive chemotherapy were selected for this analysis.  Results from the KM analysis 
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show that the prognostic model separated high- and low-risk stage I patients without 

chemotherapy in the training (UM & HLM; log-rank P = 0.04; Fig. 3.10A) and test cohorts 

(MSK & DFCI; log-rank P = 0.02; Fig. 3.10B). Similarly, the model differentiated high- and 

low-risk stage II patients without chemotherapy in the training (log-rank P = 0.06; Fig. 3.10C) 

and test cohorts (log-rank P = 0.03; Fig. 3.10D) in KM analyses. These results indicate that the 

12-gene expression-defined prognostic model could reliably select patients with early stage 

NSCLC for adjuvant chemotherapy. Meanwhile, it could also spare some low-risk stage I and II 

NSCLC patients from chemotherapy based on the expression patterns of the identified gene 

markers in the tumors.  

 

 
Figure 3.10. Evaluation of the 12-gene signature in treatment selection. 
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3.9 Prognosis Evaluation of the Identified Signature with 
Clinical Covariates 

To confirm the prognostic power of the identified signatures, the expression-defined prognostic 

model was evaluated with commonly used prognostic factors of lung cancer, including gender, 

age, and tumor stage on the combined testing cohorts (DFCI and MSK).   

The posterior probability of high-risk estimated by the 12-gene Naïve Bayes classifier, 

termed as 12-gene risk score, was used as a covariate in the multivariate Cox analysis.  Risk 

scores estimated by the 15-gene and 16-gene fitted Cox model was used as a covariate in the 

analysis (Table 3.6).  Results showed that without the 12-, 15-, or the 16-gene risk score, tumor 

stage was the only factor significantly (P < 0.00006) associated with risk of lung cancer death.  

When the 12-gene risk score was added to the multivariate Cox model, the 12-gene risk score 

demonstrated a strong association with the lung cancer survival (hazard ratio = 3.94, 95% CI: 

[2.07, 7.52]), and tumor stage remained significant (Table 3.6).  When the 15-gene risk score 

was added to the multivariate Cox model, tumor stage remained significant and the 15-gene risk 

score also showed significantly association with the lung cancer survival (hazard ratio = 1.99, 

95% CI: [1.37,2.89]; Table 3.6).  In the analysis with the 16-gene risk score, the 16-gene risk 

score also appeared to be a significant factor associated with the lung cancer survival (hazard 

ratio = 2.50, 95% CI: [1.33,3.59]) and   tumor stage remained significant (Table 3.6). 

A comprehensive evaluation was carried out with all available clinical covariates and 

demographic factors in the dataset, including smoking history, race, and tumor differentiation 

(Table 4).  In this comprehensive evaluation, the 12-gene risk score remained as a highly 

significant prognostic factor with a hazard ratio of 4.19 (95% CI: [2.08, 8.46]; Table 3.7).  The 

risk scores of the 15- and 16-gene demonstrated to be significant factors in this analysis while 

comparing with all clinical and demographic factors, with a hazard ratio of 1.81 (95% CI: [1.23, 

2.65]) and 2.45 (95% CI: [1.72, 3.50]) respectively (Table 3.7). 

In both multivariate analyses, the hazard ratios of the 12-gene risk score algorithm were 

higher than other clinical covariates except tumor stage (III vs. I), while there is no significant 

difference between the hazard ratio of the 12-gene signature and tumor stage.  Hazard ratio of the 

15-gene risk score was comparatively good as the hazard ratio of the tumor stage (III vs. I) in the 

first analysis with major clinical covariates. However, in the comprehensive analysis, the hazard 
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ratio of tumor stage (III vs. I) was significantly higher than the hazard ratio of 15-gene risk score.  

The hazard ratio of the 16-gene risk score was comparatively good as the hazard ratio of tumor 

stage with stage II vs. I but not significantly higher than the hazard ratio of tumor stage III vs. I 

in both multivariate analyses.  These results demonstrate that the 12-gene signature is a more 

accurate prognostic factor than some commonly used clinical parameters. 
 

Table 3.6. Multivariate Cox proportional analysis of the 12-, 15-, and 16-gene risk score and major 
clinical covariate including gender, age, and tumor stage on testing cohorts (MSK and DFCI). 

Variable* P-value Hazard Ratio (95% CI) ψ 
Analysis without gene signature risk score  
Gender (Male) 0.22 1.34 (0.84-2.16) 
Age at diagnosis (>60) 0.08 1.61 (0.95-2.74) 
Cancer Stage       
     Stage II 6.25E-05 2.91 (1.72-4.91) 
     Stage III 1.09E-05 4.16 (2.20-7.85) 
Analysis with 12-gene risk score  
Gender (Male) 0.17 1.40 (0.87-2.26) 
Age at diagnosis (> 60) 0.29 1.34 (0.78-2.31) 
Cancer Stage       
     Stage II 3.47E-04 2.61 (1.54-4.43) 
     Stage III 7.40E-06 4.31 (2.28-8.16) 
12-gene risk score 3.10E-05 3.94 (2.07-7.52) 
Analysis with 15-gene risk score  
Gender (Male) 0.20 1.36 (0.85-2.18) 
Age at diagnosis (> 60) 0.08 1.60 (0.94-2.74) 
Cancer Stage    
     Stage II 1.32E-04 2.80 (1.65-4.74) 
     Stage III 4.82E-05 3.73 (1.98-7.05) 
15-gene risk score 2.84E-04 1.99 (1.37-2.89) 
Analysis with 16-gene risk score  
Gender (Male) 0.11 1.49 (0.92-2.41) 
Age at diagnosis (> 60) 0.18 1.44 (0.84-2.48) 
Cancer Stage    
     Stage II 5.36E-05 2.97 (1.75-5.03) 
     Stage III 7.52E-07 5.19 (2.70-9.96) 
16-gene risk score 6.24E-07 2.50 (1.33-3.59) 

*Gender was binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 years 
old and 1 otherwise); tumor stage was categorical variable of 3 categories (Stage I [as the reference group], Stage II, 
and Stage III). Risk score was continuous variable; where hazard ratio describes the relative risk between the mean 
risk scores of high-risk and low-risk groups.  ψ denotes confidence interval. 
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Table 3.7. Multivariate Cox proportional analysis of all available clinical covariates and 12-, 15-, 
and 16-gene risk score on testing cohorts (DFCI and MSK). 

Variable* P-value Hazard Ratio (95% CI)ψ 
Analysis without 12-gene risk score  
Gender (Male) 0.43 1.22 (0.74-1.99) 
Age at diagnosis (>60) 0.05 1.70 (0.99-2.92) 
Race    
     Others/Unknown 0.28 0.43 (0.09-1.97) 
     White 0.10 0.28 (0.06-1.28) 
Tumor differentiation    
     Moderately differentiated 0.14 0.53 (0.23-1.24) 
     Poorly differentiated 0.70 1.17 (0.53-2.61) 
Smoking history    
     Smokers 0.62 0.84 (0.43-1.66) 
     Unknown 0.91 0.89 (0.11-7.10) 
Cancer Stage 3.31E-04 2.72 (1.57-4.69) 
     Stage II 2.38E-05 4.93 (2.35-10.33) 
     Stage III 0.43 1.22 (0.74-1.99) 
Analysis with 12-gene risk score  
Gender (Male) 0.38 1.25 (0.76-2.08) 
Age at diagnosis (>60) 0.12 1.56 (0.89-2.72) 
Race    
     Others/ Unknown 0.52 0.60 (0.13-2.77) 
     White 0.11 0.29 (0.07-1.32) 
Tumor differentiation    
     Moderately differentiated 0.17 0.56 (0.24-1.29) 
     Poorly differentiated 0.83 0.91 (0.41-2.06) 
Smoking history    
     Smokers 0.61 0.84 (0.43-1.64) 
     Unknown 0.79 0.75 (0.09-5.98) 
Cancer Stage    
     Stage II 1.37E-03 2.44 (1.41-4.22) 
     Stage III 5.12E-06 5.88 (2.75-12.58) 
12-gene risk score 6.34E-05 4.19 (2.08-8.46) 
Analysis with 15-gene risk score  
Gender (Male) 0.36 1.26 (0.77-2.06) 
Age at diagnosis (>60) 0.04 1.75 (1.02-3.01) 
Race    
     Others/ Unknown 0.38 0.50 (0.11-2.31) 
     White 0.14 0.32 (0.07-1.45) 
Tumor differentiation    
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     Moderately differentiated 0.16 0.55 (0.24-1.27) 
     Poorly differentiated 0.99 0.99 (0.44-2.23) 
Smoking history    
     Smokers 0.93 0.97 (0.49-1.91) 
     Unknown 0.85 1.22 (0.15-9.89) 
Cancer Stage    
     Stage II 2.61E-04 2.76 (1.60-4.77) 
     Stage III 5.19E-05 4.66 (2.21-9.82) 
15-gene risk score 2.47E-03 1.81 (1.23-2.65) 
Analysis with 16-gene risk score  
Gender (Male) 0.17 1.42 (0.86-2.35) 
Age at diagnosis (>60) 0.09 1.63 (0.93-2.85) 
Race    
     Others/ Unknown 0.22 0.38 (0.08-1.77) 
     White 0.05 0.22 (0.05-1.00) 
Tumor differentiation    
     Moderately differentiated 0.16 0.55 (0.23-1.28) 
     Poorly differentiated 0.96 1.02 (0.45-2.30) 
Smoking history    
     Smokers 0.53 0.81 (0.41-1.59) 
     Unknown 0.96 0.94 (0.12-7.54) 
Cancer Stage    
     Stage II 2.37E-04 2.79 (1.62-4.83) 
     Stage III 2.09E-06 6.34 (2.96-13.58) 
16-gene risk score 7.49E-07 2.45 (1.72-3.50) 

* Gender was binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 years 
old and 1 otherwise); race was a categorical variable of 3 categories (African American [as the reference group], 
White, and Others [composed of Asian (5) , Hawaiian or Pacific Islander (1), and unknown]); tumor grade was 
categorical variable of 3 categories (Well [as the reference group], Moderately, and Poorly differentiate); Smoking 
history was a categorical variable of 3 categories (Non-smokers, Smokers, and Unknown); tumor stage was 
categorical variable of 3 categories (Stage I [as the reference group], Stage II, and Stage III). Risk score was 
continuous variable; where hazard ratio describes the relative risk between the mean risk scores of high-risk and 
low-risk groups. 
ψ denotes confidence interval. 
 
 

 

3.10 Comparison with other Lung Cancer Gene Signatures 

In the Director’s Challenge study [2], prognostic classifiers were constructed with gene 

expression signatures alone or gene expression signatures combined with clinical covariates.  

Among twelve gene signatures analyzed in their study (Table A.1), the best signature was 
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reported as “method A” (referred to as “Shedden A” in this study), which contains about 9,591 

genes/probes.  In order to compare the predictive performance of our prognostic models with 

their best model, the estimated hazard ratio and the concordance probability estimate (CPE) of 

the models were evaluated.  Hazard ratios greater than 1 indicate that patients with high 

predicted risk scores have poor clinical outcome.  CPE value close to 1 indicates that the model 

has strong predictive; the model has poor predictive power (comparable to random prediction) 

when the CPE value close to 0.5.   

Results show that the proposed 12-gene signature has the highest hazard ratio and CPE in 

both test sets when compared to the gene signatures from Director’s Challenge Study [2] (Fig. 

3.11A, 3.11B).  Although the hazard ratios of the 15-gene signature in both test sets were slightly 

lower than the 12-gene, there was no significant difference between the two signatures.  

Comparatively, the 16-gene signature didn’t perform as well as the 12- and 15-gene signature 

because the hazard ratio was not significant in MSK test cohort (Fig 3.11A).  In patient cohorts 

with stage I tumors only, the three identified signatures had comparative performance as the 

“method A” because each signature was able to generate significant hazard ratio in only one of 

the two test cohort (Fig. 3.11C). 

Among the three signatures presented thus far, the 12-gene signature gave the best 

performance.  Therefore, we further compared the 12-gene signature with other published lung 

cancer signatures.  To evaluate the 12-gene signature with previously published 14 lung cancer 

signatures [2, 11, 12, 15-17, 29, 30, 109, 110] (Table A.2), Gene Set Enrichment Analysis 

(GSEA 5 ) was used to assess the enrichment of these signatures on 5-year survival. The 

normalized enrichment score (NES) and its corresponding false discovery rate (FDR) associated 

with each gene signature were evaluated on all 442 samples used in this study.  In general, a gene 

set with high NES and low FDR is desired, as it indicates that the gene set expresses diversely 

with respect to the clinical outcome and the finding is unlikely to be by chance.  In comparison 

to 14 other published gene signatures, the 12-gene signature exhibits high enrichment in groups 

of patients survived 5 year or longer with significantly low FDR (absolute NES = 1.5; FDR < 

0.10) (Fig. 3.12). In this analysis, the most enriched signature with the lowest FDR was 

SHEDDEN_MH of 244 genes (absolute NES = 2.00; FDR < 0.002).  Overall, among the 15 gene 

 

                                                 
5 http://broad.harvard.edu/gsea/ 
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sets studied, the 12-gene signature is one of the best lung cancer signatures evaluated with 

GSEA. 

(A) 

(B) 

(C) 

(D) 

 
 

 
Figure 3.11. Evaluation of the 15-, 12-, and 16-gene prognostic models with molecular prognostic
models presented by Shedden et al. [2].  Hazard ratio (A, C) and concordance probability estimate
(CPE) (B, D) were compared on patients in all stages (A, B) and stage I (C, D) of lung cancer.  Error bars
in (A) and (C) represent 95% confidence interval of hazard ratio. 
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Figure 3.12. Gene set enrichment analysis of the 12-gene signature along with 14 published gene
signatures for NSCLC.   

 

 

3.11 RT-PCR Validation of Gene Expression Patterns 

In order to further confirm the expression patterns of the 25 genes from the three signatures 

identified, RT-PCR microfluidic low density arrays were used to analyze independent NSCLC 

tumor samples. 91 NSCLC specimens obtained from West Virginia University Tissue Bank and 

the Cooperative Human Tissue Network (CHTN) (Ohio State University Tissue Bank, 

Columbus, OH) were analyzed.   

First, the gene expression patterns for the 25 genes obtained from both microarray and 

RT-PCR were compared in terms of lymph node metastasis (Fig. 3.13A). On the RT-PCR data 

normalized with POLR2A, gene expression fold changes of the 25 genes in lymph node positive 

(LN+) versus lymph node negative (LN-) samples were compared with those in microarray data 

from Director’s Challenge study [2].  The results show that the expression patterns of the 25 

genes measured in both platforms are concordant in terms of lymph node metastasis.  
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Figure 3.13. Comparison of gene expression patterns of the 25 signature genes measured with DNA 
microarray and RT-PCR microfluidic low density arrays (LDA).  Gene expression fold change in 
lymph node positive (LN+) patients vs. lymph node negative (LN-) patients was compared (A).  Samples 
included in the fold change comparison are summarized in (B). 

 

 

3.12 Prediction of Chemoresponse in NCI-60 Cell Lines 

After demonstrating the promising performance of the 12-gene signature in predicting lung 

adenocarcinoma overall survival, we sought to explore whether the signature can predict 

chemoresponse to anti-lung cancer agents, including Cisplatin, Carboplatin, Paclitaxel,  

Etoposide, Erlotinib, and Gefitinib.  

In this analysis, transcriptional gene expression profiles and activity profiles of various 

drugs used in chemotherapy in the NCI-60 cell lines [111] were used.  The transcriptional gene 

expression profiles in all the 60 cell lines included in the study retrieved with CellMiner6.  The 

data retrieved were generated on Affymetrix U133A and normalized using the GCRMA method 

                                                 
6 http://discover.nci.nih.gov/cellminer 
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[112].  The drug activity profiles, measure in log10 (GI50), were retrieved from Developmental 

Therapeutic Program at NCI/NIH through DTP Data Search7. The latest screening results for 

each studied drug were used in the analysis.  The drug activity data was further processed to 

define drug resistance and sensitivity.  Specifically, for each drug, log10(GI50) values were first 

normalized across the 60 cell lines.  Cell lines with log10(GI50) at least 0.5 standard deviations 

(SDs) above the mean were defined as resistant to the drug.  Those with log10(GI50) at least 0.5 

SDs below the mean were defined as sensitive to the drug. The remaining cell lines with 

log10(GI50) within 0.5 SDs were defined as intermediate [113, 114].   

For each drug, cancer cell lines that are either sensitive or resistant to the drug were 

included to build a chemoresponse classifier based on the 12-gene expression profiles in the cell 

lines.  The performance of the classifiers was evaluated with leave-one-out cross validation 

(Table 3.8).  Statistical significance of the classification was evaluated by comparing the overall 

accuracy of the 12-gene signature with that of 1000 random signatures of the same size using the 

same algorithm.  Result show that the overall prediction accuracy of chemoresponse was 81% (P 

< 0.004) for Paclitaxel (Taxol), 78% (P < 0.001) for Carboplatin, 80% (P < 0.005) for Cisplatin, 

73% (P < 0.017) for Etoposide, 79% (P < 0.001) for Erlotinib, and 94% (P < 0.001) for 

Gefitinib. These results demonstrate that the 12-gene signature accurately predicted sensitivity 

and resistance to common lung cancer chemotherapeutic agents in cancer cell lines. 

 

Table 3.8. Prediction accuracy of chemoresponse in NCI-60 cell lines using the 12-gene signature. 

Drug Sensitivity 
(chemoresistance) 

Specificity 
(chemosensitivity) Overall accuracy P-value* 

Carboplatin 76% (19/25) 80% (16/20) 78% (35/45) < 0.001 
Paclitaxel 72% (8/11) 87% (13/15) 81% (21/26) 0.004 
Cisplatin 85% (22/26) 74% (14/19) 80% (36/45) 0.005 
Etoposide 80% (16/20) 67% (14/21) 73% (30/41) 0.017 
Erlotinib 79% (11/14) 80% (16/20) 79% (27/34) 0.001 
Gefitinib 92% (11/12) 95% (20/21) 94% (31/33) < 0.001 

* A P-value < 0.05 represents that the overall accuracy of the 12-gene signature is significantly higher than that of 
random gene signatures with the same size using the same classifier in 1000 tests 

 

                                                 
7 http://dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp 
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The differential expression in sensitive and resistant lung cancer cell lines was also 

analyzed for each signature gene. The drug responses of the lung cancer cell lines in the NCI-60 

panel were provided in Table 3.9.  

Among the signature genes, the over-expression of STK24 was linked to chemoresistance 

to all the studied drugs except Gefitinib in the lung cancer cell lines; whereas the over-expression 

of FAM14A was associated with chemosensitivity to all the studied drugs except Gefitinib in 

lung cancer cell lines. The under-expression of STK24 was associated with resistance to Gefitinib 

(P < 0.05). The under-expression of CCDC99 was observed in resistance to Paclitaxel (P < 

0.05). The over-expression of DLC1 was associated with chemoresistance to Erlotinib (P < 

0.05), Paclitaxel, and Cisplatin; whereas its under-expression was associated with 

chemoresistance to Etoposide and Carboplatin (not statistically significant) (Fig. 3.14).   

 

 
Figure 3.14. Genes with at least 1.5-fold expression fold change in resistant vs. sensitive lung cancer 
cell lines to six anticancer drugs.  In the graph, differential expression with statistical significance (P < 
0.05, t-tests) is marked by a red asterisk. 
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Table 3.9. Machine learning algorithm and genes used in chemoresponse prediction using 12-gene 
signature. 

Anti-cancer 
Agent  

Machine learning 
algorithm  Genes Selected  Resistant lung 

cancer cell lines  
Sensitive lung 

cancer cell lines  

Carboplatin  RBF Network (seed 
= 2)  

ATP6V0D1 
CCDC99 
FAM164A 
LMF1 
PDPK1 
PKLR 
SCLY 
SMPD1 
STK24 
XPO1 

LC:EKVX 
LC:NCI_H322M  

LC:NCI_H460 
LC:NCI_H522 
(LC:NCI_H23 not 
included due to 
missing values)  

Paclitaxel  IBK (k=3)  CCDC99 
DLC1 
LMF1 
PKLR 
SMPD1 
XPO1 
ZAK 

LC:HOP_92 
LC_EKVX  

LC:NCI_H460 
LC:NCI_H522  

Cisplatin  Decorate (PART as 
base learner)  

ATP6V0D1 
CCDC99 
FAM164A 
LMF1 

LC:NCI_H226 
LC:EKVX 
LC:NCI_H322M  

LC:HOP_62 
LC:NCI_H460 
(LC:NCI_H23 not 
included due to 
missing values)  

Etoposide  AdaBoostM1 (seed 
= 2, Random Tree as 
base learner)  

CCDC99 
LMF1 
SCLY 
STK24 
XPO1 

LC:EKVX 
LC:NCI_H322M  

LC:HOP_62 
LC:NIC_H460  

Erlotinib RBF Network DLC1 
LMF1 
XPO1 
SMPD1 
STK24 
PDPK1 
ZAK 
PKLR 
CCDC99 

LC:NCI_H226 
(LC:NCI_H23 not 
included due to 
missing values) 

LC:EKVX 
LC:NCI_H322M 
LC:NCI_H522 
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Gefitinib Multilayer 
Perceptron (seed=2, 
learning rate=0.4) 

ATP6V0D1 
SMPD1 
XPO1 
PKLR 
STK24 
SCLY 

LC:A549 
LC:HOP_62 
LC:HOP_92 
LC:NCI_H226 
(LC:NCI_H23 not 
included due to 
missing values) 

LC:EKVX 
LC:NCI_H322M 
 

 

 

3.13 Functional Pathway Analysis of 12-gene Signature 

Having established the clinical relevance of the 12-gene prognostic signature, we sought to 

explore the functional involvement of this gene set in lung tumorigenesis and tumor progression.  

Two functional pathway analysis tools, Ingenuity Pathway Analysis (IPA) and Pathway Studio 

7.0, were used to obtain molecular interaction related to the 12 genes reported in literature.  

Results from IPA show that the signature genes interact with major cancer signaling pathways, 

such as TNF and AKT (Fig. 3.15A). In the study with Pathway Studio 7.0, interactions among the 

12 genes and 13 major lung cancer hallmarks (EGF, EGFR, KRAS, MET, RB1, TP53, E2F1, 

E2F2, E2F3, E2F4, E2F5, AKT1, and TNF) reported in the literature were explored.  Results 

from Pathway Studio revealed various types of interactions ranging from regulation to protein 

modification among the 12 genes and eight out of 13 cancer hallmarks (Fig. 3.15B).  Results 

from both functional pathway analyses suggest that the 12 signature genes are involved in lung 

cancer oncogenesis and tumor progression.  
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Figure 3.15. Functional pathway analysis of the 12 signature genes.  (A) Using core analysis from 
Ingenuity Pathway Analysis (IPA), curated interactions were revealed among the identified signature 
genes and major lung cancer signaling pathways.  (B) Six of the 12 genes also exhibited various curated 
interactions with eight prominent lung cancer hallmarks with Pathway Studio 7.0. 

 

 

3.14 Conclusions and Discussions 
Gene signatures are essential for the development of personalized medicine for precise lung 

cancer prognosis.  With the availability of genome-wide profiles in the post-genomic era, 

innovative computational models are needed to identify clinically important gene markers.  

Given the current scale of high throughput data with thousands of genes, traditional methods for 

gene selections would not be adequate.  Instead, a hybrid system with combinatorial gene 

selection scheme of different gene filtering methods at different stages is needed. This study 

presents a hybrid model system for the identification of gene signatures for lung cancer 
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prognosis.  The hybrid model systems identified three signatures: a 15-gene, a 12-gene, and a 16-

gene signature. 

In the hybrid model, SAM and t-tests was used to identify candidate genes showing 

differential expression between two prognostic groups in the training set.  SAM controls for 

multiple testing problem and is very similar to t-test. We used t-tests (P < 0.01) to select genes 

with certain level of differential expression between two prognostic groups, and used SAM to 

control for false discovery rate (FDR< 25%). The results from SAM and t-test are not exactly the 

same, because the SAM method adds a constant (s) in the denominator to ensure that genes with 

a very small variance in the samples and a small differential expression are not selected as 

significant markers. When s=0, SAM is exactly the same as t-test [34].  This hybrid system was 

able to identify a small set of genes that are more accurate than previously published lung cancer 

gene signatures on the same datasets. We have experimented to stringent the threshold in SAM 

statistics. As a result, there were 87 genes with a FDR <10% and no genes were selected with a 

FDR < 1% from the training set. The 87 genes were not able to generate significant stratification 

in all three patient cohorts. These results indicate that using SAM method alone is not sufficient 

to identify the most accurate prognostic gene signature.   

Among the 12- and 15-gene signatures identified using t-tests, SAM, and Relief, 16 genes 

share common biological functions (Table 3.3). The performance of these gene signatures is 

comparable to one another in term of Kaplan-Meier analyses, hazard ratio of the prognostic 

model, and multivariate analyses with clinical covariate and demographic factors.  When 3-year 

survival was used to define high- and low-risk groups (high-risk: death within 3-y; low-risk: 

alive after 3-y), the 12-gene risk algorithm achieved a sensitivity (correctly predicted high-risk 

patients) of 73.65% in the training set, 86.96% in MSK, and 68.18% in DFCI, and a specificity 

(correctly predicted low-risk patients) of 59.21% in the training set, 57.75% in MSK, and 

76.36% in DFCI (Table 3.10). The sensitivity and specificity of the 15-gene signature in 

predicting 3-year survival was also similar as the 12-gene signature, with sensitivity of 76.84%, 

82.61%, 86.36% and specificity of 64.47%, 50.70%, 47.27% in training, MSK, and DFCI 

respectively.  Compared to 12- and 15-gene signature, the 16-gene signature gave lower 

sensitivity but higher specificity (Table 3.10).   
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Table 3.10. Sensitivity and specificity of the 12-, 15- and 16-gene prognostic models. 

 

Sensitivity (% of correctly 
predicted high-risk patients)  Specificity (% of correctly 

predicted low-risk patients) 

n 12-gene 15-gene 16-gene  n 12-gene 15-gene 16-gene
3-year survival as the cutoff (high-risk: death within 3-y; low-risk: alive after 3-y) 
UM & HLM 95 73.65 76.84 47.37  152 59.21 64.47 87.50
MSK 23 86.96 82.61 60.87  71 57.75 50.70 70.42
DFCI 22 68.18 86.36 54.55  55 76.36 47.27 81.82
5-year survival as the cutoff (high-risk: death within 5-y; low-risk: alive after 5-y) 
UM & HLM 125 72.80 72.80 44.80  104 66.35 69.23 93.27
MSK 34 70.59 67.65 50.00  31 48.39 41.94 67.74
DFCI 28 64.29 78.57 50.00  36 77.78 47.22 86.11
2.5-year and 5-year survival as the high- and low-risk cutoffs (high-risk: death within 2.5-y; low-
risk: alive after 5-y) 
UM & HLM 84 75.00 77.38 48.81  104 66.35 69.23 93.27
MSK 21 95.24 85.71 66.67  31 48.39 41.94 67.74
DFCI 20 70.00 85.00 55.00  36 77.78 47.22 86.11

 
According to the hazard ratio of the prognostic model for the three signatures in both test 

cohorts, the 12-gene signature exhibited highest potential for lung cancer prognosis as it was the 

only signature generated significant hazard ratio in stage I patients of both test cohorts.  In 

addition, the 12-gene signature accurately quantifies survival in patients in all stages, stage I 

only, stage IB only, and patients in stage I or II who did not receive chemotherapy. The 12-gene 

expression-defined risk score is a more accurate prognostic factor than commonly used clinical 

parameters. Due to the high prognostication performance, chemoresponse prediction was further 

studied using the 12-gene signature. Results show that the signature also predicts 

chemoresistance and chemosensitivity to several major anti-lung cancer drugs in NCI-60 cancer 

cell lines.  Together, the results indicate that the 12-gene signature could be used to select early 

stage lung adenocarcinoma patients at high risk for tumor recurrence for adjuvant chemotherapy. 

Meanwhile, it may spare stage I and II low-risk patients from unnecessary chemotherapy.  

Furthermore, the 12-gene signature has the potential to be used to inform physicians which 

anticancer drugs should be used in treating a particular patient. The expression patterns of the 12-

gene signature were confirmed in RT-PCR. Curated interactions between the signature genes and 

major cancer signaling hallmarks revealed in the functional pathway analysis provides further 
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evidence that the 12-gene signature might be involved in lung cancer oncogenesis and tumor 

progression.   

 Overall, the combinatorial gene selection scheme presented in this study identified 25 

prognostic genes.  This study demonstrates that combination of different stages of gene filtering 

identified gene signatures with higher prognostic performance than traditional gene selection 

approach.  Feature selection algorithms included in the system is crucial not only to reduce the 

size of the identified signatures but also to provide a set of genes with strong prognostic 

classification.  The choice to use a different feature selection technique depends on an evaluation 

with an independent classifier.  If the classification performance cannot be further improved with 

the current algorithm, a different feature selection algorithm should be used.  In conclusion, 

hybrid models with combination of statistics and feature selection methods are efficient, robust, 

and could identify prognostic gene signatures feasible for clinical utility. 

 

 

 

 



 

Chapter 4  
Network-based Models for Lung Cancer 
Prognostic Signatures Identification 

With the completion of the Human Genome Project, cataloging the “parts list” of disease genes 

is no longer the focus of biomarker identification.  Understanding the networks of interactions 

that take place among the genes has become the new emphasis to identify marker genes because 

the gene networks provide insights to unravel the molecular basis of disease [27]. Molecular 

network analysis had been shown to be useful in disease classification [61] and identification of 

novel therapeutic targets [115].  Nonetheless, the development of efficient methods for 

constructing genome-wide coexpression networks and the identification of a particular set of 

markers, from among the enormous number of potential markers, that has the highest predictive 

ability for disease outcome remains the challenges for this research domain [7].  

We had demonstrated that the combinatorial framework with multiple gene filtering 

layers identify better prognostic genes signatures than traditional methods when being applied 

alone.  In this chapter, we will present another hybrid system that is built upon a computational 

network model for the identification of lung cancer prognostic signatures.  The network model 

incorporated in the hybrid system is the implication networks induced from prediction logic [1].  

With this network-based system, users could specify the signaling pathways and identify 

signature genes that are tightly related to the set of signaling proteins in that particular pathway.  

This presents an efficient framework for scientists to retrieve prognostic genes from the disease-

mediated coexpression networks linked to signaling pathways.  By combining additional layers 

75 
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of gene selection methods after retrieving prognostic genes from the modeled networks, sets of 

gene signatures with strong prognostic classification performance were identified. 

The remainder of the chapter is organized as follows.  Section 4.1 illustrates the 

methodology of the proposed system and the identification of extensive prognostic gene 

signatures for lung cancer.  Section 4.2 presents the prognostic performance evaluation of the 

identified signatures. Comparison of the identified signatures with all published lung cancer gene 

signatures is discussed in Section 4.3.  Section 4.4 describes the construction of molecular 

prognostic classifiers and the performance using a particular signature identified, i.e. the 10-gene 

signature.  Functional pathway analysis was carried out to study the biological aspect of the 

identified 10 genes to lung cancer oncogenesis and will be presented in Section 4.5.  Section 4.6 

presents the evaluation of the disease-mediated coexpression networks derived using the 

implication network algorithm.  The last section, Section 4.7 concludes the chapter. 

 

 

4.1 Methodology 

The methodology is based on the genome-wide coexpression networks modeled with the 

implication networks.  The implication induction algorithm (Fig. 2.7) was used to construct pair-

wise genome-scale coexpression networks for predicting risk from developing recurrence in lung 

cancer.  The methodology was motivated by the hypothesis that the combined analysis of 

disease-mediated genome-wide coexpression networks, signaling pathways, and clinical 

approaches would lead to prognostic biomarker for more informed clinical use. 

Patient samples from the largest public lung cancer microarray data published by 

Shedden et al. [2] were used in this study.  Training set was formed with patient samples from 

UM and HLM (n = 256), whereas samples from MSK (n = 104) and DFCI (n = 82) constituted 

two independent test sets.  Data preprocessing were done before the analysis.  First, whenever a 

gene has missing measurements in at least half of the samples, the gene were removed from the 

analysis.  Then, for genes measured using multiple probes, the average expression of the 

duplicates was used to represent the expression profile of the unique gene.  This gave a final set 

of 12,566 unique genes for the implication network analysis.  
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To construct implication networks, the mean expression of each gene in a patient cohort 

was used as a cut-off to partition the expression profiles. If the expression of a gene in a patient 

sample was greater than the mean in the cohort, this gene was denoted as up-regulated in this 

tumor sample; otherwise, it was denoted as down-regulated in the tumor sample. In the training 

set, patients who died within 5 years were labeled as poor-prognosis (n = 125), and those who 

survived 5 years after surgery were labeled as good-prognosis (n = 104). Censored cases (those 

with follow-up of less than 5 years) were removed from the analysis (n = 27). For each patient 

group in the training set, a genome-wide coexpression network was constructed using the 

implication induction algorithm. Between each pair of genes, possible significant (P < 0.05; one-

sided z-tests) coexpression relations were derived in each patient group, constituting disease-

mediated gene coexpression networks. By comparing the implication rules connecting each pair 

of nodes between the two networks, disease-specific differential network components were 

identified. These differential components contain the coexpression relations that were either 

present in the poor-prognosis group but missing in the good-prognosis group, or conversely, 

those present in the good-prognosis group but missing in the poor-prognosis group (Fig. 4.1).  

Next, candidate genes were obtained by retrieving genes displaying a direct significant (P 

< 0.05, z-tests) co-regulation relation with major NSCLC signal proteins from the differential 

components associated with each prognosis group.  From the human NSCLC signaling pathways 

delineated by the KEGG pathway database8, 11 signaling proteins (TP53, MET, RB1, EGF, 

EGFR, KRAS, E2F1, E2F2, E2F3, E2F4, and E2F5) were included in this study.  To analyze the 

performance of methodology, candidate genes with significant coexpression relations with any 

combination of 6 or 7 signaling proteins were included for further analysis (Fig. 4.1). 

Three approaches were taken to identify gene signatures from the pool of candidate 

genes.  In the first approach, probes with significant association with survival (P < 0.05, 

univariate Cox model) were identified as signature genes. In the second approach, random 

forests were used to obtain a refined set of signature genes from the significant probes (P < 0.05; 

univariate Cox model).  In the third approach, Relief algorithm was used to rank the significant 

probes (P < 0.05; univariate Cox model), and a step-wise forward selection was used to 

identified the final gene signatures.  Specifically, starting from the top ranked gene, one gene 

 

                                                 
8 http://www.genome.jp/kegg/pathway/hsa/hsa05223.html 
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was added at each step to the gene set, until the prognostic accuracy could not be improved by 

adding more genes.  The final gene set was identified as the gene signature.  Fig. 4.1 gives an 

overview of the methodology. 

 

Constructing coexpression networks
Implication network; prediction logic

Coexpression network 
for good-prognosis

Coexpression network 
for poor-prognosis 

Unique interactions for 
good-prognosis

Unique interactions for 
poor-prognosis

Pool of candidate genes

Comparing interaction patterns

Identifying genes directly co-regulated with hallmarks

12,566 genes 
Good-prognosis (n=104)

12,566 genes
Poor-prognosis (n=125)

Prognostic gene 
signatures (Approach 1)

Genes associated with lung cancer survival

Univariate Cox Model (P < 0.05)

Random Forests Forward selection with Relief 

Prognostic gene 
signatures (Approach 3)

Prognostic gene 
signatures (Approach 2)

 
Figure 4.1. Overview of the study design for identifying prognostic gene signatures with implication 
networks and feature selection methods. 
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4.2 Evaluation of Identified Prognostic Gene Signatures 

To evaluate if the identified signatures could provide accurate prognostic prediction for lung 

adenocarcinoma, multivariate Cox proportional hazard model was used to construct prognostic 

classifiers to stratify patients.  On training samples, gene expressions of the identified prognostic 

signature genes were fitted to the Cox proportional hazard models as covariates. Coefficients 

obtained for each covariate in the constructed model were used to represent the training model. 

Using the training model, a survival risk score was generated for each patient. From the training 

risk scores, a cut-off value was identified to stratify patients into high- or low-risk groups.  The 

model and cutoff values defined using the training set were applied to the independent test sets 

without re-estimating parameters.  The prognostic performance of each identified gene signature 

was evaluated according to the following criteria: log-rank tests in Kaplan-Meier analyses and 

hazard ratio of death from lung cancer for all cancer stages, for stage I only and for stage I 

without receiving chemotherapy in training and test cohorts. The prognostic performance of 

patients from all tumor stages was evaluated on the two independent test sets individually.  Due 

to small sample size, the two independent test sets were combined while evaluating the 

prognostic performance for stage I and stage I without receiving chemotherapy. 

In the first approach, among the 462 sets of candidate genes that co-regulated with 6 

signaling proteins, 9 gene signatures generated significant stratification (log-rank P <0.05) with 

significant hazard ratios (P < 0.05) in all three patient cohorts (Table 4.1). Among these 9 gene 

signatures, 5 of them also had significant hazard ratios (P <0.05) on stage I patients in all three 

cohorts.  Among the 5 gene signatures that could give accurate prognostic categorization in all 

stages and stage I tumors, 4 gene signatures (referred to as S1-S4; Table B.1) generated 

significant stratifications (log-rank P <0.05 in Kaplan-Meier analysis, with hazard ratio 

significantly greater than 1) for stage I patients without receiving chemotherapy (Table 4.1).  

Similarly, among the 330 sets of candidate genes co-regulated with 7 signaling proteins in the 

first approach, 4 gene signatures generated accurate prognostic stratification (log-rank P <0.05 in 

Kaplan-Meier analysis, with hazard ratio significantly greater than 1) in all three patient cohorts, 

and one of them also generated accurate prognostic prediction in stage I patients in all three 

datasets (Table 4.1).  In the second approach, only 1 gene signature that co-regulated with 7 

signaling proteins (referred to as S5; Table B.2) provided significant stratifications in patients 
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with all tumor stages, stage I only, and stage I without receiving chemotherapy (Table 4.1).  The 

third approach identified 16 such gene signatures (referred to as S6 to S21; Table B.3) from the 

candidate genes co-regulated with 6 signaling proteins. 

In summary, a total of 21 gene signatures were identified using the three approaches in 

this study, which, in turn, generated significant prognostic categorizations in lung 

adenocarcinoma patients with all cancer stages, stage I only, and stage I without chemotherapy 

(Table 4.1).  These results demonstrate that the methodology provides a platform to efficiently 

identify prognostic gene signatures which also co-regulate with major signaling proteins for lung 

adenocarcinomas.  Most importantly, the size of these gene signatures (4 ~ 33 genes) is feasible 

to be further validated with biology experiments and used for clinical application. 

 

Table 4.1. Summary of prognostic signature discovered using the methodology in the extensive 
study. 

Gene 
Selection 
Approach 

Number of signaling 
hallmarks  

No. of signatures giving significant stratifications (log-rank P< 0.05) in all dataset 

with significant hazard 
ratio in all stages  

& 
with significant hazard 

ratio in stage I * 

& 
with significant hazard 
ratio in Stage I without 

chemotherapy # 

Network-
based  

(Approach 1) 

7  4  1  0  
6  9  5  4  

Average signature 
size  21 genes  21 genes  24 genes  

Network + 
Random 
Forests  

(Approach 2) 

7  4  4  1  
6  3  2  0  

Average signature 
size  12 genes  10 genes  5 genes  

Network + 
Relief  

(Approach 3) 

7  7   4  0  
6  47    26    16   

Average signature 
size  14 genes   12 genes  14 genes  

Summary Total number of 
signatures 74 42 21 

* Gene signatures in this column also had significant hazard ratio in all cancer stages in all three patient cohorts. 
# Gene signatures in this column also have significant hazard ratio in all cancer stages in all three patient cohorts 
and stage I in training and combined test cohorts. 
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4.3 Comparison with other Lung Cancer Gene Signatures 

To further investigated the prognostic performance of the 21 prognostic signatures identified 

from the proposed methodology, we compared the signatures with gene expression-based lung 

cancer signatures reported to date.  Eleven lung cancer gene signatures were evaluated in the 

Director’s Challenge Study [2], among which five of them were identified from previous studies 

on lung cancer molecular prognosis [15, 16].  Among the 11 gene signatures evaluated, the best 

signature reported was “method A” (referred to as “A” in Fig. 4), which contains about 9,591 

genes/probes.  The prognostic performance of our gene signatures was compared with the best 

lung cancer gene signatures reported to date in terms of the estimated hazard ratio and the 

concordance probability estimate (CPE) in two test sets (Fig. 4.2A and 4.2B).   

Results from the comparison show that the 21 gene signatures (S1-S21) identified in this 

study perform better than all other previously identified lung cancer gene signatures (Fig. 4.2).  

Among the 11 previously identified gene signatures, “method A” is the only model with hazard 

ratio significantly (P < 0.05) greater than 1 in all three patient cohorts (Fig. 4.2A).  On the other 

hand, all 21 gene signatures identified from the proposed system generated hazard ratio 

significantly (P < 0.05) greater than 1 in all three patient cohorts (Fig. 4.2A).  Moreover, all 21 

gene signatures had a significant hazard ratio and a CPE significantly greater than 0.5 (P<0.05) 

in stage I patients (Fig. 4.2C-4.2D).  Most significantly, the 21 identified signatures also had 

significant hazard ratio and CPE in stage I patients without receiving chemotherapy (Fig. 4.2E-

4.2F), which is a prognostic capacity which has not been reported in the previous studies [2, 15, 

16].  

These results demonstrate that the gene signatures discovered with the network-based 

methodology are clinically important in identifying specific high-risk patients diagnosed with 

early stage lung adenocarcinoma for adjuvant chemotherapy.  
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Figure 4.2. Comparison of 21 identified gene signatures with other lung cancer gene signatures.  
The 21 prognostic gene signatures were compared with 11 gene signatures evaluated in the Director’s 
Challenge Study [2] in two test sets in terms of hazard ratio (A) and concordance probability estimate 
[CPE] (B). The prognostic performance of the 21 gene signatures was evaluated for stage I patients by 
hazard ratio (C) and CPE (D), as well as for stage I patients without receiving chemotherapy in the 
combined test cohorts (E, F). The error bar in the charts represents 95% confidence interval of the 
measurement. 
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4.4 Survival Prediction Using the Identified 10-gene 
Prognostic Signature 

To confirm the prognostic performance of the identified signatures, we further evaluated one of 

the 21 identified signatures.  A 10-gene signature identified using the third approach (S13; was 

Table B.3) was selected for further evaluation.  From the disease-mediated prognosis groups, 154 

candidate prognostic genes showed direct coexpression with signaling proteins EGF, KRAS, 

TP53, RB1, E2F1, and E2F2; in which 57 were identified from the good-prognosis group and 

106 were identified from the poor-prognosis group (with 9 genes common in both groups).  From 

the training set of the original continuous microarray data, 26 probes out of these 154 genes were 

significantly associated with overall survival (P < 0.05, univariate Cox mode).  Based on the 

forward selection and ranking with Relief [116], the top 10 genes were identified as the final 

signature (S13; Table B.3).   

Multivariate Cox proportional hazard model was fitted with the 10 genes as covariates on 

bootstrapped training samples for 1,000 times.  The average of the 1,000 coefficients obtained 

for each covariate was used to represent the final coefficients in the training model. Using the 

training model, a survival risk score was generated for each patient. A risk score of -12.04 was 

identified as a cut-off value for patient stratification in the training set (Fig. 4.3A). This training 

model and cut-off value was then applied to the two validation sets to generate prognostic 

categorization without re-estimating parameters (Fig. 4.3B and 4.3C). In all three patient cohorts, 

this scheme stratified patients into two prognostic groups with significantly distinct survival 

outcome (log-rank P < 0.03, Kaplan-Meier analyses). When the high-risk group is defined as a 

group of patients who survived 5 years or less, and the low-risk group with patients who 

survived 5 years or longer, this model accurately classify 64% of the patients on training, 57% on 

MSK and 66% on DFCI.  The model also achieved sensitivity (correctly predicted high-risk 

patients) of 55.20% on the training set, 52.94% on MSK, and 75% on DFCI. The specificity 

(correctly predicted low-risk patients) was 75% on the training set, 61.29 % on MSK, and 

58.33% on DFCI (Fig. 4.3D).  
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Figure 4.3. Prognostication of disease-specific survival using the 10-gene signature in lung 
adenocarcinoma patients. The model stratified patients into two prognostic groups with significantly 
different (P < 0.03) survival outcome in the training set UM&HLM (A) and both test sets MSK (B) and 
DFCI (C) in Kaplan-Meier analyses. Log-rank tests were used to assess the difference in survival 
probability between the two prognostic groups. Performance of 5-year survival prediction on training and 
two test sets (D). 

 

Furthermore, the 10-gene prognostic signature could identify high-risk patients with stage 

I cancers on both the training set and combined test sets (log-rank P ≤ 0.007; Fig. 4.4A-4.4B).  

The prognostic model also successfully separated high- and low-risk groups within stage IB 

patients in the training and combined test sets (log-rank P ≤ 0.04; Fig. 4.4C-4.4D).  In stage I 

patients who did not receive chemotherapy, the prognostic model stratified high- and low-risk 

groups with distinct survival outcome in both training and test sets (log-rank P ≤ 0.04; Fig. 4.4E-

4.4F).  These results demonstrate that the 10-gene signature provides a more refined prognosis 

than the current AJCC staging system. Using this model, patients with stage I NSCLC could be 

advised to either receive or be spared from chemotherapy according to the expression profiles of 

the 10 prognostic genes.    
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Figure 4.4. Prognostic performance of the 10-gene signature in stage I lung adenocarcinoma.  The 
model generated significant prognostic categorization for stage I patients in both training set UM&HLM 
(A) and combined test sets MSK&DFCI (B), for stage IB patients in training (C) and combined test sets 
(D), as well as for stage I patients without receiving chemotherapy in both training (E) and combined test 
sets (F). Statistical significance of the difference in survival probability between the two prognostic 
groups was assessed with log-rank tests in Kaplan-Meier analyses. 

 

 

4.5 Prognostic Evaluation with Clinical Covariates 

To further validate the prognostic power of the model, the constructed 10-gene prognostic model 

was evaluated with common lung cancer prognostic factors using multivariate Cox analysis on 

the combined testing cohorts (MSK and DFCI).  The constructed 10-gene risk score algorithm 

was evaluated using clinical factors, including gender, age, cancer stage, smoking history, race, 

and tumor differentiation.  In the analysis without the 10-gene risk score, among major clinical 
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cal covariates age, gender and cancer stage, cancer stage was the only significant predictor of 

death from lung cancer (Table 4.2). After the 10-gene risk score was included, the gene risk 

score became a highly significant prognostic factor with a hazard ratio of 3.63 (95% CI: [1.70, 

7.77]).  The hazard ratio of the gene risk score was higher than other clinical covariates, except 

cancer stage (III vs. I; with no significant difference).   Similar results were obtained in the more 

comprehensive analysis with all the clinical covariates (Table 4.3). These results demonstrate 

that the 10-gene signature is a more accurate prognostic factor than most commonly used clinical 

factors. 

 

Table 4.2. Multivariate Cox proportional hazard analysis of the 10-gene risk score and major 
clinical covariates including gender, age, and tumor stage on the combined testing cohorts (MSK 
and DFCI). 

Variable*  P-value Hazard Ratio (95% CI) ψ  
Analysis without 10-gene risk score  
Gender (Male)  0.22  1.34  (0.84,2.16)  
Age at diagnosis (>60)  0.08  1.61  (0.95,2.74)  
Cancer Stage     
     Stage II  6.25E-05  2.91  (1.72,4.91)  
     Stage III  1.09E-05  4.16  (2.20,7.85)  
Analysis with 10-gene risk score 
Gender (Male)  0.28 1.30 (0.81, 2.09) 
Age at diagnosis (> 60) 0.09 1.59 (0.93, 2.70) 
Cancer Stage     
     Stage II  1.62E-04 2.74 (1.62, 4.63) 
     Stage III  4.58E-06 4.45 (2.35, 8.43) 
10-gene risk score  8.61E-04 3.63  (1.70, 7.77)  

 
* Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 
years old and 1 otherwise); cancer stage was a categorical variable with 3 categories (Stage I [as the reference 
group], Stage II, and Stage III). 
ψ denotes confidence interval. 
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Table 4.3. Multivariate Cox proportional analysis of all available clinical covariates and 10-gene 
risk score in the combined test cohorts (MSK and DFCI). 

Variable*  P-value Hazard Ratio (95% CI)ψ  
Analysis without 10-gene risk score
Gender (Male)  0.43 1.22 (0.74,1.99)  
Age at diagnosis (>60)  0.05 1.70 (0.99,2.92)  
Race    
     Others/Unknown  0.28 0.43 (0.09,1.97)  
     White  0.10 0.28 (0.06,1.28)  
Smoking history   (0.00,0.00)  
     Smokers  0.62 0.84 (0.43,1.66)  
     Unknown  0.91 0.89 (0.11,7.10)  
Tumor differentiation    
     Moderately differentiated  0.14 0.53 (0.23,1.24)  
     Poorly differentiated  0.70 1.17 (0.53,2.61)  
Cancer Stage    
     Stage II  3.31E-04 2.72 (1.57,4.69)  
     Stage III  2.38E-05 4.93 (2.35,10.33)  
Analysis with 10-gene risk score  
Gender (Male)  0.37 1.25 (0.76, 2.04) 
Age at diagnosis (>60)  0.05 1.69 (0.99, 2.89) 
Race    
     Others/ Unknown  0.20 0.37 (0.08, 1.67) 
     White  0.10 0.28 (0.06, 1.25) 
Smoking history    
     Smokers  0.81 0.92 (0.47, 1.80) 
     Unknown  0.87 1.18 (0.15, 9.64) 
Tumor differentiation    
     Moderately differentiated  0.13 0.52 (0.23, 1.21) 
     Poorly differentiated  0.81 1.10 (0.50, 2.41) 
Cancer Stage    
     Stage II  4.19E-04 2.66 (1.54, 4.58) 
     Stage III  3.47E-05 4.79 (2.28, 10.05) 
10-gene risk score  3.31E-03 3.23 (1.48, 7.06)  

* Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 
years old and 1 otherwise); race was a categorical variable of 3 categories (African American [as the reference 
group], White, and Others [composed of Asian (5) , Hawaiian or Pacific Islander (1), and unknown]); tumor grade 
was categorical variable of 3 categories (Well [as the reference group], Moderately, and Poorly differentiated); 
Smoking history was a categorical variable of 3 categories (Non-smokers, Smokers, and Unknown); cancer stage 
was a categorical variable with 3 categories (Stage I [as the reference group], Stage II, and Stage III). 
ψ denotes confidence interval. 
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4.6 Functional Pathway Analysis 

Having established the prognostic performance of the 10 prognostic genes identified, we sought 

to explore the functional involvement of this gene set in lung tumorigenesis and tumor 

progression. Curated molecular interactions between the major NSCLC signaling pathways and 

the identified 10-gene signature were retrieved using functional pathway analysis tools, 

Ingenuity Pathway Analysis (IPA, Ingenuity® Systems).  The IPA functional pathway analysis 

demonstrated that nine canonical pathways were significantly (P<0.05; adjusted with BH tests) 

associated with the 10 prognostic genes.  These pathways include methane metabolism and 

phenylalanine metabolism related to cell cycle, eicosanoid signaling that mediates inflammation 

and immunity, and MAPK signaling related to cell death, tissue morphology and inflammatory 

response (Fig. 4.5A). The pathway analysis also showed that cancer is among the top 5 most 

significant disease and disorders (P<0.05; adjusted with BH tests) in the network related to the 

10 prognostic genes (Fig. 4.5B).  Furthermore, 4 of the 10 prognostic genes were involved in 

interactions with major lung cancer signaling proteins, including TP53, KRAS, EGF, E2F1, and 

RB1 as reported in the literature (Fig. 4.5C). These results suggest that the identified 10 genes are 

involved in lung cancer oncogenesis and tumor progression. 
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Figure 4.5. Functional pathway analysis of the 10 prognostic genes. Core analysis was performed 
with Ingenuity Pathway Analysis (IPA). Significant canonical pathways retrieved from IPA (A).  
Cancer was a significant biological function in the disease and disorders category (B). Curated 
interactions related to the 10 signature genes were also revealed from the literature (C). 

 

 

4.7 Evaluation of Disease-mediated Gene Coexpression 

Networks 

We further examined the disease-mediated coexpression networks derived from the system. The 

coexpression relations among the 10 signature genes and the 6 signaling proteins specific to each 

prognostic group were retrieved. Those commonly present in both training and test sets were 
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considered robust for further study and biological evaluation. There were 4 common 

coexpression relations specific to good-prognosis group (Fig 4.6A) and 2 specific to poor-

prognosis group (Fig 4.6B) in both training and test sets.  These 6 coexpression relations 

represent the gene coexpression patterns specifically associated with metastasis in lung cancer 

patients. Among these 6 coexpression relations, the interaction between CPEB1 and TP53 was 

confirmed in a reported study [117] (Fig. 4.6A).  Based on the five gene collections from 

MSigDB9, the disease-mediated coexpression networks were also assessed in term of precision 

and false discovery rate (FDR).  In 1,000 permutations, the precision of disease-mediated 

coexpression networks is 1 (P <0.001) and the FDR is 0. These results indicate that implication 

networks can reveal biologically relevant gene associations.  Moreover, results from the stability 

test showed that more than 60% of the coexpression relations confirmed in the test set could be 

derived by using as few as 70% of the training samples, indicating the implication network 

algorithm is stable (Fig. 4.6D). 

 In addition to the 10-gene signatures, biological robustness of the other 20 identified 

signatures was also evaluated with the known molecular relations found in MSigDB.  For each 

gene signature, the coexpression relations among the signature genes and their co-regulated 

signaling proteins were generated for each prognosis groups and those commonly found in 

training and two independent test cohorts were retrieved for the assessment (Fig. C.1 – C.22).  

Results show that two signatures (S2, S7) generated coexpression networks with the most 

coexpression relations derived incorrectly with FDR of 0.1 (-log(FDR) = 1, Fig. 4.7)).  One the 

other hand, the disease-mediated coexpression networks for seven of the 21 signatures (including 

the 10-gene signature) has FDR < 0.001 (-log(FDR) ~ 3; Fig. 4.7).  These results demonstrate 

that the coexpression relations derived from the implication relation induction algorithm are 

successfully validated with molecular interactions reported in the literature. 

 

                                                 
9 http://www.broadinstitute.org/gsea/msigdb/collections.jsp 
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(A) Good-prognosis (B) Poor-prognosis

 

 
 

 
Figure 4.7. False discovery rate of the disease-mediated coexpression networks for the identified 21 
prognostic signatures.  The false discovery rate of the disease-specific coexpression relations among the 
signature genes and co-regulated hallmarks found in all three studied cohorts validated with MSigDB in 
1,000 permutations. 

(C)  

               Positive Equivalence (A  B) 
(Up-regulation of gene A causes up-regulation of gene B and up-regulation 
of gene B causes up-regulation of gene A) 

Curated Interaction in Published 
Literature 

              Negative Equivalence (A  ¬B) 
(Up-regulation of gene A causes down-regulation of gene B and down-
regulation of gene B causes up-regulation of gene A) 

True Positive (TP) in MSigDB 

(D) 

Figure 4.6. Disease-specific coexpression relations among the 10 prognostic signature genes and the 6 
lung cancer signaling proteins.  The disease-specific expression patterns for the good-prognosis group (A) 
and the poor-prognosis group (B) that were commonly present in both training and test cohorts were illustrated. 
The interpretation of the coexpression patterns is provided in (C).  The stability of the networks in (A) and (B) 
was evaluated by using random subsets of the training samples in 100 iterations (D).   
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4.8 Conclusions  

This study presents a novel network-based methodology for modeling gene coexpression 

networks with major NSCLC signaling hallmarks for biomarker identification.  The network 

model is flexible; it could be used alone, or in conjunction with other gene selection algorithms, 

such as random forests or Relief, in signature identification.  This study demonstrates that the 

implication network methodology based on prediction logic is suitable for constructing genome-

wide coexpression networks for analyzing perturbed gene/protein expression patterns in different 

disease states. The disease-mediated differential network components may contain important 

information for the discovery of biomarkers and pathways with implications for prognostic 

prediction.  The implication network methodology provides a convenient and more predictive 

structure of gene regulation than the networks constructed based on correlation coefficients.  

Our previous study identified a 12-gene signature using hybrid models combining t-test, 

significant analysis of microarray (SAM), and Relief algorithm [118]. The hazard ratio of the 12-

gene signature was significant for all cancer stages in three patient cohorts, but not significant in 

any test sets for stage I only in the Director’s Challenge Study. The network-based methodology 

presented in this chapter demonstrates the extensive identification of lung cancer prognostic gene 

signatures with strong prognostication performance in all tumor stages, stage I only, and stage I 

patients without receiving chemotherapy. All 21 gene signatures identified in this study 

outperformed other lung cancer signatures reported in the literature on the same patient cohorts. 

Most importantly, the identified signatures were all in feasible size to be further validated with 

biology experiments. These results indicate that modeling disease-mediated coexpression 

networks and crosstalk with NSCLC signaling hallmarks is crucial to identifying clinically 

important biomarkers for lung cancer. The identified gene signatures could potentially be used to 

advise patient selection for adjuvant chemotherapy in personalized lung cancer treatment.  

The discovered gene signatures may also reveal essential molecular mechanisms of the 

disease and enhance our understanding of why patients with certain molecular tumor 

characteristics have a poor clinical outcome and how their outcome could be improved. 

Functional pathway studies with IPA confirmed the interactions between the major NSCLC 

signaling pathways and the identified gene signatures.   
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In addition to the 10-gene signature discussed in the chapter, a 14-gene and 13-gene 

prognostic signature was identified using the third approach of the implication network-based 

methodology [119, 120].  The 14-gene prognostic signature was identified from genes having 

direct coexpression relation with TP53, KRAS, EGF, EGFR, E2F3, and E2F4 [120]; where the 

13-gene prognostic signatures were directly co-regulated with MET, EGF, KRAS, TP53, E2F2, 

and E2F4 in the disease-mediated differential network components [119].  Both these signatures 

generated significant patient stratification on the training set and two validation sets, with all 

tumor stage, and stage IB.  However, they could not generate significant stratifications on both 

test cohorts of stage I patients  and stage I patients without receiving chemotherapy.  In patients 

with all tumor stages, the prognostic performance of the 14- and 13-gene signatures is 

comparable to the 10-gene signature presented in this chapter. (Table 4.4). 

 

Table 4.2. Sensitivity and specificity of the 13- and 14-, and 10-gene gene prognostic models. 

  

Sensitivity (% of correctly predicted 
high-risk patients)  

Specificity (% of correctly 
predicted low-risk patients) 

n 13-gene 14-gene 10-gene   n 13-gene 14-gene 10-gene 
3-year survival as the cutoff (high-risk: death within 3-y; low-risk: alive after 3-y) 
UM & HLM 95 56.84 52.63 58.95 152 75.66 67.76 73.03 
MSK 23 73.91 78.26 65.22 71 54.93 45.07 63.68 
DFCI 22 68.18 90.91 77.27 55 56.36 34.55 58.18 
5-year survival as the cutoff (high-risk: death within 5-y; low-risk: alive after 5-y) 
UM & HLM 125 52.00 53.60 55.20 104 77.88 73.08 75.00 
MSK 34 67.65 79.41 52.94 31 51.61 51.61 61.29 
DFCI 28 67.86 89.29 75.00 36 61.11 30.56 58.33 
2.5-year and 5-year survival as the high- and low-risk cutoffs (high-risk: death within 2.5-y; low-risk: 
alive after 5-y) 
UM & HLM 84 59.52 51.19 59.52 104 77.88 73.08 75.00 
MSK 21 76.19 76.19 61.90 31 51.61 51.61 61.29 
DFCI 20 70.00 90.00 75.00   36 61.11 30.56 58.33 

 

 

These results conclude that the presented implication network-based methodology 

accurately model the disease relevant gene coexpression patterns for the discovery of clinically 

important prognostic gene signatures. Most importantly, gene signatures identified with this 
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novel network-based methodology provide strong prognostic performance and in viable size for 

biology validation and clinical application.  



 

Chapter 5  
Network-based Identification of Smoking-
associated Gene Signature for Lung 
Cancer 

Studies have demonstrated that smoking contributes to about 90% of all lung cancer cases and it 

appears to be a strong risk factor in the development of lung cancer [108, 121, 122].  However, 

smoking is not an established determinant in lung cancer prognosis as its effect in lung cancer 

progression remains unclear. In this study, we sought to identify a smoking-associated gene 

signature with implications in lung cancer diagnosis and prognosis using genome-wide 

transcriptional profiles from lung cancer patients. 

In the previous chapter, implication networks were employed to model disease-mediated 

genome-wide coexpression networks for the identification of prognostic gene signatures.  In this 

study, implication networks were used to infer the relevance to signaling pathways in a set of 

selected genes associated with smoking and lung cancer survival. 

This chapter is organized into ten sections.  The first section presents the methodology. 

Section 5.2 describes the identification of the smoking-associated signature using the proposed 

methodology.  Prognostic evaluation of the identified signature will be presented in Section 5.3.  

Section 5.4 provides the results on association study between the signature and smoking.  The 

prognostic evaluation of the signature with clinical covariates is presented in Section 5.5.  

Section 5.6 validates the prognostic performance of the signature on different subtypes of 

NSCLC.  Results on potential usage of the signature for early detection of lung cancer will be 

95 
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presented in Section 5.7.  The assessment of interactions retrieved using implication networks 

will be discussed in Section 5.8.  Biology eexperiment validation result is presented in Section 

5.9.  The conclusions of the study will be discussed in Section 5.10. 

 

 

5.1 Methodology 

The methodology studied in this chapter is similar to the implication network-based system 

illustrated in Chapter 4.  Major difference between the two methodologies is that the gene 

coexpression networks were not modeled for the whole genome in this study.  Instead of the 

whole genome, the implication networks were used to model coexpression patterns of a smaller 

pool of genes: genes associated with smoking and also prognostic for lung cancer.  This 

application also demonstrates the use of implication networks in modeling gene coexpression 

patterns mediated with the smoking practice, instead of disease outcome as studied in Chapter 4. 

Specifically, the methodology contains the following steps: 1) identifying genes 

significantly associated with lung cancer survival, 2)  from the survival genes, selecting genes 

which are differentially expressed in smoker versus non-smoker groups, 3) from these candidate 

genes, constructing gene co-expression networks based on prediction logic for smokers and non-

smokers, 4) identifying smoking-mediated differential components, i.e., the unique gene co-

expression patterns specific to smoker group or non-smoker group, and 5) from the differential 

components, identifying genes directly co-expressed with major lung cancer hallmarks as the 

smoking-associated gene signature for lung cancer (Fig. 5.1).  

 

 



5. Network-based Identification of Smoking-associated Gene Signature for Lung Cancer 97 

Genome-wide expression profiles 
(Training set)

Genes differentially expressed in 
smokers vs non-smokers and 

significantly associated with survival
NSCLC hallmarks

Coexpression networks for smoker NSCLC Coexpression network for non-smoker NSCLC

Unique interactions for smoker NSCLC Unique interaction for non-smoker NSCLC

Smoking-associated gene signature

Univariate Cox (P < 0.05)

Implication networks

Comparing coexpression types

Identifying genes directly interact with 6 hallmarks

Genes associated with NSCLC survival

t-tests (smokers vs Non-smokers, P < 0.05)

 
Figure 5.1. Methodology for network-based identification of smoking-associated signatures. 

 

 

5.2 Identification of a Smoking-associated 7-gene Signature  

In this study, 442 lung adenocarcinoma patient samples obtained from the Director’s Challenge 

Study [2] were used.  In this study, the  UM and HLM cohorts from the Director’s Challenge 

Study [2] formed the training set (n=256), whereas MSK and DFCI cohorts formed the test set 

(n=186). Before the analysis, genes with missing values in at least half of the samples were 

removed, which left 19,866 genes for the analysis.   

Survival genes were first selected from the whole genome. A total of 2,310 genes were 

significantly associated with overall survival (P < 0.05, univariate Cox modeling) in the training 

data. Next, from the set of 2,310 survival genes, 217 genes showed significant differential 

expression (P < 0.05, t-tests) in smokers versus non-smokers in the training data were further 

extracted.  These 217 survival and smoking-associated genes as well as six major signaling 

proteins, including EGF, EGFR, MET, KRAS, E2F3, and E2F5, were included in the network 

analysis.  Although these six hallmarks were not significantly associated with survival nor 
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differentially expressed in smokers, they were major signaling proteins included in human non-

small cell lung cancer disease mechanisms delineated by the KEGG Pathway Database10. 

To construct implication networks, expression profiles in each patient were partitioned 

into binary values using the mean expression profile of each gene as the cutoff. If the expression 

of a gene in a patient sample was greater than the mean in the cohort, this gene was denoted as 

up-regulated in this tumor sample; otherwise, it was denoted as down-regulated in the tumor 

sample.  Patient samples in the training set were separated into two groups: smokers (patients 

who smoked in the past or who are currently smoking) and non-smokers (patients who never 

smoked).  For each patient group, coexpression network among the 217 genes and six signally 

hallmarks was constructed using the implication induction algorithm. Between each pair of the 

223 genes, possible significant (P < 0.05; z-tests) coexpression relations (interactions) were 

derived in the smoker group and the non-smoker group separately, constituting smoking-

mediated gene co-expression networks for lung cancer. By comparing the implication rules 

between each pair of nodes in the two smoking-mediated networks, differential network 

components were identified. These differential components are interactions that were present in 

the smoker group but missing in the non-smoker group, or conversely, those present in the non-

smoker group but absent in the smoker group.   

From the differential components associated with smoker group and non-smoker group, 

genes having direct interactions with the six lung cancer hallmarks were identified.  As a result, 

six genes were identified from the smoker group and one gene was identified from the non-

smoker group.  This constituted the smoking-associated 7-gene signature for lung cancer 

prognosis (Table 5.1). Fig. 5.2 gives an overview of the whole methodology.  

 

 

                                                 
10 http://www.genome.jp/kegg/pathway/hsa/hsa05223.html 
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19,866 genes
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Prognostic Validation
Multiple microarray data; Cox 
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2,310 genes
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NNK-treatment in cell lines 

H23 and BEAS-2B
 

Figure 5.2. Identification of 7-gene smoking-associated signature. 

 

Table 5.1. The identified 7-gene smoking associated signature. 

Gene 
Symbol Gene Title Molecular Function (Gene Ontology) 

ABCA3 ATP-binding cassette, sub-family A (ABC1), 
member 3 

ATP,  nucleotide binding; ATPase, transporter 
activity 

CRTAC1 Cartilage acidic protein 1 Calcium ion binding 
CYP3A4 Cytochrome P450, family 3, subfamily A, 

polypeptide 4 
Monooxygenase, electron carrier, oxidoreductase 
activity; heme, metal ion, and steroid binding 

GPRC5C G protein-coupled receptor, family C, group 5, 
member C 

Receptor activity; protein binding 

LTF Lactotransferrin Ferric iron, heparin, metal ion, protein binding;  
peptidase, serine-type endopeptidase activity 

PIGN Phosphatidylinositol glycan anchor 
biosynthesis, class N 

Phosphotransferase, transferase activity 

SEMA3C Sema domain, immunoglobulin domain (Ig), 
short basic domain, secreted, (semaphorin) 3C 

Receptor activity; semaphorin receptor binding 
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5.3 Prognostic Evaluation of the Signature  

We sought to study if the gene signature identified could provide accurate prognostic prediction 

of survival for lung cancer patients.  The six hallmarks were not fitted in the model as they were 

not significantly associated with survival.  On the training cohort, the original continuous 

expression profiles of the seven probes were fitted into a Cox proportional hazard model as 

covariates.  A survival risk score was generated for each patient in the training set.  To identify 

the best patient stratification scheme, various cutoff values of the risk scores from the training set 

were evaluated.  The cutoff value that gave the shortest distance to the point of perfect 

prediction, i.e. point [0,1] of the 3-year ROC curve (Fig. 5.3A), produced the best patient 

stratification in the training set (Fig. 5.3B).  Therefore, the training model and cutoff value were 

applied to the test set (Fig. 5.3C).  In both training and test set, this classification scheme 

generated significant patient stratifications (log-rank P < 0.007, Kaplan-Meier analysis).    

To evaluate the statistical significance of the signature identified from the proposed 

network analysis, a set of seven genes from the 217 survival and smoking-associated genes were 

randomly selected and constructed as a classifier using the same approach with the Cox 

proportional hazard model. Results showed that the signature identified gave significantly (P < 

0.04) better lung cancer prognosis compared with 1000 random signatures. 

 

 
Figure 5.3. Prognostic prediction of patients survival by smoking-associated gene signature. On the 
cohorts from  Shedden et al. [2], the risk score giving the best prediction on the 3-year ROC curve was 
identified as the cutoff for patient stratification (A).  This cutoff value generated significant patient 
stratification on the training set (B), test set (C), and smokers of test set (D) in Kaplan-Meier analyses. 
Log-rank tests were used to assess the statistical significance in survival probability between the two 
prognostic groups. 
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5.4 Smoking Association and Smoking Cessation  

To evaluate the smoking association of the identified gene signature, we evaluated the 

performance of the prognostic signature on smokers in the studied cohorts.  Results showed that 

the signature gave accurate prognostic prediction in smokers in the test cohort (log-rank P < 

0.01, Kaplan-Meier analysis) (Fig. 5.3D) but not in non-smokers (log-rank P < 0.12, Kaplan-

Meier analysis, results not shown).  In addition, gene expression-defined high and low-risk 

groups showed significant association with smoking (P < 0.02, Chi-square tests) and smoking 

cessation (P < 0.00001, Chi-square tests) (Table 5.2). Specifically, smokers were significantly 

associated with high-risk group compared with non-smokers, and current smokers showed a 

stronger association with the high-risk group compared with former smokers. 

 

Table 5.2. Associations between smoking status and the classifier's prediction. 

 Low-risk High-risk Chi-square Test 
Smoker 143 157 Smoking association  

 χ2  = 5.76 (P = 0.02) Non-smoker 33 16 
Current Smoker 3 29 Smoking cessation 

χ2 = 19.37 (P = 1.08e-5) Former Smoker 140 128 
  

 

5.5 Prognostic Evaluation with Clinical Covariates  

To validate the prognostic power of the identified 7-gene signature, the constructed expression-

defined prognostic model was evaluated with common lung cancer prognostic factors, including 

gender, age, tumor stage, and tumor differentiation on smokers in the test cohort.  The predicted 

7-gene risk score was used as the covariate in the multivariate Cox analysis. 

Results from the multivariate Cox proportional analysis showed that tumor stage was the 

only factor significantly (P < 0.002) associated with elevated risk of lung cancer death when the 

model was fitted without the 6-gene prognostic prediction (Table 3).  When the 7-gene risk score 

was added to the multivariate Cox model, the 7-gene risk score demonstrated a significantly 

strong association with the risk of lung cancer death (hazard ratio = 1.89, 95% CI: [1.06, 3.38]), 
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and tumor stage remained significant (Table 3).  The hazard ratio of the 7-gene risk score was 

higher than other cancer prognostic factors except tumor stage, while there is no significant 

difference between the hazard ratio of the 7-gene risk score and tumor stage (II vs. I).  The 

results demonstrate that the 7-gene risk score could provide more accurate prognosis than some 

commonly used clinical parameters. 

 

Table 3. Multivariate Cox proportional analysis of the 7-gene risk score and major clinical 

covariates in smoking lung cancer patients of the test cohort. 

Variable* P-value Hazard Ratio (95% CI)ψ 
Analysis without 7-gene risk score 
Gender (Male) 0.55 1.17 (0.70, 1.95) 
Age at diagnosis (>60) 0.35 1.31 (0.74, 2.29) 
Tumor differentiation 
     Moderately differentiated 0.30 0.63 (0.26, 1.51) 
     Poorly differentiated 0.89 1.06 (0.47, 2.38) 
Cancer Stage 
     Stage II 1.54E-03 2.60 (1.44, 4.71) 
     Stage III 5.53E-05 4.48 (2.16, 9.29) 
Analysis with7-gene risk score 
Gender (Male) 0.51 1.19 (0.71, 1.99) 
Age at diagnosis (>60) 0.49 1.22 (0.69, 2.16) 
Tumor differentiation 
     Moderately differentiated 0.33 0.65 (0.27, 1.55) 
     Poorly differentiated 0.93 0.96 (0.43, 2.16) 
Cancer Stage 
     Stage II 1.64E-03 2.61 (1.44, 4.74) 
     Stage III 3.29E-05 4.79 (2.29, 10.04) 
7-gene risk score 0.03 1.89 (1.06, 3.38) 

* Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 
years old and 1 otherwise); tumor grade was categorical variable of 3 categories (Well [as the reference group], 
Moderately, and Poorly differentiated); tumor stage was categorical variable of 3 categories (Stage I [as the 
reference group], Stage II, and Stage III). 
ψ denotes confidence interval. 
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5.6 Prognostic Validation on other Histology Subtypes of 
NSCLC  

The prognostic performance of the 7-gene signature was further evaluated on Raponi [17] and 

Bild [13] cohorts including squamous cell carcinoma. Due to small sample size, patient samples 

in the studied cohort were randomly partitioned into separate training and test sets. Then, a 

prognostic classifier was constructed on training set using the Cox proportional hazard model 

and validated on the test set without re-estimation of parameters.  On Raponi’s cohort with 

squamous cell carcinoma patients, the 7-gene signature stratified patients into two distinct 

survival groups (log-rank P < 0.005, Kaplan-Meier analysis) in the training set but border line in 

the test set (Fig. 5.4A, 5.4B).  The border line performance in the test cohort could be due to the 

reason that 8 percent of the patients in the cohort were non-smokers and the 7-gene prognostic 

signature is specific to smokers.  On the Bild’s cohort with lung adenocarcinoma or squamous 

cell carcinoma patients, the 7-gene signature stratified patients into two distinct survival groups 

in both training and test set (log-rank P < 0.04, Kaplan-Meier analysis) (Fig. 5.4C, 5.4D).  

 

 
Figure 5.4. Prognostic prediction of patient survival by the smoking-associated gene signature on 
two cohorts with different histology. In Kaplan-Meier analyses, significant patient stratifications were 
also obtained in the training and test sets on cohorts from Raponi et al. [17] (A, B) and Bild et al. [13] (C, 
D).  Log-rank tests were used to assess the statistical significance in survival probability between the two 
prognostic groups. 
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5.7 Early Detection of Lung Cancer  

We further evaluated whether the 7-gene signature could be used for the diagnosis of lung cancer 

in smokers. The smoking cohort from Spira et al. [108] was separated into a training set (n=77) 

and two independent test sets (n=52 and n=35). With the nearest neighbor algorithm 

implemented in WEKA [116], the classifier could accurately identify lung cancer patients from 

normal patients with overall accuracy of 65% in training and 73% or higher in test sets (Table 

5.3). The sensitivity in identifying lung cancer patients is at least 72% (Table 5.3).  The odds 

ratio of predicted lung cancer risk was highly significant in all three sets (OR = 3.85, 95% CI: 

[1.45, 10.20], P < 0.007 in training; OR = 7.35, 95% CI: [2.16, 25.04], P < 0.001 in Test set 1; 

OR = 8.45, 95% CI: [1.84, 38.75], P < 0.006 in Test set 2; Table 5.3).  Furthermore, the 

classifier’s performance was significantly (P < 0.002) better than that of random signatures with 

the same size using the same classifier in 1000 tests, on the same training and test sets. 

 

Table 5.3. Prediction of lung cancer risk in smokers. 

 Sensitivity 
(lung cancer)

Specificity 
(normal)

Overall 
Accuracy

Odds Ratio  
[95% CI] P-value

Training (10-fold CV) 74% (26/35) 57% (24/42) 65% (50/77) 3.85 [1.45, 10.20] 0.007 
Test 1 72% (18/25) 74% (20/27) 73% (38/52) 7.35 [2.16, 25.04] 0.001 
Test 2  72% (13/18) 76% (13/17) 74% (26/35) 8.45 [1.84, 38.75] 0.006 
 

 

5.8 Assessment of Smoking-mediated Gene Coexpression 

Networks  

To assess the smoking-mediated coexpression relations derived by the implication network, 

differential network components among the signature genes and the six signaling hallmarks 

present in both training and test sets were retrieved as they were consider robust for further 

evaluation.  There were 17 common interactions specifically associated with smokers (Fig. 5.5A) 

and one interaction specifically associated with non-smokers (Fig. 5.5B).  
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The biological relevance of the derived coexpression relations was validated by retrieving 

curated interactions related to these genes using bioinformatics tools including Pathway Studio 

(Fig. 5.5D) and other curated signal pathway databases.  Among 18 coexpression relations 

derived from the implication networks, 11 interactions specific to smokers were confirmed (Fig. 

5.5A and 5.5B).  The FDR of the smoking-mediated coexpression networks derived is 0.01.  

These results indicate that implication networks can reveal biologically relevant gene 

associations. 

 

 
Figure 5.5. Smoking-mediated coexpression relations among the signature genes and lung cancer 
hallmarks. Gene coexpression patterns specific to smokers (A) and non-smokers (B) derived by the 
implication network algorithm (P < 0.05) in both training and test sets (FDR = 0.01). The biological 
interpretation of the implication relations are described in (C). Interactions reported in literature retrieved 
from Pathway Studio (D). The stability of smoking-mediated networks as evaluated with random subsets 
of patients from the training cohort in 100 iterations (E). 
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Results from the stability test of the smoking-mediated coexpression networks (Fig. 5.5A 

and 5.5B) show that the implication network algorithm is stable as most of the coexpression 

relations (about 70%) could be derived using as few as half of the training samples (Fig. 5.5E) 

 

 

5.9 Experiment Validation 

We further confirm the biological aspect of smoking-mediated gene coexpression relations 

derived from the implication networks and the perturbation of signaling pathway mechanisms in 

smokers among the identified signature genes and hallmark genes using the expression 

quantified from cell lines.  H23 and BEAS-2B cells were exposed to NNK for 15 minutes, one 

hour, and 16 hours.  Then, qRT-PCR low-density arrays were used to analyze the gene 

expressions in the NNK-treated cells.  On the qRT-PCR data normalized with POLR2A, gene 

expression fold changes of the genes in treated cell lines versus control were computed. 

Based on the fold changes computed for the signature genes and the hallmarks observed 

in the NNK-treated H23 cell lines, coexpression relations among the 7 signature genes and the six 

hallmarks were derived.  These represented the observed perturbations among the signature 

genes and signaling pathway mechanism specific for smokers.  Comparing the observed 

perturbations with coexpression relations unique for smokers (Fig. 5.5A), results showed that the 

coexpression relations derived with the implication networks in smokers were confirmed by the 

coexpression relations observed in NNK-treated H23, at different time points (Fig. 7). 

 

 
Figure 5.6. Coexpression relations observed in the NNK-treated H23 cell lines for 15 minutes (A), 1 
hours (B), and 16 hours (C). 
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5.10 Conclusions 

This study examined the implication network-based model discussed in Chapter 4 in a different 

scenario.  Instead of modeling disease-mediated coexpression networks at the genome-wide 

scale, smoking-mediated coexpression networks were constructed on a subset of genes 

associated with smoking and lung cancer survival.  From the smoking-mediated coexpression 

networks derived, a smoking-associated 7-gene prognostic signature that co-regulated with major 

lung cancer signaling proteins were identified.  The identified 7-gene signature showed strong 

implications in providing accurate estimate for lung cancer survival and risk of diagnose with 

lung cancer in smokers.  The 7-gene defined prognostication also showed strong association with 

smoking and smoking cessation.    Furthermore, the 7-gene prognostic model also appeared to be 

a more accurate prognostic factor than commonly used clinical factors for lung cancer.   

Using the same methodology, a 6-gene and an 8-gene smoking-associated prognostic 

signature were also identified from having direct coexpression relations with different major lung 

cancer signaling hallmarks (Table 5.4).  The prognostic performance of the 6-gene and 8-gene 

signatures was comparable with the 7-gene signature (Fig. 5.7).   

 

Table 5.4. 6-gene and 8-gene smoking-associated signatures identified using the implication 
network-based methodology. 

Signature Hallmarks Identified Signature Genes 

6-gene signature MET, EGF, KRAS, 
TP53, E2F1, E2F4 

HERC3, NUPR1, SEMA3C, EEF1B2, 
SOSTDC1, TFAP2A 

8-gene signature MET, EGF, EGFR, 
KRAS, E2F2, E2F5 

LUC7L3, CRTAC1, CYP3A4, GPRC5C, 
HOMER1, PIGN, SEMA3C, EEF1B2 
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Figure 5.7. Prognostic performance of the 6-gene and 8-gene signature identified with the network-
based methodology on patient cohorts from the Director’s Challenge Study [2].  Using multivariate 
Cox proportional hazard model fitted with the 6 genes, the risk score giving the best predicted on the 3-
year ROC curve (value of -15.36) generated significant patient stratification in both the training and test 
cohort (A,B) and smokers in training and test cohorts (C,D). Similarly, on the 8-gene fitted Cox model, 
the mean of risk scores from training samples (value of -5.31) generated patients into two risk groups with 
significantly distinct survival outcome in the training and test cohorts with all patients (E,F) and smoker 
patients only (G,H).  

 

In comparison with the clinical covariates, the 6-gene and 7-gne prognostic power was 

comparable to one another (Table 5.5) but the 8-gene signature did not give better prognostic 

power than clinical factors. 
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Table 5.5. Multivariate Cox analyses of the 6-gene expression-defined prognostication and major 
clinical covariates in smoking lung cancer patients in the test cohort. 

Variable* P-value Hazard Ratio (95% CI)ψ 
Analysis without 6-gene prognostic prediction 
Gender (Male) 0.55 1.17 (0.70, 1.95) 
Age at diagnosis (>60) 0.35 1.31 (0.74, 2.29) 
Tumor differentiation    
     Moderately differentiated 0.30 0.63 (0.26, 1.51) 
     Poorly differentiated 0.89 1.06 (0.47, 2.38) 
Cancer Stage    
     Stage II 1.54E-03 2.60 (1.44, 4.71) 
     Stage III 5.53E-05 4.48 (2.16, 9.29) 
Analysis with 6-gene prognostic prediction 
Gender (Male) 0.42 1.24 (0.74, 2.08) 
Age at diagnosis (>60) 0.52 1.20 (0.68, 2.13) 
Tumor differentiation    
     Moderately differentiated 0.39 0.68 (0.28, 1.64) 
     Poorly differentiated 0.89 0.94 (0.42, 2.15) 
Cancer Stage    
     Stage II 7.30E-04 2.83 (1.55, 5.19) 
     Stage III 1.51E-05 5.36 (2.50, 11.46) 
6-gene prognostic prediction 0.04 1.89 (1.04, 3.43) 

* Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 
years old and 1 otherwise); tumor grade was categorical variable of 3 categories (Well [as the reference group], 
Moderately, and Poorly differentiated); cancer stage was categorical variable of 3 categories (Stage I [as the 
reference group], Stage II, and Stage III). 
ψ denotes confidence interval. 
 
 

Results from this study showed that the 7-gene smoking-associated signature is highly 

potential to be used to develop clinical gene test to screen smokers for risk of developing lung 

cancer and provide a precise prognostic test for smoking lung cancer patients.  This would be 

beneficial to a large population of the lung cancer patients. 

The application of the implication network-based methodology in this study again 

demonstrated that the methodology correctly modeled the biologically perturbed coexpression 

patterns.  In this study, the coexpression patterns perturbed by smoking practices were correctly 

modeled and validated with coexpression relations observed from the experiments with NNK-

treated cell lines.  Moreover, this study once more demonstrated that the integration of 

biologically perturbed coexpression patterns with signaling pathway mechanisms lead to 

identification of strong prognostic gene signatures.  



 

Chapter 6  
Evaluation with Boolean Implication 
Networks and Bayesian Networks  

Results presented in Chapter 4 and Chapter 5 demonstrated that the implication networks based 

on prediction logic could efficiently model the disease-mediated gene coexpression networks for 

signature genes identification.  Furthermore, the coexpression patterns derived were successfully 

validated with molecular interactions reported in the literature.  Another similar formalism of 

implication networks, i.e., Boolean implication networks were used in a meta-analysis to 

discover relationships among genes for different species [80].  In contrast to small patient 

cohorts we had studied, large sample of microarray data were used in their meta-analysis: 4,787 

human, 2,154 mice, and 450 Drosophila.  Moreover, the Boolean implication networks were 

used as the framework to study the genomic evolution, where our framework was used for gene 

selection.  While implication networks could efficiently model the gene regulatory networks, it is 

not as commonly known as the Bayesian networks in this research domain. 

In this chapter, we will discuss the performance and characteristics of the employed 

implication networks in comparison with the Boolean implication networks and Bayesian 

networks.  The comparison of the two implication networks in term of the size of the networks 

will be presented in the first section, Section 6.1.  Section 6.2 discusses the comparativeness of 

both implication networks after fine-tuning the implication networks based on prediction logic.  

Section 6.3 examines the biological robustness of networks derived from both implication 

networks.  To compare the employed implication networks with the Bayesian networks, we 

evaluate the biological strength of the derived disease-mediated gene coexpression networks.  
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The results are presented in Section 6.4.  The last section, Section 6.5 provides a brief conclusion 

on the comparison studies. 

 

 

6.1 Comparison with Boolean Implication Networks 

In the framework to derive Boolean implication networks, StepMiner algorithm [81] was first 

used to automatically assign a threshold (t) for each gene.  Based on the assigned threshold t, the 

gene expression level was defined as up-regulated if the expression value is above t + 0.5; down-

regulated if the expression value is below t - 0.5.  If the expression value is between t – 0.5 and t 

+ 0.5, the expression level is defined as intermediate and will be ignored during the implication 

relations derivation.  The choice of the interval width (±0.5) is based on the standard deviations 

of genes over all arrays, and the 5th percentile from the bottom is selected.  In the data used in 

their study, the standard deviation is a little less than 0.26. The interval is defined as two standard 

deviations from the threshold, thus t ± 0.5.  We adopted similar approach in deciding the width 

for the interval width.   

In our data, the standard deviations of all the genes (12,566 genes) ranged from 0.13 to 

40.24.  There were some outlier genes with very large standard deviation; this could be due to 

noise (Fig 6.1A).  After removing the outliers, the distribution of the standard deviations is a 

little skewed toward the range of 0 to 0.5 (Fig 6.1B, 6.1C).  The 5th percentile from the bottom 

(value 0) of the distribution is 0.23.  Therefore, after obtaining the threshold (t) from StepMiner, 

we defined the gene as up-regulated if the expression value is t + 0.46, down-regulated if the 

expression value is t – 0.46, or intermediate if the expression value lies between t – 0.46 and t + 

0.46. 
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(A) Box plot of standard deviation for all genes

(B) Box plot of standard deviations 
after removing outliers 

(C) Distribution of standard deviations 
after removing outliers 

 
Figure 6.1. Distribution of standard deviations for all the genes (A) and after removing 
the outlier genes (B,C). 

 

After defining the gene expression levels into up- or down-regulated by t + 0.46 and t - 

46, implication relations between the gene pairs were derived using the Boolean implication 

networks proposed by Sahoo et al. [80] and the implication networks based on prediction logic 

(Fig. 2.7).  Implication relations were derived for good-prognosis group (patients who survived 5 

years or longer after surgery) and poor-prognosis group (patients who died within 5 years after 

surgery).  By comparing the implication rule types in both prognosis group, implication relations 

specific to each prognosis group were also obtained.   

Results show that Boolean implication networks derived less coexpression relations than 

those derived from implication networks based on prediction logic (Fig. 6.2), except for the 

implication relations specific to poor-prognosis group.  After removing the samples with 

expression falls within the intermediate range (t±0.46), the average sample size used for deriving 

the implication relations is 23 (out of 125) for the poor prognosis group and 20 (out of 140) for 

the good prognosis group.  Since the number of samples in deriving the successful implication 

relation between the pair of genes was small, these results are not reasonable to be further 

investigated.   
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Figure 6.2. Comparison between Boolean implication networks (BooleanNet) and the implication 
algorithms based on prediction logic (GNet) in term of the number of gene coexpression relations 
derived. 

 

 

6.2 Comparison after Parameters Tuning  

For a reasonable comparison of both methods with larger and more representative sample, we 

used two different approaches to define the expression level of genes as up- or down-regulated in 

order to increase the sample size for deriving the implication relations.  In the first approach, the 

expression level of each gene was defined as up-regulated if the expression value is greater than 

or equal to the mean of the gene in the cohort, and down-regulated otherwise.  In the second 

approach, the expression level of a gene was defined as up-regulated if the value is half the 

standard deviation above the mean, down-regulated if it is half the standard deviation below the 

mean, and intermediate if the expression value lies within half the standard deviation below or 

above the mean.   

In both approaches, the number of implication relations derived using the implication 

algorithm based on prediction logic is larger than those derived from Boolean implication 

networks.  However, after tuning the minimum precision ( min∇ ) in the induction algorithm 

based on prediction logic, the number of interactions was reduced to the comparable scale as the 

Boolean implication networks. (Fig. 6.3).     
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Figure 6.3. Number of implication relations derived from Boolean implication network 
(BooleanNet) and implication algorithm based on prediction logic (GNet) after tuning the minimum 
precision parameter in data partitioned by mean only (A) and data partitioned by mean and half 
the standard deviation (B). 

 

The  was tuned because precision represents the prediction success of the 

implication rule, which is comparative to the error rate parameter used to decide a successful 

implication relation in the Boolean implication networks.  Results show that the networks 

derived from implication networks based on prediction logic are comparable to those from 

Boolean implication networks after tuning

min∇

min∇ . 
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6.3 Assessment of Implication Networks with Biological 

Databases  

Having looked at the size of the derived coexpression networks, the biological aspect of the 

derived coexpression networks was examined with the five gene collections from MSigDB.  The 

precision and false discovery rate of the derived coexpression networks for each prognosis group 

was measured on the training data.  Genes were partitioned into up- or down-regulated with the 

mean expression of each gene in the cohort.  The two measurements from the Boolean 

implication networks and the implication networks based on prediction logic tuned at  were 

examined.   

min∇

Results show that the precision for all derived networks were greater than 95%.  

However, only precision of the implication networks with min∇  = 0.78 was statistically 

significant (P < 0.04).  The precision of the implication networks with  = 0.75 was 

borderline significant (P < 0.06) and the Boolean implication networks was not significant (P < 

0.21) (Fig. 6.4A).  On the other hand, the false discovery rate of the derived networks was all 

less than 5% (Fig. 6.4B).  These results demonstrate that tuning the parameter  not only 

reduces the size of derived implication networks but also affects the biological robustness of the 

networks. 

min∇

∇min
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Figure 6.4. Precisions (A) and false discovery rate (B) of the derived implication networks. An 
asterisk (*) above the bar indicates that the precision is significantly (P < 0.05) higher than the null 
precisions in 1,000 permutations.  

 

 

6.4 Comparison with Bayesian Networks 

As discussed in Section 2.2.5, Bayesian networks are the most common computational network 

model for modeling biological networks.  It was preferred in biomedical research studies over 

other network models due to its characteristics in probabilistic structure and tolerance to noise in 

biological data.  Nevertheless, its shortcoming over implication networks in gene coexpression 

networks is that it could not model feedback loop.  In this section, we will compare the 

biological strength of the disease-specific coexpression networks derived from the implication 

networks based on prediction logic and the Bayesian networks.  Specifically, the precisions and 

FDR of the disease-specific coexpression networks derived from both methodologies for the 21 
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prognostic signatures identified using the network-based approach (Table B.1-B.3) were 

compared. 

 On the patient cohorts from the Director’s Challenge Study [2], good-prognosis group is 

defined as group of patients who survived 5 years or longer after surgery, whereas poor-

prognosis group is defined as group of patients who died within 5 years after surgery.  For each 

prognosis group, Bayesian networks were derived using the TETRAD IV11.  As part of the 

products from the TETRAD Project by the Carnegie Mellon University, TETRAD IV is the state 

of the art application for causal models that implements Bayesian networks.  TETRAD IV is 

freely available in various versions, including the user-friendly GUI version and the command 

line based executable JAR file.  In our study, we employed the executable JAR file (version 

4.3.10-3) as it allows us to program in scripts and makes the analysis for all 21 signatures more 

efficient. 

Results show that the precision of the disease-specific coexpression networks derived on 

the training cohort using both methods are comparably high (Fig. 6.5A).  Among the 21 

signatures, five signatures have precision of 1 for both methods. For the remaining 16 signatures, 

the networks derived from Bayesian networks had precision comparable to those derived from 

the implication networks.  The precisions of networks from the two methods are significantly 

different (P < 0.05, two-proportion z-tests) on two signatures (S8, S13).  For these two 

signatures, the networks derived from the implication networks have higher proportion of true 

relations among genes compared with those derived from the Bayesian networks.   

Most of the disease-specific coexpression networks derived from both methods have low 

FDR (FDR < 0.1; Fig. 6.5B).  While only one network (signature S7) derived with the 

implication networks algorithm has FDR higher than 10%; two networks (signatures S2 and S11) 

derived with the Bayesian network algorithm has FDR above 10%.  Similar results are obtained 

in the two testing cohorts (MSK and DFCI; Fig. 6.6).  The precision and FDR of the disease-

specific coexpression networks derived using both methods are comparable to one another when 

evaluated on each cohort independently.  

 

 

                                                 
11 http://www.phil.cmu.edu/projects/tetrad/ 
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Figure 6.5. Comparison of the disease-specific coexpression networks derived using implication 
networks and Bayesian networks on the training cohorts from the Director’s Challenge Study [2] in 
terms of precision (A) and false discovery rate (B) for the 21 prognostic signatures.  An asterisk (*) 
above the bar in (A) indicates that the precision of the two derived coexpression networks is statistically 
significant (P < 0.05). 
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Figure 6.6. Comparison precision and FDR of the disease-specific coexpression networks derived 
using implication networks and Bayesian networks on two independent test cohorts.  An asterisk (*) 
above the bar in (A) indicates that the precision of the two derived coexpression networks is statistically 
significant (P < 0.05). 
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The more robust approach to evaluate the biological strength of the derived coexpression 

relations in the networks would be based on the set of coexpression relations commonly present 

in the networks derived on the training cohort and the two test cohorts.  However, for all the 21 

signatures, there was no relation commonly found in the disease-specific coexpression networks 

derived in the training and test cohorts using Bayesian networks.  On the other hand, the relations 

derived from training cohort using the implication network algorithms could be successfully 

reproduced in both independent test cohorts.  The precision of the disease-mediate coexpression 

networks common in three cohorts is 1 with statistical significance (P < 0.05) as evaluated in 

1,000 random permutations for 18 of the 21 signatures (Fig. 6.7A).  Furthermore, these networks 

have FDR lower than 10% for all 21 signatures (Fig. 6.7B).  Since there was no common relation 

between the coexpression networks derived from both the training and two test cohorts using 

Bayesian networks, the precisions are represented with zeros and false discovery rates are 

represented with NAs (not applicable) in Fig. 6.7.  

 

 

 

Figure 6.7. Comparison of the implication networks with the Bayesian networks on the disease-
specific coexpression relations commonly found on the three studied cohorts.  The precision is zero 
for the Bayesian networks for all 21 signatures in (A) and the FDR is NA in (B) as no relation was 
commonly derived in all three cohorts.  The asterisk (*) above the bar in (A) indicates that the precision is 
significantly (P < 0.05) greater than null precisions in 1,000 permutations. 
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For the 7-gene smoking-associated signature identified in Chapter 5, seven relations were 

obtained on the smoking-mediated coexpression networks on the training cohort and 10 relations 

were obtained on the test cohort [123].  Among these relations, only one smoker-specific 

coexpression relation was commonly found in both the training and test cohort (Fig. 6.8C).  In 

comparison, with the implication networks algorithm employed in our studies, 18 (17 smoker-

specific, 1 non-smoker-specific) coexpressions were commonly derived in both the training and 

test cohorts (Fig. 6.8A, 6.8B).  The precision of the smoking-mediated coexpression networks 

derived from both methods is 1 and 0.91 for Bayesian and implication networks respectively, 

with no statistical difference (P < 0.75, two-proportion z-test). 

 

 
Figure 6.8. Comparison of the smoking-mediated coexpression networks for the 7-gene smoking-
associated signature from the implication networks and the Bayesian networks. 18 gene 
coexpression relations specific to smokers (A) and non-smokers (B) derived by the implication networks 
algorithms commonly present in both training and test cohort.  Only one smoker-specific coexpression 
relations was commonly derived by Bayesian networks in both training and test cohort (C).  (D) lists the 
interpretation of various relations in the networks.  
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6.5  Conclusions 

As discussed at the beginning of the chapter, Boolean implication networks were applied for 

large scale evolutionary conservation study of genes interactions.  Its objective was to explore 

the biological meaningful relationships among genes for a species or between different species 

[80].  On the other hand, our applications focused on integrating genes interactions to study how 

genes change in healthy and disease states and used for gene signatures discovery.  Despite the 

differences of the applications and objectives, the theoretical constructions of both implication 

networks are similar and worth to be compared.   

In the application of the Boolean implication networks, no further information was given 

on fine tuning the parameters for deriving a successful implication relation.  The two statistics 

used to derive an implication relations are tested against a constant value (3 for the first statistics 

and 0.1 for the error rate).  On the other hand, the minimum requirements for scope (Up) and 

precision ( ) in the implication algorithm adopted in our studies could be adjusted according 

to the sample size or users’ specification.  This makes the algorithm we had adopted more 

flexible.  In addition, results from the three comparison studies also demonstrate that the 

implication networks implemented in our studies is comparable to the Boolean implication 

networks.  The size and biological robustness of the derived networks is comparable after tuning 

the  parameter of the algorithm.  Most importantly, in the lung cancer patient cohorts used 

in the study, the coexpression relations in the derived Boolean implication networks do not 

involved with most of the major lung cancer hallmarks.  This makes the selection of marker 

genes with crosstalk to signaling pathways unfeasible.   

min∇

min∇

In the comparison to Bayesian networks, implication networks employed in our studies 

could reveal more true biological relations than the Bayesian networks.  Although the precision 

and FDR of the disease-specific coexpression networks are comparable in both methods when 

evaluated on the training and test cohorts separately, the relations derived with Bayesian 

networks in the training cohort could not be reproduced on the test cohort.  On the other hand, 

the gene coexpression relations derived with implication networks in the training cohort could be 

reproduced in the testing cohorts with low false discovery rate. 

 



 

Chapter 7  
Contributions and Future Work 

7.1 Contributions 

Lung cancer remains the leading cause of death worldwide.  In search for a cure for this fatal 

disease, it is important to identify clinically relevant prognostic biomarkers in order to develop 

personalized medicine.  More importantly, the discovered biomarkers may reveal fundamental 

molecular mechanisms of this fatal disease, and improve our knowledge of why patients with 

certain tumor molecular characteristics have a poor clinical outcome and how to improve their 

survival time.  Studies of biomarker discoveries had been enhanced proficiently by the 

emergence and development of microarray technologies.  Our studies provided a few 

contributions to this research area. 

The first contribution of our studies is the development of a hybrid system for the 

identification of prognostic genes for lung cancer with traditional statistics and feature selection 

methods.  Results demonstrated that the systematic combinatorial framework of multiple 

traditional methods in the hybrid model provided improved performance over traditional 

methods when being applied alone.   The 12-gene signature identified from this hybrid model 

showed better prognostic performance than published signatures.  The 12-gene expression-

defined prognostic model precisely identified risk for stage I and II patients for different 

treatments, and accurately predicted chemotherapy drug response.  These results implied the 

clinical utility of the 12-gene signature in the development of personalized therapy. 

The second contribution of our works is the extensive identification of prognostic 

signatures for lung cancer using a network-based hybrid system.  The novel network model 
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employed in the second system is the implication networks based on prediction logic.  This is an 

innovative application of using implication networks to model the genome-wide disease-

mediated coexpression networks.  The implication network-based system not only efficiently 

scales to the entire genome, but also conveniently couples with information from signaling 

pathways for the identification of prognostic genes.  Using this system, we extensively explored 

the prognostic signatures of the whole genomic space and discovered 21 signatures with better 

performance than all published signatures in prognostic categorization on the same patient 

cohorts.  The prognostication evaluation of the signatures were carried out on patients with all 

tumor stages, stage I only, and stage I without receiving chemotherapy, which was the prognostic 

capacity never been reported till date.  Results also implied that the 21 identified gene signatures 

could potentially provide a more precise patient selection scheme in stage I patients for adjuvant 

chemotherapy in personalized lung cancer treatment.  Furthermore, the coexpression patterns 

derived from the implication networks were also successfully validated with molecular 

interactions reported in the literature.   

The third contribution of our studies included the discovery of a 7-gene smoking-

associated signature using the implication network-based system.  Smoking has been known to 

be highly associated with lung cancer but yet is not an established clinical factor used in lung 

cancer prognosis.  Our discovery contributed more information to the genes with association to 

both smoking and lung cancer survival.  From our study, the identified 7-gene smoking-

associated signature showed strong prognostication for smoking lung cancer patients and 

accurately identified high-risk patients from a cohort of smokers.  The smoking-mediated 

coexpression networks derived from the implication networks were being validated in 

experiment by our collaborators.  These results implied that the 7-gene signature could 

potentially be used to develop gene test for more precise prognosis for smoking lung cancer 

patients, which occupies 90% of all lung cancer patients.  It could be used to screen for risk of 

developing lung cancer for smokers, which could raise cautions to smokers and help advocating 

them on quitting smoking to reduce health risks. 
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7.2 Future Work 

Results from the comparison studies with the Boolean implication networks presented in Chapter 

6 lead us to the future analysis of the methodology through examination of the characteristics of 

the two implication networks as affected by different parameters, such as the minimum 

precision, minimum scope, as well as the weights associated with the implication rule and its 

logical equivalence.  In addition, we could also study the comparativeness of the parameters in 

both algorithms.  Through these examinations, we hope to acquire the set of parameters for the 

derivation of a smaller gene coexpression networks with strong biological robustness (high 

precision with statistical significance and low false discovery rate) for this research domain to 

identify marker genes for complex diseases.   

Results from Chapter 6 had demonstrated that the number of samples used for deriving 

the implication networks affects the implication networks derived.  Another direction to study 

the methodology in the future is to study the use of other approach to define genes as up- or 

down-regulated and the effects on the implication networks derived for prognostic genes 

identifications.  Instead of using mean alone as the threshold to define gene as up- or down-

regulated, alternative approach such as the more stringent threshold with standard deviations 

could be used.  However, this would lead to the removal of patient samples that do not pass the 

threshold, which would lead to smaller sample size.   

 

 

 

 



 

Appendix A 

Published Lung Cancer Molecular Classifiers and 
Gene Signatures 

Table A.1: Summary of gene selection and classification methods of molecular classifiers 
reported in (Shedden et al, 2008). 

Molecular 
Classifier* 

Number of 
signature genes 

Gene selection method(s) Classification 
method(s) 

Shedden A  ~ 9591 Genes Clustering analysis 
Ridged Cox 
proportional hazard 
model 

Shedden C 23 Genes 
SAM, Maximizing Chi-Square 
analysis (MCA, univariate Cox 
model and k-mean clustering) 

Binary Tree-Structured 
Vector Quantization 
(BTSVQ) 

Shedden D 37 Genes 
SAM, Maximizing Chi-Square 
analysis (MCA, univariate Cox 
model and k-mean clustering) 

Binary Tree-Structured 
Vector Quantization 
(BTSVQ) 

Shedden E 1 Gene Gene Expression Fold Change 
Post-hoc split of 
expression of one gene 

Shedden F 42 Genes Univariate Cox Model 
Principal Components 
and Cox Model 

Shedden G 38 Genes Univariate Cox Model 
Principal Components 
and Cox Model 

Shedden H  252 Genes 
Scoring and filtering on set of 
mitosis genes 

Majority vote 

Shedden J  5 Genes 
Univariate Cox model (Chen et 
al, NEJM 07) 

Ridged Cox 
proportional hazard 
model 

Shedden K  16 Genes Univariate Cox model (Chen et Ridged Cox 
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al, NEJM 07) proportional hazard 
model 

Shedden L 
9 Genes 
(from 80 Genes) 

Principal Components (Potti et 
al, NEJM 06)  

Ridged Cox 
proportional hazard 
model 

Shedden 
M 

45 Genes 
(from 80 Genes) 

Principal Components (Potti et 
al, NEJM 06)  

Ridged Cox 
proportional hazard 
model 

Shedden N 80 Genes 
Principal Components (Potti et 
al, NEJM 06) 

Ridged Cox 
proportional hazard 
model 

*Gene signatures A-H were identified in (Shedden et al, 2008).  Gene signatures J and K were identified 
in (Chen et al, 2007). Gene signatures L, M, and N were identified in (Potti et al, 2006). 

 

 

Table A.2: 14 published lung cancer gene signatures evaluated in GSEA in Chapter 3. 

Signature Name 
(GSEA) First Author Publication 

PubMed ID 

No. of 
Signature 

Genes/Prob
es 

No. of Genes 
matched in 

GSEA (By gene 
symbol) 

Beer_50g Beer, DG PMID:12118244 50 45 
Bhattacharjee_150g Bhattacharjee, A PMID:11707567 150 130 
Boutros_6g Boutros, PC PMID:19196983 6 6 
Chen_5g Chen, HY PMID:17202451 5 5 
Guo_35g Guo, L PMID:16740756 35 34 
Lau_3g Lau, SK PMID:18065728 3 3 
Lu_64g Lu, Y PMID:17194181 64 62 
Potti_133g Potti, A PMID:16899777 133 129 
Raponi_50g Raponi, M PMID:16885343 50 44 
Shedden_MA Shedden, K PMID:18641660 13830 8319 
Shedden_MB Shedden, K PMID:18641660 52 50 
Shedden_MC Shedden, K PMID:18641660 26 23 
Shedden_MD Shedden, K PMID:18641660 42 34 
Shedden_MH Shedden, K PMID:18641660 313 244 
 
 

 



 

Appendix B 

Significant Prognostic Signatures Identified Using Network-based Models  

Table B.1: Prognostic signatures identified with Approach 1 that generated significant stratifications in patients with all 
stages, stage I only, and stage I without receiving chemotherapy. 

No. Size of 
Signature Hallmarks Signature genes 

S1 21 MET, EGF, KRAS, 
RB1, E2F1, E2F5 

HSPA9, PRDX6, SUPT7L, LEPROT, MPI, QPCT, SLC39A8, ADH1B, MTX1, RAD17, HIPK1, ZFR, CLIC2, 
TFPI, HEXA, LYST, DYNLRB1, GCC1, CPEB1, ATP1A1, ABHD11 

S2 19 EGF, EGFR, KRAS, 
TP53, E2F3, E2F4 

TOMM34, RPS6KA1, ADD2, MPPED1, DNAJC4, IL12RB2, ICA1, THY1, LOC399491, FHL1, WDR43, 
LRRC23, MRPL13, ZC3H7A, GRHL2, APOA2, CPEB1, LOC100294391, ATP1A1 

S3 24 EGF, KRAS, TP53, 
E2F1, E2F2, E2F4 

EEF1B2, TOMM70A, TOMM34, IRF3, DDT, RPS6KA1, SC65, SMAD3, PPM1E, MOCS3, DNAJC4, DNAJA2, 
GRK6, ZNF592, THY1, FHL1, ACTA2, GRM8, GRHL2, APOA2, CPEB1, FBXO31, PDCD1LG2, HDLBP 

S4 32 EGF, KRAS, TP53, 
E2F1, E2F2, E2F5 

PRDX6, ANXA6, TOMM70A, TOMM34, IRF3, RPS6KA1, KATNA1, MPHOSPH9, CCDC9, ZNF141, 
SCNN1G, DNAJA2, ABCF2, HBS1L, APLP1, ITCH, MTX1, GRK6, NUP214, ANXA9, ELN, ZFR, ZNF592, 
ACTA2, GRM8, NRN1, APOA2, CPEB1, PDCD1LG2, MUM1, HDLBP, RING1 
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Table B.2: Prognostic signatures identified with Approach 2 that generated significant stratifications in patients with all 
stages, stage I only, and stage I without receiving chemotherapy. 

No. Size of 
Signature Hallmarks Signature genes 

S5 5 MET, EGFR, E2F2, 
KRAS, TP53, E2F1, E2F3 CD86, LHX2, GBX1, HEMK1, CPEB1 

 
  
Table B.3: Prognostic signatures identified with Approach 3 that generated significant stratifications in patients with all 
stages, stage I patients only, and stage I patients without receiving chemotherapy. 

No. Size of 
Signature 

Coexpressed 
Signaling 
Hallmarks 

Signature genes 

S6 4 MET, EGF, EGFR, 
KRAS, TP53, E2F3 CD86, ICA1, RPAP3, CPEB1 

S7 7 MET, EGF, EGFR, 
KRAS, E2F2, E2F3 ANXA6, SLC17A7, CD86, GAS7, TAF4, ARNT, CPEB1 

S8 33 MET, EGF, KRAS, 
TP53, E2F1, E2F2 

EEF1B2, SNRPD2, PRDX6, ANXA6, TOMM70A, NIPSNAP1, IL13RA1, IRF3, DDT, ABCC4, RPS6KA1, SMAD3, 
CD86, CCDC9, OPRL1, CLDN6, DNAJA2, CCL19, MTX1, MAPK9, ANXA9, ZFR, THY1, SFRS2B, IVD , MKRN2, 
GRHL2, CPEB1, FBXO31, PDCD1LG2, C20orf30, MUM1, OR1F1  

S9 23 MET, EGF, KRAS, 
E2F1, E2F3, E2F5 

HSPA9, ANXA6, MPI, ACTL6A, RPS6KA1, RTCD1, SLC12A2, CCDC9, NDUFAF3, FLT3LG, ANXA9, ZFR, 
CLIC2, SOSTDC1, TRMU, TCF3, DYNLRB1, CPEB1, C20orf46, LOC100294391, ATP1A1, MUM1, ABHD11 

S10 7 EGF, EGFR, KRAS, 
TP53, RB1, E2F2 RPL18, VIPR2, MOCS3, DNAJC4, ADAMTSL3, WDR12, HDLBP 

S11 19 EGF, EGFR, KRAS, 
TP53, E2F3, E2F4 

TOMM34, RPS6KA1, ADD2, MPPED1, DNAJC4, IL12RB2, ICA1, THY1, LOC399491, FHL1, WDR43, LRRC23, 
MRPL13, ZC3H7A, GRHL2, APOA2, CPEB1, LOC100294391, ATP1A1 

S12 7 EGF, EGFR, TP53, 
RB1, E2F1, E2F2 MOCS3, DNAJC4, CCBP2, THY1, SFRS2B, PUM2, HDLBP 

S13 10 EGF, KRAS, TP53, 
RB1, E2F1, E2F2 PRDX6, MOCS3, OPRL1, HBS1L, MTX1, ZFR, SPIN1, CPEB1, OR1F1, HDLBP 

S14 15 EGF, KRAS, TP53, 
RB1, E2F1, E2F4 

DDT, MOCS3, MPPED1, DNAJC4, RGL1, CEP57, THY1, TFPI, LRRC23, MRPL13, CPEB1, FBXO31, ATP1A1, 
HDLBP, SFTPB 

S15 21 EGF, KRAS, TP53, 
RB1, E2F1, E2F5 

RPL30, PRDX6, SNX2, LEPROT, MPI, KATNA1, SLC39A8, HBS1L, MTX1, ELN, ZFR, ANGEL1, TFPI, LRRC23, 
NRN1, SLC35F2, HMBOX1, CPEB1, ATP1A1, GINS2, HDLBP 
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S16 24 EGF, KRAS, TP53, 
E2F1, E2F2, E2F4 

EEF1B2, TOMM70A, TOMM34, IRF3, DDT, RPS6KA1, SC65, SMAD3, PPM1E, MOCS3, DNAJC4, DNAJA2, 
GRK6, ZNF592, THY1, FHL1, ACTA2, GRM8, GRHL2, APOA2, CPEB1, FBXO31, PDCD1LG2, HDLBP 

S17 32 EGF, KRAS, TP53, 
E2F1, E2F2, E2F5 

PRDX6, ANXA6, TOMM70A, TOMM34, IRF3, RPS6KA1, KATNA1, MPHOSPH9, CCDC9, ZNF141, SCNN1G, 
DNAJA2, ABCF2, HBS1L, APLP1, ITCH, MTX1, GRK6, NUP214, ANXA9, ELN, ZFR, ZNF592, ACTA2, GRM8, 
NRN1, APOA2, CPEB1, PDCD1LG2, MUM1, HDLBP, RING1 

S18 6 EGF, KRAS, TP53, 
E2F2, E2F3, E2F5 KIAA0040, KCNS3, KCNA4, COL14A1, CPEB1, RING1 

S19 3 EGF, KRAS, RB1, 
E2F1, E2F3, E2F5 HSPA9, ABHD11, C9orf156 

S20 9 EGFR, KRAS, RB1, 
TP53, E2F1, E2F2 TRAP1, PRMT2, MOCS3, DNAJC4, CCL8, TFCP2L1, LOH3CR2A, HDLBP, PKNOX2 

S21 9 EGFR, KRAS, RB1, 
E2F5, TP53, E2F2,  TRAP1, VIPR2, TCP10, TBX1, CCL8, LDLR, WDR12, PRR15L, HDLBP 



 

Appendix C 

Disease-specific Coexpression Networks for the 
Prognostic Signatures Identified Using Network-based 
Models  

Negative Equivalence (A ¬B)
(Up-regulation of gene A causes down-regulation of gene B and 
down-regulation of gene B causes up-regulation of gene A)

Positive Equivalence (A B)
(Up-regulation of gene A causes up-regulation of gene B and 
up-regulation of gene B causes up-regulation of gene A)

Positive Implication (A =>  B) 
(Up-regulation of gene A causes up-regulation of gene B)

Forward Negative Implication (A =>  ¬B) 
(Up-regulation of gene A causes down-regulation of gene B)

Negative Implication (¬A =>  ¬B) 
(Down-regulation of gene A causes down-regulation of gene B)

Inverse Negative Implication (¬A =>  B) 
(Down-regulation of gene A causes up-regulation of gene B)

 

Figure C.1. Legend of expression relations of the disease-specific coexpression networks 
represented in the six implication rules. 
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Figure C.2. Disease-specific coexpression networks for signature S1 (precision = 0.71, FDR 
= 0.08) 
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Figure C.3. Disease-specific coexpression networks for signature S2 (precision = 1, FDR = 
0.10) 
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Figure C.4. Disease-specific coexpression networks for signature S3 (precision = 1, FDR = 
0.03) 
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Figure C.5. Disease-specific coexpression networks for signature S4 (precision = 1, FDR = 
0.01) 
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Figure C.6. Disease-specific coexpression networks for signature S5 (precision = 1, FDR = 
0) 

 

 

Figure C.7. Disease-specific coexpression networks for signature S6 (precision = 1, FDR = 
0) 
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Figure C.8. Disease-specific coexpression networks for signature S7 (precision = 0.86, FDR 
= 0.10) 
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Figure C.9. Disease-specific coexpression networks for signature S8 (precision = 0.95, FDR 
= 0.05) 

 

 

Figure C.10. Disease-specific coexpression networks for signature S9 (precision = 1, FDR = 
0.02) 
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Figure C.11. Disease-specific coexpression networks for signature S10 (precision = 1, FDR 
= 0.08) 

 

 

Figure C.12. Disease-specific coexpression networks for signature S11 (precision = 1, FDR 
= 0.06) 

 

 

Figure C.13. Disease-specific coexpression networks for signature S12 (precision = 1, FDR 
= 0) 
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Figure C.14. Disease-specific coexpression networks for signature S13 (precision = 1, FDR 
= 0) 

 

 

Figure C.15. Disease-specific coexpression networks for signature S14 (precision = 1, FDR 
= 0.01) 
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Figure C.16. Disease-specific coexpression networks for signature S15 (precision = 1, FDR 
= 0.05) 

 

 

Figure C.17. Disease-specific coexpression networks for signature S16 (precision = 1, FDR 
= 0.03) 
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Figure C.18. Disease-specific coexpression networks for signature S17 (precision = 1, FDR 
= 0.02) 

 

 

Figure C.19. Disease-specific coexpression networks for signature S18 (precision = 1, FDR 
= 0) 
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Figure C.20. Disease-specific coexpression networks for signature S19 (precision = 1, FDR 
= 0) 

 

 

Figure. C.21. Disease-specific coexpression networks for signature S20 (precision = 1, FDR 
= 0.05) 

 

 

Figure C.22. Disease-specific coexpression networks for signature S21 (precision = 1, 
FDR=0.001) 
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