139 research outputs found

    Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements

    Full text link
    We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m

    LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph- Matching

    Get PDF
    Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (ULPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaAgencia Estatal de Investigació

    Design and Testing of a Multi-Sensor Pedestrian Location and Navigation Platform

    Get PDF
    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided

    Robust localization with wearable sensors

    Get PDF
    Measuring physical movements of humans and understanding human behaviour is useful in a variety of areas and disciplines. Human inertial tracking is a method that can be leveraged for monitoring complex actions that emerge from interactions between human actors and their environment. An accurate estimation of motion trajectories can support new approaches to pedestrian navigation, emergency rescue, athlete management, and medicine. However, tracking with wearable inertial sensors has several problems that need to be overcome, such as the low accuracy of consumer-grade inertial measurement units (IMUs), the error accumulation problem in long-term tracking, and the artefacts generated by movements that are less common. This thesis focusses on measuring human movements with wearable head-mounted sensors to accurately estimate the physical location of a person over time. The research consisted of (i) providing an overview of the current state of research for inertial tracking with wearable sensors, (ii) investigating the performance of new tracking algorithms that combine sensor fusion and data-driven machine learning, (iii) eliminating the effect of random head motion during tracking, (iv) creating robust long-term tracking systems with a Bayesian neural network and sequential Monte Carlo method, and (v) verifying that the system can be applied with changing modes of behaviour, defined as natural transitions from walking to running and vice versa. This research introduces a new system for inertial tracking with head-mounted sensors (which can be placed in, e.g. helmets, caps, or glasses). This technology can be used for long-term positional tracking to explore complex behaviours

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions

    Full text link
    This paper introduces a method for the substantial reduction of heading errors in inertial navigation systems used under GPS-denied conditions. Presumably, the method is applicable for both vehicle-based and personal navigation systems, but experiments were performed only with a personal navigation system called 'personal dead reckoning' (PDR). In order to work under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit (IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE) method was developed, which estimates gyro drift errors by comparing IMU-derived heading to the direction of the nearest street segment in a database of street maps. A heuristic component in this method provides tolerance to short deviations from walking along the street, such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero, and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method in detail and presents experimental results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90785/1/0957-0233_22_2_025205.pd

    적분 및 매개변수 기법 융합을 이용한 스마트폰 다중 동작에서 보행 항법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계항공공학부, 2020. 8. 박찬국.In this dissertation, an IA-PA fusion-based PDR (Pedestrian Dead Reckoning) using low-cost inertial sensors is proposed to improve the indoor position estimation. Specifically, an IA (Integration Approach)-based PDR algorithm combined with measurements from PA (Parametric Approach) is constructed so that the algorithm is operated even in various poses that occur when a pedestrian moves with a smartphone indoors. In addition, I propose an algorithm that estimates the device attitude robustly in a disturbing situation by an ellipsoidal method. In addition, by using the machine learning-based pose recognition, it is possible to improve the position estimation performance by varying the measurement update according to the poses. First, I propose an adaptive attitude estimation based on ellipsoid technique to accurately estimate the direction of movement of a smartphone device. The AHRS (Attitude and Heading Reference System) uses an accelerometer and a magnetometer as measurements to calculate the attitude based on the gyro and to compensate for drift caused by gyro sensor errors. In general, the attitude estimation performance is poor in acceleration and geomagnetic disturbance situations, but in order to effectively improve the estimation performance, this dissertation proposes an ellipsoid-based adaptive attitude estimation technique. When a measurement disturbance comes in, it is possible to update the measurement more accurately than the adaptive estimation technique without considering the direction by adjusting the measurement covariance with the ellipsoid method considering the direction of the disturbance. In particular, when the disturbance only comes in one axis, the proposed algorithm can use the measurement partly by updating the other two axes considering the direction. The proposed algorithm shows its effectiveness in attitude estimation under disturbances through the rate table and motion capture equipment. Next, I propose a PDR algorithm that integrates IA and PA that can be operated in various poses. When moving indoors using a smartphone, there are many degrees of freedom, so various poses such as making a phone call, texting, and putting a pants pocket are possible. In the existing smartphone-based positioning algorithms, the position is estimated based on the PA, which can be used only when the pedestrian's walking direction and the device's direction coincide, and if it does not, the position error due to the mismatch in angle is large. In order to solve this problem, this dissertation proposes an algorithm that constructs state variables based on the IA and uses the position vector from the PA as a measurement. If the walking direction and the device heading do not match based on the pose recognized through machine learning technique, the position is updated in consideration of the direction calculated using PCA (Principal Component Analysis) and the step length obtained through the PA. It can be operated robustly even in various poses that occur. Through experiments considering various operating conditions and paths, it is confirmed that the proposed method stably estimates the position and improves performance even in various indoor environments.본 논문에서는 저가형 관성센서를 이용한 보행항법시스템 (PDR: Pedestrian Dead Reckoning)의 성능 향상 알고리즘을 제안한다. 구체적으로 보행자가 실내에서 스마트폰을 들고 이동할 때 발생하는 다양한 동작 상황에서도 운용될 수 있도록, 매개변수 기반 측정치를 사용하는 적분 기반의 보행자 항법 알고리즘을 구성한다. 또한 타원체 기반 자세 추정 알고리즘을 구성하여 외란 상황에서도 강인하게 자세를 추정하는 알고리즘을 제안한다. 추가적으로 기계학습 기반의 동작 인식 정보를 이용, 동작에 따른 측정치 업데이트를 달리함으로써 위치 추정 성능을 향상시킨다. 먼저 스마트폰 기기의 이동 방향을 정확하게 추정하기 위해 타원체 기법 기반 적응 자세 추정을 제안한다. 자세 추정 기법 (AHRS: Attitude and Heading Reference System)은 자이로를 기반으로 자세를 계산하고 자이로 센서오차에 의해 발생하는 드리프트를 보정하기 위해 측정치로 가속도계와 지자계를 사용한다. 일반적으로 가속 및 지자계 외란 상황에서는 자세 추정 성능이 떨어지는데, 추정 성능을 효과적으로 향상시키기 위해 본 논문에서는 타원체 기반 적응 자세 추정 기법을 제안한다. 측정치 외란이 들어오는 경우, 외란의 방향을 고려하여 타원체 기법으로 측정치 공분산을 조정해줌으로써 방향을 고려하지 않은 적응 추정 기법보다 정확하게 측정치 업데이트를 할 수 있다. 특히 외란이 한 축으로만 들어오는 경우, 제안한 알고리즘은 방향을 고려해 나머지 두 축에 대해서는 업데이트 해줌으로써 측정치를 부분적으로 사용할 수 있다. 레이트 테이블, 모션 캡쳐 장비를 통해 제안한 알고리즘의 자세 성능이 향상됨을 확인하였다. 다음으로 다양한 동작에서도 운용 가능한 적분 및 매개변수 기법을 융합하는 보행항법 알고리즘을 제안한다. 스마트폰을 이용해 실내를 이동할 때에는 자유도가 크기 때문에 전화 걸기, 문자, 바지 주머니 넣기 등 다양한 동작이 발생 가능하다. 기존의 스마트폰 기반 보행 항법에서는 매개변수 기법을 기반으로 위치를 추정하는데, 이는 보행자의 진행 방향과 기기의 방향이 일치하는 경우에만 사용 가능하며 일치하지 않는 경우 자세 오차로 인한 위치 오차가 크게 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 적분 기반 기법을 기반으로 상태변수를 구성하고 매개변수 기법을 통해 나오는 위치 벡터를 측정치로 사용하는 알고리즘을 제안한다. 만약 기계학습을 통해 인식한 동작을 바탕으로 진행 방향과 기기 방향이 일치하지 않는 경우, 주성분 분석을 통해 계산한 진행방향을 이용해 진행 방향을, 매개변수 기법을 통해 얻은 보폭으로 거리를 업데이트해 줌으로써 보행 중 발생하는 여러 동작에서도 강인하게 운용할 수 있다. 다양한 동작 상황 및 경로를 고려한 실험을 통해 위에서 제안한 방법이 다양한 실내 환경에서도 안정적으로 위치를 추정하고 성능이 향상됨을 확인하였다.Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contribution 5 1.3 Organization of the Dissertation 6 Chapter 2 Pedestrian Dead Reckoning System 8 2.1 Overview of Pedestrian Dead Reckoning 8 2.2 Parametric Approach 9 2.2.1 Step detection algorithm 11 2.2.2 Step length estimation algorithm 13 2.2.3 Heading estimation 14 2.3 Integration Approach 15 2.3.1 Extended Kalman filter 16 2.3.2 INS-EKF-ZUPT 19 2.4 Activity Recognition using Machine Learning 21 2.4.1 Challenges in HAR 21 2.4.2 Activity recognition chain 22 Chapter 3 Attitude Estimation in Smartphone 26 3.1 Adaptive Attitude Estimation in Smartphone 26 3.1.1 Indirect Kalman filter-based attitude estimation 26 3.1.2 Conventional attitude estimation algorithms 29 3.1.3 Adaptive attitude estimation using ellipsoidal methods 30 3.2 Experimental Results 36 3.2.1 Simulation 36 3.2.2 Rate table experiment 44 3.2.3 Handheld rotation experiment 46 3.2.4 Magnetic disturbance experiment 49 3.3 Summary 53 Chapter 4 Pedestrian Dead Reckoning in Multiple Poses of a Smartphone 54 4.1 System Overview 55 4.2 Machine Learning-based Pose Classification 56 4.2.1 Training dataset 57 4.2.2 Feature extraction and selection 58 4.2.3 Pose classification result using supervised learning in PDR 62 4.3 Fusion of the Integration and Parametric Approaches in PDR 65 4.3.1 System model 67 4.3.2 Measurement model 67 4.3.3 Mode selection 74 4.3.4 Observability analysis 76 4.4 Experimental Results 82 4.4.1 AHRS results 82 4.4.2 PCA results 84 4.4.3 IA-PA results 88 4.5 Summary 100 Chapter 5 Conclusions 103 5.1 Summary of the Contributions 103 5.2 Future Works 105 국문초록 125 Acknowledgements 127Docto

    Visual-Inertial first responder localisation in large-scale indoor training environments.

    Get PDF
    Accurately and reliably determining the position and heading of first responders undertaking training exercises can provide valuable insights into their situational awareness and give a larger context to the decisions made. Measuring first responder movement, however, requires an accurate and portable localisation system. Training exercises of- ten take place in large-scale indoor environments with limited power infrastructure to support localisation. Indoor positioning technologies that use radio or sound waves for localisation require an extensive network of transmitters or receivers to be installed within the environment to ensure reliable coverage. These technologies also need power sources to operate, making their use impractical for this application. Inertial sensors are infrastructure independent, low cost, and low power positioning devices which are attached to the person or object being tracked, but their localisation accuracy deteriorates over long-term tracking due to intrinsic biases and sensor noise. This thesis investigates how inertial sensor tracking can be improved by providing correction from a visual sensor that uses passive infrastructure (fiducial markers) to calculate accurate position and heading values. Even though using a visual sensor increase the accuracy of the localisation system, combining them with inertial sensors is not trivial, especially when mounted on different parts of the human body and going through different motion dynamics. Additionally, visual sensors have higher energy consumption, requiring more batteries to be carried by the first responder. This thesis presents a novel sensor fusion approach by loosely coupling visual and inertial sensors to create a positioning system that accurately localises walking humans in largescale indoor environments. Experimental evaluation of the devised localisation system indicates sub-metre accuracy for a 250m long indoor trajectory. The thesis also proposes two methods to improve the energy efficiency of the localisation system. The first is a distance-based error correction approach which uses distance estimation from the foot-mounted inertial sensor to reduce the number of corrections required from the visual sensor. Results indicate a 70% decrease in energy consumption while maintaining submetre localisation accuracy. The second method is a motion type adaptive error correction approach, which uses the human walking motion type (forward, backward, or sideways) as an input to further optimise the energy efficiency of the localisation system by modulating the operation of the visual sensor. Results of this approach indicate a 25% reduction in the number of corrections required to keep submetre localisation accuracy. Overall, this thesis advances the state of the art by providing a sensor fusion solution for long-term submetre accurate localisation and methods to reduce the energy consumption, making it more practical for use in first responder training exercises

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table
    corecore