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An overview of data integration in neuroscience with
focus on Alzheimer’s Disease
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Abstract—This work represents the first attempt to provide an
overview of how to face data integration as the result of a
dialogue between neuroscientists and computer scientists. Indeed,
data integration is fundamental for studying complex
multifactorial diseases, such as the neurodegenerative diseases.
This work aims at warning the readers of common pitfalls and
critical issues in both medical and data science fields. In this
context, we define a road map for data scientists when they first
approach the issue of data integration in the biomedical domain,
highlighting the challenges that inevitably emerge when dealing
with heterogeneous, large-scale and noisy data and proposing
possible solutions. Here, we discuss data collection and statistical
analysis usually seen as parallel and independent processes, as
cross-disciplinary activities. Finally, we provide an exemplary
application of data integration to address Alzheimer’s Disease
(AD), which is the most common multifactorial form of dementia
worldwide. We critically discuss the largest and most widely used
datasets in AD, and demonstrate how the emergence of machine
learning and deep learning methods has had a significant impact
on disease's knowledge particularly in the perspective of an early
AD diagnosis.

Index Terms—Multimodal data integration; Machine and Deep
learning; Multidisciplinary; Neurodegenerative diseases;
Alzheimer’s Disease.

I. INTRODUCTION1

ONE of the main challenges in neuroscience is the early
diagnosis of neurodegenerative diseases (NDs), that are
multifactorial diseases particularly difficult to diagnose in
their early stages when symptoms are not still evident. In fact,
pathological brain changes can take decades before symptoms
appear. Due to their complexity, an earlier clinical diagnosis of
NDs and, in turn, their management requires the integration of
multiple data sources, such as genetic characteristics, clinical
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conditions, and environmental factors (e.g., education level,
lifestyle).
In the last decades, researchers aiming at developing early
diagnosis methods of NDs and, in particular, of Alzheimer’s
Disease (AD) [1], the most prevalent form of dementia have
focused on integrating different types of data (e.g., as medical
images, genetics, cognitive tests, cerebrospinal fluid (CSF),
blood biomarkers). Several efforts have been made towards
this direction in terms of collecting more datasets and
developing data driven methods. This resulted in numerous
databases obtained through different data collection
modalities, and in a rich literature on diagnosis algorithms
based on data integration [2]–[6]. Nonetheless, the large
majority of studies is still far from the real applicability in
clinical practice. To tackle this problem effectively, it is
essential to foster a strong partnership between medical and
data experts. By embracing a multidisciplinary approach, we
can give equal importance to both computational and
biological components and make a tangible difference in
healthcare.
Based on this approach, this manuscript emerges from a
dialogue between biomedical and data scientists. Its objective
is to offer readers useful insights, address significant
challenges that biostatisticians may face when handling NDs
multimodal datasets, and enable the creation of a reproducible
and reliable Machine Learning (ML) pipeline for NDs.
The reader will be guided through a road map uncovering the
characteristics of the optimal multimodal databases, the
intrinsic issues of collecting such a corpus especially in the
clinical field, and the possible strategies to overcome the
limits of real-world datasets. We then address the challenges
of fusing multimodal data and we illustrate the approaches to
integrate it in a statistical model, reporting their pros and cons.
In the following sections, more attention will be paid to the
specific characteristics and initial reasons behind the creation
of the main existing AD databases, comparing them from the
data scientist's point of view.
Finally, we will explore literature studies which applied
statistical methods to diagnose AD or novel risk factors that
would allow to set up preventive strategies to delay the disease
onset. We emphasize that this is not a systematic review but
the main aim is to enlighten how the state-of-the-art evolved
during time and compare the performance of the models
introduced in the general framework.

The rest of the paper is structured as follows. In Section II, we
explore data integration in terms of both data collection and
methods design, enlightening the most important
characteristics they should have and the challenges they
present. This section should provide a based-knowledge for
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researchers who intend to approach multi-modal analysis by
machine and Deep Learning (DL) [7].
Section III aims at describing well-established datasets and
AI-based algorithms on data integration in the context of AD.
Finally, we highlight useful tips to road the map from theory to
practice in Section IV.

II. THE CHALLENGES OF DATA INTEGRATION

As data integration approaches became popular only recently,
many issues have not been addressed yet in terms of both data
acquisition and methods design. In the following, we delve
into the collection and the use of multimodal data.
Specifically, we focus on the most common data in the
medical context, including, besides the demographic and
clinical characteristics of patients, variables/parameters related
to imaging (i.e., Magnetic Resonance Imaging (MRI),
Positron Emission Tomography (PET) with or without
tracers), and omics data ( i.e., next generation sequencing data
(whole exome sequencing (WES), exome, RNA-Seq,
Chip-Seq), proteomics, metabolomics).

A. Multimodal data collection
Although several multi-dimensional cohorts are today
available, the majority of them result from an a posteriori
integration of existing datasets and, as a consequence, such
databases lack some characteristics that are crucial for the
development of advanced methods. Indeed, the biggest
problem of ML is that algorithms are sensitive to the amount
and quality of data. In the following we present the most
common data issues and the properties of the ideal dataset.

Data quality
While the algorithm's data hunger is well known as the enemy
number one of AI, the problem of data quality is often
underestimated and not fully addressed. For instance, Nagle et
al. [8] state that only 3% of companies’ data achieves a
standard in data quality. If this is a widespread issue in the
Artificial Intelligence (AI) world, it is even more pronounced
in the medical domain and neuroscience [9], [10]. As
reported in [11] data quality metrics are typically developed
ad hoc for specific problems. In [12], authors propose a
quality assessment system for medical contexts consisting of
three phases. First, the raw dataset is evaluated through
metadata extraction, descriptive statistics and data annotation.
Then, the data quality control step looks for inconsistencies,
missing values, outliers and duplicates. Finally, data
standardization must be performed. Complete reviews of data
quality assessment methods have been addressed in just a few
and very specific health related applications such as The
Human Brain Initiative [13] and Public Health Information
[14].

Another relevant issue is linked to the lack of universal
standards for health data formats and interoperability. In
clinical practice the disruptive absence of such standards
affects the communication and the exchange of critical data
among entities, also within the same clinical facility. In the

research process, it prevents the implementation of reliable
and statistically robust predictive models of complex
pathologies. Finally, in healthcare management, it increases
costs while also affecting patient safety and privacy[15], [16].
Although data collection is usually a task carried out by the
hospital management and IT, we would like to emphasize how
data analysts should play a relevant role in actively taking part
in the process and requiring data interoperability.

Data incompleteness: heterogeneity and missingness
Real-world data is usually represented by heterogeneous and
missing data, that is samples are represented by different data
types where some observations are missing. The most
common issue is, typically, the heterogeneity of the corpus.
Differently from research databases that attempt to have
completed data in all research oriented variables, Health Care
institutions, whose purpose is mainly focused to document
clinical care for a certain disease, fail in the completeness of
data.
An obvious example is the asymmetry between groups,
consisting in having different numbers of subjects per group.
This is an intrinsic issue in the biomedical field as, for
instance, when dealing with rare diseases the number of
patients will always be considerably small compared to the
healthy population. When dealing with imbalanced groups,
specific techniques are required during both training and
testing phases of the algorithm. At the first, re-sampling
strategies (i.e., under- or over-sampling) are necessary to
balance the dataset for training [17], [18], while robust metrics
(e.g., F1-score, sensitivity and specificity, Brier score) are
fundamental for a reliable evaluation of the model [19], [20].

Another common case of data incompleteness consists in the
longitudinal incoherence: data collection protocols typically
change over time and some exams can be later excluded as
unnecessary, resulting in heterogeneous modalities over time.
Also, for some subjects few or many modalities may not be
present if data comes from different hospitals or due to the
restricted eligibility rules on recruiting patients. Indeed, for
healthy subjects some measures that require invasive and/or
expensive techniques (e.g., CSF, Imaging) are not performed
or acquired only if necessary. This brings heterogeneity
between groups.
Further, it is very unlikely to collect a real-world dataset where
all observations are consistently present for all considered
subjects. This may be due to data corruption during the
acquisition procedure, collection procedures failing to record
data or human negligence. Such issues inevitably lead to
incomplete and sparse data matrices, where applying ML
algorithms is unfeasible as these methods do not naturally deal
with missing portions of datasets.One solution may consist of
restricting the usage to the subset of subjects for which the
same data modalities are accessible. Clearly, this would limit
the amount of data and the robustness of the statistical model
trained on it. Alternatively, ad-hoc methods may be adopted to
deal with heterogeneous data and imputing strategies may be
employed to deal with missing values. Recently, researchers
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Fig. 1.The graph at the top shows an example of the ideal dataset, whereas the
four graphs at the bottom show the challenges of data collection:
heterogeneity, sparsity, longitudinal incoherence and asymmetry.

emphasized the importance of using such strategies to estimate
the unobtainable observations while making use of the
available information (see [21] for an exhaustive literature
analysis from 2006 to 2017). For instance, in [22] the authors
use k-nearest neighbors [23] and a similarity measure based on
cross-entropy to impute missing values.
Very recently, many studies developed genomic data
imputation based on deep learning and, more specifically, on
auto-encoders [24]–[27].

Ideal properties of a dataset
In brief, the main characteristics of the ideal dataset can be
summarized in:

- homogeneity (i.e. same type of data for all groups
and subjects)

- density (i.e., not missing data)
- longitudinally coherence (i.e., same data modalities at

baseline and follow up)
- symmetry among groups (i.e., similar number of

subjects per group).

In Fig. 1, we represent different data modalities with colored
blocks and we picture the ideal dataset that should present all
the blocks for every subject at each time step. For comparison,
we also show how a dataset appears when one of the
mentioned-above properties is missing.

B. Multimodal data modeling
Having access to high-quality data lays the foundation for the
design of efficient AI algorithms and to avoid the so-called
“garbage in, garbage out problem”. However, developing
avantgarde integrative methods require asking many
questions:

- How to manage completely different data? At which
model level is it better to integrate the information
(bottom-intermediate-top) from both computational
and clinical viewpoints?

- What is the difference between machine and deep
learning integrative methods and which one is more
suitable?

- How to overcome the computational costs?
- Once we have a data integration-based model, how

can we interpret data? How to evaluate a model in a
meaningful way for the clinician?

In the following, we attempt to answer all these questions and
provide the reader with a general guideline. Note that here we
focus on classification/regression models, as these represent
the most challenging attempts of data integration.
Nonetheless, multimodal data can also be exploited to insert
prior knowledge in the model or for regression analysis, as we
will see in Section III.B.2.

Heterogeneous data management and integration level
In a prediction model, we can distinguish two phases. The
feature extraction step takes the raw data as input and extracts
meaningful features, while the classification phase uses the
extracted features to make a prediction. This implies that we
mainly have three objects: the raw data, the extracted features
and the output. The data integration can be performed by
concatenating one of these objects for all available modalities
(Fig. 2). Specifically, the first approach we can adopt occurs
at a bottom level (Fig. 2a) and consists in the concatenation of
the raw data modalities to feed the model that will perform
both the feature extraction and classification steps. Note that
this approach is rarely used, as multimodal data may have
different dimensions and structure (e.g. scalar, vectors,
matrices or tensors). Also they may fall into substantially
different numerical ranges and therefore this integration type
may lead to unreliable statistical results.
Fig. 2b shows an intermediate approach in which features are
differently extracted from all modalities and their
concatenation is used as input for a classifier. Here
concatenation may be done leveraging common approaches
such as ETL (Extract, Transform, Load) techniques when
dealing with structured data in data warehouses systems [28]
or semantic integration based on ontologies when handling
unstructured and semi-structured data [29]. Particularly in the
latter case, data standardization plays a critical role to ensure
the data conforms to a common set of criteria such as
consistency, accuracy and shared meaning across the different
available sources [30]. Finally, the top-level integration (Fig.
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Fig. 2. The three main levels of data show how to integrate N modalities (M).
a) Bottom-level integration. b) Intermediate-level integration. c) Top-level
integration.

2c) performs a decision-level combination by voting or
averaging the monomodal model outputs.
The best choice depends on the relation among the data
modalities and on the study purpose. For example, if the
different modalities share some information the bottom-level
integration may extract sparse features, avoiding redundant
information. On the contrary, if the data modalities differ
considerably, a feature extraction strategy specific for each
modality may be successful. For instance, genomics data are
typically high dimensional (e.g. ~from 10000 to 100000) and
require to find a sparse representation, while it is well-known
that Convolutional Neural Network (CNN) [31] optimally
performs the feature extraction from imaging data. Hence, in
this case an intermediate- or top-level integration may result to
be more suitable. Further, the strategy to integrate data should
also be strictly related to the feasibility in the clinical
application. When integrating multiple modalities we should
be aware if the adopted method requires the use of multimodal
data only during training or also in testing. Indeed, in medical
practice, having simultaneous access to multiple modalities
(e.g., data obtained by invasive and costly techniques) and,
consequently, using them as input for a statistical model may
be unfeasible. As a consequence, depending on which
modalities we are dealing with, methods making use of both
single- and multimodal data (e.g., integration at top level) can
be more suitable. In this regard, the third type of approach is
advantageous with respect to the intermediate-level
integration.

TABLE I

Shallow machine learning Deep learning

Data pre-processing needed It can take the raw input

Feature extractors and classifiers are
separately learned

Feature extractors and classifiers
can be jointly learned

The extracted features are known The extracted features are optimal
w.r.t. the task to perform

More easy to be interpreted Difficult to be interpreted

When using multiple feature
extractors, they can be run in parallel

Computationally expensive

Comparison between shallow ML and DL in terms of pre-processing, data
modalities handling, feature extraction, interpretability and computational
cost.

Shallow Machine Learning Vs Deep Learning
Note that all described integrative approaches can be
accomplished by learning the feature extractor and the
classifier separately or simultaneously. While the first strategy
can be performed both by leveraging machine and deep
learning, the latter one relies on deep neural networks. Indeed,
while traditional (or shallow) ML algorithms rely on the
feature choice made by the expert through feature engineering
or prior knowledge [23], DL - without any prior knowledge -
can automatically extract features based on data measures or
to maximize task performance (e.g., classification) [7]. Table I
summarizes the key differences between shallow ML and DL.
The second approach is typically more effective when
studying complex diseases, where the feature choice may be
wrong, biased or limited. A clear example is the case of
medical imaging for which DL architectures result to be
state-of-the-art in several tasks, such as brain tumor
segmentation [32]–[35], lesion identification in multiple
sclerosis [36]–[38], and electroencephalography (EEG) signal
modeling [39], [40].

Further, and most importantly, in traditional ML the feature
extraction and the classification task are performed
independently . Consequently, ML can treat multiple data as a
whole unit (Fig.2a) or independent units (each feature
extractor only depends on its modality; Fig. 2b and 2c).
Instead, deep neural networks also allow joint training of
several feature extractors (e.g., one for each modality) and the
classifier (Fig. 2b). The advantage of this approach is that the
feature extractors differ based on the data modality but they
are trained to minimize a classification loss that depends on all
modalities. This provides a feature extractor specific to a
single modality that, however, incorporates information
coming from all data.
Although these approaches may be more effective in capturing
meaningful information from multimodal data and better
model the phenomena, DL techniques have two main
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drawbacks: they are computationally expensive and, often,
lack interpretability.
These issues have been often underestimated by the research
community as in some fields, such as face recognition, the
data dimensionality is manageable and the performance
accuracy is the main model driving criterion. This does not
apply to the medical field where the data is high dimensional
and the interpretability of the model is a sine qua non for its
real use in the healthcare world [41].

Computational cost
Among the approaches to reduce the computational cost,
recent advances in optimization, numerical linear algebra and
random projections were exploited to maximize ML methods
efficiency [42]. For DL methods, one of the most popular
strategies is the network pruning that consists in removing
parameters from an existing network in order to obtain a
smaller model with the same accuracy. Although this
technique was introduced in the late 80s [43], [44], it only
recently attracted the interests of researchers [45],[46], as a
consequence of exponential growth of available data and the
rise of bigger and high memory-requiring models. For more
details, we refer the reader to the survey by Blalock et al. [47].
Alternatively, several studies are based on knowledge
distillation [48], where a small model (student) attempts to
replicate the output of a larger model (teacher). However,
these methods allow to reduce the computational cost only
retrospectively, after a bigger network has been trained.

Interpretability and evaluation metrics
A similar problem affects the model interpretability that is
more often performed after the model training, rather than
incorporated in the algorithm itself. This is more evident in
DL as, contrary to ML models in which the selected features
are known, it extracts high-level and abstract features. Due to
the difficulties of designing complex models that are also
interpretable, the majority of studies aim at providing tools to
interpret the learning paradigm and the model results. The
main one tries to estimate the input variables importance by
measuring the increase in the model’s prediction error after
perturbing one or a group of variables [49]. The more the
prediction changes, the more the model will be dependent on
that variable. This technique can be particularly useful, for
instance, to find the genes mostly involved in the disease
diagnosis or to individuate the part of the medical image that
is more important for the diagnosis.
Alongside interpretability, the goodness of a statistical model
is also evaluated by means of quantitative measures that
estimate its performance. Accuracy is typically the first - and
often the only - metric used by computer scientists to assess a
predictive model. Nonetheless, we emphasize that in order to
lay the foundation of an interdisciplinary collaboration, the
model should be also evaluated following criteria that take
into account the peculiarity of the biomedical problems. For
instance, a common request is to estimate sensitivity,
specificity, F1-score or Matthews Correlation Coefficient to

better understand the phenomenon in terms of type-I and
type-II error types [50].

III. DATA INTEGRATION IN ALZHEIMER’S DISEASE

In this section, we focus on data integration in Alzheimer’s
disease as this is, among the multifactorial neurodegenerative
diseases, the most widespread and studied disorder [51].

Alzheimer’s disease is indeed the most common form of
dementia, currently affecting more than 30 million people in
the world [52]. It is characterized by progressive
neurodegeneration, leading to decline in cognitive and
functional capabilities, affecting everyday activities,
eventually causing death [53]. The delay of diagnosis, the lack
of effective therapies, and the associated chronic disability
render this disease a socio-economic calamity. In the past, the
appearance of dementia symptoms marked the AD onset, and
diagnosis was only confirmed postmortem by verifying the
presence of beta amyloid aggregation and tau protein
hyperphosphorylation [54]. However, thanks to scientific
advancements in AD knowledge, it is currently well
recognized that AD exists as a clinical continuum [55]:

1. a pre-symptomatic stage where pathological
molecular changes, such as accumulation of the
neurotoxic beta amyloid peptide, and neuronal
dysfunction occur at brain level

2. a very early stage characterized by mild cognitive
symptoms (identified as mild cognitive impairment
(MCI) syndrome) that could be confused with
aged-related physiological cognitive deterioration

3. the early-stage where AD cognitive symptoms might
be recognized during a long diagnosis workflow

4. the late stage with overt dementia.

Many characteristics of AD render it especially defiant:
developmental of disease occurs insidiously over the course of
years or decades, the causes of disease and factors related to
its severity are likely multifactorial, and a considerable
phenotypic heterogeneity (ranging from typical memory loss,
to canonical atypical clinical symptoms as such visual/spatial,
language, motor or executive functions impairment) exist [56].
Although a great effort has been made to identify potential
druggable targets, only recently, after a timespan of 20 years,
the Food and Drug Administration (FDA) has approved a new
drug (Aducanumab) whose true efficacy in modifying the
progression of AD is yet to be confirmed [57], [58]. The long
preclinical phase of AD gives hope that early intervention may
be the right approach to prevent, slow or even stop the disease.
In this regard researches have been mainly focusing on two
broad themes:

1. identifying novel biomarkers or risk factors (e.g.,
apolipoprotein, cardiovascular risk factors) to
diagnose AD from occurrence and testing efficacy of
interventions, such as physical activity or diet, to
delay the disease onset;
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2. tracking AD progression using imaging,
cerebrospinal fluid, and blood biomarkers (e.g.,
Pittsburgh compound B).

These challenging fields of investigation can be tackled thanks
to recent technological advancements that have empowered us
to generate, collect and manage massive amounts of data [59].
In this context, longitudinal data collection and sharing
initiatives could accelerate the identification of the key factors
triggering AD risk and progression [60], [61]. We believe that
AD research will be largely impacted by data-driven models if
we are able to successfully share and integrate this large-scale
data across different organizations, groups and countries.
Below, we detail the main multimodal data cohorts (see also
Table II) and the state-of-the-art ML algorithms (see also Fig.
3) based on data integration that focuses on AD.

A. Datasets

Collecting multimodal, longitudinal data involving multicenter
allowed us to work on a very wide set of subjects and to
improve the chances to better understand the mechanisms of
AD.

One of the most used publicly available dataset is the North
American Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [62]. The primary aim of ADNI is to discover,
optimize, standardize, and validate clinical trial measures and
biomarkers used in AD research. Indeed, ADNI is a
longitudinal multicenter study that aims to develop clinical,
genetic and biomedical biomarkers for AD early detection. Up
to now, ADNI has experienced four different phases: ADNI1,
ADNI/GO, ADNI2 and ADNI 3, including over 2000 subjects
affected by different degrees of cognitive impairment.
The data types collected in the four ADNI initiatives include:
(i) MRI (structural, diffusion weighted imaging, perfusion, and
resting state sequences), (ii) amyloid and tau PET imaging
using different specific tracers, (iv) CSF for Aβ, tau,
phosphorylated tau (AKA phospho tau), and other proteins,
(vi) genetic data, (vii) autopsy data to determine the
relationship of these biomarkers to baseline clinical status and
cognitive decline. The ADNI dataset has been extensively
exploited within the AD Big Data DREAM Challenge at
White House, a pioneering initiative launched to advance the
global effort for diagnosis techniques and identifying new AD
biomarkers through open source data [63].

Several other efforts for sharing AD-related data were
launched afterwards, each of them with different purposes,
which we briefly discuss in the remainder of this section.

For example, the Mayo Clinical Study of Ageing (MCSA)
[64], designed for a population-based prospective study of
cognitive healthy aging, MCI and dementia, enrolled nearly
2700 subjects through an evaluation of their medical history
from a population living in Minnesota of the United States and
reported only clinical characteristics, including dementia
assessed by phone interviews.

The overarching aim of the Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing (AIBL) [65] was to
discover which biomarkers, cognitive characteristics, and
health and lifestyle factors can be implicated in the
subsequent development of symptomatic AD. One of the
peculiarities of AIBL is its focus on lifestyle and long term
monitoring of patients. From late 2006 to mid-2008 the AIBL
study assembled and assessed an Inception cohort of 1112
individuals with the intention of conducting re-assessments
every 18 months to determine the extent to which their
baseline cognitive profile, demographic factors, Aß-amyloid
brain load, blood and CSF biomarkers, genetic and lifestyle
factors could predict their future cognitive function and
clinical status with respect to the development of AD . The
evolution of the Inception cohort at baseline, 18, 36, 54, 72,
90, 108, and 126 months follow-up, was enriched with
recruitment of 1,247 new participants to compensate for
attrition (Enrichment cohort), yielding the current database of
2,359 participants with 8,592 person-contact years.

The Alzheimer Cohorts Consortium (ACC) [66] is composed
of 9 cohorts selected based on predetermined criteria. Across
the cohorts there are more than 70,000 individuals of whom
around 6300 have developed dementia to date. Specifically,
cohorts included in ACC should be designed as prospective,
population-based, have in-person examinations, with at least
15 years of available follow-up, and include at least 2,000
participants at baseline. Further, most of the cohorts should
have data available on genotype, cardiovascular factors and
acquisition of brain MRI.

The European initiative Amyloid imaging to prevent
Alzheimer’s disease (AMYPAD) [67] is aimed to better clarify
the etiopathological value of PET-imaging of β-amyloid in
order to: i) improve the diagnostic workflow and management
of individuals with suspected AD; ii) stratify AD risk and
select homogeneous groups for therapeutic intervention
strategies; and iii) better quantify variables indicative of
treatment effects. AMYPAD studied the onset, dynamics, and
clinical relevance of brain β-amyloid in the clinical continuum
from normal aging to preclinical and prodromal AD in nearly
4000 subjects in close collaboration with European Prevention
of Alzheimer's Dementia (EPAD) [68].

Several datasets presented above may be exploited to answer
one given question (diagnostic confirmation, prognostic,
predictive, lifestyle influence) even if they provide different
biological and biomedical parameters (GWAS, CSF
biomarkers, MRI, PET, blood biomarkers, and lifestyle).
Ideally, it would be optimal to simultaneously employ all the
available datasets but, as they were originally conceived to
answer multiple biomedical questions within heterogeneous
domains, using them in unified and integrated investigation is
highly demanding and requires ad hoc methods. Further the
datasets may be exploited for tasks that are different but
related to the original one. For this reason, several consortia
have been recently raised to drive the dataset choice across the
AD data landscape, such as the Heterogeneous Network-based
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TABLE II
Dataset URL

ADNI http://adni.loni.usc.edu/

MCSA

https://www.mayo.edu/research/centers-programs/al
zheimers-disease-research-center/research-activities
/mayo-clinic-study-aging/for-researchers/data-shari
ng-resources

AIBL https://aibl.csiro.au/

AMYPAD https://amypad.eu/

Alzheimer disease cohort, consortia and initiative useful in the search of the
optimal dataset.

TABLE III
Tools URL

ALZFORUM
databases https://www.alzforum.org/databases

GAAIN http://gaain.org

AData (Viewer) https://adata.scai.fraunhofer.de

HENA https://github.com/esugis/HENA

Tools for navigating the AD landscape of databases.

HENA [69] was created to integrate AD-related variables
collected from well-validated clinical recruitments, as well as
an innovative experimental and computational datasets created
by the Age brain SYBRIO consortium.

dataset for Alzheimer's disease (HENA) and the
AData(Viewer). AData(Viewer) [70] is an interactive web
portal that helps researchers to select their optimal AD data
cohorts exploring data within nine major AD clinical cohort
studies. These datasets are quite heterogeneous considering for
example the number of subjects enrolled by diagnosis, the
availability of relevant biomarkers for AD, the demographic
composition and also for the predominance in the cohorts of
the whites/Caucasians. Therefore, the advantage of AData
(viewer) is to have a metadata-based approach that allows
studies to be classified according to the characteristics of the
relative patient-data in each cohort. Table II reports the digital
link to the above cited datasets, and Table III provides
additional digital tools such as (ALZFORUM [71], GAAIN
[72], AData and HENA) useful for the reader for browsing the
landscape of AD databases. The aim of these tools is to aid
biostatisticians in accomplishing a task efficiently, quickly,
and more accurately.

B. Data integration methods
In the context of Alzheimer’s Disease, we can distinguish two
main types of multimodal methods that pursue two distinct
scopes. The first type aims at inferring risk factors involved in
the development and degeneration of the disease. Within this
category we focus on the Genome-Wide Association Study

(GWAS) [73], consisting in identifying the genes whose
mutations are associated with AD. The second one integrates
different data modalities to predict the disorder or its decline.
The approaches relying on the last group are typically
classification algorithms trained in a supervised way. In the
following, we provide an overview of the most relevant
studies in both domains.

B.1 GWAS-based Multimodal Analysis
In the context of AD studies, GWAS is used for the
identification of genetic risk factors, fundamental to determine
who is at a higher pathological risk and, therefore, for
developing new prevention and treatment strategies. Tests for
association devise independence between input measures, i.e.,
single nucleotide polymorphisms (SNPs) and the output, i.e. a
phenotype of interest, which could be dichotomous (affected,
unaffected) or quantitative (fluid biomarker levels, rate of
longitudinal change on imaging metrics, etc.). As the total
number of variables usually outnumbers the amount of
available samples, it is a common procedure to encode all
available prior knowledge to boost the statistical robustness of
the results. This is done by incorporating, for instance,
biological knowledge as gene modules or pathways from
verified sources such as Gene Ontology [74] or the Kyoto
Encyclopedia of Genes and Genomes [75].

Logistic and linear regression, Principal Component Analysis
(PCA) and multiple hypothesis testing with Bonferroni
correction represent the most employed statistical methods in
AD genetic risk factors studies [76]-[79]. Studies based on
GWA data have confirmed the strong influence of APOE
[80], [81] among many other genes involved specific
functional categories, such as immune response, lipid
metabolism and synaptic functioning [82].

In the last decades, several studies showed that the analysis of
GWA data alone can be improved by exploring additional
data, such as imaging data. Improvements in both genotyping
underlying GWA and brain imaging have boosted new
approaches to study the influence of genetic variations on both
the function and the structure of the brain [83]-[85]. This
effort has led to the birth of a new research field named
imaging genetics where genetic variations are evaluated using
imaging measures as continuous phenotypes or quantitative
traits (QTs) which have increased statistical power and thus
decreased sample size requirements [86], [87]. Several SNPs
and other polymorphisms in many genes, including APOE,
have been related to neuroimaging measures in MCI and AD
and also in nondemented carriers [88]. However, the
complexity of these disorders remains to be unveiled because
effectively relating high density SNP data to large scale image
data is still a goal to be achieved. This happens because whole
brain imaging studies usually find associations with few
genetic variables, while GWAS coupled with imaging usually
consider a low number of imaging variables [85], [89], [90].
These operations of feature reduction allow the identification
of strong but few QTs-genetic variations associations that
represent only a few pieces of the larger and more complex
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puzzle which are diseases such as AD or MCI. In imaging
genetics, new methods able to overcome power limitations and
multiple comparison issues need to be conceived and this can
be achieved only by considering multidisciplinary teams,
methods and multimodal datasets in order to overcome the
limitations of the analysis of monomodal datasets.

B.2 Multimodal Data Integration for disease prediction
In the following, we report the most cited or recent
methodological studies on AD, from 2010 to 2023. We did not
include similar papers, as our goal is to show the progress of
methods over time and to compare the performance of
different approaches. All considered publications make use of
the ADNI dataset, as it is the standard de facto dataset for
modeling several aspects of AD pathology. The remainder of
this section showcases first the publications where shallow
learning approaches were employed and then illustrates those
using more advanced deep learning methods.

Shallow machine learning
The first attempts to integrate multiple data to perform a
classification task were based on Single-Kernel methods, such
as Support Vector Machine (SVM) [91].
In [92], the authors concatenate features extracted from PET
and MRI images with CSF, APOE genotype and cognitive
information to perform a binary classification via SVM. They
reach 70% and 82% on MCI and AD classification,
respectively. The major limitation of these works is that the
same kernel is applied to different modalities.

Moving a step forward, [93] employs different Gaussian
kernels with mixed norm penalty on the kernel weights to𝐿

21
enforce group sparsity among different feature modalities
(CSF and MRI). This method can distinguish between control
and AD subjects with 87% accuracy. [94] proposes a
Multi-Kernel Learning (MKL) for the binary classification,
considering two imaging modalities (PET and MRI) and, for
each, computing several voxel-wise features and kernel
functions (i.e., linear, quadratic and Gaussian) resulting in 24
kernel matrices par modality. Further, the authors take into
account non-imaging modalities, such as CSF assays,
NeuroPsychological Status Exam (NPSE) scores and APOE
genotype, giving three kernels per modality. Finally, MKL
classifier is trained to: i) distinguish between CN and AD; ii)
predict the conversion from MCI to AD. This integration
method accomplishes the first task with 92% accuracy, while it
fails at the second task.
A similar approach [95] adopts multiple kernels for the PET,
MRI and CSF modalities, and combines them to train a SVM
classifier. The AD (MCI) classification is performed with 93%
(77%) of accuracy.
All these intermediate-level integration studies showed that a
multi-kernel approach outperforms the single-kernel SVM
classification. We emphasize that in all the described methods
the monomodal feature extractors and the classifier are
learned separately. Recently, [96], [97] proposed ensemble
classifiers based on SVM (eSVM). Both studies rely on the
top-level integration in which the monomodal SVM classifiers

are averaged. Specifically, [96] employs features extracted
from ROIs of different imaging modalities, i.e. MRIs,
Diffusion Tensor Imaging (DTI), and PET. They show that the
combination of all imaging modalities yields an accuracy of
98% in AD diagnosis, outperforming both monomodal
classifiers and 2-modalities based classifiers. Similar
conclusions can be retrieved from [97] in which the combined
use of MRIs and Transcriptomic data achieves 95% of
accuracy in AD/CN classification, while the use of single
modalities (MRI/Transcriptomic) reach 93% and 86% of
accuracy, respectively. Differently, they showed that MRI
alone (64% accuracy) can outperform multimodal data
integration (56% accuracy) in CN/MCI classification.
However, they emphasize that none of the considered sets of
features lead to acceptable performance in the challenging task
of discriminating between MCI and CN subjects.

Deep learning
To treat multimodal data many authors focused on DL
methods [7].
For instance, in [98], the authors look for a shared
representation of PET and MRI images by using the Deep
Boltzmann Machine (DBM). This is then used as input for
hierarchical classifiers, reaching 94% (85%) of accuracy in the
AD (MCI) classification.
Lian et al. [99] fuse 1.5T and 3T T1-weighted MRI images by
proposing a variant of a CNN, named Hierarchical Fully
Convolutional Network (H-FCN). They also perform network
pruning to reduce the computational cost. This method
diagnoses AD with 90% of accuracy and predicts the
conversion from MCI to AD with 80% of accuracy. Both [98]
and [99] studies rely on the second-level integration in which
the feature extraction and the classification steps are jointly
performed.
Venugopalan and co-authors [100] employ Denoising
Auto-Encoders (DAE) to extract features from clinical and
genetic data, and a 3 dimensional-CNN for imaging data. The
authors compare the performance of bottom-, intermediate- (in
which feature extractors and classifiers are learned separately),
and top-level integration, showing that the intermediate one
provides the most effective performance. Contrary to all
previous studies, their algorithm is not limited to the binary
classification but it also performs a multi-class (NC/MCI/AD)
classification with 85% accuracy.

Finally, it is worthwhile to mention The Multimodal
Longitudinal Data Integration (MildInt) work [101], that
differs from the previous studies as it takes into account
longitudinal data. This approach is composed of two phases:
1) extracting fixed-size features from different modalities,
represented by time series; 2) integrating the extracted features
and learning a classifier to make the final decision. This
corresponds to an intermediate-integration approach, in which
the feature extractors and the classifier are trained separately.
Specifically, the extractors are based on Recurrent Neural
Network (RNN) models to capture the data time dependency,
while the classifier is learned by using a logistic regression
function. The authors adopt the method to distinguish between
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Fig. 3. The schema reports current and recent literature on data integration
approaches for the study of AD. For each contribution, from bottom to top, we
report the reference, which data modalities were used, the ML and integration
methods employed, and the accuracy performance for two binary
classification tasks: CN vs MCI and CN vs AD. Shallow learning methods are
reported in italic, whereas deep learning methods are reported in bold.
Integration type may be intermediate (i)/(i*) or top (t).

MCI-converter and -non converter and show that it provides a
performance improvement over the monomodal approaches, in
which CSF, MRI or Cognitive Performance data only is used.
MildInt is publicly available as a Python package2 and it can
be employed as a preconstructed architecture in other data
integration contexts.

Fig. 3 summarizes those papers that tackle the problem of
classifying CN/AD or CN/MCI. For each column from bottom
to top, the citation reference, data type considered in the study,
learning and integration method and achieved accuracy for the
two classification tasks. Methods falling into the shallow
learning category are reported in italic, those in the deep
learning category are reported in bold. Integration is either
happening at the top level (t) or intermediate where feature
extraction and classification are performed in either (i) two
separate steps, or (i*) a joint training phase. We want to
emphasize that, due to the absence of test benchmarking and
the use of different modalities, it is not possible to make a
direct comparison between studies and select the best strategy.
This strictly depends on the task at hand and on the available
data. Nonetheless, we here report some possible conclusions:
- multi-kernel strategies always outperform single-kernel

algorithm suggesting the needs for treating each modality
differently;

- DL models outperform shallow ML in the discrimination
between CN and MCI;

- top-level integration reaches excellent AD diagnosis
performance when the feature extraction phase is based
on a hybrid human-AI approach where data-driven
methods support human decision;

- MRI is the most employed data type.

Finally, we note that in this section we did not consider the
integration across-datasets but we focused on the integration
of different data modalities. The reason is that, as emphasized
in the previous section, datasets may have been designed from
distant scopes and their integration may not be suitable.
However, for some specific tasks, their joint use may be
convenient.

2 https://github.com/goeastagent/MildInt

IV. CONCLUSION

This work serves as a useful foundation for establishing
research based on data integration, where data collection and
statistical analysis are intertwined and mutually affect one
another instead of being treated as independent phases. As
such, two main ingredients of data integration must be
considered: (i) how to select and use available datasets in the
light of the task at hand and the characteristics that an ideal
multimodal dataset should fulfill; (ii) how and at which level
to integrate different data modalities in statistical models to
meet both the computational and clinical requirements.

First, a multimodal dataset can be considered optimal from the
perspective of the computer scientists community, when data
is homogeneous (i.e., the same modalities are available for all
groups and subjects), dense (i.e., there is no missing data),
longitudinal coherent (i.e., same modalities are present at
baseline and follow up), and symmetric among groups (i.e.,
different groups include a similar number of subjects).
However, we observed that in practice current AD datasets do
not satisfy these principles due to both intrinsic issues, such as
constraints of ethical, economical or temporal nature, and
fallacious data collection practices (e.g., the use of different
protocols across hospitals). Therefore, one of the results of our
work is a list of techniques to overcome these shortcomings
(e.g., standardized protocols, estimation of missing values).
Moreover, we remark that the choice of the dataset to employ
in statistical methods cannot be based only on computational
reasons (e.g., the largest and mostly homogeneous dataset) but
it should strictly depend on the biomedical question.

Second, our contribution is also to provide a hands-on guide
on how to treat different data, describing three possible
approaches of data integration (i.e., bottom-, intermediate-
and top- level) discussing their benefits and drawbacks in
terms of feasibility, computational cost, and model
interpretability.

In [100] the authors claim that, when treating heterogeneous
data type, the intermediate-level approach provides the best
performance in terms of efficiency and model accuracy.
Nonetheless, it is fundamental to be aware that this approach
may not be the best one from the clinical point of view.
Indeed, this method requires all modalities to be available also
during the testing phase: a doctor could make a diagnosis only
when information from all modalities are present. On the
contrary, other techniques, such as the top-level integration,
employ multimodal data for learning the model but they can
provide an outcome also when a single-modality is available.
Hence, methods that are less efficient from the data science
perspective may have some advantages in medical practice.

This study explores the use of multiple data modalities for
investigating NDs. While current ML models are not
necessarily yet prepared for implementation and deployment
in medical centers, our research indicates that data integration
methods can significantly improve the effectiveness of
standard monomodal approaches.
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Our findings are not limited to AD, as all reviewed methods
may be transferred to other NDs, suggesting that data
integration combined with advanced machine learning
methods may be key for a future in which digital-assisted
diagnosis will support clinicians towards a timely and accurate
diagnosis of NDs, ultimately leading to better patient
prognosis.
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