965 research outputs found

    An overview of data integration in neuroscience with focus on Alzheimer's Disease

    Get PDF
    : This work represents the first attempt to provide an overview of how to face data integration as the result of a dialogue between neuroscientists and computer scientists. Indeed, data integration is fundamental for studying complex multifactorial diseases, such as the neurodegenerative diseases. This work aims at warning the readers of common pitfalls and critical issues in both medical and data science fields. In this context, we define a road map for data scientists when they first approach the issue of data integration in the biomedical domain, highlighting the challenges that inevitably emerge when dealing with heterogeneous, large-scale and noisy data and proposing possible solutions. Here, we discuss data collection and statistical analysis usually seen as parallel and independent processes, as cross-disciplinary activities. Finally, we provide an exemplary application of data integration to address Alzheimer's Disease (AD), which is the most common multifactorial form of dementia worldwide. We critically discuss the largest and most widely used datasets in AD, and demonstrate how the emergence of machine learning and deep learning methods has had a significant impact on disease's knowledge particularly in the perspective of an early AD diagnosis

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models

    Artificial intelligence for dementia research methods optimization

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation

    Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tGraph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz) and low-alpha (6-9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.Funding was from Epilepsy Research UK (http://www.epilepsyresearch.org.uk) via grant number A1007 and the Medical Research Council (http://www.mrc.ac.uk) via grants (MR/K013998/1 and G0701310)

    The Importance of Cerebellar Connectivity on Simulated Brain Dynamics

    Get PDF
    The brain shows a complex multiscale organization that prevents a direct understanding of how structure, function and dynamics are correlated. To date, advances in neural modeling offer a unique opportunity for simulating global brain dynamics by embedding empirical data on different scales in a mathematical framework. The Virtual Brain (TVB) is an advanced data-driven model allowing to simulate brain dynamics starting from individual subjects’ structural and functional connectivity obtained, for example, from magnetic resonance imaging (MRI). The use of TVB has been limited so far to cerebral connectivity but here, for the first time, we have introduced cerebellar nodes and interconnecting tracts to demonstrate the impact of cerebro-cerebellar loops on brain dynamics. Indeed, the matching between the empirical and simulated functional connectome was significantly improved when including the cerebro-cerebellar loops. This positive result should be considered as a first step, since issues remain open about the best strategy to reconstruct effective structural connectivity and the nature of the neural mass or mean-field models generating local activity in the nodes. For example, signal processing is known to differ remarkably between cortical and cerebellar microcircuits. Tackling these challenges is expected to further improve the predictive power of functional brain activity simulations, using TVB or other similar tools, in explaining not just global brain dynamics but also the role of cerebellum in determining brain states in physiological conditions and in the numerous pathologies affecting the cerebro-cerebellar loop

    Intraindividual variability and micro-structural white matter changes in Alzheimer’s disease

    Get PDF
    The costs associated with diagnosis, treatment and care of Alzheimer’s disease (AD) patients places a significant financial and social strain on healthcare systems, patients and caregivers, especially in low-and middle-income countries (LAMICs). Traditional methods for diagnosing AD are time consuming and expensive, and treatments are often only effective in the early stages. These factors call for the development of alternative diagnostic methods. One such method that has gained attention due to its neural overlaps with AD is the measurement of intraindividual variability (IIV; the within-person variation in performance over multiple trials of a single task). IIV researchers have highlighted the role of white matter in increased IIV, and micro-structural white matter changes have been implicated in the early stages of AD. The current study examined the relationship between IIV on simple and choice reaction time tasks and micro-structural white matter changes, as indexed by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA) and radial diffusivity (DR) in a sample of 16 AD patients and 20 healthy older adults. Across the entire sample, increased IIV on both the simple and choice reaction time tasks was significantly correlated with lower FA in an area of the right hemisphere inferior longitudinal fasciculus (R-ILF). Increased IIV on the choice reaction time task was significantly correlated with lower DA in the same area. Finally, IIV on the choice reaction time task contributed significantly and uniquely to variance in DA in the same area. These results suggest that further longitudinal studies into the diagnostic utility of IIV for neurological disorders might be of value for clinicians, patients and caregivers

    Comparison and aggregation of event sequences across ten cohorts to describe the consensus biomarker evolution in Alzheimer's disease

    Get PDF
    BACKGROUND: Previous models of Alzheimer's disease (AD) progression were primarily hypothetical or based on data originating from single cohort studies. However, cohort datasets are subject to specific inclusion and exclusion criteria that influence the signals observed in their collected data. Furthermore, each study measures only a subset of AD-relevant variables. To gain a comprehensive understanding of AD progression, the heterogeneity and robustness of estimated progression patterns must be understood, and complementary information contained in cohort datasets be leveraged. METHODS: We compared ten event-based models that we fit to ten independent AD cohort datasets. Additionally, we designed and applied a novel rank aggregation algorithm that combines partially overlapping, individual event sequences into a meta-sequence containing the complementary information from each cohort. RESULTS: We observed overall consistency across the ten event-based model sequences (average pairwise Kendall's tau correlation coefficient of 0.69 ± 0.28), despite variance in the positioning of mainly imaging variables. The changes described in the aggregated meta-sequence are broadly consistent with the current understanding of AD progression, starting with cerebrospinal fluid amyloid beta, followed by tauopathy, memory impairment, FDG-PET, and ultimately brain deterioration and impairment of visual memory. CONCLUSION: Overall, the event-based models demonstrated similar and robust disease cascades across independent AD cohorts. Aggregation of data-driven results can combine complementary strengths and information of patient-level datasets. Accordingly, the derived meta-sequence draws a more complete picture of AD pathology compared to models relying on single cohorts
    • …
    corecore