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Abstract

Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of
neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered
differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a
purely observational approach; identifying correlations between properties of graphs and the cohort which they describe,
without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational
modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit,
which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and
application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand
functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic
generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for
seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly
decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands.
We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the
ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver
operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine
clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately
enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and
therapeutics.
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Introduction

The human brain is perhaps the best example of a multiscale

complex network, with organizational hierarchies spanning many

spatial and temporal scales. At the microscale, neurons commu-

nicate with other neurons through both chemical and electrical

coupling, with estimates varying from 1000 to 10000 synapses per

individual neuron [1]. At the mesoscale within the cerebral cortex,

networks of between fifty and one hundred and fifty neurons form

minicolumns, which in turn aggregate to form cortical columns,

each containing around 5000 neurons [2]. At the macroscale,

networks of tightly coupled cortical columns form distinct regions

of the cerebral cortex that communicate with each other in a

functionally specific manner. There is now increasing evidence for

the concept of a core of such brain regions that form structural

hubs that are essential for facilitating normal cognitive processing

[3–5]. Whilst the precise mechanisms by which communication

between large-scale brain regions occurs remains an open

question, it is widely accepted that many critical brain functions

such as cognition and motor coordination result from the

emergent dynamics of large networks of neurons [6] and phase

synchronization across regions is thought to play a critical role in

facilitating communication between regions [7,8].

From an experimental perspective, a window into the under-

lying macroscopic structural network may be given by functional

networks that can be inferred from imaging modalities such as

fMRI, MEG or EEG [9], and a substantial number of methods

has been developed and applied to derive functional networks,

ranging from cross-correlation [10] and phase coherence [11], to

Granger causality [12] and transfer entropy [13,14]. Whilst strong

functional connectivity during the resting state has been shown to

be a good indicator of underlying structural connectivity [15,16], it

is important to note that there is no one-to-one translation, thus a

degree of fluctuation in functional connectivity is to be expected.
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From a theoretical perspective, effective connectivity can be

considered a mathematical model driven representation of the

functional connectivity inferred from data space [17], and to

understand differences between cohorts of patients and controls,

several recent studies have used methods from the mathematical

field of graph theory [9] to explore either effective or functional

networks across a variety of neurological conditions including

schizophrenia, dementia and Parkinson’s [18–21]. A further

debilitating neurological disorder that is associated with abnormal

synchronization between brain regions is epilepsy; a disorder

characterized by the tendency to have recurrent seizures. The

International League Against Epilepsy (ILAE) define an epileptic

seizure to be ‘‘a transient occurrence of signs and/or symptoms

due to abnormal excessive or synchronous neuronal activity in the

brain’’ [22]. The role of neural synchronization in seizures has

caused some controversy in recent years, in part due to how

synchrony is defined [23]. For example, if synchrony at the

microscale is strictly defined as single-unit action potentials

occurring at the same instance in time, then it can appear that

synchrony is decreased during seizures [24]. However, if a broader

definition of synchrony, such as phase coherence or generalized

synchronization [25,26], is applied to macroscopic recordings such

as EEG then evidence for hypersynchronous activity is common-

place [27–30].

An open-question when pursuing a purely graph-theoretic

approach is the relationship between the observed network

structure and the emergent dynamics supported by that structure;

particularly if alterations in function relate to symptoms of the

neurological disease (Figure 1). To address this question, it is

necessary to introduce a model of the dynamics of each node

within the network, and to study the interplay between local

dynamics and network structure on the emergent activity.

Mathematically, a number of approaches has been used to study

the mechanisms of seizure activity. At the physiological level, the

use of neural mass and neural field models [31,32] has become

increasingly established to describe the evolution of both spike-

wave discharges [33–35] and focal epilepsies [36,37]. These

frameworks have enabled important steps toward patient specific

representations of these models to be taken using both genetic

algorithms [38] and Kalman filtering [39]. Alternatively, at the

opposing level of detail, phenomenological models are used to

qualitatively describe the critical features associated with different

brain states [40–43]. These models are typically computationally

inexpensive (at least for small networks) making them potentially

applicable in a clinical setting, however, they are often only

suitable for considering a network at a single level of description

and thus represent a coarse simplification of the underlying

neurobiology.

In this paper we pursue this phenomenological approach, but

choose a model – the Kuramoto model [44] – that is more

naturally suited to elucidate the mechanisms by which multiscale

network structures can lead to hypersynchrony within or between

large-scale brain regions. The Kuramoto model has become a

standard model to study synchronization phenomena across

physics, chemistry, biology and neuroscience (see [45–47] and

references therein). Mathematically, the relationship between the

Kuramoto model and the Wilson-Cowan model [48], which is a

prototypical neural mass model, has been established by Schuster

and Wagner [49,50], and more recently by Daffertshofer and van

Wijk [51]. This transition is made in the limit of weak coupling,

and as a consequence the amplitude of the original model is

neglected. For our purpose, we treat the Kuramoto model as a

purely phenomenological model (we show that it mimics the

critical features of both background activity and seizures), enabling

us to analytically study synchronization phenomena in large-scale

networks. As a result we are not limited to the case of weak

coupling, since we are not attempting to relate back to a more

detailed physiological model.

Instead, the approach we pursue is to consider brain activity, for

example as reflected in the macroscopic electrical activity

measured using EEG, to be the result of networks of oscillators

coupled at two distinct scales of activity: The macroscale electrical

activity that is recorded by a scalp electrode is the sum over the

dipoles generated by cortical columns (mesoscale) in the vicinity of

the electrode. We assume these cortical columns to be strongly

connected at close range and form a fully connected network (a so-

called complete graph) (Figure 2). In turn, each of these connected

networks forms a node (or module) within a larger network, the

structure of which is defined by positions of the scalp electrodes. At

this larger scale, separate brain regions may share connections, yet

do not form complete graphs. Instead the network structure is

typically sparse and directed.

The remainder of our paper is arranged as follows. First we

introduce the mathematical framework, the method we use to

derive functional networks from EEG data, and details of the

statistical analysis we perform. Next, we present our results in

three parts. In the first part, we demonstrate the conditions

required for the emergence of global synchrony across a network.

In the second part, we use simple motifs to illustrate how subtle

changes in the connectivity structures at different scales can have a

dramatic influence on the degree of emergent synchronization,

and further illustrate particular structures that can support the

emergence of synchrony across either part of or the whole motif.

In the final part of our results, we infer networks using clinically

recorded EEG from a cohort of people with heterogeneous

idiopathic generalized epilepsies, as well as a cohort of healthy

controls. We then use our mathematical framework to explore the

mechanisms by which seizures can emerge from these networks

and find statistically significant differences in the networks of our

epilepsy cohort, further demonstrating their potential predictive

value at the individual level. We conclude with a discussion of the

significance of our findings from both a theoretical and clinical

Author Summary

In this paper we show that within modular networks (that
is, networks with multiple scales of connections), two
distinct mechanisms may drive the emergence of synchro-
ny at the global level. We term the first of these
mechanisms ‘‘network-driven synchrony’’, which is charac-
terized by the presence of cycles within the macroscopic
network. The second mechanism we term ‘‘node-driven’’,
which is characterized by the ability of an individual node
(or nodes) to drive synchrony across the rest of the
network, due to the hierarchical structure of the macro-
scopic network. By applying this framework to routine
clinically collected resting state data from people with
idiopathic generalized epilepsy and from age matched
healthy controls, we demonstrate that functional networks
of people with epilepsy have a significantly enhanced
capacity to synchronize than those of people without
epilepsy. This finding suggests a critical role for the
connectivity structure of large-scale networks in the
tendency to have seizures. Further, by deriving a mathe-
matical equation for the global synchrony of the network,
we make it computationally tractable to analyze data in
close to real time. This gives our method potential to be
used within the clinic as a diagnostic aid for clinicians
treating neurological disease.

Dynamics on Networks: Emergence of Hypersynchrony in Brain Networks

PLOS Computational Biology | www.ploscompbiol.org 2 November 2014 | Volume 10 | Issue 11 | e1003947



Figure 1. Motivation of our modeling approach. The Electroencephalogram (EEG) records electrical signals from electrodes placed on the scalp.
There exist various methods to derive functional network structure from the recorded time series. The primary challenge is to identify (statistically)
significant differences between the functional networks of subjects with a particular neurological disorder, and healthy controls. The second
challenge is to identify the underlying mechanisms that lead to these changes in network structure, and how they affect the behavior of the model
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perspective, some limitations of our approach, and suggest avenues

for future research.

Materials and Methods

Mathematical models
We build a modular network of P nodes, using the Kuramoto

model as a basis for each node p:

_hh
p

i ~v
p
i z

K

N

XN

j~1

sin (h
p
j {h

p
i ): ð1Þ

The Kuramoto model is a mathematical representation of a

network of N oscillators, coupled together uniformly with strength

K through their phase h. vi is the natural frequency of the ith

constituents, i.e. the different brain regions. The EEG epochs used in this study are chosen from resting-state, eyes closed. For those subjects with
epilepsy, epochs have been selected by a clinically trained expert and are far away from seizures.
doi:10.1371/journal.pcbi.1003947.g001

Figure 2. Comparison of recorded seizure with model output. Here we present a comparison between the clinically recorded onset of a
generalized seizure event and the output of the modular Kuramoto network, demonstrating that critical features of this transition are captured by the
phenomenological model. A: Epileptic seizure as captured by EEG. B: The Kuramoto model displays behavior similar to epileptic seizures. In the
model, we assume local networks (where a node represents a recording site) to be all-to-all connected, analogous to a collection of cortical columns.
These nodes are then directionally connected, resulting in a modular network with two scales of coupling.
doi:10.1371/journal.pcbi.1003947.g002
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oscillator, and we assume all these frequencies are drawn from a

normal distribution function with mean V and standard deviation

1. This model has previously been used to study neural oscillations,

for example dynamic connectivity mimicking synaptic plasticity

[46,52], planar models with specific synaptic footprint [47], as well

as the study of large-scale neural activity on realistic structural

networks [53]. Here we consider each oscillator to represent the

activity of a mass of neurons, such as a cortical column, for

example.

We couple together P such nodes, each consisting of N

oscillators (in contrast to previous studies, which use one node per

network, such as [51] or [54]), following the approach of Barreto

et al. [55]. Here we introduce a P|P coupling matrix r with

entries rp,q to describe the interaction between nodes p and q,

weighted by a global coupling parameter C:

_hh
p

i ~v
p
i z

Kp

N

XN

j~1

sin (h
p
j {h

p
i )zC

XP

q~1

rp,q

N

XN

j~1

sin (h
q
j {h

p
i ): ð2Þ

The global connectivity matrix r may be either a binary or

weighted network, and for mathematical tractability we choose the

natural frequencies v
p
i from an identical frequency distribution

with mean V and standard deviation one, for every node p.

Measuring local and global synchrony
The degree of synchrony between oscillators within a single

node and across the global network is controlled by the coupling

parameters Kp and C. Focussing first on an individual node,

Figure 3 demonstrates how the dynamic behavior of the

Kuramoto model depends on the coupling constant K . When

this coupling constant is below a critical value, each oscillator

behaves incoherently (i.e. they are uniformly spread around the

unit circle) and the emergent signal is apparently stochastic and of

low amplitude. However, when the coupling reaches a critical

value, a phase transition occurs and oscillators become phase-

locked (which in this context is synonymous to synchronized),

resulting in emergent large amplitude oscillations; analogous to the

transition between background and spike-wave activity seen in the

onset of seizures.

To measure the degree of synchrony within the oscillators of an

individual node p, we use the order parameter rp defined by:

rp ei yp
~

1

N

XN

n~1

e ih
p
n , ð3Þ

which measures the level of phase coherence between all N

oscillators, where y is the average phase. The order parameter is

low (^0) when oscillators are incoherent, and high (^1) when

they become coherent.

Using equation (3), we can reformulate equation (2) to obtain:

_hh
p

i ~vp
i zrpKp sin (yp{hp

i )zC
XP

q~1

rqrp,q sin (yq{hp
i ): ð4Þ

Exploiting our assumption that the natural frequencies within

each node come from the same distribution with mean V, and

that all connections in the network are either zero or positive, all

ensemble averages will be in-phase (yp~yq for all combinations

(p,q)) when rp,rqw0, and consequently the following inequality

holds:

Dvp
i {VDƒrpKpzC

XP

q~1

rp,qrq: ð5Þ

Equivalently, we can find an expression for the phase difference

between an individual oscillator and the ensemble average:

Dy~ arcsin
vi{V

rpKpzC
PP

q~1 rp,qrq

 !
: ð6Þ

In the thermodynamic limit (N??) we can describe the

distribution of natural frequencies with a function (v). The

order parameter is then the integral of the product of the density

of natural frequencies and the cosine of the corresponding phase

differences over all natural frequencies for which phase-locking

occurs:

rp~

ðvmax

vmin

dv (v) cos (Dy)~

ðvmax

vmin

dv (v)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

vi{V

rpKpzC
PP

q~1 rp,qrq

 !2
vuut :

ð7Þ

The upper and lower limit of the integral in (7), vmax and vmin,

are determined from the inequality (5), resulting in:

vmin~V{rpKp{C
XP

q~1

rp,qrq, vmax~VzrpKpzC
XP

q~1

rp,qrq:ð8Þ

By using the definition of Bessel functions we can evaluate the

integral in (7), which yields an implicit equation for each node p:

rp~F rpKpzC
XP

q~1

rqrp,q

 !
, p[f1, . . . ,Pg, ð9Þ

where the function F (:) is given by:

F (x)~

ffiffiffi
p
p

2
x exp ({x2=2) I0 x2=2

� �
zI1 x2=2

� �� �
: ð10Þ

Having obtained an expression for the order parameter at the

level of individual nodes, we now seek an expression for the order

parameter across the network, which we term the global order
parameter. The global order parameter is defined as

r ~D 1

NP

XP

p~1

XN

n~1

eih
p
nD: ð11Þ

This expression can be reformulated using (3) to obtain:

r ~D1

P

XP

p~1

rp ei ypD: ð12Þ

Once more, all connections in the matrix r are non-negative, thus

beyond the onset of synchronization the phases of the ensemble

averages at each node are equal and we obtain
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r ~
1

P

XP

p~1

rp: ð13Þ

Thus, the global order parameter is given by the average over rp,

demonstrating that the degree of global synchrony can be inferred

from the degree of local synchrony.

Inferring functional networks from EEG
EEG recordings used in this study were collected from 35

people diagnosed with idiopathic generalized epilepsy (21 female,

mean age 34.4 years), and from 40 controls (20 female, mean age

30.7 years) as previously described [56]. Ethical approval to use

this data was obtained from Kings College Hospital Research

Ethics Committee (08/H0808/157). Written informed consent

was obtained from all participants. From these recordings, one

artefact-free 20 second segment of background activity (eyes-closed

(EC)) was extracted from each recording. The segments were

bandpass filtered between 1–70 Hz, and notch-filtered between

48–52 Hz to exclude power line interference. The pre-processed

data were then divided into frequency bands as given in Table 1.

Whilst these frequency bands are different to those standard in a

clinical setting (where the bands are defined according to

prominent features visible to an expert observer), they are

hypothesized to contain maximally-independent information

representing different neurobiological generators [57]. Further-

more, given that brain network features in the alpha band may

show evidence of heritability [58,59], and that antiepileptic drug

treatment my alter peak alpha frequency [60], this motivates the

subdivision of alpha range following the work of [57].

To infer the functional network structure from EEG recordings,

we use a method based upon time-lagged cross-correlation [10] to

infer weighted networks from the voltage signals of each electrode

(see [61] for an evaluation of linear and non-linear methods for

inferring functional connectivity). Our specific choice is motivated

by the predominantly linear nature of resting-state EEG [62]. To

account for false connections due to common sources, we only

consider those connections with non-zero time-lag since previous

studies have demonstrated that volume conduction primarily

manifests as an instantaneous correlation [63,64]. Entries for the

connectivity matrix are given by

ri,j~ max
t D j(xi,xj)(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j(xi,xi)(0)j(xj ,xj)(0)
p D

)
,ð14Þ

(

with

j(xi,xj)(t)~

XT{t

t~1
xi(tzt)xj(t) if t§0XT

t~1zt
xi(tzt)xj(t) if tv0

8<
: : ð15Þ

A potential source of spurious cross-correlation are autocorre-

lation effects due to finite length time-series data. To account for

this, we create 99 surrogate datasets from our original EEG data

via the iterative amplitude-adjusted Fourier transform (IAAFT)

method (10 iterations) [65], which preserves autocorrelation whilst

Figure 3. The Kuramoto model with varying coupling strength to demonstrate the ictal (synchronized) and interictal
(unsynchronized) behavior of the model. A: For K below a critical value Kc (red, dotted line) the signal s(t)~(1=N)

P
i cos (hi(t)) is irregular

and the order parameter representing the degree of synchronicity is low. If K is above the critical value, s(t) is sinusoidal with large amplitude, and
the order parameter is large. B: At the onset of synchronization, the oscillators start forming a cluster resulting in an increase of the order parameter.
Bars around the circles indicate the phase density of oscillators. The internal frequencies vi are drawn from a normal distribution with mean 0:5 and
standard deviation 1. Here we use N~104 oscillators.
doi:10.1371/journal.pcbi.1003947.g003

(14)
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removing genuine pairwise cross-correlations within the time-

series. Applying our method pairwise within each of these

surrogate datasets creates a spectrum of cross-correlation values

which could arise as a consequence of autocorrelation alone within

the specific pair (i,j). Therefore we reject connections ri,j from the

original EEG data if they do not exceed the 95% level of

significance.

Next, we create a directional matrix by setting ri,j~0 if tv0,

and rj,i~0 if tw0. If t~0, we set ri,j~rj,i~0 in order to remove

zero time-lag connections. Further, we remove spurious connec-

tions by setting ri,j~0 if, at first order, there exists a node k

such that ri,kwri,j , and rk,jwri,j . At second order, we set

ri,j~0 if there exist two nodes k,m such that ri,kwri,j ,

rk,mwri,j , and rm,jwri,j . In other words, direct connections

between nodes are removed if there exist stronger, indirect

connections via one or two other nodes. A graphical representa-

tion of this procedure is given in Figure 4.

Finally, this functional connectivity matrix r feeds into equation

(2) in what may be thought of as an effective connectivity

representation of the observed dynamics.

Statistical analysis and the receiver operating
characteristic

In order to test for statistically significant differences in the

model-based measures at the group level, we use the Wilcoxon

rank sum test [66]. In comparison to parametric tests, such as the

t-test, this method does not assume the existence of an underlying

normal distribution. The test yields the p-value (likelihood) that the

medians of both samples are the same (null-hypothesis). As our

analysis involves multiple hypotheses (frequency bands, nodes in

the network) we correct the p-value using a conservative

Bonferroni correction (effectively multiplying the p-value by the

number of hypotheses considered). If this corrected p-value is

below 0:05, we consider the difference between the samples to be

significant.

For model-based measures found to be significant on this basis,

we then explore the discriminative power of the measure through

computation of the receiver operating characteristic (ROC). The

resulting ROC curve plots the true positive rate (TPR) against the

false positive rate (FPR), which is achieved through varying the

threshold (that parametrizes the ROC curve), and counting all

sample points below this threshold as positives. Next, we identify

the point on the curve which is closest to the the point of perfect

classification, (TPR~1,FPR~0), the upper left-hand corner. For

this point, we compute the positive predictive value (PPV) defined

as:

PPV~
TPR

TPRzFPR

A PPV of ^0:5 indicates the measure has no discriminative

power, whilst a PPV of 1 indicates perfect classification. The False

Discovery Rate (FDR) is defined to be 1{PPV.

Results

Conditions for the emergence of global synchrony
First, we address the conditions necessary for the global network

of P nodes, or a subset thereof, to synchronize. As for the case of

the standard Kuramoto model, an individual node or a subset of

nodes p can synchronize if their intrinsic coupling strengths Kp are

greater than the critical coupling strength Kc~2=
ffiffiffi
p
p

. However,

suppose that all nodes are individually in the desynchronized state

(i.e. KpvKcVp). Does there exist a critical value Cc of the global

coupling parameter C such that synchrony across some or all of

the nodes in the global network emerges? To explore the existence

of such a critical value Cc, we first linearize (9) around

~rr~(r1,r2, . . . ,rp)~(0,0, . . . ,0) giving:

KK~rrzCr~rr~0, ð16Þ

where KK is a P|P-dimensional diagonal matrix with elements

Kp,p~Kp{Kc, KpvKc. Trivially, the zero-solution for all order

parameters (~rr~~00) exists for any choice of C. However, non-zero

solutions for~rr exist if the following determinant condition holds:

det Cc rzKKð Þ~0: ð17Þ

Solving this determinant problem is computationally efficient in

comparison to the corresponding full nonlinear problem (9).

Alternatively, since KK is invertible (as KpvKcVp), we can

reformulate (16) as a standard eigenvalue problem with 1=C as

eigenvalue:

KK{1r~rr~
1

C
~rr: ð18Þ

As KK is diagonal, its inverse KK{1 is diagonal as well, with elements

K{1
p,p ~({1)P=Kp,p. Finally, as all real-valued eigenvalues l of

KK{1 r represent the inverse of a coupling constant C that permits

non-trivial solutions around the zero-state, we identify the critical

coupling constant with the inverse of the largest (real) eigenvalue l

of KK{1 r :

Cc~
1

max l
: ð19Þ

We refer to this scenario as ‘‘network-driven synchronization’’.

Alternatively, if max l is zero, then no critical value of the global

coupling exists, since Cc must be positive. This is the case when r
represents a network with hierarchical flow, and has upper

triangular form. Here r is nilpotent and all its eigenvalues are

zero. In this scenario there may exist a node or nodes which, if

synchronized (i.e. KpwKc), can drive other nodes (with intrinsic

coupling parameters less than Kc) to synchronize due to the

topology of the hierarchical network. We term this scenario

‘‘node-driven synchronization’’. For the specific problem of

epilepsy, we might consider these two scenarios equivalent to

Table 1. Frequency bands.

Frequency band Range

delta 1{3 Hz

theta 3{6 Hz

low alpha 6{9 Hz

high alpha 10{14 Hz

beta 15{30 Hz

gamma 30{70 Hz

Frequency bands used in this study are motivated by the work of [57].
doi:10.1371/journal.pcbi.1003947.t001
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Figure 4. Illustration of the procedure to derive the functional network structure. A: An artefact-free 20s resting-state segment of EEG
from each subject is extracted. B: Applying the time-lagged cross-correlation to all combinations of channel pairs yields a bidirectional connectivity
matrix. C: Connections are removed if they are not significantly different from surrogate data (95% level of significance). D: Using the time-lags, a
unidirectional connectivity matrix can be inferred. E: Setting to zero all connections that can be explained by stronger, indirect connections removes
spurious connections.
doi:10.1371/journal.pcbi.1003947.g004
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seizure onset as a distributed network property versus the existence

of an epileptogenic zone, for example.

Illustrative motifs
To better understand these different conditions for emergent

synchronization, we focus initially on motifs with a small number

of nodes. First, we consider the case of two nodes that are either

unidirectionally or bidirectionally coupled. In graph-theoretical

terms, two bi-directionally coupled nodes are the simplest

example of a feedback-loop or cycle, which, in turn, is the

simplest form of a strongly connected component. A strongly

connected component is a network configuration such that each

node can be reached from all other nodes by following directed

connections. Hence, a strongly connected component must

contain at least one cycle. Conversely, two nodes that are uni-

directionally coupled represent the simplest form of a network

with a hierarchical flow, such that each node can be assigned its

own level of hierarchy. First, we consider two coupled nodes in

the most general scenario, where the connectivity matrix r has

entries r1,2w0 and r2,1w0. Then from (17) we obtain the

following expression for the critical value of the global coupling

parameter C, above which both nodes become phase-locked and

their order parameters increase:

Cc~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Kc{K1)(Kc{K2)

r1,2 r2,1

s
: ð20Þ

Again, Kc is the critical value of K for the onset of synchrony

within an individual node. Cc is only real-valued for K1,K2vKc,

verifying that neither node is synchronized in isolation (a

prerequisite for network-driven synchronization). In this scenario

the value of Cc depends on the distance of the intrinsic coupling

parameters from Kc. If both nodes are identical with

K1~K2~K , and r1,2~r2,1~1 we obtain the simple expression

Cc~Kc{K : ð21Þ

U ni-directional coupling (i.e. either r1,2~0 or r2,1~0) means

(20) is undefined, making network-driven synchrony impossible.

In this scenario, only node-driven synchrony can arise as a

consequence of their intrinsic coupling exceeding the critical

value Kc. A comparison of both cases is shown in Figure 5,

accompanied by numerical results for N~1000 oscillators, which

leads to an increasing divergence between analytical and

numerical results for the uni-directional case with increasing

global coupling.

We now generalize these ideas to larger networks, for which we

make the distinction as to whether there exist cycles (or feedback

loops, as per the bi-directional two node case) or a hierarchical

structure (as per the uni-directional case).

Cycles and strongly connected components. Strongly

connected components are subsets of directed graphs in which

there is a path from each node to every other node. Thus, each

node in a strongly connected component has an in-degree greater

than zero (i.e. it receives input from at least one other node), which

is a critical property for enabling network-driven synchrony to

emerge. Here, we focus on the example of a strongly connected

component as a simple cycle (illustrated in Figure 6), with

connectivity matrix r having elements r1,Pw0 and rpz1,pw0

VpvP, with all other elements zero. Once more, the intrinsic

couplings Kp are chosen arbitrarily with the only restriction of

KpvKc. Using the linearization approach, we thus obtain

Cc~

P
P

p~1
(Kp{Kc)

r1,P P
P{1

p~1
rpz1,p

0
BB@

1
CCA

1

P

: ð22Þ

As for the simple two node system, if all intrinsic couplings are

equal (Kp~K ), then the value of the critical coupling Cc is the

difference between K and Kc. Likewise, if all intrinsic connections

are identical, and all connections forming the cycle are equal to

one, Cc is simply defined by (21). Further, if any of the connections

are removed and the cycle is broken, a zero is introduced into the

denominator and Cc becomes infinite, making network-driven

synchrony impossible. In real-world networks, a strongly connect-

ed component may be formed of more than one cycle, meaning it

may be necessary to remove more than one connection to destroy

it.

Networks with hierarchical flow. As for the simple case of

two nodes, if a directed network has a hierarchical flow, then the

corresponding connectivity matrix has upper triangular form and

its determinant is zero. Consequently, there exists no critical value

Cc, and thus network-driven synchronization is impossible. In this

scenario, only node-driven synchrony can occur.

Given that for increasing node size the number of possible

network combinations rapidly becomes very large, we present an

example that illustrate s how subtle changes in the structure of

directed networks can create or destroy strongly connected

components, which in turn lead to the emergence of synchrony

where previously there was none, or vice versa.

In Figure 7A we present a binary network of seven nodes, in

which a sub-network synchronizes for CwCc. This emergent

synchrony occurs through a combination of a cycle and the

network structure that connects nodes within the cycle to other

nodes. Nodes that do not receive input from the cycle, either

directly or indirectly, remain unsynchronized. By removing one

connection (Figure 7B) we break the cycle and the emergent

synchrony is lost, as it has become a purely hierarchical network.

On the other hand, through changing the directionality of another

connection (Figure 7C), synchrony emerges across all nodes (not

just the sub-network) for CwCc as a consequence of the existence

of a strongly connected component (involving nodes 1, 2, 3 and 5),

which connects to all other nodes.

Network structure and epilepsy
Having studied the conditions necessary for the emergence of

global synchrony to be network or node-driven, we now apply this

understanding to functional networks inferred from EEG record-

ings collected from our cohorts of people with epilepsy and

controls. For each individual and each frequency band we obtain a

functional connectivity matrix r, where each node within the

network corresponds to a specific EEG channel. We study these

matrices from two perspectives: First, we consider the critical value

for the global coupling parameter Cc, above which network-driven

synchrony emerges and compare these values for functional

networks inferred from people with epilepsy and those inferred

from controls. Where the critical coupling strength required to

enable global synchrony is smaller, this suggests that those

networks are more seizure prone than others. Second, we study

whether there exist specific nodes within these functional networks

which may drive emergent synchrony across the wider network.

This latter study is motivated by recent studies from human and

rodent models that suggest generalized seizures in IGE appear
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to have a focal onset [67]. Here, we set each node to be

self-synchronized, and analyze the effect this has on the rest of the

network by computing the global order parameter, which indicates

the global degree of synchronicity.

Network-driven synchrony. For each frequency band and

each cohort (epilepsy and controls), we determine a set of critical

values Cc for the emergence of network-driven synchrony. For our

simulations, we fix all intrinsic coupling constants, Kp~0:8, which

is less than the critical value for self-synchronization, Kc~2=
ffiffiffi
p
p

.

Using the Wilcoxon rank sum test, we find a statistically significant

reduction in the mean value of the critical global coupling

parameter Cc for functional networks from the epilepsy cohort in

both the theta (p~0:0128) and low-alpha band (p~0:0370). This

implies that the functional networks of people with epilepsy drive

global synchrony more readily than those from controls. Since, at

the macroscale, epilepsy is associated with the emergence of

hypersynchrony across large-scale brain regions, this demonstrates

a possible mechanism by which seizures can emerge in people with

Figure 5. Model behavior on a two-node network. A: The order parameter r for unidirectional and bidirectional coupling between two nodes
plotted against the global coupling parameter C, accompanied by numerical results. The slow increase of the numerical result of r with C for
unidirectional coupling is due to the finite size of the system with N~103 ocillators. B: The evolution of the signal s(t) of each node with random
initial conditions and C~1.
doi:10.1371/journal.pcbi.1003947.g005

Figure 6. The order parameter on a cycle. A: Illustration of cycles with increasing number of nodes. B: A plot of analytical and numerical results
of the order parameter on a cycle of 3 nodes. The numerical example is obtained for 103 oscillators per node.
doi:10.1371/journal.pcbi.1003947.g006
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epilepsy as a consequence of brain network structure. The mean

values for each set are shown in Figure 8, along with an

annotation of the level of statistical significance of the difference.

Moving from these group level analyses, we then examined the

potential for individual discrimination using receiver operating

characteristic (ROC) analysis. In this case ROC analysis shows

some predictability at the individual level with a positive predictive

value (PPV) of 0:692 in the theta band, and a PPV of 0:632 in the

low alpha band. This corresponds to a false discovery rate (FDR)

of 0:308 and 0:368 respectively. Values for sensitivity and

specificity are presented in Figure 8.

Node-driven synchrony. Motivated by experimental evi-

dence that generalized spike-wave discharges can emerge from a

focal onset zone [67], we next investigate whether there exist

particular nodes within the inferred functional networks, which,

when synchronized, can drive higher levels of synchrony across the

global network in patients compared with controls. To explore

this, we systematically set the intrinsic coupling strength KpwKc

for each node p, such that node p synchronizes, and study the

effect of this on global synchrony across the whole network

measured through an average over all local order parameters,

SrpT, which for our model setup is equivalent to the global order

parameter (13).

We find that averaging SrT(p) over all nodes p yields

significantly larger values for people with epilepsy than for

controls, in both the theta band and the low - alpha band. This

is analogous to the network-driven scenario; demonstrating that

global synchrony within networks of people with epilepsy is more

easily driven by hyperexcitability within specific nodes in

comparison to controls. At the level of individual nodes, after

Bonferroni correcting for the number of individual nodes varied

(19), we find that the node corresponding to electrode F7 in the

Figure 7. Illustration of how subtle changes in the network structure affect the ability of the network to synchronize. A: An arbitrarily
chosen network shows partial synchronization due to a cycle (2<5) and two adjacent nodes (6,7). B: By removing one connection (red, dashed) the
cycle is broken and the network loses its capability for synchronization. C: By reversing the connection between 1 and 2 (blue, bold), the network
from A becomes globally synchronous for large enough C. Numerical results are in agreement with analytical results, but omitted here. The intrinsic
coupling constant of all nodes is set to K~0:8.
doi:10.1371/journal.pcbi.1003947.g007
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theta band, and the nodes corresponding to electrodes Fp1 and F7

in the low alpha band have a significantly stronger synchronizing

effect on the global network in people with epilepsy compared to

controls (again using the Wilcoxon test), see Figure 9. The p-values

are p~0:0047, p~0:0009, and p~0:0029 respectively. This

finding that frontal areas may initiate seizures is consistent with

several previous studies [53,68–76], using different imaging

modalities.

Once more we also explore the ability of the model to

discriminate at the individual level. Here the ROC analysis shows

greater levels of predictability than using the global coupling

parameter and network-driven synchrony as a discriminator. In

particular, using F7 shows a very promising PPV in the low-alpha

band of 0:799. Full details of the ROC analysis are presented in

Figure 9.

Discussion

We have previously described a phenomenological approach to

studying network abnormalities in epilepsy from a purely

theoretical standpoint [42], illustrating that seizures could occur

due to either abnormalities in the dynamics of brain regions or the

connectivity structures between them. Here, we advance this

understanding using a modular network of embedded Kuramoto

oscillators, that has enabled us to explore the interplay between

node dynamics and network structure in the emergence of

hypersynchrony, analogous to the generation of seizures, both in

theory and in real data. We have derived necessary conditions for

the emergence of synchronization within large scale networks in

terms of the pattern of directed edges in the network, the intrinsic

coupling parameters within each node, and the macroscopic

coupling parameters between nodes. Specifically, we demonstrate

that strongly connected components (i.e. disparate regions that

form complete cycles) are necessary for the emergence of global

synchrony for a collection of nodes that individually are sub

threshold, whereas directed networks with hierarchical flowcan

only result in global synchronization if nodes at the top of the

hierarchy become synchronized themselves. In binary networks,

strongly connected components can be created by adding

connections to an existing network, or they can be destroyed by

removing specific connections. In general, an indicator of the

degree of network-driven synchronization is the critical value of

Figure 8. Critical coupling constants in the functional networks obtained from the epilepsy cohort and the control cohort in
different frequency bands. A: A significantly lower Cc in the theta and low alpha band indicates that the functional network in the interictal state
of the epilepsy cohort is closer to synchronization than in the control cohort. Interestingly, ictal discharges occur in the theta band as well. Level of
significance: �upv0:05. Error bars indicate the standard error of the mean. K~0:8. B: Receiver operating characteristic for the detection of
members of the epilepsy cohort through use of thresholded values of Cc as the discriminating factor for networks inferred from either the theta or
low-alpha band. The red dot indicates the point with best discrimination, which is the point closest to the point of perfect classification
(TPR~1,FPR~0). Abbreviations: FPR - false positive rate, TPR - true positive rate, SNS - sensitivity, SPC - specificity, PPV - positive predictive value,
AUC - area under the curve thr - threshold for discrimination.
doi:10.1371/journal.pcbi.1003947.g008
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the global coupling parameter Cc; a small Cc indicates a strong

disposition for nodes to synchronize due to the particular structure

of the network.

In larger, weighted networks we might reasonably expect to

observe mixtures of strongly connected components and hierar-

chical subnetworks. Indeed, this is demonstrated in our results of

functional networks inferred from EEG data. On the one hand, we

find that the critical coupling strength, that is necessary to enable

the emergence of synchrony in the global network, is significantly

lower for networks inferred from the EEG recordings of our cohort

of people with epilepsy in comparison to healthy controls. This

indicates an increased presence of strongly connected components

in the network and suggests a fundamental mechanism for the

tendency to experience recurrent seizures in people with epilepsy.

On the other hand, we observe that left frontal brain regions

(represented by EEG channels Fp1 and F7) can drive increased

levels of global synchronization when they are self-synchronized,

which indicates an increased presence of hierarchical flows as well.

These latter findings, that generalized seizures may be driven by

activity in left frontal regions of the brain, complement previous

findings using other imaging modalities, for example Pavone and

Niedermeyer [71] who identified a cortical, mostly frontal lobe

involvement in absence seizures and primary generalized seizures.

Likewise, Holmes et al. [77] and Amor et al. [72] identified frontal

areas as highly involved during absence seizures. This evidence is

supported by the fact that working memory - a frontal lobe function

- is suspended during typical absence seizures. A critical advantage

of our approach is that these differences are identified from epochs

of data from inter-ictal time-periods (i.e. away from seizures).

MRI studies [73–76] in one particular IGE syndrome, juvenile

myoclonic epilepsy, have identified a structural abnormality of

medial frontal cortex, and abnormalities of structural connections

(using DTI) and functional connections (using fMRI) of this area

with motor cortex, frontopolar cortex, thalamus and contralateral

medial frontal cortex, supporting the EEG/MEG data implicating

frontal abnormalities. Further, Yan and Li [53] inferred human

brain networks from diffusion-magnetic resonance imaging in

healthy controls, and postulated that frontal hubs could drive

seizure activity when placing these data inferred networks onto a

computational model utilizing a delayed version of the Kuramoto

model. Our study extends this research by comparing the networks

of people with epilepsy directly with those of healthy controls, and

demonstrating an increased propensity for seizure generation as a

consequence of the functional network structure. This current

Figure 9. The global (average) order parameter of the network when one node is self-synchronized. A: We show here the result for self-
synchronization in Fp1 and F7, and also the average over all electrodes, in the theta band and low alpha band. Other electrodes are omitted as they
do not yield significant results when p-values are Bonferroni-corrected by a factor of 19 (the number of electrodes). This finding confirms the result of
previous studies (see text) that identified frontal and pre-frontal areas as seizure onset zones. Levels of significance: �upv0:05; � �upv0:01;
� � �upv0:001. Parameters: K~0:8 for all nodes except self-synchronized node with K~2; C~0:2. Error bars indicate the standard error of the
mean. B: Receiver operating characteristic for the detection of the epilepsy cohort by using the global (average) order parameter as discriminating
factor in F7 in the theta-band, and Fp1 and F7 in the low-alpha band. Again, the red dot indicates the point with best discrimination. Abbreviations as
per Figure 8.
doi:10.1371/journal.pcbi.1003947.g009
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study complements our earlier work [41,42], where we used an

alternative model formulation (a subcritical Hopf bifurcation to

reflect the rapid transition from background activity to seizures) to

explore the role of network structure in driving the onset of

seizures.

Our present study has focussed on analysis of routine clinical

EEG in ‘sensor’ space, by which we mean functional networks

were inferred through studying the interactions spanning EEG

electrodes, rather than the interactions between the brain sources

responsible for generating the activity. This is necessitated by the

limited spatial sampling of the clinical data (19 channels) that does

not readily permit the use of source reconstruction techniques

[78]. Volume conduction can be a further concern when utilizing

data from scalp electrode recordings. To compensate for this, we

used a time-lagged cross correlation function (excluding the zero

time lag) for inferring functional networks. It is therefore important

that future work should extend our approach to larger networks

inferred from either high density EEG, fMRI or DTI data. Given

that we determine the point of onset of global synchronization

using an analytic expression, our framework can be applied

naturally to networks of any size. Further research should also seek

to understand long-term disease progression through studying

longitudinal clinical recordings collected at regular intervals post-

diagnosis, or in response to changes in treatment. Here, alterations

in network structure or dynamics may point towards remission or

successful drug response.

Of further importance is the non-trivial relationship between

structural, functional and effective connectivity. For example, a

large repertoire of functional networks can be supported by the

same underlying structural network [79]. Further, effective

connectivity is dependent both on the choice of generative model,

as well as the observation data. Thus, effective connectivity should

not be thought of as a unique representation of our data, and more

likely there can be different (model, network) pairs that are

consistent with the observed functional connectivity structure. As a

simple example of this, consider the auxiliary approach for

detecting generalized synchronization introduced by Abarbanel

et al [80]. Here, a system A drives a system B, and the dynamics of

these systems may become coherent depending on the nature of

the coupling. If the dynamics of A and B are chaotic, then this

coherent relationship is highly non-trivial. However, by consider-

ing a copy of system B, Abarbanel and colleagues show that one

can infer the existence of this synchronization between A and B,

by observing that it is possible to infer a much simpler functional

relationship between B and its copy C, even though there is in

reality no direct connection between them. Now reverse-

engineering this scenario, suppose that we can only observe B
and C, with no knowledge of system A. As an effective

connectivity structure, we would identify a bidirectional link

between B and C with a model representation of the simple

functional form. However, in reality, there is an alternative

effective connectivity structure that links A to B and A to C with

the original more complex relationship. Whilst it has been shown

that there can still exist a wide repertoire of functional networks

[81], we might reasonably expect differences across cohorts to

become apparent in resting-state functional networks at the group

level. The inherent variability in functional expression may reflect

the overlap between the patient cohort and the control cohort.

In conclusion, our findings are significant for a number of

reasons. First, they demonstrate the power of pursuing a com-

putational modeling approach to elucidate the mechanisms

underlying differences observed in graph theory measures of data

inferred functional brain networks. In this regard, the approaches

we describe may have potential for understanding inferred brain

networks from other neurological conditions, for example demen-

tia (for which there is a strong association with seizures [82]) and

schizophrenia [83]. Second, our study was performed inferring

functional networks using epochs of background activity (i.e. away

from seizures), which suggests that network structure is an

enduring and critical marker of the propensity for seizures that

offers the potential for diagnosis of epilepsy without the need to

induce seizures within the clinical environment. Indeed, in this

regard, beyond the group level differences we identify, the ROC

analysis we performed demonstrated up to 80% predictive power

of this method for discriminating at an individual level, despite

neither the model nor data being optimized for this purpose. This

strongly motivates the potential of this approach. Third, our

methods identified these networks using routine clinical EEG

recordings, with low spatial and temporal sampling. Despite these

apparent limitations, our study identified candidate regions that

drive the onset of seizure activity, which are consistent with those

obtained using more expensive MEG and fMRI modalities.

Finally, deriving a mathematical equation for the global synchrony

of the network makes it computationally tractable to analyze

patient data in close to real time (through removing the need to

numerically simulate large networks of oscillators). Taken collec-

tively, these findings suggest that a computational modeling

approach to analyze routine clinical data can be used in real time

within the clinic as a diagnostic aid for clinicians treating epilepsy,

as well as other neurological disorders, for which synchrony may

potentially play a role.
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