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Abstract 
The LINC project aims to study interactions between passengers and autonomous vehicles in 
natural settings at the campus of Technical University of Denmark. To leverage the potential of IoT 
components in smartphone-based surveying, a system to identify specific spatial, temporal and 
occupancy contexts relevant for passengers’ experience was proposed as a central data collection 
strategy in the LINC project. Based on predefined contextual triggers specific questionnaires can be 
distributed to affected passengers. This work focuses on the data-based discrimination between two 
fundamental contexts for LINC passengers: be-in and be-out (BIBO) of the vehicle. We present 
empirical evidence that Bluetooth-low-energy beacons (BLE) have the potential for BIBO 
independent classification. We compare BLE with other smartphone onboard sensors, such as the 
global positioning system (GPS) and the accelerometer through: (i) random-forest (RF); (ii) multi-
layer perceptron (MLP); and (iii) smartphone native off-the-shelve classifiers. We also perform a 
sensitivity analysis regarding the impact that faulty BIBO ground-truth has on the performance of 
the supervised classifiers (i) and (ii). Results show that BLE and GPS could allow reciprocal 
validation for BIBO passengers’ status. This potential might lift passengers from providing any 
further validation. We describe the smartphone-sensing platform deployed to gather the dataset used 
in this work, which involves passengers and autonomous vehicles in a realistic setting. 
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Introduction 
A fleet of autonomous shuttles received approval for public operations at the Technical University 
of Denmark, starting April 2021. The trial is conducted as a part of the UIA funded LINC project 
with the purpose of studying future scenarios involving shared autonomous vehicles and their 
impact on society. To collect relevant user data and the information necessary to successfully 
pursue the project goals, LINC deployed a context-aware smartphone-based travel survey (SBTS) 
integrated with the autonomous vehicles and other Internet of Things (IoT) components—(i.e.) Bus 
Stops and Buildings—through Bluetooth low energy beacons (BLE) technology [1]. 
 
The implications of introducing context-aware smartphone-based travel surveys (SBTS) in the field 
of shared autonomous travel are very broad. Detection of spatial and temporal occupancy contexts 
can be leveraged to submit specific surveys to users who have had specific types of exposure to the 
service which can potentially reduce known problems with hypothetical-, recall-, and status-quo-
bias in user data [2, 3]. Some examples of specific areas where this method provides opportunities 
to advance understanding of users travel behavior are: (i) the potential of improving public service 
through responsive time schedule; (ii) the effects of driverless shuttle service on social 
inclusiveness [4], perceived safety and security in specific contexts [5, 3] (e.g. darkness, presence of 
other passengers, unexpected driving patterns, emergency stops); and (iii) the impact on user’s 
future transportation mode and route choices [3, 6]. 
 
To monitor passengers’ presence aboard a vehicle—representing the basic context of interest for 
LINC common solutions—require users’ explicit interactions with a device, e.g, to check-in/check-
out (CICO), or the implicit interaction with a device detecting, e.g., walk-in/walk-out (WIWO). 
This work focuses on the implicit interaction between BLE and passengers’ smartphones, which we 
identify with be-in/be-out (BIBO) [7]. 
 
The study was conducted during the development phases preceding LINC operations. We describe 
the architecture of the smartphone sensing platform and the results of the experiments directed to 
assess BIBO detection with BLE and Global Positioning System (GPS) data, with respect to 
smartphone native activity recognition based on, e.g., accelerometer. The empirical validation of 
this architecture involved passengers and vehicles in a semi-controlled environment, set up to 
approximate a highly congested urban area. Passengers were free either to walk or to travel on the 
autonomous vehicles. The environment included three bus stops and two buses operating on two 
routes, which intersected in one of the stops. 
 
Results show that a BIBO system based on GPS and BLE allow higher accuracy than the native 
activity classifier distributed with Apple and Google operating systems, based on accelerometer, 
gyroscope and pedometer [8]. 
 
Related Work 
The literature has shown several aspects that underpin our work. BIBO systems based on BLE 
protocol, which branches from the WiFi protocol, leverages properties such as frequent broadcast 
communication of a few bits of data and requires no paring between devices. These properties are 
desirable for proximity detection [9], and some proofs of concept have shown the potential of BIBO 
systems [10, 1].  
 
Literature covering indoor smartphone tracking systems based on BLE is extensive [11]. Some of 
the main methods deployed are based on the Friis equation [12], trilateration [13], and 
fingerprinting [14, 15, 16]. The first two methods rely on the known position of the BLE devices; 
the last, on machine learning (ML) methods.  
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Bluetooth is considered an unpromising technology for Vehicle to anything (V2X) communication 
in intelligent transport systems due to the slow paring process [17]. However, BLE can trigger 
events on smartphones without any paring operations [18]; for example, the proximity of a 
smartphone to a BLE device could start an application and trigger events.  
 
Outdoor tracking systems based on BLE and WiFi signals [19] allow transport mode detection 
based on received signal strength (RSSI) and ML methods, such as Random Forests (RF).  
 
The pervasive use of supervised ML methods with smartphone signals in general [9], and with BLE 
in particular, exposes the potential impact of label noise on the training process of a ML classifier. 
The study of this problem counts on a vast literature focusing on independent and identically 
distributed (IID) datasets [20, 21, 22, 23]. However, we have found no examples focusing on time 
series signals, such as GPS, and BLE. 
 
From the literature, the main takeaways for a successful implementation of a BIBO system based on 
BLE are the following: (i) BLE signal transmission rate above 0.3 Hz; (ii) The density of the BLE 
beacons network above one device every 30 square meters; and (iii) Appropriate imputation of 
RSSI readings. 
 
Methods and Materials 
This section presents the sensing platform, consisting of the smartphone application used for data 
collection, the experiment setup and the BIBO sensitivity analysis method. 
 
Sensing Platform Overview 
The data collection platform consists of several major components (see Fig. 1), firstly native 
smartphone applications handling system driven data collection on a per participant level. Secondly, 
several web services APIs providing live data from the autonomous shuttles and other sources. 
Thirdly, overlap between the two data sources enables simple but context-aware services to prompt 
users for user driven data to be collected in the form of surveys. The smartphone platform consists 
of two native apps for iOS and Android respectively coded in Swift and Java.  
 
Each application collects the same data namely, location, sensor data, activity, and beacon 
proximity. The latter serving as a ground truth (GT) validation mechanism for collected data, 
providing a proximity measure to certain locations such as autonomous shuttles, buildings, and 
public transport nodes (see Fig. 2). 

 
Figure 1 - Sensing platform 
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Additional data is collected from the autonomous vehicles using several web APIs, these include 
weather, vehicle status (including GPS, speed, weight, potential errors) and passenger counts. Using 
the smartphone and API data collection as sources, basic event recognition has been implemented to 
prompt user driven data collection in the form of ecological momentary assessment surveys for the 
specific events. 
 

 
Figure 2 - BLE network - BLE beacons installed on bus, bus stop and building. The figure shows an example of GPS trajectory 
automatically labeled with BLE proximity. 

 
Smartphone Application 
The two native applications, handle collection of travel data automatically uploading the data to a 
webservice when possible, storing it locally if not. The collected data consists of 1) location, 2) 
sensor data, 3) activity recognition and 4) BLE beacons. 

1) GPS data measured and recorded at 1Hz when the user is in motion, collection automatically enters 
sleep mode if no activity is recorded and is limited to a geofenced location of interest for the study. 

2) Sensor data in the platform has been designed in a flexible manner allowing researchers the option 
of recording sensor data at a rate between 1-30Hz, these sensors being accelerometer, 
magnetometer, gyroscope. 

3) Activity recognition is handled by native implementations determining the activity carried out by 
the user, such as: driving, walking, being stationary, or being on a bike. Activity is recorded at 1Hz. 

4) BLE beacons are similarly recorded at 1Hz rate, providing beacons ids, general information and 
proximity measurements to a given beacon. As the project’s beacon deployments are at well-
known geographic locations these provide a secondary measure for proximity to known locations. 

 
In addition to the smartphone platforms data collection abilities, the application also provides 
information related to the study, such as information about the autonomous vehicles (schedules, 
routes, disruptions, and news). Lastly, the app facilitates the delivery of momentary ecological 
assessments in the form of surveys. The delivery of these surveys being determined by a simple 
event recognition system using data from the smartphone platform and other data sources. 
 
Experimental Setup 
The experiment involved three bus stops and two buses operating on two routes, which intersected 
in one of the stops. BLE devices were installed inside each bus and at each bus stop. The 
environment was under the surveillance of three high resolution cameras, one for each bus stop. The 
three cameras provided full coverage of the track, thus allowing the surveillance of passengers 
mounting and alighting of any bus and walking between bus stops. The footage from these cameras 
allowed collection of high-quality ground-truth. The experiment procedures consisted of providing 
participants with a written description of the experiment, which they should read, then sign for 
consent. After acceptance and a short briefing, participants accomplished the following steps: (i) 
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Install the smartphone application. (ii) Read general conditions for the smartphone platform and 
provide relevant permissions to the app. These include smartphone sensors, location, and an 
activity-classifier, performing transport mode detection. (iii) Participants equipped themselves with 
2 ID stickers worn on the front and back, to ease the ground-truth collection from video recordings. 
(iv) Participants start using the shuttles with the goal of completing a tour back to the starting point, 
mounting and alighting the bus in any order, with the possibility of walking between bus stops. 
 
In total 18 participants completed the experiment, 2/3 of which allowed the collection of 13, 723 
data points and high-quality ground truth on BIBO binary labels, each point representing 
approximately 1 second of their journey. A total of 6 participants did not provide the correct app 
permissions resulting in no smartphone data being collected causing a high number of unavailable 
trajectories. 
 
BIBO Sensitivity Analysis 
To assess BLE signal as independent measure for a BIBO system, we trained and evaluated under 
label-noise conditions two supervised ML classifiers: RF and MLP [24]. The process involved 
independently BLE RSSI and GPS signals for both these classifiers. We used Monte Carlo 
simulations to assess the effect of various levels of noise causing labels’ values to flip from BI to 
BO or vice-versa. Then we compared the performance of classifiers trained without flipped labels, 
against classifiers trained with flipped labels. As baseline, we referred to the native activity-
classifier (see Sec. 3.2 and 3.3) distributed with Apple and Android operating systems (OS), where 
BI corresponds to “automotive”, and BO to everything else [8]. 
 
A grid search using only a random subset of users - corresponding to approximately 80% of the 
dataset - and 5-fold validation scheme provided optimal hyper-parameters for training. The 
evaluation of each classifier trained with ground truth and optimal hyper-parameters consisted of 
repeating the following steps 100 times: (i) Pick a random number of users from the full dataset; (ii) 
Train the classifier with this partition, sized approximately 80% of the population; (iii) Test the 
classifier with the complementary partition. 
 
To test the impact of noisy labels on classifiers training, one step preceded the evaluation process. 
In such a step a portion of the labels was flipped, simulating labeling errors. In multiple iterations, 
we tested a systematic increase of the proportion of flipped labels in the range from 0 to 100%. At 
the extremes of this range, where none or all the labels are flipped, the BIBO classification is 
equivalent. Area Under the Curve (AUC) [25] is the metric of reference to compare differing 
conditions, as explained in this section. AUC range is between 0 and 1, where 0.5 corresponds to 
the random classifier, or to a classifier predicting consistently only one out of two classes. AUC > 
0.5 corresponds to a classifier predicting consistently the target class, the higher the better. AUC < 
0.5 corresponds to a classifier predicting consistently the opposite of the target class. 
 
Results 
Results show that the difference between the random classifier and the baseline is minimal (see Fig. 
3 and 4), and highlights that the BIBO classification task can be extremely challenging when people 
and vehicles move in proximity and at low speed, i.e., < 15km/h. On the opposite side of the scale, 
and in the same experimental conditions, results show that GPS allows the highest performance. 
However, accelerometer, pedometer and gyroscope supporting the baseline classifiers use a fraction 
of the battery of GPS [9]. In the same conditions, the BIBO classifier based on BLE signal is 
significantly better than the baseline and presents similar or lower battery consumption patterns. 
Concerning the classifiers, we notice that RF performs generally better than MLP, while 
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maintaining resilience to noise > 20% of the labels, during training. This rate corresponds to an 
average of more than one entire segment per user with wrong labels. 
 

 

Figure 3: Random Forest, BIBO classification, AUC performance, left using BLE RSSI, right GPS (p-value with respect to random 
classifier on 0.5 value << 0.01) 
 

 

Figure 4: Multi Layer Perceptron, BIBO classification, AUC Performance, left using BLE RSSI, right using GPS (p-value with respect 
to random classifier on 0.5 value << 0.01) 
 
Conclusion 
This work presents a feasibility and sensitivity study about a BIBO system. This system is based on 
the smartphone onboard sensors including BLE RSSI signal detected from an external BLE beacons 
network. The system relies on a full-stack sensing platform deployed for data collection and 
constitutes the foundation for a context-aware smartphone-based travel survey. Empirical evidence 
shows that the exclusive use of BLE for BIBO classification is more effective than off-the-shelve 
classifiers based on inertial sensors such as accelerometer, gyroscope, and pedometer. GPS show 
higher potential but comes at the cost of higher battery consumption for the smartphone. Hence, 
future research should expose how to leverage available sensors to find the best tradeoff between 
BIBO accuracy and battery efficiency. As for now, BLE RSSI and GPS signals seem to enable 
independent BIBO classification, and reciprocal validation. Consequently, this platform could 
relieve passengers from BIBO ground truth collection and thus allow them to focus on other 
surveys, possibly BIBO-aware, and relevant for studying other aspects of their interaction with the 
autonomous vehicles. 
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