225 research outputs found

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Mobile Sensor Data Measurements and Analysis for Fall Detection in Elderly Health Care

    Get PDF
    In recent years, increased life expectancy in Finland and other parts of the world have led to an aging population. Accidental falls can cause severe injuries to elderly people, thereby, negatively impacting their quality of life and in some cases resulting in death. Accidental falls is a major public health care challenge. Real time monitoring of human activity can provide insight into an individual’s functional ability and gives an indication of their ability to live independently. Automatic detection of falls enables us to provide timely medical attention, thereby, reducing the negative consequences of falls. This paradigm of home based health promotes independent living and reduces the burden on caregivers. The aim of the thesis is to log real world sensory data from multiple sensors on board mobile devices and develop suitable algorithms to extract information from the data to solve the problem of detecting when elderly people fall down. In order to log the data, an Android application is developed that collects data from the various onboard sensors and stores it in a text file. The developed application is used to take measurements of sensor data pertaining to various human activities. Then patterns in the data are then analysed and exploited to distinguish between normal day-to-day activities and people falling down. To detect falls, we develop two algorithms based on statistical detection theory and convex optimization, respectively and also analyze the efficacy of these methods

    Hybridisation of GNSS with other wireless/sensors technologies onboard smartphones to offer seamless outdoors-indoors positioning for LBS applications

    Get PDF
    Location-based services (LBS) are becoming an important feature on today’s smartphones (SPs) and tablets. Likewise, SPs include many wireless/sensors technologies such as: global navigation satellite system (GNSS), cellular, wireless fidelity (WiFi), Bluetooth (BT) and inertial-sensors that increased the breadth and complexity of such services. One of the main demand of LBS users is always/seamless positioning service. However, no single onboard SPs technology can seamlessly provide location information from outdoors into indoors. In addition, the required location accuracy can be varied to support multiple LBS applications. This is mainly due to each of these onboard wireless/sensors technologies has its own capabilities and limitations. For example, when outdoors GNSS receivers on SPs can locate the user to within few meters and supply accurate time to within few nanoseconds (e.g. ± 6 nanoseconds). However, when SPs enter into indoors this capability would be lost. In another vain, the other onboard wireless/sensors technologies can show better SP positioning accuracy, but based on some pre-defined knowledge and pre-installed infrastructure. Therefore, to overcome such limitations, hybrid measurements of these wireless/sensors technologies into a positioning system can be a possible solution to offer seamless localisation service and to improve location accuracy. This thesis aims to investigate/design/implement solutions that shall offer seamless/accurate SPs positioning and at lower cost than the current solutions. This thesis proposes three novel SPs localisation schemes including WAPs synchronisation/localisation scheme, SILS and UNILS. The schemes are based on hybridising GNSS with WiFi, BT and inertial-sensors measurements using combined localisation techniques including time-of-arrival (TOA) and dead-reckoning (DR). The first scheme is to synchronise and to define location of WAPs via outdoors-SPs’ fixed location/time information to help indoors localisation. SILS is to help locate any SP seamlessly as it goes from outdoors to indoors using measurements of GNSS, synched/located WAPs and BT-connectivity signals between groups of cooperated SPs in the vicinity. UNILS is to integrate onboard inertial-sensors’ readings into the SILS to provide seamless SPs positioning even in deep indoors, i.e. when the signals of WAPs or BT-anchors are considered not able to be used. Results, obtained from the OPNET simulations for various SPs network size and indoors/outdoors combinations scenarios, show that the schemes can provide seamless and locate indoors-SPs under 1 meter in near-indoors, 2-meters can be achieved when locating SPs at indoors (using SILS), while accuracy of around 3-meters can be achieved when locating SPs at various deep indoors situations without any constraint (using UNILS). The end of this thesis identifies possible future work to implement the proposed schemes on SPs and to achieve more accurate indoors SPs’ location

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    Context-Aware Sensing and Implicit Ground Truth Collection: Building a Foundation for Event Triggered Surveys on Autonomous Shuttles: Artikel

    Get PDF
    The LINC project aims to study interactions between passengers and autonomous vehicles in natural settings at the campus of Technical University of Denmark. To leverage the potential of IoT components in smartphone-based surveying, a system to identify specific spatial, temporal and occupancy contexts relevant for passengers’ experience was proposed as a central data collection strategy in the LINC project. Based on predefined contextual triggers specific questionnaires can be distributed to affected passengers. This work focuses on the data-based discrimination between two fundamental contexts for LINC passengers: be-in and be-out (BIBO) of the vehicle. We present empirical evidence that Bluetooth-low-energy beacons (BLE) have the potential for BIBO independent classification. We compare BLE with other smartphone onboard sensors, such as the global positioning system (GPS) and the accelerometer through: (i) random-forest (RF); (ii) multi-layer perceptron (MLP); and (iii) smartphone native off-the-shelve classifiers. We also perform a sensitivity analysis regarding the impact that faulty BIBO ground-truth has on the performance of the supervised classifiers (i) and (ii). Results show that BLE and GPS could allow reciprocal validation for BIBO passengers’ status. This potential might lift passengers from providing any further validation. We describe the smartphone-sensing platform deployed to gather the dataset used in this work, which involves passengers and autonomous vehicles in a realistic setting

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors
    • 

    corecore