
Rohit George Andrews

Mobile Sensor Data Measurements and
Analysis for Fall Detection in Elderly
Health Care

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo May 22, 2017

Thesis supervisor:

Prof. Jorma Skyttä

Thesis advisor:

Prof. Katsuyuki Haneda

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Rohit George Andrews

Title: Mobile Sensor Data Measurements and Analysis for Fall Detection in
Elderly Health Care

Date: May 22, 2017 Language: English Number of pages: 8+54

Department of Signal Processing and Acoustics

Professorship: Signal Processing Code: ELEC3031

Supervisor: Prof. Jorma Skyttä

Advisor: Prof. Katsuyuki Haneda

In recent years, increased life expectancy in Finland and other parts of the world
have led to an aging population. Accidental falls can cause severe injuries to
elderly people, thereby, negatively impacting their quality of life and in some
cases resulting in death. Accidental falls is a major public health care challenge.
Real time monitoring of human activity can provide insight into an individual’s
functional ability and gives an indication of their ability to live independently.
Automatic detection of falls enables us to provide timely medical attention,
thereby, reducing the negative consequences of falls. This paradigm of home based
health promotes independent living and reduces the burden on caregivers.

The aim of the thesis is to log real world sensory data from multiple sensors on
board mobile devices and develop suitable algorithms to extract information from
the data to solve the problem of detecting when elderly people fall down. In order
to log the data, an Android application is developed that collects data from the
various onboard sensors and stores it in a text file. The developed application is
used to take measurements of sensor data pertaining to various human activities.
Then patterns in the data are then analysed and exploited to distinguish between
normal day-to-day activities and people falling down. To detect falls, we develop
two algorithms based on statistical detection theory and convex optimization,
respectively and also analyze the efficacy of these methods.

Keywords: Mobile sensors, Fall detection, Android application development,
Statistical detection theory, Elderly health care, Convex optimiza-
tion, Machine learning

iii

Acknowledgements

I would like to thank Prof. Jorma Skyttä for accepting to supervise this thesis despite
his busy schedule. This thesis work would not be completed with your support and
encouragement.

I would also like to thank Prof. Katsuyuki Haneda who is the instructor for this
thesis work. Prof. Haneda has been advising me all along in my effort to get this
thesis work completed. I am greatly indebted to him for his patience, guidance and
support right throughout this thesis work. My sincere thanks goes to him.

I would like to thank my family and my close friends who encouraged and
motivated me in completing this thesis work. I would also like to thank Dr. Pramod
Jacob Mathecken for general discussions related to this thesis topic. I am truly
grateful for your support. My gratitude goes immensely to Aalto University and, in
particular to, Jenni Tulensalo and Eeva Halonen from the Student Services for their
support and guidance.

Otaniemi, May 22, 2017

Rohit George Andrews

iv

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Symbols vi

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Research Problem and Scope . 3

1.4 Contribution of the Thesis . 4

1.5 Outline of the Thesis . 4

2 Sensors 5

2.1 Available Sensors . 5

2.2 Accelerometer . 5

2.3 Gyroscope . 6

2.4 Magnetometer . 7

2.5 Barometric Sensor . 7

2.6 GPS . 8

3 Application Development 9

3.1 Android Platform . 9

3.2 Android Software Development . 12

3.2.1 Setup . 12

3.2.2 Development . 13

3.2.3 Debugging and Testing . 14

3.2.4 Publishing . 14

3.3 Activity . 15

3.4 Application . 15

v

4 Sensor Measurements 19

4.1 Measurement of Sensory Data for Phone in Stationary Motion 20

4.2 Measurement of Sensory Data for Activity Walking 21

4.3 Measurement of Sensory Data for Activity Climbing Stairs 22

4.4 Measurement of Sensory Data for Phone in Flight Motion 23

4.5 Measurement of Sensory Data for Activity Falling Down 24

4.6 Measurement of Wifi Signal Strength for Phone in Motion 25

5 Algorithms For Fall Detection 28

5.1 Detection Theory . 28

5.2 Classical Energy Detector . 33

5.3 Empirical Fall detector . 34

5.4 Fall Detection as a Geometrical Classification Problem 41

5.5 Pattern Recognition or Classification 42

5.6 Quadratic Binary Classification . 44

5.6.1 Quadratic Fall Classifier . 45

6 Summary 48

6.1 Contribution . 48

6.2 Future Work . 48

Bibliography 50

vi

List of Symbols

Es Signal energy

m/s2 Meter per second square

1g 9.81 m/s2

N0 Noise power

Pf Probability of false alarm

Pd Probability of detection

r(n) Received time-domain signal

s(n) Desired time-domain signal

T Test statistic

w(n) Time-domain noise signal

χ2
2M Central chi-square distribution with 2M degrees of

freedom

χ2
2M(2γ) Non-central chi-square distribution with 2M

degrees of freedom and non-centrality parameter
2γ

η Decision threshold

γ Es

N0

F−1
χ2
2M

Inverse cumulative distribution function of a χ2

distribution

vii

List of Figures

1 Android system architecture. 10

2 Android development overview. 11

3 Android activity lifecycle. 11

4 Class diagram of Finalappactivity. 17

5 Class diagram of BroadcastReceiver. 17

6 Sequence diagram. 18

7 Measured time-domain signals from barometer and accelerometer for
the stationary case. 21

8 Measured time-domain signals from gyroscope and magnetometer for
the stationary case. 21

9 Measured time-domain signals from barometer and accelerometer for
the walking case. 22

10 Measured time-domain signals from gyroscope and magnetometer for
the walking case. 22

11 Measured time-domain signals from barometer and accelerometer for
the climbing up stairs case. 23

12 Measured time-domain signals from gyroscope and magnetometer for
the climbing up stairs case. 23

13 Measured time-domain signals from barometer and accelerometer
when the phone is thrown vertically upwards. 24

14 Measured time-domain signals from gyroscope and magnetometer
when the phone is thrown vertically upwards. 24

15 Measured time-domain signals from barometer and accelerometer
when the user falls down forward. 25

16 Measured time-domain signals from gyroscope and magnetometer
when the user falls down forward. 25

17 Measured time-domain signals from barometer and accelerometer
when the user falls down backwards. 26

18 Measured time-domain signals from gyroscope and magnetometer
when the user falls down backwards. 26

19 WiFi Networks RSSI detected while climbing stairs. 27

20 WiFi Networks RSSI detected while walking along the corridor. . . . 27

21 Comparison of gradient of accelerometer data for fall and climbing
stairs case. 29

22 Comparison of gradient of accelerometer data for fall and walking case. 29

viii

23 Comparison of gradient of gyroscope data for fall and climbing stairs
case. 30

24 Comparison of gradient of gyroscope data for fall and walking case. . 30

25 Comparison of gradient of magnetometer data for fall and climbing
stairs case. 31

26 Comparison of gradient of magnetometer data for fall and walking case. 31

27 PDF of T under H0 and H1 . 33

28 Comparison of empirical PDF of fall data with Gaussian approxima-
tion along x-direction . 36

29 Comparison of empirical PDF of non fall data with Gaussian
Approximation along x direction . 36

30 Empirical PDF of test statistic along x-direction 37

31 Empirical PDF of test statistic along y-direction 37

32 Empirical PDF of test statistic along z-direction 38

33 Comparison of empirical PDF of fall data with Gaussian approxima-
tion along x-direction . 38

34 Comparison of empirical PDF of non fall data with Gaussian
approximation along x-direction . 39

35 Empirical pdf of test statistic along x-direction 39

36 Empirical pdf of test statistic along y-direction 40

37 Empirical pdf of test statistic along z-direction 40

38 Empirical PDF of test statistic for accelerometer 41

39 Empirical pdf of test statistic for gyroscope 41

40 Scatter plot of accelerometer data along x y directions 43

41 Scatterplot of quadratic classifier along x y directions 47

42 Scatterplot of quadratic classifier along y z directions 47

1 Introduction

1.1 Background

Humankind has experienced unprecedented technological progress in the last century
and, more so, in the last fifty years. Human civilization has developed automobiles
and air transport, discovered antibiotics, broken the genetic code, split the atom
to harness its energy and invented computing. Communication technology was
revolutionized with the telephone, radio, television, cellular networks and the
Internet. Perhaps much of this would not have been possible without the rapid
growth of electronics and computing.

However, the recent information and communication revolution has brought
about a paradigm shift in the way we lead our lives and do business. This has been
due to the exponential growth of the internet and cellular networks. Communication
has become such an integral part of modern human civilization that access to
the internet is today considered a basic right. In recent years there has been a
tremendous growth in the market for wireless communications. At the same time
mobile and ubiquitous computing have become all pervasive because of the easy
availability of mobile devices coupled with cheap wireless connectivity. As wireless
connectivity has become more accessible, along with the increased bandwidth, it has
become possible to connect these mobile devices to each other and to servers. Today
users own multiple mobile devices such as laptop, smartphone and tablet. Each of
these mobile devices has multiple sensors on-board. It is possible to acquire sensory
data from multiple sources, perform signal processing and extract the required
information from the data. Considering all these factors, today it is feasible to
create applications on mobile phones that were once in the realm of science fiction.

Sensor data fusion is a multi-disciplinary subject that combines technique from
areas such as statistical signal processing, computer science, machine learning and
data mining among others. It can be described as the process of using information
from several different sensors to compute an estimate of the state of a dynamic
system. Essentially the question is how to combine, in the best possible manner,
diverse and uncertain measurements in a multiple sensor system in order to estimate
the state of a system. We use multiple sensors to improve the accuracy and reliability
of the estimation in order to reduce uncertainty and obtain more complete knowledge
of the state. The resulting estimate is generally better than it would be if the sensors
were used alone. Currently there are many smart phones in the market. They have

1 INTRODUCTION 2

multiple in-built sensors such as accelerometer, gyroscope, barometric sensor, GPS
receiver, camera and multiple radios. There is a huge untapped potential to create
applications using the data collected from different sensors [1, 2].

1.2 Motivation

One such application that can immensely reap the benefits of multi-sensor data
and processing is tracking and fall detection of elderly people [3]. Demographic
trends indicate that the population of western Europe, Japan and other parts of the
industrialised world is ageing rapidly. Finland has one of the highest rates of ageing
which is primarily due to developments in medical science and technology. However,
at the same time, there is an increasing number of people suffering from type-2
diabetes, cardiovascular diseases, cancer, hypertension, osteoarthritis, depression,
Alzheimer’s disease and other diseases that result in decline of cognitive abilities. In
most countries people are encouraged to stay at home and take care of themselves
as long as possible in order to reduce costs. It is only when they suffer from life
threatening conditions or are incapable of caring for themselves that they should
move to hospitals or old age homes. This approach to taking care of the elderly is
practical only if there is a mechanism to remotely monitor their health..

The problem of an ageing society not only results in a smaller workforce but
also causes a reduction in the number of potential caregivers. A solution that is
capable of monitoring elderly people and notifying caregivers will definitely improve
the situation. According to caregivers two major causes of concern are [4]

1. Falls - the problem of falls among elderly people has a big social and economic
impact. It is the sixth most likely cause of death for people aged over sixty five
years, second for people between sixty five years and seventy five years and
first for people over seventy five years. For people suffering from Alzheimer’s
disease, the probability of fall increases by a factor of three.

2. Wandering around - People who suffer from Alzheimer’s have the tendency of
wandering around increasing the likelihood of them meeting with accidents

Remote monitoring can potentially be very useful in providing care for senior
citizens living independently. Most people in the sixty to seventy year age group are
active and travel outdoors independently whereas, people in the seventy to ninety
year age group, are confined indoors in old age homes. However, they are likely to

1 INTRODUCTION 3

carry a mobile phone. By processing data acquired by various sensors on-board a
mobile phone, i.e., camera, GPS receiver, accelerometer, gyroscope, WLAN receiver
etc., one track and detect falls [5, 6]. For tracking, outdoor GPS receivers function
quite well but the estimates can be improved by using additional information.
Historically, inertial navigation was performed using accelerometer and gyroscope.
Combining this information with the received signal strength of signals from the
various radios and triangulation methods, it is possible to locate a person indoors
by dead reckoning. Augmenting the GPS data with inertial navigation data, WLAN,
2G , 3G and 4G radio positioning data can potentially enhance the performance of
the indoor localisation system [7]. A preliminary review of the literature on this
topic suggests that this approach has not been considered before. Furthermore,
it is possible to detect when the person has fallen down by combining data from
accelerometer, gyroscope and barometric sensor [8, 9, 10].

The approach that this thesis proposes is to use mobile phones for monitoring
health of the elderly [9, 11]. This involves fall detection and tracking of elderly
people. Mobile phones present a mature hardware and software platform which
inherently has many of the components required to detect and communicate a fall or
track a person [12]. Moreover, they are portable and function practically everywhere.
In addition it would be comparatively easy to convince an elderly person to carry a
mobile phone. Currently , there are many smartphones in the market with multiple
sensors including accelerometers, gyroscopes, magnetometer, barometric sensor and
multiple radios [13, 14, 15, 16].

To summarize, falls are a major health hazard for elderly people and they have a
huge social and economic impact. The consequences of a fall can vary from scratches
to fractures and in some cases death. Even if there are no immediate consequences, a
long-wait lying on the floor without medical help increases the probability of death
from the accident. This underscores the importance of real-time monitoring and
detection of a fall to enable first-aid by relatives, paramedics or caregivers as soon
as possible. The care of elderly people can be improved by using sensors to monitor
the vital signs and activities of patients and communicate this information to their
doctors and caregivers [17].

1.3 Research Problem and Scope

With unintentional falls being among the leading causes of severe injuries to elderly
people, often resulting in death, the goal of this thesis is to demonstrate the

1 INTRODUCTION 4

feasibility of designing a smartphone based system to detect fall events. This would
require real world sensory data collection from multiple sensors, mathematically
model the data and, finally, to develop suitable algorithms that extract meaningful
information in order to solve the problem of fall detection.

1.4 Contribution of the Thesis

In this thesis, we develop a data logger application for Android phones that collects
and stores data from various sensors onboard an Android smart phone. This is
followed by a series of measurements of the sensors for a variety of human activities
including walking, climbing and falling. The obtained data is then fed as input
to train two algorithms to detect falls. In particular, the algorithms are based
on statistical detection theory and convex optimization theory, respectively. We
demonstrate that these algorithms are efficient at detecting falls.

1.5 Outline of the Thesis

The rest of this thesis is organised as follows. Chapter 2 provides a brief background
of various sensors onboard a mobile phone. Chapter 3 is about Android application
development. In particular, an application that logs sensory data is presented.
Chapter 4 is about sensor measurements, where we present results of sensor data
for common human activities. These measurements are used as training data for
training the algorithms used to detect falls. The theory behind the usage of these
algorithms is presented in Chapter 5. We end this thesis with a quick summary of
the thesis along with some thoughts on future work.

2 SENSORS 5

2 Sensors

In this chapter, we provide brief overview of the sensors that are present on the two
devices used in this thesis, namely, the Google Nexus 4 and Motorola Xoom. Modern
smartphones are ubiquitous and have multiple onboard sensors like gyroscope,
accelerometer, magnetometer and barometric sensor. Most of the sensors used in
modern mobile devices are MEMS (micro electromechanical systems) sensors. Data
collected from multiple onboard sensors can be used to detect falls. This approach
is more cost effective and easier to implement because the only requirement for a
functioning system is downloading an application onto a mobile phone. This section
describes what sensors are available and what they measure. These measurements
can be used for fall detection and perhaps for indoor localisation too.

2.1 Available Sensors

The Sensors available on board the phone are as follows:

• 3-axis accelerometer

• 3-axis gyroscope

• 3-axis magnetometer

• barometric sensor

• GPS receiver

2.2 Accelerometer

Accelerometers are sensing transducers that provide an output proportional to accel-
eration, vibration and shock, i.e., they measure acceleration [18, 19, 20, 21]. In
simple terms when an object moves, it experiences acceleration. Measurement of
this acceleration helps us in understanding the dynamic characteristics that govern
the behaviour of that object. Acceleration is generally measured/quantified in the SI
unit metres per second per second (m/s2) [22]. In other words, what that means is
that an accelerometer at rest will measure an acceleration of 1g (9.81 m/s2) upwards
whereas an accelerometer in free fall will measure an acceleration of zero.

2 SENSORS 6

Traditional accelerometers can be broadly classified int two categories namely
mechanical and solid sate accelerometers. A mechanical accelerometer is made up of
a mass suspended by springs. The displacement of the mass, which is proportional to
the force acting on the mass is measured and Newton’s law is then used to calculate
the acceleration.

There are many types of solid state accelerometers like for instance surface
acoustic wave, vibratory, quartz and silicon devices. Some of these devices use
the piezoelectric effect to measure acceleration. In the case of surface acoustic wave
(SAW) accelerometer a cantilever beam is resonated at a particular frequency. One
end of the beam is fixed rigidly while the other end has a mass attached to it that is
free to move. When a force is applied to the beam accelerating it the beam bends.
This causes the frequency of the surface acoustic wave to change in proportion to the
applied force. We can can measure the acceleration from the change is frequency.

Most modern electronic devices use micro electromechanical systems (MEMS)
or micro-machined silicon accelerometers. MEMS acclerometers can also be of
two types: The first one consists of mechanical accelerometers made using MEMS
fabrication techniques and the second one consists of devices which measure change
in frequency like the SAW accelerometer. The advantages of MEMS accelerometers
are they have low power consumption, quick startup times and are very small and
light compared to traditional systems. However they are not as accurate although
performance is continuously improving as time goes by. The accelerometers onboard
modern day smartphones are 3-axis accelerometers.

2.3 Gyroscope

A gyroscope is a device used to measure of angular velocity. Angular velocity can
be measured in the SI unit of radians per second [23]. Gyroscopes are used for
maintaining orientation, based on the principles of angular momentum . In modern
smartphones 3-axis gyroscopes are often implemented with a 3-axis accelerometer
to provide a full six degree-of-freedom (DoF) motion tracking system [24]. The
classic mechanical gyroscope exploits the law of conservation of angular momentum
according to which, the total angular momentum of a system is constant in both
magnitude and direction if the resultant external torque acting upon the system is
zero. These gyroscopes typically consist of a spinning disk or mass on an axle, which
is mounted on a series of gimbals.

2 SENSORS 7

Gyroscopes based on many other operating principles have subsequently been
developed. Some of them are the electronic microchip-packaged MEMS gyroscope
devices found in consumer electronic devices, solid-state ring lasers and fibre optic
gyroscopes. The most used MEMS gyroscopes are vibrating structure gyroscopes
[6]. The operating principle of vibrating structure gyroscope is based on the Coriolis
force. Vibrating structure gyroscopes are MEMS devices that are easily available
commercially, affordable, and very small in size. Optical gyroscopes were developed
using laser technology and their functionality depends on the constancy of the speed
of light. The operating principle of optical gyroscopes is based Sagnac effect. The
advantage of this type of gyroscope is that they contain no moving parts, and hence
are not susceptible to mechanical wear or drifting.

2.4 Magnetometer

The magnetometer sensor onboard modern smartphones is a miniature Hall-effect
sensor that detects the Earth’s magnetic field along three perpendicular axes namely
X, Y and Z [25]. The magnetometer measures magnetic field in micro Tesla units.
The magnetometer is used for detecting the relative orientation of the device relative
to the Earth’s magnetic north.The operating principle is based on Hall-effect [26].
The Hall-effect produces a voltage which is proportional to the strength and polarity
of the magnetic field along the axis of each sensor. Other operating principles used
in magnetometers may include magneto resistive devices which change the measured
resistance based on changes in the magnetic field.

2.5 Barometric Sensor

Barometer is a device used to determine atmospheric pressure. The measurements
are recorded in mbar [27]. The barometric sensor can be used as an altimeter by
computing the altitude at a particular place from the variation in pressure along the
the vertical based on the atmospheric pressure at a reference like sea level. There
are numerous methods used to measure pressure using transducers. However,most
MEMS barometric sensors used smartphones work based on piezo-electric principle.
The other working principle employed in some digital MEMS barometric sensors is
the capacitive sensing principle [28].

2 SENSORS 8

2.6 GPS

The global positioning system (GPS) is a satellite-based positioning system suitable
for outdoor applications that was developed by the United States government for
military purposes but is currently used worldwide for civilian applications [29]. In its
basic configuration, it consists of twenty four satellites in six circular orbital planes.
Currently, however, there are thirty two satellites in orbit for improved accuracy.
These satellites are continuously transmitting radio signals, which be decoded by a
user to determine position and velocity.

There are four signals available for civilian use these are L1 C/A, L2C, L5 and
L1C. The military signals are encrypted. GPS signals include ranging signals and
navigation messages. The ranging signals are used to measure the distance to
the satellite. The navigation messages include ephemeris data which is used to
calculate the position of each satellite in orbit as well as information about the
time and status of the entire satellite constellation called the almanac. The GPS
system can be augmented using base stations broadcasting local correction terms.
There are a variety of augmented sytems such as wide area augmentation system
(WAAS), European geostationary navigation overlay service (EGNOS), differential
GPS (DGPS), inertial navigation systems (INS) and Assisted GPS. The accuracy of
these systems varies from fifteen meters to three meters . There are other navigation
systems such as Russia’s GLONASS, the European Union’s Galileo positioning
system, China’s BeiDou Navigation Satellite System and India’s NAVIC.

3 APPLICATION DEVELOPMENT 9

3 Application Development

The earlier attempts in fall detection were mostly based on techniques in which
sensors were attached to the body of the person of interest to track motion.
This approach was in our opinion neither practical nor economical. Modern
mobile devices are ubiquitous and have multiple onboard sensors like gyroscope,
accelerometer, magnetometer, barometric sensor etc. Data collected from multiple
onboard sensors can be used to detect falls. This approach would be more cost
effective and easier to implement because all that was required was downloading an
application onto a mobile phone.

We were provided with two devices namely Google Nexus 4 and Motorola
Xoom, which were running Android 4.2 Jelly Bean and Android 3.2 (Honeycomb)
respectively [30, 31, 32]. Android Phones and tablets are mobile devices that have
Android OS running on them and can have Android applications installed on them.
These applications are written in Java programming language and they are called
mobile device applications or apps [33]. Development of apps involves writing sets
of Java code focused on implementing particular task that performs some function
for a mobile device application. Three important tools that are used in an Android
development environment are the java programming language, Eclipse which is an
integrated development environment (IDE) and the Android operating system. In
order to build an android app the following components must be installed: the
Android java development kit, Android software development kit (SDK), Eclipse,
Android Developer Tools plug-in and, finally, setting up testing environment.

We developed an android application to read and store data from various sensors.
Using the application we performed various measurements for different activities
like walking, climbing, falling etc. We analysed the collected data and developed
algorithms to detect falls using simple heuristics.

3.1 Android Platform

Android is an open source platform for mobile devices that is based on the linux
kernel for mobile devices and is currently developed and managed by Google.
Android is designed for touchscreen mobile phones, tablets, etc., and is currently
the most popular mobile OS. The user interface of android requires touch inputs like
swiping, tapping, etc., to manipulate on screen objects. In addition inbuilt sensors
such as a accelerometers, gyroscopes and proximity sensors respond to user actions

3 APPLICATION DEVELOPMENT 10

like tilting the phone by changing screen from portrait to landscape depending on
the orientation of the device [34]. The Android OS allows users to customize their
screens with short cuts and widgets that improve the ease of operation and help
retrieve relevant information easily. The android play store has over a million apps
and there are over a billion android devices in the world. The android developer
community is one of the most mature communities.

Figure 1: Android system architecture.

3 APPLICATION DEVELOPMENT 11

Figure 2: Android development overview.

Figure 3: Android activity lifecycle.

3 APPLICATION DEVELOPMENT 12

3.2 Android Software Development

Android software development refers to the process used to create new applications
for the Android operating system. Applications are generally developed in the
Java programming language using the Android SDK. The Android SDK has a
comprehensive set of development tools including a debugger, libraries, a handset
emulator, documentation, sample code and various other tools.

Android software development involves the following steps:

• Setup

• Development

• Debugging and Testing

• Publishing

3.2.1 Setup

In this phase of the development cycle we installed and set up Eclipse IDE along
with Android SDK and ADT to develop an application that collects and saves data
from the various onboard sensors. We also created Android Virtual Devices (AVDs)
in order to install and test our application. An AVD is an emulator that allows us
to model an actual device by defining hardware and software options to be emulated
by the Android emulator.

An AVD consists of a hardware profile that defines the hardware features of the
virtual device. It is possible for instance to define whether the device has a camera,
whether it uses a physical QWERTY keyboard or a dialling pad, how much memory
it has, etc. It is also possible to define what version of the Android platform will run
on the virtual device. One can choose a version of the standard Android platform
and can also specify the emulator skin to be used with the AVD, which allows to
control the screen dimensions, appearance, etc. The emulated SD card to be used
with the AVD can also be specified. In addition the device’s user data (installed
applications, settings, and so on) and emulated SD card can be stored in this area.
We can can create as many AVDs as we need, based on the types of device we want to
model. To thoroughly test our application, we should create an AVD for each device
configuration with which our application is compatible and test our application on
each one.

3 APPLICATION DEVELOPMENT 13

While selecting a system image target for our AVD we should keep in mind
that the API Level of the target is important, because our application will not be
able to run on a system image whose API Level is less than that required by our
application. We should create at least one AVD that uses a target whose API Level
is greater than that required by our application, because it allows us to test the
forward-compatibility of our application. When building a mobile application, it’s
important that we always test our application on a real device before releasing it
to users. We can use any Android-powered device as an environment for running,
debugging, and testing your applications. The tools included in the SDK make it
possible to install and run our application on the device each time you compile. We
can install your application on the device directly from Eclipse or from the command
line with ADB.

3.2.2 Development

In this phase we set up and develop our Android project, which contains all of the
source code and resource files for our application. Projects act as containers for
storing things such as code and resource files. The SDK tools expect your projects
to follow a specific structure so it can compile and package your application correctly,
so it is highly recommended that you create them with Eclipse and ADT or with
the android tool on the command line. There are three types of projects, and they
all share the same general structure but differ in function:

• Android Project: An Android project is the container for our application’s
source code, resource files, and files such as the Ant build and Android Manifest
file. An application project is the main type of project and the contents are
eventually built into an .apk file that you install on a device.

• Test Projects: These projects contain code to test our application projects
and are built into applications that run on a device.

• Library Projects: These projects contain shareable Android source code and
resources that we can reference in Android projects. This is useful when we
have common code that we want to reuse. Library projects cannot be installed
onto a device, however, they are pulled into the .apk file at build time. When
we use the Android development tools to create a new project, the essential
files and folders will be created for us by default. There are only a handful of
files and folders generated, and some of them depend on whether we use the

3 APPLICATION DEVELOPMENT 14

Eclipse plugin or the android tool to generate our project. As our application
grows in complexity, we might require new kinds of resources, directories and
files.

3.2.3 Debugging and Testing

In this phase we build our project into a debuggable .apk package that we can install
and run on the emulator or an Android-powered device. When we use Eclipse,
builds are generated each time our project is saved. when we use other IDE’s ,
we build our project using Ant and install it on a device using adb. We debug our
application using a JDWP-compliant debugger along with the debugging and logging
tools that are provided with the Android SDK. Eclipse already comes packaged with
a compatible debugger. We can test our application using various Android SDK
testing tools.

The Android framework includes an integrated testing framework that helps us
to test our application and the SDK tools contain tools for setting up and running
test applications. We can choose to use either Eclipse with ADT or command line, in
order to set up and run our tests within an emulator or the device we are targeting.

3.2.4 Publishing

In this phase we configure and build our application for release and distribute our
application to users. Publishing is the general process that makes our Android
applications available to users. When we publish an Android application we perform
two main tasks:

We prepare the application for release. During the preparation step we build a
release version of your application, which users can download and install on their
Android-powered devices. We release the application to users. During the release
step we publicize, sell, and distribute the release version of our application to users.
Usually, we release our application through an application marketplace, such as
Google Play. However, we can also release applications by sending them directly to
users or by letting users download them from our own website.

The figure 2 shows how the publishing process fits into the overall Android
application development process. The publishing process is typically performed
after you finish testing your application in a debug environment. Also, as a best
practice, our application should meet all of our release criteria for functionality,

3 APPLICATION DEVELOPMENT 15

performance, and stability before we begin the publishing process

3.3 Activity

An activity can be described as an entry point for an application to interact with
a user through the UI. Switching between screens means moving from one activity
to another. Activities are classes within packages that interact with the user. They
extend an Activity type and hence inherit methods and other related information.
The figure 3 presents the Android Activity life-cycle, in other words the states that
an activity can be in, depending on the user’s interaction with it and also describes
the state paths an activity can take. According to the Android Developers guide,
the programmer can implement callback methods to make the application perform
the desired operations when the Activity moves between states. If an activity in
the foreground of the screen it can be said to be active or running. If an activity
has lost focus but is still visible, it is paused. A paused activity is completely
alive. It maintains all state and member information. But, it can be killed by the
operating system when memory is extremely low. If an activity is in the background
and completely obscured by another activity, it is stopped. It still retains all state
information. But, it is no longer visible to the user. When memory is needed it will
be killed by the operating system. If an activity is paused or stopped, the operating
system can drop the activity from memory by either asking it to finish, or simply
killing it’s process. When the activity comes back to the foreground and is displayed
again to the user, it must be restarted and restored to its previous state.

3.4 Application

The objective of the Android application development process was to create an
application that collects data from the various on board sensors and stores it in a
text file in .txt format. The design of the software was relatively straightforward
since the android software development kit provides inbuilt classes and methods
to access the onboard sensors. The use case can be intuitively guessed from the
screenshot of the application’s user interface and is as follows. The user of the
application presses the start button in order to issue the start commmand. Next
the application starts recording the data from the various onboard sensors in a text
file. In addition the data is displayed on the screen for the user to read. This goes
on until the stop button is pressed.

3 APPLICATION DEVELOPMENT 16

When it comes to Android Applications there are four primary components
: Activity, Service, BroadcastReceiver, and ContentProvider . A single Android
application might not contain all of these elements, but will have at least one of these
elements. In our App there is an Activity and a BroadcastReceiver. The Activity
listens to the sensors and displays the results on the UI while the Broadcast receiver
gets notified whenever an event happens to the Wifi network. In addition to being
displayed on the UI the data from both these modules is also written into a text file.
In general terms an activity displays a UI (user interface) and responds to system
as well as user initiated events. Activities are declared in AndroidManifest.xml file,
which could be considered the bedrock on which an Android application is built.
Activities present their views through XML layouts and communicate with each
other through Intents. A broadcast receiver is an Android component which allows
you to register for system or application events. All registered receivers for an event
are notified by the Android runtime once this event happens.

The figure 6 shows the sequence diagram of the application. When the start
button is pressed the OnClickListener is triggered. The OnClickListener routine
activates SensorManager which gets a list of sensors and registers listeners for all
of them. Objects of View class like button contain a collection of nested interfaces
with callbacks that can be defined by the programmer. These interfaces, called event
listeners, are used to capture the user’s interaction with the UI. When there is any
movement or change in reading a sensor event is triggered. As a consequence of the
event, the sensor values are output to the screen and at the same time written to a
text file. When the stop button is pressed the Listeners for the various sensors are
unregistered.

The UI was made using Automatic XML layout setup. One way of creating
XML layouts is by dragging and dropping objects inside a work area. Eclipse will
generate the XML code and create a few attributes for them. Objects on different
type in the Palette on the left side in the Android JDK. The FinalappActivity
and BroadcastReceiver were declared in their respective class files and registered in
AndroidManifest.xml file. The code was compiled and an App was created. Later
the App was installed on both the devices namely Google Nexus 4 and Motorola
Xoom.

3 APPLICATION DEVELOPMENT 17

Figure 4: Class diagram of Finalappactivity.

Figure 5: Class diagram of BroadcastReceiver.

3 APPLICATION DEVELOPMENT 18

Figure 6: Sequence diagram.

4 SENSOR MEASUREMENTS 19

4 Sensor Measurements

In this chapter we describe the measurements using various sensors in multiple
scenarios that were performed to collect data for analysis in order to develop fall
detection algorithms. The goal of performing the measurements was to collect data
and the exploit patterns in the data to distinguish between normal day to day
activities and people falling down. Since each fall is unique we had multiple falls in
different directions namely forward, backward and sideways. To keep the data as
realistic as possible the readings were taken by multiple users using both the devices.
To perform calibration and to serve as a reference the devices were placed on a desk
in the office for the stationary case. For the walking and climbing stairs case the
measurements were performed in the electrical engineering department. Most of the
measurements were taken during the course of a month in the summer of 2012.

To increase the diversity four different people were engaged to perform the
falls. A thick mattress was placed on the floor and readings were taken as the test
subjects repeatedly simulated falls in the forward, backward and sideways directions
respectively.

The Measurements were performed using the following two devices.

• Google Nexus 4

• Motorola Xoom

The test set-up involved the volunteer user holding the device at waist or hip level
when the application was started and after a certain duration the application was
stopped. Some reading were taken with the device in with user’s pant pocket with
the application running. Once the data was obtained, it was plotted for each sensor
and studied individually. This was done in order to visually inspect the data and
find any defining characteristics or patterns in the data. We observed that each of
the different activities have unique profiles for various sensor data. Also, amplitudes
and frequencies of movement depend on the size and weight of the volunteer.

The tests involved the following activities:

1 The device in a stationary position.

2 The user walking.

3 The user climbing up the stairs.

4 SENSOR MEASUREMENTS 20

4 The device being thrown vertically upwards.

5 The user falling forward.

6 The user falling backwards.

7 The user falling sideways.

One of the major problems, while performing the measurements, is the inability
to set a desired sampling frequency as well as the inherent noisiness of the
measurements. It would be ideal to choose a high sampling frequency. However, in
an android device, it is not possible to set a user specific sampling frequency and
read directly from the inertial sensors. Instead a sensor event is generated each time
the sensor value changes. The disadvantage of this setup is that crucial information
can be lost. To solve the indoor localization problem, ideally we should have control
over the sampling frequency. The data collected from the sensors, in general, can
be expected to be noisy. In addition to the noise, a large bias is also noticeable as
show in Table 2.

Parameter Average bias along z Average bias along y Average bias along x
accx 0.104778141 0.131273742 0.106861459
accy -0.010368234 -0.061804072 0.049341285
accy -0.360383032 0.382245928 0.250262686
omegax -0.009591585 -0.007659805 -0.009172497
omegay 0.016612772 0.016956013 0.01738512
omegaz -0.01511746 -0.015525771 -0.015539849

Table 2: Bias in accelerometer and gyroscope.

4.1 Measurement of Sensory Data for Phone in Stationary

Motion

As a baseline or a point of reference and for calibration data was collected from the
device when it was stationary. We can observe from the figure 7b of raw data for
acceleration that the effect of acceleration due to gravity can be observed along the
z axis axis. In the case of the gyroscope we observe that there is a slight tremor
initially which is a remnant of the user pressing the start button. The data from
the magnetometer and pressure sensor are constant.

4 SENSOR MEASUREMENTS 21

(a) Barometer Signal. (b) Accelerometer Signal.

Figure 7: Measured time-domain signals from barometer and accelerometer for the
stationary case.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 8: Measured time-domain signals from gyroscope and magnetometer for the
stationary case.

4.2 Measurement of Sensory Data for Activity Walking

We can observe from the figure of raw data for acceleration that the effect of
acceleration due to gravity can be observed along the z-axis. In addition, we observe
a jerky motion that is characteristic of a person moving. along the y-axis we can
observe a small acceleration which is an indication of a person moving forward.
The acceleration along the x-axis is relatively close to zero indicating relatively
small lateral/horizontal movement. The gyroscope readings show a rapid change
of orientation. The magnetometer is comparatively stable in comparison except for
when the person turns back. The pressure readings are constant because the test

4 SENSOR MEASUREMENTS 22

subject is walking along a relatively flat surface.

(a) Barometer signal. (b) Accelerometer signal.

Figure 9: Measured time-domain signals from barometer and accelerometer for the
walking case.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 10: Measured time-domain signals from gyroscope and magnetometer for the
walking case.

4.3 Measurement of Sensory Data for Activity Climbing

Stairs

From the figure 11b on the raw data for acceleration, in addition to the effect of
acceleration due to gravity, we can observe a jerky motion that is characteristic
of a person moving and also a person turning while climbing the stairs. The
plot gyroscope data makes the fact that the person was turning obvious. The

4 SENSOR MEASUREMENTS 23

magnetometer reading also helps us make this inference. The pressure reduces by 1
mbar indicating a clear change in height.

(a) Barometer signal. (b) Accelerometer signal.

Figure 11: Measured time-domain signals from barometer and accelerometer for the
climbing up stairs case.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 12: Measured time-domain signals from gyroscope and magnetometer for the
climbing up stairs case.

4.4 Measurement of Sensory Data for Phone in Flight Motion

As the phone is thrown up there is a massive increase in acceleration, then the phone
decelerates, comes to a stop and then accelerates downwards continuously until it
comes to rest in the hands of the test subject. There are dramatic changes in the
gyroscope readings caused by the device turning on its axis. The change is less
dramatic in the case of magnetometer. The barometric sensor is relatively stable.

4 SENSOR MEASUREMENTS 24

(a) Barometer signal. (b) Accelerometer signal.

Figure 13: Measured time-domain signals from barometer and accelerometer when the
phone is thrown vertically upwards.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 14: Measured time-domain signals from gyroscope and magnetometer when the
phone is thrown vertically upwards.

4.5 Measurement of Sensory Data for Activity Falling Down

In order to detect falls in elderly people, we performed multiple tests falling forward,
falling backward and falling sideways. All falls are unique, however, we observe
certain patterns. In both the forward and backward cases, there is a decrease in the
acceleration at the start of the fall followed by a steep increase. The gyroscope shows
a dramatic perturbation. There about 0.1 mbar change in the pressure reading.

4 SENSOR MEASUREMENTS 25

(a) Barometer signal. (b) Accelerometer signal.

Figure 15: Measured time-domain signals from barometer and accelerometer when the
user falls down forward.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 16: Measured time-domain signals from gyroscope and magnetometer when the
user falls down forward.

4.6 Measurement of Wifi Signal Strength for Phone in

Motion

The Android Wi-Fi manager returns a list of Wifi networks after scanning. The
output includes the following parameters, i.e., SSID (network name), BSSID (MAC
Address of access point), RSSI (received signal strength in dB). The following plots
show a variation in signal strength measured while walking and climbing stairs.
The signal strength varies due to reflections from the walls, ceiling, floor and other
obstructions in the building. The signal strength also depends on position of the
person making measurements and the people present or moving around in the

4 SENSOR MEASUREMENTS 26

(a) Barometer signal. (b) Accelerometer signal.

Figure 17: Measured time-domain signals from barometer and accelerometer when the
user falls down backwards.

(a) Gyroscope signal. (b) Magnetometer signal.

Figure 18: Measured time-domain signals from gyroscope and magnetometer when the
user falls down backwards.

vicinity. If we have a data base of the locations and coordinates of the access
points then it is possible to perform indoor localisation either through location
fingerprinting or triangulation.

4 SENSOR MEASUREMENTS 27

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0 5000 10000 15000

−
9

0
−

8
0

−
7

0
−

6
0

Wi−Fi networks

time in ms

R
S

S
I

in
 d

B

●

●

●

●

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

●

●

●

●

nettireitti
Anubis
Anton verkko
Sherry
ElisaKoti94
APRILMILES
Koti345
dlink1
MHoJpaaWLAN
Mella
ElisaKoti92
nischhal
Meep

Figure 19: WiFi Networks RSSI detected while climbing stairs.

●

●

●

●

●

●●

●●
●●●●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

0 2000 4000 6000 8000 10000 12000

−
9

0
−

8
0

−
7

0
−

6
0

−
5

0

Wi−Fi networks

time in ms

R
S

S
I

in
 d

B

●

●

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

●

●

●

●

●

●

●

Anubis
nettireitti
Mella
ElisaKoti94
Anton verkko
Koti345
puhveli_g
MHoJpaaWLAN
SoneraGateway08−76−FF−95−6C−70
Koti911
0024A5BCC94F
Meep
APRILMILES
Elisa862
ZyXEL
ElisaKoti32
Sherry
Tapsa−PC−Wireless
MERCY−HP_Network
Connectify−King1
nischhal
ElisaKoti92
MickyMouse
Thom_D0044521
tissiverkko
mambo_bad

Figure 20: WiFi Networks RSSI detected while walking along the corridor.

5 ALGORITHMS FOR FALL DETECTION 28

5 Algorithms For Fall Detection

In the previous chapter, we present some measurement data of the sensors onboard
a mobile smart phone. The measurement data illustrated various scenarios such
as when a person is walking, running, in a stationary position and falling down.
A cursory glance at the measurement data reveals a distinct pattern for the fall
data when compared to other scenarios. For example, in Figs. 21 to 26, we plot
the gradient of the measurement data corresponding to various scenarios. One can
clearly see a distinct pattern corresponding to the fall data in comparison with
other scenarios. Taking a gradient of the measurement data has the following
advantages: First it eliminates the bias inherent in the measurement data and
second its operation is akin to that of a high-pass filtering. This is useful as the
action of falling down induces an abrupt change in the state of the sensor data which
implies the existence of high-frequency components and, thus, the fall data can be
interpreted as a high-pass process.

Our goal in this chapter is to utilize this distinctive pattern of the fall data
in relation to other scenarios to develop effective algorithms for detection of
falls. Specifically, the algorithms should be easily implementable on the mobile
platform, for e.g., a mobile smart phone. The algorithms should keep track of
its surroundings and when a fall occurs it must detect, within a certain acceptable
time duration, if an actual fall has occurred. In this chapter, we use two well
known mathematical methods for fall detection: The first method uses the prowess
of statistical detection theory while in the second method we cast fall detection as
a geometrical classification problem [35, 36, 37, 38].

5.1 Detection Theory

Detection theory is a mathematical technique used to distinguish between the desired
signal of interest and undesired noise[39, 40, 41]. Specifically, the problem the signal
detection problem is formulated as a binary hypothesis testing problem (BHT) [35].
In BHT problem, we define the so called null hypothesis, designated by H0, which
describes the case when there is only noise and the alternate hypothesis, designated
by H1, denotes the case which contains the signals of interest. This is shown below:

H0 : r(n) = w(n), (1)

5 ALGORITHMS FOR FALL DETECTION 29

Figure 21: Comparison of gradient of accelerometer data for fall and climbing stairs
case.

Figure 22: Comparison of gradient of accelerometer data for fall and walking case.

5 ALGORITHMS FOR FALL DETECTION 30

Figure 23: Comparison of gradient of gyroscope data for fall and climbing stairs case.

Figure 24: Comparison of gradient of gyroscope data for fall and walking case.

5 ALGORITHMS FOR FALL DETECTION 31

Figure 25: Comparison of gradient of magnetometer data for fall and climbing stairs
case.

Figure 26: Comparison of gradient of magnetometer data for fall and walking case.

5 ALGORITHMS FOR FALL DETECTION 32

H1 : r(n) = s(n) + w(n), (2)

where r(n) denotes the observed signal, w(n) denotes inherent noise in the system
and s(n) denotes the signal to be detected. We assume a discrete-time system
without any loss in generality. We can cast the fall detection problem as BHT
problem wherein the s(n) corresponds to the fall data while w(n) can be classified
as the unwanted non-fall data. Given that we observe r(n), our task is to determine
under which case does r(n) belong to. A practical signal detector achieves this
objective by evaluating something known as a test statistic. It is generically given
by

T = f (r(n)) (3)

where f (·) is some given function. The hypothesis is then selected by comparing T
to a set value of threshold as follows:

T
H1

≷
H0

η (4)

Each time a decision is made, four possible cases can occur:

1. Decide H0 when H0 is true - Correct rejection

2. Decide H0 when H1 is true - Missed detection also called type II error

3. Decide H1 when H0 is true - False alarm also called Type I error

4. Decide H1 when H1 is true - Correct detection

Thus, as we can see, the performance in terms of missed detection or correct
detection depends on the kind of test static T which in turn depends on various
quantities, for example, on the choice of f(·), on the value set for η, the signal-to-
noise-ratio, the underlying distributions of r(n) under H0 and H1 respectively. A
simple demonstration of this fact is shown in Fig. 27. In the figure, we plot the
distributions of T under H0 and H1. If these distributions overlap then we can
expect, for a set value of threshold, a non-zero probability of false alarm and missed
detection as seen in the figure. Thus, one measure of a good detector is its ability to
separate as much as possible the distributions of T under H0 and H1 respectively.

In the following subsection, we discuss the classical energy detector which we
shall use for fall detection.

5 ALGORITHMS FOR FALL DETECTION 33

Figure 27: PDF of T under H0 and H1

5.2 Classical Energy Detector

Energy detector measures the received signal energy and compares it with a
threshold [42, 43, 44]. The following signal model is used

r(n) = s(n) + w(n). (5)

The energy based detector computes the signal energy as follows

T =
2

N0

M∑
n=1

|r(n)|2, (6)

where, r(n) is the received signal, N0 is the noise power and M is the number of
observations. Consider the detection of a deterministic signal in the presence of
zero mean i.i.d Gaussian noise; the energy detector test statistic obeys the following
distribution [43]

H0 : T ∼ χ2
2M , (7)

H1 : T ∼ χ2
2M(2γ), (8)

where, γ is the signal energy to noise spectral density defined as γ = Es/N0, where
Es =

∑M
n=1 |s(n)|2 is the signal energy. The test statistic follows a central chi-

square distribution with 2M degrees of freedom under H0 and non-central chi-square

5 ALGORITHMS FOR FALL DETECTION 34

distribution with 2M degrees of freedom and non-centrality parameter 2γ under H1.
The thresholds for a given probability of false alarm are calculated theoretically
using the equation

η = F−1
χ2
2M

(1− Pf) (9)

where, F−1(·) denotes the inverse cumulative distribution function of a χ2 dis-
tributed random variable with 2M degrees of freedom, η is the detection threshold
and Pf is the probability of false alarm. The theoretical probability of detection is
given by the equation

Pd = 1− Fχ2
2M

(2γ) (10)

where, γ is the signal energy to noise spectral density defined as γ = Es/N0, where
Es =

∑M
n=1 |s(n)|2 is the signal energy and N0 is the noise power.

To summarize, the classical energy detector implements the test statistic using
(6) and compares it to the the threshold η which is set using (9). The threshold is
set in accordance with a desired probability of false alarm.

5.3 Empirical Fall detector

We cast fall detection as BHT problem and specifically use the observed signal
energy as a test statistic. Specifically, this is given by

T =
1

N

N∑
n=1

r(n)2 (11)

where N denotes the observation interval and r(n) is the (processed) sensor signal.
The main task to set the threshold η which in turn must be related to the desired
probability of false alarm. In the classical energy detector case, we know this relation
which is given by (9). The equation is derived based on the assumption that r(n) is
Gaussian under both H0 and H1. We, thus, need to verify if the (processed) sensor
data also follows the Gaussian distribution.

Consider first the accelerometer sensor data. In Fig. 28 we plot the empirical
probability density function (PDF) of r(n) under fall (H1) scenario and Fig. 29
plot the non-fall (H0) case. We compare the empirical PDF with its Gaussian
approximation. This is obtained by calculating the mean and variance of the data
and then plotting a Gaussian distribution with these parameters. Clearly from the
figures, we can conclude that the accelerometer data is non-gaussian under both fall

5 ALGORITHMS FOR FALL DETECTION 35

and non-fall scenarios. Similar conclusion can be reached for the gryoscope data
whose empirical PDFs are shown in Fig. 33 and 34. The pattern is similar for the
other directions in the case of both sensors.

The non-Gaussianity of the sensor data renders non-applicability of the classical
energy detector for the mobile sensory data. We overcome this problem by employing
an empirical approach for fall detection. Specifically, we do the following: First, we
empirically evaluate the distribution of the test statistic T from the measurement
(training) data under both null and alternate hypothesis. Secondly, depending on
the desired false-alarm rate, we empirically calculate the desire threshold value of η.
Such an approach is valid when enough measurements are taken for characterizing
the true PDF of T under both fall and non-fall cases.

Figures 30 to 32 show the empirical PDF of T for an observation interval of
N = 10 samples for accelerometer sensory data. The plots show the PDF under
both the null (non-fall) and alternate (fall) hypothesis. In the figures, the threshold
is shown by the dashed vertical black line. The threshold is calculated for a set
probability of false alarm which is set to a value of 0.05. The PDFs corresponding
to the gyroscope data are shown in Figs. 35 to 37. From the figures, we see good
separation between the PDFs of T under H0 and H1, thus, allowing freedom in
choosing a threshold corresponding to small false alarm rate and high probability of
detection. Thus, the test-statistic based on the energy detection principle provides
good performance for detection of falls. We can also combine the sensory data from
each individual direction and compare it against a set value of threshold as follows:

T = x2 + y2 + z2 (12)

where x, y and z denote, respectively, the x, y and z directions of the accelerometer
and gyroscope. Figures 38 and 39 show the empirical PDF of the test statistic of (12)
under null and alternate hypothesis. Consistent with the time-domain approach, the
spatial energy detector of (12) also separates well the PDFs of the null and alternate
hypothesis allowing for the design of small false alarm rate.

5 ALGORITHMS FOR FALL DETECTION 36

Figure 28: Comparison of empirical PDF of fall data with Gaussian approximation
along x-direction

Figure 29: Comparison of empirical PDF of non fall data with Gaussian Approximation
along x direction

5 ALGORITHMS FOR FALL DETECTION 37

Figure 30: Empirical PDF of test statistic along x-direction

Figure 31: Empirical PDF of test statistic along y-direction

5 ALGORITHMS FOR FALL DETECTION 38

Figure 32: Empirical PDF of test statistic along z-direction

Figure 33: Comparison of empirical PDF of fall data with Gaussian approximation
along x-direction

5 ALGORITHMS FOR FALL DETECTION 39

Figure 34: Comparison of empirical PDF of non fall data with Gaussian approximation
along x-direction

Figure 35: Empirical pdf of test statistic along x-direction

5 ALGORITHMS FOR FALL DETECTION 40

Figure 36: Empirical pdf of test statistic along y-direction

Figure 37: Empirical pdf of test statistic along z-direction

5 ALGORITHMS FOR FALL DETECTION 41

Figure 38: Empirical PDF of test statistic for accelerometer

Figure 39: Empirical pdf of test statistic for gyroscope

5.4 Fall Detection as a Geometrical Classification Problem

In this section, we use the spatial nature of the measurement data to detect falls. We
can interpret the phenomena of a fall as a sudden change in the state of the sensory
data. Thus, for example, when we plot the accelerometer data on the Euclidean
coordinate space, we can expect the points corresponding to a fall be scattered far
away from its normal state which is the non-fall case. Figure 40 show cases such a

5 ALGORITHMS FOR FALL DETECTION 42

scenario. In the figure, we plot the accelerometer x-direction versus its y-direction.
From the figure, we can clearly see a spatial separation between the fall points
and the non-fall points. Based on this data set, we can design a geometric object
that automatically classifies fall and non-fall points. For example, we can put a
circle around the non-fall points and state that all points that fall inside the circle
correspond to non-fall data while fall data lies outside of this circle [45]. Given
that we choose a type of geometric object for classification, for example a second-
order classifier, the following question that arises is which is the best second-order
classifier such that the percentage of false classification is minimized. We address
this problem in the rest of this section. First, we briefly summarize the subject of
classification after which we design a quadratic classifier for fall detection.

5.5 Pattern Recognition or Classification

Pattern recognition, machine learning, data mining etc [46, 47, 48, 49] are terms that
are largely synonymous and generally refer to techniques used to solve problems in
a variety of engineering and scientific disciplines as diverse as biology, psychology,
medicine, marketing, computer vision, artificial intelligence, remote sensing and of
course signal processing. But that raises the question how do you define a pattern?
The reference [50] defines a pattern as "opposite of a chaos; it is an entity, vaguely
defined, that could be given a name." Some examples of patterns are a human face,
a speech signal or handwritten letter/digit.

Once we are given a pattern or data set , the job of recognition or classification
may consist of one of the following two tasks [47, 51]

• supervised classification - in which the input pattern is identified as a member
of a predefined class where the class is defined by the system designer.

• unsupervised classification - in which the pattern is assigned to an unknown
class where the class is learned based on the similarity of patterns.

Classification is an approach to solving a class of problems which involves defining
a large set of N digits x1, ..., xN called a training set which is then used to tune the
parameters of an adaptive model. We assign categories to the digits by using a target
vector t, which represents the identity of the corresponding digit. When the training
data comprises of input vectors along with their corresponding target vectors, the
problem is known as a supervised learning problem. On the other hand when the

5 ALGORITHMS FOR FALL DETECTION 43

Figure 40: Scatter plot of accelerometer data along x y directions

training data consists of a set of input vectors x without any corresponding target
values the problem is known as an unsupervised learning problem and the goal in
such unsupervised learning problems is to discover groups similar data, otherwise
called clusters.

The design of a pattern recognition system essentially involves the following three
aspects:

• data acquisition and preprocessing

• data representation

• decision making

The type of problem dictates the choice of sensors, preprocessing technique,
representation scheme, and the decision making model. A well-defined and
sufficiently constrained recognition problem can be described as one with small
intraclass variations and large interclass variations. We can assume that if these
conditions are met a simple data representation system and decision making strategy
can be developed. Learning from a set of examples called training set is the first
step of most pattern recognition systems.

5 ALGORITHMS FOR FALL DETECTION 44

5.6 Quadratic Binary Classification

We first summarize a generic quadratic classifier given in [36]. In a classification
problem, we are given two sets of points, x1, x2, . . . , xN and y1, y2 . . . , yN and we
wish to find a function f : Rn → R that is positive on the first set and negative on
the second i.e.,

f(xi) > 0, i = 1, ..., N (13)

f(yi) < 0, i = 1, ...,M (14)

where the function f(·) is a quadratic polynomial given by

f(x) = xTPx+ qTx+ r (15)

The parameters P ∈ Sn, q ∈ Rn r ∈ R must satisfy the inequalities

xTi Pxi + qTxi + r > 0, i = 1,, N (16)

yTi Pyi + qTyi + r < 0, i = 1,,M (17)

which is a set of strict linear inequalities in the variables P , q, r. Since f is
homogeneous in P , q, and r, so we can find a solution to the strict inequalities
by solving the nonstrict feasibility problem given below,

xTi Pxi + qTxi + r ≥ 1, i = 1,, N (18)

yTi Pyi + qTyi + r ≤ −1, i = 1,,M (19)

The separating surface z|zTPz + qT z + r = 0 is a quadratic surface, and the two
classification regions are defined by quadratic inequalities given below:

z|zTPz + qT z + r > 0 (20)

z|zTPz + qT z + r > 0 (21)

Solving this quadratic discrimination problem is the equivalent of determining

5 ALGORITHMS FOR FALL DETECTION 45

if the two sets of points can be separated by a quadratic surface. It is possible to
impose conditions on the shape of the separating surface or classification regions by
putting constraints on P , q, and r e.g., we can impose the condition P ≺ 0 to make
the separating surface ellipsoidal. In effect, it implies that we are looking for an
ellipsoid that contains all the points x1, ..., xN but none of the points y1, ..., yM .The
homogeneity in P ,q,r is used to rewrite the constraintP ≺ 0 as P ≺ −I. Thus, the
quadratic discrimination problem can be reduced to a Semidefinite Programming
feasibility problem that is stated below [52]:

find P, q, r

subject to xTi Pxi + qTxi + r ≥ 1, i = 1, 2, . . . , N

yTi Pyi + qTyi + r ≤ −1, i = 1, 2, . . . ,M

P � −I (22)

5.6.1 Quadratic Fall Classifier

In this section, we build a quadratic classfier specifically for fall detection. The
classifier is based on the framework developed in [53]. In [53], the authors design a
linear binary classifier while for our purposes, as can be seen from the scatter plot
in Fig. 40, a linear classifier will perform poorly. Our goal is to predict the target
class designated by t i.e., t ∈ {1,−1} for a given observed x. We assume the vector
x to be of dimension equal to 2 for simplicity i.e., x ∈ R2. The quadratic classifier
we choose is the following:

f(x) = xTAx− 1 (23)

where the above classifier is an ellipse defined completely by the matrix A. To make
the problem simpler, we assume A to be diagonal i.e.,

A =

[
d1 0

0 d2

]

This has the advantage that we need to determine only two parameters thereby
making the analysis simple. We are givenN training data points xi where i = 1, ...N .
To each data point, we assign its corresponding class ti

ti =

−1 if f(x) <= 0,

1 if f(x) > 0.

5 ALGORITHMS FOR FALL DETECTION 46

To measure the confidence of our classification, we define the so called margin which
is given by

mi = tif(xi) (24)

A margin mi < 0 indicates xi is misclassified while mi > 0 implies correct
classification. Thus, the goal is to determine the best A matrix such that percentage
of misclassification is minimized. In order to do so, we assign a cost for classification
errors defined which is given by

C(A) =
1

2

N∑
i=1

(mi − p)2 (25)

Substituting f(x) in the cost function, the cost function can be expressed in terms
of the diagonal values d1 and d2as follows:

C(A) = dTWd− cTd+ b (26)

where d =

[
d1

d2

]
, W =

∑N
i=1Ai, c =

∑N
i=1 ci, ci =

[
ptx21 ptx22

]
and Ai is of the form

Ai =

[
t2x41 x21x

2
2t

2

x21x
2
2t

2 t2x42

]
(27)

The cost function in (26) is quadratic in the parameters di and subject to constraints
of W being positive semidefinite and d > 0, we have unique minimizer to the (26).
The minimizer is obtained by differentiating (26) with respect to the vector d, setting
the derivate to zero and solving for d to obtain

d = W−1c. (28)

Excellent numerical methods exist that can evaluate matrix inverses efficiently [54].

We now present results on the obtained quadratic classifier using the training
measurement data from the accelerometer. Figures 41 and 42 show the two classes
which are the fall and non-fall-data. The fall data is classified under the target class
of ti = 1 while the non-fall data class is ti = −1. The quadratic classifier is obtained
using the approach discussed above and is shown by the black elliptical curve in the
figures. A cursory glance indicates a good separation between these two classes. For
this training data set, the percentage of miss classification is 12 percent.

5 ALGORITHMS FOR FALL DETECTION 47

Figure 41: Scatterplot of quadratic classifier along x y directions

Figure 42: Scatterplot of quadratic classifier along y z directions

6 SUMMARY 48

6 Summary

This thesis deals with mobile sensor data measurements for fall detection in order
to provide an economical, mass deployable solution for home based care of elderly
people. During the the last century life expectancy has increased dramatically due
to advances in health care. In all cultures, it is universally acknowledged that taking
care of elderly people is an important social responsibility. However, in countries
such as Finland and Japan demographic shifts has reduced the number of potential
caregivers. The most economical solution is to provide the elderly with health care
at home.

Earlier paradigms in fall detection are based on sensors being attached to the
body of a person of interest to track motion. Modern mobile devices are ubiquitous
and have multiple onboard sensors like gyroscope, accelerometer, magnetometer and
barometric sensor. A mobile phone can be used instead compared to solutions that
require sensors being attached to a body. Data collected from multiple onboard
sensors can be used to detect falls. This approach is more cost effective and easier
to implement because all that is required is downloading an application onto a mobile
phone.

6.1 Contribution

In this thesis, we develop an android application to read and store data from
various sensors onboard an Android mobile phone. Using the application, various
measurements are taken for different movements like walking, climbing and falling.
The collected data is then used to train algorithms that detect falls. We demonstrate
the efficacy of these methods for fall detection. This research is a step towards
providing an economical and mass deployable solution for home based care of elderly
people.

6.2 Future Work

The Android application can be enhanced to provide real time detection of falls.
Improvements can be made to the fall detection algorithm by using other machine
learning techniques including deep learning algorithms. Remote monitoring of
patients can be improved through indoor localization to identify where exactly
the person is in real time so that emergency services can respond more effectively.

6 SUMMARY 49

Indoor tracking of the elderly is a future research work. Sensor Data Fusion might
improve the overall performance of a remote health care system. Accessories such
as heartbeat monitor, blood pressure monitor and sensors on wrist watches can be
added to improve the overall performance. The data collected can also be used for
analysis of human behavioural patterns.

REFERENCES 50

References

[1] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews,, vol. 37, no. 6, pp. 1067–1080,
2007.

[2] S. Abbate, M. Avvenuti, P. Corsini, J. Light, and A. Vecchi, “Monitoring
of human movements for fall detection and activities recognition in elderly
care using wireless sensor network: A survey,” Wireless Sensor Networks:
Application-Centric Design Book, 2010.

[3] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: Principles and
approaches,” Neurocomputing, vol. 100, pp. 144 – 152, 2013.

[4] B. Celler, W. Earnshaw, E. Ilsar, L. Betbeder-Matibet, M. Harris, R. Clark,
T. Hesketh, and N. Lovell, “Remote monitoring of health status of the elderly
at home. a multidisciplinary project on aging at the university of new south
wales,” International Journal of Bio-Medical Computing, vol. 40, no. 2, pp. 147
– 155, 1995.

[5] Y. Lee, J. Kim, M. Son, and M. Lee, “Implementation of accelerometer sensor
module and fall detection monitoring system based on wireless sensor network,”
in 29th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, 2007, pp. 2315–2318.

[6] Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and G. Zhou,
“Accurate, fast fall detection using gyroscopes and accelerometer-derived
posture information,” in 2009 Sixth International Workshop on Wearable and
Implantable Body Sensor Networks, 2009, pp. 138–143.

[7] R. Gutiérrez, J. J. García, J. C. García, L. Marnane, D. Gualda, S. Fernández,
and E. Garcia, “Activity monitoring and emergency warning with location
information of the user,” in 7th IEEE International Symposium on Intelligent
Signal Processing, Sept 2011, pp. 1–6.

[8] M. Tolkiehn, L. Atallah, B. Lo, and G. Z. Yang, “Direction sensitive fall
detection using a triaxial accelerometer and a barometric pressure sensor,” in
2011 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2011, pp. 369–372.

REFERENCES 51

[9] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, “Mobile phone-based pervasive
fall detection,” Personal and Ubiquitous Computing, vol. 14, no. 7, pp. 633–643,
2010.

[10] N. Eagle and A. Pentland, “Reality mining: Sensing complex social systems,”
Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–268, 2006.

[11] S. H. Fang, Y. C. Liang, and K. M. Chiu, “Developing a mobile phone-based fall
detection system on android platform,” in 2012 Computing, Communications
and Applications Conference, Jan 2012, pp. 143–146.

[12] T. Hori, Y. Nishida, H. Aizawa, S. Murakami, and H. Mizoguchi, “Sensor
network for supporting elderly care home,” in Proceedings of IEEE Sensors,
2004, pp. 575–578.

[13] A. Godfrey, A. Bourke, G. Ólaighin, P. van de Ven, and J. Nelson, “Activity
classification using a single chest mounted tri-axial accelerometer,” Medical
Engineering and Physics, vol. 33, no. 9, pp. 1127 – 1135, 2011.

[14] M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg, and T. Jämsä,
“Sensitivity and specificity of fall detection in people aged 40 years and over,”
Gait and Posture, vol. 29, no. 4, pp. 571 – 574, 2009.

[15] M. Benocci, C. Tacconi, E. Farella, L. Benini, L. Chiari, and L. Vanzago,
“Accelerometer-based fall detection using optimized ZigBee data streaming,”
Microelectronics Journal, vol. 41, no. 11, pp. 703 – 710, 2010.

[16] M. Nyan, F. E. Tay, and M. Z. Mah, “Application of motion analysis system in
pre-impact fall detection,” Journal of Biomechanics, vol. 41, no. 10, pp. 2297 –
2304, 2008.

[17] M. Valero, I. Pau, L. Vadillo, A. Penhalver, E. Gago, M. Martin, M. Gonzalez,
and E. Portillo, “An implementation framework for smart home telecare
services,” in Future Generation Communication and Networking, vol. 2, Dec
2007, pp. 60–65.

[18] J. S. Wilson, Sensor technology handbook. Elsevier, 2004.

[19] O. J. Woodman, “An introduction to inertial navigation,” University of
Cambridge, Computer Laboratory, Tech. Rep., 2007.

REFERENCES 52

[20] A beginner’s guide to accelerometers. [Online]. Available: https://www.
dimensionengineering.com/info/accelerometers

[21] Accelerometer. [Online]. Available: https://en.wikipedia.org/wiki/
Accelerometer

[22] Accelerometer. [Online]. Available: http://www.sensorwiki.org/doku.php/
sensors/accelerometer

[23] Gyroscope. [Online]. Available: http://sensorwiki.org/doku.php/sensors/
gyroscope

[24] Gyroscope. [Online]. Available: https://en.wikipedia.org/wiki/Gyroscope

[25] Magnetometer in smart phones and tablets. [Online]. Available: http:
//www.rotoview.com/magnetometer.htm

[26] Magnetometer. [Online]. Available: https://en.wikipedia.org/wiki/
Magnetometer

[27] Pressure sensor. [Online]. Available: https://en.wikipedia.org/wiki/Pressure_
sensor

[28] Low-power barometric pressure sensor for mobile and wearable
gadgets and IOT devices. [Online]. Available: https://phys.org/news/
2015-02-low-power-barometric-pressure-sensor-mobile.html

[29] Global positioning system. [Online]. Available: https://en.wikipedia.org/wiki/
Global_Positioning_System

[30] Google nexus 4. [Online]. Available: http://www.android.gs/device/
google-nexus-4/

[31] Nexus 4. [Online]. Available: https://en.wikipedia.org/wiki/Nexus_4

[32] Motorola XOOM MZ604. [Online]. Available: http://www.gsmarena.com/
motorola_xoom_mz604-3833.php

[33] Android 0 developer preview. [Online]. Available: https://developer.android.
com/

[34] Motion sensors. [Online]. Available: https://developer.android.com/guide/
topics/sensors/sensors_motion.html

https://www.dimensionengineering.com/info/accelerometers
https://www.dimensionengineering.com/info/accelerometers
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Accelerometer
http://www.sensorwiki.org/doku.php/sensors/accelerometer
http://www.sensorwiki.org/doku.php/sensors/accelerometer
http://sensorwiki.org/doku.php/sensors/gyroscope
http://sensorwiki.org/doku.php/sensors/gyroscope
https://en.wikipedia.org/wiki/Gyroscope
http://www.rotoview.com/magnetometer.htm
http://www.rotoview.com/magnetometer.htm
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Pressure_sensor
https://en.wikipedia.org/wiki/Pressure_sensor
https://phys.org/news/2015-02-low-power-barometric-pressure-sensor-mobile.html
https://phys.org/news/2015-02-low-power-barometric-pressure-sensor-mobile.html
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
http://www.android.gs/device/google-nexus-4/
http://www.android.gs/device/google-nexus-4/
https://en.wikipedia.org/wiki/Nexus_4
http://www.gsmarena.com/motorola_xoom_mz604-3833.php
http://www.gsmarena.com/motorola_xoom_mz604-3833.php
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/guide/topics/sensors/sensors_motion.html
https://developer.android.com/guide/topics/sensors/sensors_motion.html

REFERENCES 53

[35] M. Barkat, Signal Detection and Estimation. Artech House, 2005.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[37] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization:
Analysis, algorithms, and engineering applications. SIAM, 2001.

[38] Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in
Convex Programming. SIAM, 1994.

[39] S. Kay, Fundamentals of Statistical Signal Processing: Detection theory.
Prentice-Hall, 1998.

[40] L. Scharf and C. Demeure, Statistical Signal Processing: Detection, Estimation,
and Time Series Analysis.

[41] H. Van Trees, K. Bell, and Z. Tian, Detection Estimation and Modulation
Theory, Detection, Estimation, and Filtering Theory.

[42] J. Moragues, L. Vergara, J. Gosálbez, and I. Bosch, “An extended energy
detector for non-gaussian and non-independent noise,” Signal Processing,
vol. 89, no. 4, pp. 656 – 661, 2009.

[43] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proceedings
of the IEEE, vol. 55, no. 4, pp. 523–531, April 1967.

[44] ——, “Energy detection of a random process in colored gaussian noise,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-5, no. 2, pp. 156–
162, March 1969.

[45] B. Polyak, “Convexity of quadratic transformations and its use in control and
optimization,” Journal of Optimization Theory and Applications, vol. 99, no. 3,
pp. 553–583, 1998.

[46] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2010.

[47] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, 2006.

[48] D. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

REFERENCES 54

[49] M. C. Grant and S. P. Boyd, Recent Advances in Learning and Control.
Springer, 2008, ch. Graph Implementations for Nonsmooth Convex Programs,
pp. 95–110.

[50] S. Watanabe, Pattern recognition: Human and mechanical. Wiley, 1985.

[51] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press,
2013.

[52] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review,
vol. 38, no. 1, pp. 49–95, Mar. 1996.

[53] T. Nguyen and S. Sanner, “Algorithms for direct 0–1 loss optimization in binary
classification,” in Proceedings of the 30th International Conference on Machine
Learning, 2013, pp. 1085–1093.

[54] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.

	Abstract
	Acknowledgements
	Contents
	List of Symbols
	List of Figures
	Introduction
	Background
	Motivation
	Research Problem and Scope
	Contribution of the Thesis
	Outline of the Thesis

	Sensors
	Available Sensors
	Accelerometer
	Gyroscope
	Magnetometer
	Barometric Sensor
	GPS

	Application Development
	Android Platform
	Android Software Development
	Setup
	Development
	Debugging and Testing
	Publishing

	Activity
	Application

	Sensor Measurements
	Measurement of Sensory Data for Phone in Stationary Motion
	Measurement of Sensory Data for Activity Walking
	Measurement of Sensory Data for Activity Climbing Stairs
	Measurement of Sensory Data for Phone in Flight Motion
	Measurement of Sensory Data for Activity Falling Down
	Measurement of Wifi Signal Strength for Phone in Motion

	Algorithms For Fall Detection
	Detection Theory
	Classical Energy Detector
	Empirical Fall detector
	Fall Detection as a Geometrical Classification Problem
	Pattern Recognition or Classification
	Quadratic Binary Classification
	Quadratic Fall Classifier

	Summary
	Contribution
	Future Work

	Bibliography

