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Abstract

AN INFERENTIAL FRAMEWORK FORNETWORKHYPOTHESIS TESTS:

WITH APPLICATIONS TO BIOLOGICAL NETWORKS

By Phillip D. Yates, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2010.

Major Director: Nitai D. Mukhopadhyay, Assistant Professor, Department of Biostatistics

The analysis of weighted co-expression gene sets is gaining momentum in systems biology. In

addition to substantial research directed toward inferring co-expression networks on the ba-

sis of microarray/high-throughput sequencing data, inferential methods are being developed

to compare gene networks across one or more phenotypes. Common gene set hypothesis

testing procedures are mostly confined to comparing average gene/node transcription levels

between one or more groups and make limited use of additional network features, e.g., edges

induced by significant partial correlations. Ignoring the gene set architecture disregards rel-

evant network topological comparisons and can result in familiar n≪ p over-parameterized

test issues. In this dissertation we propose a method for performing one- and two-sample

hypothesis tests for (weighted) networks. We build on a measure of separation defined via

a local neighborhood metric. This node-centered additive metric exploits the network prop-

erties of nearby neighbors. The use of local neighborhoods seeks to lessen the effect of a

large number of (potentially) estimable parameters; biology or algorithms are commonly

used to further reduce the prospect of spurious biological associations. Where possible, we

avoid specifying dubious network probability models. In order to draw statistical inferences

we use a resampling approach. Our method allows for both an overall network test and a

post hoc examination of individual gene/node effects. We evaluate our approach using both

simulated data and microarray data obtained from diabetes and ovarian cancer studies.
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Chapter 1

Introduction

Networks are ubiquitous in today’s world. Whether one is talking about the connectedness

of today’s financial markets in an increasingly globalized economy or the schematic of a

modern microprocessor containing more than one billion transistors, how objects relate to

and interact with one another is a fundamental intellectual curiosity. With the dramatic rise

of the Internet tantalizing questions have emerged, such as, “How big is the World-Wide

Web?”The ‘small-world effect’has given rise to pop culture as demonstrated in the movie

Six Degrees of Separation (1993) and the Kevin Bacon game (any actor can be linked to

Mr. Bacon through no more than six connections, where two actors are connected if they

have appeared in the same movie). The Web has facilitated the social networking phenomena

facebook R⃝; an analogous realm to connect working professionals via Linkedin R⃝has emerged.

Google’s PageRankTMlink association algorithm has revolutionized information retrieval on

distributed computing systems. Network theory and applications intersect agent-based mod-

els and multi-agent systems.

A similar revolution is taking shape in the biological sciences. Microarray platforms and high-

throughput sequencers have given molecular biologists an unprecedented ability to study

genes, proteins, metabolites and other (sub)cellular systems. Perhaps, rating the invention

of these technologies alongside the invention of the light microscope for expanding our under-

1
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standing of nature and for improving medicine will be a task for future scientists. Biologists

are actively casting gene, protein, and cellular functions into a taxonomy of interdependent

parts and processes. Gene transcription/regulatory networks, protein-protein interaction

systems, metabolic networks, and phylogenetic trees are firmly placed in the biologist’s daily

vernacular. As we shall document later, the literature devoted to these topics is substantial.

Despite the tremendous intellectual interest (and investment) in networks the role of re-

peatability and predictability is paramount to the development of scientific theories. Unlike

mathematical and computer science network applications, biological networks may be cur-

rently viewed as an empirical abstraction of an unknown, partially known, or an underdeter-

mined process. Until systems biologists can axiomatize the discipline and model (sub)cellular

processes from physical or chemical first principles a certain amount of variability in these

network processes is expected. This uncertainty opens this fascinating world to statisticians.

Experiments are performed to gauge or establish relationships. Algorithms are developed to

infer, potentially complex, relationships. Given this empirical foundation in the construc-

tion and development of a network using uncertain data it seems natural to ask, “Do these

networks differ from one another?”An attempt to make this a more precise question and to

provide a partial answer to this question is the purpose of this dissertation.

1.1 Networks Are Everywhere

Without a need for strict formalism at this point let us consider a ‘network’, a ‘web’, and

a ‘net’as intuitively equal concepts. Rather than proliferate synonyms a brief word on ter-

minology is appropriate here. We consider the words ‘network’and ‘graph’interchangeable;

‘node’and ‘vertex’are also considered exchangeable and their definitions self-apparent. A

weighted graph attaches a numerical value to each edge; in directed graphs at least a portion

of the edges are directed, i.e., each edge consists of an initial and a terminal vertex. Precise

definitions, where necessary, will be provided throughout this dissertation.
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Due to the generality and applicability of the network concept a range of disciplines have

made advances in this field, including: mathematicians, sociologists, molecular biologists,

computer scientists, (bio)informaticians, chemists, and physicists. Lewis [4] contains a con-

cise (but assuredly biased and incomplete) outline of the development of networks over the

last several hundred years. Newman et al. [2] is a recent anthology of important network-

related papers published in the last 80 years. Caldarelli et al. [5], apart from a generic

treatment of networks, devotes considerable attention to weighted graphs. To illustrate the

broad scientific interest in networks we provide an approximate outline of two recent texts

devoted to networks by Bornholdt et al. [1] and Lewis [4]. Both texts include the obliga-

tory chapters devoted to the mathematical characterizations of network properties, random

graphs, scale-free and small-world networks, and epidemics. Other chapters in these texts

include,

• Bornholdt et al.: cells and genes as networks in nematode development and evolu-

tion, complex networks in genomics and proteomics, correlation profiles and motifs in

complex networks, theory of interacting neural networks, modeling food webs, traf-

fic networks, economic networks, local search in unstructured networks, accelerated

growth of networks, social percolators and self organized criticality, graph theory and

the evolution of autocatalytic networks,

• Lewis: emergence, synchrony, influence networks, vulnerability, netgain, and biology.

The first title places a more distinct emphasis on application areas whereas the second title

addresses abstractions of network-related concerns. Both emphasize the rich conceptual

topics that manifest on static or dynamic networks. Dynamic networks, broadly interpreted

as a network whose relations change over time, are not addressed in this dissertation.

Kolaczyk [3] is, to our knowledge, the first statistics text devoted solely to the treatment of

networks. Brandes et al. [40] provide a detailed overview of network analysis methods from

a computer science perspective. Due to the importance of social networks, both historically
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and theoretically, a separate section will address the necessary background material from

this field. A separate discussion of biological networks, given their dominant role in this

dissertation, is discussed in a subsequent section. The exciting area of lattices, which could

be viewed as a specialized/structured form of a graph, has been omitted from our discussion.

1.1.1 Physics

At first thought it may not be obvious as to how physicists have shaped our understanding

of networks. In fact, physicists have played a prominent role in, at a minimum, popularizing

networks via papers published in Nature and Science and documenting the expansive role of

scale-free networks [2]. Physicists have published an impressive number of network-related

publications in both Physical Review Letters and Physical Review E. Physicists were quick

to draw parallels between large (biological or -omic, Internet, etc.) networks and the kinetic

theory of gases. Methods for analyzing the properties and dynamics of large systems of

interacting particles via graphs is natural to the statistical physics domain, e.g., see [34].

Physicists have both tried to support biological models on networks, e.g., the evolutionary

game theory concept of cooperation [39], while suggesting caution against network topology

oversimplifications in the presence of complex biochemical processes [38]. Guido Caldarelli,

a statistical physicist, is very active in the network arena and is one, of several, to have

mentioned parallels between networks and fractals [5, 6]. Uri Alon, another Ph.D. physicist,

is an influential systems biologist who has drawn a substantial connection between biological

processes and electrical circuits and helped originate the concept of a network motif [66].

Viewing gene or protein systems as complex machines continues to be investigated. For

example, Motter et al. [37] explore the connection between weight and degree distributions

on the synchronizability of a weighted network of identical oscillators. Such basic models can

shape our view of (sub)cellular networks as simple biological machines (and the potential

for that machine to achieve an equilibrium state). Ben-Naim et al. [30], Mendes et al.

[31], and Fortunato et al. [32] are three edited collections that deal with complex networks
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largely from the perspective of physicists. Barrat et al. [9] examines dynamical processes on

complex networks.

1.1.2 Mathematics

Mathematicians, not unexpectedly, have been historically active in improving our theoretical

understanding of graphs and networks [87, 88, 89, 90, 91]. Graph theory can trace its roots

back to Euler and the seven bridges of Königsberg problem. The study of paths, path

lengths, random walks, and diffusion processes on networks is a recurring theme in graph

theory. Erdős-Rényi random graphs, a graph where the probability of an edge between any

two vertices is a fixed constant p, play an important conceptual role in our understanding of

graphs [88, 91]. Through the power of abstraction mathematicians can attempt to discern

why biological networks share similarities with but noticeable differences to internet, email,

and Web of Science R⃝citation networks. Chung et al.’s recent monograph [90] is largely

devoted to the exploration of graphs where the node degree distribution follows a power law

distribution, i.e., nk ∝ 1/kβ for some β > 1. The interplay between degree distributions

and small-world/preferential attachment models is examined. Two items from this text

that are germane to this dissertation are mentioned here. First, it was suggested that the

evolutionary tactic of duplicating biological function has given rise to networks whose degree

distributions differ from nonbiological networks. This will be illustrated later. By combining

a seed graph with a probabilistic duplicating mechanism they are able to produce a network

whose degree distribution mimics observed biological networks. Second, the text explores

the use of a hybrid graph model for small-world phenomena where a global graph provides

small-distance structure and a local graph reflects local connections. Both of these items

suggest the challenges in identifying a suitable model for an obvious network characteristic.

An interesting historical debate was also captured in the text. In 1955 H. A. Simon published

a Biometrika paper that stated that the preferential attachment model gives rise to the power

law distribution. B. B. Mandelbrot, the pioneer of fractals and an ardent supporter of self-
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similarity and scale-invariance in nature, disputed the claim via an exchange of a series of

articles circa 1960. This anecdote, apart from providing a historical curiosity, does suggest

caution in the face of prevailing scientific viewpoints/models. The nature of gene-gene and

protein-protein interactions should not be viewed as a ‘solved problem.’Mandelbrot continues

to posit that experimental power-law observations are suggestive of self-affine scaling in

nature [117].

1.1.3 Scale-Free, Small-World Models

The previous section made use of several terms that permeate the network literature. These

terms, perhaps contentiously or inappropriately, have also been used in the context of gene

and protein networks. Therefore, we supply working definitions for several concepts. Sim-

plistic models serve, at least, two useful purposes in understanding graphs [10]. First, they

provide a null model that allows for a comparison between features observed in actual graphs

versus features originating from a conceptual model. Second, prototype models can provide

insight into how complex network features form on the basis of prototype construction rules.

In the previous section the Erdős-Rényi random graph was defined. The power law graph

was defined via the distribution function for the degree of the nodes within a graph. The

power law graph is an important concept in network theory due to the fact that a host of

large empirical networks exhibit a power law distribution. (Power laws also proved useful to

Johannes Kepler and Sir Isaac Newton.) See Caldarelli [6] for a general overview. Koonin

et al. [17] is an edited collection specific to scale-free and power law graphs in genomics.

The skewed degree distribution of a power law graph could be interpreted in a biologically

meaningful context; but, one should view estimates of the model fit (i.e., the exponent)

cautiously [10]. Nodes with a large number of edges are often referred to as ‘hubs’, e.g.,

www.google.com is a hub in the WWW network, and possess a high degree of connectivity.

Hubs have been interpreted as exerting a key regulatory role in cellular processes, linked to

evolutionary timelines, and to play a role in the ‘robust-yet-fragile’nature of these networks
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under normal fluctuations and extreme stress or disruption [10]. In contrast to a portion of

this sentence, Wagner [73], in his analysis of the fully sequenced genomes of six maximally

diverse species, presented data suggesting that highly connected proteins are not distinguish-

ably older than other proteins. Nonetheless, biological networks do not necessarily adhere

to an ‘equality of nodes’principle; this lack of equality can help motivate a need for a more

informative weighted graph. Junker et al. [10] describe how biological networks tend to

exhibit a disassortative property, i.e., nodes with high degree tend to preferentially connect

with nodes of low degree. This is in contrast to observed assortative social networks where,

for example, people with many friends tend to be friends with people with many friends.

Both Goh et al. [71] and Maslov et al. [72] found that hubs in the yeast protein interaction

network tended not to interact with one another; this lack of interaction suggested a modular

network framework.

Three other terms that need clarification are the small-world concept, scale-free networks,

and the notion of preferential attachment. Apart from impacting the topology of a graph

these concepts bear direct relation on how objects relate to one another. Gene co-regulation,

the (thermo)dynamics of intracellular processes, and evolutionary pressures are examples of

biological interrelations that overlap these ideas. Details for these terms was obtained from

Newman et al. [2].

The idea of a ‘small world’arose early in the social sciences. The term refers to the ‘small’path

distance between any two nodes in the graph and was popularized via the experiments of

Stanley Milgram. Even for massive (biological, communication, social) empirical networks

this distance can be surprisingly small. The term is imprecise since the distance scales with

the number of vertices. Erdős-Rényi random graphs display the small-world phenomena.

The influential Watts-Strogatz model was devised to couple the small-world effect (a global

property) with the local clustering seen in social networks. In contrast to power law graphs

their strict use in biological applications is more limited. The small-world idea also loses its

dramatic impact in ultrasmall networks.
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The term ‘scale-free’is also imprecise. Caldarelli [6] (generously) defines a scale-free graph

as one with a power law degree distribution. Rather than adopt an unyielding mathematical

definition, the term ‘scale-free’is practically viewed in a broader manner. The highly influ-

ential Barabási-Albert model (BA) was proposed as a means to produce realistic scale-free

networks through the integration of a growth mechanism. Unlike networks with a static

number of nodes the BA model allows a network to grow in a dynamic manner from a small

seed network. But, new edges are not added via a fixed random or distance-based measure.

Rather, the BA model uses the concept of preferential attachment, conceptualized as the

rich get richer. In Darwinian terms, preferential attachment could be viewed as the fit get

fitter. Rather than add edges randomly, an edge at an existing node is established with a

new node at a rate proportional to its current degree. The growth of friendship networks,

the law of increasing returns in economics, and natural selection processes are governed,

at least in part, by preferential attachment. [10] recounts how preferential attachment has

been used to link specific metabolites to early evolutionary origins in metabolic networks.

A note of caution is warranted, however. Evidence of evolutionary preferential attachment

can be biased by the data acquisition process. Bader [74], citing similar experimental bias

concerns and employing a statistical model to determine biologically relevant protein-protein

interactions for Drosophila melanogaster, suggested that the resulting network’s degree dis-

tribution may be neither power-law nor scale-free. Bias in a social network can be evident

when considering that the minor works of eminent scientists can receive more attention in

the literature relative to the work (independent of its value) from lesser-known scientists.

Specific genes, proteins, families of genes, regulatory pathways, etc., can be intensively stud-

ied due to acknowledged import, expectant results, or to align effort with funding-agency

directives. Helms [12], in his recent text on computational cell biology, cautions that the BA

model should be viewed as a minimal model. Other models may suitably explain observed

phenomena; the fixed exponent is also a source of discrepancy. He mentions recent efforts

that have studied variants of the BA construction mechanism with cleaner mathematical

properties.
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One can also encounter self-similar and scale invariant networks. Self-similarity suggests

that a network is, at least, similar to a part of the network. For example, if one were

to bisect a graph of the Internet or the human protein interactome the resulting pieces

would appear similar to the original graph. Self-similarity also has close ties to fractals

and in governing branching processes. Scale invariance implies a more rigid mathematical

or physical interpretation; scale invariance is a very useful concept in (statistical) physics

(and to standardize random variables). This dissertation will not place an explicit focus on

self-similar or scale invariant networks.

1.1.4 Computer Science and Applications in Engineering

Computer scientists are in the process of generating a formidable literature in the field of

networks. With an emphasis on algorithms and applications, some computer scientists view

the world of networks as applied graph theory. Brandes et al. [40], in an excellent edited col-

lection intended as a primer for computer scientists, devote sections to elements and groups

in graphs followed by a section on networks. The section on elements contains chapters de-

tailing an array of centrality measures and related concepts. The section on groups discusses

local densities (e.g., cliques), connectivity topics (e.g., minimum cuts and flows), clustering,

role assignments (e.g., structural equivalence), and block models. These topics share consid-

erable overlap with the field of social network analysis. The final section deals with network

statistics (e.g., degree and distances), network comparisons, models, spectral analysis, and

network robustness and resilience. Cook et al. [41], in a more recent collection pertaining to

mining graph data, offers discussions of: graph matching, visualization tools, graph patterns

and generators, finding both frequent substructures and topologically frequent patterns in

graphs, kernel methods, kernels as link analysis measures, entity resolution in graphs, and

dense subgraph extraction. This partial list contains material applicable to biological net-

works. Several of these concepts, at least indirectly, appear in subsequent portions of this

dissertation.
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Graphs also play a vital role in engineering areas, especially communication theory. Kesidis

[132] makes use of Markov chains and queuing theory to model packet routing on internet

networks. Establishing efficient routes for variable-length packets, developing dynamic rout-

ing schemes that can respond to changes in the network, and using incentives in peer-to-peer

file sharing are some of the items addressed. Attaching costs to the edges of the network

can be important in establishing optimality results for routing protocols. Rosenberg et al.

[133] outline a development of graph separators for use in computer science applications such

as VLSI circuit layouts; quasi-isometric graph families are developed using ‘an equivalence

relation’to determine the technical indistinguishability of graph families via a dilation-based

form of a graph embedding. Set theoretic operations on a graph, e.g., deleting an edge or a

node, are an important consideration in communication (and epidemic) networks.

1.1.5 Trees

The analysis of trees has a rich history and an obvious tie to branching processes. Barthélemy

et al. [121] provide a detailed mathematical treatment of trees against a classification,

information retrieval, and mathematical psychology backdrop. The role of trees in biological

processes include, at a minimum, the following: evolution, filiation, bifurcation, branching,

and taxonomic processes. Understanding how the definition of a tree differs from the gene

and protein networks discussed in this dissertation is a relevant distinction. A paraphrased

form of equivalent definitions provided in [121] states that a tree is a connected graph with

no cycles, a graph where there is one-and-only-one path connecting any two vertices, and a

connected graph with the smallest possible number of edges. The text also documents the two

major distances used on trees - ultrametrics (defined in section 2.2) and centroid distances

(a distance between two vertices is determined through a fixed ‘center’c). The equivalence

between an ultrametric, a dendrogram, and an indexed hierarchy is a noteworthy result; a

contrast between an ultrametric and this dissertation’s proposed measure is forthcoming.

The text cites the development of compatibility or consensus measures for phylogenetic
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trees due to the variety of manners in which these trees are formed, e.g., immunology, DNA

hybridization, electrophoresis, and the sequencing of amino acids. Finally, the combinatorics

of trees induced by ‘non-metric’set operations, e.g., edge deletions and the induced tree

partitions, gave rise to Buneman’s theory which could, in turn, be used to induce an ordering

via subsetting on trees.

MacDonald [122] is another historical reference on trees in biological models. Its focus is on

food webs and branching biological processes (dendritic trees, lung airways, and arterial sys-

tems). Potential parallels to -omic networks include the following: predation is a directional

process in food webs, resource competition is a symmetric relation in food webs, and edge

weights are easily motivated (e.g., calorie/energy transfer in food webs, vessel diameters in

arterial systems). Horton’s law for branching ratios and the utility of power law models for

modeling branching ratios is given. Comparable to the literature regarding the use of differ-

ential equations in modeling protein interaction and signal transduction networks [12, 14],

the text captured the use of power law models in solving the rate equations in the Goodwin

oscillator model for metabolic networks. Power law approximations provide an easier as-

sessment of the sensitivity of equilibrium values; these approximations simplify investigating

the stability of the parameter estimates in Lotka-Volterra rate equation systems. Finally,

the suggestion to simulate tree behavior via a recursive application of transformation rules

has biological credibility and is a direct application of self-similarity principles. Despite a

specific application to trees, these topics are recounted here to illustrate the role complex

modeling plays in uncovering the structural dynamics of biological systems. Suggesting that

gene-gene, protein-protein, or gene-protein interactions could be governed by comparable

behavior, i.e., localized regulatory networks may exhibit tree-like structure, is a logical con-

jecture. MacDonald’s work was nicely reinforced by the more statistics-centric monograph

by Barndorff-Nielsen et al. [7].

Phylogenetics, a broad biological discipline itself, studies means to reconstruct evolutionary

relationships across species or strains using sequence alignment tools and morphological data

matrices. These evolutionary binary bifurcating relationships are usually presented with a
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tree. Husmeier [124] gives a brief introduction to statistical phylogenetics. Sequence similar-

ities gives rise to the notion of genetic distance; a distance that, at least indirectly, involves

phylogenetic time (e.g., mutation/nucleotide substitution rates). Several references that bear

relation to this dissertation include: Davis et al. [125] use nonparametric simulation-based

measures to detect linkage in pedigrees; Efron et al. [126] defend and suggest a refinement

to the established use of bootstrapping for phylogenetic trees; Aldous [128] reviews a portion

of the history of placing probability distributions on trees and some of the consequences for

tree balance and depth. Holmes [129] gives a readable discussion of the statistics involved in

estimating and validating phylogenetic trees (two notable items include the use of exponen-

tial models as a probability function and a recounting of nearest neighbor bootstrapping due

to a natural lack of sufficient statistics for trees). Holmes [130] focuses largely on the use of

bootstrapping in phylogenetic trees. Relative to the use of probability models on trees, she

states, “Choosing optimal trees in a [probability] model cannot, in general, be decomposed

into simpler problems.”She goes on to state that two estimates for phylogenetic trees, the

maximum likelihood tree and the parsimony tree, have been proven to be computationally

intractable.

Due to the more restrictive definition of a tree relative to a network, the overlay of a hierar-

chical structure (e.g., root vertices, directional evolutionary relationships), their inability to

explicitly accommodate commonly observed biological motifs (defined later), and an induced

tree depth that could imply increased complexity/conditional dependencies among vertices,

we have elected to not pursue trees further in this dissertation.

1.2 Social Networks

The study of social networks has a long and rich history. Studying social interrelations

can be dated to as early as the 1930’s. The scholarly journal Social Networks was first

published in 1978. Wasserman and Faust’s [43] eight hundred-plus page text on social
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networks, first published in 1994, is in its 17th printing as of 2008. Scott [44] appears to

be another widely recognized reference. Carrington et al. [45] is a collection overviewing

some of the more recent developments in the field. Just as biology exhibits a broad range of

complex mechanisms, social relations also demonstrate an astonishing amount of diversity.

Whereas systems biology is a relatively recent discipline, systems are intrinsic to social

network analysis (SNA). Our purpose here is to recap some of the key features in SNA that

pertain to biological networks; we also intend to draw some key methodological distinctions

between social and biological network analyses. In suggesting such a comparison a word of

caution is warranted. Social networks, just like any discipline, have created a technical lexicon

that can differ (markedly) from other fields. One should not assume that definitions have

been standardized. In some cases, a different discipline may offer a more concise discussion

of a specific topic, e.g., see [40], at the risk of translation concerns.

In contrast to many fields that analyze attribute data, e.g., physical measurements obtained

from a specimen, social network analysts are generally consumed with relational data. This

shift in focus is both conceptual and profound. One distinction between SNA and many phys-

ical sciences is that “Social science data are constituted through meanings, motives, defini-

tions and typifications”[44]. Scott goes on to say that, “Relational data . . . are the contacts,

ties and connections, the group attachments and meetings, which relate one agent to another

and so cannot be reduced to the properties of the individual agents themselves.”Relations

may or may not be symmetric or transitive. Given the abstract origins of a tie (edge),

weighted networks are not a predominant concern in SNA.

Rather than analyze a measurement obtained from a sample of (assumed-to-be-independent)

nodes, a sociologist is interested in the social interaction between the nodes. Regardless of

the social mechanism under study, this invites another critical distinction. What is the

sample? Collecting nodes for use in a relational study suggests sampling considerations that

differ from -omic networks based on biological specimens. SNA most often focuses on the

study of a single observed network. Sampling considerations most often revolve around the

addition of nodes. Longitudinal and time-varying networks are also interest, of course. In a
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biological specimen the network may be understood to be inherent to the specimen sample;

in SNA a sample is selected from a population to construct a single network. In general,

SNA seeks to understand the (hidden) structural organization of the network. With an

emphasis on the structural properties of a network, SNA often ignores labeling individual

nodes. Attribute data for a node, e.g., income or criminal gang affiliation, may be critical in

a SNA. Such data may be important in certain contexts, e.g., locating clusters in a graph.

1.2.1 Descriptives and Estimation

Descriptives

As with any form of observed data, researchers concoct measures that attempt to make

the data more meaningful. Arguably the most basic descriptive is the representation of

the graph (network, web, fabric). Sociograms, graphs, and matrices enjoy considerable

use in this regard. (But, one should be cautious before one applies matrix theory to such a

representation.) Unlike attribute data that can be summarized via a mean, median, standard

deviation, or percentiles, relational data give rise to an even broader range of interpretative

numerical measures. Apart from density, which is related to the global structure of a graph,

Scott presents these measures in two broad categories. The first category deals with the role

of an individual node in a network; the second category addresses the structural properties

of a collection of nodes [44]. Most texts pertaining to networks will provide a section on

numerical summaries. For example, see [6, 9, 4, 10, 40]. Caldarelli et al. [5], given its

emphasis on weighted graphs, suggests basic descriptive measures for weighted graphs. For

example, the strength of a node was defined using the sum of the weights at a given mode.

Zhang [13] offers over a dozen centrality measures in her text on protein interaction networks.

Density is defined as the number of observed edges in a (sub)graph divided by the total

number of possible edges. Even generalizing this simple construct to weighted networks

may not prove straightforward or have unintended consequences. More importantly, density
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depends on the number of nodes; this complicates comparing networks of different sizes.

The concept of centrality is key to many SNA. Centrality seeks to quantify a node’s ‘star

power’or ‘popularity’. A centrality measure can be used to identify hubs or authorities in

a single graph. A variety of definitions for centrality are possible, on both local and global

scales. The explicit mention of scale suggests the presence of intragraph distances. The use

of scale gives rise to ideas like betweenness (e.g., an intermediary, gatekeeper, or broker),

eccentricity (longest geodesic incident to a point), and centralization (i.e., overall cohesion

or integration of a graph, e.g., compactness). Measures for subgraphs have also proliferated.

Concepts include: cliques (maximal complete subgraphs), components (maximal connected

subgraphs), circles, cores, and cycles (e.g., hangers-on and -off, bridgers). Cliques can suggest

n-clans, n-plexes, and other abstractions.

A final word of caution is appropriate when discussing numerical summaries in SNA. Given

the rich context that may be involved in defining a tie (e.g., friendship, power brokers in

politics), numerical measures can be tailored in the hopes of providing a more meaningful

measure of the (complex) phenomena under study. Many analyses employ several measures

(e.g., degree, diameter, clustering coefficient, assortative coefficient, edge-betweenness, mod-

ularity) in the analysis of a single graph. Such measures may (or may not) provide keen

insights on the underlying network ‘model’. Complex interdependencies between these mea-

sures may be present if a class of measures are used in a given SNA. Some measures may not

make sense for a directed network; flow-based measures may only appeal to directed graphs.

Non-unique phenomenon-dependent measures can be an irritating affront to statisticians

hoping for a data-reducing sufficient statistic.

Estimation

Estimating various descriptive measures are generally straightforward. Some measures, e.g.,

those based on internodal distances, can be computationally intensive. It is instructive to

remember that several of these measures are calculated for each node; this allows one to
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produce an empirical density estimate for a specific measure based on a single graph. One

of the drawbacks to these ‘ad hoc’measures is that they shed limited insight into the nature

of stochastic networks. Exponential random graph models (ERGMs), sometimes referred to

as p∗ models in SNA, are one of the most exciting theoretical frameworks introduced for

modeling stochastic networks. In 2007, the journal Social Networks had a special section

devoted to recent advances in ERGMs. Due to their intrinsic statistical nature, ERGMs

allow for more proper model-building activities, e.g., proposing, estimating, and evaluating

a model.

Kolaczyk, published in early 2009, contains a digestible introduction to ERGMs [3]. Unless

noted otherwise, the remainder of the citations in this section are attributable to Kolaczyk.

An arbitrary discrete random vector X belongs to an exponential family if its probability

mass function can be expressed in the form

Pθ(X = x) = exp{θTg(x)− ψ(θ)},

where θ is a p×1 real-valued vector of parameters, g(·) is a p-dimensional function of x, and

ψ(θ) is a normalization term.

To transition to a stochastic graph one can define an adjacency matrix, Y = (yij), where yij

denotes a binary random variable indicating the presence or absence of an edge between nodes

i and j. Y is symmetric here. An ERGM is an exponential family model that specifies the

joint distribution of the elements in Y. More precisely, for a particular realization y = (yij),

Pθ(Y = y) = (
1

κ
) exp{

∑
H

θHgH(y)},

where each H is a configuration defined to be a possible set of edges among a subset of the

vertices in the graph; gH(y) =
∏

yij∈H yij is 1 if configuration H occurs in y and 0 otherwise;

a nonzero value for θH means that the Yij are dependent for all pairs of vertices {i, j} ∈ H,

conditional upon the rest of the graph; and κ = κ(θ) is a normalization constant. The sum

is taken over all possible configurations H.
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Similar to the proliferation of descriptive measures, ‘interesting’configurations can be de-

fined by the researcher or based on subgraphs such as triangles, stars, and other cliques.

The model also implies a certain (in)dependency structure among the elements in Y. In

order to arrive at a proper joint distribution certain relational conditions must be satisfied,

as formalized in the Hammersley-Clifford theorem. It is possible to express an Erdős-Rényi

random graph as an ERGM. The point is made here since concerns about the dimension-

ality (and perhaps the identifiability) of θH typically necessitates the need for simplifying

constraints or ‘homogeneity’assumptions. In an Erdős-Rényi random graph θH reduces to a

1-dimensional constant θ that is assumed to hold across the entire graph. It is understood

that such a simplifying assumption limits the flexibility of the ERGM. As such, more elab-

orate (partial and/or conditional) independence forms, e.g., Markov random graphs, have

been proposed. In shifting to a Markov graph, one can characterize its ERGM form with a

parameterization for θH that consists of edges, k-stars, and triangles.

ERGMs do possess some desirable properties. First, they allow one to incorporate node

attribute data into the model. With the advent of modern computers, numerical maximum

likelihood estimates are now achievable with Markov chain monte carlo methods. Large sam-

ple asymptotic procedures can be used to provide a (confidence interval) testing procedure

for the various model parameters. But, due to a clear violation of the independence as-

sumption among the nodes of a graph these tests should be used cautiously. ERGMs can be

extended to directional, bipartite, and multivariate networks. Software tools for simulating

ERGMs have also been made recently available [151].

Despite the flexibility and theoretical elegance that ERGMs offer, the transition to more

complex models starts to reveal the limitations of ERGMs. To prevent overparameterization

concerns, simplified Markov random graphs may fit quite poorly to actual data. A variety

of modifications to θH , such as alternating k-stars, its geometrically weighted degree count

extension, or alternating sums of k-triangles, have been proposed to circumvent ill-fitting

models. Calculating maximum likelihood estimates for θH is non-trivial; in part, this is due

to the size of the graph space. Furthermore, Kolaczyk states that an appropriate asymptotic
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theory for confidence intervals and testing, taking into account the complex interdependen-

cies among the nodes of a graph, has yet to be established. Not surprisingly, fitting ERGMs

to large networks can prove computationally problematic.

One of the most debilitating concerns regarding ERGMs involves the notion of model de-

generacy. In modeling data, selecting a good model may not be very informative if the

class of models to select from is not sufficiently rich. Goodness-of-fit testing is an important

consideration in validating ERGMs. Model degeneracy is defined to refer to a probability

distribution that places a large amount of probability mass on a few outcomes. A number

of simple-but-popular Markov random graphs have been shown to be degenerate. It has

been commonly noted that ERGMs can place most of their mass on the empty graph, the

complete graph, or a mixture of the two, depending on the value of θ. Model degeneracy

can also lead to computational or MCMC convergence difficulties in fitting a model. The

parameter space for θ can undergo abrupt transitions. Apart from estimation or convergence

concerns, this limits the utility of an ERGM null model and one’s ability to sample from the

model’s probability distribution. Wasserman et al. [55] detail recent work that attempts to

provide a more ‘flexible’parameterization to model realistic data. But, they still acknowledge

the inherent shortcomings with regards to degeneracy and convergence concerns. Extending

broader k-star or k-triangle dependency relationships to accommodate a weighted network,

where the sign and magnitude of the weight may govern the dependency, was not addressed.

Finally, ERGMs do not inherently assume that the nodes in the graph are aligned. ERGMs

are defined via a class of (in)dependence relations and its suitable parameterization. These

models are more akin to characterizing a graph via a set of motifs, to be discussed later,

rather than an emphasis on an individual node or a functional cluster of nodes.

Barrat et al. [9] document that ERGMs have deep connections with the basic principles of

equilibrium statistical physics. See also Blossey [70]. Barrat et al. state that ERGMs are

equivalent to the statistical mechanics of Boltzmann and Gibbs for networks. Combining the

equilibrium assumption, and its relation to microscopic dynamics in the context of physical

systems, with the constraints imposed by the statistical observables to maximize the entropy
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may, in part, help shed light on the difficulties encountered in using ERGMs to model

modular or inhomogeneous networks. It seems plausible to question the utility of ERGMs

when confronted with a nontrivial mixture distribution. For example, if P (X = x) = π1f1+

π2f2+(1−π1−π2)f3, where f2 = π∗
1g1+(1−π∗

1)g2, is it reasonable to expect that a convenient

parameterization exists that will provide adequate goodness-of-fit? Can a global ERGM

mimic a collection of interdependent-yet-functionally different simple machines? ERGMs,

despite their mathematical appeal, seem to favor analytical tractability while admitting

their practical limitations. Both curved and stratified exponential family random graph

models have also been proposed. Others have also attempted to place network models in a

familiar theoretical setting. Wiuf et al. [48] offered a full-likelihood approach to estimate

the parameters of network growth models defined via recursion relations. As an aside,

these authors were critical of the use of node-level fixed-degree rewiring schemes for use in

hypothesis testing. In addition to some of the network generating mechanisms discussed in

previous sections and here, the topic of network models will be revisited in a later section.

Sets of Networks

Despite the usual emphasis on a single network in SNA, methods have been developed to

aide in the analysis of a family or set of networks. Faust et al. [53] use a combination of

p∗ models and correspondence analysis to compare structural similarities across networks

from diverse settings. Given that a model is fit for each network, the basic idea assumes

that comparable networks share a common parameterization as measured by the ability to

correctly predict edge formations.

Banks and Carley [50] provide an explicit foundation for the analysis of labeled unweighted

loop-free graphs. They focus their attention on estimating and performing hypothesis tests

regarding the central network and the dispersion of the data via a natural metric to induce

an interpretable family of probability measures. Let Gm denote the set of all graphs on

m distinct vertices, G1 and G2 be the adjacency matrices of g1, g2 ∈ Gm, and define the
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symmetric network difference by

d(g1, g2) =
1

2
tr[(G1 −G2)

2],

where tr[•] denotes the trace of a matrix. Please note that this metric is the familiar Ham-

ming (or Kemeny) metric used in information theory. Using this metric they mimic an earlier

approach of C. Mallows for setting probabilities on a set of permutations. This approach

yields the probability measure H(g∗, σ), where H is defined by

P(g∗,σ)[g] = c(σ)e−σd(g,g∗)

for all g ∈ Gm. g∗ ∈ Gm is the central network (or mode of the distribution) and σ is a

dispersion parameter. Using a standard likelihood approach, one can obtain a maximum

likelihood estimate for g∗ by

ĝ∗ = argming∗∈Gm

n∑
i=1

d(gi, g
∗),

for any value of σ.
∑
d(gi, g

∗) is called the remoteness function and a solution to this

equation is called a median. For the metric they selected, the median is found by majority

rule; i.e., ĝ∗ contains those edges that are in more than 50% of the observed networks.

Apart from providing a convenient means to summarize a set of networks via a statistic,

this approach allows for hypothesis tests and confidence intervals (using either a parametric

or nonparametric bootstrap) to be formed for customary location and scale parameters.

Although natural extensions to the Hamming metric were proposed to address directed and

looped graphs, a solution for weighted graphs was not proposed. Sanil et al. [51] extend the

work of Banks and Carley to networks whose edge set evolves over time. Banks et al. [52]

continued the effort while entertaining ties to information-theoretic principles and addressing

the complex matter of trees.

1.2.2 Clustering and Block Models

Just as centrality seeks to study the structure or position of a node in a graph, SNA eas-

ily transitions to interest in the structure of a family of nodes. Clustering methods, to
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include traditional statistical procedures such as complete linkage cluster analysis and mul-

tidimensional scaling, have been applied in SNA. When talking about collections of nodes

or communities in graphs the idea of equivalence can often serve as a starting point. Equiv-

alence characterizes the structural form in two portions of a graph. Block models have been

introduced to partition a network according to a specific criteria, such as an equivalence

measure. In structural equivalence two equivalent nodes have the same connection pattern

to the same neighbors; in regular equivalence two equivalent nodes exhibit the same or sim-

ilar connection patterns across (distinct) collections of nodes. Regular equivalence can be

analogous to motifs, to be discussed later, and other distinct partitions of a graph. The

measure proposed in this dissertation suggests a form of an intergraph equivalence measure.

Equivalence can be used to suggest a node’s social interchangeability. Communities can be

hierarchical.

Caldarelli [6] gives a discussion of two generic approaches for identifying communities in

graphs. The first approach is largely topological. Here, agglomerative (bottom-up) concepts

such as structural equivalence and correlation coefficients can apply; divisive (top-down)

measures such as edge-betweenness can also be used. Examining the eigenvalues and spectral

properties of the graph matrix is another technique. Finally, he illustrates the benefit of

thematic divisions, divisions that allow one to distinguish the role of various nodes or employ

node attribute or a priori knowledge. Brandes et al. [40], in addition to outlining clustering

approaches incorporating flow-based measures, also contains a discussion of block models.

The role of inexact comparisons in evaluating estimated block models to a known structure

suggests the use of goodness-of-fit indices. Brandes et al. devotes several pages to the use

of p∗ models in block models.

Wasserman et al. [43] has a chapter devoted to stochastic block models and goodness-of-fit

indices. They state that these models take one of two forms. In the first (nonstatistical) case,

an estimated block model is compared to a fixed block model. Agreement or consensus on

measures to compare these models is lacking. For example, the use of correlation coefficients

to compare pure dichotomous block models has been criticized. In general, they claim that
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statistical theory for these indices is unavailable. Nonparametric randomization or permuta-

tion methods, also referred to as combinatorial data analysis, can be used to permute nodes

across the various blocks in the overall graph. Goodness-of-fit indices (tantamount to com-

paring edge matches/mismatches, constructing local densities across blocks, or generating

χ2-like statistics) can then be applied. These indices share similarities to sequence alignment

scores and receiver operating characteristic curves discussed later in this dissertation. Where

does the target block model come from? This is difficult to answer without an appeal to

a known standard or an assumed hypothesis or theoretical model (e.g., cohesive subgroups,

transitivity, and center-periphery). Moreover, random permutations of interacting nodes

invites a discussion regarding exchangeability in a graph. We are confronted with the same

model challenge in forming an inferential strategy for a one-sample network comparison.

But, Wasserman et al. repeatedly endorse the use of permutation-based procedures. See

also [49]. In the second case some form of a stochastic block model is assumed. (Such

models immediately invite a comparison to analysis of variance methods. Within-block and

block-to-block variance is present.) Unfortunately, the shift to a stochastic model implies

a knowledge of the stochastic form that one wishes to compare against. In contrast to bi-

ological systems, here is where a social network analyst may be able to make a plausible

simplifying assumption. The use of Markov models, parametric p∗ models, or ERGMs are

still subject to the concerns highlighted in the previous section. Appropriate definitions can

mitigate some concerns. For example, two actors are defined to be stochastically equivalent

if we can interchange their parameters. Wasserman et al. did not discuss block models for

weighted networks. In summary, we do not intend to propose novel measures for identifying

blocks or clusters in this dissertation; rather, we acknowledge the importance that subgraphs

and structural partitions play in the analysis of a graph.
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1.3 Biological Networks

Microarray technologies have allowed biologists to collect data on an unprecedented scale.

Parallel to the increased collection of physical microarray measurements has been the devel-

opment of computer algorithms to process and model these data. Apart from well-established

venues such as Science and Nature Genetics, there has been an explosion of scientific lit-

erature related to the -omic revolution as evidenced by the journals Bioinformatics, BMC

Bioinformatics, and Molecular Systems Biology. Due to the impossibility of surveying this

vast field our review here will be brief; our review is largely drawn from books or edited col-

lections published in the last three years. Moreover, the creation of biomolecular networks is

proliferating. Some of the various forms of networks under intensive study include: transcrip-

tion factor-gene, gene-gene, signal transduction, protein-protein, metabolic, protein-RNA,

and protein residue molecular networks. An impressive host of online databases, e.g., the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [148] and Gene Ontology (GO) [149],

have been created to host these data. Increasingly, systems biologists are touting that a real

understanding of cellular systems requires that we network the networks [13, 14, 20, 21].

This could invite a blend of directed/undirected, weighted/unweighted, bipartite and non-

k-partite graphs.

Book-length discussions of biological networks are now commonplace. Junker et al. [10]

outline various forms of biological networks and offer insight into their analysis. Emmert-

Streib et al. [11] survey some of the statistical and machine-learning methods that have

been developed for microarray-based networks. Chen et al. [14], comparable to Junker et

al., is a more recent survey of biomolecular networks. Zhang [13] is a timely work detailing

the computational aspects of protein interaction networks. Stolovitsky et al. [15] recount

the opportunities and challenges in reverse engineering biological networks. Ross et al. [16]

reflect the modeling of biological networks from a chemist’s perspective. Koonin et al. [17]

is a collection largely devoted to scale-free and power law networks in genomic biology.

Raychaudhuri [18], and the references therein, emphasizes the need and use for text mining
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techniques in genomics research. See also [19].

As highlighted earlier in this section, the network of networks is expanding. One class of

networks that we have purposely chosen to omit is an extensive treatment of metabolic

networks. Metabolic networks, which involve metabolites and the reactants and products of

enzymatic reactions, have been extensively studied both theoretically and experimentally [10,

12]. Theoretical stoichiometric models (flux balance analysis) can study the flux distributions

of an integrated cellular network. These networks are inherently directional since they model

sequential processes. Viewing these networks as bipartite graphs, a graph consisting of two

disjoint sets of vertices where edges join the two vertex sets together, is not uncommon.

Unlike the study of protein-protein and gene-gene networks, with a current emphasis on

inferring interrelations, metabolic networks also invite different biological questions. For

example, and comparable to epidemic networks, with metabolic networks one can explore

the use of minimal cut sets to investigate and characterize structural cellular failure modes

[12]. Reactions (and even reaction directions) can vary as a function of temperature and pH.

In general, we have not placed an emphasis on metabolic networks due to their additional

constraints relative to gene and protein networks.

1.3.1 Motifs

Unlike the mind-boggling complexity of actual biological mechanisms, a motif is a simple

abstraction tailor-made for networks. Generically, a network motif is a particular subgraph

representing patterns of local interconnections between elements of a network. Motifs are,

on occasion, assumed to have functional properties and have been described as the basic

building blocks and design patterns of complex networks. The definition of a motif is not

unique [62]. Elementary discussions of these building blocks can be found in systems biology

references [10, 66, 12] and computer science texts [40, 41], to name a few. For example,

Helms [12] contains a basic discussion of motifs with an emphasis on feed-forward loops,

single-input-multiple-output systems, and densely overlapping regions (e.g., multiple-input-
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4 Biological Motifs

(a) (b) (c) (d)

Figure 1.1: Motifs that have been found to be relevant in biological networks: (a) feed-
forward loop, (b) bifan, (c) single-input, and (d) multi-input [57].

multiple-output systems). Figure 1.1 illustrates some basic biological motifs as found in [57].

This figure is important since it suggests that counting triangles and other patterns in a

family of motifs is a means of characterizing and reflecting differences between networks,

motifs bear resemblance to the definitions of parameters used in exponential random graph

models, highlights the importance of specific neighbors and interrelations, and parallels elec-

trical circuits and control systems. Schwöbbermeyer [57] offers a concise presentation of

biological motifs. He states that motifs typically apply to directed/undirected/mixed, con-

nected, simple, and loop-free graphs. The concept of motif frequency has been introduced

as a means to compare large graphs. See also [62]. The frequency of a motif is the number

of different matches of this motif in the overall network. As such, they align more with com-

puter science-centric graph matching methods rather than a comparison of nonoverlapping

cellular automata/machinery. Motifs were originally defined using patterns that occurred at

a significantly higher rate relative to randomized networks; a reliance on a random (or other

suitable) null model is deemed critical in the derivation and comparison of motif frequencies.
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Another difficulty of the frequency concept is that multiple interpretations are possible. At a

minimum, one has to determine whether or not edges and nodes can be shared when counting

across a family of connected motifs. Once a definition is assumed, a Z-score can be computed

using a probability estimate of the motif frequency in the observed network relative to that

of a randomized network. For a family of motifs these Z-scores can be combined into a

significance profile using a normalized vector of Z-scores. To simplify the size of the pattern

space examined (Alon [66] catalogs the 13 unique 3-node patterns for bidirectional graphs,

illustrates the 199 4-node directed patterns, and warns of over 9,000 five-node directed pat-

terns), graphlets have been introduced to simplify the comparisons. Graphlets are small

subgraphs that are typically limited to three to five nodes. Schwöbbermeyer provides a com-

parison of the motif significance profiles between the gene regulatory networks of E. coli and

S. cerevisiae. A significance profile comparison can accommodate graphs with an unequal

number of nodes and edges; but, its utility for comparing ‘small’graphs is questionable.

Once a level of comfort with simple motifs has been established, Schwöbbermeyer claims

that the great majority of motifs overlap and are embedded in larger structures. Apart from

further damaging the credibility of a random network null model, this statement implies that

a network comparison should compare both small blocks and larger (perhaps functionally

motivated) clusters. He also cites several studies related to the use of motifs for network

comparisons. In one, the authors found that a geometric random graph was a more suitable

generating model relative to a scale-free random model in modeling the graphlet frequencies

of the S. cerevisiae and D. melanogaster protein interaction networks. In another study

based on an empirical motif profile for the D. melanogaster protein interaction network,

he chronicles the use of motif frequencies as a classifier for discriminating various artificial

network generating models. Based on the presence of various real-world pressures in network

formation, Schwöbbermeyer makes the troublesome comment, “A single network generation

mechanism may not be sufficient to resemble the structure of these networks.”Finally, he

briefly discusses the convergent evolution of motifs in gene-regulatory networks and the

evolutionary conservation of motifs in a protein interaction network.
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Alon [66], one of the original proponents of motifs in biological networks, authored a text

on a biological circuit approach towards systems biology. His definition of a motif involves

a statistical determination of a feature/pattern relative to an ensemble of random networks;

this approach has been linked with evolutionary selective pressures. In contrast to the quali-

tative treatment by Schwöbbermeyer [57], Alon’s approach has a more distinct mathematical

emphasis on cellular control systems. Unlike a pure graph theorist’s simplification of an edge

in a graph, Alon posits that repression or activation functions can assign a sign to an edge;

weights can be combined to an edge via a model such as a Hill function or a Michaelis-

Menten equation. Comparable to a computer scientist’s view of an -omic network as a

computational dynamic system, his elemental treatment of positive/negative autoregulatory

systems (a.k.a., a motif), coherent and incoherent feed-forward loops, etc., is of established

value in the understanding of biological networks.

In a descriptive measure sense, Saramäki et al. [36] outline two descriptive statistics for motifs

on weighted graphs - an intensity statistic that is the geometric mean of the edge weights,

and a coherence measure that is a ratio of the geometric and arithmetic weight means.

These measures were applied to, in part, directed metabolic networks. Such statistics are

relevant since weighted motifs are viewed as an extension to the set of topologically equivalent

subgraphs of a network. Regarding the biological interpretations of motifs, Rodŕıguez-Caso

et al. [22] suggest that an explanation for the overabundance of certain motifs in real graphs

relative to random graphs is still under debate. Some have suggested that motifs relate with

functional traits whereas others claim that motifs are tied to the rules of duplication and

divergence governing genome evolution.

Part of the theoretical appeal of motifs is that one can use them to decompose (or partition)

a graph into a family of isomorphic sub-graphs. This can be attractive in the analysis of very

large unlabeled networks where computational concerns abound. In our opinion, the more

compelling case to be made for motifs is in their role as basic reactions or machines (or control

mechanisms) in cellular processes. In contrast to social network analysts, counting various

motifs for unlabeled nodes in a network may only hold interest for a biologist if it allows
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him/her to characterize the complexity of the machine. We have the distinct impression that

motifs, despite their varying definitions, are conceptual tools firmly ensconced in the systems

biology landscape. Despite an inherent topological presence in a graph and their assumed

or assigned functional interpretations, their use or involvement in network comparisons is

complicated. If we do not assume that the nodes are labeled then we are confronted with

a complex matching/counting problem. Adding either directions, to suggest energy transfer

or sequential process order, or weights, to capture activation or repression factors, to the

edges must be addressable. If we add labels to the nodes then the generality of a motif

could be secondary to the specific function of the particular subgraph defined by the nodes.

The ambiguous definition of a motif also creates complexity. Do we decompose a graph into

motifs using a library of known patterns (nonisomorphic subgraphs or sub-cellular machines),

determine a family of patterns/combinatorial combinations using the graph itself, allow or

restrict the reuse of nodes/edges in the graph decomposition/motif counting exercise, allow

the motifs/patterns to intersect versus forming a unique partition of a graph, account for

interacting or dynamic motifs, accommodate graphs with a small number of nodes, etc.?

Given this range of questions it seems apparent that a minimal consideration of motifs in

any network comparison is necessary; but, to suggest their overuse could produce biologically

meaningless, ambiguous, contradictory, and computationally burdensome results. A careful

study of biological motifs could form the basis for another dissertation.

1.3.2 Protein Interaction Networks

Protein interaction networks are fundamental to the study of (systems) biology. Proteins

acts as catalysts, transmit signals, transport and store molecules, and are generally involved

in controlling and mediating the vast majority of biological processes in a living cell. Apart

from being involved in the structural assembly of a cell’s components, proteins are involved

in transcription, splicing, translation, and the organization of enzymes. See Börnke [59] for

a short overview of protein interaction networks. Proteins are three-dimensional structures
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comprised of amino acids; this structure determines a protein’s function. Proteins almost

always fulfill their complex role entirely through interactions with other molecules such as

low molecular weight compounds, lipids, nucleic acids, or other proteins. These interactions

can involve associations with partner proteins or necessitate the formation of large protein

complexes. Protein interactions can be both static and transient.

(Protein-)protein interaction networks, commonly abbreviated as (P)PI networks, are a

useful platform for developing a network inferential strategy. Protein networks are usu-

ally assumed to consist solely of nodes and edges; directionality is more readily applica-

ble to gene networks. A tremendous amount of protein information is available in online

databases. Chen et al. [14] provide a list of 16 databases that provide experimental (e.g.,

high-throughput) PI data; 8 databases devoted to ‘known’domain-domain interactions is

also cited. Large PPI networks have been characterized as small-world scale-free networks,

see references in [13]. Not surprisingly, Chen et al. [14] cite recent literature that call into

question these descriptive forms.

Various experimental techniques have been developed to study protein systems. One- and

two-dimensional gel electrophoresis, affinity chromatography, yeast two-hybrid screening

(Y2H), gene coexpression, synthetic lethality, protein arrays, and mass spectroscopy are

some of the platforms used to study pairwise protein interactions [12]. Unfortunately, differ-

ent methods can yield different and even contradictory results. Both Helms [12] and Zhang

[13] state that the error rate of Y2H experiments is on the order of fifty percent. Many

concede that high-throughput experiments are known to have non-negligible false negative

and false positive rates [13, 12, 59]. Y2H, mass spectrometry, and protein arrays are among

the most commonplace tools for investigating PPI networks.

The sheer number of possible interactions one can survey presents a challenge. For yeast,

Saccharomyces cerevisiae, there are approximately six thousand known proteins and roughly

eighteen million possible interactions. Experiments routinely assay hundreds-to-thousands

of proteins and suggest a comparable number of interactions. Helms [12] states that one
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hundred thousand is a plausible upper bound for the number of interactions.

Apart from the reliability of PPI data, Zhang [13] documents two other concerns in the com-

putational analysis of PPI networks. A protein can have multiple functions and participate

in various functional groups. And, two proteins with different functions frequently interact

together; such interactions can complicate the topological complexity (and assumptions for

a probability model) of PPI networks. She describes in detail some of the generic compu-

tational strategies used to predict protein interactions/function. Broadly, these approaches

include: genome-scale (e.g., interspecies comparisons, gene fusion, phylogenetic profiles),

sequence-based, structure-based (docking, three-dimensional architecture, interface proper-

ties), learning-based (machine learning tools, it is possible here to incorporate a range of

biological covariates), network topology-based (topological analysis, distance-based modu-

larity, graph-theoretic modularity), and integrating domain knowledge from an ontology tool

such as GO.

1.3.3 Gene Networks

Unlike protein interaction networks, gene networks exhibit more variety in their form and

function. Proteins are the workhorses in cellular functioning. The role of genes, while no

less crucial, is more complicated due to their role as the initial substrate in the creation of

proteins. At a minimum, transcription factors (a binding factor that inhibits or promotes

transcription), post-transcriptional processing, DNA chromatin and epigenetic modifications,

and translation steps are involved in the control and conversion of gene products into a

functional protein.

Potapov [58] is a brief synopsis of signal transduction and gene regulatory networks. Reg-

ulatory networks, which can consist of genes, proteins, and other biocomplexes, govern the

rate at which genes are expressed in time, space, and magnitude. Since only a small portion

of the genome is translated into proteins, determining the regulatory role of unexpressed

DNA is an interesting problem relative to the evolution and existence of organisms. Potapov
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claims that new phenotypes are more likely the result of new relations between existing

genes/proteins rather than the introduction of novel bioagents.

Regulatory networks, given their focus on the interrelationships between genes and their

products in the cell, can subsume portions of protein, gene interaction, signal transduction,

metabolic, etc., networks. Transcription factor networks, which capture the binding domains

that actively promote or repress the transcribing of genes into mRNA, are a simpler example

of a gene network. Relative to metabolic and PPI networks in select organisms, our under-

standing of regulatory networks is less comprehensive. Potapov [58] documents several of

the online databases that serve as repositories for portions of these data.

The topology of regulatory networks can serve as a structural foundation for representing

these cellular systems; superimposing quantitative information is made possible by addi-

tional modeling and simulation. Similar to PPI networks, in select analyses these networks

have been labeled as scale-free and small-world [58]. These networks can be weighted, (par-

tially) directed, in some abstractions bipartite, and exhibit more complex properties such as

anisotropy or auto-regulation. In signal transduction networks one can have nodes respond

to stimuli such as steroid hormones, stress, and UV radiation. Transcription factor-gene net-

works may possess a hierarchical modular structure in bacteria, yeast, and mammals [58].

In the analysis of differential regulation in gene sets, where the gene set may be defined

per regulatory function or documented in a domain database, the network structure may be

ambiguous defined.

Helms [12] states that ‘guilt by association’methods are popular for inferring gene networks;

a view also applied to PPIs [13]. Genes with similar expression patterns are assumed to be

functionally related. This assumption is amenable to both cluster and principal components

analyses. Helms goes on to claim that these techniques may only work when the networks are

modular and contain a small number of interactions; their use on heavily connected graphs

may provide ambiguous results. The apparent complexity and diversity of gene networks

will not be fully addressed in this dissertation. Rather, these networks serve as a reminder
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of the (potential) complexities that an inferential strategy must consider in the construction

of a viable comparative procedure.

1.4 Modeling Biological Networks

Modeling biological networks is a nontrivial process. Stolovitzky et al. [15], in the preface

to their edited collection, state that the painstaking advances made in reverse engineering

the p53, NF-κB, and β-catenin signaling networks, the E. coli transcriptional regulatory

network, and the many known metabolic routes are the result of a, “Truly heroic and mostly

experimental tour de force.”Given the possibility of complex spatio-temporal dynamics on a

set of interconnecting processes, the assumption of a straightforward likelihood-based model

stretches the imagination with regards to plausibility. In addition to level changes during

the cell cycle, cellular processes have to respond to external stimuli. Reflecting the rate of

these changes in a graph is challenging; some of this information may be able to be coded

in a graph via a weighting scheme. Jeong et al. [65], in the introduction to their paper on

predicting putative RNA-interacting residues in proteins, recount some of the approaches

taken in the study of such a complex problem. These include analyses of specific RNA

recognition modes in proteins, the binding properties of the protein-RNA interface, the

chemistry of both specific and non-sequence specific binding, both atomic and molecular

properties with secondary structural effect in hydrogen bonding, and the energetic features

in protein-RNA recognition. They considered RNA-protein interactions formed by hydrogen

bonding, stacking, electrostatic, hydrophobic, and van der Waals forces. Protein residue

networks (or their variants) are not a specific focus here; we merely wish to reinforce that

the complexity of interaction mechanisms seems ever present from atomic-to-macromolecular

scales and both inside and outside the cell’s nucleus. Defining an edge in a PPI graph can be

a function of physiochemical interface properties, sequence evolution and homolog behavior,

energetic considerations, etc.
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1.4.1 Of Mathematics and Machines

Viewing biology as an (electro)mechanical (or electrochemical) process is not new. Blossey

[70] offers a discussion of computational biology from a statistical mechanics perspective.

Ross et al. [16] highlight the use of macroscopic chemical kinetics in the construction of

both a Turing machine (a universal computer) and a parallel computer via a bistable reac-

tion system. Despite the conceptual excitement this may hold for chemical engineers and

computer scientists, using control systems as a basis for cellular systems also offers advan-

tages for biologists. For example, oscillations are known to play a role in the transcriptional

control of genetic networks [16].

Helms [12], in his introductory text, offers basic insights into the use of ordinary and partial

differential equations for modeling kinetic processes. He states that differential equations

are a starting point for the quantitative modeling of gene regulatory networks. Their use

allows one to study: the magnitudes of signal output/duration as a function of the kinetic

properties of the pathway components, the coupling between signal amplification and speed,

designs to insure that pathways are safely ‘off’in the absence of stimulation and ‘on’following

receptor activation, how different antagonists can stimulate a sustained/transient response

in the same pathway with dramatically different consequences. He provides examples of

their use in modeling protein synthesis/degradation rates and protein (de)phosphorylation

mechanisms. In comparison with components in a nonlinear control system, he cites their

use in modeling toggle switches (mutual inhibition), one-way switches (positive feedback),

buzzers, sniffers, and negative feedback systems (oscillators and homeostasis). These theo-

retical biology tools have yielded insights into the cell cycle and small molecular systems,

e.g., bacterial photosynthesis. Not surprisingly, such approaches are more difficult to ap-

ply to the specification and study of large networks. Such models, apart from their use as

biological machines, may be able to be incorporated into weighted graphs.

Blossey et al. [64], after citing some of the limitations imposed by modeling biological

networks via differential equations, suggest a computer science approach (machine) toward
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modeling gene networks. Process calculi have recently been introduced as a programming

language environment for concurrent and interactive systems such as mobile communication

networks. These abstract systems are comprised of functional modules with simple rules

governing self-behavior (e.g., rate of duplication or decay for biomolecular matter) and their

interaction with other modules. Blossey et al. demonstrate the use of a π-calculus for sim-

ulating an artificial repressilator and several combinatorial gene circuits. Modules represent

biochemical components; functions are defined to mimic cellular processes. They suggest the

use of this calculus in hypothesis testing but acknowledge the difficulty imposed by the need

to compare system output. Parameter sensitivity concerns, both in terms of quantitative

strengths or qualitative relationships, are duly noted. However, a mechanism for performing

hypothesis testing was not explicitly suggested.

Cardelli [63], in a more expansive and thought-provoking paper prior to [64], suggests that

we view cells as machines in the service of materials, energy, and information processing. He

postulates the existence of three abstract machines: the protein machine (biochemical net-

works whose fundamental flavor is fast synchronous binary interactions), the gene machine

(regulatory networks whose fundamental flavor is slow asynchronous stochastic broadcast),

and the membrane machine (transport networks whose fundamental flavor is fluid-in-fluid

architecture, membranes with embedded active elements, and fusion and fission of com-

partments preserving bitonality). He is forthright in recognizing the associated difficulties.

Viewing a gene machine as a continuous or discrete process, both in time and concentration

levels, is a major question. He suggests that qualitative models, e.g., random and proba-

bilistic Boolean networks, asynchronous automata, and network motifs, can provide more

insight than quantitative models, models whose parameters are hard to come by and of ques-

tionable criticality. After stating that all formal notations known to computing have been

used to represent aspects of biological systems, he makes a resounding endorsement of the

recent advances made in applying process calculi to biological systems. The Ambient (which

extends the π-calculus to include compartments and complexes) and Brane (which embeds

the two-dimensional operations and biological invariants of membrane networks) Calculi are



Phillip D. Yates Chapter 1. Introduction 35

two platforms that suggest promise in this area. Whether or not these calculi could advance

the likelihood tradition with non-identical functional building blocks is an intriguing idea.

1.4.2 Correlation Networks

It is conceivable to consider correlation, coexpression, or coregulation networks as a dis-

tinct form of biological network. Our emphasis here is on the use of a numerical (or other

model-driven) form to model these network systems; this approach also makes the case for

a weighted network self-evident. Unlike strict distributional forms, e.g., the multivariate

normal distribution, correlation(s) can be defined in a broader manner. Caldarelli et al. [5]

provide some simple examples of how correlations can be coupled to a network’s topology.

One example, based on the current hub-model for airport traffic, suggested that associa-

tions can form on the basis of a current topology. I.e., correlations, apart from a higher

moment effect, can affect a network’s architecture. Correlation networks tend to be highly

clustered; investigations into the (dis)assortative properties of correlation networks may be

inappropriate [56].

Steinhauser et al. [60] offer a solid introduction to -omic correlation networks. These net-

works, which are generally undirected due to an inability to derive a flow, sequence order,

or functional role on the basis of a correlation, do not establish causality. They also lack

an ability to separate primary and secondary effects, especially if these effects are time-

ordered. From a statistician’s perspective, the authors’ material is elementary. But, they

argue (and demonstrate with several biological examples) that ‘correlation’models provide a

more comprehensive understanding of cellular systems relative to qualitative (edge/no edge)

or cell inventory (each individual node) quantitative models. As multiplex array and high-

throughput sequencing technologies mature these networks could become more prevalent.

The authors repeatedly stress the importance of data, experimental purpose and design,

data collection, data quality, data processing, data analysis, and interpretation in making

best use of these networks. Microarray normalization techniques, the impact of small sam-
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ples on parameter identifiability, the variance introduced through imprecise measurement

systems, etc., are brought out of the shadows. The classical Pearson product-moment corre-

lation coefficient is not the only correlation measure employed. The use of robust measures

such as Spearman’s ρ, Kendall’s τ , mutual information, and partial correlations are also

used to form these networks. The use of partial correlations, intended to mitigate some of

the effects observed with pairwise correlations, is discussed later in this dissertation. Testing

individual correlations is (almost) inherent to forming correlation networks. Tests, especially

in the case of a Pearson product-moment correlation or a Fisher’s z-transformation, for indi-

vidual correlations are well documented in the classical literature. Translating a correlation

matrix into a network requires a filter to convert real-valued numbers into (weighted) edges.

This is generally accomplished via p-value thresholds, comparing the absolute magnitude

of the correlation coefficient to a fixed value, or a combination of these two comparisons.

The discretization process, either through the threshold choice or p-value influences such as

sample size, is a known source of network misspecification. Steinhauser et al. [60] state that,

due to the dependency of the estimated network on the correlation matrix, the “Analysis of

correlation networks is just in its infancy.”In analyzing these networks one typically utilizes

one of two methods. The first approach considers the entire network topology. In the second

approach one chooses one or more ‘guide genes’from which to originate the analysis. The

authors endorse selecting guide genes on the basis of biological knowledge, such as compo-

nents of a signaling or biosynthetic pathway, components of a protein complex, or known

subcellular localization or regulatory factors. They state that this kind of analysis is “Very

similar to other function prediction machine learning techniques such as k-nearest neighbors

or correlation based clustering.”

1.4.3 Inferring Network Structure or Topology

Inferring network topology for biological networks has been extensively studied. The com-

plexity is considerable when one considers the array of biological mechanisms under study,
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the number of organisms studied, and the number of algorithms available for (mis)use.

Gutenkunst et al. [29] assert that complex biological models appear to be universally sloppy,

i.e., the observed variation can be quite sensitive to different parameter combinations (a

trait also exhibited in nonlinear multiparameter models) and that biologists place more em-

phasis on structure relative to parameter estimates. Unlike traditional parameter-centric

testing procedures, this interest may induce one to separate edge (structural) distinctions

from weight (parameter) distinctions. For another example, Ross et al. [16] indirectly cite,

in their 2006 text, over 125 references devoted to the study of the molecular mechanism of

cell cycle control in Saccharomyces cerevisiae. The resulting model for budding yeast has

nearly 20 variables with that many kinetic equations and approximately 50 parameters (rate

coefficients, binding constants, thresholds, relative efficiencies). They go on to state that a

fair number of assumptions are necessary to accommodate the absence of substantiating ex-

perimental evidence and the need for approximations to simplify the kinetic equations. The

text, with a noticeable slant toward the chemical kinetics of metabolic networks, goes on to

detail a method based on pulse perturbations, offers a theory for the statistical construc-

tion of reaction mechanisms (a variety of statistical algorithms are applied to time course

experiments), and the use of genetic algorithms for the determination of complex reaction

mechanisms. At the risk of sounding droll, algorithms abound in the literature.

Computational and Statistical Learning

When trying to survey the computational, machine or statistical learning, or other computer-

intensive approaches to modeling biological networks, one quickly realizes the impossibility

of the task. Equation-wielding theoreticians pen articles that fill methodology journals; ex-

perimentalists embed a variety of models and methods in their ‘bench-centric’publications;

and computational experts (e.g., bioinformaticians) fill in any intervening gaps. Incorpo-

rating data from multiple domains (gene/protein/metabolite, physiochemical covariates, or

various databases) further complicates the computational landscape. The intent here is to
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provide a judicious sample of the existing literature.

Chen et al. [14] display a variety of techniques in their text on biomolecular networks.

While distinctly emphasizing differential equations for gene networks, probabilistic models

for protein networks, and optimization methods (i.e., integer and (non)linear programming

algorithms) throughout, they also present graph-theoretical, combinatorial optimization, and

matrix factorization/decomposition methods. They recount the use of association prob-

abilistic and maximum likelihood estimation methods in inferring binary protein interac-

tions. Unfortunately, convenient probability assumptions, e.g., domain-domain interactions

are independent or conditioning the ability to interact on another interaction, can limit

the predictive accuracy of these methods. [14] cites a study that was able to improve the

statistical accuracy of protein function prediction by incorporating information beyond the

adjacent neighbor(s) in the network. Wei et al. [178] use a local discrete Markov random

field approach for identifying genes/networks related to a phenotype. Extending beyond the

immediate neighbor(s) will be explored in this dissertation.

Zhang [13], in a chapter devoted to statistical/machine learning methods, highlights the

integration of Markov random fields and domain-based belief propagation databases, kernel-

based methods (e.g., support vector machines), and a common-neighbor-based Bayesian

method for protein function prediction. Jeong et al. [65] use a weighted-profile neural

network approach to infer RNA-residue interactions in proteins. Husmeier [68] models gene

regulatory networks using a Bayesian network approach; the expectation is to form a model

that is an intermediary to small-scale coupled differential equation (bio)chemistry models

and computationally inexpensive large-scale clustering models. In the same context, Rangel

et al. [69] employ state-space models (linear dynamical systems). Saul et al. [179] explore

the use of ERGMs in modeling biological network structure. As expected, some will question

the utility of certain approaches. For example, Ross et al. [16], in their review of Bayesian

networks for determining complex kinetic reactions, state that, “There is no rational basis,

as yet, for connecting a Bayesian network with a chemical, biological, or genetic reaction

mechanism: the equivalents of the concepts of temporal dynamics of reaction mechanisms,
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of rate coefficients, and of reversibility of elementary reactions are missing from Bayesian

networks.”

Emmert-Streib et al. [11], in an edited collection of 14 chapters devoted to the analysis of mi-

croarray data from a network-based approach, contains a formidable display of methods and

algorithms. Methods (or method extensions) include: Gaussian graphical models, (dynami-

cal) Bayesian networks, probabilistic Boolean networks, an application of threshold gradient

descent regularization, a LASSO-based EM algorithm, genetic algorithms, structural equa-

tions, generalized least squares, a generalized T 2 test statistic, a group SCAD penalization

procedure, B-splines, random forests, entropy maximization methods, a delayed stochastic

simulation algorithm, a recursive v-structure location algorithm, an average-cost-per-stage

approach, etc. Such a proliferation of tools presents a challenge for molecular biologists (some

of whom may readily admit their computational inexperience). Which of these methods are

useful? For in silico, in vitro, or in vivo experiments? Does a particular model routinely

underfit or overfit networks? If so, does this shed light on meaningful biological phenomena

or destine the method to published obscurity?

Discovery via Discoverers

As mentioned earlier, Raychaudhuri [18], and the extensive references therein, emphasizes the

need and use for text mining techniques in genomics research. In addition to the challenge

of tracking the (voluminous) scientific literature for a single gene, the author makes the

compelling case that mining the available literature is necessary to put experimental data into

a meaningful biological context, a shortcoming of purely numerical approaches for analyzing

these data. He explores methods to mine the literature to propose gene networks and to

confirm protein interactions suggested by experimental data. The extent to which such tools

actually shape the ontology databases, e.g., Gene Ontology and KEGG, is unknown to this

author. The measures used to compare documents are broadly related to sequence alignment

procedures and other similarity measures.
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Raychaudhury [18] mentions the gene annotation process in GO and emphasizes the im-

portance of the “traceable author statement.”Other high quality annotations are obtained

from direct experimental data. Much less reliable are “inferred from sequence similarity”or

“inferred from reviewed computational analysis.”Even less reliable are the “inferred from

electronic annotation”annotations that have been transferred from electronic databases or

other electronic searches and have not been reviewed by any curator. He goes on to state

that KEGG deals with gene functions from over 100 organisms and seeks to provide a uni-

fied resource for structured information about genes, protein-protein interactions networks,

molecular pathways, and chemical intermediates. The PATHWAYS database, in part, con-

tains manually compiled networks of functional significance. Text mining tools offer yet an

additional source of variation in determining nodes and edges in inferring network structure.

1.4.4 Validating Models

Surveying the panoply of methods used to validate network models is a daunting task. For

every published algorithm or modeling approach that seeks to infer a protein interaction or

suggest a novel transcription factor-gene interaction, some form of validation is possible. A

validation approach suggests that a comparison of two networks takes place. The amount of

rigor and vigor used in this process can vary; some acknowledge the difficulty of the problem

[68, 69]. Kahlem et al. [27] detail three approaches to the ‘experimental validation’of a

model. One method would introduce a perturbation that is experimentally testable, another

challenges the model with a previously unused set of measurements (e.g., training/validation

data sets), and the third approaches relies on reconstructing a correct system using in silico

or in vitro synthetic system data. The DREAM initiative, which held its 4-th conference

in late 2009, is dedicated to the Dialogue for Reverse Engineering Assessment and Methods

[15] and openly tackles the question of validating network models. Husmeier [68] even sug-

gests that some modeling/validation efforts, although well-intentioned, can lead to erroneous

conclusions. While it is understood that false positive rates for inferring interactions can be
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high, Reddy et al. [82] cite false positive rates in excess of 50% for widely used algorithms

predicting transcription factor binding sites. Pinpointing the source of the error can prove

difficult. Husmeier made reference to false positives that are indirectly the result of sequence

information and not of an actual biological interaction. Huang et al. [83] cite false positive

rates of 25 to 45% for yeast, worm, and fly protein interaction data. They also cite overall

false-negative rates in the range of 75 to 90%; roughly half of the rate is attributable to

statistical undersampling and 55 to 85% of the false-negative rate is due to proteins that

were systematically lost from the assays.

For purely deterministic models, such as differential equations, comparing experimentally

obtained time course expression profiles with simulation data is common [66]. Some com-

parisons may not even be formally validated or tested, especially for relative comparisons.

[71, 72, 57] merely graph topological properties across multiple species. If a network’s de-

gree distribution can be approximated by a power-law function, one might argue biological

parallels from that simple observation (especially if a clustering coefficient supports a small-

world model). Perkins [28], in his differential equation study of the gap gene developmental

network for Drosophila melanogaster, found the use of data-driven model validation proce-

dures problematic. His efforts at using cross-validation and other resampling schemes found

that the training and test errors were highly correlated. He attributed this, in part, to the

correlations induced by the use of an array platform and how the data was processed (e.g.,

image alignment, background subtraction, and spatial averaging).

Computational analysts/biologists can evaluate a method’s efficacy with both simulated and

real biological data. In the first case an inferred network based on a fixed model is compared

to the known network; in the second (and closely related) case one can compare estimated

relationships/interactions with a ‘gold standard’extracted from a reputable online database.

Chen et al. [14] provide two examples, each using a different algorithm, in the analysis of

E. coli and Arabidopsis thaliana gene regulatory networks. Since biological meaning resides

in the details, gene lists that document correct hits/misses and potential novel interactions

often accompany these analyses. These lists can provide a source of much discussion and
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(dis)comfort for biologists.

Comparisons to a known network naturally gives rise to true positive, false positive, etc., sen-

sitivity, and specificity concerns. Similar to microarray studies, nonoverlapping/intersection

comparisons implicitly involve the benefit of the proposed discoveries. False positives may

be more tolerable in the presence of an overwhelming true positive rate. If the algorithm

incorporates an ordered quantity, e.g., a threshold or tuning parameter, one can generate

receiver operator characteristic (ROC) curves. Husmeier [68] used receiver operator charac-

teristic (ROC) curves to gauge the extent of spurious gene interactions via a pure simulation

approach for a Bayesian network algorithm. In addition to the use of ROC curves, [65] gives

other measures of prediction performance (e.g., total accuracy, accuracy, sensitivity, speci-

ficity, and Matthews correlation coefficient) in their neural network approach to inferring

RNA-residue interactions in proteins. These measures appear to be common in Boolean net-

work comparisons. Probabilistic networks, where binary interactions can be modeled across

an ensemble of random networks, can give rise to observed difference-divided-by-expected

summary measures [14]. At the initial DREAM conference, ROC and precision-recall (PRC)

curves, where precision is related to false positives and recall is related to false negatives,

appear to have been the method-of-choice for validating network models [26]. In addition to

comparing to a known ‘gold standard’, Stolovitzky et al. [26] advocate the use of blinding. If

and when possible, blinding the computational investigator to the actual network can prove

especially useful in in silico reverse engineering efforts.

In validating models a score function is often employed. Chen et al. [14], in a section on the

use of singular value decompositions for reconstructing gene regulatory networks, suggested

E0 =
n∑

i=1

n∑
j=1

I∥JT
ij − JR

ij∥ > δ

to compare an estimated network with a known network. I is 1 if ∥JT
ij − JR

ij∥ > δ and

0 otherwise. δ is a small error tolerance related to the noise level of the system. JT
ij and

JR
ij are the interaction strengths from gene j to gene i in the true and inferred networks,
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respectively. Similar to E0, they also suggested the use of both

E1 =
n∑

i=1

n∑
j=1

I∥JT
ij − JR

ij∥ , and

E2 =
n∑

i=1

n∑
j=1

I(JT
ij − JR

ij )
2,

where E1 and E2 use the same notation as E0. In suggesting an objective function for

use in a mathematical programming approach, variants of E0 were used. For example, to

help impose sparsity on the inferred network a tunable λ|Jij| term might be added to a

weighted E0; another example minimized the total absolute error between predicted and

experimental expression values. When multiple domains (e.g., protein interaction, protein

complex, domain fusion) are combined to infer interactions, Chen et al. provided an example

of an overall composite sore that was an arithmetic weighted combination of the individual

scores, e.g., Stotal = ω1S1 + ω2S2 + ω3S3.

Network validation can also suggest similarity between nodes and groups of nodes in the

same graph. (This is comparable to block models in SNA.) For example, Steuer et al. [56],

in their presentation of global properties, define a matching index for comparing two vertices

in the same graph. Such intragraph measures resemble clustering coefficients or inter-cluster

‘significant’separation measures on a single graph; such approaches have been used in the

modular analyses of PPI networks[13]. Cho et al. [183], in outlining a method to identify

differential co-expression in gene sets, use a form of Renyi relative entropy to measure the

similarity between gene expression matrices.

The use of bootstrapping does not appear to be widespread in validating network models.

We conjecture that this may, in part, be due to the distinction between methods that analyze

raw data, e.g., microarray measurements, versus methods that manipulate graphs (obtained

from an online repository). Fixed network comparisons also allow one to avoid the tedium

(or intellectual audacity) of defining a probability model for the target network. Wiuf et

al. [48] employ parametric bootstrapping in their full-likelihood approach to the analysis of

network growth models. Zhang [13] suggested the use of a leave-one-out method to gener-
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ate specificities and sensitivities in a Markov random field model for protein annotations.

Rangel et al. [69], in their use of state space models, did suggest the use of bootstrapping to

locate reliable gene-gene interactions; individual node effects were also examined via boot-

strap confidence intervals. Li [23] is another example which makes use of bootstrapping,

this time for a Gaussian graphical model approach. Toh et al. [170] use bootstrap sam-

ples to repeatedly produce estimates of a partial correlation network; the reliability of an

edge was calculated using the percentage of times the edge was present across all of the

network estimates. Emmert-Streib et al. [25] combine a permutation-based procedure with

a graph-edit distance measure, a graph matching approach discussed in the next section,

for comparing disease pathways. (Incidentally, this paper also assumed that the nodes were

aligned and labeled. The pathways were not weighted.) Xiong [24], in a structural equation

modeling approach for genetic networks, provides an algorithm for identifying differentially

regulated networks. The method involves identifying model parameters for a network, uses

a permutation procedure to test for the largest element-wise difference in a matrix of param-

eter estimates, and suggests the use of matrix differences and various matrix norms (e.g.,

L1, L∞, L2, and Euclidean norms) in comparing networks. These topics bear a direct relation

on the methods developed in this dissertation.

1.5 Comparing Networks

Unlike real-valued objects, e.g., a population mean, comparing nontransient networks is

nontrivial. If we view a cellular network as an electrical machine, how can we compare two

machines? (This is analogous to comparing an iPhone with an iPad - both are effectively

computers with comparable components/functions but with vastly different intended uses.

The comparison is made apparent by design.) Unlike classification or prediction tools, what

is the appropriate residual variance or misclassification rate to minimize? Comparable to

the iPhone/iPad comparison, is there a straightforward loss function that is independent of

a priori context? For the biophysicist, how does he assess the quality of a deterministic or
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stochastic differential equation? Resorting to simplicity, such as drawing a picture of the in-

ferred graphs under comparison, does not offer a robust solution. It is broadly acknowledged

that visual representations or pictures of graphs can be misleading. Helms [12] offers some

basic guidelines for visualizing biomolecular networks: the graph should contain a minimal

number of edge crossings, the graph should emphasize any symmetries that are present, and

the vertices should be evenly spaced. Cook et al. [41] review three popular approaches for

drawing graphs, namely, the force-directed, the hierarchical, and the topology-shape-metrics

approach. Unless a visual comparison between two graphs is stark, these approaches do

little to uniquely quantify the (probabilistic) differences between (large, complex) graphs. If

one views each node in a graph as a subspace of a high-dimensional space, the assumption

adopted here, then visualizing a graph in the plane is a clear misrepresentation of the data.

This assumption will motivate our use of a set/neighborhood in defining network separation;

it also limits the use of fractal/scale-invariance comparisons found in [6].

One of the challenges in comparing biological networks is the tremendous amount of context

associated with, or superimposed on, a network. For example, [22], in their human tran-

scription factor network study, define a self-interaction as an interaction between proteins of

the same type, i.e., homo-oligomerization, regardless of the number of monomers involved

in the interaction. They go on to observe that 17.8 percent of the proteins in this network

have self-interactions and claim this to be a high level. A contrast of the correlation pro-

files for the network, both with and without the self-interactions, was tied to the biological

constraints of the phylogeny of transcription factors. They state, “From a structural point

of view, the over-abundance of self-interactions is associated with a majority group of 55%

of basic helix-loop-helix (bHLH) and leucine zippers (bZip), a 17.5% of Zn fingers, and a

22.5% corresponding to a more heterogeneous group, the beta-scaffold factor with minor

groove contact.”This quote suggests the ease with which biologists can impose structural/

functional similarities onto a network on the basis of observed clustering/a modular architec-

ture. How best to integrate this type of information into a vertex/edge/weight abstraction

can be unclear. Moreover, others could then be tempted to propose and use the structural
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or relational properties of gene sequences or proteins to (fail to) differentiate networks under

study.

1.5.1 Identifying H0

In order to compare networks one must give consideration to the mechanism or environment

that results in a network’s formation. Unlike the traditional-yet-defensible “collection of in-

dependent and identically distributed normal random variables”assumption applicable to an

astonishing array of scientific problems, network generating models is a compelling research

topic in its own right. In contrast to the normal (Gaussian) distribution, whose theoretical

origins appeal to empiricists but whose utility as an error distribution resides in its ability

to reflect natural phenomena, man’s role in defining network models is apparent. Again,

mathematicians, computer scientists, physicists, etc., offer unique perspectives on assigning

form to nature’s behavior.

Even producing a ‘random’graph, a mathematical abstraction with no duplicate links, iso-

lated nodes, loops, or multiple components, can prove challenging. Lewis [4] captures two

such approaches, one by Gilbert and another by Erdős-Rényi. One begins with a fully con-

nected graph and then randomly removes links until the desired link density is obtained; the

other inserts links between randomly chosen node pairs until the desired number of links is

achieved. Since both methods can produce graphs with disconnected components, he pro-

vides an anchored generative algorithm that sacrifices a bit of randomness for a connected

graph. The Barabási-Albert (BA) model dynamically grows a network contingent on an

existing node’s degree distribution, i.e., via preferential attachment. The BA model has

been extended to incorporate fitness measures, edge growth mechanisms, and aging effects

(e.g., diminishing social ties), to name a few [6]. The Watts-Strogatz small-world model, a

graph with a high level of local clustering and a short path length, is most often illustrated

by rewiring together a few random nodes in a 2-regular circular graph, a graph where each

node is connected to its four immediate neighbors, two on each side, on the circle. Transi-
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tioning from a nonrandom regular graph to a ‘slightly’random small-world graph has been

linked to the presence of phase transitions (e.g., Ising effect) and the ability for a network to

synchronize [4]. ERGMs, under a fixed parameterization, can use various insertion/deletion

schemes coupled with acceptance/rejection sampling techniques to generate a family of net-

works drawn from a given distribution. Generating networks that follow a predefined set

of topological features, e.g., a specific degree or path length sequence, can be achieved in a

similar computational manner. Caldarelli [6] cites network models that employ copying or

duplication mechanisms (e.g., web page creation, evolutionary conserved sequences), fitness

measures (e.g., beauty, available traffic capacity), or have a basis in optimization/economic

procedures (e.g., the Kleiber relation between body mass and metabolic rate, cost func-

tions, transport mechanisms). Correlation networks, as discussed earlier, are defined using a

(non)parametric measure that is thresholded. This approach assumes an additional layer of

‘data processing’to produce a network. Brandes et al. [40] also contains a useful discussion

of network models.

The focus on network models here is central to the discussion of network comparisons. In fact,

Steuer et al. [56] state that, “The most crucial and probably most widely underestimated

aspect of complex network analysis is the statistical testing of network properties.”They claim

that the most difficult aspect of complex network analysis is the choice of an appropriate

null model or null hypothesis. In most applications, the numerical indices computed for a

graph are (or should be) associated with biological meaning or interpretation. The ability

of these indices to discriminate between compelling biological phenomena is critical to their

utility. Steuer et al. [56], in their discussion of null generating models, recap the unfortunate

selection of random graphs in performing this critical task. Emmert-Streib et al. [25] provide

a specific example of this in their comparative analysis of disease pathways. In [25] an

ensemble of random networks with the same number of nodes and the same mean number of

edges served as the null model in their comparative analysis. Comparing a characterization

of a scale-free small-world graph against an Erdős-Rényi random graph null model does

not provide a meaningful test of a protein interaction network. One may as well reject the
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null hypothesis in advance of any actual calculations. To circumvent such a comparison,

one may assume that some trait of the network, e.g., the degree distribution, serves as a

suitable comparative measure. Unfortunately, this is an arbitrary choice; extending the

choice to include features such as motifs, path lengths, etc., to generate an ensemble of

surrogate null networks that are useful abstractions of complex biological processes is far

from straightforward. Steuer et al. detail how the construction of metabolic and correlation

networks intrinsically differ from that of random networks.

1.5.2 Isomorphisms and Deformations

Computer scientists, as practitioners of applied graph theory, have a deep interest in compar-

ing graphs. Comparing graphs on the basis of structural features has applications in pattern

recognition and computer vision systems, CAD/CAM tools, and molecular matching prob-

lems, to name a few. Brandes et al. [40] and Cook et al. [41] offer an excellent survey of an

area that has been under development for more than thirty years. Computer scientists typi-

cally divide the graph comparison problem into two areas - exact graph matching and graph

similarity. In exact graph matching the interest is on establishing the structural equality

between two graphs. Mathematicians term two structurally identical graphs, G1 and G2, as

isomorphic. Isomorphic graphs share the same number of vertices, edges, degree distribu-

tions, connected components, centrality indices, spectra, etc. To date, no one has been able

to give sufficient conditions that would allow one to determine if two graphs are isomorphic

in polynomial time, i.e., the complexity status of the problem is unknown [40]. In contrast,

the subgraph isomorphism problem is known to be NP -complete. Given the highly restric-

tive (and of limited practical utility) definition for isomorphic graphs the notion of graph

similarity, or graph matching, has been developed. The importance of graph similarity is its

ability to deal with errors or distortions in the network data. Three broad strategies have

been developed to tackle this problem: identify the maximal common subgraph between G1

and G2, a comparison which uses a combined difference of path lengths based on all pairs
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of vertices, and the notion of an edit distance. The edit distance, which bears resemblance

to the measure outlined in this dissertation, was first developed for use in string matching.

The idea is to use basic graphs operations, node/edge insertions/deletions/substitutions, to

transform G1 into G2. The number of edits required to complete the transformation is di-

rectly related to the similarity between two graphs. These operations could also involve edit

costs, e.g., the researcher may wish to penalize node insertions more than edge deletions.

The earlier discussion on the use of network motifs to compare graphs via significance profiles

is directly related to the problem of graph matching.

Bollobás et al. [93], in a decidedly more mathematical exposition, discuss strategies for com-

paring inexact (random) graphs. They also discuss motif-like partitions and edit distance;

they stated that these approaches were suited to examining ‘local’properties. They also sug-

gest the use of metrics based on cut operations. Cut operations partition a graph and can

allude to ‘global’properties. But, they are quick to emphasize the difference between sparse

and dense graphs. The distinction is important since one of the key tools in the analysis of

dense general graphs is Szemerédi’s Lemma and the accompanying embedding or counting

lemmas. They reference several recent advances that have established the equivalence, in

a Cauchy sequence sense, of specific subgraph and cut metrics for dense random graphs.

For sparse graphs, a characteristic commonly assumed for biological networks and for which

there is no satisfactory counting lemma, they propose a colored neighborhood metric in an

attempt to capture both local and global graph properties. Their discussion appeared to be

confined to binary, and not weighted, graphs and did not involve anything more than L1

or Hausdorff distances. Although not rigorously pursued in this dissertation, these findings

seem to suggest that a ‘local’metric is more easily motivated in (very) sparse graphs with

little loss of information on dense graphs.

In contrast to the view adopted in this dissertation, graph matching is typically limited to

unlabeled graphs. Emphasizing the structural similarities of graphs presents a more inter-

pretative and complex problem for computer scientists; but, to dismiss a gene’s or protein’s

identity is questionable from a practical standpoint. Consider two stick-figure-persons drawn
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by a child as networks. Erasing a head (node) in one figure and a hand in the other results in

two graphs that match. The biological implications are far different. An inferential strategy

for comparing labeled graphs is a more analytically tractable problem; but, the ability to

align nodes in a labeled graph was not assumed to trivialize computational matters. Drug

investigators are interested in the effect of a compound on (targeted portions of) a biolog-

ical network; unintended effects are also of interest if exhibited in non-targeted portions

of a larger network. If phenotypic differences between two genetic networks are observed,

efforts will most likely immediately shift to isolating the specific aspects contributing to the

observed differences and their biological relevance.

1.5.3 Topological Parameters

Comparing networks on the basis of pure topological considerations is difficult. Apart from

knowing which topological features adequately describe or determine the architecture of a

graph, one can not overlook scaling aspects. For example, mathematicians continue to study

the existence and emergence of a giant component, a connected component whose number of

vertices is proportional to the total number of vertices in a given graph, in both random and

power-law graphs [92, 90, 91]. Giant components have an intuitive connection to clustering

in a given graph. Even for Erdős-Rényi random graphs the (potential) presence of a giant

component depends on a complex interaction between the probability parameter p and the

number of vertices in the graph. This impacts the ability to partition a graph into a disjoint

union of trees, the existence of various cycles or loops in a graph, and how ‘small’components

interact with ‘large’components both in number and degree of connectivity [90]. It can be

possible to induce a phase transition in a graph, i.e., cause a giant component to emerge,

just by adding a few edges to a graph near a phase boundary. Extending these concerns to

weighted (directed) graphs is almost certain to invite even more complexities. A measure of

separation that is not intrinsically tied to, or scales independently of, the number of nodes

has obvious merits.
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Table 1.1: Power law exponents for biological and nonbiological networks [90].

Biological networks exponent β
Yeast protein-protein net 1.6, 1.7
E. Coli metabolic net 1.7, 2.2
Yeast gene expression net 1.4 - 1.7
Gene functional interaction 1.6

Nonbiological networks
Internet graph 2.2 (indegree), 2.6 (outdegree)
Phone call graph 2.1 - 2.3
Collaboration graph 2.4
Hollywood graph 2.3

Even a comparison of the degree distribution is subject to statistical considerations. Similar

to traditional goodness-of-fit tests, overlaying distributional qq-plots is common. For exam-

ple, Maslov et al. [72] separately plot both in-degree and out-degree distributions for the

human, yeast, and E. coli transcription regulatory networks. A visual assessment of these

plots suggested differences between the species only for the in-degree distributions. Stumpf

et al. [61], in their examination of protein interaction and metabolic networks for five species

(D. melanogaster, C. elegans, S. cerevisiae, H. pylori, and E. coli), found that both the log-

normal and stretched exponential distributions served as better statistical models for the

degree distribution of these two networks relative to the other distributions fit. In addition

to these two distributions, the Poisson, exponential, gamma, and three forms of scale-free

distributions were fit to these same data and compared with log-likelihood scores, via an

Akaike weighting scheme, and using Kolmogorov-Smirnoff and Anderson-Darling goodness-

of-fit tests. While admitting the limitations of these data, these authors call into question

the wide-spread preference for scale-free models. In order to calculate maximum likelihood

estimates under the various models these authors assumed that the nodes in the graph were

independent observations; this (convenient) assumption seems to belie the definition of a

network. Table 1.1 compares the power law exponents for various networks [90]. Apart

from the variability in these estimates, does this information expand our scientific under-
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standing of these complex systems in a meaningful manner? To conclude our examination

of degree distribution comparisons we recap an interesting discussion of the potential origins

of power-law functions found in Caldarelli [6]. Caldarelli demonstrates how power-laws can

arise from diffusion limited aggregation (or other forms of Brownian motion), minimization

principles linked to entropy, dynamical evolution (e.g., self-organized criticality), multiplica-

tive processes (e.g., the heavy-tailed lognormal distribution), or from thresholded/sampled

exponentials. Determining a generative model for network data from a versatile, and biolog-

ically plausible, set of competing mechanisms is troublesome.

Topological comparisons can also disregard biology (or mask data-collection bias). Rodŕıguez-

Caso et al. [22] provide a (potentially) useful illustration of this in their analysis of a 230-

node graph of the human transcription factor interaction network (HFTN) obtained from

a database. Although acknowledging the limitations of the extracted network due to our

current understanding of the HFTN, they go on to state that the topological properties of

the HFTN are comparable to other observed protein networks. They found that the HFTN

correlation profile, discussed in the section on motifs, was similar to the yeast proteome pro-

file. In their specific discussion of the top 9 proteins with the largest number of interactions,

apart from the obvious TATA binding protein, 6 of the 8 remaining proteins were related

to cancer (i.e., tumor suppressor proteins or proto-oncogens). Does a (limited) compara-

bility between the HFTN and yeast proteomes suggest the presence of similar cancers or

dominating regulatory mechanisms in yeast?

1.5.4 Sequence Alignment

Sequence alignment is another immense area of research. At a minimum, the fact that DNA

consists of four nucleobases (cytosine, guanine, adenine, and thymine) has made comparing

genomic sequences an integral part of genetics and bioinformatics. Even pairwise sequence

alignment for DNA, which is known to have regions of inserted/deleted genomic material (in-

dels), single nucleotide polymorphisms (SNPs), and to a lesser extent copy number variants,
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inversions, and translocations is a challenging problem. Computer scientists have naturally

been drawn to the area as a source of rich, computationally complex problems. Gusfield

[42] authored a book on string and sequence matching from a computer science perspective

where the intended application was computational biology. For a computer scientist, the

problem of aligning sequences is comparable to the (in)exact (sub)graph matching problems

discussed in a previous section. Deonier et al. [102] contains two chapters devoted to the

basics of sequence alignment in computational genomics.

In spite of the breadth of the subject, our treatment of sequence alignment will be brief.

As captured earlier, aligning protein sequences across species has been used to locate novel

protein interactions by integrating known interactions with sequential homology information

[13]. Homologs are two related sequences, e.g., genes or loci, whose similarity originates from

a common ancestor. In a limited or restricted sense, comparing networks is analogous to

comparing a sequence comprised of a finite alphabet (e.g., A, C, T, G). This comparison of

shared characters is fundamental to biologists. Sequence aligners have to wrestle with se-

quence homology versus sequence similarity problems for both global and local alignments.

Complex scoring models, to account for just indels and SNPs, on uneven lengths of ge-

nomic material have been developed. Bioinformaticians have amassed an impressive array

of computational tools (PathBLAST, NetworkBLAST, MNAligner, etc.) to use for aligning

biomolecular systems [14]. We also seek to determine a scoring model, with an emphasis

on weighted (directed) topological/functional structures, for comparing/differentiating net-

works and to aid in identifying relevant substructures. However, we will assume at the outset

that we are able to align the nodes.

1.5.5 Orders of Magnitude

In wishing to advance the analysis of networks one has to consider the network’s ‘size’.

Motifs, best exemplified by the 3-node feed-forward loop, exist on a microscopic scale. As

illustrated earlier, physicists have been drawn to modeling large-scale graphs. Their ap-
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proach may be ideally suited for the Internet or massive communication networks. However,

compelling biological problems exist at both ends of the node- or edge-dimension spectrum.

A pharmacologist may be interested in the cascading effects of small-scale disregulated sys-

tems; evolutionary biologists may find excitement in inter-species proteomic comparisons.

Rodŕıguez-Caso et al. [22] offer their perspective on the use and limitations of large-scale

cell biology network studies. Some of their comments are listed below.

• Graph theory is an adequate approach for large-scale networks and provides a suitable

framework for modeling these systems.

• Analyzing a network’s topological features can be used to identify candidates with

potential biological relevance.

• The topological form of a network definition implies a loss of information due to the

need for simplification. For example, how can one integrate sequential assembly pro-

cesses into protein map definitions?

• Our current understanding of different molecular networks is far from complete. Fur-

thermore, distinct molecular networks are partly embedded inside large, layered net-

works comprised of metabolic, protein, and gene regulatory systems.

An ability to compare ‘small’networks, where topological comparisons could be highly dis-

cretized or meaningless, is an analytical prerequisite for an effective inferential strategy.

1.5.6 Testing Covariance & Correlation Matrices

In a previous section we presented the use of correlation networks for modeling biological

networks. As we shall duly note in the next chapter, matrices are commonly used to represent

graphs. As such, the network inference approach adopted here bears resemblance to one-

and two-sample tests for covariance and correlation matrices. This correspondence makes

clear that ‘traditional’or more customary statistical procedures may also be available for



Phillip D. Yates Chapter 1. Introduction 55

testing network hypotheses under select network probability models. The literature for

these comparisons, under both large sample theory and resampling approaches for a variety

of applications, is substantial. We’ve restricted our discussion here to the comparison of

covariance and correlation structures since these are used later to motivate and determine

biological networks. It is not our intent to provide a detailed comparison of our proposed

method to a traditional procedure, should such a procedure exist for a given network model.

Many large-sample results do not apply to -omic data due to the prevalence of n≪ p data.

For example, in a classical test of a p-dimensional covariance matrix, H0 : Σ = Σ0, the sample

size is assumed to be much larger than p and the distribution of the test statistic requires(
p
2

)
+ p degrees of freedom. The use of resampling procedures can allow for more freedom in

defining a suitable test statistic since we are not constrained by a need to derive an exact

distribution for a particular test statistic. Our intent is to outline a method suitable for a

range of network models rather than create an ‘optimal’procedure defined under a limited

set of assumptions.

Anderson [136] is a classical reference outlining large-sample tests for (partial) correlation

coefficients, canonical correlations, and various tests for covariance matrices. In a similar

pursuit, Puri et al. [137] contains a discussion of rank tests for the homogeneity of dis-

persion matrices with and without the specification of location parameters. Steiger [138],

Steiger et al. [139], Krzanowski [140], Schott [141], and Shipley [142] focus on tests for

correlation-related matrices. Investigations into the use of the bootstrap or other resampling

procedures are common in more recent methods devoted to the analysis of covariance matri-

ces [143, 144, 145, 146]. Anderson [147], in a more recent development, uses a distance-based

dissimilarity measure, a multivariate extension of Levene’s test, for comparing dispersion ma-

trices. To address issues common to biological and ecological data, e.g., more variables than

observations, nonnormal and zero-inflated data, the approach advocates the use of permu-

tation procedures for determining p-values. In an unrelated vein, Manly [95] illustrates the

use of the Mantel test for testing the correlation between two matrices in a biological ap-

plication. Butts et al. [54] present an algorithm and useful references regarding the graph
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covariance between two adjacency matrices. Comparable to Manly, these matrices can be

used in a hypothesis testing framework contingent upon row and/or column exchangeability

assumptions.

1.6 Problem Statement

Network analysis presents an exciting new frontier for statisticians. Unlike the rich tra-

dition afforded by likelihood theory, network models are required to encapsulate complex

interrelationships, are subject to dynamic phenomena, can be generative in nature, are in

part measure both theoretically immature and inadequate, and need to accommodate a rich

topological/graph-theoretic diversity. Their size can range from a 3-node feedforward loop

to a representation of the yeast proteome. Many focus on analyzing the properties of a single

‘determined’network. An impressive array of measures have been proposed to summarize

various graph-theoretic, topological, topic-relevant, or relational properties of a single net-

work. Means and variances, so useful for real-valued random variables, have little relevance

for objects defined by, at times vague or imprecise, interrelationships. Sampling, even for

a single network, is a subject of current research. (This is most applicable to social and

epidemic networks.) Dealing with a family of sampled networks, where each originates from

an identical underlying probabilistic model, invites a broad array of statistical questions,

many of which still appear to be in their developmental infancy. Even a clear demarcation

of which network components are subject to random variability may be unclear. For exam-

ple, in the yeast proteome some edges may be supported by a vast amount of experimental

evidence and only exhibit uncertainty in the strength of the relation; other portions of the

same proteome may contain estimated edges determined via a machine-learning algorithm

and a variable weight obtained from a text-mining tool.
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1.6.1 One- and Two-Sample Tests

In this dissertation we develop a comparative measure to aide in performing the equivalent of

one- and two-sample tests. The measure can apply to networks consisting entirely of nodes

and edges, include the addition of weights, and can be extended to directional networks or

to accommodate node attribute comparisons. Our measure can apply to the situation where

we assume a parametric model (e.g., the covariance matrix for a multivariate normal), are

confronted with a network model whose parameter estimates defy large-sample asymptotic

closed-form distributions (e.g., construct a ‘correlation’network from a family of pairwise

Spearman ρ’s for data drawn from a multivariate T-distribution), and the nonparametric

two-sample case. In forming our measure we avoid an explicit declaration of a network

‘error’distribution or model. In order to define a testing procedure we resort to a resampling-

based approach. The use of resampling or bootstrap-like procedures (which rely on messy

real data and not a network extracted from an online database) is not revolutionary here;

but, perhaps acknowledging a need for its greater use should be more carefully noted.

Our measure avoids a comparison of ‘global’graph properties or parameters in favor of a

more ‘local’element-wise comparison approach. But, our approach does not prevent or limit

its use on scale-free small-world networks. Our metric is a logical extension of existing

measures used in sequence alignment and other nominal data comparisons. In order to

define a comparison, we assume that the nodes are aligned. This important assumption

allows us to avoid comparisons involving critical missing covariates; but, the measure is

still subject to bias in data collection or experimentation. In addition to sidestepping the

computational complexities of graph-matching problems, this assumption allows for a well-

defined comparison tied to biological function rather than graph-theoretic or topological

characterizations. Data-gathering tools, e.g., modern array and high-throughout platforms,

and data-repositories easily support such an assumption. Unlike a social network where the

sampled actor nodes may be relevant primarily in a relational sense, our biological nodes

should be viewed as individual variates.
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The one-sample problem is not without difficulties. In a statistical comparison of a network

with a target network, i.e., H0 : η = η0, the target η0 is assumed to be known. The

target may have been determined from a mixture of accurate and inaccurate data, e.g., been

extracted from or derived from an online database. In the one-sample context we assume

that η0 has an underlying known probability or generative model. We will state η0 in terms

of known parameters or provide an explicit generative model; but, we acknowledge that the

parametric form will likely fail as a reasonable surrogate for actual complex networks. An

explicit declaration for η0 is directly applicable to correlation networks.

In contrast to customary discrete or continuous random variables, realizing random networks

involves a generative or formulaic process. As such, we are left in the unfortunate situation

that in order to form an observed network estimate, η̂, we need some form of algorithm. To

demonstrate our method, we have had to select several (basic) algorithms as demonstration

vehicles.

In focusing our application on array platforms, we assume that the biological sampling unit

for the network is the organism. Each sampled organism is an independent realization of

a transcription or protein interaction network under investigation. Certain interactions or

coexpression levels can vary from organism to organism. This assumption is in stark contrast

to social or epidemic networks. Such specimen data are often used in the analysis of time

course microarray data or to infer networks via an algorithm. We conduct one- and two-

sample tests with simulated and actual microarray data obtained from the literature.

1.6.2 Post Hoc Comparisons

In evaluating regression models, whole model significance tests are often followed by indi-

vidual (or a subfamily of) effect tests. A single severely disrupted coregulatory process in

a tumorigenic pathway may prove fatal to an organism; a similar effect may occur when

a portion of a regulatory network is adversely affected. If a single edge/node pair is pri-

marily responsible for such a disruption, how can we identify the nodes? If a collection of
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nodes/edges have been disrupted, what is an acceptable approach to identifying this subset

of nodes with some amount of statistical rigor?

In the construction of our test statistic, the metric is intrinsically multivariate. This suggests

that we explore the sampling distribution of our measure, both for the overall composite score

and the individual components, and provide insight into various diagnostic tools should a

network difference be noted. The metric assumes, either implicitly or explicitly, that the

measure of separation at a node is correlated with the measure at other nodes. (This is a

direct contrast to probability models such as Markov random graphs.)

Finally, we explore the properties of our approach under a variety of settings. Choosing

these settings requires a measure of subjectivity; networks vary in terms of size, complexity

(weighted or unweighted graphs), generative/probability models, (interdependent) parame-

ters associated with a particular network model, are subject to theoretical and/or practical

interests, etc. We examine the utility of our approach for both null and non-null cases. A

brief discussion of computational details, e.g., execution time, and software modifications for

particular applications, is also discussed.

1.6.3 Potential Applications

The utility of such an inferential approach is obvious. Many (most) scientific comparisons

are to a known or fixed (ontological) standard or model, i.e., a one-sample comparison, or a

relative comparison, i.e., a two-sample comparison. A molecular biologist may wish to know

whether or not an estimated signal transduction network has significantly changed between

times t0 and t1, where the t0-th network is assumed to be known. She may also question

whether or not a protein network behaves differently under two stressors. In both cases,

these networks may contain edges/weights that are estimated from experimental data.

Novel algorithms are introduced almost daily and exploit the broad range of scientific and

mathematical tools available for analyzing these data. Examples might include a new pro-
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cedure to normalize array data or an algorithm to infer a regulatory pathway. The approach

outlined here can apply as a diagnostic measure for evaluating algorithms. Given a sample

of experimental data subjected to two different algorithms, a Bayesian network versus a

support vector machine solution, do the resulting algorithms produce different networks? If

so, what is a reasonable indicator of where they differ? Does an algorithm tend to underfit

or overfit? Do they suitably recover edges but perform poorly when inferring weights?



Chapter 2

Dissimilarity: One-Sample

Comparisons

Measures of separation for network- or graph-like objects have taken a variety of forms.

Hubert et al. [104] and Gan et al. [101] have outlined the use of ultrametrics, using either a

L1− or L2−norm, in hierarchical graph-like applications. Unlike hierarchical cluster analysis

or applications of dendrograms to visualize structure among objects, our conceptualization

of a biological network lacks an inherent hierarchy. If one considers an observed network

as a realization of a stochastic process, the view adopted in this dissertation, then other

measures have been proposed for measuring stochastic separation. Kesidis [132] offers some

basic definitions of separation between two distributions; several examples are listed below.

For cumulative distribution functions F1 and F2 the Kolmogorov-Smirnov distance is defined

as

d(F1, F2) = max
x∈R

|F1(x)− F2(x)|.

The Fisher separation for two distributions with means µi and variances σ2
i is

|µ1 − µ2|
σ2
1 + σ2

2

.

61
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Given two probability mass functions p1 and p2 on the same state space one can define their

chi-squared separation as ∑
x

(p1(x)− p2(x))
2

p1(x)
.

The entropy of a probability mass function p with strict range R is defined to be∑
x∈R

p(x) log p(x).

This important definition gives rise to the Kullback-Liebler distance between the entropies

of two distributions, ∑
x∈R

p1(x) log
p1(x)

p2(x)
.

This list is not intended to be comprehensive; but, an explicit reliance on a probability model

is apparent. Borgelt et al. [123] document a more extensive catalog of measures for use in

graphical models. These concepts are cited here since they reveal some of the difficulties

associated with measuring a separation between two random network observations.

There are at least two challenges to overcome in forming a comparison of two random net-

works. The first difficulty is apparent when one attempts to derive a test for the one-sample

case. The challenge stems from determining the distribution of a suitable test statistic under

the null hypothesis. Standard bootstrapping techniques can circumvent such difficulties in

common parametric models, e.g., H0 : µ = µ0 versus H1 : µ ̸= µ0. Here, it is plausible

to assume that the distribution of the test statistic, based on x̄ − µ0 in this case, is sym-

metric about 0 under H0 and that the sample observations are merely shifted away from

µ0 when H0 is not true. Large sample theory may be available to provide limiting distribu-

tions. But, determining the null distribution of a test statistic for an undetermined network

probability model is not possible. Forming one-sample tests is understood to be a difficult

problem for complex hard-to-specify probability models; Zhu [96] is a recent monograph on

the subject. The previous chapter documented how some choose to adopt an Erdős-Rényi

random graph as a null model; but, despite its mathematical tractability its probability

mechanism is too limited to model observed networks. This lack of an apparent probability
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model will impact our ability to use resampling procedures. Second, unlike traditional prob-

ability distributions with familiar (and often parsimonious) location and scale parameters,

specific parameterizations for network distributions are lacking or are motivated by specific

applications. Examples of this were cited in the earlier section on social networks; param-

eters for an ERGM are often chosen to reflect the social phenomena under investigation.

An ERGM parameterization is generally formed with count-based statistics on an unlabeled

graph; the parameterization can also shape the allowed probability space in an unexpected

or undesired manner. The difficulty of defining a parametric form for a (weighted) network

probability function, much less a broadly endorsed probability form, is further compounded

by the fact that closed-form distributions for analogous large-sample frequentist parametric

tests have not emerged for network applications. The elegance of a Central Limit Theorem

has not been derived for network applications. Section 1.2.1 highlighted the broad range of

interpretation that a centrality measure can assume in social networks. (Defining a mean,

median, and mode as a measure of centrality for a real-valued random variable is trivial, in

comparison.)

Entropy-based network comparisons have been developed using variants of the Kullback-

Leibler distance, a familiar concept for computer scientists and information theorists, where

probability functions are induced from a single observed network and the target network.

Lewis [4] and Ben-Naim et al. [34], using a discrete distribution on an integer-valued support,

can define the entropy for a single graph. For example, [4] forms a discrete probability

distribution based on the number of edges at each node. Theoretically, this ‘histogram’could

be defined for a variety of count-based ERGMs; simple extensions to a joint distribution

function are straightforward. Extending this basic form of entropy to a Kullback-Liebler

distance is trivial in the presence of a second graph. Such measures, apart from the theoretical

difficulties associated with entropy comparisons, can cause one to question whether or not the

appropriate sampling distribution is employed. Such comparisons may be most appropriately

viewed as a non-inferential descriptive statistic and reflective of intra-graph variability rather

than inter-graph variability. Of course, in the presence of a probabilistic data generating
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mechanism one could bootstrap a relevant sampling distribution; but, one would still be

confronted with a need to select an empirical parameterization (degree, in- and out-degree,

weight, clustering coefficient, path length, etc.) of unknown dimension in order to calculate

the needed joint probabilities.

In contrast to the simple examples of Kesidis [132], Webb [106] provides more sophisti-

cated measures of separation for multivariate distributions. These include the Chernoff,

Bhattacharyya, Divergence, and Patrick-Fischer measures. Webb states that these measures

have limited practical utility due to their use of numerical integration procedures and the

need to estimate the probability density function based on a sample. But, for multivariate

normal distributions, with means µ1 and µ2 and covariances Σ1 and Σ2, convenient closed-

form expressions exist for these measures. Since probability models for general networks are

immature, a need for a method that can avoid explicit model definitions holds appeal. Apart

from the number of nodes and edges intrinsic to any graph, additional graphical properties

can be subject to range of context-dependent or data-acquisition concerns.

Unlike real-valued random variables, given a collection of n independent and identically

distributed stochastic graphs, {xi | i = 1, . . . , n}, a more subtle effect emerges when one

considers that an intrinsic well-ordering of these xi graphs is not immediately apparent, we’ve

lost our familiar Euclidean metric footing, and a network-parallel to statistical sufficiency

has not been developed. Comparable to a comparison of covariance matrices (where a node

is a variable and a covariance is an edge), the high-dimensional nature of networks is a

thorny problem. The previous chapter made clear the difficulties associated with inferring

an edge in a biological network; the limitations of our traditional mathematics language

for defining network probability models forces us to entertain an approach that does not

place undue emphasis on a probability model. In this chapter we will define a metric for

comparing graphs, discuss its motivation and limitations, and demonstrate its use for network

hypothesis testing.
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2.1 Definitions

Due to the uneven use of terminology and notation in network theory we define some basic

terms here. Unless noted otherwise, all of the definitions presented in this section were

selected from Bollobás [88]. A graph G is an ordered pair of disjoint sets (V,E) where both

V and E are finite sets. V = V (G) is the set of vertices and E = E(G) is the set of edges.

E is a subset of the set V × V of unordered pairs of V . An edge {x, y} is said to join, or tie,

the vertices x and y and is denoted xy. Note that xy and yx represent the same edge; x and

y are the endvertices of this edge. If xy ∈ E(G), then x and y are adjacent, or neighboring,

vertices of G, and the vertices x and y are incident with the edge xy. Two edges are adjacent

if they have exactly one common endvertex. G′ = (V ′, E ′) is a subgraph of G = (V,E) if

V ′ ⊂ V and E ′ ⊂ E.

If x is a vertex of a graph G we will write x ∈ G instead of x ∈ E(G). The order of G is the

number of vertices in G; it is denoted using the cardinality notation |G|. The size of G is the

number of edges of G and is denoted by e(G). G(n,m) denotes an arbitrary graph of order

n and size m. Please recall the topological comparisons of graphs from the previous chapter.

The size of a graph of order n is at least 0 and at most
(
n
2

)
; for every m, 0 ≤ m ≤

(
n
2

)
, there is

a graph G(n,m). A graph of order n and size
(
n
2

)
is called a complete n-graph. A covariance

matrix consisting entirely of nonzero elements with dimension n, Σn, will be viewable as a

complete n-graph.

The set of vertices adjacent to a vertex x ∈ G, the neighborhood of x, is denoted Γ(x).

Adjacent vertices x and y can be equivalently denoted as x ∼ y, y ∼ x, y ∈ Γ(x), or, x ∈ Γ(y).

The degree of x is d(x) = |Γ(x)|. A vertex of degree 0 is an isolated vertex (or isolate).

A path is a graph P of the form V (P ) = {x0, x1, . . . , xl}, E(P ) = {x0x1, x1x2, . . . , xl−1xl}.

The path P is usually denoted by x0x1 . . . xl; it is commonly referred to as the path from

x0 to xl. The length of P is the size of P , i.e., l = e(P ). Although of limited use here the

concept of a path is useful for motivating additional constructs. For example, if we wish to



Phillip D. Yates Chapter 2. Dissimilarity Measure 66

emphasize that P is considered to go from x0 to xl then we call x0 the initial vertex and xl

the terminal vertex of P . Initial and terminal vertices are used in directed graphs. If a path

W = x0x1 . . . xl is such that l ≥ 3, x0 = xl, and the vertices xi, 0 < i < l, are distinct from

each other and x0, then W is said to be a cycle. A graph without any cycles is a forest, or an

acyclic graph. Paths are of considerable importance in the study of walks on graphs and in

communication and routing network applications. Moreover, paths (of various lengths) give

rise to triangles, quadrilaterals, and other objects resembling motifs. Bollobás [88] also cites

two interesting historical theorems. The first, noted by Veblen in 1912, is that the edge set of

a graph can be partitioned into cycles if, and only if, every vertex has even degree. Mantel’s

result (1907) states that every graph of order n and size greater than ⌊n2/4⌋ contains a

triangle. These results are mentioned here, apart from the resemblance between a triangle

and a feed-forward motif, to suggest the interplay and complex properties that can result

between a graph’s order, size, cycles, etc.

A graph is connected if for every pair {x, y} of distinct vertices there is a path from x to y.

By definition, a graph does not contain a loop, an ‘edge’joining a vertex to itself; neither does

it contain multiple edges, i.e., several ‘edges’joining the same two vertices. Social networks

can contain loops, e.g., narcissism is a form of self-love. If the edges of a graph are ordered

pairs of vertices, then we get the notion of a directed graph. An ordered pair (a, b) is said to

be an edge directed from a to b, or an edge beginning/initiated at a and ending/terminating

at b. We denote this as
−→
ab. A vertex x of a directed graph has both an indegree and an

outdegree: the outdegree d+(x) is the number of edges starting at x, and the indegree d−(x)

is the number of edges ending at x.

It is common to use a matrix form to represent a graph G. The adjacency matrix A =

A(G) = (aij) of a graph G is the n× n matrix given by

aij =

 1 , if vivj ∈ E(G),

0 , otherwise.

To extend the definition above to a weighted graph one can replace 1 with wij, where wij is
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the strength, covariance, cost, etc., between vertices vi and vj, when vivj ∈ E(G).

To accommodate a directed graph we need additional machinery. The incidence matrix

B = B(G) = (bij) of a graph G, which assumes an orientation of the edges, is the n × m

matrix defined by

bij =


1 , if vi is the initial vertex of the edge ej,

−1 , if vi is the terminal vertex of the edge ej,

0 , otherwise.

Other definitions for a directed graph are possible. One point highlighted here, due to

potential ramifications later, is to consider the different range of values for an adjacency

matrix (e.g., 0 and 1) relative to the range of values assumed for a directional graph. The

effect is apparent when one considers arithmetic operations on these matrices.

Given n ×m network matrices G = (gij) and H = (hij) we define G − H in the standard

algebraic sense, i.e., gij − hij. In this case G − H loses its immediate connection with an

observed network. The element-wise absolute difference between two adjacency matrices is

bounded above by one; the upper bound for the difference between two directional graphs,

under the current definition, is two. Our use of element-wise subtraction is key; we are not

suggesting a definition for graph subtraction based on particular subspaces/subgraphs or on

more abstract set complements. The primary motivation for this arithmetic machinery is

our need to map an Rn×m network onto the real line, R, in order to define a measure of

separation. Under this matrix definition of subtraction, G − H = 0 possesses the intuitive

property of implying no separation between two networks (matrices). The translation of a

network into the matrix-analytic framework also allows for other algebraic concepts to be

introduced.

Using the customary definition of a matrix transpose, Bollobás offers a simple connection

between the two previously defined matrices A and B. The theorem states that for the n×n

diagonal matrix D = (Dij), with Dii = d(vi), we have BB
t = D−A. The matrix L = D−A

is the combinatorial Laplacian or Kirchhoff matrix of a graph G and is of great importance
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in spectral graph theory. Although we do not make explicit use of L, the matrix is defined

here since an exploration of the spectral properties of weighted graphs is discussed in the

last chapter of this dissertation. The tension between an interest in the spectral properties

of L and the need for a suitable measure of separation is apparent.

The treatment of isolates, vertices that are not connected to any other vertex, also needs

consideration. For example, isolates are not consistent with the definition of a tree. Isolates

can easily occur in algorithmic processes where the algorithm does not generate an edge for

one or more nodes. Networks can even contain subgraphs that are not connected to portions

of the larger network. The exclusion of this information is plausible for pure relational data

comparisons; but, tests for mean or (co)variance comparisons may still be worthwhile. To

the best of our knowledge, methods for gene set testing do not discard data on the basis

of covariance information. Isolated nodes and subgraphs occur in biological graphs; a gene

may be included for function but not possess an edge due to a sub-threshold effect size or

an assumed speculative role.

To help motivate our dissimilarity measure we need some definitions from Edgar’s [119] text

on measures for fractals. Carathéodory’s outer measure on a set X is a set-function M that

assigns to every subset A ⊆ X an element M(A) ∈ [0,∞] and also satisfies, 1) M(∅) = 0,

2) M is monotone, i.e., A ⊆ B ⇒ M(A) ≤ M(B), and 3) M is countably subadditive, i.e.,

for disjoint A1, A2, . . ., the measure of the union of Ai is less than or equal to the sum of

the individual measures. Let E be a subset of a set X. A collection A of subsets of X is

called a cover of E if, and only if, every point of E belongs to some set A ∈ A. Although

not exploited here, covers can be extended to packings. In a packing you may require that

the elements of A be disjoint; elements of A may have different ‘sizes’or radii. Let E ⊆ S

be a subset of a metric space S. A centered-ball cover of E is a collection β of closed balls

with centers in E such that E ⊆
∪

B∈β B. Edgars also contains an interesting discussion

and demonstration of measures on ultrametric spaces. As discussed in a previous section,

ultrametrics are used with tree-like structures.
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2.2 Dissimilarity Measures and Norms

As suggested in the opening section of this chapter the concept of dissimilarity (or similarity)

is standard statistical fare. These measures are most common in the context of multivariate

applications which group or structure observations, e.g., cluster analysis [101, 102], pattern

recognition [106], and multidimensional scaling [103]. The dissimilarity measure drs between

objects r and s is required to satisfy the following conditions:

drs ≥ 0 for every r, s,

drr = 0 for every r,

drs = dsr for every r, s.

A measure that also obeys the triangle equality is referred to as a metric or distance; a

measure that replaces the triangle equality with drs ≤ max (drt, dst) is an ultrametric [105].

Gan et al. [101] provide an excellent catalog of these measures for numerical, categorical, bi-

nary, and mixed-type data. Examples of numerical measures include the familiar Euclidean,

Manhattan, Minkowski, and Mahalanobis distances. Generally, dissimilarity measures for

categorical data x and y are based on a simple matching distance,

δ(x, y) =

 0 , x = y

1 , x ̸= y.

For both numerical and non-numerical data measures a scaling term may be applied. For

example, in a binary graph G(n,m) with
(
n
2

)
possible edges one may choose to ‘normalize’a

dissimilarity measure by the number of possible edges. The well-known Hamming distance

[4, 106] is a symmetrical form of the simple matching distance for binary strings common to

communication theory. For example, the Hamming distance between the binary strings 11010

and 10110 is 2/5 since that is the number of mismatches between the two strings divided by

the length of the strings. Jaccard’s coefficient is a popular asymmetric similarity coefficient

that excludes the double zeros in the computation and is used by ecologists [101, 102, 106].

Asymmetric coefficients can prove useful when the (perceived) cost associated with certain
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combinations is viewed unequally or uninformative. Although not explored here, Gan et al.

[101] provide several references for (dis)similarity measures for symbolic data.

While not explicitly mentioned up to this point, (dis)similarity coefficients are customarily

defined for two d-dimensional data points, x and y. In clustering applications all obser-

vational pairwise distances can be represented via a symmetric proximity matrix. When

confronted with microarray gene expression data the use of a proximity matrix typically

reflects the similarity of the observations via some Euclidean or correlation metric. But,

instead of dealing with vector-valued objects biological networks are intrinsically matrix-

valued. To craft a dissimilarity measure for networks we will propose a modified version of

a matrix norm.

Matrix norms and their various properties can be found in several texts on matrix theory

or linear algebra [108, 105, 107, 109]. In addition to the usual definition of a vector norm a

generalized matrix norm has the following property, ∥c ·A∥ = |c| · ∥A∥, and the more general

matrix norm has the submultiplicative property, ∥A ·B∥ = ∥A∥ · ∥B∥. Two standard norms

useful for analyzing matrix linear operators are the ∥A∥1 and ∥A∥∞ norms. The ∥A∥1 and

∥A∥∞ norms are the maximum absolute column- or row-sum of a matrixA, respectively, and

are useful for determining bounds for operators or large sample asymptotic results [108, 105].

To suggest their use in a network context would place the entirety of the emphasis on a single

row or column. Post hoc tests for a single node or subgraph could also be more difficult to

motivate on the basis of these norms. The most frequently used matrix norm in numerical

linear algebra is the Frobenious norm,

∥A∥F = (
m∑
i=1

n∑
j=1

|aij|2)1/2,

for an m×n matrix. Also referred to as the 2-norm, the Frobenious norm is an element-wise

matrix norm and bears special relation to the spectral radius of a matrix. An element-wise

norm forms the basis of our dissimilarity measure presented in the Methods section of this

chapter.
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2.3 One-Sample Network Comparison

Despite the difficulties surrounding a one-sample test in the absence of a probability model,

we can still develop and demonstrate a suitable network comparison measure under more

restrictive circumstances. In this section we want to provide a motivating example based

on actual biological data, transition to the formalism needed to define a one-sample testing

procedure, and demonstrate said procedure with both simulated and actual data. In spite

of some of the simplifying assumptions adopted here, we can highlight some of the necessary

considerations before transitioning to the two-sample comparison problem. By assuming a

parametric null model or algorithm for the network we can explore the properties of our

one-sample testing procedure under more controlled circumstances.

2.3.1 Motivating Data: Diabetes

Type II diabetes mellitus (DM2) is a medical condition that affects over 110 million people

worldwide. DM2 is a metabolic disorder characterized by a high blood glucose level; the

body either does not produce enough insulin or the body’s cells ignore the insulin. Mootha

et al. [153] cite that DM2 has been linked to atherosclerotic vascular disease, blindness,

amputation, and kidney failure. Mootha et al. state that a variety of metabolic pathways

have been implicated in the disease process: β-cell development, insulin receptor signaling,

mitochondrial metabolism, cytokine signaling, fatty acid oxidation, adrenergic signaling, and

others. But, it is uncertain which pathways are disturbed in, and perhaps responsible for,

DM2 in its common form. Mootha et al., using DNA microarray data obtained from the

transcriptional profiles of 17 normal and 17 DM2 muscle biopsy samples, presented a Gene

Set Enrichment Analysis tool to detect expression changes among functionally-related gene

sets. Here, a gene set (or pathway) is an example of a gene-gene network. In contrast to

‘locate the putative gene(s)’studies, their approach was able to locate a gene set, OXPHOS

- genes involved in oxidative phosphorylation, whose expression was coordinately decreased
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in human diabetic muscle. Subsequent experiments were able to confirm that the expression

levels were high at sites of insulin-mediated glucose disposal, were activated by PGC-1α,

and correlated with total-body aerobic capacity. This result, which analyzed differences in

average gene expression levels between two phenotypes, linked this gene set to clinically

important variation in human metabolism.

In their analysis, Mootha et al. analyzed 149 gene sets. The authors selected 113 of the gene

sets based on their involvement in metabolic pathways with the remainder representing gene

clusters based on co-regulated genes from a mouse expression atlas. Some gene sets consisted

of only two or three genes; the largest gene set contained over 600 genes. The OXPHOS gene

set discussed in Mootha et al. contained 106 genes. By combining their enrichment score

with a resampling procedure they found that the unadjusted OXPHOS permutation p-value

was 0.029; the next four highest enrichment scores were for gene sets that overlapped the

OXPHOS gene set.

In our analyses of these data, the expression values of 22,283 genes were analyzed. Both the

transcription data and the gene set data sets from the original GSEA study were obtained

from the authors’ website. These data are available on-line and were downloaded from

http://www.broad.mit.edu/publications/broad991s. Zeros were removed from the expres-

sion data and replaced with a small positive constant (e.g., 0.001); the log2 transformation

was applied to all gene expression entries. A median plus/minus three times the median

absolute deviation winsorization algorithm was applied to the expression levels of each gene

for each phenotype to mitigate the effect of potential outliers.

To distinguish our analyses from the work of Mootha et al. several important distinctions

should be noted. First, their primary analysis only undertook an examination of changes in

average gene set expression levels. The research question was intrinsically a two-sample ‘t-

test’problem. Identifying changes in covariance(s) structures between the normal and DM2

phenotypes was not performed. Based on the small total sample size, the identifiability

and stability of the various parameter estimates is an obvious concern. Most importantly,
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pathway definitions vary and evolve over time. The original analyses did not assume or

make use of a network form for the genes within a gene set. Moreover, these gene sets were

‘internally curated’in the original study. Assuming a definitive network model for a gene set,

even for the normal samples, is not currently available. Attaching a network architecture to

a gene set, despite the obvious biological import, substantially increases the computational

difficulties associated with the comparison. As we shall detail later, we applied an algorithm

to these data to infer a gene network for the normal tissue pathways comprised of the sampled

genes. The use of an algorithm allows us to carefully control, i.e., define, the pathway model

for the normal tissue. It also defines a uniform approach to deriving an estimated network

based on the DM2 samples.

2.3.2 Problem

The biological problem here is straightforward. Apart from understanding whether or not dif-

ferential expression exists between the normal and DM2 phenotypes, we would like to explore

changes in the covariance or correlation structure between these two groups. This problem

can be viewed in the context of both a one- and a two-sample problem. In this chapter, we

compare the estimated DM2 gene networks to fixed normal tissue pathways. Formulating

a two-sample hypothesis test will be addressed in the next chapter and demonstrated with

an ovarian cancer dataset. Other interesting computational one-sample problems could also

result from these same data. For example, perhaps the microarray data was collected using

an Affymetrix platform. If one assumes that the MAS5 normalization algorithm serves as

the ‘gold standard’for preprocessing these data, irrespective of phenotype, one may wish to

compare a competing normalization routine, e.g., RMA, to the assumed MAS5 standard

in the formation of a correlation network for either phenotype. Here, the same set of raw

microarray measurements would be used throughout; but, the scientific question centers on

whether or not the new normalization routine can recover the biological network in a manner

similar to the established protocol. Such a question does invite questions regarding when the
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network is ‘observed’or sampled; inferring a network from measured data via an algorithm

inserts a black-box step in the observation process.

2.3.3 Network Models

The previous chapter made clear the broad range of network models. Various models outlined

in the literature include: power law, small-world, scale-free, growth models (e.g., preferential

attachment, branching processes), ERGMs (e.g., Erdős-Rényi and Markov random graphs),

copy/duplicative models, correlation networks, etc. Defining a parameterization under these

various models may not be trivial. Given that the observation data is a network, we need a

probability model (or a suitable set of assumptions for a probability model) for the data in

order to perform a hypothesis test. In observing a network, one needs to bear in mind that

the ‘data’may undergo a transformation in order for the network observation to be realized.

In other cases, e.g., an ERGM, we may be able to directly observe a network. Since both

approaches are illustrated in this chapter we will give a more precise description of each case.

A good illustration of a transformed-data network is a correlation network. Here, each q-

dimensional observation may be assumed to have been drawn from a multivariate normal

distribution. I.e., for i = 1, . . . , n independent observations, xi follows a Nq(µ,Σ) distribu-

tion. For a correlation network we assume that µ = 0, i.e., the data have been centered,

and that Σ has been transformed/thresholded or otherwise tailored to form Ω. Hence, our

observed set of network data is a series of correlation networks Ωi. Network observations

drawn from an ERGM or a random re-wiring model (e.g., small-world) may be more directly

observable. For example, for an Erdős-Rényi random graph the probability parameter is p.

In this case, our microarray expression measurements may still be xi ∼ Nq(µ,Σ); but, the

edges formed between the pairs of variates is tied to the probability parameter p. For data

adhering to forms of this type, we do not provide a prescriptive form/algorithm to deter-

mine the observed network. Banks et al. [50] suggested an approach to define a ‘location or

central’graph (an edge was present between two nodes if the edge was present in a majority
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of the sampled, aligned, and labeled graphs); one could also define a ‘median’graph for a

sample of fixed-p Erdős-Rényi graphs using the degree distribution for each sampled graph.

For generative models such as a preferential attachment model, one may be able to define a

parameter that applies to a series of network observations. Summarizing a family of graphs

via a suitable/meaningful statistic under a broad range of network models is a nontrivial

problem.

To recast the biological problem in the one-sample context we will assume a correlation

network model, defined via a threshold ρ, for the normal gene sets. A family of gene sets are

analyzed; each gene set consists of a number of genes. Apart from the liberty taken in defining

a normal tissue pathway, our approach mimics the intended definition of a pathway and

imposes sparsity on the assumed model. It is defensible to assume that the gene expression

levels within a phenotype’s j-th gene set, as evidenced by the microarray measurements,

follows a multivariate normal distribution. In other words, Xjk ∼ N(0k,Σk), where Xjk is

a k-dimensional vector of microarray measurements for the j-th gene network under study.

But, for a gene set containing k genes it is customary to assume that Σjk is sparse or

constrained by some form of a network architecture; assuming that Σk is a complete k-graph

creates customary ‘wide’/overparameterized data concerns and suggests spurious biological

associations. So, using a threshold ρ we will transform Σk into Ωρk. One could also choose

to define a partial correlation network, also termed a Gaussian graphical model, for these

same data.

2.3.4 Hypothesis

As discussed earlier, defining appropriate hypotheses in the context of networks can be non-

trivial. For an Erdős-Rényi random graph of order n, G(n, p), the obvious parameter is p.

In general, apart from ERGMs and (partial) correlation networks, explicit network param-

eterizations are lacking. Network generative models may not lend themselves to compact

closed-form expressions. Notwithstanding these concerns, the basic form of a network hy-
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pothesis test adopted here will assume the classical form of H0 : η = η0 versus H1 : η ̸= η0. In

the case of an Erdős-Rényi random graph of order n, one could test H0 : G(n, p) = G(n, p0)

versus H1 : G(n, p) ̸= G(n, p0). In this case we’ve provided no explicit guidance for how

to determine p; we’ve also made explicit the probability model for the graph rather than

the less direct H0 : p = p0 hypothesis. For a correlation network one could easily construct

hypotheses of the form H0 : Ω = Ω0 versus H1 : Ω ̸= Ω0; but, one would also need to make

clear the procedure used to establish the edges in the network. Here, forming a suitable

estimate for Ω is more direct. Should one wish to incorporate node attribute comparisons

in the network comparison one could define an appropriate joint hypothesis, e.g., in the case

of multivariate normal observations H0 : µ = µ0 and Ω = Ω0 versus a suitable alternative.

Most of the tests conducted in this dissertation will be two-sided tests of equality versus

inequality. For vector- or matrix-valued parametric hypotheses one-sided tests may be non-

sensical. For a G(n, p) test one may have interest in testing H0 : G(n, p) = G(n, p0) versus

H1 : G(n, p) < G(n, p0). Here, one would need a measure that would allow one to safely

conclude that p < p0. Even in the Erdős-Rényi random graph case, when p is close to 0

or 1 the amount of randomness/entropy is less relative to the entropy when p is close to

0.5. Unlike the direct comparison of p to p0 for this simple probability model, making sense

of/defining a one-sided comparison for a multiparameter probability model may be trouble-

some (e.g., consider the case when interdependencies exist between the parameters). We

have not explored the use of our inferential method in this context. But, to demonstrate the

power of our procedure we will analyze G(n, p) graphs for two different values of p. In gen-

eral, we elected to focus on the more common research question, “Are they different?”The

ordering implied by a one-sided test may not be applicable to a weighted correlation network

or a multiparameter Watts-Strogatz small-world graph; but, such a test may prove useful

for evaluating under- or over-fitting in a 1-0 adjacency matrix.

Rather than define a narrow set of restrictions that may be particular to a given network

comparison, we outline some broad assumptions used throughout. First, our definition of a

graph does not allow for loops at a given node or multiple edges between any two nodes. In
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contrast to some graph applications we do allow for isolated vertices (isolates). Biological

networks, especially large graphs or those formed via a clustering mechanism, can contain

isolates. Isolates can easily result from inferential algorithms with a propensity for underfit-

ting. Accommodating isolates is also necessary to align nodes between two graphs. Unless

explicitly stated, we do not make assumptions regarding a probability model. If we wish to

assume a Gaussian graphical model then we will make the appropriate declaration at the

required time. We do not assume that the data have been normalized, scaled, or otherwise

transformed in a customary (or non-standard) manner. How to preprocess microarray data

is a broad topic that we do not wish to delve into. The definition of a graph only requires

nodes and edges. To (partially) include additional features, e.g., weights or directions, will

depend on the context.

2.3.5 Methods

As stated at the outset, we employ a resampling procedure to perform one- and two-sample

network comparisons. Good [97], in his text on permutation tests, provides a five-step

procedure that we adopt here.

1. Analyze the problem. Identify the null hypothesis, an appropriate alternate hypothesis,

and the potential risks associated with a decision.

2. Choose a test statistic suitable for testing the hypotheses.

3. Compute the test statistic.

4. Determine the frequency of the test statistic under the null hypothesis.

5. Make a decision using the sampling distribution of the test statistic as a guide.

The previous section outlined the first step. We now turn to suggesting the necessary ma-

chinery that will allow us to complete the decision-making process.
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Dissimilarity Measure D

In contriving a test statistic for network dissimilarity we will build on previous efforts. The

Hamming distance measures separation between 0-1 strings. Counting mismatches along

a sequence of nucleotides is equally trivial. We discussed earlier the use of L1- and L2-

norms for comparing edge weights. But, in both of these comparisons the measure only

uses information at each specific point of comparison. These measures do not account for

the fact that in a network interrelations are present between the nodes. Similar to linkage

measures in genetics (e.g., the LOD score), where markers are assumed to be correlated,

we desire a measure that incorporates these interrelationships. The need to account for

interrelations was discussed in the section on social networks. There, two nodes were defined

to be structurally equivalent when they share the same neighbors. Here, the carryover of

structural (or regular) equivalence is not exact, especially since structural equivalence is an

intragraph concept. The motivation for our proposed dissimilarity measure is forthcoming.

We merely need a suitable test statistic that can measure the dissimilarity between two

networks.

Let WO = (wO
ij) be a (weighted) adjacency (or directed incidence) matrix for the observed

network estimate and WT = (wT
ij) be the same for the target network. Both WO and WT

are assumed to represent graphs of order n; the nodes are labeled and identical to both

graphs. For node i define the dissimilarity at that node as a combination of

dOT
i =

n∑
j ̸=i

|I(wO
ij ̸= 0)− I(wT

ij ̸= 0)|+ |wO
ij − wT

ij| : node dissimilarity, and

dOT ∗

ij =
n∑

k ̸=i,j

|I(wO
jk ̸= 0)− I(wT

jk ̸= 0)|+ |wO
jk − wT

jk| : neighbor dissimilarity

for j ̸= i, j ∈ Γ(i). For the overall network, the dissimilarity D is defined to be

D =
n∑
i

{
dOT
i +

n∑
j ̸=i

dOT ∗

ij cij

}
,

where cij = |wO
ij |I(wT

ij ̸= 0) for weighted networks and specified by the researcher for un-

weighted networks. I is defined using a standard indicator function.
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For a graph of order n a set/neighborhood is placed at each node wi, i = 1, . . . , n. This

set/neighborhood, which induces a neighborhood Γ(wi), begins by measuring the dissimilar-

ity between the observed and target subgraphs using an L1-norm at node wi. This captures

the dissimilarity between a node and its adjacent neighbors between the two graphs. To

account for an inherent network structure the neighborhood is then extended to those neigh-

boring nodes that are incident to nodes in Γ(wi) in both the target and observed networks,

i.e., Γ(wj) where i ̸= j and wj ∈ Γ(wi). The dissimilarity is measured between the observed

and target extended neighborhood subgraphs and added to the dissimilarity measured at wi.

The effect of the 2-nd nearest neighbors is weighted by a constant. In a weighted network,

this weight is easily motivated; in an unweighted network the user needs to supply this value.

Assuming a weight value of cij = 0 for an unweighted 0-1 graph reduces D to the familiar

Hamming distance.

Figure 2.1 illustrates the subgraph formed with a set/neighborhood placed at a given node.

This figure assumes that the network is directed. The closed circle denotes the immediate

neighborhood of wi, Γ(wi). A solid line is an edge; a dashed line indicates the absence of

an edge; the dashed line box contains the neighbors of Γ(wi) which are common to both the

target and observed networks. Weights, e.g., ti,2, where defined, are also listed.

We want to draw your immediate attention to several points. First, we elected to form D

using separate edge and weight L1-norms. We will justify and elaborate on this choice in the

discussion section. Modifying the definition of D to include mismatches in directionality is

trivial (unless one assumes the earlier stated incidence matrix form B or an alternate form to

reflect directionality). Second, the definition of an adjacency matrix implies that the absence

of an edge is denoted by 0. If an edge is absent, e.g., note the dashed line and lack of a ti,1

weight in figure 2.1, then the weight associated with the absent edge is assumed to be 0. Our

assumption of labeled and identical nodes is critical in the calculation of D. This assumption

allows us to precisely align the two graphs. We have chosen to define the center of each

set/neighborhood with a node. Apart from avoiding the sheer size of a potential edge space

E(G), whose cardinality is at most
(
n
2

)
for undirected 0-1 graphs, we have elected to center
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Network Neighbor Comparison at Nodei

TARGET                            OBSERVED

Ti Oi

oi, 1

ti, 2 oi, 2

ti, 3 oi, 3

oi, 4ti, 5

ti, 6 oi, 6

ti, 7 oi, 7

Figure 2.1: The dissimilarity measured at a node utilizes both the information at that node
plus the information incident to the neighborhood of that node.

on a specific gene or protein. This gene- or protein-centric approach has the advantage of

inviting parallels to individual effect tests in multiple regression models. But, this approach

implies that the dissimilarity associated with edge xy will be counted twice, once for node

x and a second time for node y. This does result in additional computational overhead;

but, the additional counting is consistent throughout (to include the resampling process)

and mitigates the need for complex single-count partitioning schemes. Only those nodes

with a path length of two or less from wi are included in our measure. This is an arbitrary

choice that will receive some justification later. One notable feature of D is that it does not

contain formidable equations or statistics like those encountered in ERGMs. By avoiding
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complex model parameterizations we have avoided a need for complex statistical estimates.

In effect, the observed network is the statistic. A final point is the lack of standardization

or normalization methods applied at a given node. This point, to be discussed later, allows

for a hub protein to contribute disproportionately to the overall D relative to a protein that

only has two or three interaction partners.

Basic Demonstration

The following example is a simple application of the dissimilarity measure D. We fix a

random graph G(n = 5, p = 0.25). We compare this fixed graph to three additional G(n, p)

random graphs. We calculated D under two scenarios. In the first scenario we ignore those

nodes whose path length from the specific node is 2, i.e., cij = 0 for all nodes i = 1, . . . , 5.

In the second case we will assume that cij = 0.5. Due to symmetry we have suppressed the

lower triangular and diagonal entries.



. 0 0 0 1

. . 1 0 1

. . . 0 0

. . . . 0

. . . . .


(a)



. 1 0 0 0

. . 0 0 0

. . . 0 0

. . . . 0

. . . . .


(b)



. 1 1 0 0

. . 1 1 0

. . . 0 0

. . . . 0

. . . . .


(c)



. 1 1 0 1

. . 1 0 0

. . . 1 0

. . . . 0

. . . . .


(d)

Matrix (a) is the target G(n, p = 0.25) network. In matrix (b) we observed a G(n, p = 0.10)

network; matrix (c) is another G(n, p = 0.25) network; matrix (d) is a G(n, p = 0.50)

network. Let Dc denote D where cij is a uniform constant c. D0 implies that the neighbors

of nodes incident to a given node were not included in the total dissimilarity D, i.e., a simple

mismatch count is provided.

Due to the lack of any overlap between matrices (a) and (b) the measure D0 = D0.5 = 8.

Note that this is twice the total number of mismatches between the two matrices. Not sur-
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Figure 2.2: Graphs corresponding to the adjacency matrices listed in (a) and (c).

prisingly, this suggests that when the networks are very sparse the neighboring information

does not contribute to differentiating the two graphs. In a comparison of matrix (a) with

(c) we see that D0 = 10 and D0.5 = 12. Since these two matrices share a single common

edge we incorporate the dissimilarities in their respective neighborhoods. In effect, we have

amplified the degree of network separation. We use this comparison to carefully illustrate

the calculation of D. At node 1 we observe three mismatches (to nodes 2, 3, and 5) between

the two graphs and no common edges. So, dOT
1 = 3 and

∑
dOT ∗
1j = 0. At node 2 we see

three more mismatches (to nodes 1, 4, and 5); since node 3 is a neighbor to node 2 in both

graphs the single mismatch at node 3 contributes to D. Here, dOT
2 = 3 and

∑
dOT ∗
2j = 1.

At node 3 a single mismatch to node 1 is present (i.e., dOT
3 = 1); but, the common edge to

node 2 incorporates the three mismatches at node 2 (nodes 1, 4, and 5) for
∑
dOT ∗
3j = 3.

At node 4 a single mismatch occurs (to node 2; dOT
4 = 1 and

∑
dOT ∗
4j = 0) and two mis-

matches occur at node 5 (nodes 1 and 2; dOT
5 = 2 and

∑
dOT ∗
5j = 0). In node order, D is
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the sum of 31 + 32 + 0.5 ∗ 12 + 13 + 0.5 ∗ 33 + 14 + 25 for a total of 12. Finally, in compar-

ing (a) with (d) we observe that D0 = 8 and D0.5 = 11.5. Here, D0 failed to differentiate

G(n, p = 0.10) from G(n, p = 0.5) in a relative comparison to matrix (a). But, given the

additional edges in the more-dense matrix (d) we see that the mismatches that occur in the

neighbors have further amplified the separation between (a) and (d). D0 increased from 8 to

11.5. This basic illustration demonstrates the benefit of incorporating information beyond

simple match/mismatch counts. Transitioning to a weighted graph could provide even more

opportunity to differentiate mismatched graphs.

Resampling

The previous demonstration did not make use of any resamples. As commented earlier, in

order to perform a one-sample network hypothesis test we need to be able to generate a

distribution for D under the null hypothesis. In order to accomplish this we will need to

assume a parametric model or an explicit generative algorithm for the null network. Another

careful consideration revolves around sampling concerns and how one can utilize observation-

level data.

In traditional parametric procedures a sample x = {xi, i = 1, . . . , n} is summarized via a

statistic T (x). Commonly, the statistic T (•) is an estimate for a parameter and is applied,

perhaps under a suitable transformation, in the hypothesis testing situation. However, in

some cases the sample itself is the statistic - concise reductions of the data may not be

possible. In our view, biological networks are inherently high-dimensional objects. Each

edge in the graph may constitute a parameter; the weight associated with an edge may be an

additional parameter. These edge-weight combinations are linked to specific genes/proteins

and other well-defined regulatory functions. Given a collection of independent xi and a

network algorithm F , we can produce an observed network F(x). In select instances, e.g., a

G(n, p) random graph, the role of the xi may be suppressed or not apparent.

One of the items conspicuously absent from our earlier discussion of ERGMs were closed-form
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x̄-like statistics for ERGM parameters; maximum likelihood estimates are commonly deter-

mined via numerical procedures. Even for a G(n, p) random graph the collection of nodes

are not independent of one another. There, one can encounter phrases like ‘approximately

Poisson’in the description of particular properties of G(n, p) graphs [90]. In general, such

simplifications are difficult to locate or justify for biological networks. This complicates our

ability to use parametric bootstrap resampling procedures. Some networks, such as (partial)

correlation networks, can make use of parametric bootstraps or monte carlo procedures under

suitable assumptions. Observation resampling is difficult to apply to the one-sample case.

Consider an estimated correlation network, Ω̂, obtained from a sample whose probability

model is clearly different from Ω0. Repeatedly sampling from the observations to produce

a series of Ω̂i’s does not aide in generating a null distribution for D under Ω0. Moreover,

simple arithmetic operations or transformations that could convert data parameterized by

Ω into an Ω0 parameterization are not apparent.

The fact that networks are typically formed via the interrelations determined from an aggre-

gation of nodes, e.g., a social network, or estimated with an algorithm applied to empirical

data, e.g., gene regulatory networks, causes one to question where one should draw the re-

samples from. Again, assuming a parametric null model or generative algorithm simplifies

the process here. For a correlation network we may be able to resample using observation-

level xi; in other cases we will resample from F(•). To prevent confusion, we will be explicit

in defining how the resampling was performed.

Simulation Example

Prior to discussing the biological application we would like to demonstrate the feasibility

of D using a simulated example. Here, we assume that we want to test H0 : G(n, p) =

G(n, p0) versus H1 : G(n, p) > G(n, p0). The order of G will be 25 and p0 will be set

to 0.20; these values produce non-trivial networks that may be able to support current

realistic laboratory experiments. Attempts at simulating and accurately estimating the yeast
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proteome is intellectually audacious. We simulated a total of four cases. In each case 100

hypothesis tests (or experiments) were performed. In two of the cases we assume that the

observed network follows a p = p0 = 0.20 model. The distribution of p-values, determined

using D, under the null hypothesis will be examined. In the remaining two cases we assume

that the observed network follows a p = 0.25 model. As such, we can examine D’s ability

to reject H0 when p > p0. Large values of D will support rejecting H0. Similar to the

previous demonstration, we evaluate D using Dc. We set c = 0 in two cases (a null and an

alternate case) and c = exp(−2) in the remaining two cases. As before, the purpose is to

illustrate the utility of using neighbors beyond a node’s immediate neighbors. Please note

that in a G(n, p) graph the probability of an edge between two nodes is independent of the

other edges. Unlike conditional generative models, e.g., a preferential attachment model, the

probability mechanism here is uncomplicated.

The resampling procedure is simple. For each experiment, we follow the outline given at the

beginning of this section.

1. To evaluate D under the null case we draw a random G(25, 0.20) network. This first

network serves as the target network. A second G(25, 0.20) network is drawn; this is

our observed network that is assumed to have been formed on the basis of empirical

data under the null.

2. D is calculated using these two networks. D is calculated with and without the neigh-

boring information through our choice of cij.

3. Draw 1,000 random G(25, 0.20) networks and calculate the dissimilarity between each

of these networks and the target network. This creates the distribution for D under

the null hypothesis.

4. Finally, in order to compute a single resample p-value we count the number of times

that the initial target-observed D exceeds those determined from the 1,000 resampled

D’s.
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To evaluate the p = 0.25 case, we draw a single G(25, 0.25) network observation. The

target network and all the resamples are still drawn from a population of G(25, 0.20) graphs.

Calculating D and determining the resample p-value is performed in the same manner as

in the null evaluation. The R code for both the null and alternate cases can be found in

appendix B as ErdosRenyi-Sim. The execution time for the set of 100 experiments using

1,000 resamples was on the order of 1 hour on a standard 2-3GHz personal computer. The R

package Statnet [151], available from the CRAN R archive (http://cran.r-project.org), was

used to generate the G(n, p) random graphs.

Figure 2.3 illustrates the results of the simulation. In both null cases, the p-values are

approximately uniformly distributed. A slight conservative bias, i.e., observed p-values are

larger than expected, may be present. But, the bias is present for both Dc cases. The

performance of D when p = 0.25 and c = exp(−2) is more striking. When the neighboring

information was not used in calculating D, i.e., the D0 case, 34% of the resample p-values

were below a nominal α level of 0.05. When the neighboring information was used, i.e., the

Dexp(−2) case, 55% of the p-values were below the nominal 0.05 level.

2.3.6 Biological Analyses

Correlation Networks

Table 2.1 is a subset of the 149 gene sets (or pathways) analyzed in Mootha et al. [153]. 17

samples were obtained for both the normal and DM2 phenotypes; the gene sets were originally

culled from multiple sources. Rather than analyze grossly ill-conditioned correlation matrices

(many gene sets contained over one hundred genes), we have restricted our attention to those

gene sets with less than 18 genes in the pathway. The choice is arbitrary; but, given that

we will apply various thresholds for ρ in forming a correlation network, we do not expect to

produce an estimate for Ω that contains all
(
n
2

)
pairwise correlations. The table also reflects

an additional level of complexity when dealing with actual microarray data. The microarray
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Figure 2.3: P-value results from 100 independent tests of H0 : G(25, p) = G(25, 0.20) ver-
sus H1 : G(25, p) > G(25, 0.20). All graphs were unweighted. The y-axis indicates the
observed p-values based on 1,000 resamples for each test. The x-axis denotes the expected
p-values under the null hypothesis. The left two panels are uniform distribution qq-plots
that illustrate the results under the null hypothesis. The right two panels assume that
G(n, p) = G(25, 0.25). A horizontal line corresponding to an α = 0.05 level is provided. The
top two panels assume that neighboring information was included in D and weighted by a
factor of cij = e−2. The bottom two panels only use the edges incident to the node; D does
not include the neighboring information, i.e., cij = 0.
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measurements were in one set of files; the gene set definitions were in another set of files.

The pathway name can vary as a function of origin; the gene name may be listed multiple

times in the same pathway (Unique - the number of unique gene names contained in the

pathway); the gene name may not be present in the array measurement file (Match - the

number of gene names that uniquely matched with gene names in the expression file). In

the results section, we refer to the gene sets using a number identifier, i.e., 1 through 37 as

listed in table 2.1, rather than the more verbose name listed.

We form a correlation network for the DM2 samples to illustrate the utility of D in differ-

entiating between a DM2 and normal phenotype network. In lieu of a p-value significance

threshold, we apply various ρ thresholds to the estimate for ΩDM2. Pairwise estimates for ρij,

using the standard Pearson product-moment correlation coefficient, were rounded to zero if

the absolute value of the estimate was less than the threshold. The 17 normal samples were

used to determine a correlation network for ΩNormal. Due to our use of actual biological data

here, where the true state of the null or alternate hypothesis is unknown, our emphasis is

on the potential power of our testing procedure, i.e., the Type II error rate, under several

scenarios. Type I error performance, a nontrivial consideration for complex or ‘wide’data,

is best examined using simulations. Due to the varying dimensions of the gene sets, the

limited range of sample sizes, the various choices for a threshold ρ under various covariance

patterns, etc., a careful accounting of the Type I error performance has not been stressed

here.

In order to generate a null distribution for D we illustrate two approaches. For both ap-

proaches the same threshold for ρ is applied to ΩNormal and ΩDM2. Even though we can

estimate a complete graph for ΩNormal based on sample data, the true normal-tissue network

does not impose edges based on empirical correlations. The first approach generates a para-

metric estimate for ΩNormal and assumes that the microarray measurements are drawn from

a multivariate normal distribution; the second approach will assume that the thresholded

correlation network is inherent to the 17 normal samples. In the first case we threshold

the initial estimate for ΩNormal. After thresholding, this matrix may no longer be positive
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Table 2.1: A subset of the gene sets analyzed in Mootha et al. [153]. The name of the
pathway, the number of genes listed in the pathway, the number of unique gene names, and
the number of unique genes that matched with microarray measurements is provided.

Name Pathway Unique Match

1 KET-HG-U133A probes 8 8 8
2 MAP31 Inositol metabolism 7 7 7
3 MAP40 Pentose&glucuronate interconversions 8 8 7
4 MAP53 Ascorbate&aldarate metabolism 8 8 8
5 MAP62 Fatty acid biosynthesis path 2 14 10 10
6 MAP72 Synthesis&degradation of ketone bodies 7 7 7
7 MAP130 Ubiquinone biosynthesis 5 5 5
8 MAP140 C21 Steroid hormone metabolism 12 10 10
9 MAP271 Methionine metabolism 11 11 10
10 MAP272 Cysteine metabolism 11 11 11
11 MAP290 Valine leucine&isoleucine biosynthesis 6 6 6
12 MAP400 Phenylalanine tyrosine&tryptophan biosyn 12 12 11
13 MAP430 Taurine&hypotaurine metabolism 12 12 11
14 MAP450 Selenoamino acid metabolism 12 12 11
15 MAP460 Cyanoamino acid metabolism 14 14 8
16 MAP472 D-Arginine&D-ornithine metabolism 9 6 6
17 MAP511 N-Glycan degradation 9 9 8
18 MAP512 O-Glycans biosynthesis 15 15 13
19 MAP522 Erythromycin biosynthesis 5 5 5
20 MAP532 Chondroitin Heparan sulfate biosynthesis 12 12 10
21 MAP533 Keratan sulfate biosynthesis 17 17 10
22 MAP580 Phospholipid degradation 10 9 9
23 MAP601 Blood group glycolipid biosyn lact series 12 11 11
24 MAP603 Globoside metabolism 17 17 16
25 MAP630 Glyoxylate&dicarboxylate metabolism 14 11 11
26 MAP631 1-2-Dichloroethane degradation 8 8 8
27 MAP632 Benzoate degradation 14 10 10
28 MAP680 Methane metabolism 16 16 11
29 MAP720 Reductive carboxylate cycle CO2 fixation 11 11 11
30 MAP740 Riboflavin metabolism 10 10 7
31 MAP760 Nicotinate&nicotinamide metabolism 10 10 6
32 MAP780 Biotin metabolism 6 6 5
33 MAP900 Terpenoid biosynthesis 11 9 8
34 MAP950 Alkaloid biosynthesis I 7 7 7
35 MAP3030 DNA polymerase 6 6 6
36 PYR-HG-U133A probes 10 10 10
37 ROS-HG-U133A probes 9 9 9
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definite. We then apply the algorithm of Higham [152], found in the R library Matrix, to

produce a positive definite correlation matrix that is ‘close’to the original thresholded net-

work. Of course, in making this transition the algorithm will introduce bias into the value

for ΩNormal. Using this biased estimate, the thresholded entries in ΩNormal should remain

close to zero. We then draw samples of size 17 from a multivariate normal distribution,

using this biased estimate, to simulate resampling from the null distribution. Based on this

resample we produce a thresholded estimate for Ω∗
Normal, where Ω∗ is the common notation

for a resampled observation. The first approach is comparable to a parametric bootstrap.

In the second case, we adopt a more straightforward approach to resampling. Here, we re-

sample, with replacement, from the original 17 normal samples. This allows us to produce

a series of Ω∗
Normal resamples. Admittedly, this approach does violate the spirit of a true

one-sample test. But, if historical normal samples are available then these samples can be

used to generate a null distribution for ΩNormal. These estimates may provide a more scien-

tifically defensible estimate for the normal network, avoids the bias introduced through the

use of a near-approximation algorithm (or other mathematical model of unknown or suspect

quality), and can result in a more meaningful estimate of network variation based on small

sample sizes. The second approach, while conditional on the observed data, does not impose

the constraints of a physical parametric model. The R code for both of these analyses can

be found in appendix B under the DM2-Normal heading.

Results

Correlation networks can be either weighted or unweighted. Of course, by definition the

presence of an edge is correlated with its correlation estimate. In defining D, we purposely

constructed the metric so that the various components could be used in an á la carte manner.

We illustrate a test of H0 : ΩDM2 = ΩNormal versus H1 : ΩDM2 ̸= ΩNormal for a ρ-threshold of

0.2, 0.35, 0.5, 0.65, and 0.8. 1,000 resamples, using the two resampling procedures discussed

in the previous subsection, were used to form the null distribution for D. Large values of D
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suggest that we reject H0.

We begin by examining the observed p-values produced under several scenarios. Assuming

that a correlation network is intrinsically weighted, we wish to learn whether or not the

edge indicator portion of D is informative. We also want to inspect the effect of includ-

ing/excluding the nearby neighbor information in the computation of D. The first situation

can illustrate the (potential) redundancy of information in computing D; the second case

investigates the role of the neighboring information for a pairwise correlation network. P-

values were produced for the 37 gene sets listed in table 2.1. For figure 2.4, a threshold of

ρ = 0.5 was used to estimate the correlation network Ω. In this case, to determine the null

distribution for D we only resampled from the original 17 normal tissue samples. Compa-

rable results were obtained under the other resampling scheme and have been omitted for

brevity.

Figure 2.4 illustrates the estimated p-values under various scenarios. In panel (a) we see

that, while including the neighboring information per the original definition of D, includ-

ing/excluding the edge indicator portion of D does not impact the resulting p-value in a

substantial manner. This is not unexpected for a correlation network. Panel (a) suggests

that we can safely remove the edge indicator portion of D when examining a correlation

network similar to those analyzed here. Panels (b) and (c) graph the relationship between

the p-values obtained using the neighboring information, with and without the edge indi-

cator portion, to those p-values obtained using only weights incident to the targeted node.

The x-axis in both of these panels reflect the p-values that would be obtained should one

elect to use the total sum of an element-wise L1-norm to test for the equality of two (thresh-

olded) correlation matrices. Since pairwise correlations do not necessarily suggest a rich

relational structure among a family of nodes, these results are not entirely unexpected. The

relatively small number of nodes also limits the opportunity to see a high degree of clus-

tering/block model structure in these data. But, these results are in direct contrast to the

earlier simulation results for Erdős-Rényi G(n, p) random graphs. In particular, panel (b)

suggests a potential loss of power is incurred when the neighboring information is included
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Figure 2.4: The 37 resample p-values for the gene sets analyzed. The correlation threshold
was held at 0.5 throughout. The network weights (e.g., cij = ρ̂ij) were used in all cases. The
resampling was performed using Ω∗

Normal estimates based on the 17 normal tissue samples.
Edge/no edge indicates the inclusion/exclusion of the edge indicator portion of D. Neigh-
bor/no neighbor indicates the inclusion/exclusion of those nodes whose path length is 2 from
the target node. Panel (a) illustrates the strong correlation between the two p-values regard-
less of the edge indicator portion. Panels (b) and (c) demonstrate a conservative upward
shift in p-values relative to those produced excluding the neighboring information.
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in the calculation of D. Again, the true null/alternate state is unknown for these data. To

explore/validate this phenomena, and to establish a simulation framework for use in the

two-sample case, we will momentarily present additional simulation work on this topic.

We now turn our attention to the two resampling procedures under a variety of thresholds.

As ρ approaches zero we will be confronted with a more (potentially ill-conditioned) dense

correlation network; as ρ nears one we will have a more sparse (perhaps nonexistent) network.

Table 2.2 contains the resampled p-values under 10 situations - each of the two resampling

methods are combined with ρ thresholds of 0.2, 0.35, 0.5, 0.65, and 0.8. In contrast to the

previous results, the edge indicator portion was excluded throughout and the neighboring

information was included throughout. We have resorted to presenting these data in tabular

form since a variety of comparisons are possible.

We begin by noting that when ρ = 0.2 the difference in the observed p-values between

the two resampling procedures is not dramatic. Viewing each set of p-values as a paired

observation, the average difference between the two resampling methods, i.e., (0.2P − 0.2R),

was equal to -0.04. When ρ ̸= 0.2 no such summary statistics are necessary. A visual

examination of the table reveals that the resample p-values based on the positive definite

approximation to the correlation matrix were uniformly less, in many cases dramatically

less, than the p-values produced by the observation-level resampling procedure. Among

the ρP p-values, setting ρ equal to 0.65 produced the largest number of p-values less than

a nominal α level of 0.05. But, when ρP is set to 0.8 the p-values cluster about 0 and

0.5. Although not carefully illustrated here, examining the pairwise correlations within a

resampling method also yields insight. The pairwise correlation estimates between 0.2P and

0.35P , 0.5P , 0.65P , and 0.8P are 0.863, 0.407, 0.180, and 0.296, respectively. But, when we

calculate the pairwise correlation estimates for 0.8P and 0.2P , 0.35P , 0.5P , and 0.65P , we find

corresponding estimates of 0.296, 0.277, 0.314, and 0.332, respectively. A similar pattern

was noted for the ρR correlation network p-values. In general, within a resampling method

the p-values tended to correlate when the correlation network was more dense. For sparse

networks induced by a large threshold ρ, the p-value correlations were noticeably weaker.
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Table 2.2: The 37 resample p-values for the gene sets analyzed. The number is the threshold
for ρ. P uses the positive definite approximation to ΩNormal for the resamples. R uses
resamples from the 17 normal samples to determine ΩNormal.

Set 0.2P 0.2R 0.35P 0.35R 0.5P 0.5R 0.65P 0.65R 0.8P 0.8R

1 0.226 0.318 0.154 0.38 0.132 0.828 0.049 0.579 0.5015 0.6285
2 0.364 0.499 0.251 0.607 0.137 0.608 0.286 0.734 0.402 0.445
3 0.237 0.328 0.27 0.599 0.072 0.574 0.538 0.7345 0.5 0.534
4 0.027 0.051 0.177 0.455 0.49 0.809 0.001 0.635 0.5 0.737
5 0.574 0.559 0.435 0.644 0.338 0.761 0.065 0.609 0 0.532
6 0.127 0.269 0.249 0.588 0.2595 0.915 0.1355 0.6785 0.4995 0.662
7 0.199 0.193 0.101 0.122 0.128 0.115 0.0705 0.7345 0.4995 0.7765
8 0.857 0.795 0.823 0.901 0.473 0.902 0.2675 0.8925 0.5005 0.7605
9 0.318 0.396 0.29 0.49 0.411 0.879 0.026 0.68 0.501 0.746
10 0.104 0.209 0.208 0.522 0.067 0.584 0.239 0.97 0.031 0.387
11 0.079 0.141 0.081 0.139 0.11 0.431 0.096 0.575 0 0.264
12 0.23 0.262 0.238 0.443 0.195 0.804 0.018 0.696 0.189 0.748
13 0.429 0.558 0.309 0.782 0.163 0.705 0.219 0.963 0.503 0.7305
14 0.398 0.384 0.247 0.554 0.271 0.874 0.024 0.648 0.5025 0.722
15 0.57 0.526 0.281 0.569 0.3 0.808 0.128 0.686 0.501 0.7585
16 0.948 0.914 0.938 0.916 0.963 0.948 0.791 0.839 0.78 0.662
17 0.224 0.299 0.216 0.58 0.124 0.677 0.417 0.6995 0.5005 0.786
18 0.142 0.268 0.138 0.613 0.034 0.673 0.005 0.827 0.503 0.7505
19 0.172 0.101 0.045 0.081 0.069 0.254 0.1935 0.5595 0.4995 0.6295
20 0.175 0.28 0.482 0.726 0.336 0.882 0.099 0.933 0.5025 0.7185
21 0.344 0.481 0.463 0.861 0.288 0.943 0.2755 0.9055 0.501 0.725
22 0.221 0.344 0.184 0.484 0.008 0.271 0.572 0.975 0.5 0.681
23 0.41 0.451 0.348 0.571 0.013 0.588 0.3725 0.913 0.501 0.6755
24 0.829 0.758 0.759 0.92 0.076 0.88 0.027 0.84 0.5015 0.77
25 0.032 0.084 0.14 0.276 0.202 0.622 0.308 0.801 0.148 0.8825
26 0.024 0.027 0.171 0.473 0.508 0.797 0.005 0.619 0.4995 0.7365
27 0.445 0.418 0.548 0.515 0.254 0.812 0 0.735 0 0.385
28 0.183 0.193 0.065 0.319 0.006 0.337 0 0.286 0.502 0.794
29 0.006 0.028 0.022 0.085 0.095 0.459 0.553 0.83 0.234 0.938
30 0.179 0.257 0.081 0.231 0.129 0.583 0.003 0.544 0 0.12
31 0.149 0.294 0.298 0.581 0.345 0.899 0.525 0.869 0.499 0.6175
32 0.342 0.323 0.149 0.451 0.286 0.67 0.5175 0.643 0.4995 0.519
33 0.541 0.491 0.505 0.802 0.186 0.835 0.099 0.768 0.5005 0.5945
34 0.412 0.352 0.434 0.666 0.2435 0.6965 0.1275 0.486 0.5005 0.7265
35 0.568 0.627 0.512 0.877 0.3025 0.707 0.5265 0.9025 0.4995 0.6
36 0.217 0.247 0.276 0.524 0.173 0.75 0.008 0.552 0.0965 0.5755
37 0.156 0.195 0.297 0.658 0.293 0.756 0.3535 0.822 0.5015 0.683
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Finally, to return to the biological question at hand, we would like to locate suspect pathways

that could allow us to differentiate between DM2 and normal tissue samples. We omit the

0.8P and 0.8R results. Such a high threshold did not produce interesting networks; the

p-values were noticeably discordant between the two resampling procedures and clustered

about 0, 0.5, or 0.7. Gene sets 7, 8, 10, 11, 16, 19, 24, 28, and 29 were selected for one of two

reasons. The p-values were either relatively low (less than 0.2) or relatively high (greater

than 0.8). Within a resampling method, these pathway p-values were either consistent for

various values of ρ or exhibited a noticeable change in p-value. Adjusting the p-values for

the presence of multiple tests between the two phenotypes was not performed. We have

provided below the estimated correlation networks for the two phenotypes for a single gene

set. The MAP290 gene set produced p-values less than 0.15 for the P and R conditions

less than or equal to 0.35. MAP472 produced p-values greater than 0.9 under the same

four conditions. These are reproduced here to allow the reader to visualize the similarities

and differences between the two phenotype networks. The MAP720 gene set produced even

smaller p-values (less than 0.085 for the 4 just-cited conditions); but, the size of this gene

set was almost twice the size of the MAP290 gene set. The MAP290 gene set will be used

later to demonstrate a post hoc testing procedure.

11 - MAP290 Valine leucine & isoleucine biosynthesis: Normal (left), Diabetic (right)

. 0 0 0 0 0

0 . 0.53 0.59 0.59 0

0 0.53 . 0.73 0 0

0 0.59 0.73 . 0.86 0

0 0.59 0 0.86 . 0

0 0 0 0 0 .





. 0 0 0 0 0

0 . 0 0 0 0

0 0 . 0.81 0 0

0 0 0.81 . 0 0

0 0 0 0 . 0

0 0 0 0 0 .
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16 - MAP472 D-Arginine & D-ornithine metabolism: Normal (left), Diabetic (right)

. 0.62 0.61 0.56 0.6 0.52

0.62 . 0.99 0.98 0.97 0.94

0.61 0.99 . 0.98 0.97 0.95

0.56 0.98 0.98 . 0.97 0.97

0.6 0.97 0.97 0.97 . 0.96

0.52 0.94 0.95 0.97 0.96 .





. 0.63 0.62 0.64 0.57 0.54

0.63 . 0.99 0.97 0.98 0.94

0.62 0.99 . 0.97 0.96 0.95

0.64 0.97 0.97 . 0.98 0.96

0.57 0.98 0.96 0.98 . 0.94

0.54 0.94 0.95 0.96 0.94 .



The previous correlation network results for the biological data were mildly surprising. Un-

like the earlier G(n, p) comparison the use of the neighboring information appeared to be

detrimental to the performance of D. Since measured data across a disparate family of gene

networks for two phenotypes is difficult to control, we more closely examined this situation

with simulated data. We still test a hypothesis of the form H0 : Ω = Ω0 versus H0 : Ω ̸= Ω0;

but, we exercise careful control over the alternate hypothesis. Given the large number of

possible parameters to vary, e.g., sample size, threshold ρ, the number of nodes in the net-

work, etc., our choice of simulation parameters is admittedly subjective. Trial-and-error was

used to investigate the available parameter space; we ultimately selected a set of parameters

to present here that best represents our consistent findings.

We assume that our observation data is multivariate normal where the covariance matrix is

equal to its correlation form, i.e., xi ∼ N(0,Ω). We fixed the number of nodes at 30, the

threshold for ρ at 0.2, and created a block diagonal structure as the basis for a correlation

network. We elected to partition our network into 6 equal blocks where each block contained

5 nodes. A sample rejection scheme was used to insure that the magnitude of all the entries

in each block correlation sub-matrix exceeded the threshold ρ. The same ρ was used in both

the data generation model and as the threshold for determining the correlation network. As

in the normal/DM2 case, we assume a balanced sample size of n1 = n2 = 200. The sample

size is admittedly large; but, we purposely wished to avoid the n≪ p case and focused on the

‘large’-sample behavior of D. We revisit the sample size topic when we discuss the algorithm
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used to infer a network in the two-sample comparison. In order to simulate the alternate

case 10% of the blocks in each 30x30 correlation matrix, with a minimum of at least one

block per experiment, were varied between the normal and DM2 samples. A random number

generator was used to determine whether or not an individual 5x5 block should vary between

the two phenotypes. A total of 100 experiments were performed and 1,000 resamples were

used in calculating each p-value.

Apart from the need to create correlation forms for Ω and data under both H0 and H1, the

resampling approach is largely identical to the setup used in the G(n, p) simulations in this

same section. An outline is provided below.

1. Under H0, use Ω0 to create a random sample. Under H1, create a suitable Ω and

generate a random sample using this correlation form. These data, in either the H0 or

H1 situation, will be used to generate the observed network.

2. Estimate Ω using the sample data (i.e., apply the threshold ρ to create a correlation

network) and compare this to Ω̂0 using D. To more closely mimic the earlier nor-

mal/DM2 comparison, we use an estimate for Ω0 despite our explicit knowledge of

Ω0. As before, D only included the weight portion of D due to the fact that large

correlations correspond to an edge in the graph.

3. Determine the null distribution for D using the 200 ‘normal’samples to create a series

of Ω∗
0 for a fixed ρ. The sampling is performed with replacement. (The positive definite

algorithm also applied to the DM2 data was not evaluated here. A different resampling

mechanism is used in the two-sample comparison.)

4. Compare the initial calculated value for D to the null distribution of D based on the

resamples to generate a p-value. Large values of D suggest that we reject H0.

5. (In chapter 4 we outline a post hoc procedure that reuses the resamples to calculate

node-level effects. If required, this step is performed here using interim calculations

from the resamples.)
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Disregarding the amount of time necessary to tune the simulator via various parameter

settings, the execution time for the set of 100 experiments using 1,000 resamples was on

the order of 1-2 hours on a standard 2-3GHz personal computer. Refer to the R code Corr-

Threshold-H0-H1 in appendix B for a complete listing.
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Figure 2.5: The 100 resample p-values of H0 : Ω = Ω0 versus H1 : Ω ̸= Ω0. These simulations
investigate the inclusion/exclusion of the neighbors in the calculation of D for a correlation
network under H1.

We began by examining the p-values under an assumed null model to gauge the Type I error

rate. The distribution of p-values, both with and without the neighboring information, had

less mass at the extremes of the range of valid p-values. Evaluating the Type I error rate

using the a priori samples resulted in a conservative Type I error rate when n1 = n2 = 100

and an inflated error rate when n1 = n2 = 2,000. When the a priori sample size was a

factor of 10 larger than the n = 200 sample size for the observed sample the distribution

of p-values resembled a uniform distribution. These results suggest caution when trying to

determine a null distribution forD using a finite set of a priori samples. Figure 2.5 graphs the
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p-values obtained from the 100 experiments under the alternate hypothesis. These results

are in agreement with the earlier results based on actual biological data. The use of the

neighboring information (i.e., cij = ρ̂ij), for correlation networks of the type(s) explored

here, detracts from the ability of D to reject the null hypothesis. Given the stark differences

in the random mechanisms present in a G(n, p) random graph and a Ωρ correlation network,

the impact of the network model is definitely apparent in the performance of D.

2.4 Discussion

In contrast to the subsequent chapters, there are numerous items to discuss. In order to make

these items manageable we have characterized the discussion into 4 sections. The first section

will discuss the motivation for using an additive decomposition. We then make the case for

using neighboring information in the calculation of D. The third section details weighting,

normalization, and standardization concerns. We conclude with a section comprised of

miscellaneous items.

2.4.1 Additive Decomposition

The original inspiration for D is rooted in a question that has been used to motivate the

notion of fractal dimension, “How long is the coast of Britain?”Given the irregular or rough

appearance of modest-sized biological networks we originally hoped to apply the notion of

a fractal dimension to reflect the dissimilarity between two graphs. A parallel to fractals

was not entertained in an attempt to indulge in exotica. Self-similarity and scale-invariance,

terms also applied to networks, are intrinsic to fractals. The following two passages contain

definitions associated with fractal dimension and are from Cutler [120].

Packing dimension: Let E ⊆ RN and ϵ > 0. An ϵ-packing of E is a countable collection

of disjoint closed balls {Bk}k such that, for each k, Bk is centered at a point xk ∈ E and
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diam(Bk) ≤ ϵ. For each α > 0 the packing α-premeasure of E is then defined to be

Pα
0 (E) = lim sup

ϵ→0

{∑
k

(diam(Bk))
α|{Bk}k is an ϵ-packing of E

}
.

The supremum is taken over all ϵ-packings of E.

Pointwise dimension: Another way to associate dimension with a probability measure µ is

to examine its local scaling behavior. Roughly speaking, µ should be said to have dimension

α(x) at the point x if the mass µ(B(x, ϵ)) ∼ ϵα(x) as ϵ → 0. The α(x) notation emphasizes

that the scaling behavior can vary from point to point. The lower pointwise dimension of µ

at x is defined to be

α−
µ (x) = lim inf

ϵ→0

log µ(B(x, ϵ))

log ϵ
.

Replacing lim inf by lim sup gives the corresponding definition for an upper pointwise di-

mension.

Networks, which we assume to represent constructs of high dimension, are not the familiar

planar representations of fractals or oddities such as the Cantor set. But, a moment of

reflection suggests that a set/neighborhood decomposition, where both the measure and the

ϵ-radius of Bk can vary from point to point, combined with a Riemann-like sum (used to

measure areas, volumes, and arc-lengths) could serve as the basis for a topological comparison

of networks.

We chose to center our set/neighborhood on nodes and not edges. This avoided the com-

binatorial complexity of a possible
(
n
2

)
edges. The choice also facilitated individual gene-

or protein-based post hoc tests - a point of practical relevance for biologists. The radius of

Bk is debatable; we have little interest in ϵ → 0 concerns due to the discrete nature of a

graph. But, as Bk grows our neighborhoods become less disjoint. This could suggest ques-

tions surrounding the ‘optimal’tiling or partition for a network. A local set/neighborhood

limits the number of relational features to examine in a network comparison, similar to the

use of 3- and 4-node motifs, and operates as a local residual. We elected to not extend the

set/neighborhood beyond a path length of 2 between two nodes for two primary reasons.
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First, this is the minimum distance needed to capture the most basic feedforward/feedback

loop. Second, given the potential for cyclic biological graphs, this is the minimum distance

that will not allow a path to revisit the node at the ‘center’of the set/neighborhood. Due to

the assumed sparse nature for many biological graphs, a small set/neighborhood radius can

accommodate both hubs and proteins with few network neighbors.

A network comprised of inhomogeneous subgraphs could be viewed as a mixture model.

A local set/neighborhood should better reflect an inhomogeneous/mixture structure. Sim-

ilar to autoregressive and spatial correlation models and kernel density estimators, empha-

sizing small distances in place of large distances (e.g., giant/diameter measures or aver-

age path lengths involving distant nodes) requires fewer assumptions. Of course, a local

set/neighborhood is unlikely to characterize the entire joint distribution for a network and

could be more cumbersome to translate into (or tend to overspecify) parametric hypotheses.

For communication or epidemic networks, where the dynamics and interesting phenomena

assume a different form, such an assumption may prove faulty.

Practitioners, such as biologists and zoologists, having a growing awareness of the interplay

between the complexities associated with the notions of distance/similarity and a particular

biological application, e.g., see [111, 114]. Choosing a suitable distance is not a trivial mat-

ter, e.g., see [51], and benefits from the input of domain experts. Krzanowski [112], in his

development of a population distance, admits the intrinsic difficulty when comparing data

types comprised of quantitative and qualitative factors. Mukherjee et al. [79] admit the

need for fixed/absent edges in biological networks in their network inference approach using

informative priors. Understanding which quantities are stochastic, edges and/or weights,

is a nontrivial problem and a measure of dissimilarity needs to be flexible and account for

this uncertainty. Banks et al. [52] document a case where a metric suitable for a cluster-

ing application is not as appropriate in a phylogenetic inference problem. Draghici et al.

[75], in an analysis of differential gene expression levels for pathways, develop a measure

that attempts to move beyond model-specific quantities and better reflect meaningful bi-

ological interdependencies. In their systems biology approach, the measure of a pathway
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integrates fold changes with the number of up- and downstream genes weighted by ±1 for

induction/repression changes. See [76] for another example applied to gene expression lev-

els based on a molecular connectivity concept from chemoinformatics. While admitting the

potential need for such complexity, we purposely allow for D to be defined by edges without

specifying strict models governing their formation.

The simplicity of our approach also parallels global network alignment scoring schemes,

e.g., see Singh et al. [80]. Diaconis et al. [127], with an emphasis on phylogenetic trees,

outline the use of matching as a way to induce a distance for comparing trees. Here, our

use of aligned nodes greatly simplifies the task of forming a ‘neighborhood’for an inferential

comparison of networks. The Hamming distance may not present tremendous theoretical

complexities; but, its use for comparing networks is common and can be easily tailored to

accommodate loops and asymmetric adjacency matrices [50, 51, 52, 54]. Forst et al. [192]

apply routine set algebraic operations, e.g., union, intersection, and (strict and symmetric

set) difference(s), in their revealing analysis of metabolic networks. Xulvi-Brunet et al. [191],

in a paper published in early 2010, proposed a bootstrap degree of similarity to compare two

probabilistic networks using union and intersection operations. Accommodating isolates,

a problem for tree-based metrics, is necessary for sparse biological networks. Berg et al.

[131], in addition to link scoring, also outline a node scoring approach in their cross-species

comparison.

An additive, or decomposable, measure allows for tailoring to reflect meaningful biological

comparisons. For example, perhaps the biologist is most interested when the sign of a

correlation changes between the observed and assumed network. This is analogous to up- to

down-regulated expression changes. Trusina et al. [81] modify a L1-based edit distance for

unweighted binary networks using signaling logic in protein networks. Since the regulation of

a protein by another may be positive through one set of edges and negative through another

set of edges they decomposed the protein network into two matrices to compute a signaling

distance. Extending D to (partially) directed networks is also possible. A node-centric

measure can easily be modified to include non-relational data, e.g., attribute data such as
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average transcription levels measured at each node.

We have not established whether or not D is a norm. At present, we do not have cause

to view this as a drawback. Given a natural lack of a unique well-ordering for a set of

graphs, the need for a triangle inequality (and the associated geometrical implications) is

unclear. Given the potential for partially weighted or directed graphs, tailoring D to reflect

the diversity in observed graphs and to qualify as a proper norm is an ambitious goal.

(Dis)similarity measures are common to cluster analyses. See Huttenhower et al. [194]

for a software algorithm for clustering expression data based on gene neighborhoods. At

present, we know of no reason to prohibit dissimilarity-like measures as test statistics. As

a minor point, in forming a local set/neighborhood we do not rely on matrix subtraction

to be meaningful. Subtracting adjacency matrices is unlikely to obey closure properties for

an arbitrary family of graphs; the matrix representation is merely a convenient vehicle to

visualize the graph. Myopic local comparisons limit the necessary topological questions,

“Are these edges incident? Does this pair of weights differ?”

2.4.2 Incorporating Neighbors

The motivation to include nearby neighbors in the dissimilarity measure was driven by several

obvious facts. Any neighborhood centered at a connected vertex will include its immediate

neighbor(s). To center a neighborhood on an edge will include multiple vertices. Incorporat-

ing neighboring information might sound intuitively obvious to a systems biologist. A not

insubstantial amount of literature exists suggesting this very fact. Huang et al. [77] docu-

ment the benefits of a network (or neighboring information) approach to the classification

of breast cancer metastasis. De la Fuente et al. [172], in using partial coefficients to explore

genomic data, restrict the number of genes used to condition on - they found that more is

not always better. Chua et al. [176] use level-1 and level-2 neighbors to predict protein

function using protein-protein interaction data. Mazurie et al. [78] analyze the metabolome

via a set of overlapping metabolic pathways to suggest the origin of metabolic networks and
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species phylogeny. Despite our avoidance of metabolic systems and phylogenetics, the use

of neighboring information is not revelatory. Zhang et al. [165] use a weighted topological

overlap measure to define gene modules via a clustering approach for correlation networks.

Li et al. [177] present a multi-node topological overlap measure that generalizes pairwise

similarity measures to one based on shared neighbors. Reddy et al. [82] use a local pair-

wise sequence similarity measure combined with other traditional graph measures, e.g., a

weighted clustering coefficient, to predict transcription factor binding sites. Song et al. [84]

use a neighborhood correlation measure, mathematically patterned after the definition of

correlation coefficient, to address the problem of homology identification in complex mul-

tidomain families. Chen et al. [86], in an effort to predict protein interactions, exploit

the local clustering observed in these networks to suggest a triplet-based score in place of

a pairwise-based score. But, Notebaart et al. [85] suggest that network distance, per se,

has a relatively minor influence on gene coregulation. Opgen-Rhein et al. [174] use partial

variances to suggest directed acyclic causal networks as a subgraph of a partial correlation

network. In light of these references, extending the simplicity of a Hamming distance to

weighted networks appears far from revolutionary.

The role of a neighbor may extend beyond relational ties and include attribute information.

For example, a reasonable conjecture for some biological processes is that a chemical property

or structural form present at a node might contribute to an internodal dependency. Another

area that has been rigorously tackled by mathematicians regards the dynamics of a graph

relative to the number of nodes [90, 91]. As the number of nodes increase the properties of a

graph can change; similar to phase transitions in thermodynamics the emergence of a giant

component in graphs is being actively studied. The prevalence of incorporate neighboring

information is clear; the question of, “But how far do we go?”is less clear. The benefit of

sparsity in high dimensional inference, e.g., see Bickel et al. [200], suggests that we limit the

amount of information incorporated.
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2.4.3 Tipping the Scales

Despite the simplicity of D questions can arise relative to the importance (and weighting)

of its constituents. For a binary labeled graph one can question the extent to which a

significant finding is determined by a node’s immediate neighbors or its neighbor’s neighbors

relative to the subjective weight used. This question, which bears some resemblance to

defining a suitable prior in Bayesian methods, is addressed via a robustness study later in

this dissertation. Interdependencies are intrinsic to networks. Just as partial correlations

were developed to better reflect complex structures, emphasizing only pairwise phenomena

(e.g., correlation coefficient) may not be sufficient for rich network models. We recommend

that the researcher explore the performance of D while considering the problem at hand. For

example, we demonstrated earlier that for our biological correlation networks the inclusion

of the edge portion of D was uninformative. We demonstrate the role of various cij weights

in a comparison of Erdős-Rényi random graphs in a later chapter.

For weighted graphs, the emphasis of this dissertation, the selection of the weight constant cij

was motivated by the idea of conditional probabilities. Let A and B represent two adjacent

edges. If we assume that information flows through their common vertex, i.e., a conditional

dependence is present, then the basic P (A ∩ B) = P (A|B)P (B) equality may not hold

exactly; but, it is reasonable to assume that some form of proportionality regarding the

state of B is meaningful to A. We admit that this is a heuristic argument; but, comparable

to gravity it seems plausible to assume that the force two objects exert on one another is

proportional to their proximity. Not to be overlooked, the preferential attachment model

assumes that new edges are formed at a node conditional on the existing number of edges at

that node. In retrospect, the idea of a Markov random field, where a node is conditionally

independent of all but its immediate neighbors, appears to be a restrictive assumption.

The notion of weighting overlaps the previous discussion on the use of neighbors. In addition

to the references cited there, Gower [110], in outlining a similarity coefficient for mixed data,

concedes that weighting components of a measure is a challenging problem. Incidentally,
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Gower’s similarity coefficient integrates a scaling component. Investigating the sampling

variability of a measure, e.g., Gower’s coefficient, is of obvious interest to the practitioner

and can be used to evaluate a weighting scheme [113]. Berg et al. [131] use diffusion-like

processes to model the formation of links in their Bayesian alignment approach to cross-

species analyses. Wei et al. [180] attach gene-specific prior probabilities, where neighboring

genes share similar prior probabilities, in formulating a statistical test for genomic data using

a spatially correlated mixture model. Banks et al. [52] are direct in stating that weights

be chosen to reflect the practitioner’s appropriate sense of distance; they also cite the ten-

sion between easy-to-calculate distances and an easy determination of a central graph or

a network’s ‘neighbor’. Li et al. [196] support the use of compound- and enzyme-specific

weights in their similarity measure to identify and rank metabolic pathways. Ashyraliyev et

al. [195] found that quantitative parameter estimates were generally unreliable in modeling

gap gene circuits for Drosophila; but, it was still possible to infer reliable qualitative net-

work topology estimates for the regulatory circuit. In addition to suggesting a benefit from

separate edge and weight components for D, this finding causes one to consider a relative

weighting scheme, e.g., edge differences are more influential relative to weight differences, in

the presence of modeling uncertainty. Is the likelihood of an edge strongly dependent on the

value of a weight or is the weight dependent on the presence of an edge? We do not have an

answer to a question that is ultimately rooted in biology.

The idea of normalizing or scaling portions of D is likewise complicated. Unlike traditional

normalization procedures in statistics, which render scale-invariant statistics or allow for

closed-form derivations, the use of normalization techniques in the analysis of networks is

far from straightforward. Gao et al. [76] allow for hubs to exert an unequal influence, i.e.,

node level effects are not standardized. Given a crude similarity between our approach and

total sums of squares and variable ranking procedures in regression modeling, we allow for

hubs (i.e., ‘large degree of freedom’tests) to exert a large influence in a comparison of net-

works. Ivanic et al. [197] found that the likelihood of an interaction between two proteins

was generally related to the numerical product of their individual interaction partners. This
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degree-weighted behavior was noted for all but the network hubs. Li et al. [196], in em-

ploying Z-like scores to perform a comparative analysis of interspecies metabolic pathways,

standardize their similarity measure. Yip et al. [193] normalize their generalized topological

overlap measure to take a value between 0 and 1. If one chooses to normalize the portions of

D at each node by some topological property then one has to justify the choice of the scaling

factor. Does one scale by the node’s degree, a weighted degree, a clustering coefficient, etc.?

For directed networks does one scale by the in-degree or the out-degree at a given node?

Does one scale by the normalized strength of a neighbor, a reliability or fitness index (per-

haps a function of the sample size), or by sequence or functional similarities? Rather than

engage in speculative actions in the additional use of weighting, scaling, or normalization

procedures, we elected to evaluate D in its most plain form. Should extreme conservatism

rule the day, one can always choose to set cij = 0 and exclude the neighboring information.

2.4.4 Miscellany

Our choice of network architectures to explore was admittedly limited. We were largely

motivated by computational expediency, an ability to explore and contrast commonly used

parametric models, and to examine canonical structures (e.g., Erdős-Rényi random graphs).

Estimating gene/protein networks is, at present, an inherently imprecise process. Incorpo-

rating an a priori network architecture, even for a differential expression study, is difficult.

Online databases or catalogs can be unwieldy, their gene/protein/metabolite representations

can be confusing to a sporadic user, the tools may be designed by bioinformaticians or com-

puter programmers and are generally intended for use by biologists, vary in terms of quality,

vary in terms of what can be electronically extracted, etc.

Relying on a resampling approach to specify the null distribution for D lacks theoretical

elegance. Unfortunately, n ≪ p experimental studies are still the norm in many -omics ap-

plications; these studies limit our ability to use traditional large-sample testing procedures.

As mentioned earlier, many of the gene sets in the Mootha et al. study [153] contained
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hundreds of genes. The current trend in assay platforms is likely to continue to increase

the width of data while overlooking the limited availability and cost of samples. Given the

tremendous amount of research devoted to the analysis of n ≪ p data, from improved esti-

mators to multiple comparison procedures to H0/H1 mixture models, it seems permissible to

rely on the information present in the actual data at-hand rather than emphasizing precise

mathematical models. Between state-space models, graphical models, Bayesian networks,

and other mathematical creations, the application of select mathematical forms to model

networks may currently be more a matter of convenient application rather than of biologi-

cal or first principles relevance. We acknowledge that a reliance on a priori samples or an

assumed model to generate a null model for D is restrictive; but, in the absence of distri-

butional models or derivations for network-related statistics we know of no other obvious

recourse. In fact, we attempt to translate this weakness into a strength in the development

of a two-sample procedure.

We are conflicted about high dimensionality concerns regarding D as a statistical estimator.

This directly relates to using all of the elements in the adjacency matrix in calculating

D. One could reduce the variance of D by examining the maximum deviation measured

at a single node or subnetwork. But, if this is the researcher’s intent then he only wants

the simplest of network comparisons. Large network comparisons are likely to be costly

in terms of data. The literature on the analysis of large networks, with their emphasis on

topological properties, imposes a vast reduction in network complexity via the number of

assumed parameters.

Finally, we have not emphasized familiar statistical concepts such as confidence intervals.

Thorne et al. [189] proposed a method to generate confidence intervals for network-related

correlations and motif-abundances taking into account the degree sequence as well as avail-

able biological annotations. In using the Saccharomyces cerevisiae protein interaction net-

work as a test vehicle, their approach reinforced the complexities in defining a suitable null

network model for a complex biological process. Given our reluctance to assume a network

model outside of narrow confines, classical Pθ0(|θ − θ0| ≥ c) < 1 − α confidence interval
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forms appear to be difficult to translate into the network environment. Banks et al. [52], in

their paper on metric models for random graphs, state that the size of a confidence region

is sensitive to the metric employed.



Chapter 3

Two-Sample Network Comparison

3.1 Transitioning from 1- to 2-Sample Comparisons

3.1.1 Problem

In the previous chapter we established the conceptual framework for our network inferential

strategy via a dissimilarity index D combined with a resampling procedure. We demon-

strated our approach for a one-sample network comparison. Of much more practical interest

are relative comparisons. Research clinicians and pharmacologists are keenly interested in

standard-of-care versus new treatment comparisons. Relative comparisons may even domi-

nate the study of complex scientific phenomena under experimental investigation. Therefore,

the need to support a two-sample comparison for networks is of obvious theoretical and prac-

tical interest. In the transition from one-sample problems, often of the form H0 : µ = µ0

versus H1 : µ ̸= µ0, to two-sample problems we can more easily draw on the established

framework of both parametric and nonparametric comparisons. In this chapter we outline

a procedure for testing H0 : η1 = η2 versus H1 : η1 ̸= η2 for a network setting and illustrate

our approach using a combination of simulated and real data.

110
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3.1.2 Motivating Application: Ovarian Cancer

Ovarian cancer is the foremost lethal neoplasm of the female genital tract. Chien et al. [158]

claim that the main reason for the high mortality rate is the lack of sensitive and specific

biomarkers and imaging techniques for the early detection of these cancers. Numerous studies

have been undertaken to improve our understanding of the pathogenesis of ovarian cancer. In

this portion of our dissertation we focus on three such recent studies [155, 157, 158]. In short,

these three studies explored the gene expression signatures of ovarian serous carcinomas

(SCAs) relative to serous borderline tumors (SBTs).

To distinguish our effort from the previous literature it is helpful to outline these studies.

In Sieben et al. [155] the researchers began from the premise that the mitogenic RAS-RAF-

MEK-ERK-MAP kinase pathway is crucial to the pathogenesis of SBTs based on mutation

rates in B-RAF and K-RAS relative to SCAs. Using Affymetrix focus array chips, they

performed mRNA expression profiling of 11 SBTs, 10 low-grade (SCA1), and 15 high-grade

carcinomas (SCA3) for over 8,000 genes. In addition to unsupervised hierarchical clustering,

a Global Test pathway analysis and significance analysis of microarrays (SAM) of the expres-

sion profiles was performed. After recovering the activated role of the mitogenic pathway

in SBTs, they uncovered that the activation of downstream genes involved in extracellu-

lar matrix degradation was absent due to the presence of the extracellular receptor kinase

(ERK) inhibitor Dusp 4 and the uPA inhibitor Serpina 5. In SCAs, this was associated with

downstream MMP-9 activation with both mRNA and protein data.

In De Meyer et al. [157], which builds on the work of Sieben et al. and is the basis of our

analysis here, the authors investigated the role of the E2F/Rb pathway in SBTs and SCAs.

E2F s are transcription factors involved in cell growth inhibition and apoptosis; but, they are

also involved in cell cycle progression and tumor growth. Examples of E2F targets include

TP53 and E2F1, suggesting the presence of complex feedback mechanisms. In addition to

performing a significance analysis of microarrays (SAM), they carried out a quantitative

reverse transcriptase PCR validation analyses for CCNE1, E2F1, E2F3, and CDKN1A, an
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Ingenuity Pathway Analysis confirming the involvement of E2F, and a mutation analysis of

exons 5-8 for TP53. The Ingenuity Pathway Analysis software was used as an exploratory

tool. Here, a set of differentially expressed genes are loaded into the application. The

gene identifiers are mapped to a proprietary ‘knowledge base’which is overlaid on a global

molecular network. Networks are then proposed using algorithms internal to the software.

The microarray data from this study was obtained from the Gene Expression Omnibus

website [150]. The authors recount a study stating that PI3K/Akt signaling distinguished

between the proliferative and apoptotic function of E2F1 ; they state that interpreting this

uncoupling is complicated by the interactions between the various E2F transcription factors.

We do not rigorously pursue this item here; rather, we mention this finding since it suggests

a role for covariation in understanding and interpreting complex biological function.

Chien et al. [158], using the Illumina Whole Genome DASL assay, measured the expres-

sion profiles of over 20,000 genes. Based on differential expression patterns, their MetaCore

pathway analysis (another proprietary integrated knowledge software tool used to identify

pathways significantly enriched with differentially expressed genes) demonstrated the signif-

icance of the p53 and E2F pathways in serous carcinogenesis and the involvement of cell

cycle, immune response, and hormone-related pathways in these cancers, e.g., the proges-

terone receptor (PGR) and CREB1 -mediated transcription networks. Apart from perform-

ing analyses comparable to the two previous studies, their results reinforced the role of E2F s

documented in De Meyer et al.

Our analysis here will not attempt to duplicate uncovering differences in gene expression

levels. Classification via clustering procedures and tests for shifts in location parameters

between phenotypes are de rigueur. The three studies cited here provide ample proof that

differential expression patterns vary between SBTs and SCAs. Here, we examine a small

subset of the available data to ascertain whether or not covariation patterns differ between

SBTs and SCA1s and between SCA1s and SCA3s. Our intent is two-fold. First, changes in

covariation patterns may assist the researcher in designing follow-up studies, e.g., genes to

target for RT-PCR, or suggest a novel biomarker test. Second, De Meyer et al. [157] cite
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literature suggesting that E2F s and their target genes have been associated with platinum

resistance and survival in SCA patients. (Chien et al. [158] also cite literature implicating

BIRC5 ’s role in resistance to chemotherapy and VCTN1 ’s association with a poor prognosis.)

Apart from differentiating SBTs and SCA1s, examining covariation patterns in SCA1s and

SCA3s may shed insight on responsiveness to chemotherapy agents or improve our ability to

better categorize SCAs.

Microarray Data

The microarray data analyzed here, obtained at the NCBI GEO database [150] via accession

GSE12471, was originally presented in Sieben et al. [155]. The procedures used to obtain

the samples, perform RNA isolation and cRNA synthesis, etc., can be found there. From the

original 38 surgically removed, snap-frozen tumor specimens the two micropapillary pattern

SBT samples were omitted from our analysis. The remaining panel included 11 SBTs, 10

grade I SCAs, and 15 grade III SCAs. The original study included nine technical replicates

(six of the replicates consisted of two sets from the same tissue sample and the remaining

three replicates were generated by splitting samples after extracting the total RNA). After

noting the tight clustering of the replicates the expression values of the replicates were

averaged.

Data preprocessing employed the robust multichip analysis (RMA) normalization procedure;

the normalized log2 transformed expression values were used in all of our analyses. De Meyer

et al. [157], as is customary, screened the original expression profiles to reduce the number of

genes examined. A detailed description of their data analysis can be found in the Supporting

Information (Supplementary Methods) of their paper. They also cross-referenced their E2F

target genes with two previous studies, Bracken et al. [154] and Bieda et al. [156]. Based on a

significance analysis of microarrays (SAM), 68 E2F target genes were differentially expressed

between SBTs and SCAs and were listed in Table S4 of the Supporting Information. 43 of

these genes were also classified by biological process in Bracken et al. [154]: 5 from the G1/S
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Table 3.1: Subset of genes analyzed categorized by Bracken et al. [154].

G1-S phase of the cell cycle MYBL2, E2F1, E2F3, CDK2, CDC25A
S-G2 phase of the cell cycle SMC4, CKS1B, PLK1, CDC20, CDC2,

CCNA2, NDC80, CKS2, AURKB, MKI67,
CCNA2-2, PRC1, KIF4A

Checkpoint MAD2L1, BUB1B, TTK, CENPE, BUB1,
BRCA2

DNA damage and repair RAD54L, FEN1, RAD51, BARD1, MSH2
DNA synthesis and replication PCNA, TOP2A, MCM3, MCM6, MCM2,

TK1, CDC6, RFC4, CDC45L, RFC3,
POLA2, CDC7, RRM2

phase of the cell cycle, 13 from the S/G2 phase of the cell cycle, 6 checkpoint genes (e.g.,

BRCA2 ), 1 development gene, 5 DNA damage and repair genes, and 13 DNA synthesis and

replication genes. Apart from the singleton subset, we estimated partial correlation networks

for each of the remaining 5 subsets. Due to the varying expression values among the three

phenotypes, the average for each gene was subtracted from each individual expression value.

Table 3.1 lists the genes examined in our analyses.

Our choice of which subsets to analyze was motivated by a desire to produce nontrivial

partial correlation networks that were biologically motivated. It is not our intent to criticize

or dramatically improve upon the author’s original gene selection or analysis process. Pre-

cise rigid definitions for gene networks are generally lacking. The manageable size of these

data allowed for a close examination of the downloaded data - a challenge in genome-wide

studies. We selected these data for analysis, in part, because an examination of the pairwise

correlations suggested that phenotypic covariation differences might be present.

3.1.3 Partial Correlation Networks

In an earlier section we discussed the use of correlation networks for modeling biological

networks, e.g., see [169] for a study that combined expression and trait data to identify
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pathways and candidate biomarkers. Here, our emphasis shifts to networks based on partial

correlations. Networks based on partial correlations for multivariate normal observations also

commonly appear in the literature as Gaussian graphical models (GGM). See Whittaker [135]

for an introduction to the topic.

We selected partial correlation networks as the emphasis here due to the availability of

numerous references in the literature, published code for implementing these algorithms

is available, and partial correlations are formed using a plurality of variables - a notion

that holds intuitive appeal for the network concept. The bioinformatics literature has long

embraced their use. For example, Toh et al. [170] is an early reference that combined a

cluster analysis with a GGM approach to infer a gene expression network. De la Fuente et

al. [172] use partial correlations up to order 2 to model genomic data; they also caution on

the limitations of small sample sizes in estimating these networks. Rice et al. [175] propose a

network construction algorithm based on a conditional correlation of the mRNA equilibrium

concentration between two genes given that one of these genes was ‘knocked down’; they

also propose a method to assign directionality to what are customarily assumed to be an

undirected network.

A common criticism levied against correlation networks is that a high correlation may be

present due to a strong direct influence between the two nodes or due to a strong influence

from an indirect effect, e.g., see [3]. Markowetz et al. [199] contains an interesting quote that

suggests that partial correlations may better reflect the interdependencies found in a network,

“Thus, the correlation coefficient is a weak criterion for dependence, but zero correlation is

a strong indicator for independence. . . . [Partial correlation coefficients] provide a strong

measure of dependence and, correspondingly, only a weak criterion of independence.”

In order to fit a partial correlation network to both real and simulated data we selected

the GeneNet algorithm presented in Opgen-Rhein et al. [174]. The GeneNet R package is

available from the CRAN R archive (http://cran.r-project.org). In Opgen-Rhein et al. the

earlier algorithm of Schäfer et al. [173] was extended to incorporate estimates for direction-
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ality in a partial correlation network. We did not make use of this functionality. As such,

our estimation process relies primarily on the work of Schäfer et al. As in the disclaimer

provided in their paper, we do not endorse Gaussian graphical models as the true model for

gene or protein networks. Rather than provide an extensive review of the approach detailed

in Schäfer et al. we offer a short overview of their approach. They bill their method as

an empirical Bayes approach to the inference of large-scale gene association networks. The

paper integrates three familiar items in the analysis of -omics datasets. First, due to the

chronic prevalence of the n ≪ p situation a stable variance estimator is needed for GGMs.

In addition to the use of a Moore-Penrose pseudoinverse, they bootstrap aggregate (bagging)

the variance estimator to obtain an approximate Bayesian posterior mean estimate for the

partial correlation matrix. To test the significance of the individual coefficients they assume

a mixture model for the family of partial correlations; most of the coefficients are assumed to

be zero (e.g., H0 : π = 0) and a small percentage are assumed to be nonzero. Here, they em-

ploy a Robbins-Efron-type inference strategy. Finally, they further refine the model selection

process with the use of the Benjamini-Hochberg false discovery rate procedure. One of the

noteworthy features of the Schäfer et al. paper is the amount of simulation work performed.

In an evaluation of three variance estimation procedures the ‘best’estimator varied according

to the applicable situation: p≪ n, p ∼ n, or n≪ p.

3.1.4 Hypothesis

Due to our focus on partial correlation networks we concentrate our attention on the formu-

lation of hypotheses for parametric models. We have considered the two-sample problem in

the context of other graph models, e.g., an Erdős-Rényi random graph, but have not explored

them in this dissertation due to their limited use in modeling biological systems. A two-

sample hypothesis in this case would most likely assume the form, H0 : G(n, p1) = G(n, p2)

versus H1 : G(n, p1) ≮=> G(n, p2). As mentioned in a previous comment, defining a suitable

statistic to summarize a sample of graphs is less obvious here. One could entertain the con-
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sensus graph outlined in Banks et al. [50] to estimate a ‘location’graph parameter; we have

considered the use of an order statistic-like graph based on the median degree distribution in

the case of a G(n, p) graph. Such statistics, apart from selecting and justifying their utility

in summarizing the data, may not be immediately apparent for complex graphs.

We now turn our attention to defining the appropriate hypothesis for consideration in this

dissertation. We adopt the notation of Schäfer et al. [173] in their treatment of Gaussian

graphical models. GGMs assume that the p-dimensional observation data follow a multi-

variate normal distribution, Np(µ,Σ), with mean vector µ and positive definite covariance

matrix Σ. Transforming Σ into correlation form Ω allows us to form a partial correlation

matrix. Given

Ω−1 = (ωij)

we can compute the partial correlation matrix Π = (πij) via the relation

Π = (πij) =
−ωij√
ωiiωjj

.

The πij coefficients describe the correlation between any two genes/proteins i and j con-

ditional on the remaining p − 2 genes/proteins. For example, the partial correlation π12 is

simply the correlation, cor(ϵ1, ϵ2), of the residuals ϵ1 and ϵ2 resulting from a linear regression

of gene/protein 1 and gene/protein 2 against the remaining p−2 genes/proteins. For partial

correlations under multivariate normality, two variables are conditionally independent given

the remaining variables if and only if the partial correlation vanishes. I.e., the zeros in Ω−1

determine the conditional independence graph. As in a correlation network, thresholds or

formal testing procedures can be used to explicitly define the graph.

Based on this construct, it is trivial to define the necessary hypotheses. Assuming two

separate independent and identically distributed samples {x1, . . . , xn} and {y1, . . . , ym}, we

wish to test whether or not their GGMs are equal. Stated formally, let Π∗
1 be the GGM for

the Xi and Π∗
2 be the GGM for the Yj. We have explicitly indicated that the GGM may not

be equal to Π; this could denote a network model constraint or other variable/model selection

procedure applied to Π. Hence, in the two-sample context we wish to test H0 : Π∗
1 = Π∗

2
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versus H1 : Π
∗
1 ̸= Π∗

2. In subsequent sections we omit the Π∗ notation in favor of the simpler

Π notation.

3.2 Methods

3.2.1 Resampling Complexities & Permutation Testing

In seeking to define a testing procedure for networks we had to return to our statistical

infancy. Bernardo et al. [98], in their widely regarded text on Bayesian theory, provide a

meaningful clue on how to proceed with network inference in their chapter devoted to statisti-

cal models. After some preliminary definitions they begin with the notion of exchangeability.

They immediately segue into de Finetti’s representation theorem to help motivate/establish

the idea of random samples, the notion of a likelihood, and prior distributions. Models ob-

tained via invariance, e.g., the multivariate normal model, soon follow. These are in turn

followed by models via sufficient statistics. We have recounted this path, apart from admir-

ing the logical coherence of the Bayesian mindset, so as to highlight the difficulties associated

with a network testing strategy. Where are the (parametric) likelihoods for networks? Where

are the sufficient statistics? What does the geometry of a proposed testing procedure look

like? We should not forget that the starting principle was exchangeability.

Following the presentation from Good [97], let P be a family of distributions for {X1, . . . , Xn}

that are symmetric in the sense that if π is a permutation of the subscripts {1, . . . , n}, then

P{(X1, . . . , Xn) ∈ B} = P{(Xπ(1), . . . , Xπ(n)) ∈ B} for all Borel sets B. The random vari-

ables Xi, for i = 1, . . . , n, are said to be exchangeable. Good goes on to state that permuta-

tion tests rely on the assumption of exchangeability. Independent and identically distributed

observations, Polya urn models, and data transformations are examples of or techniques used

to insure exchangeability. The principle of randomization/practice of random allocation, a

cornerstone of good experimental design, is also used to achieve exchangeable observations.
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Pesarin [99] contains a thorough discussion of permutation testing procedures. He states

that conditional inference procedures are often useful when (a partial list is provided here):

the distributional models for the responses are nonparametric, distributional models are

not well-specified, distributional models, although well-specified, depend on too many nui-

sance parameters, asymptotic null sampling distributions depend on unknown quantities,

the sample sizes are less than the number of response variables, in multivariate problems

some variables are categorical and others quantitative, in particular multivariate inference

problems some of the component variables have different degrees of importance, and treat-

ment effects are presumed to act on possibly more than one aspect. As we read this list we

imagined the author was contemplating network probability models.

With greater emphasis than Good mentioned above, Pesarin [99] states the permutation

principle in a more direct manner. We have repeated it here, in its entirety, so that its

impact can be more appreciated. This principle serves as the inferential foundation for our

two-sample, with obvious extensions to the k-sample, testing strategy.

Permutation Testing Principle: If two experiments, taking values on the same sample

space Xn and respectively with underlying distributions P1 and P2, both members of P , give

the same data set x, then the two inferences conditional on x and obtained using the same

test statistic must be the same, provided that the exchangeability of data with respect to

groups is satisfied in the null hypothesis. Consequently, if two experiments, with underlying

distributions P1 and P2, give respectively x1 and x2, and x1 ̸= x2, then the two conditional

inferences may be different.

The import of this principle is far-reaching. Apart from the need for nondegenerate proba-

bility distributions the required assumptions regarding the probability structure of the data

are minimal. Similar to a classical test for covariance matrices or other multi-parameter

constructs, the complexity of the probability model or the actual biology motivates the need

for strict equality under the null hypothesis. Since permutation procedures are invariant to

P under H0, some choose to call these tests invariant tests. Parametric statistics may be a



Phillip D. Yates Chapter 3. Two-Sample Problem 120

boon for mathematicians; nonparametric statistics can be a savior to practitioners. Perform-

ing a permutation test in a two-sample context merely requires that we mix the two groups,

draw a random sample without replacement from the combined sample that has the same

sample size as one of the original groups (the remaining samples constitute the remaining

group), label the random draw with the group identifier, and calculate the test statistic using

the data under the newly relabeled group identifiers. To determine a p-value we compare

the test statistic observed using the original group identifiers to the distribution of the test

statistic formed under this random assignment of group identifiers.

Pesarin [99] provides an extensive treatment of permutation testing. Topics such as exact-

ness (achieving a set α level), unbiasedness, consistency (rejecting H0 with probability one

as n grows without bound), a contrast of conditional and unconditional inference proce-

dures, etc., are discussed thoroughly. As we examined this material two common themes

emerged. In order to draw comparisons between conditional and unconditional procedures

the author, perhaps of necessity, resorted to a basic 1-way fixed-effect ANOVA model to

draw the necessary parallels even though the permutation procedure supported more patho-

logical models. (Perhaps closed-form comparisons need to be simple to be mathematically

tractable or provable?) Second, the permutation principle always lurked in the intellectual

background.

3.2.2 Fitting Partial Correlation Networks

The GeneNet algorithm [174] was used to estimate the Gaussian graphical model. To esti-

mate a GGM using the GeneNet R library consists of three steps. The first step converts a

correlation (or covariance) matrix Ω to a partial correlation matrix Π. As stated in section

3.1.3, the matrix inversion step involves pseudoinverses. The next function computes the

various components used to test for significant edges in the partial correlation matrix. Here

is where the false discovery rate procedure is performed and directions (not used here) can

be estimated. This portion computes two-sided p-values for all of the partial correlations
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and computes their corresponding posterior probabilities and q-values. The last step in the

routine merely extracts the significant edges based on the user-defined criterion - in our

analyses we used the magnitude of the estimated (shrunken) partial correlations. The only

parameter manually set in these three routines, for both the simulated and ovarian cancer

data, was the edge cutoff in the last step - the cutoff.ggm parameter governing πij was set

to 0.5. The default parameter settings were used for the remainder of the settings - these

govern the matrix inversion routine, the empirical Bayes estimates used in testing the signif-

icance of the partial correlation estimates, and the False Discovery Rate process. The null

distribution for D was determined using standard permutation techniques - the labels were

randomly switched between the two phenotypes.

Apart from the resampling procedure, the basic outline used to determine a p-value resembles

the outline given in chapter 2 and is listed below.

1. For the ovarian cancer data we estimate Πi using an estimate for each phenotype’s

Ωi. For the simulation study we create a block diagonal form of Ωi as in section 2.3.6,

generate a multivariate normal random sample under both H0 and H1 for the two

phenotypes using the appropriate Ωi, and produce the needed estimate for Πi.

2. Use GeneNet to estimate a Gaussian graphical model for each of the two groups.

We also later evaluate a simple threshold approach to determine a partial correlation

network.

3. Create the weighted adjacency matrices for the two groups and calculate D.

4. Generate a null distribution for D using resamples determined under a suitable random

assignment of the phenotype identifiers.

5. Compare the D obtained using the original group identifiers to the distribution for D

obtained with the random group assignment. Compare the resulting p-value to the

pre-specified α level.
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6. (If necessary or desired, perform a post hoc analysis. This is discussed in chapter 4.)

For the simulation study a total of 100 experiments were performed and 1,000 resamples

were used in calculating each p-value. As before, D only included the weight portion due to

the fact that large partial correlations correspond to an edge in the graph. The execution

time for the set of 100 experiments using 1,000 resamples was on the order of 4-6 hours

on a standard 2-3GHz personal computer. Unfortunately, for select simulation data the

GeneNet tool would abruptly terminate. All of the p-values shown here were obtained upon

a successful completion of the estimation process. The computing time for the ovarian cancer

data was negligible; the small data sizes allowed for computation times less than 5 minutes.

As in the simulation case, 1,000 resamples were used to obtain a p-value.

3.3 Results

3.3.1 Simulation

To evaluate D in the two-sample simulation case we built on the earlier simulation approach

from section 2.3.6. There, we assumed that our observation data is multivariate normal

where the covariance matrix is equal to its correlation form, i.e., xi ∼ N(0,Ω). The number

of nodes (30), the threshold (ρ = 0.2), the 6 nonzero 5x5 blocks along the diagonal structure,

the n1 = n2 = 200 sample sizes, and the routine used to generate data under the alternate

hypothesis is identical to the previous simulation. Rather than generate data from a known

partial correlation matrix, as performed in Schäfer et al. [173], we elected to generate data

from the correlation structure used in chapter 2 to allow for a contrast of the two procedures.

The R routines used to evaluate D, under both the null and alternate cases, can be found

in appendix C. The null case is labeled GeneNetH0. Only a partial listing for the alternate

case, GeneNetH1, is listed. The seeds needed to generate 100 valid p-values varied between

the two routines.
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Figures 3.1 and 3.2 illustrate the 100 p-values obtained using 1,000 resamples from the two

sets of simulation experiments. In Figure 3.1 we graph the resample p-values under H0; in

Figure 3.2 we graph the resample p-values obtained under H1. Identical to the correlation

network study, we evaluated D by both including and excluding (i.e., cij = 0) the nearby

neighbor information. In Figure 3.1 we see a customary result for permutation procedures.

Here, the arbitrary relabeling of the observations under the null does not affect the overall

level of the test. The p-values are approximately uniformly distributed. Excluding the

neighboring information in the calculation of D generated p-values closely along the y = x

diagonal. Including the neighboring information in D produced a bit more lack of fit as

evidenced by an examination of the qq-plot; this is not surprising given the correlated block

structure of the data and the correlated components used in the calculation of D.
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Figure 3.1: A uniform qq-plot of the 100 resample p-values of H0 : Π1 = Π2 versus H1 :
Π1 ̸= Π2 under the null hypothesis. P-values obtained using the neighboring information are
denoted with a bullet; p-values obtained excluding the neighboring information (cij = 0) are
denoted with a cross.
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The p-values for the simulation experiments under H1 can be found in Figure 3.2. In 45

of the experiments the p-value produced using the neighboring information was less than

the p-value obtained by omitting this information. Without trying to form a more rigorous

test, this is comparable to flipping a fair coin. The more dramatic result, given that the

alternate hypothesis H1 is true, is the number of times that we would reject H0 at an α-

level of 0.05. 40 of the p-values were less than 0.05 when D incorporated the neighboring

information; compare this number to the 24 p-values that were less than 0.05 when the

neighboring information was not included. These results are in stark contrast to the one-

sample comparison results from the previous chapter under the same data generating model.

Of course, the network inference procedures vary between the two processes. As the p-values

shift away from 0, and more in favor of H0, we see that the results resemble our earlier

findings for correlation networks. The exclusion of the neighbors tends to produce smaller

p-values. Although not presented earlier, only 5 of the p-values were less than 0.05 for the

earlier one-sample analysis of a correlation network for the neighborhood-free form of D.

3.3.2 Real Data

Rather than analyze all pairwise associations between the three phenotypes we ordered the

phenotypes. Our admittedly subjective intent was that a comparison of the SBT and SCA1

phenotypes might suggest a potential biomarker. Comparing the SCA1 and SCA3 samples

might shed insight into the progression of the disease or help provide clues regarding a

resistance to chemotherapy agents. We did not examine a SBT/SCA3 comparison despite

the extreme biological contrast this might present. As noted earlier, differences in expression

profiles have already been documented between the SBT and SCA tumor types. In order to

compare covariation profiles we need to estimate a nontrivial network. The R routine used

for these phenotypic comparisons is listed in appendix C as GeneNetOvarian.

Table 3.2 lists the number of estimated edges obtained using the GeneNet algorithm for the

five gene subsets categorized by Bracken et al. [154]. The estimated Gaussian graphical
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Figure 3.2: The 100 resample p-values of H0 : Π1 = Π2 versus H1 : Π1 ̸= Π2 under the
alternate hypothesis. These simulations investigate the inclusion/exclusion of the neighbors
in the calculation of D for a Gaussian graphical network.

models, apart from the DNA synthesis and replication process, are either nonexistent or

sparse. As a side note - some of our simulation studies suggests that GeneNet tends to

underfit a network. Although not shown here, when we attempted to fit a GGM to all

42 genes for each of the three phenotypes all of the graphs were empty. Reducing the

previously-stated cutoff.ggm parameter governing πij from 0.50 to both 0.25 and 0.10 also

failed to produce non-empty 42-gene networks for each of the three phenotypes.

Based on the results listed in Table 3.2, we fit GGMs using GeneNet for only 8 of the

15 possible comparisons. If two adjacent phenotypes resulted in empty graphs, e.g., SBT

and SCA1 for the G1-S phase of the cell cycle, these two networks were of no practical

interest. Table 3.3 contains the resample p-values obtained for H0 : Π1,π=0.5 = Π2,π=0.5

versus H1 : Π1,π=0.5 ̸= Π2,π=0.5 for these eight comparisons. Unlike our simulation results,
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Table 3.2: Number of edges in the Gaussian graphical model estimate for the five gene
subsets categorized by Bracken et al. [154] for each of the three phenotypes.

Biological Process SBT SCA1 SCA3
G1-S phase of the cell cycle 0 0 3
S-G2 phase of the cell cycle 0 2 0
Checkpoint 0 3 4
DNA damage and repair 4 0 0
DNA synthesis and replication 0 30 40

Table 3.3: Resample p-values for the phenotypic comparisons of the form H0 : Π1,π=0.5 =
Π2,π=0.5 versus H1 : Π1,π=0.5 ̸= Π2,π=0.5.

Biological Process SBT versus SCA1 SCA1 versus SCA3
G1-S phase of the cell cycle . 0.636
S-G2 phase of the cell cycle 0.676 0.691
Checkpoint 0.812 0.380
DNA damage and repair 0.637 .
DNA synthesis and replication 0.368 0.142

we only present p-values that included the neighboring information. Except for the smallest

p-value presented in Table 3.3, the discrepancies between the neighbor/no neighbor p-values

was negligible. Using an α level of 0.05, a rather conservative value for a comparison of

dispersion matrices, none of the hypotheses would be rejected. Rather than adopt such a

conservative view, and admitting a complete disregard of multiple comparison issues, we

chose to more closely examine the structure of the GGMs for the set of genes in the DNA

synthesis and replication subset. Specifically, for this biological process we examine the

estimated networks for the SCA1 and SCA3 phenotypes for these 13 genes (p-value of 0.142).

Table 3.4 depicts the network structure for these two phenotypes. The weights are the edge-

specific partial correlation estimates provided by GeneNet. A ‘·’indicates the absence of an

edge; 1.0 is merely a visual placeholder. This table suggests an obvious observable difference

between these two estimated networks. We revisit these data in the next chapter. Figure
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Figure 3.3: A graphical depiction of the estimated DNA synthesis and replication Gaussian
graphical models for the SCA1 and SCA3 phenotypes.

3.3 is a graphical depiction of the two phenotype networks. The weights have been omitted

for readability.

For completeness, we investigated a simple thresholding approach to the estimation of a

partial correlation network. I.e., using a threshold for π we created a network where edges

were defined if the estimated partial correlation exceeded this threshold. This is analo-

gous to our previous correlation network work. A formal test of significance for the partial

correlations was not performed. See PCorrThreshold in appendix C for a listing of the R

code. Table 3.5 contains a summary of the key results. Two values of πi, nj, and α were

used. The combined π/n values were arbitrarily selected to produce nonzero p-values under

two experimental settings. In each experimental setting, 100 experiments were performed

and 1,000 resamples were used to calculate each p-value. P-values were computed where

D included/excluded the neighboring information; the edge-indicator portion of D was not

utilized. Under both experimental settings, the with- and without-neighboring information

p-values were positively correlated. Here, excluding the neighboring information produced

smaller p-values. These results differ from the results obtained using the GeneNet algorithm.
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Table 3.4: The estimated Gaussian graphical model network for the 13 DNA synthesis and
replication genes as characterized by Bracken et al. [154] for the SCA1 (top) and SCA3
(bottom) phenotypes.

PCNA 1.0 . . . .60 .65 . -.75 . -.59 -.59 . .
TOP2A . 1.0 -.64 . . . .53 . . . . .52 -.48
MCM3 . . 1.0 -.43 . -.41 . . .66 . . .88 -.72
MCM6 . . . 1.0 . . -.72 . .64 . . .49 -.44
MCM2 . . . . 1.0 . . . -.46 .55 . . .
TK1 . . . . . 1.0 . .66 .47 .50 . . .
CDC6 . . . . . . 1.0 .58 . . . . .
RFC4 . . . . . . . 1.0 . . -.77 . .
CDC45L . . . . . . . . 1.0 . . -.62 .80
RFC3 . . . . . . . . . 1.0 . . .
POLA2 . . . . . . . . . . 1.0 .61 -.43
CDC7 . . . . . . . . . . . 1.0 .77
RRM2 . . . . . . . . . . . . 1.0

PCNA 1.0 -.52 . . .37 .42 .64 . .34 . . .34 -.44
TOP2A . 1.0 .36 -.49 .37 . .84 . .62 .35 . . -.56
MCM3 . . 1.0 . .47 . . .47 -.40 -.60 -.40 . .
MCM6 . . . 1.0 .60 .34 . -.40 . .37 . -.43 .
MCM2 . . . . 1.0 -.44 -.43 . . . . .45 .
TK1 . . . . . 1.0 -.35 . . . . . .
CDC6 . . . . . . 1.0 . -.42 . .39 . .70
RFC4 . . . . . . . 1.0 .34 .82 .49 -.46 .
CDC45L . . . . . . . . 1.0 -.37 . . .60
RFC3 . . . . . . . . . 1.0 -.58 .34 .
POLA2 . . . . . . . . . . 1.0 .46 .
CDC7 . . . . . . . . . . . 1.0 .
RRM2 . . . . . . . . . . . . 1.0

Table 3.5: A pairwise comparison of the 100 resample p-values, calculated both with and
without the neighboring information, under H1. The number of p-values less than α for a
test of H0 : Π1,π=πi

= Π2,π=πi
versus H1 : Π1,π=πi

̸= Π2,π=πi
under H1 is also listed.

Experimental Setting with < w-out α0.10, with/w-out α0.05, with/w-out
πi = 0.2, n1 = n2 = 100 22 48/58 42/47
πi = 0.5, n1 = n2 = 50 28 33/39 20/24
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3.4 Discussion

In section 2.4 we mentioned a range of issues regarding the use of D for one-sample com-

parisons. Apart from criticisms levied at our use of permutation-based procedures, to be

discussed later in this section, those items also have relevance in the context of two-sample

network comparisons. Due to our specific focus on correlation-based networks, an extensive

discussion of the performance of D is not possible here. One undeniable benefit to viewing a

network as an object with a (potentially) large number of parameters is how this assumption

shapes the null hypothesis. Unlike ordered hypotheses for one-dimensional parameters, tests

of H0 : η1 = η2 are common/logically well-suited for multiparameter comparisons. This fact

naturally facilitates the use of the Permutation Testing Principle. The differing performance

of D under the two network algorithms, the GeneNet algorithm and a thresholding approach

to determine a simulated partial correlation network, under H1 is discomfiting. This high-

lights the potential for shortcomings in the use of D in various contexts. Due to the potential

for complex network models, ‘dredging for small p-values’under various test statistic formu-

lations will likely occur in the practical use of D. In addition to creating ambiguity around

the need for a neighbor-based form of D, the previous simulation results suggest the nu-

ance that algorithms (i.e., GeneNet versus a simple threshold approach) can inject into the

network inferential process and the need for a flexible/customizable dissimilarity measure.

We selected a correlation-based network approach to evaluate D due to their undeniable

use in the analysis of weighted genomic networks. (Partial) correlation networks allow for

a straightforward evaluation of D using simulation procedures. Kolaczyk [3] even states

that Gaussian graphical models are a popular approach to the statistical modeling of these

data. But, we understand that other approaches are possible and that benefits/pitfalls have

been associated with these models. For example, unlike the pairwise correlation coefficient,

partial correlations can be more difficult for a researcher to interpret. Dependencies that are

conditional on all of the remaining variables, considering that the data are likely to be noisy,

is less intuitive.
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Presson et al. [169] effectively used an integrated analysis of weighted gene expression

data with genetic trait (SNP) data in the analysis of chronic fatigue syndrome. However,

Müller-Linow et al. [187] provide a cautionary example regarding correlation networks for

metabolites - the proximity of metabolites in a correlation network did not indicate metabo-

lite proximity as compared to metabolic networks from genome databases. As an alternate

approach, Saito et al. [188], under the assumption of a Gaussian network, measure the

consistency of a given network with the measured data through the formulation of a graph

consistency probability measure. Markowetz et al. [199] authored a review paper on infer-

ring cellular networks. Their discussion included conditional independence models (Gaus-

sian graphical models and Bayesian networks) and probabilistic and graph-based methods

for data obtained from experimental interventions and perturbations. We avoided the use of

Bayesian network models due to their emphasis on modeling directed acyclic graphs. Since

the choice of our statistical model was driven by a need to make a relative, and not an

absolute, comparison between two phenotypes, the performance of D is likely to vary under

other applications. As a final comment on this matter, Hubert et al. [104] contains an

interesting comment that could apply to the role that a network-estimating algorithm plays

in network inference. “The resulting optimization strategy is heuristic in the sense that

there is no guarantee of global optimality for the final structural representation identified

even within the chosen graph-theoretic class, because the particular constraints defining the

selected procedure were located by a possibly reasonable but not verifiably optimal search

strategy that was (implicitly) implemented in the course of the process of optimization.”The

oft-cited quote from the eminent George Box could also be inserted here.

One concern in the use of the GeneNet algorithm in modeling the ovarian data pertained to

the issue of sample size. Markowetz et al. [199] and Kolaczyk [3] document the need for larger

samples in the practical use of GGMs. Schäfer et al. [173], in the precursor to the algorithm

outlined in Opgen-Rhein et al. [174] that produced GeneNet, provide alarming simulation

results in their evaluation of GGMs for -omic applications. The simulation results outlined in

that paper helped motivate our n1 = n2 = 200 sample size selection; 200 was an approximate
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upper bound for the sample sizes evaluated in Schäfer et al. Our concern over sample size

matters guided our choice to partition the list of available genes into subfamilies based on the

characterization by Bracken et al. [154]. As mentioned earlier, when GeneNet was applied to

the entire 42 genes not a single edge was declared significant in the GGM for each of the three

phenotypes (SBT, SCA1, and SCA3) using a cutoff for π as small as 0.10. Small samples,

compounding the potential for numerical instability in the partial correlation estimates,

combined with estimators determined via empirical Bayesian procedures and gauged with a

false discovery rate algorithm, suggests that numerous pitfalls are possible. As noted earlier,

GeneNet did abruptly terminate for select datasets in our simulation - complicated machines

can be prone to complications. Fortunately, the small size of the ovarian data did facilitate

a close examination of the actual data.

Model selection and estimation is a subject of active research for Gaussian graphical models,

both in and outside of a high dimensional context. See Drton et al. [168] for a recent review of

classical graphical models in the context of multiple testing and error control, Meinshausen

et al. [166] for a study of variable selection in high dimensional graphs using the Lasso,

and Yuan et al. [167] for a penalized likelihood approach for estimating the concentration

matrix in the GGM. Several authors, either for correlation or partial correlation networks,

cite or propose solutions to address the difficulties associated with selecting a suitable cutoff

or threshold to determine/define a network; see [165, 175, 181]. Reverter et al. [181], for

example, combine partial correlations with an information theoretic approach to reverse

engineer gene expression networks. It is not our intent to resolve or offer improved methods

for selecting an optimal threshold.

The use of resampling methods for networks is subject to many of the same criticisms raised

in more customary applications. See Berger [100] for a discussion on the use of permutation

testing in clinical trials. Small samples tend to underestimate population variance estimates.

In the absence of closed-form theory, the ability to prospectively estimate a sample size, an

item of real concern for a clinical researcher, is challenging. Conditional power assessments

generally require the use of statistical models in a simulation context or transformations of
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the available data. Testing ordered hypothesis, e.g., H0 : η1 < η2 < η3 < η4, is more cum-

bersome (and most likely inapplicable for multiparameter biological networks); confidence

intervals are not emphasized. Establishing optimal tests, asymptotic convergence rates, and

other parametric-driven mathematical results is elusive. Good [97] gives brief mention to

outliers, missing data (discussed in the final chapter of this dissertation), and after-the-fact

covariates in his text on permutation, parametric, and bootstrap hypothesis tests. After-the-

fact covariates are common in observational studies. The existence of observation studies

raises the notion of partial exchangeability. It is not plausible to assume that our ovar-

ian cancer tissue samples are exchangeable; we are relying heavily and perhaps unjustly on

the strength of the null hypothesis. However, unconditional procedures also struggle in the

presence of observational data/missing covariates. The overarching need for exchangeabil-

ity makes apparent that transformation-based approaches employed to make observations

exchangeable, e.g., shifting a real-valued distribution by a location quantity, are not readily

apparent for network data. As stated earlier, the question of exchangeability is far easier to

address and justify in an experimental setting. Permutation tests do support very general

hypotheses, e.g., H0 : F1 = F2 versus F1 ̸= F2, where F1 and F2 are two distribution func-

tions. The prospect of such a test for high dimensional multivariate data suggests that we

consider the role of permutation tests in the context of Behrens-Fisher problems; see Pesarin

[99] for a good discussion on this topic.



Chapter 4

Post Hoc Tests

4.1 Problem

Following a significant one- or two-sample finding, the most obvious question is, “Where

do the networks differ?”The most likely answer to this question will involve one or more

nodes. At a minimum, the researcher may be interested in single genes or proteins. Should

portions (or subnets) of the network(s) appear to differ then the researcher may wish to

apply D under a more targeted/constrained question. In this chapter we propose a post hoc

routine for testing for the dissimilarity at a given node assuming that a significant network

separation has been determined using the tests outlined in the previous two chapters. To

demonstrate our approach we use both simulated data and revisit the results from our earlier

biological analyses.

As expected, despite some of the current ‘buzz’surrounding biological networks, researchers

continue to explore individual gene or protein effects. The explosion in number and utility

of differential expression studies are a testament to this fact. But, a careful consideration

of node-effects in the context of networks is also studied in the literature. Dong et al. [186]

suggests that we study networks using approximately factorizable networks. The pairwise

133
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connection strength, termed ‘conformity’, between 2 nodes is factored into node-specific

contributions. The authors go on to show that gene expression and protein-protein networks

are approximately factorizable. Ivanic et al. [197] found that the probability of an interaction

between two proteins is proportional to their degree-weighted behavior - this too suggests

the need for node-centric measures. Oliveira et al. [185] integrate transcriptome data with a

biomolecular network topology to assist in the location of regulatory hot-spots. Langfelder

et al. [190], via their R package WGCNA for weighted correlation network analysis, provide

functionality useful for module detection and individual gene selection. Dezso et al. [184]

outline the use of a node-centric shortest path topological measure to predict key regulatory

genes and proteins in condition- and disease-specific networks. As a final illustration of an

interest in nodal behavior in biological networks, Thorne et al. [189] evaluate the impact

of integrating degree sequence and annotation information on the assessment of significant

correlations.

4.2 Defining an Effect

4.2.1 Hypothesis

Given that a network can consist of nodes, edges, weights, directions, motifs, etc., we need

to define a suitable post hoc test. To motivate a hypothesis in a now familiar setting, in a

correlation network we have a set of weighted edges. For node i in a graph G let ηi denote

the parameter specifying the set of nodes adjacent to i, i.e., they are in neighborhood Γ(i).

Specifically, for j ̸= i, ηi = {ηji } are the various ij edges to i where ηji = 1 if ρij is greater

than a predetermined threshold (or set via some other testing procedure) and otherwise 0.

For node i we similarly define ρi as the corresponding set of correlation coefficients for ηi.

The notation is redundant for this specific network. But, for a node where only a portion

of the edges are weighted the need to decompose an effect into individual edge and weight

pieces may be necessary. For node i with |G| − 1 potential neighbors, the most natural
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post hoc test would assume a form H0 : ηi = 0|G|−1 versus H1 : ηi ̸= 0|G|−1 for some ηji

at node j ̸= i, H0 : ρi = 0|G|−1 versus H1 : ρi ̸= 0|G|−1 for some ρji at node j ̸= i, or

H0 : (ηi, ρi) = (0|G|−1,0|G|−1) versus H1 : (ηi, ρi) ̸= (0|G|−1,0|G|−1) at some node j ̸= i. Here,

0|G|−1 is a vector of zeros whose length is equal to the order of the graph G minus 1. A test

for a partial correlation network, where the ρi are defined in terms of πi, can be defined in a

similar manner. For (partial) correlation networks, we make the established assumption that

our observation data follow a multivariate normal distribution. To add additional features to

our hypothesis, e.g., in- or out-degree features in a directed network, additional indicator-like

parameters can be added to the set of ηi and ρi parameters tested.

4.2.2 Partition for D

A test statistic for addressing the proposed post hoc test is straightforward. Given that D

was formed using a sum of node-based dissimilarities, the test for dissimilarity between two

networks at node i can be formed using the portion ofD attributable to node i. Let us denote

this quantity Di. To determine the null distribution of Di the same resampling procedures

outlined in sections 2.3.5, 2.3.6, and 3.2 can be applied. Exploiting the fact that D =
∑

iDi,

for a family of i nodes in a graph G, allows us to reuse our earlier simulation/resampling

code. The only additional coding steps needed were to retain the interim Di calculations.

As in our previous discussions, Di can be calculated with or without the incorporation of

the nearby neighboring information. Large values of Di lead us to reject H0.

4.3 Illustrating Individual Effects

4.3.1 Simulated Data

The use of simulated data is a suitable vehicle to study the behavior of Di. Since we are

looking for ‘simple’effects the difficulty of handling and evaluating the results from large
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complex graphs is avoided. A correlation network serves as the test case for both a one- and

two-sample demonstration of Di’s capability. Our simulation process is almost identical to

the earlier study procedure described in section 2.3.6. A multivariate normal distribution

is assumed for the observation data. The same threshold (ρ = 0.2), number of resamples

(n1 = n2 = 200), approach to determining the null distribution for Di, etc., was used. The

one exception relative to the earlier simulation setup was the dimensionality of the network

investigated. Rather than form a block diagonal 30x30 correlation matrix comprised of 5x5

nonzero blocks we formed a 9x9 block diagonal matrix with 3x3 nonzero blocks. The same

two correlation matrices were used for both the one- and two-sample comparison results

presented here. In the one-sample case the null distribution for Di was determined using the

200 a priori H0 samples generated under the provided correlation structure; standard label-

switching permutation procedures were used in the two-sample case. In the one-sample case

we are testing H0 : ρi = 08 versus H1 : ρi ̸= 08 for a specific node i; in the two-sample case we

are testing H0 : ρi,1 = ρi,2 versus H1 : ρi,1 ̸= ρi,2. The test for ηi is implicitly included due to

the redundancy of the parameterization. R routines for both the one- (Di-OneSampleCorr)

and two-sample (Di-TwoSampleCorr) correlation network post hoc analyses can be found in

appendix D.

Below we reproduce the two 3x3 correlation sub-blocks that differ between the observed

and target networks in the one-sample case and the two phenotypes in the two-sample

comparison. 
1.000 −0.317 0.338

−0.317 1.000 0.767

0.338 0.767 1.000




1.000 −0.730 −0.949

−0.730 1.000 0.904

−0.949 0.904 1.000



In row order, for each node i the sum of the absolute differences between the pairs of ρji (i.e.,∑3
j=1 |ρ

j
i,1 − ρji,2|) is: 1.700, 0.550, and 1.424. This suggests an ordering of the 3 non-null

node effects. The first node exhibited the largest total absolute difference, followed by the

third node, etc. In both the one- and two-sample whole network comparisons, the p-value for
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Table 4.1: Resample p-values for the 6 nodes common to/equal between both correlation
networks under H1. The 1-sample comparison is a test of H0 : ρi = 08 versus H1 : ρi ̸= 08.
P-values are calculated with and without the inclusion of the neighboring information. Nodes
1-3 were in one block; nodes 4-6 were in another block.

Neighbors No Neighbors
Node 1 0.565 0.445
Node 2 0.531 0.663
Node 3 0.541 0.524

Node 4 0.439 0.141
Node 5 0.444 0.422
Node 6 0.429 0.451

rejecting H0 was less than 0.001 when the neighboring information was used in the overall

calculation of D. Although not presented here, we also evaluated networks under H1 where

the p-value was greater than 0.2. The results did not materially differ from the results

published here.

We begin by examining the resample p-values for the 6 nodes that were shared between

the two correlation networks in both the one- and two-sample comparisons. Only the re-

sults for the one-sample comparison are presented. Similar results were obtained under the

two-sample comparison. The p-values were calculated with and without the inclusion of the

neighboring information. The resample p-values can be found in Table 4.1. Observe the clus-

tering of the p-values within each 3x3 block when the neighboring information was included.

When the neighboring information was not included in the calculation of Di, the p-values

reflect a resample approach to a classical test of the null hypothesis using an L1-norm for ρi.

The wider range of p-values in the no-neighbor case reflects the row-wise sampling diversity

between the two correlation matrices.

An examination of the p-values for the single non-null block node-wise comparisons are

anticlimactic. These results can be found in Table 4.2. Here we note that all of the node-wise

p-values are less than 0.001. In the one-sample comparison, Node 8 did produce the largest

p-value (0.003) in the no-neighbor case. This value corresponds to the smallest total absolute
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Table 4.2: Resample p-values for nodes 7-9 under H1. The 1-sample comparison is a test of
H0 : ρi = 08 versus H1 : ρi ̸= 08. The 2-sample comparison is a test of H0 : ρi,1 = ρi,2 versus
H1 : ρi,1 ̸= ρi,2. P-values are calculated with and without the inclusion of the neighboring
information.

1-Neighbors 1-No Neighbors 2-Neighbors 2-No Neighbors
Node 7 < 0.001 < 0.001 < 0.001 < 0.001
Node 8 < 0.001 0.003 < 0.001 < 0.001
Node 9 < 0.001 < 0.001 < 0.001 < 0.001

deviation between the ρji elements for this 3x3 correlation sub-block. As expected, in the

no-neighbor case the p-values should be ordered relative to the effect size. The neighboring

case likely produced correlated p-values similar to the null case. (The use of 1,000 resamples

most likely limited the discriminating ability of the p-values here.)

4.3.2 Biological Data

To demonstrate the post hoc procedure on real data we revisit the biological analyses of

chapters 2 and 3. In the first case we present node-level p-values obtained for the MAP290

correlation networks presented in section 2.3.6. Due to their small size, the adjacency matri-

ces have been reproduced here. The Normal network is assumed to be known; the Diabetic

network is an estimate.

11 - MAP290 Valine leucine & isoleucine biosynthesis: Normal (left), Diabetic (right)
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Table 4.3: Resample p-values for the diabetes versus normal tissue expression correlation
networks. The 1-sample comparison is a test of H0 : ρi = 05 versus H1 : ρi ̸= 05. P-values
are calculated with and without the inclusion of the neighboring information.

Neighbors No Neighbors
200979-at 1.000 1.000
200980-s-at 0.469 0.173
204744-s-at 0.202 0.760
208911-s-at 0.393 0.009
211023-at 0.411 0.088
214518-at 1.000 1.000

In order to better gauge the individual effect size per node we have calculated the row-wise

sum of the absolute difference between the two phenotype correlation networks. For the six

genes listed, the Affymetrix gene name and total effect size, in row order are: 200979-at -

0.00, 200980-s-at - 1.71, 204744-s-at - 0.61, 208911-s-at - 1.53, 211023-at - 1.45, and 214518-

at - 0.00. A threshold of 0.5 was used to determine the correlation network. The normal

tissue samples were used to determine the null distribution of Di. P-values based on the

node-wise Di can be found in Table 4.3. For the nodes without any edges the p-values are

1. The p-values are approximately ordered according to effect size in the no-neighbor case.

Gene 200980-s-at had the largest pairwise absolute effect size; but, the correlations present

were weaker relative to the correlations exhibited by genes 208911-s-at and 211023-at.

We now revisit a comparison of the Gaussian graphical model network obtained using

GeneNet. Specifically, we analyze a comparison of the DNA synthesis and replication sub-

process between the SCA1 and SCA3 phenotypes. 13 genes were in this network. Please

refer back to Table 3.4 for actual depictions of the network. The 13 genes in the network are:

PCNA, TOP2A, MCM3, MCM6, MCM2, TK1, CDC6, RFC4, CDC45L, RFC3, POLA2,

CDC7, RRM2. In calculating node-level p-values we only emphasize the results that include

the neighboring information and exclude a test for ηi in the formation of a hypothesis. But,

due to the stark contrast between the two GGMs we also include p-values where the neigh-

boring information was excluded. These values are included in parentheses. Individual gene
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test p-values of H0 : πi = 012 versus H1 : πi ̸= 012, for i = 1, . . . , 13, based on 1,000 permu-

tations are: PCNA - 0.202 (0.318), TOP2A - 0.090 (0.326), MCM3 - 0.102 (0.227), MCM6

- 0.186 (0.260), MCM2 - 0.293 (0.378), TK1 - 0.270 (0.334), CDC6 - 0.202 (0.352), RFC4 -

0.194 (0.253), CDC45L - 0.093 (0.281), RFC3 - 0.298 (0.298), POLA2 - 0.130 (0.334), CDC7

- 0.109 (0.261), and RRM2 - 0.110 (0.345). These findings, both for the diabetes and ovarian

cancer data, could be shared and discussed with the relevant subject matter experts. The

R code for the diabetes-to-normal comparison can be found in appendix D under the DM2-

Normal-PostHoc heading; code for the ovarian cancer data is under the Ovarian-PostHoc

heading.

4.4 Discussion

The most obvious discussion point regarding post hoc effect testing is our use of a node-

centered effect. At the risk of redundancy, our choice was guided by numerous principles.

First, biologists are prone to relate observable phenomena in terms of individual genes or

proteins. Therefore, even though a dissimilarity at the level of a single protein may involve a

host of other proteins, the biologist can mull over the relevance of a single aggregated effect

rather than the effect of a single edge between two proteins. Individual genes or proteins are

more likely targets for compound development or to modulate cell regulation function. The

combinatorial complexity of the number of possible tests is reduced in a node-centered view;

this has obvious implications to multiple testing (family-wise error rates, false discovery rates)

problems in -omics applications. Our post hoc testing approach mimics individual effect tests

in regression. Effects for a family of nodes may be highly correlated, as illustrated earlier;

but, this is both a reflection of the interdependencies intrinsic to networks and an artifact

of the calculation of D. Defining D as an additive measure summed across the set of nodes

better exploits the critical assumption of node alignment in the definition of D. An intended

side-effect was to render the construction and computation of post hoc node effects as a

trivial matter. A node-centered view can more easily lend itself to partitions for defining
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appropriate subnetwork tests. Comparing subnetworks with D does not require the need for

any additional computational or theoretical machinery.

Despite these obvious advantages, node-centric post hoc tests do present some challenges. As

discussed in section 3.4, the topic of variable and threshold selection for (partial) correlation

networks/Gaussian graphical models is an active subject of research, e.g., see [168, 166,

175]. The interplay between the ‘backward selection’approach offered here and other model

selection procedures has not been explored. At one extreme, a node-centered view could

motivate one to define D not using the entirety of the nodes but rather as a post hoc-like

statistic, i.e., D = max{Di, i = 1, . . . , n}, where Di is the i-th node-level dissimilarity for a

network with n nodes. For a one-sample comparison the interpretation of Di is relatively

direct. In the two-sample setting we are assessing a local ‘set difference’. Should this ‘set

difference’be viewed as a graph in its own right, one might be able to apply traditional

node-based graph measures, e.g., centrality, to better understand the observed difference.

In the context of hypothesis testing under traditional parametric models, the classical tests

available for correlations between two genes i and j, e.g., H0 : ρij = 0 versus H1 : ρij ̸= 0,

or for partial correlations, H0 : πij|k ̸=i,j = 0 versus H1 : πij|k ̸=i,j ̸= 0, are likely to outperform

our more general approach. Some node effects may lack interpretation or meaning under

various network models. For an Erdős-Rényi random graph of order |G|, let ηi represent the

set of nodes adjacent to the i-th node. For example, for ηi = {η1i , η2i , η7i } the i-th node is

connected to nodes 1, 2, and 7. Assuming that ηj = 0 represents a parameter indicating no

edge and ηj = 1 represents an edge, one may be interested in testing H0 : ηi = 0|G|−1 versus

H0 : ηi ̸= 0|G|−1 for some j ̸= i. But, in a G(n, p) graph the edges are random variables. In

the one-sample case we made use of this fact to perform the whole-network test. Here, rather

than use Di to test for ηi one should test H0 : pi = p0 versus H1 : pi ̸= p0 using a standard

binomial proportion test based on η∗ =
∑

{j ̸=i} η
j
i . Defining a hypothesis under various graph

forms, e.g., partially weighted and/or directed graphs, also presents other challenges. In a

correlation graph the edges and weights are inextricably linked and (unequally) informative.

One can also define a hypothesis solely on the presence of edges; but, the test for a weight
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requires the presence of an edge. Constructing tests conditional on the existence of other

parameters is sure to involve a certain amount of tedium.

The regression-like analogy causes us to revisit the topic of weighting or standardizing effect

estimates. The need for effect standardization is somewhat mitigated by the use of resample-

based p-values. But, users may have a desire to standardize the raw effect ‘size’Di by the

number of edges at a given node or some other topological quantity. Since a node-level Di

may invite the creation of a ‘fiducial’interval, scale invariance may be of interest here. The

difference in observed p-values between including or excluding the neighboring information

is cause for concern. Such a discrepancy is bound to invite ‘data snooping’concerns. If the

neighboring information is excluded in the calculation of Di, then the proposed test may be

identical to a resample form of an unconditional test under a well-specified model.

Finally, the clustering of the individual node effects has both positive and negative side ef-

fects. On the negative side the power to detect an individual effect may be reduced. On

the positive side, for high dimensional graph comparisons the ability to apply community-

detection or clustering algorithms to a set of dissimilarities may allow for a better visualiza-

tion or explanation of why a difference was detected.



Chapter 5

Properties

Evaluating the properties of D under various network models is, in some respects, more

challenging than outlining its use for one-, two-sample, and post hoc testing procedures.

The breadth of various graph models (binary versus weighted, generative versus discrimi-

native models, directed versus undirected, etc.) renders such an evaluation an impossible

task in the limited space available here. Schäfer et al. [173], in their empirical Bayesian

approach to modeling biological networks, advocate the need to explore inferred network

models via simulation. Markowetz et al. [199], in their review paper on inferring cellular

networks, capture some of the properties of various network algorithms. Werhli et al. [198]

is a specific example of a comparative study evaluating the reverse engineering of regulatory

networks using select algorithms. In this chapter we focus on exploring some of the obvious

properties that the use of D suggests. One item that we leave somewhat unaddressed is a

careful characterization of an error distribution. Due to the mixture of qualitative (edge)

and quantitative (weight) features, a reliance on the use of resamples to perform the testing

procedures, the role of weights in the calculation of D, and the variety and complexity of

the network models to entertain, such an evaluation is best undertaken in a specific context.

For example, using real biological data we illustrated in section 2.3.6 that to use both the

qualitative edge indicator and quantitative weight portions of D for a correlation network

143



Phillip D. Yates Chapter 5. Properties 144

is redundant. To include both components can impact the precise level of the test under a

specific graph topology, the power of the test, and other salient testing properties. Trans-

lating these results for a correlation network to an investigation of a preferential attachment

network would need to be verified via another set of independent simulations. A recurring

recommendation regarding the use of D in specific situations is, “When in doubt, try it

out.”All of the results illustrated in this chapter were obtained via simulation. The compar-

isons investigated here assume a one-sample testing scenario. Apart from a need to store

and manipulate interim calculations (which are not normally needed to compute a resample

p-value), the procedures used to simulate and resample from the various networks models

are identical to previously detailed methods.

5.1 Network Resampling Distributions

Statisticians have long studied the sampling distributions for various statistical estimates

under an assumed parametric model. The complexity of network behavior, both under null

and alternate network forms, creates a more formidable problem. Combining a tailorable D

with resampling procedures, primarily monte carlo procedures in the one-sample case and

conditional tests in the two-sample case, is sure to create ‘messy’sampling distributions. In

order to partially address this matter we provide results for two of the simple scenarios inves-

tigated earlier. In this section we address both whole network and node effect distributions

for D and Di, respectively, and the relative contributions of the first and second neighbor

information. In both situations we examine the behavior of D under the null distribution

in the context of a one-sample comparison; the behavior under various alternate models is

left for further study. We have limited our study to networks of a relatively small dimension

since both D and Di are studied.
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5.1.1 Whole Network & Node Effects

We begin by discussing the null distribution for both whole model and post hoc effects for two

Erdős-Rényi random graphs - a G(15, 0.20) random graph and a G(15, 0.40) random graph.

In both cases the nearby neighbor information was incorporated in D or Di and the same

weight, cij = exp(−2), was used throughout. Apart from modifying n and p, the procedure

used to sample from the G(n, p) network model, performing the resampling, calculate D,

etc., is identical to what was documented in section 2.3.5. Please see the R code ERDist in

appendix E for additional detail.

In discussing the sampling distribution of D (and Di) for the two G(n, p) graphs we limit

ourselves to a qualitative description of the results. It is easiest to visualize the post hoc

results for Di and extrapolate to the combined D. In this case the distribution of the

mismatches at a given node follows a Poisson- or binomial-like distribution. Adding in the

nearby neighbor information scaled by a fixed constant still results in a distribution that is

roughly symmetric and Poisson-like. See figure 5.1 for histograms of the 1,000 Di resamples

for a single node. Summing the results across all of the 15 nodes into the combined measure

D further smooths the sampling distribution for D. These results held true for both p = 0.20

and p = 0.40. The sampling distributions for D and Di do not behave in a counterintuitive

manner; this is not entirely unexpected given the stochastic behavior of a G(n, p) graph.

We now turn our attention to two one-sample correlation network examples. We made slight

modifications to the procedure first outlined in section 2.3.6. In both cases the number

of variables in the network was set to 15, the nonzero elements of Ω were greater than

0.20, and the threshold for ρ used to estimate a network was set at 0.20. In one network

5 3x3 nonzero blocks form the backbone of the network; the other network consisted of

3 5x5 nonzero blocks. The 200 null observations, under an assumed multivariate normal

distribution, were used to generate the null distribution for D. As before, we limit ourselves

to a qualitative discussion of the results. See CorrDistNeighbor in appendix E for the R code

used in both this section and section 5.1.2; apart from changing the dimensionality of Ω the
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Figure 5.1: Histograms of 1,000 resampledDi values for a single randomly selected node from
a one-sample test of a G(15, 0.40) graph under the null hypothesis. Panel (a) is a histogram
of Di where the neighboring information has been excluded; panel (b) is a histogram where
the neighboring information has been scaled by e−2.

simulation/resampling procedure is identical to the method presented in section 2.3.6. A

slight extension to the previous R code was necessary to retain intermediate calculations for

use here. Both D and Di, for a randomly selected node, exhibited right-skew distributions

under both correlation structures. Since both D and Di can include or exclude the edge

indicator portion, the behavior of the sampling distribution can reflect the diversity possible

with D or Di. In approximate terms, the distribution for D or Di appeared exponential-

like or χ2-like. The sampling distributions for a single node’s Di were more smooth for the

nonzero 5x5 blocks relative to the 3x3 blocks; the sampling distribution for D was more

smooth than the sampling distribution for Di. Removing the edge-indicator portion of D

or Di produced similar smooth results compared to calculations that included the edge-

indicator portion. None of these findings are alarming. Refer to figure 5.2 for a panel plot
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of Di for a single node under various configurations for Ω and Di.

5.1.2 First and Second Neighbor Contributions

We omit a discussion of the relative proportion of the neighboring contributions for the

G(n, p) graphs for two primary reasons. First, for a purely unweighted graph the choice

of the weight cij is of obvious importance. This is demonstrated in the next section for

two classes of binary graphs. Second, even for the two G(n, p) graphs examined here the

resulting nearby neighbor array can be quite ragged, i.e., the number of nearby neighbor

mismatches can vary strongly as a function of p and n. To give a rough approximation

for the observed results, for p = 0.20 the ratio of the average Di calculated without the

neighboring information was greater than 90% of the value of the average Di calculated with

the neighboring information across the n nodes. For p = 0.40 this ratio was primarily in the

range of 70-80%. On average, the same results apply to the overall measure D.

For the two correlation networks presented in section 5.1.1 we provide 4 sets of approximate

results. Since D is the sum of the Di constituents, we focus on the range of the relative

contributions for the two networks both with and without the inclusion of the edge indicator

portion for just the Di components. For Ω comprised of the 3x3 nonzero blocks the ratio

of the average weight-only Di calculated without the neighboring information was approx-

imately 20-60% of the value of the average weight-only Di calculated with the neighboring

information. Just for clarification, the range of observed ratios was calculated over the 15

nodes using an average per-node Di based on 1,000 resamples. For Ω comprised of 5x5

nonzero blocks this ratio ranged from 15-50%. Including the edge-portion of Di produced a

corresponding ratio range of between 15 and 65% for the 3x3 form of Ω. For Ω comprised

of 5x5 nonzero blocks this edge+weight ratio ranged from approximately 10 to 35%. The

variability in these results, on a per node basis, is not insubstantial. Due to the various mag-

nitude of the weights, e.g., the ρij’s, the potential dimension of observable blocks, the choice

of a threshold procedure, etc., such a simplistic evaluation is likely of limited intellectual
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Figure 5.2: Cumulative distribution function plots for 1,000 resampled Di values for a single
node from a one-sample test of a 15-dimensional Ω3x3/Ω5x5 block diagonal graph under the
null hypothesis. The panel legends indicate whether or not the edge indicator portion of Di

was used.
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value.

Ultimately, we view concerns over the relative contributions of the neighboring information

as an ill-posed problem. Unless one has a network with strict Markov-like properties the

exclusion of the neighbors can result in a loss of information. To include the third, fourth,

etc., neighbors invites even more discussions regarding relative contributions under various

network models. For a correlation network we saw in section 2.3.6 that the inclusion of

the neighboring information resulted in a loss of power. Using D with or without the edge

indicator portion also affects the power of D under some of the alternatives examined in our

simulation studies. Evaluating conditional power, as discussed in Pesarin [99], is a messy

business that is unlikely to point toward an ‘optimal test’. Since the cardinality of the space

of alternates is unbounded, a rigorous examination of the behavior of D and Di is impossible.

5.2 Tunable Settings

In the discussion section of the second chapter we outlined our motivation for applying a

weight to the nearby neighbors of node i. For a weighted graph, apart from a potential

desire on the behalf of the researcher to apply an additional weighting factor, we discussed

our rationale for weight selection at that time. To apply an additional näıve (or informative)

weighting constant, e.g., w ∈ (0, 1), further downweights the contribution of the neighboring

information for a weighted graph. Although not demonstrated here, we (accidentally) inves-

tigated the behavior of this approach for correlation networks in early simulation studies. For

a pure binary graph, e.g., an Erdős-Rényi random graph, the choice of a suitable weight is

more arbitrary. In this section we illustrate the use of various weight constants for two types

of binary graphs under an assumed alternate hypothesis. Due to the tremendous diversity

in potential network models our demonstration is brief. Ultimately, the choice of a weight

is a heuristic matter for these types of graphs. The inclusion/exclusion of the neighboring

information invites a discussion of information gain/loss and variance trade-offs. Similar to
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an evaluation of a prior in a formal Bayesian analysis, we mostly confine our presentation to

a consideration of the robustness of D in the presence of different weights.

We begin by revisiting the one-sample test for an Erdős-Rényi random graph, G(n, p). As

in section 5.1.1, we work from the simulation setup given in section 2.3.5. We assume

that H0 : G(n, p) = G(25, 0.20) and H1 : G(n, p) = G(25, 0.25). As before, we use the

p-values obtained under resamples from H0 to compare the various cij weights for a test of

H0 : p = 0.20 versus H1 : p > 0.20. 100 experiments were performed and 1,000 resamples

were used in the computation of each p-value. The procedure used to generate a p-value for

a single experiment has been slightly edited from the outline given in section 2.3.5. Since

both G(n, p) and small-world graphs are investigated in this section, the procedure listed

below is more generic and mentions the use of different cij.

1. To evaluate D we first draw a binary network under the specified H0 model - this

network serves as our target network. A second network from the H1 probability

model is drawn. This is our observed network that we wish to compare to the first

network.

2. D is calculated using these two networks. Four different nonzero cij weights were used

to explore varying contributions of the nearby neighbor information to the performance

of D.

3. Draw 1,000 random networks using the H0 probability model and calculate the dissim-

ilarity between each of these networks and the target network for the four separate cij

weights. This creates the null distribution for D under the various weights.

4. Finally, in order to compute a single resample p-value we count the number of times

that the initial target-observed D exceeds those determined from the 1,000 resampled

D’s for a given cij.

Figure 5.3 illustrates a pairwise comparison of the p-values for the successive values of cij

weights. Four weights were applied: exp(0), exp(−1), exp(−2), and exp(−3). These weights



Phillip D. Yates Chapter 5. Properties 151

were chosen since they increasingly downweight the neighboring contribution by roughly a

factor of 2: exp(0) = 100%, exp(−1) = 36.8%, exp(−2) = 13.5%, and exp(−3) = 4.9%.

(Translating these percentages into familiar two-sided quantiles based on a standard nor-

mal distribution produces: exp(0) ∼ ϕ(0.00), exp(−1) ∼ ϕ(0.90), exp(−2) ∼ ϕ(1.49), and

exp(−3) ∼ ϕ(1.97).) In all four panels we see that a positive linear trend is present. In

panel (a), 29 of the p-values obtained using weight exp(0) were less than the corresponding

p-values obtained with weight exp(−1). To use the nearby neighbors in a one-to-one fashion

increases the variance of D. In panel (b), 58 of the p-values obtained using weight exp(−1)

were less than the corresponding p-values obtained with weight exp(−2). This suggests a

near parity in terms of the observed p-values under these two weights. In panel (c), 78 of

the p-values obtained using weight exp(−2) were less than the p-values obtained with weight

exp(−3). To use only 5% of the neighboring information with weight exp(−3) suggests that

excluding the (majority of the) neighboring information could dramatically reduce the power

of D for rejecting H0. In panel (d), 57 of the p-values obtained using weight exp(0) were

less than the corresponding p-values obtained with weight exp(−3). Since neither of these

weights exhibited the most promise for rejecting H0 at common levels for α (e.g., 0.01, 0.05,

or 0.10) they should be avoided. Attempts at determining an optimal weight cij, assuming

one contrives an objective function to optimize, could be a topic for further study.

We now turn our attention to a form of a Watts-Strogatz small-world graph. These binary

graphs are characterized by a high degree of local clustering plus a small distance between

any two pairs of nodes. A well-defined definition for these graphs is not universal; various

algorithms have been proposed that generate small-world graphs. For the purposes of the

demonstration here, it is best to view the graphs analyzed here as a banded adjacency

matrix where a small portion of the nodes outside the diagonal band are set to one. The

local clustering is obtained by the use of a uniform band; the short distance is achieved by a

random rewiring of select nodes inserted outside the band of the adjacency matrix. We used

the R library Statnet, obtained from the R archive CRAN, to generate these data. Refer to

appendix E, under the headings ER-Weight and SmallWorld, for the R source code.
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Figure 5.3: P-values from 100 independent tests of H0 : G(25, p) = G(25, 0.20) versus
H1 : G(25, p) > G(25, 0.20). All graphs were unweighted. Four weights were evaluated:
exp(0), exp(−1), exp(−2), and exp(−3). The x- and y-axis indicate the observed p-values
based on 1,000 resamples for each test using the specified weight. A y = x line is superim-
posed on each graph.
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As in the G(n, p) one-sample case, we assume that 25 nodes are present in each small-

world graph. Apart from creating a small-world adjacency matrix using the rgws R library

command, the simulation procedure employed here is identical to the G(n, p) setup of section

2.3.5. Rather than vary the constant governing the local clustering constant (which precisely

specifies the band about the diagonal of the adjacency matrix) we modulated the internodal

re-wiring parameter r. The local clustering constant repeatedly duplicates a structure; r

controls the purely stochastic component in these graphs. Differences in the local clustering

constant for small values of r may be detectable with a direct examination of the graph(s);

the node-centered form of D can easily amplify differences in this constant. Under one set

of simulations we tested H0 : r = 0.15 versus H1 : r > 0.15 when r was, in fact, equal to

0.20; in a second set of simulations we tested H0 : r = 0.50 versus H1 : r > 0.50 for r = 0.60.

The second set of simulations is not realistic relative to the observed behavior of biological

networks [10]. But, in the second case the amount of entropy present in a sampled network

is larger relative to the first simulation.

As in the G(n, p) comparison, Figure 5.4 graphs the pairwise association of the resample

p-values under successive cij weights when r = 0.20. Three effects are obvious. First, a

positive linear association is apparent in all four panels. Second, this association appears to

be robust to the specification of the weight cij. Finally, panel (d) suggests that the use of the

neighboring information neither enhances nor detracts from the behavior of D. To observe

approximately the same p-value under this specific alternative when either 100% or 5% of

the neighboring information is used suggests that H0 will be rejected at the same rate under

these two extremes. The (unnecessary) benefit of incorporating the neighboring information

in D under this model specification, where a locally repetitive graph is injected with a small

amount of purely random behavior, is not a complete surprise.

Figure 5.5 graphs the association between the pairwise p-values for successive weights when

r = 0.60. In contrast to the robust behavior of D to cij for small r, the behavior here is

markedly different from the results just presented. Panels (a) and (d) do not suggest a linear

association is present for these sets of p-values. Panels (b) and (c) indicate varying degrees
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Figure 5.4: P-values from 100 independent tests of H0 : r = 0.15 versus H1 : r > 0.15
when r = 0.20 under a Watts-Strogatz network model. All graphs were unweighted. Four
weights were evaluated: exp(0), exp(−1), exp(−2), and exp(−3). The x- and y-axis indicate
the observed p-values based on 1,000 resamples for each test using the specified weight. A
y = x line is superimposed on each graph.
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of a linear association are present. One interesting observation pertaining to panel (d) is a

possible cluster of p-values in the lower right hand corner of the graph. This suggests that

the use of exp(−3) as a weight produced p-values less than 0.20 whereas the corresponding

use of exp(0) as a weight produced p-values larger than 0.75. Due to the high amount of

random rewiring present, effectively ignoring the neighboring information may result in a

more powerful test statistic relative to one in which a large proportion of the neighboring

information is utilized. Although not immediately obvious, such a result is not entirely

counterintuitive.

Two obvious properties left mostly unexplored concern the size and density of the various

graphs. Mathematicians are interested in the properties of graphs as the number of nodes or

edges increases (perhaps without bound). Such an undertaking is less relevant here for several

reasons. D is purposely defined to reflect a local degree of separation. This is both a strength

and weakness of the measure. If ‘large distance’effects are present then the researcher will

likely need to acknowledge this complexity at the outset and consider an alternate approach.

Current -omics experiments are still limited in terms of practical sample sizes. The tension

between realistic sample sizes and the reliable estimation of interesting effects is a broader

problem for the -omics era. Traditional large sample statistics for comparing covariance

matrices, a corresponding problem for the network comparisons performed here, readily

admit the need for large sample sizes [136]. To compute a nearby-neighborhood measure for

genome-wide or proteome data (or other situation where the number of effects is an order of

magnitude or more larger than the sample size) creates a serious, and perhaps unnecessary,

computational burden. The role of edge density can also lead to surprising effects. For

example, in a comparison of two G(n, p) graphs the dissimilarity D for extreme values of p

is less than when p ∼ 0.5. This is due to the amount of entropy exhibited by these graphs as

a function of p [4]. Understanding the conditions that maximize the entropy (and directly

impact the calculation of resample p-values) for various graph models, e.g., the previously

discussed Watts-Strogatz model, may require additional effort on the investigator’s behalf to

facilitate an effective use of D. We avoided ultra-small network comparisons, except in the
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(c)   cij = e−3 versus cij = e−2
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Figure 5.5: P-values from 100 independent tests of H0 : r = 0.50 versus H1 : r > 0.50
when r = 0.60 under a Watts-Strogatz network model. All graphs were unweighted. Four
weights were evaluated: exp(0), exp(−1), exp(−2), and exp(−3). The x- and y-axis indicate
the observed p-values based on 1,000 resamples for each test using the specified weight. A
y = x line is superimposed on each graph.



Phillip D. Yates Chapter 5. Properties 157

real data or post hoc cases, due to analytical parallels to existing procedures and maintain

that the use of D for very large networks is likely to be impacted by a range of factors outside

of our limited control here.



Chapter 6

Next Steps

6.1 Limitations

Networks provide an exciting area of new opportunities for statisticians. But, in conducting

this research we have often had to wrestle with the utterly unfamiliar. In the shift from at-

tribute data, where precise statistical models have been extensively developed and studied,

to network data we are forced to confront an array of practical and technical issues. Given

the complexity of biological processes these networks, visualized as cartoons, are often un-

derstood to be imperfect and oversimplified visualizations of reality. Experimental-, time-,

and/or state-dependent effects only make matters more complicated. In some contexts the

notion of an ‘edge’will likely defy a precise definition or necessitate a lengthy list of qualifiers

and assumptions to be applicable. These limitations are beyond the scope of this disserta-

tion. In an effort to remain biologically and intellectually relevant, the most sound approach

to such an array of diversity and complexity has been to concentrate on simplicity.

The complexity of networks also presented a formidable obstacle in terms of mathematical

models. Parametric models, the bedrock for much of statistical thought/practice, are still in

their infancy for networks. We have not proposed or developed a rich mathematical theory
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outlining confidence intervals, efficient statistical estimators, or optimal testing procedures.

For those scientists consumed with tests for parameters, e.g., µ = µ0, our approach may

be found lacking. We added no fuel to the subjectivist/objectivist model debate. Our

approach relies heavily on observed data (or possibly an assumed model in the one-sample

case) or exchangeability. Network data obtained via an observational study, a situation

which circumvents the experimental principle/practice of randomization, invites a host of

questions to ponder. Our emphasis here was to outline a method more tailored to molecular

biologists, pharmacologists, and clinical researchers rather than epidemiologists or survey

statisticians.

6.2 Of Immediate Interest

Despite some of the ‘grand challenges’associated with network inference, some obvious ques-

tions are apparent. The most obvious centers on the choice of the measure. For example,

MacDonald [122] documents a graph complexity measure C = V −2 det[1V +D−A], where

V is the number of vertices, D is a diagonal matrix whose entries consist of the total degree

for each node, and A is the adjacency matrix. Some might propose a squared-distance mea-

sure; Yip et al. [193] and Li et al. [177] suggested a multi-node topological overlap measure.

The use of an asymmetric similarity measure, i.e., treat over- and underfitting unequally,

might hold promise for some applications. Reichardt [33] recently proposed an error func-

tion for adjacency matrices A and B that would: reward edge matches in A to edges in B,

penalize the match of missing edges in A to edges in B, penalize the matching of edges in

A to missing edges in B, and reward the matching of missing edges in both A and B. His

proposal also suggests the weighting of individual contributions; cluster/community identi-

fication is the primary application in his monograph. Although not extensively cited here,

information-theoretic measures of entropy are found in the network literature. Divergence

measures may provide a natural test bed for imprecise parameter-free network comparisons.

Contrasting D with various measures may prove insightful. Despite an interest in the choice
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of distance, heeding the concerns of Zhang [13] may prove relevant. In high-dimensional

spaces all the distances may become clustered/appear close together and fail to distinguish

separable graphs!

Chung et al. [90] emphasize the need for combinatorial, probabilistic, and spectral ap-

proaches for understanding large sparse graphs. In the study of the spectral properties of

graphs [89] analyzes the Laplacian form of a graph. How a graph is represented in matrix

form is known to influence the eigenspectrum; the use of various forms can reveal complemen-

tary information in terms of their spectral properties. As such, evaluating our dissimilarity

measure D using the Laplacian representation of a (weighted) network is worthwhile. A

definition of the Laplacian for a weighted network G indexed by node, where w(u, v) is the

weight incident to edge uv and du is the degree of node u, is the following:

L(u, v) =


1− w(v,v)

dv
, u = v, dv ̸= 0,

−w(u,v)√
dudv

, u, v are adjacent,

0 , otherwise.

We omitted exploring this matrix representation here since a direct and decomposable matrix

form was more easily tailored to biological concerns and held intuitive appeal. Somewhat

comparable to social block models, Chung [89] also outlines theory for isoperimetric problems.

The ability to partition a network according to a predetermined theoretical criterion could

provide an objective route in forming partial tests for significant network separation.

Another set of obvious questions revolve around partitions for a network. For example, if one

is willing to assume a hierarchy for a network, e.g., order the nodes from highest to lowest

degree, then one may be able to recast portions of the inference problem in the language

of trees. The literature for trees, Bayesian networks, and other directed structures could

be considered. Partitions formed via eigenspaces could also be explored. Servedio et al.

[35] suggest an algorithm, for use in general weighted networks (a modification to include

directed graphs was also suggested), that uses a portion of a network’s eigenspectrum in

conjunction with an internodal correlation coefficient to analyze the community structure
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in a (sharply partitioned) network. They offer a brief contrast between their approach and

methods based on iterative bisection or edge-betweenness methods. Rapaport et al. [182]

use the eigenspectrum of an a priori gene network to derive (un)supervised classification

algorithms. Langfelder et al. [190], in developing a software tool for use with biological net-

works, incorporate module-level analysis tools to alleviate, in part, the multiple comparison

problems associated with node-level analyses.

In outlining our testing procedure we oscillated between ‘whole’network tests and single-node

tests. Graph partitions (or clustering/community identification) could be used to provide a

more powerful test. Biologists may be able to suggest natural partitions of a graph based

on the function under study; this is especially true for fusion networks. Decomposing the

network on the basis of ‘guide gene(s)’, mentioned in the section on correlation networks,

could be used. In this scenario, similar to Fisher’s omnibus test for compounding evidence

from several tests, partitioned tests may prove useful. Analogous to variable selection prob-

lems involving correlated regressors, examining the community structure among the post

hoc test resamples could yield biological insight. Traditional tools such as variance inflation

factors, principle (or independent) components analyses, clustering procedures, etc., could

be evaluated here.

6.3 Missingness

Another interesting question arose in the context of missing data. Since both attribute and

relational data can be impacted by ‘missingness’, this problem is very complex. For the

microarray-based data used for much of this dissertation we conveniently assumed (a sparse)

multivariate normal distribution for the observation data. For data of this type, Little and

Rubin [159], the classical reference for this topic, offers suggestions for handling (in)complete

cases, patterns of missingness (e.g., at-random), and imputation strategies. But, since the

measured data do not necessarily specify the network in toto, the sufficiency of their approach
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is questionable.

In this dissertation, we assumed that we were able to align the nodes in our network. For

estimated networks obtained from transcription arrays or protein assays that only sample

genes or interesting proteins, i.e., only a portion of the active participants in a network

are measured, the role of missingness in the network estimation process may have more

subtle effects. Lin et al. [161], with an emphasis on the yeast protein network, studied

the role of erroneous edges on network topology inference. Friedel et al. [162] investigated

the effect of limited sampling to infer protein-protein interaction networks using clustering

coefficients. Yang et al. [163] describe an approach to deduce protein-protein interaction

network topology from experimentally measured sub-networks. The missingness problem

has direct links to network sampling procedures; another area of compelling research.

Wasserman et al. [55] contains a brief discussion of network imputation, where imputation

is defined to imply missing nodes and missing edges. Not surprisingly, their discussion

works from the premise of a network model. They suggest an approach, after assuming an

approximately multivariate normal distribution for an independent set of graph statistics, to

predict missing edges. They state that one of the most difficult problems in network analysis

is determining whether the network contains a complete set of nodes and edges. In short,

the basic recommendation seems to involve a model, a scheme to add links and/or nodes,

and the calculation of a loss function to gauge the utility of the graph-modifying action.

In a somewhat related vein, understanding the robustness of D as one or more nodes are

deleted could prove interesting. But, given the prospect of mechanisms such as preferential

attachment in shaping a network’s architecture, removing nodes or edges at random may

not be adequate to explore this topic.

Kolaczyk [3], in his recent text, relates link (or edge) prediction to the notion of missingness.

He alerts the reader to the presence of informative missingness in biological networks. Link

prediction, with a reliance on models or algorithms, can be a perilous business. The pro-

liferation of algorithms to infer edges was a substantial part of the original motivation for
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this research. Herrg̊ard et al. [160], in an effort to improve the study of metabolic networks,

suggests that in silico models only be used to identify discrepancies between a model and

experimental data. This stresses the inherent limitation to theoretically tractable models in

uncovering real biology. In short, a careful treatment of missingness in problems involving

network inference could serve as the basis for another dissertation.

6.4 D Under Various Network Models

In the first chapter we outlined a portion of the broad range of network models. In order for

this dissertation to remain tractable we made some judicious choices regarding the network

models to explore. Evaluating D under other network models is an item of natural inter-

est. Mendes et al. [171] provide an example of one-of-many software tools for simulating

artificial gene networks. Langfelder et al. [190] is designed for use with weighted correlation

networks. For example, we observed earlier the differing performance of D relative to the

inclusion or exclusion of the neighboring information under Erdős-Rényi random graphs,

correlation and partial correlation networks, and a simple version of a small-world graph. A

better understanding of this phenomena may shed light on various network mechanisms and

models. Apart from ERGMs, we fear such a study may be analytically intractable. Even

Erdős-Rényi random graphs are quite complex - Lewis [4] states that in a random graph the

entropy goes from zero to a maximum value and back to zero as the number of links grows.

This is intuitively related to how randomness can behave on a finite set of nodes; a random

network has less chance to be random as the network approaches a fully connected or empty

graph. Chung et al. [90] recap the pioneering work of Erdős and Rényi in characterizing 6

distinct phases of G(n, p) graphs as p ranges from 0 to 1. The prospect of repulsive sub-

networks (i.e., comparable to negatively autocorrelated processes), asynchronous events, and

other electronic circuit-like behavior will surely complicate this effort. It is entirely conceiv-

able that a comparison of network parameterizations between two or more phenotypes for a

realistic system will make the well-known Behrens-Fisher problem seem child-like. Recon-
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ciling amenable mathematical models with realistic biological models should keep systems

biologists gainfully employed for the foreseeable future.
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[121] Barthélemy, J.-P., and Guénoche, A. (1991) Trees and Proximity Representations. John

Wiley & Sons, Chichester, England.

[122] MacDonald, N. (1983) Trees and Networks in Biological Models. John Wiley & Sons,

Chichester, England.

[123] Borgelt, C., and Kruse, R. (2002) Graphical Models: Methods for Data Analysis and

Mining. John Wiley & Sons, Chichester, England.

[124] Husmeier, D. (2005) “Introduction to statistical phylogenetics.” Probabilistic Modeling

in Bioinformatics and Medical Informatics, D. Husmeier, R. Dybowski, and S. Roberts

(Eds.), Springer-Verlag, pp. 83-145.

[125] Davis, S., Schroeder, M., Goldin, L. R., and Weeks, D. E. (1996) “Nonparametric

simulation-based statistics for detecting linkage in general pedigrees.” American Journal

of Human Genetics, Vol. 58, pp. 867-880.



Phillip D. Yates Chapter 6. Bibliography 180

[126] Efron, B., Halloran, E., and Holmes, S. (1996) “Bootstrap confidence levels for phylo-

genetic trees.” Proceedings of the National Academy of Sciences of the United States of

America, Vol. 93, No. 14, pp. 7085-7090.

[127] Diaconis, P., and Holmes, S. (1998) “Matchings and phylogenetic trees.” Proceedings

of the National Academy of Sciences of the United States of America, Vol. 95, No. 25,

pp. 14600-14602.

[128] Aldous, D. J. (2001) “Stochastic models and descriptive statistics for phylogenetic

trees, from Yule to today.” Statistical Science, Vol. 16, No. 1, pp. 23-34.

[129] Holmes, S. (2003) “Statistics for phylogenetic trees.” Theoretical Population Biology,

Vol. 63, pp. 17-32.

[130] Holmes, S. (2003) “Bootstrapping phylogenetic trees: theory and methods.” Statistical

Science, Vol. 18, No. 2, pp. 241-255.
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Appendix A

Core R Routines

The routines in this chapter operate as kernel functions. Some (or all) of these functions were

used by code appearing in subsequent chapters of this appendix. Some of the functionality

developed was not explicitly incorporated into the analyses discussed in this dissertation. To

add additional features to D, e.g., directionality, will require modifications to one or more

of the following routines.

make.sample.ntwk converts weighted ordered pairs into separate adjacency and weight ma-

trices. new.beta is a function to allow for additional weighting to various components.

score.ntwk is a flexible routine to score the difference between two networks in terms of indi-

vidual pieces/features. This is a core function. resample.target.delta is another core function

used to calculate node-level and nearby-neighbor node-level dissimilarities.

# Convert Estimated Sample Networks into Incidence and Weight Matrices

# Looping/cumbersome code is necessary to convert this into matrix form

# Weight = Col1, Node1 = Col2, Node2 = Col3. Input SAME Number of Nodes.

make.sample.ntwk <- function(ntwk.data,no.nodes){

ans.incid <- ans.wgt <- matrix(rep(0,no.nodes^2),nrow=no.nodes,

ncol=no.nodes)
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for (ii in 1:dim(ntwk.data)[1]){

x <- ntwk.data[ii,2]; y <- ntwk.data[ii,3]

ans.incid[y,x] <- ans.incid[x,y] <- 1

ans.wgt[y,x] <- ans.wgt[x,y] <- ntwk.data[ii,1]

}

answer <- cbind(ans.incid,ans.wgt)

answer

}

############################################################

### Estimate a new Weight using the mode and coefficient of variation

# Only the "+" root is used.

# Adding other root may cause u>1 and v>1 problems.

# Pass in a non-null non-negative vector of weights

new.beta <- function(mu,cv){

mu_new <- numeric()

for (ii in 1:length(mu)){

b <- 3*mu[ii] - 1 - (1/(cv^2)) + mu[ii]/(cv^2)

c.1 <- (1-2*mu[ii])/(cv^2)

v.est <- (-b + sqrt(b^2-4*c.1))/2

#print(v.est)

w.est <- (cv^2)*v.est*((v.est-1)/mu[ii] + 3)

beta.simul <- rbeta(1,v.est,w.est)

mu_new[ii] <- ifelse(is.na(beta.simul)==TRUE,mu[ii],beta.simul)

}

mu_new

}
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############################################################

### Function to score the difference between the two networks

# Function that receives the no.nodesx7 matrix; returns the score value

# Streamlines permutation and allows for localized adjustments

# NAs had to be removed

# *.keep = 0 omits that feature

score.ntwk <- function(x,second.scale,edge.keep,wgt.keep,nbhr.keep,

direc.keep){

edge.first<-x[!is.na(x[,2]),2];edge.second<-x[!is.na(x[,5]),5]

edge.score <- edge.keep*(sum(edge.first) +

nbhr.keep*sum(edge.second)*second.scale)

wgt.first<-x[!is.na(x[,3]),3];wgt.second<-x[!is.na(x[,6]),6]

wgt.score <- wgt.keep*(sum(wgt.first) +

nbhr.keep*sum(wgt.second)*second.scale)

direc.first<-x[!is.na(x[,4]),4];direc.second<-x[!is.na(x[,7]),7]

direc.score <- direc.keep*(sum(direc.first) +

nbhr.keep*sum(direc.second)*second.scale)

score.answer <- edge.score + wgt.score + direc.score

score.answer

}

############################################################

### Score the Resample-Target difference with a coin flip at node level

# 2nd neighbor pieces are SCALED!

resample.target.delta <- function(tgt.incid,tgt.wgt,redraw.incid,
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redraw.wgt,coin,coef.var,add.noise){

count.nodes <- dim(redraw.incid)[1]

# Initialize the delta matrix for subsequent scoring

delta.ntwk.resamp <- matrix(rep(0,count.nodes*7),nrow=count.nodes,ncol=7)

# Begin counting edge misalignments and weight differences

# Note: Weight delta exploits Zeros stuffed in the Weight matrix

# (difficult to add under/over-fit penalties)

for (jj in 1:count.nodes){

# Flip the coin at the node level; default to Redraw network

coin.flip <- ifelse(runif(1)<=coin,1,0)

coin.incid <- redraw.incid; coin.wgt <- redraw.wgt

if(coin.flip==1){coin.incid<-tgt.incid;coin.wgt<-tgt.wgt}

delta.ntwk.resamp[jj,1] <- jj

# Count mismatches

delta.ntwk.resamp[jj,2] <- sum(coin.incid[jj,]!=tgt.incid[jj,])

# Count weight differences. Default to original weight

new.coin.wgt <- coin.wgt[jj,]

if (add.noise==TRUE){

coin.wgt.sign <- sign(coin.wgt[jj,])

coin.wgt.mag <- abs(coin.wgt[jj,])

new.coin.wgt<-coin.wgt.sign*new.beta(coin.wgt.mag,coef.var)

}

# Abs or ()^2 are possible functions

delta.ntwk.resamp[jj,3] <- sum(abs(new.coin.wgt - tgt.wgt[jj,]))

# Insert code here for directionality

# Count nearest neighbor pieces;2nd neighbor pieces are unscaled!

logic.keep<-(coin.incid[jj,]==tgt.incid[jj,])&(coin.incid[jj,]==1)

second.cols <- seq(1:count.nodes)[logic.keep]
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delta.second <- c(0,0,0)

for (jk in 1:length(second.cols)){

#flip coin at nearest node level; default to Redraw ntwk

coin.flip <- ifelse(runif(1)<=coin,1,0)

coin.incid <- redraw.incid; coin.wgt <- redraw.wgt

if(coin.flip==1){coin.incid<-tgt.incid;coin.wgt<-tgt.wgt}

delta.second[1]<-delta.second[1]+sum(

coin.incid[second.cols[jk],]!=tgt.incid[second.cols[jk],])

# Abs or ()^2 are possible functions

# Default to the original weight

new.coin.wgt <- coin.wgt[second.cols[jk],]

if (add.noise==TRUE){

coin.wgt.sign <- sign(coin.wgt[second.cols[jk],])

coin.wgt.mag <- abs(coin.wgt[second.cols[jk],])

new.coin.wgt<-coin.wgt.sign*new.beta(coin.wgt.mag,

coef.var)

}

#Weight nearest neighbors score by |weight| of connecting node

#nbhr.scale <- 1

ifelse(length(second.cols)>0,nbhr.scale<-abs(coin.wgt[jj,

second.cols[jk]]),nbhr.scale<-0)

delta.second[2]<-delta.second[2]+nbhr.scale*sum(abs(

new.coin.wgt[-jj] - tgt.wgt[second.cols[jk],-jj]))

# Insert code here for 2nd neighbor directionality

}

delta.ntwk.resamp[jj,5:7] <- delta.second

}

delta.ntwk.resamp
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}



Appendix B

Chapter 2 Source Code

ErdosRenyi-Sim

library(statnet)

### Multiple Network For-loop Simulation

number.expt <- 100

ntwk.rank.pcnt <- matrix(nrow=number.expt,ncol=4)

for (hh in 1:number.expt){

no.nodes <- 25

true.density <- 0.2

### Generate a TRUE network

# Set the Bernoulli parameter at 20%

true<-network(no.nodes, directed=FALSE, density=true.density)

true.ntwk<-as.matrix(true,matrix.type = "edgelist")

true.ntwk<-cbind(rep(0,dim(true.ntwk)[1]),true.ntwk[,2],true.ntwk[,1])

convert.to.ntwk <- make.sample.ntwk(true.ntwk,no.nodes)
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tgt.incid <- convert.to.ntwk[,1:no.nodes]

tgt.wgt <- convert.to.ntwk[,-(1:no.nodes)]

# Generate an ALTERNATE network sample

# Can toggle to vary % of edges; No.nodes stays the SAME.

alternate.density <- 0.25

### Generate NULL Sample incidence networks

sample.B <- network(no.nodes, directed=FALSE, density=true.density)

sample.ntwk <- as.matrix(sample.B,matrix.type = "edgelist")

sample.ntwk <- cbind(rep(0,dim(sample.ntwk)[1]),sample.ntwk[,2],

sample.ntwk[,1])

convert.to.ntwk <- make.sample.ntwk(sample.ntwk,no.nodes)

sample.incid <- convert.to.ntwk[,1:no.nodes]

sample.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Generate ALTERNATE Sample networks based on *.DENSITY choice

sample.B.alt<-network(no.nodes,directed=FALSE,density=alternate.density)

sample.ntwk.alt <- as.matrix(sample.B.alt,matrix.type = "edgelist")

sample.ntwk.alt <- cbind(rep(0,dim(sample.ntwk.alt)[1]),

sample.ntwk.alt[,2],sample.ntwk.alt[,1])

convert.to.ntwk <- make.sample.ntwk(sample.ntwk.alt,no.nodes)

sample.incid.alt <- convert.to.ntwk[,1:no.nodes]

sample.wgt.alt <- convert.to.ntwk[,-(1:no.nodes)]

### Calculate difference between Sample and Target networks

stat.samp.ntwk <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),
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exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.nn <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=0,direc.keep=0)

stat.samp.ntwk.alt.nn <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=0,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=3)

for (k in 1:resample.no){

# TRUE.DENSITY draws w/o coin flips

redraw <- network(no.nodes, directed=FALSE, density=true.density)

redraw.ntwk <- as.matrix(redraw,matrix.type = "edgelist")

redraw.ntwk <- cbind(rep(0,dim(redraw.ntwk)[1]),redraw.ntwk[,2],

redraw.ntwk[,1])

redraw.ntwk <- make.sample.ntwk(redraw.ntwk,no.nodes)

redraw.incid <- redraw.ntwk[,1:no.nodes]

redraw.wgt <- redraw.ntwk[,-(1:no.nodes)]

resample.delta.ntwk <- resample.target.delta(tgt.incid,tgt.wgt,

redraw.incid,redraw.wgt,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(-2),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)
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resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(-2),

edge.keep=1,wgt.keep=0,nbhr.keep=0,direc.keep=0)

}

# Close multiple network for loop

est.p.value <- (rank(c(stat.samp.ntwk,resample.results[,1]))[1])

/resample.no

ntwk.rank.pcnt[hh,1] <- ifelse(est.p.value>1,1,est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt,resample.results[,1]))[1])

/resample.no

ntwk.rank.pcnt[hh,2] <- ifelse(est.p.value>1,1,est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.nn,resample.results[,2]))[1])

/resample.no

ntwk.rank.pcnt[hh,3] <- ifelse(est.p.value>1,1,est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt.nn,resample.results[,2]))[1])

/resample.no

ntwk.rank.pcnt[hh,4] <- ifelse(est.p.value>1,1,est.p.value)

}

colnames(ntwk.rank.pcnt) <- c("TRUE.DENSITY","ALTERNATE.DENSITY",

"NULL.NN","ALT.NN")

postscript("ER_demo.eps")

par(mfrow=c(2,2))

plot(seq(1:100)/100,sort(1-ntwk.rank.pcnt[,1]),xlab="EXPECTED",

ylab="OBSERVED",main=expression(paste("(a) ",p == p[0],

" and ",c[ij]==e^-2)),pch=16)

abline(0,1)

plot(seq(1:100)/100,sort(1-ntwk.rank.pcnt[,2]),xlab="EXPECTED",
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ylab="OBSERVED",main=expression(paste("(b) ",p == 0.25,

" and ",c[ij]==e^-2)),pch=16)

abline(h=0.05)

plot(seq(1:100)/100,sort(1-ntwk.rank.pcnt[,3]),xlab="EXPECTED",

ylab="OBSERVED",main=expression(paste("(c) ",p == p[0],

" and ",c[ij]==0)),pch=16)

abline(0,1)

plot(seq(1:100)/100,sort(1-ntwk.rank.pcnt[,4]),xlab="EXPECTED",

ylab="OBSERVED",main=expression(paste("(d) ",p == 0.25,

" and ",c[ij]==0)),pch=16)

abline(h=0.05)

dev.off()

DM2-Normal

library(MASS)

library(Matrix)

# Read in raw data once, remove column of NAs

setwd("C:/Documents and Settings/P. Yates/Desktop/DiabetesNtwk")

diab.data <-read.table("rawdata.txt",header=TRUE,as.is=T,sep="\t",

quote="")

log.diab <- log2(diab.data[,-1])

diab.data.log <- cbind(diab.data[,1],log.diab)

setwd("C:/Documents and Settings/P. Yates/Desktop/DiabetesNtwk/

all_pathways/all_pathways")

dirlist <- dir()
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geneset_length<-length(dirlist)

result.matrix <- matrix(nrow=geneset_length,ncol=6)

result.matrix <- as.data.frame(result.matrix)

colnames(result.matrix) <- c("pathwayN","uniqueN","matchN","NormalCorr",

"Pname","NormalBS")

rm(diab.data,log.diab)

for (hh in 1:geneset_length){

pathway <-read.delim(dirlist[hh],header=F,as.is=T,sep="\t")

result.matrix[hh,5] <- dirlist[hh]

result.matrix[hh,1] <- dim(pathway)[1]

pathway <- unique(pathway)

result.matrix[hh,2] <- dim(pathway)[1]

matchem <- match(t(pathway), diab.data.log[,1])

diab.subset <- diab.data.log[matchem[!is.na(matchem)],]

result.matrix[hh,3] <- no.nodes <- nrow(diab.subset)

diab.subset <- t(diab.subset[,-1])

normals <- diab.subset[1:17,]

diabetic <- diab.subset[18:34,]

n.data <- 17

cor.threshold <- 0.65

### Generate a TRUE network

true.pcor <- cor(normals)
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cor.omit <- abs(true.pcor) < cor.threshold

true.pcor[cor.omit] <- 0

# Create a ’correlation’ network for use with observation resamples

# tgt.incid.bs/tgt.wgt.bs are based on original ’correlation’ network

true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt.bs <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid.bs <- true.bs

# Create ’correlation’ ntwk where estimated correlation ntwk is forced

# to be positive definite. Note - based on the corr level the matrix

# may already be sparse/positive definite.

make.pd <- nearPD(true.pcor,corr=T)

# The above true.pcor is now the PD version!

# To be safe, this needs to be converted into a correlation network.

true.pcor <- as.matrix(make.pd$mat)

true.ntwk <- true.pcor

cor.omit <- abs(true.ntwk) < cor.threshold

true.ntwk[cor.omit] <- 0

diag(true.ntwk) <- 0

tgt.wgt <- true.ntwk

cor.keep <- true.ntwk != 0

true.ntwk[cor.keep] <- 1

tgt.incid <- true.ntwk

### Estimate DIABETIC incidence and weight networks
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estimated.pcor <- cor(diabetic)

cor.omit <- abs(estimated.pcor) < cor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0

estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor

### Calculate difference between Sample and Target networks

stat.samp.ntwk.bs <- score.ntwk(resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=2)

for (k in 1:resample.no){

# Draw from estimated (biased) nearPD correlation matrix

boots.obs <- mvrnorm(n.data,mu = rep(0,dim(true.pcor)[1]),

Sigma = true.pcor)

re.estimated.cor <- cor(boots.obs)

cor.omit <- abs(re.estimated.cor) < cor.threshold

re.estimated.cor[cor.omit] <- 0
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diag(re.estimated.cor) <- 0

re.sample.wgt <- re.estimated.cor

cor.keep <- re.estimated.cor != 0

re.estimated.cor[cor.keep] <- 1

re.sample.incid <- re.estimated.cor

resample.delta.ntwk <- resample.target.delta(tgt.incid,tgt.wgt,

re.sample.incid,re.sample.wgt,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

# Resample from normal observations

boots.obs <- sample(seq(1:n.data),n.data,replace=TRUE)

data.sim1 <- normals[boots.obs,]

bs.estimated.cor <- cor(data.sim1)

cor.omit <- abs(bs.estimated.cor) < cor.threshold

bs.estimated.cor[cor.omit] <- 0

diag(bs.estimated.cor) <- 0

bs.sample.wgt <- bs.estimated.cor

cor.keep <- bs.estimated.cor != 0

bs.estimated.cor[cor.keep] <- 1

bs.sample.incid <- bs.estimated.cor

resample.delta.ntwk<-resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

bs.sample.incid,bs.sample.wgt,0,0.4,add.noise=FALSE)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

# Close multiple network for loop
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est.p.value <- (rank(c(stat.samp.ntwk,resample.results[,1]))[1])

/resample.no

result.matrix[hh,4] <- ifelse(est.p.value>1,0,1 - est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.bs,resample.results[,2]))[1])

/resample.no

result.matrix[hh,6] <- ifelse(est.p.value>1,0,1 - est.p.value)

}

### Correlation Analysis

# Watch the working directory!!

setwd("C:/Documents and Settings/Gwyneth Yates/Desktop/DiabetesNtwk")

corr.rslts <-read.table("DiabetesCorrResults.txt",header=TRUE,as.is=T,

sep=",",quote="")

postscript("rho5.eps")

par(mfrow=c(2,2))

plot(corr.rslts[,6],corr.rslts[,14],xlab="No Edge/Neighbor",

ylab="Edge/Neighbor",pch=19, xlim=c(0,1), ylim=c(0,1),main="(a)")

abline(0,1)

plot(corr.rslts[,12],corr.rslts[,6],xlab="No Edge/No Neighbor",

ylab="No Edge/Neighbor",pch=19, xlim=c(0,1),ylim=c(0,1),main="(b)")

abline(0,1)

plot(corr.rslts[,12],corr.rslts[,14],xlab="No Edge/No Neighbor",

ylab="Edge/Neighbor",pch=19, xlim=c(0,1),ylim=c(0,1),main="(c)")

abline(0,1)

dev.off()

Corr-Threshold-H0-H1

Various edits to this routine were used. Alternating between the null and alternate models
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is trivial to control via the correlation matrix. Various sample size and correlation threshold

edits are also easy to perform in the code below.

library(clusterGeneration)

# result.matrix contains the p-values plotted

set.seed(12321)

cor.threshold <- 0.2

### Create two unequal correlation networks

corr.sizes <- c(5,5,5,5,5,5)

# How many variables & nonoverlapping blocks

corr.dim <- sum(corr.sizes)

corr.lngth <- length(corr.sizes)

# Initialize resulting matrices and pointer

corr.data1 <- matrix(rep(0,corr.dim^2),nrow=corr.dim)

corr.data2 <- corr.data1

pointer.1 <- 1

# For a fixed percentage replace blocks with different corrmatrix

# runif() will accomplish this

# The answer shifted noticeably between 10% and 5%

# Flip back and forth between 2 and 3 at the tail end

nonnull.pcnt <- 0.1; nonnull.ind <- 0

for (j in 1:corr.lngth){

corr.piece.size <- corr.sizes[j]

pointer.2 <- pointer.1+corr.piece.size-1

# Prevent isolates from appearing

make.it <- 0

while(make.it == 0){
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temp.corr1 <- rcorrmatrix(corr.piece.size,alphad=0.1)

ifelse(min(abs(temp.corr1[lower.tri(temp.corr1)]))< cor.threshold,

make.it <- 0, make.it <- 1)}

temp.corr2 <- temp.corr1

rnd.draw <- runif(1)

if(rnd.draw < nonnull.pcnt) {nonnull.ind <- 1; temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

# Make sure that at least one block differs between two matrices

if((j==corr.lngth)&(nonnull.ind==0)) {temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

corr.data1[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr1

corr.data2[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr2

pointer.1 <- pointer.1 + corr.piece.size

}

# Comment out the line below to simulate H1

corr.data2 <- corr.data1

### Initialize experiment and storage parameters

n.expts <- 100

n.data <- 200

cor.threshold <- 0.2

result.matrix <- matrix(nrow=n.expts,ncol=2)

result.matrix <- as.data.frame(result.matrix)

colnames(result.matrix) <- c("Neighbor","NoNeighbor")

# Iterate through the experiments

for (hh in 1:n.expts){
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normals <- mvrnorm(n.data,rep(0,dim(corr.data1)[1]),corr.data1)

diabetic <- mvrnorm(n.data,rep(0,dim(corr.data2)[1]),corr.data2)

### Generate a TRUE network

true.pcor <- cor(normals)

cor.omit <- abs(true.pcor) < cor.threshold

true.pcor[cor.omit] <- 0

# Create a ’correlation’ network for use with observation resamples

# tgt.incid.bs and tgt.wgt.bs are based on original ’correlation’ ntwk

true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt.bs <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid.bs <- true.bs

### Estimate DIABETIC incidence and weight networks

estimated.pcor <- cor(diabetic)

cor.omit <- abs(estimated.pcor) < cor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0

estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor

### Calculate difference between Sample and Target networks
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stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.nn <- score.ntwk(resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=2)

for (k in 1:resample.no){

# Resample from normal observations

boots.obs <- sample(seq(1:n.data),n.data,replace=TRUE)

data.sim1 <- normals[boots.obs,]

bs.estimated.cor <- cor(data.sim1)

cor.omit <- abs(bs.estimated.cor) < cor.threshold

bs.estimated.cor[cor.omit] <- 0

diag(bs.estimated.cor) <- 0

bs.sample.wgt <- bs.estimated.cor

cor.keep <- bs.estimated.cor != 0

bs.estimated.cor[cor.keep] <- 1

bs.sample.incid <- bs.estimated.cor

resample.delta.ntwk <- resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,bs.sample.incid,bs.sample.wgt,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)
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}

# Close multiple network for loop

est.p.value <- (rank(c(stat.samp.ntwk.n,resample.results[,1]))[1])

/resample.no

result.matrix[hh,1] <- ifelse(est.p.value>1,0,1 - est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.nn,resample.results[,2]))[1])

/resample.no

result.matrix[hh,2] <- ifelse(est.p.value>1,0,1 - est.p.value)

}



Appendix C

Chapter 3 Source Code

GeneNetH0

This routine is very similar to the one-sample correlation network code listed in appendix

B. Three obvious exceptions are: a careful control of the seeds used for random number

generation, the 3 GeneNet-specific commands, and the resampling procedure.

library(MASS)

library(clusterGeneration)

library(GeneNet)

# piece.together:=matrix of results cobbled together using various seeds

# The seeds are processed in order

#set.seed(64566767) # Valid 2

#set.seed(87834547) # Valid 2

#set.seed(56756745) # Valid 2

#set.seed(125765) # Valid 14

#set.seed(646294) # Valid 2

209
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#set.seed(4128) # Valid 8

#set.seed(42984) # Valid 1

#set.seed(8582) # Valid 2

#set.seed(237843) # Valid 16

#set.seed(827434) # Valid 2

#set.seed(76832) # Valid 1

#set.seed(2) # Valid 8

#set.seed(22458) # Valid 7

#set.seed(783222) # Valid 2

#set.seed(31112) # Valid 5

#set.seed(4326790) # Valid 2

#set.seed(32792864) # Valid 4

#set.seed(876532) # Valid 2

#set.seed(422411) # Valid 3

#set.seed(67581) # Valid 9

#set.seed(12345678) # Valid 3

set.seed(555555) # Valid 3

# Need this here to control the creation of the matrices

cor.threshold <- 0.2

### Initialize experiment and storage parameters

n.expts <- 25

n.data <- 200

no.nodes <- 30

result.matrix <- matrix(nrow=n.expts,ncol=2)

result.matrix <- as.data.frame(result.matrix)

colnames(result.matrix) <- c("Neighbor","NoNeighbor")
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# Iterate through the experiments

for (hh in 1:n.expts){

### Create two unequal correlation networks

corr.sizes <- c(5,5,5,5,5,5)

# How many variables & nonoverlapping blocks

corr.dim <- sum(corr.sizes)

corr.lngth <- length(corr.sizes)

# Initialize resulting matrices and pointer

corr.data1 <- matrix(rep(0,corr.dim^2),nrow=corr.dim)

corr.data2 <- corr.data1

pointer.1 <- 1

nonnull.pcnt <- 0.1; nonnull.ind <- 0

for (j in 1:corr.lngth){

corr.piece.size <- corr.sizes[j]

pointer.2 <- pointer.1+corr.piece.size-1

# Prevent isolates from appearing

make.it <- 0

while(make.it == 0){

temp.corr1 <- rcorrmatrix(corr.piece.size,alphad=0.1)

ifelse(min(abs(temp.corr1[lower.tri(temp.corr1)]))< cor.threshold,

make.it <- 0, make.it <- 1)}

temp.corr2 <- temp.corr1

rnd.draw <- runif(1)

if(rnd.draw < nonnull.pcnt) {nonnull.ind <- 1; temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

# Make sure that at least one block differs between the two matrices



Phillip D. Yates Chapter 6. Bibliography 212

if((j==corr.lngth)&(nonnull.ind==0)) {temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

corr.data1[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr1

corr.data2[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr2

pointer.1 <- pointer.1 + corr.piece.size

}

# Comment out the line below for H1 case

corr.data2 <- corr.data1

normals <- mvrnorm((1*n.data),rep(0,dim(corr.data1)[1]),corr.data1)

diabetic <- mvrnorm(n.data,rep(0,dim(corr.data2)[1]),corr.data2)

# Combine the data into one large dataset

data.sim <- rbind(normals,diabetic)

### Generate a TRUE network

true.pcor <- cor2pcor(cor(normals))

true.test.results <- ggm.test.edges(true.pcor,plot=FALSE)

true.ntwk <- extract.network(true.test.results, cutoff.ggm=0.5)

true.ntwk <- true.ntwk[,1:3]

convert.to.ntwk <- make.sample.ntwk(true.ntwk,no.nodes)

tgt.incid <- convert.to.ntwk[,1:no.nodes]

tgt.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Estimate DIABETIC incidence and weight networks

estimated.pcor <- cor2pcor(cor(diabetic))

sample.test.results <- ggm.test.edges(estimated.pcor,plot=FALSE)

sample.ntwk <- extract.network(sample.test.results, cutoff.ggm=0.5)



Phillip D. Yates Chapter 6. Bibliography 213

sample.ntwk <- sample.ntwk[,1:3]

convert.to.ntwk <- make.sample.ntwk(sample.ntwk,no.nodes)

sample.incid <- convert.to.ntwk[,1:no.nodes]

sample.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Calculate difference between Sample and Target networks

stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.nn <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=2)

for (k in 1:resample.no){

# Resample from normal observations

boots.series <- seq(1:(2*n.data))

boots.obs1 <- sample(boots.series,n.data,replace=FALSE)

data.sim1 <- data.sim[boots.obs1,]

data.sim2 <- data.sim[-boots.obs1,]

bs.estimated.pcor1 <- cor2pcor(cor(data.sim1))

bs.estimated.pcor2 <- cor2pcor(cor(data.sim2))

bs.sample.test.results1 <- ggm.test.edges(bs.estimated.pcor1,

plot=FALSE)

bs.sample.test.results2 <- ggm.test.edges(bs.estimated.pcor2,
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plot=FALSE)

bs.sample.ntwk1 <- extract.network(bs.sample.test.results1,

cutoff.ggm=0.5)

bs.sample.ntwk2 <- extract.network(bs.sample.test.results2,

cutoff.ggm=0.5)

bs.sample.ntwk1 <- bs.sample.ntwk1[,1:3]

bs.sample.ntwk2 <- bs.sample.ntwk2[,1:3]

bs.convert.to.ntwk1 <- make.sample.ntwk(bs.sample.ntwk1,no.nodes)

bs.convert.to.ntwk2 <- make.sample.ntwk(bs.sample.ntwk2,no.nodes)

bs.sample.incid1 <- bs.convert.to.ntwk1[,1:no.nodes]

bs.sample.wgt1 <- bs.convert.to.ntwk1[,-(1:no.nodes)]

bs.sample.incid2 <- bs.convert.to.ntwk2[,1:no.nodes]

bs.sample.wgt2 <- bs.convert.to.ntwk2[,-(1:no.nodes)]

resample.delta.ntwk <- resample.target.delta(bs.sample.incid1,

bs.sample.wgt1,bs.sample.incid2,bs.sample.wgt2,0,0.4,

add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

}

# Close multiple network for loop

est.p.value <- (rank(c(stat.samp.ntwk.n,resample.results[,1]))[1])

/resample.no

result.matrix[hh,1] <- ifelse(est.p.value>1,0,1 - est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.nn,resample.results[,2]))[1])

/resample.no
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result.matrix[hh,2] <- ifelse(est.p.value>1,0,1 - est.p.value)

}

piece.together <- rbind(piece.together,result.matrix[1:3,])

#postscript("2SampPCorrH0.eps")

par(lwd=2)

plot(seq(1:100)/100,sort(piece.together[,1]),xlab="BULLET - NEIGHBOR,

CROSS - NO NEIGHBOR",ylab="P-VALUE",

pch=16,xlim=c(0,1),ylim=c(0,1))

par(new=TRUE)

plot(seq(1:100)/100,sort(piece.together[,2]),ann=FALSE,axes=FALSE,pch=3)

abline(0,1)

#dev.off()

GeneNetH1

Only the random number seeds/plotting section are supplied. Removing a single line, doc-

umented in GeneNetH0, produced data under the alternate hypothesis.

#set.seed(2) # Valid 8

#set.seed(125765) # Valid 2

#set.seed(8582) # Valid 1

#set.seed(86422) # Valid 2; these were dropped

#set.seed(22458) # Valid 6

#set.seed(42984) # Valid 10

#set.seed(76832) # Valid 2

#set.seed(31112) # Valid 5

#set.seed(783222) # Valid 6

#set.seed(646294) # Valid 15
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#set.seed(422411) # Valid 3

#set.seed(1029) # Valid 9

#set.seed(67581) # Valid 3

#set.seed(4326790) # Valid 4

#set.seed(827434) # Valid 2

#set.seed(32792864) # Valid 4

#set.seed(876532) # Valid 4

#set.seed(237843) # Valid 1

#set.seed(12345678) # Valid 3

#set.seed(4128) # Valid 12

#postscript("2SampPCorr.eps")

par(lwd=2)

plot(piece.together100[,1],piece.together100[,2],xlab="NEIGHBOR",

ylab="NO NEIGHBOR",

pch=19,xlim=c(0,1),ylim=c(0,1))

abline(0,1)

#dev.off()

GeneNetOvarian

This routine builds on the previous two routines in this chapter. Simple edits were performed

to compute the numerous phenotypic comparisons.

library(MASS)

library(GeneNet)

### Initialize experiment and storage parameters

result.matrix <- matrix(nrow=10,ncol=2)

result.matrix <- as.data.frame(result.matrix)
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colnames(result.matrix) <- c("Neighbor","NoNeighbor")

#setwd("H:/GEO_Data")

allraw <- read.table("DataSubsetforR.csv" , header = TRUE,

sep = ",", row.names = 1)

# Rows 1-5: Cell cycle - G1/S

# Rows 6-18: Cell cycle - S/G2

# Rows 19-24: Checkpoints

# Rows 25-29: DNA damage repair

# Rows 30-42: DNA synthesis and replication

# Gene names will be converted to row names

# Cols SBT - 1:11, SCA1 - 12:21, SCA3 - 22:36

# Add the row centering and transpose the raw data

geneavg <- apply(allraw,1,mean)

allraw <- sweep(allraw,1,geneavg); allraw <- t(allraw)

SBT <- allraw[1:11,]; SCA1 <- allraw[12:21,]; SCA3 <- allraw[22:36,]

# Break the transposed data into gene sets

SBT_G1S<-SBT[,1:5];SCA1_G1S<-SCA1[,1:5];SCA3_G1S<-SCA3[,1:5]

SBT_SG2<-SBT[,6:18];SCA1_SG2<-SCA1[,6:18];SCA3_SG2<-SCA3[,6:18]

SBT_Check<-SBT[,19:24];SCA1_Check<-SCA1[,19:24];SCA3_Check<-SCA3[,19:24]

SBT_Repair<-SBT[,25:29];SCA1_Repair<-SCA1[,25:29]

SCA3_Repair<-SCA3[,25:29]

SBT_SynRepl<-SBT[,30:42];SCA1_SynRepl<-SCA1[,30:42]

SCA3_SynRepl<-SCA3[,30:42]

# Using GGM cutoff = 0.5.
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# There are 15 pairings: SBT to SCA1, SBT to SCA3, SCA1 to SCA3

# SBT_G1S:0 SCA1_G1S:0 SCA3_G1S:3

# SBT_SG2:0 SCA1_SG2:2 SCA3_SG2:0

# SBT_Check:0 SCA1_Check:3 SCA3_Check:4

# SBT_Repair:4 SCA1_Repair:0 SCA3_Repair:0

# SBT_SynRepl:0 SCA1_SynRepl:30 SCA3_SynRepl:40

# Create the 10 comparisons

# G1S

SBT_use <- SBT_G1S; SCA1_use <- SCA1_G1S; SCA3_use <- SCA3_G1S

phenotype1 <- SCA1_use; phenotype2 <- SCA3_use; total.n <- 25;

phen1.n <- 10; hh <- 1; no.nodes <- 5

# SG2 1

#SBT_use <- SBT_SG2; SCA1_use <- SCA1_SG2; SCA3_use <- SCA3_SG2

#phenotype1 <- SBT_use; phenotype2 <- SCA1_use; total.n <- 21;

phen1.n <- 11; hh <- 2; no.nodes <- 13

# SG2 2

#SBT_use <- SBT_SG2; SCA1_use <- SCA1_SG2; SCA3_use <- SCA3_SG2

#phenotype1 <- SCA1_use; phenotype2 <- SCA3_use; total.n <- 25;

phen1.n <- 10; hh <- 3; no.nodes <- 13

# Check 1

#SBT_use <- SBT_Check; SCA1_use <- SCA1_Check; SCA3_use <- SCA3_Check

#phenotype1 <- SBT_use; phenotype2 <- SCA1_use; total.n <- 21;

phen1.n <- 11; hh <- 4; no.nodes <- 6
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# Check 2

#SBT_use <- SBT_Check; SCA1_use <- SCA1_Check; SCA3_use <- SCA3_Check

#phenotype1 <- SCA1_use; phenotype2 <- SCA3_use; total.n <- 25;

phen1.n <- 10; hh <- 5; no.nodes <- 6

# Repair

#SBT_use <- SBT_Repair; SCA1_use <- SCA1_Repair; SCA3_use <- SCA3_Repair

#phenotype1 <- SBT_use; phenotype2 <- SCA1_use; total.n <- 21;

phen1.n <- 11; hh <- 6; no.nodes <- 5

# SynRep1

#SBT_use<-SBT_SynRepl;SCA1_use<-SCA1_SynRepl;SCA3_use<-SCA3_SynRepl

#phenotype1 <- SBT_use; phenotype2 <- SCA1_use; total.n <- 21;

phen1.n <- 11; hh <- 7; no.nodes <- 13

# SynRep2

#SBT_use<-SBT_SynRepl;SCA1_use<-SCA1_SynRepl;SCA3_use<-SCA3_SynRepl

#phenotype1 <- SCA1_use; phenotype2 <- SCA3_use; total.n <- 25;

phen1.n <- 10; hh <- 8; no.nodes <- 13

# Whole phenotypes produce empty networks

#phenotype1 <- SBT; phenotype2 <- SCA1; total.n <- 21;

phen1.n <- 11; hh <- 9; no.nodes <- 42

#phenotype1 <- SCA1; phenotype2 <- SCA3; total.n <- 25;

phen1.n <- 10; hh <- 10; no.nodes <- 42

#round(cor2pcor(cor(SBT_use)),2); round(cor2pcor(cor(SCA1_use)),2)

#round(cor2pcor(cor(SCA3_use)),2)
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# Combine the data into one large dataset

data.sim <- rbind(phenotype1,phenotype2)

### Estimate First Phenotype network

true.pcor <- cor2pcor(cor(phenotype1))

true.test.results <- network.test.edges(true.pcor,plot=FALSE)

true.ntwk <- extract.network(true.test.results, cutoff.ggm=0.5)

true.ntwk <- true.ntwk[,1:3]

convert.to.ntwk <- make.sample.ntwk(true.ntwk,no.nodes)

tgt.incid <- convert.to.ntwk[,1:no.nodes]

tgt.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Estimate Second Phenotype network

estimate1.pcor <- cor2pcor(cor(phenotype2))

sample.test.results <- network.test.edges(estimate1.pcor,plot=FALSE)

sample.ntwk <- extract.network(sample.test.results, cutoff.ggm=0.5)

sample.ntwk <- sample.ntwk[,1:3]

convert.to.ntwk <- make.sample.ntwk(sample.ntwk,no.nodes)

sample.incid <- convert.to.ntwk[,1:no.nodes]

sample.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Calculate difference between Sample and Target networks

stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.nn <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)
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### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=2)

for (k in 1:resample.no){

# Resample from normal observations

boots.series <- seq(1:total.n)

boots.obs1 <- sample(boots.series,phen1.n,replace=FALSE)

data.sim1 <- data.sim[boots.obs1,]

data.sim2 <- data.sim[-boots.obs1,]

bs.estimated.pcor1 <- cor2pcor(cor(data.sim1))

bs.estimated.pcor2 <- cor2pcor(cor(data.sim2))

bs.sample.test.results1 <- ggm.test.edges(bs.estimated.pcor1,

plot=FALSE)

bs.sample.test.results2 <- ggm.test.edges(bs.estimated.pcor2,

plot=FALSE)

bs.sample.ntwk1 <- extract.network(bs.sample.test.results1,

cutoff.ggm=0.5)

bs.sample.ntwk2 <- extract.network(bs.sample.test.results2,

cutoff.ggm=0.5)

bs.sample.ntwk1 <- bs.sample.ntwk1[,1:3]

bs.sample.ntwk2 <- bs.sample.ntwk2[,1:3]

bs.convert.to.ntwk1 <- make.sample.ntwk(bs.sample.ntwk1,no.nodes)

bs.convert.to.ntwk2 <- make.sample.ntwk(bs.sample.ntwk2,no.nodes)

bs.sample.incid1 <- bs.convert.to.ntwk1[,1:no.nodes]

bs.sample.wgt1 <- bs.convert.to.ntwk1[,-(1:no.nodes)]

bs.sample.incid2 <- bs.convert.to.ntwk2[,1:no.nodes]

bs.sample.wgt2 <- bs.convert.to.ntwk2[,-(1:no.nodes)]
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resample.delta.ntwk <- resample.target.delta(bs.sample.incid1,

bs.sample.wgt1,bs.sample.incid2,bs.sample.wgt2,0,0.4,

add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

}

est.p.value <- (rank(c(stat.samp.ntwk.n,resample.results[,1]))[1])

/resample.no

result.matrix[hh,1] <- ifelse(est.p.value>1,0,1 - est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.nn,resample.results[,2]))[1])

/resample.no

result.matrix[hh,2] <- ifelse(est.p.value>1,0,1 - est.p.value)

PCorrThreshold

A simple thresholding mechanism was used here.

library(MASS)

library(clusterGeneration)

library(GeneNet)

set.seed(2)

# Need this here to control the creation of the matrices

cor.threshold <- 0.2

pcor.threshold <- 0.2
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### Initialize experiment and storage parameters

n.expts <- 100

n.data <- 100

no.nodes <- 30

result.matrix <- matrix(nrow=n.expts,ncol=2)

result.matrix <- as.data.frame(result.matrix)

colnames(result.matrix) <- c("Neighbor","NoNeighbor")

# Iterate through the experiments

for (hh in 1:n.expts){

### Create two unequal correlation networks

corr.sizes <- c(5,5,5,5,5,5)

corr.dim <- sum(corr.sizes)

corr.lngth <- length(corr.sizes)

corr.data1 <- matrix(rep(0,corr.dim^2),nrow=corr.dim)

corr.data2 <- corr.data1

pointer.1 <- 1

nonnull.pcnt <- 0.1; nonnull.ind <- 0

for (j in 1:corr.lngth){

corr.piece.size <- corr.sizes[j]

pointer.2 <- pointer.1+corr.piece.size-1

make.it <- 0

while(make.it == 0){

temp.corr1 <- rcorrmatrix(corr.piece.size,alphad=0.1)

ifelse(min(abs(temp.corr1[lower.tri(temp.corr1)]))< cor.threshold,

make.it <- 0, make.it <- 1)}

temp.corr2 <- temp.corr1
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rnd.draw <- runif(1)

if(rnd.draw < nonnull.pcnt) {nonnull.ind <- 1; temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

if((j==corr.lngth)&(nonnull.ind==0)) {temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

corr.data1[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr1

corr.data2[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr2

pointer.1 <- pointer.1 + corr.piece.size

}

normals <- mvrnorm((1*n.data),rep(0,dim(corr.data1)[1]),corr.data1)

diabetic <- mvrnorm(n.data,rep(0,dim(corr.data2)[1]),corr.data2)

# Combine the data into one large dataset

data.sim <- rbind(normals,diabetic)

### Generate a TRUE network

true.pcor <- cor2pcor(cor(normals),tol=0.00001)

cor.omit <- abs(true.pcor) < pcor.threshold

true.pcor[cor.omit] <- 0

true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid <- true.bs

### Estimate DIABETIC incidence and weight networks
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estimated.pcor <- cor2pcor(cor(diabetic),tol=0.00001)

cor.omit <- abs(estimated.pcor) < pcor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0

estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor

### Calculate difference between Sample and Target networks

stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.nn <- score.ntwk(resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=2)

for (k in 1:resample.no){

# Resample from normal observations

boots.series <- seq(1:(2*n.data))

boots.obs1 <- sample(boots.series,n.data,replace=FALSE)

data.sim1 <- data.sim[boots.obs1,]

data.sim2 <- data.sim[-boots.obs1,]

bs.estimated.pcor1 <- cor2pcor(cor(data.sim1),tol=0.00001)
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bs.estimated.pcor2 <- cor2pcor(cor(data.sim2),tol=0.00001)

cor.omit <- abs(bs.estimated.pcor1) < pcor.threshold

bs.estimated.pcor1[cor.omit] <- 0

true.bs <- bs.estimated.pcor1

diag(true.bs) <- 0

bs.sample.wgt1 <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

bs.sample.incid1 <- true.bs

cor.omit <- abs(bs.estimated.pcor2) < pcor.threshold

bs.estimated.pcor2[cor.omit] <- 0

true.bs <- bs.estimated.pcor2

diag(true.bs) <- 0

bs.sample.wgt2 <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

bs.sample.incid2 <- true.bs

resample.delta.ntwk <- resample.target.delta(bs.sample.incid1,

bs.sample.wgt1,bs.sample.incid2,bs.sample.wgt2,0,0.4,

add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=0,direc.keep=0)

}

# Close multiple network for loop
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est.p.value <- (rank(c(stat.samp.ntwk.n,resample.results[,1]))[1])

/resample.no

result.matrix[hh,1] <- ifelse(est.p.value>1,0,1 - est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.nn,resample.results[,2]))[1])

/resample.no

result.matrix[hh,2] <- ifelse(est.p.value>1,0,1 - est.p.value)

}

plot(result.matrix[,1],result.matrix[,2],xlab="Neighbor",

ylab="No Neighbor",

pch=19,main="Correlation Network",xlim=c(0,1),ylim=c(0,1))

abline(0,1)

sum(result.matrix[,1] < result.matrix[,2])

sum(result.matrix[,1] < 0.1)

sum(result.matrix[,2] < 0.1)

sum(result.matrix[,1] < 0.05)

sum(result.matrix[,2] < 0.05)



Appendix D

Chapter 4 Source Code

To complete a post hoc analysis under a specific model, code was inserted after the analyses

documented in appendices B and C. Code from those sections is necessary to read in the

appropriate data and generate the adjacency and weight matrices. Since various possible

post hoc analyses require that we retain functions of the network resamples, matrices and

arrays can be necessary to visualize the required results. The code listed in this chapter was

often used in an interactive manner.

Di-OneSampleCorr

library(MASS)

library(clusterGeneration)

# P-value of 0

set.seed(1232147)

# P-value or 0.221

set.seed(12321)

# Null case

cor.threshold <- 0.2

228
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### Create two unequal correlation networks

corr.sizes <- c(3,3,3)

corr.dim <- sum(corr.sizes)

corr.lngth <- length(corr.sizes)

corr.data1 <- matrix(rep(0,corr.dim^2),nrow=corr.dim)

corr.data2 <- corr.data1

pointer.1 <- 1

nonnull.pcnt <- 0.1; nonnull.ind <- 0

for (j in 1:corr.lngth){

corr.piece.size <- corr.sizes[j]

pointer.2 <- pointer.1+corr.piece.size-1

make.it <- 0

while(make.it == 0){

temp.corr1 <- rcorrmatrix(corr.piece.size,alphad=0.1)

ifelse(min(abs(temp.corr1[lower.tri(temp.corr1)]))< cor.threshold,

make.it <- 0, make.it <- 1)}

temp.corr2 <- temp.corr1

rnd.draw <- runif(1)

if(rnd.draw < nonnull.pcnt) {nonnull.ind <- 1

temp.corr2 <- rcorrmatrix(corr.piece.size,alphad=0.1)}

if((j==corr.lngth)&(nonnull.ind==0)) {temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

corr.data1[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr1

corr.data2[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr2

pointer.1 <- pointer.1 + corr.piece.size

}
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# Null case

#corr.data2 <- corr.data1

n.data <- 200

normals <- mvrnorm(n.data,rep(0,dim(corr.data1)[1]),corr.data1)

diabetic <- mvrnorm(n.data,rep(0,dim(corr.data2)[1]),corr.data2)

### Generate a TRUE network

true.pcor <- cor(normals)

cor.omit <- abs(true.pcor) < cor.threshold

true.pcor[cor.omit] <- 0

true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt.bs <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid.bs <- true.bs

### Estimate DIABETIC incidence and weight networks

estimated.pcor <- cor(diabetic)

cor.omit <- abs(estimated.pcor) < cor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0

estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor
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### Calculate difference between Sample and Target networks

stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

### Post Hoc Test

# Requires the original matrices!

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.nodes <- corr.dim

post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),

nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

# Resample from the diabetic observations/create correlation ntwk

boots.obs <- sample(seq(1:n.data),n.data,replace=TRUE)

data.sim1 <- normals[boots.obs,]

bs.estimated.cor <- cor(data.sim1)

cor.omit <- abs(bs.estimated.cor) < cor.threshold

bs.estimated.cor[cor.omit] <- 0

diag(bs.estimated.cor) <- 0

bs.sample.wgt <- bs.estimated.cor

cor.keep <- bs.estimated.cor != 0

bs.estimated.cor[cor.keep] <- 1

bs.sample.incid <- bs.estimated.cor
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resample.delta.ntwk <- resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

bs.sample.incid,bs.sample.wgt,0,0.4,add.noise=FALSE)

for (kkk in 1:post.hoc.nodes){

# Resuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

# Need to calculate node-level statistics

stat.samp.ntwk.bs <- resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE)

node.summary <- rep(0,post.hoc.nodes)

edge.keep <- 0

wgt.keep <- 1

nbhr.keep <- 1

direc.keep <- 0

second.scale <- exp(0)

for (kkkk in 1:post.hoc.nodes){

stat.samp.ntwk.bs[is.na(stat.samp.ntwk.bs)]<- 0

edge.first <- stat.samp.ntwk.bs[kkkk,2]

edge.second <- stat.samp.ntwk.bs[kkkk,5]

edge.score <- edge.keep*(edge.first + nbhr.keep*

edge.second*second.scale)

wgt.first <- stat.samp.ntwk.bs[kkkk,3]

wgt.second <- stat.samp.ntwk.bs[kkkk,6]
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wgt.score <- wgt.keep*(wgt.first + nbhr.keep*

wgt.second*second.scale)

direc.first <- stat.samp.ntwk.bs[kkkk,4]

direc.second <- stat.samp.ntwk.bs[kkkk,7]

direc.score <- direc.keep*(direc.first + nbhr.keep*

direc.second*second.scale)

node.summary[kkkk] <- edge.score+wgt.score+direc.score

}

center.samples <- apply(post.hoc.summary,2,mean)

sqrt.samples <- 2*sqrt(apply(post.hoc.summary,2,var))

rbind(center.samples - sqrt.samples,center.samples,center.samples +

sqrt.samples,node.summary)

qqplot(node.summary,node.summary)

par(mfrow=c(3,3))

hist(post.hoc.summary[,1],main="");hist(post.hoc.summary[,2],main="")

hist(post.hoc.summary[,3],main="");hist(post.hoc.summary[,4],main="")

hist(post.hoc.summary[,5],main="");hist(post.hoc.summary[,6],main="")

hist(post.hoc.summary[,7],main="");hist(post.hoc.summary[,8],main="")

hist(post.hoc.summary[,9],main="")

# For a 9-node gene set

1-sum(node.summary[1]>post.hoc.summary[,1])/post.hoc.no

1-sum(node.summary[2]>post.hoc.summary[,2])/post.hoc.no

1-sum(node.summary[3]>post.hoc.summary[,3])/post.hoc.no

1-sum(node.summary[4]>post.hoc.summary[,4])/post.hoc.no

1-sum(node.summary[5]>post.hoc.summary[,5])/post.hoc.no
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1-sum(node.summary[6]>post.hoc.summary[,6])/post.hoc.no

1-sum(node.summary[7]>post.hoc.summary[,7])/post.hoc.no

1-sum(node.summary[8]>post.hoc.summary[,8])/post.hoc.no

1-sum(node.summary[9]>post.hoc.summary[,9])/post.hoc.no

### Work in progress

post.hoc.resamples[,,c(2,3,5,6)]

# These arrays, especially at the 2nd neighbors, can be filled with NAs

post.hoc.resamples[,,5]

!apply(post.hoc.resamples[,,5],2,is.na)

# Per node, 1st neighbor edge mismatches

apply(post.hoc.resamples[,,2],2,mean)

sqrt(apply(post.hoc.resamples[,,2],2,var))

# Per node, 1st neighbor weight mismatches

apply(post.hoc.resamples[,,3],2,mean)

sqrt(apply(post.hoc.resamples[,,3],2,var))

# Per node, 2nd neighbor edge mismatches

apply(post.hoc.resamples[,,5],2,mean)

sqrt(apply(post.hoc.resamples[,,5],2,var))

# Per node, 2nd neighbor weight mismatches

apply(post.hoc.resamples[,,6],2,mean)

sqrt(apply(post.hoc.resamples[,,6],2,var))

Di-TwoSampleCorr

Only the post hoc resampling routine is listed below. The data routine in Di-OneSampleCorr

preceded the code given here.
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### Post Hoc Test

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.nodes <- corr.dim

post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),

nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

boots.series <- seq(1:(2*n.data))

boots.obs1 <- sample(boots.series,n.data,replace=FALSE)

data.sim1 <- data.sim[boots.obs1,]

data.sim2 <- data.sim[-boots.obs1,]

bs.estimated.pcor1 <- cor(data.sim1)

bs.estimated.pcor2 <- cor(data.sim2)

cor.omit <- abs(bs.estimated.pcor1) < cor.threshold

bs.estimated.pcor1[cor.omit] <- 0

true.bs <- bs.estimated.pcor1

diag(true.bs) <- 0

bs.sample.wgt1 <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

bs.sample.incid1 <- true.bs

cor.omit <- abs(bs.estimated.pcor2) < cor.threshold

bs.estimated.pcor2[cor.omit] <- 0

true.bs <- bs.estimated.pcor2

diag(true.bs) <- 0
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bs.sample.wgt2 <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

bs.sample.incid2 <- true.bs

resample.delta.ntwk <- resample.target.delta(bs.sample.incid1,

bs.sample.wgt1,bs.sample.incid2,bs.sample.wgt2,0,0.4,add.noise=FALSE)

for (kkk in 1:post.hoc.nodes){

# Resuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(0),edge.keep=0,

wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

The DM2-Normal code from appendix B should precede the analyses here.

DM2-Normal-PostHoc

### Post Hoc Test

# Requires the desired target matrix!!

# Load the suitable data

hh <- 11

# Set the correlation threshold

cor.threshold <- 0.5

pathway <-read.delim(dirlist[hh],header=F,as.is=T,sep="\t")

pathway <- unique(pathway)
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matchem <- match(t(pathway), diab.data.log[,1])

diab.subset <- diab.data.log[matchem[!is.na(matchem)],]

post.hoc.nodes <- nrow(diab.subset)

diab.subset <- t(diab.subset[,-1])

normals <- diab.subset[1:17,]

diabetic <- diab.subset[18:34,]

n.data <- 17

# Recreate target matrix

true.pcor <- cor(normals)

cor.omit <- abs(true.pcor) < cor.threshold

true.pcor[cor.omit] <- 0

# Create a ’correlation’ network for use with observation resamples

true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt.bs <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid.bs <- true.bs

# Recreate DIABETIC incidence and weight networks

estimated.pcor <- cor(diabetic)

cor.omit <- abs(estimated.pcor) < cor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0
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estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),

nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

# Resample from the diabetic observations/create correlation ntwk

boots.obs <- sample(seq(1:n.data),n.data,replace=TRUE)

data.sim1 <- normals[boots.obs,]

bs.estimated.cor <- cor(data.sim1)

cor.omit <- abs(bs.estimated.cor) < cor.threshold

bs.estimated.cor[cor.omit] <- 0

diag(bs.estimated.cor) <- 0

bs.sample.wgt <- bs.estimated.cor

cor.keep <- bs.estimated.cor != 0

bs.estimated.cor[cor.keep] <- 1

bs.sample.incid <- bs.estimated.cor

resample.delta.ntwk <- resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,bs.sample.incid,bs.sample.wgt,0,0.4,add.noise=FALSE)

for (kkk in 1:post.hoc.nodes){

# Resuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(0),
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edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

# Need to calculate node-level statistics

stat.samp.ntwk.bs <- resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE)

node.summary <- rep(0,post.hoc.nodes)

edge.keep <- 0

wgt.keep <- 1

nbhr.keep <- 1

direc.keep <- 0

second.scale <- exp(0)

for (kkkk in 1:post.hoc.nodes){

stat.samp.ntwk.bs[is.na(stat.samp.ntwk.bs)]<- 0

edge.first <- stat.samp.ntwk.bs[kkkk,2]

edge.second <- stat.samp.ntwk.bs[kkkk,5]

edge.score <- edge.keep*(edge.first + nbhr.keep*

edge.second*second.scale)

wgt.first <- stat.samp.ntwk.bs[kkkk,3]

wgt.second <- stat.samp.ntwk.bs[kkkk,6]

wgt.score <- wgt.keep*(wgt.first + nbhr.keep*

wgt.second*second.scale)

direc.first <- stat.samp.ntwk.bs[kkkk,4]

direc.second <- stat.samp.ntwk.bs[kkkk,7]

direc.score <- direc.keep*(direc.first + nbhr.keep*

direc.second*second.scale)
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node.summary[kkkk] <- edge.score + wgt.score + direc.score

}

center.samples <- apply(post.hoc.summary,2,mean)

sqrt.samples <- 2*sqrt(apply(post.hoc.summary,2,var))

rbind(center.samples - sqrt.samples,center.samples,center.samples +

sqrt.samples,node.summary)

qqplot(node.summary,node.summary)

par(mfrow=c(2,3))

hist(post.hoc.summary[,1]);hist(post.hoc.summary[,2])

hist(post.hoc.summary[,3]);hist(post.hoc.summary[,4])

hist(post.hoc.summary[,5]);hist(post.hoc.summary[,6])

# For a 6-node gene set

1-sum(node.summary[1]>post.hoc.summary[,1])/post.hoc.no

1-sum(node.summary[2]>post.hoc.summary[,2])/post.hoc.no

1-sum(node.summary[3]>post.hoc.summary[,3])/post.hoc.no

1-sum(node.summary[4]>post.hoc.summary[,4])/post.hoc.no

1-sum(node.summary[5]>post.hoc.summary[,5])/post.hoc.no

1-sum(node.summary[6]>post.hoc.summary[,6])/post.hoc.no

The GeneNetOvarian code from appendix C should precede the analyses here.

Ovarian-PostHoc

### Post Hoc Test

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.nodes <- dim(data.sim)[2]
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post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),

nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

# Resample from normal observations

boots.series <- seq(1:total.n)

boots.obs1 <- sample(boots.series,phen1.n,replace=FALSE)

data.sim1 <- data.sim[boots.obs1,]

data.sim2 <- data.sim[-boots.obs1,]

bs.estimated.pcor1 <- cor2pcor(cor(data.sim1))

bs.estimated.pcor2 <- cor2pcor(cor(data.sim2))

bs.sample.test.results1 <- ggm.test.edges(bs.estimated.pcor1,

plot=FALSE)

bs.sample.test.results2 <- ggm.test.edges(bs.estimated.pcor2,

plot=FALSE)

bs.sample.ntwk1 <- extract.network(bs.sample.test.results1,

cutoff.ggm=0.5)

bs.sample.ntwk2 <- extract.network(bs.sample.test.results2,

cutoff.ggm=0.5)

bs.sample.ntwk1 <- bs.sample.ntwk1[,1:3]

bs.sample.ntwk2 <- bs.sample.ntwk2[,1:3]

bs.convert.to.ntwk1 <- make.sample.ntwk(bs.sample.ntwk1,no.nodes)

bs.convert.to.ntwk2 <- make.sample.ntwk(bs.sample.ntwk2,no.nodes)

bs.sample.incid1 <- bs.convert.to.ntwk1[,1:no.nodes]

bs.sample.wgt1 <- bs.convert.to.ntwk1[,-(1:no.nodes)]

bs.sample.incid2 <- bs.convert.to.ntwk2[,1:no.nodes]
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bs.sample.wgt2 <- bs.convert.to.ntwk2[,-(1:no.nodes)]

resample.delta.ntwk <- resample.target.delta(bs.sample.incid1,

bs.sample.wgt1,bs.sample.incid2,bs.sample.wgt2,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

for (kkk in 1:post.hoc.nodes){

# Resuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(0),edge.keep=0,

wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

# Need to calculate node-level statistics

stat.samp.ntwk.bs <- resample.target.delta(tgt.incid,tgt.wgt,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE)

node.summary <- rep(0,post.hoc.nodes)

edge.keep <- 0

wgt.keep <- 1

nbhr.keep <- 1

direc.keep <- 0

second.scale <- exp(0)

for (kkkk in 1:post.hoc.nodes){

stat.samp.ntwk.bs[is.na(stat.samp.ntwk.bs)]<- 0

edge.first <- stat.samp.ntwk.bs[kkkk,2]

edge.second <- stat.samp.ntwk.bs[kkkk,5]

edge.score <- edge.keep*(edge.first + nbhr.keep*
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edge.second*second.scale)

wgt.first <- stat.samp.ntwk.bs[kkkk,3]

wgt.second <- stat.samp.ntwk.bs[kkkk,6]

wgt.score <- wgt.keep*(wgt.first + nbhr.keep*

wgt.second*second.scale)

direc.first <- stat.samp.ntwk.bs[kkkk,4]

direc.second <- stat.samp.ntwk.bs[kkkk,7]

direc.score <- direc.keep*(direc.first + nbhr.keep*

direc.second*second.scale)

node.summary[kkkk] <- edge.score + wgt.score + direc.score

}

center.samples <- apply(post.hoc.summary,2,mean)

sqrt.samples <- 2*sqrt(apply(post.hoc.summary,2,var))

rbind(center.samples - sqrt.samples,center.samples,center.samples +

sqrt.samples,node.summary)

qqplot(node.summary,node.summary)

par(mfrow=c(4,4))

hist(post.hoc.summary[,1],main=colnames(data.sim)[1],xlab="",ylab="")

hist(post.hoc.summary[,2],main=colnames(data.sim)[2],xlab="",ylab="")

hist(post.hoc.summary[,3],main=colnames(data.sim)[3],xlab="",ylab="")

hist(post.hoc.summary[,4],main=colnames(data.sim)[4],xlab="",ylab="")

hist(post.hoc.summary[,5],main=colnames(data.sim)[5],xlab="",ylab="")

hist(post.hoc.summary[,6],main=colnames(data.sim)[6],xlab="",ylab="")

hist(post.hoc.summary[,7],main=colnames(data.sim)[7],xlab="",ylab="")

hist(post.hoc.summary[,8],main=colnames(data.sim)[8],xlab="",ylab="")

hist(post.hoc.summary[,9],main=colnames(data.sim)[9],xlab="",ylab="")
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hist(post.hoc.summary[,10],main=colnames(data.sim)[10],xlab="",ylab="")

hist(post.hoc.summary[,11],main=colnames(data.sim)[11],xlab="",ylab="")

hist(post.hoc.summary[,12],main=colnames(data.sim)[12],xlab="",ylab="")

hist(post.hoc.summary[,13],main=colnames(data.sim)[13],xlab="",ylab="")

# For a 13-node gene set

1-sum(node.summary[1]>post.hoc.summary[,1])/post.hoc.no

1-sum(node.summary[2]>post.hoc.summary[,2])/post.hoc.no

1-sum(node.summary[3]>post.hoc.summary[,3])/post.hoc.no

1-sum(node.summary[4]>post.hoc.summary[,4])/post.hoc.no

1-sum(node.summary[5]>post.hoc.summary[,5])/post.hoc.no

1-sum(node.summary[6]>post.hoc.summary[,6])/post.hoc.no

1-sum(node.summary[7]>post.hoc.summary[,7])/post.hoc.no

1-sum(node.summary[8]>post.hoc.summary[,8])/post.hoc.no

1-sum(node.summary[9]>post.hoc.summary[,9])/post.hoc.no

1-sum(node.summary[10]>post.hoc.summary[,10])/post.hoc.no

1-sum(node.summary[11]>post.hoc.summary[,11])/post.hoc.no

1-sum(node.summary[12]>post.hoc.summary[,12])/post.hoc.no

1-sum(node.summary[13]>post.hoc.summary[,13])/post.hoc.no



Appendix E

Chapter 5 Source Code

ERDist is a simple extension of the ErdosRenyi-Sim routine found in appendix B. Results

mentioned in section 5.1.2, regarding 1-st/2-nd neighbor contributions, were also determined

using the routine below; a simple plotting routine is included here.

ERDist

library(statnet)

set.seed(918273)

no.nodes <- post.hoc.nodes <- 15

true.density <- 0.4

alternate.density <- 0.4

### Generate a TRUE network

# Set the Bernoulli parameter at 20%

true <- network(no.nodes, directed=FALSE, density=true.density)

true.ntwk <- as.matrix(true,matrix.type = "edgelist")

true.ntwk <- cbind(rep(0,dim(true.ntwk)[1]),true.ntwk[,2],

245
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true.ntwk[,1])

convert.to.ntwk <- make.sample.ntwk(true.ntwk,no.nodes)

tgt.incid <- convert.to.ntwk[,1:no.nodes]

tgt.wgt <- convert.to.ntwk[,-(1:no.nodes)]

### Generate ALTERNATE Sample incidence networks based on *.DENSITY

sample.B.alt <- network(no.nodes, directed=FALSE,

density=alternate.density)

sample.ntwk.alt <- as.matrix(sample.B.alt,matrix.type = "edgelist")

sample.ntwk.alt <- cbind(rep(0,dim(sample.ntwk.alt)[1]),

sample.ntwk.alt[,2],sample.ntwk.alt[,1])

convert.to.ntwk <- make.sample.ntwk(sample.ntwk.alt,no.nodes)

sample.incid.alt <- convert.to.ntwk[,1:no.nodes]

sample.wgt.alt <- convert.to.ntwk[,-(1:no.nodes)]

### Calculate difference between Sample and Target networks

stat.samp.ntwk.alt <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

# The resampling portion to determine a p-value have been omitted.

# The resamples to visualize the sampling distributions are listed below.

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),
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nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

# Resample from Erdos-Renyi population

redraw <- network(no.nodes, directed=FALSE, density=true.density)

redraw.ntwk <- as.matrix(redraw,matrix.type = "edgelist")

redraw.ntwk <- cbind(rep(0,dim(redraw.ntwk)[1]),redraw.ntwk[,2],

redraw.ntwk[,1])

redraw.ntwk <- make.sample.ntwk(redraw.ntwk,no.nodes)

redraw.incid <- redraw.ntwk[,1:no.nodes]

redraw.wgt <- redraw.ntwk[,-(1:no.nodes)]

resample.delta.ntwk <- resample.target.delta(tgt.incid,tgt.wgt,

redraw.incid,redraw.wgt,0,0.4,add.noise=FALSE)

for (kkk in 1:post.hoc.nodes){

# Reuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(-2),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

# Need to calculate node-level statistics

stat.samp.ntwk.bs <- resample.target.delta(tgt.incid,tgt.wgt,

sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE)

node.summary <- rep(0,post.hoc.nodes)

edge.keep <- 1

wgt.keep <- 0
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nbhr.keep <- 1

direc.keep <- 0

second.scale <- exp(-2)

for (kkkk in 1:post.hoc.nodes){

stat.samp.ntwk.bs[is.na(stat.samp.ntwk.bs)]<- 0

edge.first <- stat.samp.ntwk.bs[kkkk,2]

edge.second <- stat.samp.ntwk.bs[kkkk,5]

edge.score <- edge.keep*(edge.first + nbhr.keep*

edge.second*second.scale)

wgt.first <- stat.samp.ntwk.bs[kkkk,3]

wgt.second <- stat.samp.ntwk.bs[kkkk,6]

wgt.score <- wgt.keep*(wgt.first + nbhr.keep*

wgt.second*second.scale)

direc.first <- stat.samp.ntwk.bs[kkkk,4]

direc.second <- stat.samp.ntwk.bs[kkkk,7]

direc.score <- direc.keep*(direc.first + nbhr.keep*

direc.second*second.scale)

node.summary[kkkk] <- edge.score + wgt.score + direc.score

}

center.samples <- apply(post.hoc.summary,2,mean)

sqrt.samples <- 2*sqrt(apply(post.hoc.summary,2,var))

rbind(center.samples - sqrt.samples,center.samples,center.samples +

sqrt.samples,node.summary)

qqplot(node.summary,node.summary)

par(mfrow=c(3,3))

hist(post.hoc.summary[,1],main="");hist(post.hoc.summary[,2],main="")
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hist(post.hoc.summary[,3],main="");hist(post.hoc.summary[,4],main="")

hist(post.hoc.summary[,5],main="");hist(post.hoc.summary[,6],main="")

hist(post.hoc.summary[,7],main="");hist(post.hoc.summary[,8],main="")

hist(post.hoc.summary[,9],main="")

# For a 9-node gene set

1-sum(node.summary[1]>post.hoc.summary[,1])/post.hoc.no

1-sum(node.summary[2]>post.hoc.summary[,2])/post.hoc.no

1-sum(node.summary[3]>post.hoc.summary[,3])/post.hoc.no

1-sum(node.summary[4]>post.hoc.summary[,4])/post.hoc.no

1-sum(node.summary[5]>post.hoc.summary[,5])/post.hoc.no

1-sum(node.summary[6]>post.hoc.summary[,6])/post.hoc.no

1-sum(node.summary[7]>post.hoc.summary[,7])/post.hoc.no

1-sum(node.summary[8]>post.hoc.summary[,8])/post.hoc.no

1-sum(node.summary[9]>post.hoc.summary[,9])/post.hoc.no

# Plots for section 5.1.1

x1 <- sort(post.hoc.summary[,1])

x2 <- sort(post.hoc.summary[,1])

postscript("DiER.eps")

par(mfrow=c(2,1))

hist(x1,freq=FALSE,xlab="",ylab="",

main=expression(paste("(a) NO NEIGHBOR")))

hist(x2,freq=FALSE,xlab="",ylab="",

main=expression(paste("(b) NEIGHBOR, ",e^-2)))

dev.off()
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# To look at both with/without neighbors D_i across 15 nodes rerun

# the above twice

# Without neighbors

pernodewithout <- apply(post.hoc.summary,2,mean)

# With neighbors

pernodewith <- apply(post.hoc.summary,2,mean)

pernodewithout/pernodewith

# To look at both with and without neighbors D across 15 nodes rerun

# the above twice

# Without neighbors

pernodewithout <- apply(post.hoc.summary,1,sum)

# With neighbors

pernodewith <- apply(post.hoc.summary,1,sum)

pernodewithout/pernodewith

post.hoc.resamples[,,c(2,3,5,6)]

# These arrays, especially at the 2nd neighbors, can be filled with NAs

post.hoc.resamples[,,5]

!apply(post.hoc.resamples[,,5],2,is.na)

# This is needed to clear out the NAs in to calculate whole model effects

loop1 <- dim(post.hoc.resamples)[1]

loop2 <- dim(post.hoc.resamples)[2]

loop3 <- dim(post.hoc.resamples)[3]

for(outer1 in 1:loop1){

for(outer2 in 1:loop2){

for(outer3 in 1:loop3){
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ifelse(is.na(post.hoc.resamples[outer1,outer2,outer3]),

post.hoc.resamples[outer1,outer2,outer3] <- 0,

post.hoc.resamples[outer1,outer2,outer3])

}}}

# Calculate an overall D and visualize the results

whole.model <- apply(post.hoc.resamples[,,2] + exp(-2)*

post.hoc.resamples[,,5],1,sum)

hist(whole.model)

CorrDistNeighbor

library(MASS)

library(clusterGeneration)

set.seed(12321)

# Null case

cor.threshold <- 0.2

### Create two unequal correlation networks

#corr.sizes <- c(3,3,3,3,3)

corr.sizes <- c(5,5,5)

corr.dim <- sum(corr.sizes)

corr.lngth <- length(corr.sizes)

corr.data1 <- matrix(rep(0,corr.dim^2),nrow=corr.dim)

corr.data2 <- corr.data1

pointer.1 <- 1

nonnull.pcnt <- 0.1; nonnull.ind <- 0

for (j in 1:corr.lngth){

corr.piece.size <- corr.sizes[j]
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pointer.2 <- pointer.1+corr.piece.size-1

make.it <- 0

while(make.it == 0){

temp.corr1 <- rcorrmatrix(corr.piece.size,alphad=0.1)

ifelse(min(abs(temp.corr1[lower.tri(temp.corr1)]))< cor.threshold,

make.it <- 0, make.it <- 1)}

temp.corr2 <- temp.corr1

rnd.draw <- runif(1)

if(rnd.draw < nonnull.pcnt) {nonnull.ind <- 1; temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

if((j==corr.lngth)&(nonnull.ind==0)) {temp.corr2 <-

rcorrmatrix(corr.piece.size,alphad=0.1)}

corr.data1[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr1

corr.data2[pointer.1:pointer.2,pointer.1:pointer.2]<- temp.corr2

pointer.1 <- pointer.1 + corr.piece.size

}

# Null case

corr.data2 <- corr.data1

n.data <- 200

normals <- mvrnorm(n.data,rep(0,dim(corr.data1)[1]),corr.data1)

diabetic <- mvrnorm(n.data,rep(0,dim(corr.data2)[1]),corr.data2)

### Generate a TRUE network

true.pcor <- cor(normals)

cor.omit <- abs(true.pcor) < cor.threshold

true.pcor[cor.omit] <- 0
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true.bs <- true.pcor

diag(true.bs) <- 0

tgt.wgt.bs <- true.bs

cor.keep <- true.bs != 0

true.bs[cor.keep] <- 1

tgt.incid.bs <- true.bs

### Estimate DIABETIC incidence and weight networks

estimated.pcor <- cor(diabetic)

cor.omit <- abs(estimated.pcor) < cor.threshold

estimated.pcor[cor.omit] <- 0

diag(estimated.pcor) <- 0

sample.wgt <- estimated.pcor

cor.keep <- estimated.pcor != 0

estimated.pcor[cor.keep] <- 1

sample.incid <- estimated.pcor

### Calculate difference between Sample and Target networks

stat.samp.ntwk.n <- score.ntwk(resample.target.delta(tgt.incid.bs,

tgt.wgt.bs,sample.incid,sample.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

### Resample Loop has been omitted

### Post Hoc Test

# Requires the original matrices!

# Setup for the number of resamples

post.hoc.no <- 1000

post.hoc.nodes <- corr.dim
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post.hoc.resamples <- array(rep(0,post.hoc.no*post.hoc.nodes*7),

c(post.hoc.no,post.hoc.nodes,7))

post.hoc.summary <- matrix(rep(0,post.hoc.no*post.hoc.nodes),

nrow=post.hoc.no)

for (kk in 1:post.hoc.no){

boots.obs <- sample(seq(1:n.data),n.data,replace=TRUE)

data.sim1 <- normals[boots.obs,]

bs.estimated.cor <- cor(data.sim1)

cor.omit <- abs(bs.estimated.cor) < cor.threshold

bs.estimated.cor[cor.omit] <- 0

diag(bs.estimated.cor) <- 0

bs.sample.wgt <- bs.estimated.cor

cor.keep <- bs.estimated.cor != 0

bs.estimated.cor[cor.keep] <- 1

bs.sample.incid <- bs.estimated.cor

resample.delta.ntwk <- resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

bs.sample.incid,bs.sample.wgt,0,0.4,add.noise=FALSE)

for (kkk in 1:post.hoc.nodes){

# Resuse score function; piece is necessary to prevent error

piece <- rbind(resample.delta.ntwk[kkk,],rep(0,7))

post.hoc.summary[kk,kkk]<- score.ntwk(piece,exp(0),

edge.keep=0,wgt.keep=1,nbhr.keep=1,direc.keep=0)

}

post.hoc.resamples[kk,,] <- resample.delta.ntwk

}

# Need to calculate node-level statistics
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stat.samp.ntwk.bs <- resample.target.delta(tgt.incid.bs,tgt.wgt.bs,

sample.incid,sample.wgt,0,0.4,add.noise=FALSE)

node.summary <- rep(0,post.hoc.nodes)

edge.keep <- 1

wgt.keep <- 1

nbhr.keep <- 1

direc.keep <- 0

second.scale <- exp(0)

for (kkkk in 1:post.hoc.nodes){

stat.samp.ntwk.bs[is.na(stat.samp.ntwk.bs)]<- 0

edge.first <- stat.samp.ntwk.bs[kkkk,2]

edge.second <- stat.samp.ntwk.bs[kkkk,5]

edge.score <- edge.keep*(edge.first + nbhr.keep*

edge.second*second.scale)

wgt.first <- stat.samp.ntwk.bs[kkkk,3]

wgt.second <- stat.samp.ntwk.bs[kkkk,6]

wgt.score <- wgt.keep*(wgt.first + nbhr.keep*

wgt.second*second.scale)

direc.first <- stat.samp.ntwk.bs[kkkk,4]

direc.second <- stat.samp.ntwk.bs[kkkk,7]

direc.score <- direc.keep*(direc.first + nbhr.keep*

direc.second*second.scale)

node.summary[kkkk] <- edge.score + wgt.score + direc.score

}

center.samples <- apply(post.hoc.summary,2,mean)

sqrt.samples <- 2*sqrt(apply(post.hoc.summary,2,var))

rbind(center.samples - sqrt.samples,center.samples,center.samples +
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sqrt.samples,node.summary)

qqplot(node.summary,node.summary)

# Plots for section 5.1.1

x1 <- sort(post.hoc.summary[,1])

x2 <- sort(post.hoc.summary[,1])

x3 <- sort(post.hoc.summary[,1])

x4 <- sort(post.hoc.summary[,1])

postscript("DiCorr.eps")

par(mfrow=c(2,2),lwd=2)

y <- seq(1:1000)/1000

plot(x1,y,xlab="EDGE + WEIGHT + NEIGHBOR",ylab="CDF",

main=expression(paste("(a) 3x3 ",D[i])),pch=16,log="x")

lines(x1,y)

plot(x2,y,xlab="WEIGHT + NEIGHBOR",ylab="CDF",

main=expression(paste("(b) 3x3 ",D[i])),pch=16,log="x")

lines(x2,y)

plot(x3,y,xlab="EDGE + WEIGHT + NEIGHBOR",ylab="CDF",

main=expression(paste("(c) 5x5 ",D[i])),pch=16,log="x")

lines(x3,y)

plot(x4,y,xlab="WEIGHT + NEIGHBOR",ylab="CDF",

main=expression(paste("(d) 5x5 ",D[i])),pch=16,log="x")

lines(x4,y)

dev.off()

### Work in progress
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# To look at both with and without neighbors D_i across 15 nodes

# rerun the above twice

# Without neighbors

pernodewithout <- apply(post.hoc.summary,2,mean)

# With neighbors

pernodewith <- apply(post.hoc.summary,2,mean)

pernodewithout/pernodewith

# To look at both with and without neighbors D across 15 nodes

# rerun the above twice

# Without neighbors

pernodewithout <- apply(post.hoc.summary,1,sum)

# With neighbors

pernodewith <- apply(post.hoc.summary,1,sum)

hist(pernodewith)

pernodewithout/pernodewith

post.hoc.resamples[,,c(2,3,5,6)]

# These arrays, especially at the 2nd neighbors, can be filled with NAs

post.hoc.resamples[,,5]

!apply(post.hoc.resamples[,,5],2,is.na)

# This is needed to clear out the NAs in to calculate whole model effects

loop1 <- dim(post.hoc.resamples)[1]

loop2 <- dim(post.hoc.resamples)[2]

loop3 <- dim(post.hoc.resamples)[3]

for(outer1 in 1:loop1){

for(outer2 in 1:loop2){
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for(outer3 in 1:loop3){

ifelse(is.na(post.hoc.resamples[outer1,outer2,outer3]),

post.hoc.resamples[outer1,outer2,outer3] <- 0,

post.hoc.resamples[outer1,outer2,outer3])

}}}

# Calculate an overall D and visualize the results

whole.model <- apply(post.hoc.resamples[,,2] + exp(-2)*

post.hoc.resamples[,,5],1,sum)

hist(whole.model)

ER-Weight

library(statnet)

### Multiple Network For-loop Simulation

number.expt <- 100

ntwk.rank.pcnt <- matrix(nrow=number.expt,ncol=4)

for (hh in 1:number.expt){

no.nodes <- 25

true.density <- 0.2

### Generate a TRUE network

# Set the Bernoulli parameter at 20%

true <- network(no.nodes, directed=FALSE, density=true.density)

true.ntwk <- as.matrix(true,matrix.type = "edgelist")

true.ntwk <- cbind(rep(0,dim(true.ntwk)[1]),true.ntwk[,2],true.ntwk[,1])

convert.to.ntwk <- make.sample.ntwk(true.ntwk,no.nodes)

tgt.incid <- convert.to.ntwk[,1:no.nodes]
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tgt.wgt <- convert.to.ntwk[,-(1:no.nodes)]

# Generate an ALTERNATE network sample

# Can toggle to vary % of edges; No.nodes stays the SAME.

alternate.density <- 0.25

### Generate ALTERNATE Sample incidence networks based on *.DENSITY

sample.B.alt <- network(no.nodes, directed=FALSE,

density=alternate.density)

sample.ntwk.alt <- as.matrix(sample.B.alt,matrix.type = "edgelist")

sample.ntwk.alt <- cbind(rep(0,dim(sample.ntwk.alt)[1]),

sample.ntwk.alt[,2],sample.ntwk.alt[,1])

convert.to.ntwk <- make.sample.ntwk(sample.ntwk.alt,no.nodes)

sample.incid.alt <- convert.to.ntwk[,1:no.nodes]

sample.wgt.alt <- convert.to.ntwk[,-(1:no.nodes)]

### Calculate difference between Sample and Target networks

stat.samp.ntwk.alt0 <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt1 <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(-1),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt2 <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt3 <- score.ntwk(resample.target.delta(tgt.incid,

tgt.wgt,sample.incid.alt,sample.wgt.alt,0,0.4,add.noise=FALSE),
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exp(-3),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=4)

for (k in 1:resample.no){

# TRUE.DENSITY draws w/o coin flips

redraw <- network(no.nodes, directed=FALSE, density=true.density)

redraw.ntwk <- as.matrix(redraw,matrix.type = "edgelist")

redraw.ntwk <- cbind(rep(0,dim(redraw.ntwk)[1]),redraw.ntwk[,2],

redraw.ntwk[,1])

redraw.ntwk <- make.sample.ntwk(redraw.ntwk,no.nodes)

redraw.incid <- redraw.ntwk[,1:no.nodes]

redraw.wgt <- redraw.ntwk[,-(1:no.nodes)]

resample.delta.ntwk <- resample.target.delta(tgt.incid,tgt.wgt,

redraw.incid,redraw.wgt,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(-1),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,3] <- score.ntwk(resample.delta.ntwk,exp(-2),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,4] <- score.ntwk(resample.delta.ntwk,exp(-3),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

}

# Close multiple network for loop

est.p.value <- (rank(c(stat.samp.ntwk.alt0,resample.results[,1]))[1])
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/resample.no

ntwk.rank.pcnt[hh,1] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt1,resample.results[,2]))[1])

/resample.no

ntwk.rank.pcnt[hh,2] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt2,resample.results[,3]))[1])

/resample.no

ntwk.rank.pcnt[hh,3] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt3,resample.results[,4]))[1])

/resample.no

ntwk.rank.pcnt[hh,4] <- ifelse(est.p.value>1,0,1-est.p.value)

}

colnames(ntwk.rank.pcnt) <- c("EXP0","EXP1","EXP2","EXP3")

# Under p = 0.25 with neighbors

postscript("ER_W0_25_Ngbr.eps")

par(mfrow=c(2,2))

par(lwd=2)

plot(ntwk.rank.pcnt[,1],ntwk.rank.pcnt[,2],xlab=expression

(paste("P-VALUE: ",e^0)),ylab=expression(paste("P-VALUE: ",e^-1)),

main=expression(paste("(a) ",c[ij]==e^-1," versus ",c[ij]==e^0)),pch=16)

abline(0,1)

plot(ntwk.rank.pcnt[,2],ntwk.rank.pcnt[,3],xlab=expression

(paste("P-VALUE: ",e^-1)),ylab=expression(paste("P-VALUE: ",e^-2)),

main=expression(paste("(b) ",c[ij]==e^-2," versus ",c[ij]==e^-1)),pch=16)

abline(0,1)

plot(ntwk.rank.pcnt[,3],ntwk.rank.pcnt[,4],xlab=expression

(paste("P-VALUE: ",e^-2)),ylab=expression(paste("P-VALUE: ",e^-3)),
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main=expression(paste("(c) ",c[ij]==e^-3," versus ",c[ij]==e^-2)),pch=16)

abline(0,1)

plot(ntwk.rank.pcnt[,1],ntwk.rank.pcnt[,4],xlab=expression

(paste("P-VALUE: ",e^0)),ylab=expression(paste("P-VALUE: ",e^-3)),

main=expression(paste("(d) ",c[ij]==e^-3," versus ",c[ij]==e^0)),pch=16)

abline(0,1)

dev.off()

SmallWorld

library(statnet)

par(lwd = 2)

gplot(rgws(1,30,1,2,0.15))

### Multiple Network For-loop Simulation

set.seed(345345)

number.expt <- 100

ntwk.rank.pcnt <- matrix(nrow=number.expt,ncol=4)

for (hh in 1:number.expt){

### Create a re-wired small-world random graph

tgt1.incid <- rgws(1,25,1,2,0.15)

tgt1.wgt <- tgt1.incid

tgt2.incid <- rgws(1,25,1,2,0.20)

tgt2.wgt <- tgt2.incid

### Calculate difference between Sample and Target networks
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stat.samp.ntwk.alt0 <- score.ntwk(resample.target.delta(tgt1.incid,

tgt1.wgt,tgt2.incid,tgt2.wgt,0,0.4,add.noise=FALSE),

exp(0),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt1 <- score.ntwk(resample.target.delta(tgt1.incid,

tgt1.wgt,tgt2.incid,tgt2.wgt,0,0.4,add.noise=FALSE),

exp(-1),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt2 <- score.ntwk(resample.target.delta(tgt1.incid,

tgt1.wgt,tgt2.incid,tgt2.wgt,0,0.4,add.noise=FALSE),

exp(-2),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

stat.samp.ntwk.alt3 <- score.ntwk(resample.target.delta(tgt1.incid,

tgt1.wgt,tgt2.incid,tgt2.wgt,0,0.4,add.noise=FALSE),

exp(-3),edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

### Resample Loop

resample.no <- 1000

resample.results <- matrix(nrow=resample.no,ncol=4)

for (k in 1:resample.no){

rsamp1.incid <- rgws(1,25,1,2,0.15)

rsamp1.wgt <- rsamp1.incid

resample.delta.ntwk <- resample.target.delta(rsamp1.incid,

rsamp1.wgt,tgt1.incid,tgt1.wgt,0,0.4,add.noise=FALSE)

resample.results[k,1] <- score.ntwk(resample.delta.ntwk,exp(0),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,2] <- score.ntwk(resample.delta.ntwk,exp(-1),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,3] <- score.ntwk(resample.delta.ntwk,exp(-2),

edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

resample.results[k,4] <- score.ntwk(resample.delta.ntwk,exp(-3),
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edge.keep=1,wgt.keep=0,nbhr.keep=1,direc.keep=0)

}

# Close multiple network for loop

est.p.value <- (rank(c(stat.samp.ntwk.alt0,resample.results[,1]))[1])

/resample.no

ntwk.rank.pcnt[hh,1] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt1,resample.results[,2]))[1])

/resample.no

ntwk.rank.pcnt[hh,2] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt2,resample.results[,3]))[1])

/resample.no

ntwk.rank.pcnt[hh,3] <- ifelse(est.p.value>1,0,1-est.p.value)

est.p.value <- (rank(c(stat.samp.ntwk.alt3,resample.results[,4]))[1])

/resample.no

ntwk.rank.pcnt[hh,4] <- ifelse(est.p.value>1,0,1-est.p.value)

}

colnames(ntwk.rank.pcnt) <- c("POP’N.PCOR","EST.PCOR","OBS.RESAMPLE","huh")

# Under p = 0.20 with neighbors

postscript("ER_WS_20_Ngbr.eps")

par(mfrow=c(2,2))

par(lwd=2)

plot(ntwk.rank.pcnt[,1],ntwk.rank.pcnt[,2],xlab=expression

(paste("P-VALUE: ",e^0)),ylab=expression(paste("P-VALUE: ",e^-1)),

main=expression(paste("(a) ",c[ij]==e^-1," versus ",c[ij]==e^0)),pch=16)

abline(0,1)



Phillip D. Yates Chapter 6. Bibliography 265

plot(ntwk.rank.pcnt[,2],ntwk.rank.pcnt[,3],xlab=expression

(paste("P-VALUE: ",e^-1)),ylab=expression(paste("P-VALUE: ",e^-2)),

main=expression(paste("(b) ",c[ij]==e^-2," versus ",c[ij]==e^-1)),pch=16)

abline(0,1)

plot(ntwk.rank.pcnt[,3],ntwk.rank.pcnt[,4],xlab=expression

(paste("P-VALUE: ",e^-2)),ylab=expression(paste("P-VALUE: ",e^-3)),

main=expression(paste("(c) ",c[ij]==e^-3," versus ",c[ij]==e^-2)),pch=16)

abline(0,1)

plot(ntwk.rank.pcnt[,1],ntwk.rank.pcnt[,4],xlab=expression

(paste("P-VALUE: ",e^0)),ylab=expression(paste("P-VALUE: ",e^-3)),

main=expression(paste("(d) ",c[ij]==e^-3," versus ",c[ij]==e^0)),pch=16)

abline(0,1)

dev.off()
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