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Abstract
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Approaches for PDR in Multiple Poses of

Smartphone

Soyoung Park
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Seoul National University

In this dissertation, an IA-PA fusion-based PDR (Pedestrian Dead Reckon-

ing) using low-cost inertial sensors is proposed to improve the indoor position

estimation. Specifically, an IA (Integration Approach)-based PDR algorithm

combined with measurements from PA (Parametric Approach) is constructed

so that the algorithm is operated even in various poses that occur when a

pedestrian moves with a smartphone indoors. In addition, I propose an algo-

rithm that estimates the device attitude robustly in a disturbing situation by

an ellipsoidal method. In addition, by using the machine learning-based pose

recognition, it is possible to improve the position estimation performance by

varying the measurement update according to the poses.

First, I propose an adaptive attitude estimation based on ellipsoid technique

to accurately estimate the direction of movement of a smartphone device. The

AHRS (Attitude and Heading Reference System) uses an accelerometer and a

magnetometer as measurements to calculate the attitude based on the gyro and
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to compensate for drift caused by gyro sensor errors. In general, the attitude

estimation performance is poor in acceleration and geomagnetic disturbance

situations, but in order to effectively improve the estimation performance, this

dissertation proposes an ellipsoid-based adaptive attitude estimation technique.

When a measurement disturbance comes in, it is possible to update the mea-

surement more accurately than the adaptive estimation technique without con-

sidering the direction by adjusting the measurement covariance with the ellip-

soid method considering the direction of the disturbance. In particular, when

the disturbance only comes in one axis, the proposed algorithm can use the

measurement partly by updating the other two axes considering the direction.

The proposed algorithm shows its effectiveness in attitude estimation under

disturbances through the rate table and motion capture equipment.

Next, I propose a PDR algorithm that integrates IA and PA that can be

operated in various poses. When moving indoors using a smartphone, there are

many degrees of freedom, so various poses such as making a phone call, tex-

ting, and putting a pants pocket are possible. In the existing smartphone-based

positioning algorithms, the position is estimated based on the PA, which can

be used only when the pedestrian’s walking direction and the device’s direction

coincide, and if it does not, the position error due to the mismatch in angle is

large. In order to solve this problem, this dissertation proposes an algorithm

that constructs state variables based on the IA and uses the position vector

from the PA as a measurement. If the walking direction and the device heading

do not match based on the pose recognized through machine learning technique,

the position is updated in consideration of the direction calculated using PCA

(Principal Component Analysis) and the step length obtained through the PA.

It can be operated robustly even in various poses that occur.

Through experiments considering various operating conditions and paths,
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it is confirmed that the proposed method stably estimates the position and

improves performance even in various indoor environments.

Keywords: Indoor navigation, Pedestrian Dead Reckoning (PDR), Extended

Kalman Filter (EKF), Ellipsoidal method-based adaptive attitude estimation,

IA (Integration Approach)-PA (Parametric Approach) fusion method

Student Number: 2013-20674
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Chapter 1

Introduction

1.1 Motivation and Background

Indoor navigation has been actively studied as the growing number of people

desires to locate themselves through smart devices. Unlike outdoor navigation,

GPS is not available in an indoor environment due to inadequate coverage of

the satellite signal and multipath errors, various alternatives are presented with

additional sensors or methods [3]. A direct sensing-based localization tracks

the position of a pedestrian by the sensing of identifiers or tags installed in

the environment before experiments [4]. Those include RFID (Radio-Frequency

IDentification), IR (InfraRed), Ultrasound, and Bluetooth. RFID stores and

retrieves data by means of electromagnetic transmission to an RF compatible

integrated circuit [5]. The light and small tags of a RFID positioning system

are beneficial when used in conjunction with many applications, but numerous

types of infrastructure are required for accurate positioning [6]. IR localization

uses IR transmitters installed in a known location, with a unique ID broad-

cast by each transmitter [7]. Although IR-based positioning is accurate and

uses small, and light-weight components, the system is expensive and sensitive

to interference from natural and artificial light [8]. Ultrasound uses emitters

which are installed in the infrastructure to broadcast ultrasound waves, and a

receiver carried by a user receives these signals from the two closest emitters to
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determine his location [9]. The system is inexpensive and has a wide coverage

area; however, ultrasound-based positioning systems often experience blocked

or reflected signals or are affected by noise sources and low measurement accu-

racy [10]. A wireless standard for WPANs (Wireless Personal Area Networks),

Bluetooth, is light and ubiquitous given its use in numerous devices, such as

laptops, desktops, and mobile phones [11]. Despite its advantages of reusability

and the fact that Bluetooth is low-cost and powerful technology, its accuracy

is low, and it is sensitive to environmental changes [12].

With regard to pattern-recognition-based localization, well-known examples

are WLAN fingerprinting and vision [4]. WLAN (Wireless Local Area Net-

work) can also be used to estimate the location of a user with a device, and

the infrastructure is already available for WLAN technology, which leads to

low installation costs [13]. However, various obstacles, including walls, furni-

ture, and doors, degrade the performance accuracy of WLAN, and reducing

the power used by WLAN devices is another important issue [3]. Captured im-

ages of environments are matched with a database to determine the position

and orientation of the user when using vision techniques [14]. The requirement

of high computing power for image matching is one of the main challenges af-

fecting this method [15]. The methods that fuse the information from cameras

and IMUs (Inertial Measurement Unit) for navigation purpose are often called

VINS (Visual-Inertial Navigation System) [16–18], and it has been extensively

studied and applied in many industrial fields in recent years [19]. Indoor naviga-

tion with the VINS degrades in rapid motion and lens occlusion on the camera

measurements.

Pedestrian positioning using inertial sensors has been used in a wide range of

fields, including ambulatory human motion analysis. Micromachined gyroscopes

and accelerometers are used in many applications, such as monitoring daily

2



living activities [20–22], evaluating internal mechanical workload in ergonomic

studies [23–26], measuring nervous system disorders [27–30], and mixed and

augmented reality [31–33].

DR (Dead Reckoning)-based localization uses sensors attached to the users

to estimate relative positions based on the previous or known position [34]. A

benefit of the DR approach is low installation cost and does not require any

additional sensors, but the accumulation errors constitute a significant problem

of this technique [35]. Localization using DR is primarily categorized as IA

and PA. For the tracking with shoe-mounted inertial sensors, IA-based system

that estimates the current position by integrating acceleration is applicable. It is

because one of the strong pseudo-measurements, ZUPT (Zero velocity UPdaTe),

uses the velocity of a foot being zero during the stance phase [36,37]. When the

sensor is held on hand such as smartphones, on the other hand, the PA system

that estimates position by step detection, step length estimation, and heading

estimation is applied instead of the IA. To estimate the heading of a device is an

essential part of the PA, and the attitude estimation using the angular rate from

the gyroscope, the specific force from the accelerometer, magnetic field from the

magnetometer are called AHRS. Using the characteristics that gyro measure has

a low-frequency component, and accelerometer and magnetometer have high-

frequency one, the AHRS combines those sensors with filtering methods such

as complementary filter and Kalman filter. However, its performance degrades,

especially when the sensor is moving fast or exposed to a magnetic disturbance.

In addition, handheld smartphones are usually unrestricted and often have

device heading changes that do not match the direction of walking. In order

to remove the heading offset between them, some researchers have attempted

to solve this problem [38–43]. In [38], the various PCA-based walking direction

estimation methods are compared with broad experimental study in case of
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pocket. [39] uses a rotating axis for heading estimation dealing with swing, call,

trouser pocket poses in the smartphone. Tian proposes adaptive offset compen-

sation using the heading in straight holding mode under the swing, holding,

and trouser pocket [40]. PCA-GA (Global Acceleration) method is proposed

with the combination of TRIAD heading estimation in [41]. In addition, Deng

proposes heading estimation using PCA [42, 43]. The above methods use PCA

or fixed offset angle to solve the heading mismatch after the pose from the ma-

chine learning such as DT (Decision Tree), SVM (Support Vector Machine), or

FSM (Finite State Machine). In the PA-based PDR system, the small heading

difference leads to large position error, whereas the PCA-based methods vary

heading values significantly depending on the data distribution between two

steps. In addition, PDR components of step detection, step length, and head-

ing estimation are different in terms of the classified poses, which also means

that the misclassification leads to position errors in PDR.

In this dissertation, there are two contributions. The purpose of those al-

gorithms is to implement an accurate and consistent PDR algorithm including

pose changes while walking. To start with, accurate device attitude estimation

using the ellipsoidal method is proposed. While walking indoors with a smart-

phone, acceleration and magnetic disturbance frequently occur, which degrades

the attitude estimation performance. The proposed ellipsoidal method inflates

the measurement covariance by considering the direction of measurements. This

allows estimating attitude more accurately than the adaptive algorithms not

considering the measurement direction. Next, in order to overcome the limita-

tions of conventional PA-based PDR in smartphone, the integration of IA and

PA PDR is proposed. Specifically, pedestrian navigation algorithm in IA is im-

plemented using the attitude and step length from the PA. With the help of the

estimated device attitude and classified poses by machine learning method, it
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is possible to recognize the heading and walking direction mismatch situations.

Then, the walking direction acquired from the PCA of tangential acceleration

data is used to update the IA states. The proposed algorithm is operated even in

various poses that occur when a pedestrian moves with a smartphone indoors.

The proposed algorithm is for real-time indoor pedestrian positioning sys-

tems. It can also be used in various fields such as health care systems, mixed

and augmented reality and motion capture systems.

1.2 Objectives and Contribution

The goal of this dissertation research is an attempt to improve the perfor-

mance of smartphone-based PDR systems using low-cost IMUs. The proposed

algorithm uses the ellipsoid method for adaptive attitude estimation and fusion

of the IA and PA to estimate the accurate position of a pedestrian under various

poses. The original contributions of this dissertation are:

1. Adaptive attitude estimation using ellipsoidal method

• For a consistent and accurate estimation, the adaptive attitude

algorithm using an ellipsoidal method is proposed.

• Residual vectors are first acquired to deal with measurement errors

from the acceleration and magnetic disturbance in AHRS.

• Comparing the residual vectors and measurement noises, the cov-

ering ellipsoid, measurement covariance, is estimated.

• The inflated measurement covariance is used in EKF to estimate

attitude errors and gyro bias errors.

• The proposed attitude algorithm works accurately with the rate

table, hand rotation with visual markers, and magnetic disturbing

experiments.
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2. Fusion of integration and parametric approach in PDR for multiple poses

• IA and PA-based PDR algorithm for position estimation is de-

signed.

• PDR states of IA are estimated using measurements from PA and

PCA.

• PCA of tangential acceleration is performed when the walking di-

rection and device attitude do not match to find the walking direc-

tion of poses.

• The four poses (text, shirt pocket, trouser pocket, and swing) are

classified using machine learning techniques to help find the mea-

surement updating mode.

• EKF uses ZUPT, AHRS, PA, and PCA to estimate and correct the

error states of IA.

• The proposed algorithm, as a result, ensures observability of error

states and position accuracy.

• The proposed algorithms can be applied in various fields such as

smartphone users in the buildings, first responders, virtual and aug-

mented reality.

1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows.

Chapter 2 gives an overview of the personal navigation system. IMU-based

pedestrian positioning methods are summarized. Conventional IA and PA-based

PDR algorithms and components are provided. In addition, machine learning

techniques for pose classification are described.

In chapter 3, a new approach to the adaptive attitude estimation using
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the ellipsoidal method is proposed. This algorithm inflates the measurement

covariance according to the residual vector, taking into account the residuals of

the accelerometer and magnetometer measurements. The proposed algorithm is

tested using rate table and visual marker references and shows its effectiveness

under various conditions.

Chapter 4 presents the fusion of IA and PA-based PDR system. Paramet-

ric step length and estimated device heading correct the error states in the

IA-based PDR. If the walking direction and device heading do not match, the

walking direction derived from the principal components of acceleration in navi-

gation frame is used for the measurement update. Pose classification by machine

learning and heading difference are used to find the correct measurement up-

date mode. The estimated position is tested with the trajectory including four

different poses.

Finally, in chapter 5, the major contributions of this dissertation is summa-

rized and an overview of the future research directions are presented.
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Chapter 2

Pedestrian Dead Reckoning System

2.1 Overview of Pedestrian Dead Reckoning

PDR is one of the inertial sensor-based pedestrian navigation systems. A

MEMS (Micro-Electro-Mechanical Systems) IMU with a 3-axis accelerometer,

gyroscope and magnetometer is used to estimate the location of a pedestrian

in the PDR. Recently, MEMS technology has made it possible to produce inex-

pensive lightweight and compact inertial sensors with low power consumption.

These are desirable characteristics for portable navigation systems, but the ac-

curacy of MEMS IMUs is relatively low. To overcome this disadvantage, various

types of PDR algorithms have been developed.

PDR is a dead reckoning system that makes the assumption that the posi-

tion of a pedestrian is changed by steps. Based on this, the PDR estimates the

location of the pedestrian by observing the movement of steps. Depending on

the position of the installed sensor, the PDR can be classified into the IA and

PA as in Fig. 2.1. The IA-based PDR system integrates an inertial sensor to

calculate the position and uses measurements such as zero velocity update or

contact phase velocity update to prevent an increase in exponential error from

the integral [35–37,44,45]. The system needs to find the correct phase for zero

velocity or contact phase measurements. Therefore, it is applied to the sensor

attached to the foot. However, the PDR with PA uses a parametric method

8



Figure 2.1: IA and PA-based PDR difference in 3D [1]

such as walking frequency, acceleration variance, etc. to estimate the current

position by estimating the distance from the previous step [46–48]. When a step

is detected, it is only required to calculate the current direction and the length

between them, so the mounting position of the sensor is irrelevant as long as the

direction of the device and the gait is matched. A representative application of

the PA scheme is waist-mounted [49, 50] and a handheld smartphone [51–55],

but the prerequisite is matching in device heading and walking direction.

This chapter describes the well-known approaches of PDR. The PA-based

PDR algorithm that can be used for mobile devices are first described in Section

2.2. The IA-based PDR with EKF (Extended Kalman Filter) and its applica-

tion to PDR are described in Section 2.3. The following sections provide more

information.

2.2 Parametric Approach

In this paper, the PDR methods are largely classified as IA and PA according

to the sensor location. The PA-based PDR is pedestrian-dependent method and

estimates its position by acquiring heading and distance between steps or a
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Figure 2.2: Definition of step and stride

Figure 2.3: PA-based PDR components

stride. As depicted in Fig. 2.2, a step is the distance between the foot moving

forward in front of the other one, and a stride is the distance between two

successive steps of the same foot [56].

In general, the PA-based PDR algorithm is composed of a step detection,

a step length estimation, and a heading estimation. The PA-PDR is generally

applied to mobile devices that can be located in various locations on the human

body. When the initial location is known, the PDR system estimates the relative

position from the previous step. Fig. 2.3 shows a simple block diagram of the

PA-based PDR algorithm, with each component described in a subsection to

follow.
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Figure 2.4: Step detection algorithms

2.2.1 Step detection algorithm

The first step in PA-based PDR is to identify steps. Step detection is usu-

ally an easy problem, but if you have false or miss detections, or if your smart-

phone’s action varies, you may encounter significant errors when estimating

overall walking distance. Even if the step length algorithm is accurate, errors

when estimating the position can be considerable due to inaccuracies in the

step detection process. Therefore, accurate step detection is the basis on which

an accurate estimation of the position can be made in the PDR method.

As shown in the Fig. 2.4, there are several existing step detection techniques,

including peak detection method, zero-crossing detection method, stance phase

detection method, and auto-correlation method. These methods use the outputs

of accelerometers and gyros [34, 45, 57]. The peak detection method has the

advantage of being able to detect a step accurately at the moment of a heel

strike, but there is a high possibility of misdetection in case local minimum for

the various speed of a pedestrian [41, 58, 59]. The zero-crossing method is easy

to implement the algorithm to the system but sensitive to the jitter around the

threshold [60, 61]. The stance phase detection method which is also called flat
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zone detection works well when the sensor is attached to the foot. However,

detecting a zero velocity zone is hardly made under the condition that user

is carrying a smartphone on hand or backpack. Lastly, correlating using step

templates is highly dependent on step and subject speed [62]. There are other

various step detection methods such as FSM [63], fast Fourier transform [64,65],

continuous wavelet transform [66], and dynamic time warping [67].

When it comes to navigate a pedestrian with a smartphone or tablet, place-

ments of the device should be considered for step detection. According to

the [68], the possible placements for unconstrained smartphone include hand-

held, texting, calling, trouser back and front pocket, handbag, backpack, and

shirt pocket [69], and those are usually classified through the machine learning

techniques.

The accelerometer attached to the body is affected not only by the accel-

eration of the body, but also by other factors such as noise and accelerometer

bias, gravity, etc. In this dissertation, a three-axis acceleration norm is used for

the step detection algorithm as (2.1).

fnorm =
√
f2
x + f2

y + f2
z (2.1)

where fnorm is the acceleration norm. fx, fy, fz denote the output of 3-axis

accelerometer in x-axis, y-axis and z-axis, respectively.

In addition, sliding window sum is used to reduce noise as follows.

SWS(k) =

k∑
t=k−N+1

fnorm(t) (2.2)

where SWS represents the sliding window sum and N represents the window

size. The window size is usually set smaller than the duration of the detected

phase.
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In case of the foot-mounted PDR, the stance phase detection is alternatively

processed while updating with the zero velocity measurements. It is detected

using norm of gyro [70, 71], the local variance of acceleration [72], and the

variances of simply modified signal features [73].

2.2.2 Step length estimation algorithm

Step length estimation can be divided into two main classes: direct meth-

ods and indirect methods [74]. The direct methods estimate the stride length

directly through integration. It has been found to apply this method to sen-

sors mounted on shank and pelvis [75–77]. The disadvantages of this method

are obvious: the sensor error must be accurately compensated and the atti-

tude must be calculated accurately. Otherwise, errors accumulate quickly due

to accumulation of errors by integration.

On the other hand, the indirect methods estimate step length using a model.

This method is also divided into geometric model and statistical model. The

first uses the biomechanical characteristics of the human body, so it is easy to

understand the proposed step length model. This includes inverted pendulum

model and empirical model. The pendulum model uses the relationship between

step length (SL), vertical displacement (H) and leg length (L) as (2.3).

SL = 2
√

2LH −H2 (2.3)

The empirical step length models are also widely used as (2.4).

SL = K 4
√
fvert,max − fvert,min (2.4)

where K is design parameter and fvert is a vertical acceleration. The above

step length estimation using biomechanical model is usually applied in waist-

mounted sensors. This also indicates that the model above is accurate when

sensor is in the center of mass and has incorrect limits in other placements.
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In case of statistical regression methods commonly used for a smartphone,

variables such as walking frequency (WF ) and acceleration variance (AV ) are

usually used, and the relationships among variables are estimated through para-

metric and non-parametric techniques. Linear regression model is one of the

representative methods in the parametric approach (2.5) [48,69,78–80].

SL = α ·WF + β ·AV + γ (2.5)

where α, β, and γ are the coefficients to be determined.

This method is accurate when modeled for a specific person, but it has

the disadvantage that large errors may occur when tested for various people.

Another limitation is that modeling requires a wide range of variables and steps.

Non-parametric technique uses learning techniques to estimate step length.

In general, it performs better than the parametric method, but is more likely

to be overfitting and requires a larger data and less information about fea-

tures. The methods found in the literature are Gaussian process regression [81],

artificial neural networks [82], and so on.

2.2.3 Heading estimation

To estimate the heading of a device is an essential part of PA, and the

attitude estimation using the angular rate from the gyroscope, the specific force

from the accelerometer, magnetic field from magnetometer are called AHRS.

As long as there are no acceleration and magnetic disturbance, roll and pitch

for accelerometers and yaw for magnetometers are calculated as (2.6), (2.7) and

(2.8), respectively.

φacc = tan−1(fy/fz) (2.6)
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θacc = tan−1(fx/
√
f2
y + f2

z ) (2.7)

ψmag = tan−1 −mycφ+mzsφ

mxcθ +mysθsφ+mzsθsφ
(2.8)

where sφ, sθ, cφ, cθ are sinφ, sinθ, cosφ, cosθ, respectively.

Using the characteristics that gyro measure has a low-frequency component,

and accelerometer and magnetometer have high-frequency one, AHRS combines

those sensors with filtering methods. However, its performance degrades, espe-

cially when the sensor is moving fast or exposed to a magnetic disturbance in

hand. More details are covered in chapter 3.

2.3 Integration Approach

The IA-based PDR is a system that tracks the position by estimating the

entire 3D trajectory of the sensor at a given moment. 3-axis accelerometers

and gyroscopes are used to track orientation and position changes [83]. In the

strap-down configuration used by pedestrians, the sensors are joined in a rigid

package and securely attached to the body. I describe the navigation reference

frame (with axes in horizontal and vertical planes), the sensor reference frame (3

mutually perpendicular measuring axes pointing in any world direction) and the

body reference frame (3 mutually perpendicular measuring axes with sensors

attached).

In robotics, the attitude of the sensor can often be constrained, for example,

so that the sensor z-axis coincides with the vertical world axis. The tracking

position subtracts the gravitational signal from the vertical accelerometer signal

and performs a double integral for the rest of the 3D acceleration (i.e., inte-

grating once in speed and twice in displacement). However, in a PDR situation,
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the sensor is not likely to be axially aligned, but will continue to rotate about

the world frame during the gait cycle. Therefore, it is necessary to track the

rotation of the sensor using the angular velocity provided by the gyroscope.

This introduces a third integration for each location update.

Inevitably, measurement errors are present in the sensor data, and their

triple integration potentially leads to an increase in cubic time (drift). INS

(Inertial Navigation System) in aviation, marine and military uses highly accu-

rate sensors that keep the source of the error very small and allow tracking for

many hours. These are too bulky and expensive for PDR, so MEMS technology

should be used instead. MEMS sensors are small and portable, but they can

cause more serious errors. Open loop integration of MEMS inertial sensors is

only possible for 1-2 minutes before drift is dominated [34].

The strap-down inertial navigation algorithm has been well studied, and the

standard approach to limit drift uses the EKF in complementary or indirect

form, so the filter directly tracks errors in system state, not system state itself.

A 15-state model is commonly used: 3 states for position, velocity and attitude

errors, 6 states for modeling accelerometer and gyroscope bias, respectively

[84,85].

2.3.1 Extended Kalman filter

Theoretically, the Kalman Filter is an estimator for a linear-quadratic prob-

lem, which is a problem of estimating the instantaneous state of a linear dynamic

system disturbed by white noise. The resulting estimator is statistically optimal

with respect to the quadratic function of the estimation error.

However, the typical Kalman filter considers the linear filter of the linear

system. Unfortunately, there is no linear system. Nonlinear filtering can be a

difficult and complex subject, but some nonlinear estimation methods have be-
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come widespread. These technologies include nonlinear extension of Kalman

filters, unscented filtering, and particle filtering. In this paper, the signal shows

a nonlinear system. However, PDR systems usually take into account real-time

operation, which requires a fast operation time. Also, the system model we

thought of xtcan be easily linearized, which will be presented later. Therefore,

EKF is suitable for sensor error correction. In this chapter, discrete time EKF

is derived taking into account discrete time dynamics and discrete time mea-

surements. Assume we have a system model as follows.

xk = fk−1(xk−1,uk−1,wk−1)

zk = hk(xk,νk)

wk ∼ (0,Qk)

νk ∼ (0,Rk)

(2.9)

We perform a Taylor series expansion of the state equation around xk−1 =

x̂+
k−1 and wk−1 = 0 to obtain the following:

xk = fk−1(x̂+
k−1,uk−1,0) +

∂xk−1

∂x

∣∣∣∣
x̂+
k−1

(xk−1 − x̂+
k−1) +

∂fk−1

∂w

∣∣∣∣
x̂+
k−1

wk−1

= fk−1(x̂+
k−1,uk−1,0) + Fk−1(xk−1 − x̂+

k−1) + Lk−1wk−1

= Fk−1xk−1 + [fk−1(x̂+
k−1,uk−1,0)− Fk−1x̂

+
k−1] + Lk−1wk−1

= Fk−1xk−1 + ũk−1 + w̃k−1

(2.10)

Fk−1 and Lk−1 are defined by the above equation. The known signal ũk and

the noise signal w̃k are defined as follows:

ũk = fk(x̂+
k ,uk,0)− Fkx̂

+
k

w̃k ∼ (0,LkQkL
T
k )

(2.11)
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We linearize the measurement equation around xk = x̂−k and νk = 0 to

obtain the following.

zk = hk(x̂−k ,0) +
∂hk

∂x

∣∣∣∣
x̂−k

(xk − x̂−k ) +
∂fk
∂ν

∣∣∣∣
x̂−k

νk

= hk(x̂−k ,0) + Hk(xk − x̂−k ) + Mkνk

= Hkxk + [hk(x̂−k ,0)−Hkx̂
−
k ] + Mkνk

= Hkxk + z̃k + ν̃k

(2.12)

Hk and Mk are defined by the above equation. The known signal z̃k and the

noise signal ν̃k are defined as

z̃k = hk(x̂−k ,0)−Hkx̂
−
k

ν̃k ∼ (0,MkRkM
T
k )

(2.13)

There are a linear state space system of (2.10) and a linear measurement of

(2.12). In other words, we can estimate the state using the standard Kalman

filter equation. The following equations are for discrete time EKF.

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1

Kk = P−k HT
k (HkP

−
k HT

k + MkRkM
T
k )−1

x̂−k = fk−1(x̂+
k−1,uk−1,0)

zk = hk(x̂−k ,0)−Hkx̂
−
k

x̂+
k = x̂−k + Kk(zk −Hkx̂

−
k − zk)

= x̂−k + Kk(zk − hk(x̂−k ,0))

P+
k = (I−KkHk)P−k

(2.14)
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Figure 2.5: Step phase classification

2.3.2 INS-EKF-ZUPT

IA-based PDR, which typically used for a foot-mounted IMU, is based on

an INS with EKF. The ZUPT-aided EKF mounted on the foot can be used to

estimate the position of the INS, as it is possible to estimate the error of the

INS using the assumption that the shoes cling to the floor during the stance

phase. The key idea of INS-EKF-ZUPT is to estimate the accumulated INS

error by IMU sensor bias and white noise using ZUPT-aided EKF. The EKF

is updated with a speed measurement using ZUPT whenever the foot is on the

ground.

Stance phase detection

Gait motion can be largely divided into stance and swing phases as shown in

Fig. 2.5. The stance phase detection algorithm detects the attachment between

the shoe and the ground and uses the signal features to find the stance and

swing phase while walking. In general, the attitude phase algorithm determines

the phase based on the gyroscope and accelerometer signals [70,71]. At [70], the

attitude phase is determined using the gyroscope output standard. In [71], posi-

tional phase is detected using local dispersion of acceleration. One of the stance

phase detection algorithms is based on the variance of the simply modified sig-

nal characteristics [72], as shown in Fig. 2.6. Fig. 2.6 shows a block diagram
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Figure 2.6: Stance phase detection block diagram

of the stance phase detection procedures. The stance phase is simply detected

using a modified signaling function and glitch removal. When the sensor is at-

tached to the shoe by defining the x-axis in the forward direction, the y-axis in

the upper direction, and the z-axis in the right direction, the x-axis and z-axis

acceleration output values are used, which change significantly as the pedestrian

moves. The procedure is as follows. First, three modified accelerometer signals

(energy, product, and sum) are used to detect stance phase. As given by (2.15),

energy, product, and sum of the signals are calculaed. Next, the local variance

of energy, product, and sum is calculated, respectively. If each local variance is

below the threshold, that particular condition is indicated by 1, which means

the situation meets the condition, as in equation (2.16). However, because the

three conditions only use the x and z axis accelerometer outputs, the attitude

phase algorithm cannot be used for sidewalking, crawling, descending stairs,

ascending stairs, and other types of movements.

Energy = sqrt(f2
x + f2

z )

Product = fx · fz

Sum = fx + fz

(2.15)
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condE =

1 var(Ek−14 : Ek) < thE

0 otherwise
(2.16)

2.4 Activity Recognition using Machine Learning

Mobile devices such as tablets and smartphones are everywhere around peo-

ple, so navigating themselves regardless of inside and outside of building has

been interesting research topic over the last few years. In addition, numerous

poses caused by the placement of the device such as calling, user’s pocket,

and texting degrade accuracy as the device does not attached to the part of

pedestrian’s body [58].

In terms of HAR (Human Activity Recognition), machine learning tech-

niques using MEMS inertial sensors for HCI (Human Computer Interaction)

are commonly used, and numerous methods are evaluated for accurate classifi-

cation using body-worn inertial sensors [86].

2.4.1 Challenges in HAR

There are several challenges in HCI systems mentioned in [2]. Those are, in

short, intra-class variability, inter-class similarity, definition of physical activi-

ties, class imbalance, ground truth annotation, and data collection experiment

design.

Intra-class variability is a matter of diversity within classes. This can be

caused by several people performing the same action, and there are also differ-

ences in whether the same action occurs in the morning or night. Next, inter-

class similarity is another class, but sensor characteristics are similar. And there

is a general definition issues of motion because of difficulties that occur in HAR.
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Figure 2.7: Typical ARC from wearable sensors [2]

Human activities are very complex and diverse, and depending on the situa-

tion, the activities can be carried out in different ways. Class imbalance means

that there is an imbalance between classes because some actions do not occur

frequently and some actions occur frequently. In addition, in case of behavior

analysis, it is difficult to collect accurate ground truth data, so it is usually

labeled by the person collecting the data. Finally, there is few common dataset,

which makes it more difficult to evaluate performance in behavior analysis.

2.4.2 Activity recognition chain

ARC (Activity Recognition Chain) in Fig. 2.7 refers to the process of rec-

ognizing behavior using processes of signal processing, pattern recognition, and

machine learning techniques.

First, after k sensor raw data comes in, the sensor sync is adjusted during

the preprocessing process, or calibration, unit conversion, and resampling are

performed. Next is the process of cutting data to make it easy to classify as a

process of data segmentation.
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Data segmentation

Data segmentation is the process of dividing the pre-processed sensor signal

into smaller time segments with information about the behavior. Sliding win-

dow, event-based window, activity-based window are typical. Sliding window

refers to the use of a fixed length window and has the advantage of being easy

to operate in real time. Event-based window requires preprocessing in advance,

and when applied to PDR, it is typical to know the heel strike and toe off

phase situations and segment data based on this. An activity-based window is

a window cut based on when the behavior changes, as used in wavelet analysis.

Feature selection and feature extraction

Both feature selection and extraction methods refers to the process of reduc-

ing data to feature points suitable for classifying behaviors. As the dimension of

features increases, the classification performance increases until it reaches the

optimal number. If exceeding the point, the required number of training sam-

ples is increasing as feature dimension gets bigger for classifier performance,

which is called as a curse of dimensionality problem [87]. Therefore, features

are usually calculated in both time and frequency domains in advance, then the

feature reduction process is conducted to select the optimal features that affect

the classification results.

The condition of a good feature vector is that the variation is not large when

the same operation is performed several times, and even if it is performed by

other people, the change should not be large. And among other motions, the

feature vector must be clearly distinguishable. In addition, redundancy should

be minimized between feature vectors to reduce computational complexity.

There are two possible ways to reduce feature vector dimensions. The first
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one is called a feature selection method searching a subset of appropriate fea-

tures from the original set. The other, a feature extraction, is a combination of

original feature vectors.

Feature selection is a process of choosing a subset of relevant features from

the original set [88]. Among numerous methods to scale down feature vectors,

one of representative algorithms based on information theory called mRMR

(minimum Redundancy Maximum Relevance) is introduced in the dissertation

[89].

Feature extraction is a projection of a high-dimensional original feature

space into a new low-dimensional feature space and usually consists of a linear

or nonlinear combination of the original feature space. However, in the case

of feature extraction, there is a disadvantage that the physical meaning of the

original feature vectors is lost because new feature vectors are created by re-

ducing the dimension. Therefore, it is said that feature selection is preferred

to systems that are actually applied. The other feature extraction method is a

combination of original features for relevant feature selection [86]. It is useful

because it facilitates classification and visualization of high dimensional data,

but the physical meaning of features is lost through the process. The com-

mon techniques used in feature extraction are PCA, LDA (Linear Discriminant

Analysis), and so on. The PCA is one of the most popular and common feature

extraction methods, and it is the linear technique transforming inter-correlated

features into uncorrelated features.

Training and classification

In terms of training and classification, there are numerous classifiers in ma-

chine learning, and two basic classifiers, kNN (k-th Nearest Neighbor) and SVM

(Support Vector Machine) as in Fig. 2.8 are adopted for comparison in this dis-
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(a) kNN (k-th Nearest Neighbors) [90] (b) SVM (Support Vector Machine) [91]

Figure 2.8: Classifiers

sertation. KNN is a principle of similarity between the training set and test

data [92]. Since it only determines class through the distance, so it is non-

parametric method, and one of the simplest of all machine learning algorithms.

The inputs are k closest training examples in the feature space and the output

is a class membership for classification.

The powerful SVM is a statistical learning theory-based classifier which

minimizes an empirical risk and maximizes the margin between separating hy-

perplane and the data at the same time [93]. The SVM is a basically linear

classifier but non-linear classification can be made using kernel methods, and

the basic kernels are linear, polynomial, RBF (Radial Basis Function), and

sigmoid. In addition it is able to classify multi-class with pair-wise classifica-

tion with high accuracy on average, so it is widely used for most of supervised

classification methods.
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Chapter 3

Attitude Estimation in Smartphone

3.1 Adaptive Attitude Estimation in Smartphone

In this chapter, adaptive attitude estimation using ellipsoidal method is pro-

posed for the pedestrian navigation system. To estimate the heading of a device

is an essential part of both PA and IA, which will be combined in the chapter

4. The attitude estimation using the angular rate from the gyroscope, the spe-

cific force from the accelerometer, magnetic field from magnetometer are called

AHRS. Using the characteristics that gyro measure has a low-frequency com-

ponent, and accelerometer and magnetometer have high-frequency one, AHRS

combines those sensors with filtering methods. However, its performance de-

grades, especially when the sensor is moving fast or exposed to a magnetic

disturbance in hand. In the following sections, the proposed methods will be

described in detail.

3.1.1 Indirect Kalman filter-based attitude estimation

Quaternion representation of attitude and sensor model

The body frame is an orthogonal axis set aligned with the vehicle’s attitude,

and the sensor measurements are collected on this frame. The navigation frame

is a coordinate frame fixed to the Earth’s surface, having its origin at the
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location of the navigation system, and NED (North-East-Down) is used as

a navigation frame in this paper. The attitude is defined as the relationship

between the two frames, and the attitude between body and navigation frame

is represented using quaternion:

rn = Cn
b rb (3.1)

where the rn, rb are navigation and body vector, respectively, and the rotation

matrix Cn
b is DCM (Direction Cosine Matrix).

The DCM propagates with time by the following equation:

Ċn
b = Cn

b Ωb
nb

where Ωb
nb =


0 −ωb

nb,z ωb
nb,y

ωb
nb,z 0 −ωb

nb,x

−ωb
nb,y ωb

nb,x 0

 (3.2)

where the ωn
nb is the turn rate of body frame with respect to the navigation

frame, expressed on the body frame.

The three sensors, used for the attitude estimation, are modeled as follows:


yb
g = ωb + εb + wg

yb
f = f b + Cb

ngn + Ob + wf

yb
m = mb + Cb

nmn + wm

. (3.3)

where y, ε,O,w,g, f ,m are sensor output, gyro bias, accelerometer bias, noise,

gravity vector, acceleration, magnetic field, respectively, and the superscript

and subscript represent frame and sensor, respectively. The gn and mn are

given reference gravity and magnetic field vector at the current position.
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Indirect Kalman filter

Kalman filter is known to minimize the squared error of the state for lin-

ear system and measurement models with model uncertainties described as

zero-mean Gaussian white noises [94]. In order to fuse gyro, accelerometer and

magnetometer outputs, the system is modeled as gyro integration and the mea-

surements of accelerometer and magnetometer output under no acceleration

and magnetic disturbance, respectively. Gyro bias, one of the error sources, is

estimated together with the attitude, it is reasonable to model process noise

as zero-mean Gaussian white noise. Indirect Kalman filter is used to estimate

attitude and gyro bias error in this dissertation and the error states at the kth

epoch is the following:

xk =
[
ϕ ε̂b

]T
=
[
ϕN ϕE ϕD εx εy εz

]T (3.4)

where ϕN , ϕE , ϕD correspond to the attitude errors represented as psi-angle in

INS. These terms are approximately equal to the roll, pitch, yaw error for small-

angle misalignments [95]. The relationship between estimated attitude C̃n
b and

true DCM Cn
b is defined as (3.5):

C̃n
b = [I3×3 − [ϕ×]] Cn

b (3.5)

where the representation [·×] is a skew-symmetric matrix given as (3.6):

[ϕ×] =


0 −ϕz ϕy

ϕz 0 −ϕx

−ϕy ϕx 0

 (3.6)

The gyro bias process model is a random walk, and the corresponding system

matrix in the filter is in (3.7) and ∆t is the time difference between two epochs,
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which is reciprocal of the sampling rate.

Φk =

I3×3 −C̃
n
b,k∆t

03×3 I3×3

 (3.7)

The measurement is the residual; the difference between true value repre-

sented in body frame and sensor output, and its measurement matrix is given

as (3.8):

zk =
[
yb
f,k − C̃b

n,kg
n yb

m,k − C̃b
n,km

n
]T

Hk =

 C̃b
n,k [gn×] 03×3

C̃b
n,k [mn×] 03×3

 (3.8)

For the more detailed information about the indirect Kalman filter, see

[96]. Besides, the two-stage attitude update filter in indirect Kalman filter is

implemented to avoid attitude error from magnetometer [97].

3.1.2 Conventional attitude estimation algorithms

In order to estimate the device attitude, various adaptation approaches are

studied to use acceleration and magnetometer measurements. In the earlier

stage, adaptation decision is made by comparing the accelerometer norm, mag-

netometer norm, and inclination angle with its reference values [98]. In [99], the

fuzzy rule is implemented for detecting acceleration and adjusting measurement

covariance in ARS (Attitude Reference System). Modeling acceleration or mag-

netometer disturbance is also proposed by several papers [100–102]. Suh pro-

poses the adaptation rule to calculate correct innovation covariance with non-

negative measurement covariance angle using Eigenvalue and Eigenvector [97].

In terms of finding the adaptation coefficient of measurement covariance, the

method to minimize the Frobenius norm of innovation covariance is also pro-

posed [103]. Li proposes the adaptation method to divide the acceleration condi-
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tion with three stages: no, low, and high acceleration [104]. To adjust innovation

covariance with the direction of residual or just all directions are proposed by

Ghobadi, but the author ultimately applies the latter because of initial bias and

attitude error [105]. Kang suggests modeling the dynamic mode probability by

HMC (Hidden Markov Chain), and the modes are divided into dynamic and

stationary situations [96]. Similarly, adaptive rule is proposed to tune the mea-

surement noise covariance by detecting interference using the HMM (Hidden

Markov Model) [106]. The adaptive algorithm using UKF (Unscented Kalman

Filter) has been recently proposed in numerous papers [107–114]. Chiella pro-

poses the adaptive UKF to add robustness in measurement covariance change

by considering non-Euclidean algebra in unit quaternion [107, 108], and the

measurement covariance is adapted by the method of [115]. In [109], the double-

step UKF is proposed by dividing accelerometer and magnetometer measure-

ment update in two-stage in order to avoid the wrong attitude correction from

magnetometer, and the diagonal covariance inflation in [105] is applied. In ro-

bust Kalman filtering, Huber methodology combining l1 and l2 norm shows

robustness under deviation in Gaussian distribution and dynamic model and

its applications are in [110–114]. If this acceleration or disturbance condition

lasts for a long time, the error is accumulated by time. All the above methods

inflate measurement covariance under the acceleration, which in turn means the

gyroscope mainly updates attitude.

3.1.3 Adaptive attitude estimation using ellipsoidal methods

In this section, attitude estimation using the adaptive algorithm is described

to handle acceleration and magnetic disturbance. The block diagram for the

proposed algorithm is in Fig. 3.1, and the proposed algorithm in this paper is

marked as orange. While a pedestrian is moving with the smartphone in hand,
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Figure 3.1: Proposed ellipsoidal method-based adaptive AHRS diagram

and the accelerometer in the sensor can be described as:

f b = f bext + Cb
ngn + wf (3.9)

When there is an additional acceleration, it is essential to deal with the accel-

eration residuals. Therefore, the adaptive algorithm using ellipsoidal method for

the residual is proposed. The previous work [105] considers generalized covari-

ance union-based covariance inflation using the residual inconsistency measured

from Mahalanobis distance. As the author mentioned in the paper, it is sensitive

to the wrong initial attitude and gyro bias estimation. Similarly, the proposed

algorithm also adjusts the measurement covariance taking into account the di-

rection of the residuals in a heuristic way using the MVCE (Minimum Volume

Covering Ellipsoid) [116]. MVCE is to find minimum covering ellipsoid of given

ellipsoids using a convex optimization technique. According to the [117], the

difference between general covariance union and minimum enclosing ellipsoid

problems is the interpretation in a statistical and geometric sense, respectively.

Specific proofs and mathematical explanations for the computation and opti-

mization are described in the literature [116–118].

Given two ellipsoids, one is the measurement covariance with no accelera-

tion, and the other is the one with acceleration. Our goal is to find the third
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(a) Set E0 from

measurements

(b) Find r in

transformed space

(c) Set E using α

in initial space

Figure 3.2: Adaptive measurement covariance process

ellipsoid, E, covering both ellipsoids. Following the ideas from the algorithms

for ellipsoids [119], the adaptive measurement is proposed as follows. Assuming

that the ellipsoid (E1) with no acceleration is defined as (3.10) that the set of

all p on ellipsoid (E1) centered at mean (m1) with covariance (R1).

E1 ≡
{

p| (p−m1)T R−1
1 (p−m1) ≤ 1

}
(3.10)

The ellipsoid E2 for acceleration condition is defined in the same way. If E is

an ellipsoid that includes two ellipsoids, the corresponding mean and covariance

can be calculated by means of E0, which is as follows:

m = m0 =
1

2
(m1 + m2) (3.11)

R−1 = αR−1
0

= α

(
R1 + R2 +

1

4
bm1 −m2c bm1 −m2cT

)−1 (3.12)

where R0 is a covariance of the ellipsoid, the corresponding ellipsoid, E0, de-

picted in Fig. 3.2a. Our goal is to find a positive parameter α. In order to find
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the parameter α, the R−1
0 is firstly decomposed by Cholesky factor, L0 in (3.13),

and E0 is linearly transformed into a unit sphere using (3.14) in Fig. 3.2b. The

ellipsoids, E1 and E2 and are accordingly transformed into E
′
1 and E

′
2 as the

frame making the unit sphere E
′
0 .

R−1
0 = L0L

T
0 (3.13)

q = m + L−T0 p (3.14)

The covering ellipsoid E
′

should include the furthest point q1,q2 on the E
′
1,

E
′
2 from the origin, and it is calculated by maximizing the distance r1, r2. It

is assumed that those are equal distance because the variances R1 and R2 are

the same. Therefore, the distance maximizing quadratic equation is in (3.15).

r2 = qT
1 q1 =

(
m1 + L−T0 p1

)T (
m1 + L−T0 p1

)
(3.15)

The distance has a relationship with the parameter α as (3.16). The pa-

rameter is a ratio, so it is directly used in (3.12) and Fig. 3.2c for adjusting

measurement covariance.

r2 = α−1 (3.16)

Instead of calculating R0 in the above process, QL decomposition can be

used by building a matrix as follows:

BT =
[
L−T1 L−T2 d

]
where d =

1

2
(m1 −m2) (3.17)

R0 = L−T0 L−1
0 = BTB = LTL (3.18)

where L is QL decomposition of B.
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Due to the relationship in (3.18) that L = L−1
0 , the L0 in (3.13)-(3.15)

can be replaced by L. The same process is adopted in the case of magnetic

disturbance.

Using the ellipsoidal method-based measurement covariance adjustment, it

is possible to deal with the external acceleration and magnetic disturbance in

the direction of residuals. The advantage of considering the direction is that

the undisturbed axis in residual in (3.8) can be used to estimate attitude when

disturbance acts only on the single axis. Equation (3.19) describes the rela-

tionship between accelerometer and magnetometer measurements and attitude

errors, respectively. When (3.19) is developed, the accelerometer is related to

the ϕN , ϕE and the residual axis, and the ϕN , ϕE , ϕD and the magnetic residual

are related to each other. It suggests that, in the case of acceleration, ϕN , ϕE

can be estimated even if a disturbance occurs in one axis. As long as the ϕN , ϕE

is correctly estimated in the case of the magnetometer, ϕD can be estimated

even if disturbances are present in two axes. It is because the ϕD is related to

three magnetic measurement vector. Therefore, using the proposed method of

considering the direction of the residual, the acceleration residual can be used

according to the situation in which the disturbance comes in.

zf,k = yb
f,k − C̃b

n,kg
n

=
(
Cb

n,kg
n + wf

)
−Cb

n,k (I + E) gn

= −Cb
n,k [gn×]ϕ+ vf

zm,k = yb
m,k − C̃b

n,km
n

=
(
Cb

n,km
n + wm

)
−Cb

n,k (I + E) mn

= −Cb
n,k [mn×]ϕ+ vm

(3.19)

The following Table 3.1 shows the comparison of adaptation rules to be
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Table 3.1: Comparison of adaptation rules

compared in the simulations and experiments. In the case of the eigenvalue

technique, this technique can be applied in a situation with extreme distur-

bance, but there is a big disadvantage in that the threshold must be set and

the yaw error using a geomagnetic field is large. In the case of the cost function-

based technique, the adaptation parameter µ is operated strongly, but there is

a disadvantage that the upper and lower bounds must be specified. The GCU-

based technique has the advantage of considering the residual inconsistency, but

it can be seen that the error is large when the gyro bias error and the initial

attitude error are present. The Huber technique has the advantage of being

robust against modeling errors or noise uncertainty, but it has the disadvantage

that the error increases in the geomagnetic field and the threshold must be de-

termined heuristically. The proposed method has the advantage of considering
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Table 3.2: Sensor specifications

Xsens MTx [120] Gyro Accelerometer Magnetometer

Bias Stability 5deg/s 2mg 0.5mGauss

Noise Density 0.1deg/s/√hz 0.2mg/√hz 0.5mGauss/√hz

the covariance of the measurement value, so that it can be used as much as

possible in the situation where the measurement value can be used. However, if

the assumption that the predicted error is small is broken, the residual vector

value is wrong and the estimation error increases.

3.2 Experimental Results

In order to verify the effectiveness of the proposed algorithm, the reference

value with the existing method through simulation and several experiments is

compared. The low-cost MEMS IMU used for simulation and tests is Xsens

MTX [120].

3.2.1 Simulation

The first simulation trajectory is shown in Fig. 3.3, where the sensor rotates

at a constant angular velocity in the y-axis from 30 to 55 seconds, and there is

no magnetic disturbance. It means that the acceleration components are only

centrifugal force and gravity. In this case, the body frame x, y, and z axes

defined as forward, right, and down, respectively. The sensor noise is generated

according to the Xsens MTX specification, as in Table 3.2 [120]. In addition,

the simulation conditions are listed in Table 3.3 by changing initial attitude,

gyro bias, measurement covariance for accelerometer and magnetometer, and

each condition is tested for 50 Monte Carlo runs.
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Table 3.3: Simulation cases for trajectory #1 and #2

Figure 3.3: Simulation trajectory #1

In order to avoid the effects of the magnetometer, the two-stage measure-

ment update in [97] is implemented, and the magnetometer is always updated
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Table 3.4: Attitude error in simulation #1

Error[deg] Roll[deg] Pitch[deg]

Case1−4

Cost function method 11.2×10−2 11.2×10−2

Eigenvalue method 6.53×10−2 6.70×10−2

GCU method 7.98×10−2 7.97×10−2

Huber method 5.94×10−2 6.58×10−2

Proposed method 4.23×10−2 4.37×10−2

Case 5

Cost function method 14.4×10−2 14.4×10−2

Eigenvalue method 7.81×10−2 7.34×10−2

GCU method 11.4×10−2 11.4×10−2

Huber method 7.61×10−2 8.00×10−2

Proposed method 9.71×10−2 9.59×10−2

Case 6

Cost function method 1.73×10−1 1.73×10−1

Eigenvalue method 1.88×10−1 1.65×10−1

GCU method 1.54×10−1 1.53×10−1

Huber method 28.8×10−1 25.1×10−1

Proposed method 1.63×10−1 1.58×10−1

Case 7

Cost function method 2.99×10−1 3.00×10−1

Eigenvalue method 3.04×10−1 3.04×10−1

GCU method 34.4×10−1 29.9×10−1

Huber method 1.09×10−1 1.25×10−1

Proposed method 2.90×10−1 2.90×10−1

Case 8

Cost function method 4.81×10−1 4.15×10−1

Eigenvalue method 11.9×10−1 11.7×10−1

GCU method 4.81×10−1 4.15×10−1

Huber method 8.05×10−1 7.68×10−1

Proposed method 7.71×10−1 7.22×10−1
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Figure 3.4: Simulation results for trajectory #1
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for all comparing adaptive filters. Also, there are some thresholds to be deter-

mined for the conventional adaptive algorithms [97,103,105,113]; each algorithm

is set to show the best accuracy for the trajectory. Please note that the Huber-

based UKF method is modified for the EKF structure for equal comparison.

The ϕN , ϕE and measurement covariance for the accelerometer are in Fig. 3.4.

The attitudes are compared in Fig. 3.4a and Table 3.4. In the case of gyro bias

from cases 1 to 4, all methods estimate the gyro bias well so the results for those

cases are compressed in Table 3.4. Considering the direction of the measure-

ment, including the proposed method and [105,113] shows better results overall

than the others. It is also depicted in accelerometer measurement covariance

in Fig. 3.4b that only the y-axis component is inflated in the case of the GCU

method, the Huber-based method, and the proposed algorithm. According to

the simulation condition, as the initial attitude errors increase, the estimation
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Figure 3.5: Simulation trajectory #2
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Table 3.5: Attitude error in simulation #2

Error[deg] Yaw [deg]

Case1-6

Cost function method 0.695×10−1

Eigenvalue method 1.12×10−1

GCU method 0.545×10−1

Huber method 1.77×10−1

Proposed method 0.506×10−1

Case 7

Cost function method 0.720×10−1

Eigenvalue method 1.18×10−1

GCU method 16.0

Huber method 0.164

Proposed method 12.3

Case 8

Cost function method 0.113

Eigenvalue method 0.058

GCU method 0.072

Huber method 1.44

Proposed method 0.106

accuracy of all methods is degraded. In addition, the wrong measurement noise

covariance, for case 7 and 8, also causes errors in the attitude estimation es-

pecially for the methods considering the measurement direction. As the author

mentioned in [105], it fails to estimate gyro bias and leads to significant atti-

tude error during the Monte Carlo simulation especially for smaller covariance

as case 7.

In the case of magnetic disturbance, the second simulation for the stationary

condition is generated as Fig. 3.5 that x and y axes are mostly disturbed. It
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is because the tilt error could affect the yaw error, and so the accelerometer is

always updated for all algorithms without adaptation rules. In addition, initial

attitude errors for roll and pitch are set to zero, and the measurement covariance

of the accelerometer is also adjusted to the true value. The generated magnetic

disturbance has both sinusoidal and constant components, and the degree of it

is generated based on experimental data walked indoors.

The attitude error and the measurement covariance for magnetometer are in

Fig. 3.6. The covariance for the GCU method, the Huber-based method, and the

proposed algorithm are different for all axes because of the disturbance in each

axis, and considering the direction of measurement is also useful in the magnetic

disturbance. The yaw estimation results are in Table 3.5 with the condition of

Table 3.3. In the case of gyro bias and initial attitude error changes from case

1 to 6, all methods are not affected by the gyro bias and initial attitude change

due to the accelerometer update, so the result for those cases are compressed

in Table 3.5.

Case 7 of the simulation shows the limitations of the algorithm considering

residual vectors. If the sigma value of the magnetometer is set smaller than

the true value by one-tenth, an error occurs because the ellipsoid created from

the residual is incorrectly reflected as a smaller sigma. In particular, in case 8,

when the sigma is set to 10 times as large as the true value, this measurement

is less reliable, so the error increases slightly. However, when set to 1/10, it

is more reliable than it should be, so the attitude error is caused. In turn,

all the subsequent residuals have a bigger impact on errors because they are

miscalculated. On the other hand, in the case of algorithms that do not consider

the vector, even if the residual vector is wrong, the error is not large because

the measurement update is not affected.

Across the simulations, the proposed algorithm in yaw estimation has the
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Figure 3.6: Simulation results for trajectory #2
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best performance as long as the measurement covariance is correctly set.

3.2.2 Rate table experiment

The first experiment is performed with an arc trajectory on the rate table

as in Fig. 3.7. The sensor is attached to the top of the plate, having a tilt angle

of 0 degrees and rotating with a speed of 1.745 rad/s for 5 minutes [121]. The

experiment is carried out to confirm whether the proposed adaptive algorithm

shows better performance under single-axis acceleration. The initial alignment

to set gyro bias and initial attitude is processed for the first 10 seconds. Looking

Figure 3.7: The sensor on the rate table

Table 3.6: Attitude error during movement in rate table

Error[deg] Roll Pitch

Cost function method 2.00 0.995

Eigenvalue method 2.00 0.959

GCU method 1.47 1.14

Huber method 0.446 0.700

Proposed method 0.460 0.348
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Figure 3.8: Rate table experiment results

at the estimated attitude in Fig. 3.8a and Table 3.6, the attitude with the

proposed algorithm has the best accuracy compared to the other algorithms.
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Results are shown for roll and pitch only. It is because the magnetometer

is unavailable in this case due to the magnetic disturbance from the motor and

iron base plate. The corresponding accelerometer measurement covariance is

plotted in Fig. 3.8b, and the proposed algorithm and the conventional adaptive

algorithm [105] and Huber-based method have different values across three axes

following the residual values.

3.2.3 Handheld rotation experiment

We test the algorithm for the handheld movement. The tester is moving the

device in hand in the Fig. 3.9 with a yawing in arc trajectory for two minutes. By

this motion, acceleration mainly comes in the x and y-axis. Similarly, the initial

alignment process is run the same as the previous experiment. The reference

attitude is acquired from the Vicon motion capture system [122]. The Fig.

3.10a and Table 3.7 show the attitude errors of the experiment, and Fig. 3.10b

and 3.10c are the corresponding accelerometer and magnetometer covariance,

respectively.

In case of tilt angle, the acceleration is mainly occurred in y axis by the

Figure 3.9: The sensor with Vicon markers
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movement, so the acceleration covariance is set differently according to the

proposed algorithm. The GCU and the proposed algorithm show better per-

formance in than the others. It is because the tilt angle error affects the cal-

(a) Attitude Error

(b) Adapted Acceleration Measurement Covariance
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(c) Adapted Magnetometer Measurement Covariance

Figure 3.10: Handheld experiment results

Table 3.7: Attitude error during hand movement

Error[deg] Roll Pitch Yaw

Cost function method 4.14 2.32 5.89

Eigenvalue method 2.88 2.67 3.47

GCU method 1.23 1.65 2.38

Huber method 2.17 3.05 2.33

Proposed method 1.34 1.45 1.57

culation of yaw angle, and those two methods has lower tilt angle errors. In

order to apply the proposed algorithm in the magnetometer, it is essential to

have the correct tilt angle in advance, if not, it is better to apply the adaptive

rules having the same covariance in all axes. There is a single dominant accel-

eration axis in this scenario, so it shows the the effectiveness of the methods
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considering the residual vectors. Through the hand experiment, the proposed

ellipsoidal method-based adaptation also gives a better performance under the

hand-moving scenario compared to other adaptation rules.

3.2.4 Magnetic disturbance experiment

In order to see attitude estimation under only a magnetic disturbance situ-

ation, the test is performed with a stationary sensor. To be specific, the sensor

is in place, and magnetic source, scissor, in this case, is placed next to it at

the time from 35 to 90 seconds. The second scenario with changing magnetic

disturbance is tested for the same time as the first one. In order to avoid the

effect of tilt errors, the accelerometer is always updated during tests.

Yaw angle error, magnetic residuals, and the corresponding magnetometer

measurement covariance for constant disturbance scenario are in Fig. 3.11 and

Fig. 3.12. As seen from Fig. 3.11b, the x and y axes of residual has relatively

large value compared to the other. Accordingly, the measurement covariance in

the proposed algorithm has more considerable value on those axes in Fig. 3.11c.

In the case of the second test with changing magnetic disturbance, the residual

is plotted in Fig. 3.12b. In Fig. 3.12c, it is also noticeable that the covariance is

Table 3.8: Attitude error during magnetic disturbance

Yaw Error[deg] Constant dist. Changing dist.

Cost function method 0.500 1.04

Eigenvalue method 0.351 6.36

GCU method 0.327 0.214

Huber method 9.93 2.65

Proposed method 0.150 0.147
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adjusted following the residual. The proposed ellipsoidal method-based adap-

tation is useful for yaw estimation during the two disturbance situations as in

Table 3.8.
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(c) Adapted Magnetometer Measurement Covariance

Figure 3.11: Magnetic disturbance experiment results for constant disturbance
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Figure 3.12: Magnetic disturbance experiment results for changing disturbance
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As mentioned before, using ellipsoidal adaptive method for heading estima-

tion under magnetic disturbance, it is essential for tilt angle error should be

low. Otherwise, the adaptive algorithm is not observable to estimate attitude

errors using magnetometer data.

3.3 Summary

In this chapter, the adaptive attitude algorithm based on the ellipsoidal

method with the measurement residuals is proposed. When the sensor keeps

moving, especially in hand, attitude estimation using accelerometer measure-

ment is hard to be updated, so conventional algorithms mostly depend on at-

titude updated by the gyroscope. In order to use the accelerometer or mag-

netometer measurement at most, the directions of measurement vectors are

considered so that the undisturbed axis of the sensor could be used to update

the attitude. The adaptive logic considering the measurement vector is based

on the ellipsoidal method, and the covariance is adjusted to include the residual

vector. Therefore, the proposed algorithm allows us to use more measurement

when the measurement vector partially undisturbed. The proposed algorithm

shows its effectiveness in simulation and experiments through the case of rate

table, handheld, and magnetic disturbances.
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Chapter 4

Pedestrian Dead Reckoning in
Multiple Poses of a Smartphone

In this chapter, a new approach for IA and PA-based PDR using PCA and

pose recognition is presented. Handheld smartphones are usually unrestricted

and often have device heading changes that do not match the direction of walk-

ing. In order to remove the heading offset between them, some researchers have

attempted to solve this problem [38–43]. In [38], the various PCA-based head-

ing estimation methods are compared with broad experimental study in case of

pocket. [39] uses a rotating axis for heading estimation dealing with swing, call,

trouser pocket poses in the smartphone. Tian proposes adaptive offset compen-

sation using the heading in straight holding mode under the swing, holding,

and trouser pocket [40]. PCA-GA (Global Acceleration) method is proposed

with the combination of TRIAD heading estimation in [41]. In addition, Deng

proposed heading estimation using PCA [42,43]. The above methods use PCA

or fixed offset angle to solve the heading mismatch after the pose from the ma-

chine learning such as DT, SVM, or FSM. In the PA-based PDR system, the

small heading difference leads to large position error, whereas the PCA-based

methods vary heading values significantly depending on the data distribution

between two steps. In addition, PDR components of step detection, step length,

and heading estimation are different in terms of the classified poses, which also
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means that the misclassification leads to position errors in PDR.

In order to solve the heading mismatch errors under multiple positions in

PDR, the proposed algorithm takes the advantages of both IA and PA. The

IA-based PDR calculates position, velocity, and attitude with acceleration and

angular velocity by using integration, so it is able to find out walking direction

in addition to the device heading. However, since PDR with IA generates errors

quickly when using a low-cost inertial sensor, proper measurement is necessary

to estimate the state of speed, position, etc.

Therefore, we combine the advantages of IA and PA in our smartphone PDR

system. It is necessary to estimate IA states to suppress the increase in error,

so the step length and heading are used as measurements from the PA when

the directions match. If the device direction does not coincide with the walking

direction, the walking direction is calculated using the PCA of the horizontal

acceleration in navigation frame, and then the IA position is updated. In order

to accurately understand the mode using two walking direction measurements,

pose through machine learning is additionally classified. In addition, the adap-

tive attitude estimation algorithm based on ellipsoid technique mentioned in

chapter 3 is used to estimate the attitude of the device in this system. In the

following sections, the proposed methods will be described in detail.

4.1 System Overview

In this section, the IA and PA-fused PDR system is proposed for multiple

smartphone poses, and the overall algorithm is in Fig. 4.1. The built-in inertial

sensors and magnetometer from the smartphone are the input of the system, and

the measurement update components are ZUPT, adaptive attitude estimation,

step length from PA, and walking direction from PCA. Pose recognition by
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Figure 4.1: Overall IA-PA fusion PDR algorithm

machine learning is added to effectively find the measurement update mode

while walking.

The assumptions used in constructing the algorithm in this paper are as

follows. One of the biggest assumptions is that in a walking scenario, the starting

pose is always text. If the pose is changed while walking with text pose, there

is a heading mismatch problem in the direction of walking.

In the following subsections, the pose recognition through machine learning

and the IA-PA fusion PDR system are explained in detail.

4.2 Machine Learning-based Pose Classification

Smartphone-based PDR system consists of step detection algorithm with

step length estimation and heading estimation [123]. Each method could be

changed following different poses, so the correct activity recognition is essential
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Figure 4.2: Target poses: chest, text, swing, trouser

Figure 4.3: Overall pose recognition algorithm

in the PDR system. In this section, the poses in Fig. 4.2 are limited to four

different poses possibly happens in a smartphone: text, swinging, shirt pocket,

and trouser pocket. The machine learning-based behavior recognition process

used in this section is as follows as in Fig. 4.3. After sensor data is collected

and post-processed, features are extracted. The algorithms are constructed to

select behavioral features that are appropriate for classification and to recognize

behavior more efficiently. Then we use these features to train and test data.

4.2.1 Training dataset

Experiments are conducted to generate the training dataset and verify the

accuracy and validity of the classification result. The experimental scenario is

a 25m straight indoor corridor walking round-trip. Walking speed is 85, 90, 95,
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Table 4.1: Sensor specifications for Xsens MTw

100, and 105 BPM (Beats Per Minute). Subjects are 23-40 years old, including

8 men and 4 women. The sensor used is a Xsens MTw with the sampling rate

of 100Hz. The sensor specifications are given in Table 4.1 [124].

Figure 4.2 shows the target poses. Those are the shirt pocket, texting, swing-

ing, and trouser pocket, which are common poses in daily smartphone usage.

For shirt and thigh pocket situations, the sensor is secured to the pocket to

avoid shaking. If done at once, the experiment will be done twice for the hand-

held and swing context. We also collected data by flipping the sensor upside

down to ensure that the algorithm works well despite changes in sensor posture.

4.2.2 Feature extraction and selection

Human activity recognition from inertial data is usually followed by feature

extraction initially. Feature selection is then processed to increase computa-

tional efficiency.

Feature extraction

Signal characteristics such as time and frequency domain functions are

widely used for feature calculation. Time domain features include mean, me-

dian, variance, skewness, kurtosis, range, etc [86]. Peak frequency, peak power,

spectrum power and spectrum in different frequency bands, entropy are usually

included in the frequency domain feature.
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Regarding the training data generation in pose recognition, the 54 feature

vectors commonly used are calculated in advance [86]. For the pose classifica-

tion, mean, variance, minimum, maximum, range, rms, skewness, kurtosis, and

correlation of tri-axial accelerometer and gyroscope are used in this dissertation.

The frequency domain features are excluded for its irrelevance. In addition, the

window size is 140, which is 1.4 second for 100Hz sampling rate, and the step

size between windows are 5. This is because the selected window size is suitable

to include a single stride.

Feature selection using mRMR

The feature selection is a process of choosing a subset of relevant features

from the original set [88]. Among numerous methods to scale down feature

vectors, one of representative algorithms based on information theory called

mRMR is introduced and implemented in the paper [89].

Maximum dependency represents that the selected features jointly have the

largest dependency on the target class. However, the insufficient samples and

multivariate density estimation involving the inverse of the high-dimensional

covariance matrix [89], which leads to computational burden to the system.

Instead, mRMR using relevance and redundancy is proposed in [89]. A mea-

sure of the uncertainty in a discrete random variable, entropy, is defined in (4.1),

and the conditional entropy of given another random variable Y is in (4.2).

H(X) = −
∑
xi∈X

P (xi)log(P (xi)) (4.1)

where xi is a specific value of random variable X and P (xi) is a probability of

xi over all possible values of X.

H(X|Y ) =
∑
yj∈Y

P (yj)
∑
xi∈X

P (xi|yj)log(P (xi|yj)) (4.2)
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where P (yj) is a prior probability of yj .

Using the above information, the information gain also called as mutual

information is described as (4.3) meaning the dependency with entropy and

conditional entropy.

I(X;Y ) = H(X)−H(X|Y ) =
∑
xi∈X

∑
yj∈Y

P (xi, yj)log(
P (xi, yj)

P (xi)P (yj)
) (4.3)

With that, the redundancy is defined in (4.4) as the correlation between

different features which should be minimized. On the other hand, the correlation

between feature vector and class label, relevance in (4.5) , should be maximized.

By reflecting the redundancy and relevance requirements, the following (4.6)

could be made for feature reduction.

Redundancy :
1

|S|
∑

Xj∈X
I(Xk;Xj) (4.4)

Relevance : I(Xk;Y ) (4.5)

JmRMR(Xk) = max(Relevance)−min(Redundancy)

= I(Xk;Y )− 1

|S|
∑

Xj∈X
I(Xk;Xj)

(4.6)

where S is set of the current selected features that is initially empty, Y repre-

sents the class labels, Xj ∈ S is a specific feature in the current S, and J(·)

is a feature selection criterion (score) where, generally, the higher the value of

J(Xk), the more important the feature Xk is.

The features sorted in descending order are in Table 4.2. The important

thing is that the post-ranking features do not mean that they are the least

relevant or the most dependent. The mRMR selects features considering the
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Table 4.2: Selected features from mRMR (descending order)

1 Max Accel. X 28 Var. Accel. X

2 RMS Gyro Z 29 Min Gyro X

3 Max Accel. Z 30 Kurt. Accel. X

4 Range Accel. Y 31 Range Gyro Y

5 Range Gyro Z 32 Min Accel. Y

6 Min Accel. Z 33 Skew. Gyro Z

7 RMS Accel. X 34 Mean Accel. Y

8 Range Accel. Z 35 Skew. Accel. Y

9 Kurt. Accel. Y 36 RMS Accel. Y

10 RMS Accel. Z 37 Min Gyro Y

11 Max Gyro Z 38 Max Gyro Y

12 Min Accel. X 39 Kurt. Gyro Z

13 Range Gyro X 40 Var. Gyro Y

14 Var. Gyro Z 41 Skew. Accel. Z

15 Mean Accel. X 42 Corr. Gyro (2)

16 Var. Accel. Y 43 Skew. Accel. X

17 Mean Accel. Z 44 Corr. Accel. (2)

18 Var. Accel. Z 45 Corr. Accel. (3)

19 Min Gyro Z 46 Corr. Gyro (1)

20 Range Accel. X 47 Mean Gyro Z

21 RMS Gyro X 48 Kurt. Gyro Y

22 Max Accel. Y 49 Skew. Gyro Y

23 Corr. Gyro (3) 50 Kurt. Gyro X

24 Kurt. Accel. Z 51 Mean Gyro X

25 Var. Gyro X 52 Corr. Accel. (1)

26 RMS Gyro Y 53 Mean Gyro. Y

27 Max Gyro X 54 Skew. Gyro X
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Figure 4.4: Selected features according to poses

relationship between all the features and provides the best combinations of the

features in order.

The best combination of feature points according to the mRMR is shown

in the Fig. 4.4. The feature is drawn from the combination derived through

mRMR to the fourth from the beginning. Is it drawn for a straight round trip,

the background color is green for shirt pocket, red for text messages, blue for

the pants pocket, and yellow for the swing, respectively. Although there are

some poses that can be distinguished by eye, these characteristics may vary

from person to person, so I aim to classify the behavior more accurately using

a classifier, which will be explained in detail in the next subsection.

4.2.3 Pose classification result using supervised learning in PDR

The entire dataset has dimensions of approximately 310,000 by 54 and is

computationally inefficient, so mRMR is performed. As mentioned before in

chapter 4.2.2, target poses are shirt pocket, text, trouser pocket, and swing.
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The results of classification accuracy in the order of by mRMR in Table 4.2

are shown in Fig. 4.5a and the enlarged version is in Fig. 4.5b. As the number

of features increases, the accuracy increases, but above a certain level, it can

be seen that they are almost similar. Therefore, the best feature combination

through mRMR is set to the first 5 for SVM and the first 6 for kNN.

The kNN uses the principle of similarity or distance between the training set

and test data, and the input is the k-closest training sets in the feature space,

and the output is a target pose for the classification. The SVM is a statistical

learning theory-based classifier, and the label is acquired by minimizing an

empirical risk as a cost function and maximizing the margin between separating

hyperplane and the data. For the parameters of the svm classifier, C-SVC type

and radial basis kernel are used [89], and the k of the classifier of kNN is chosen

as 4. The classification accuracy is in Table 4.3 for SVM and 4.4 for kNN, and

the average accuracy is 96.74% and 96.73%, which is almost the same result for

both classifiers.

Table 4.3: Accuracy results-SVM

True

Classified Shirt

Pocket
Text

Trouser

Pocket
Swing

Shirt Pocket 98.51 0 1.12 0.37

Text 0 95.59 4.41 0

Trouser Pocket 1.30 0 98.16 0.54

Swing 0.21 0 5.09 94.70
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(a) Classification accuracy according to mRMR feature order
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(b) Classification accuracy (enlarged)

Figure 4.5: Classification accuracy by the number of feature ordered by mRMR
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Table 4.4: Accuracy results-kNN

True

Classified Shirt

Pocket
Text

Trouser

Pocket
Swing

Shirt Pocket 98.07 0 1.28 0.65

Text 4.17 95.83 0 0

Trouser Pocket 1.10 0 98.46 0.44

Swing 0.43 0 5.01 94.56

4.3 Fusion of the Integration and Parametric Approaches

in PDR

In this section, the IA and PA-fused PDR system is specifically described

for multiple poses in the smartphone. The IA-based PDR system is a simplified

version of the INS for the low-cost inertial sensors, so the basic structure is

the same as the INS. The system calculates the position by integrating the

acceleration and angular rate at given every sample, and the process consists of

five steps: bias compensation, orientation updates, gravity removal, integration,

and correction [72].

In bias compensation step, the estimated accelerometer and gyro biases are

subtracted in the raw sensor data as (4.7).ω̃b
k = yb

g,k − ε̂
b
k−1

f̃ bk = yb
f,k − Ô

b
k−1

(4.7)

where ω̃b
k and f̃ bk are compensated gyro and accelerometer in body frame, re-

spectively, and yb
g,k and yb

f,k are raw inertial sensor output in body frame, and

ε̂bk−1 and Ô
b
k−1 are estimated bias for gyro and accelerometer, respectively.

Next, attitude representing the relationship between body (b, defined as

65



Forward-Right-Down) and navigation (n, defined as North-East-Down) frame

is updated using the angular rate in quaternion attitude representation as (4.8).

qk = (I + 1
2W∆t)qk

where W =


0 −ω̃b

x,k −ω̃b
y,k −ω̃b

z,k

ω̃b
x,k 0 ω̃b

z,k −ω̃b
y,k

ω̃b
y,k −ω̃b

z,k 0 ω̃b
x,k

ω̃b
z,k ω̃b

y,k −ω̃b
x,k 0


(4.8)

qk is a quaternion defined as qk =
[
q0,k ~qk

]T
=
[
q0,k q1,k q2,k q3,k

]T
.

In the third stage, gravitational components is removed from the compen-

sated acceleromter as (4.9).

f̄n = Cn
b,k f̃

b
k − gn (4.9)

where Cn
b,k is a DCM transformed from the qk, and gn is gravity represented

in n-frame.

In the fourth stage, velocity and position are calculated through the inte-

gration as (4.10). vn
k = vn

k−1 + f̄nk ·∆t

pn
k = pn

k−1 + vn
k ·∆t

(4.10)

where ∆t, vn
k , and pn

k are sampling time, velocity, and position, respectively.

The velocity model is simplified as above because the low-cost MEMS IMU

does not measure the earth rotation rate and coriolis effect.

The fifth stage is the correction from the EKF error states using the mea-

surmenets. The EKF is implemented to integrate the IA and PA methods in

this dissertation, and the correction is made following the estimated errors,

which is discussed in the following subsections. In brief, the position, velocity,
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attitude, and biases for accelerometer and gyro are corrected following the EKF

estimates.

4.3.1 System model

The built-in inertial sensors and magnetometer from the smartphone are

the input of the system, and 15 error states of EKF are position of one stride,

velocity, attitude, accelerometer bias, and gyro bias as in (4.11).

δx =
[
δpn

step δvn δϕ Ô
b
ε̂b
]T

(4.11)

where the ϕ is attitude represented in Euler angle. The corresponding system

matrix is in (4.12) following the relationship among states.

Φ =



I3×3 I3×3∆t 03×3 03×3 03×3

03×3 I3×3

[
f̃n×

]
∆t Cn

b ∆t 03×3

03×3 03×3 I3×3 03×3 −Cn
b ∆t

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3


(4.12)

where I is the identity matrix, and the numbers in subscript show its dimension.

The zero matrix fit to dimensions are represented as 0 in the equation. The mea-

surement updating processes are largely ZUPT, AHRS, and two-dimensional

position from PA in the proposed algorithm. The first two processes are done

in every sample, the other is every two steps.

4.3.2 Measurement model

ZUPT

In case of ZUPT in the smartphone, the zero velocity phase rarely occurs,

but it is performed in the initial alignment and stationary condition. The phase
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is detected using the windowed accelerometer z-axis variance, and the corre-

sponding measurement equation is in (4.13) and (4.14).

zZUPT = vn (4.13)

H =
[
03×3 I3×3 03×3 03×3 03×3

]T
(4.14)

AHRS

Using accelerometer and magnetic measurements, attitude of the sensor is

determined as follows.

zAHRS =
[
f̃ b − C̃b

ngn yb
m − C̃b

nmn
]T

(4.15)

H =

03×3 03×3 C̃b
n [g̃n×] I3×3 03×3

03×3 03×3 C̃b
n [m̃n×] 03×3 03×3

 (4.16)

The covariance is adjusted following the residuals using the ellipsoidal meth-

ods. The specific details are described in chapter 3.

PA measurements - matched case

With the ZUPT and AHRS updates in the smartphone, the IA position

is rapidly diverging. The PA position, however, is bounded because the step

length is estimated from the parameters. Therefore, when the device heading

and walking direction correspond to Fig. 4.6a, the 2D position calculated from

PA is used as measurements. In situations such as Fig. 4.6a where the direction

of walking matches the direction of the device, the step length obtained from

the PA marked in orange and the direction of device can correct the IA position

due to the accumulated error indicated in green.
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Figure 4.6: Measurement update

The position from the PA-based PDR system consists of three major compo-

nents: step detection, step length estimation, and heading estimation between

two consecutive steps. With the estimated component, the position is calculated

by (4.17). pnN,k

pnE,k

 =

pnN,k−1 + SL · cos(ψ)

pnE,k−1 + SL · sin(ψ)

 (4.17)

where k is k-th step, pnN,k−1, p
n
E,k−1 is the previous position in north and east,

respectively, and ψ is device heading.

Firstly, accurate step detection is the basis of the PA-based PDR method

for accurate position estimation. Even if the step length is estimated correctly,

the inaccuracy of the step detection process can result in significant errors due

to missing or adding a single step. The peak detection method detects the

heel-strike which is the moment the foot touches the ground, allowing to find

a step periodically. In this dissertation, considering the advantage of accurate

heel strike detection, a peak detection method using acceleration is used. The

acceleration data is low-pass filtered with a cutoff frequency set to 5 Hz and

windowed to prevent noise effects.
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As the name implies, the step length between steps in a PA is determined by

its parameters. The IA, on the other hand, causes a significant error due to the

double integration of the accelerometer output containing sensor error. Based

on the linear relationship between the step length and the step frequency, we

use a step length estimation method based on a linear combination similar to

the previous work [48]. There are many features and functions for estimating

the step length other than the walking frequency, but it is advantageous for

the independence of the mounting position as long as the step is accurately

detected. The following (4.18) is the step length formula applied.

SL = α ·WF + β (4.18)

where WF is walking frequency and α, β are pre-learned parameters according

to the pre-calibration.

Lately, in the assumption under the PA-based PDR system, the device head-

ing is the same as the walk direction. In this paper, the heading from the adap-

tive AHRS algorithm in chapter 3 is used in order to estimate accelerometer

and magnetometer measurements efficiently.

In short, the measurement updates for PA positions are performed based on

the heading match condition check. It compares the heading difference between

the walking direction calculated from two-step positions in IA and the device

heading during two steps, and the pose recognition results are additionally used

for better decision. The reason for using a stride, two steps, is that the walking

direction is oscillating following the walking characteristics of each user. The

walking direction and step length for IA are calculated as (4.19) and (4.20).

WDIA = tan−1 ∆pnE
∆pnN

(4.19)

SLIA =
√

(∆pnN )2 + (∆pnE)2 (4.20)
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where ∆pn is position between two steps.

For handheld conditions where the walking direction and device orientations

match as shown in Fig. 4.6 (a), the heading offset is assumed as zero, so the

step length from the PA and device heading are directly used to correct the

IA states as in (4.21) and (4.22). In addition, assuming that the height for one

stride are the same, the vertical position is also corrected.

zmatch =
[
WDIA − ψ SLIA − SLPA ∆pnD

]T
(4.21)

H =


− ∆pnE,IA

(∆pnN,IA)2+(∆pnE,IA)2
∆pnN,IA

(∆pnN,IA)2+(∆pnE,IA)2
0 01×12

∆pnN,IA√
(∆pnN,IA)2+(∆pnE,IA)2

∆pnE,IA√
(∆pnN,IA)2+(∆pnE,IA)2

0 01×12

0 0 1 01×12

 (4.22)

The first component in (4.21) uses the heading angle to correct the course

angle error calculated from the position. They have different stochastic char-

acteristics, but the long-term characteristics are sufficiently similar that the

difference can be neglected. Therefore, the above measurement can be used as

above, since the course angle can be assumed to be dominated by the sensor

heading error [125].

PCA measurements - mismatched case

The problem in the PA position is that it only considers device heading,

not walking direction. If there are different poses such as putting the phone

in the shirt or trouser pocket, the walking direction does not match with the

device heading as Fig. 4.6b. In this case, there is heading offset between walking

direction and device heading. For the position from conventional PA shown in

orange, errors are continuously generated because the position is estimated

based on the device heading. However, in a mismatch situation, you can update
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the position of the IA in green through the position calculated by the PCA of

the acceleration vector, this position marked blue in the Fig. 4.6b.

As mentioned, for the mismatched heading case, the walking direction is

calculated from PCA. PCA is a technique that finds new bases orthogonal

to each other while preserving the variance of data as much as possible and

transforms samples from high-dimensional spaces into low-dimensional spaces

without linear correlation [92,126].

This approach takes advantage of the fact that the user’s motion axis cor-

relates with the largest variance axis in the horizontal acceleration that can be

determined by PCA [38, 127–129]. In order to find the unit vector of walking

direction, u1, which is the largest variance in the horizontal acceleration data

fnm where m = 1, ...,M . Each data point fnm is projected on to a scalar value

uT
1 fnm, and the mean of the projected data is uT

1 f̄n where f̄n is sample set means

represented as follows.

f̄n =
1

M

M∑
m=1

fnm (4.23)

The variance of the projected data and the data covariance S are respectively

given by

1

M

M∑
m=1

{
uT

1 fnm − uT
1 f̄n
}2

= uT
1 Su1 (4.24)

S =
1

M

M∑
m=1

(
fnm − f̄n

) (
fnm − f̄n

)T
. (4.25)

In order to maximize the projected variance in (4.24) with respect to u1,

Lagrange multiplier λ1 is introduced with the unconstrained maximization of

(4.26).

uT
1 Su1 + λ1

(
1− uT

1 u1

)
(4.26)
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By setting the derivative with respect to u1 equal to zero, u1 is an eigen-

vector of S.

Su1 = λ1u1 → uT
1 Su1 = λ1 (4.27)

Therefore, the variance will be a maximum when u1 is equal to the eigenvector

having the largest eigenvalue λ1.

There are various PCA based variants such as PCA2D, PCA2Df, PCA3Df,

and gyroPCA to get the user’s motion axis [38]. PCA2D is a PCA applied to the

window on the 2D acceleration axis obtained by projecting onto the horizontal

plane. The first eigenvector, which is the largest eigenvalue means a walking

direction. Next, PCA2Df is almost same as PCA2D, but before applying PCA,

the acceleration is low pass-filtered at 5 Hz to remove noise. According to [38]

the 5 Hz average filter basically eliminates the body shaking noise, but it shows

the best results in a series of tests that maintained the acceleration signal due

to body movement. In addition, PCA3Df applies PCA to the 3D acceleration

axis (converted to a n-frame) and then projects a third order eigenvector (the

smallest eigenvalue) onto the horizontal plane. Lastly, gyroPCA [127] applies

PCA of gyroscope measures in n-frame to extract the user’s relative orientation

over time.

Among those, PCA2Df is proved to be most accurate in [38], so the walking

direction is obtained from the PCA2Df in this dissertation. To address the 180

degree ambiguity inherent in the direction coming out of the PCA above, we

adjust it with the direction through IA-based PDR.

Using the walking direction obtained from both IA and PCA, the IA states

are updated as in (4.28).

zmismatch =
[
WDIA −WDPCA SLIA − SLPA ∆pnD

]T
(4.28)

As seen from the above equations (4.25), sensor errors such as accelerometer
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Figure 4.7: Measurement updating mode

bias On and noise wn
f are neglectable if the acceleration by pose is large enough

to ignore the errors by the quadratic term inside of summation (4.29).(
fnm + On + wn

f − f̄n
) (

fnm + On + wn
f − f̄n

)T
(4.29)

However, it should be noted that the PCA is done in the navigation frame.

Therefore, it is essential to minimize the error of navigation frame acceleration

through the attitude estimation method estimated in chapter 3.

4.3.3 Mode selection

In this paper, there are a total of four modes to decide how to update

measurements as in Fig. 4.7. As in Fig. 4.8 and mentioned in chapter 4.1, the

user initially stands for about 5 seconds and performs alignment for initial

attitude. During this phase, the mode is recognized as standstill, and the zero

velocity correction as (4.13) is performed. When the user starts walking with

text pose, in which case the state variables of the IA are corrected to the

position obtained from the PA as (4.21). These are scenario constraints for

this algorithm mentioned in chapter 4.1. In the process of switching from text

pose to the others, or in a situation such as rotation in place, the transition
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Figure 4.8: Walking scenarios and corresponding modes

Figure 4.9: Mode decision flow

mode works. In this case, the position is obtained by propagation of IA without

performing measurement update. Lastly, if there is a discrepancy between the

direction of walking and the direction of the device, the walking direction is

calculated as PCA to correct the state variables of IA as (4.28).

In selecting four modes, it uses an accelerometer, classified pose, the dif-

ference between the walking direction and the device heading, and the angle

difference between two steps as Fig. 4.9. Firstly, the standard deviation of slid-

ing widowed accelerometer data is used to determine standstill mode, which is

represented as mode 1. When it is below the pre-determined threshold, it can

be seen as standstill. Otherwise, it determines whether the pose is text through
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pose recognition. Even if it is decided as text, it still remains whether the user

is turning or not. This is because the measurement update is not performed

during the turning phase, which is mode 3, and mode 2 updates the position as

(4.21). These two modes are chosen using the angle difference between two steps

which indicates the turning of the user when it is above the threshold. In case

of non-text poses, shirt pocket, trouser pocket, and swing in this dissertation, it

can be considered as mismatch phase. Same as before, the measurement is not

updated under the transition and turning condition, so it has to be determined.

In addition to the angle difference between two steps, a difference between the

direction of walking and the device heading is used for deciding mismatch mode.

It is noted that each threshold used for mode decision is saved in advance.

4.3.4 Observability analysis

In this section, the observability analysis of the proposed algorithm is per-

formed. One of the reasons for the analysis of the observability of a dynamic

system is the need to determine the effectiveness of the Kalman filter designed

to estimate the state of that system. The ability to estimate the state of a fully

observable system depends only on system driving noise and measurement noise.

On the other hand, if the system is unobservable, ignoring the noise level will

not give us an accurate estimate of the condition. In other words, observability

sets a lower bound on the estimation error, and the lower the limit, the better

the chance to get an accurate estimate of the system states.

The analysis of the observability of the constant dynamic system is rather

simple, but the analysis of the time-varying system is quite cumbersome and

requires the evaluation of the observability Grammian. The calculation of the

observability Grammian is performed numerically rather than analytically. As

a result, it is difficult to study the properties of a system and derive general
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rules governing it.

There are cases where the time-varying system has little loss of accuracy

and can be approximated by a PWCS (Piece-Wise Constant System) (e.g. INS

during alignment during flight) [130]. When doing the observability analysis of

the system, it is the characteristics, not the exact time response that we are

interested in. Therefore, the time-varying system can be replaced with PWCS

for observability analysis.

Meanwhile, when using a linearized estimator, errors in the linearization

process affect measurement Jacobians with respect to the direction of the infor-

mation. If the incorrect information due to the linearization error exists along

an unobservable direction, the uncertainty is small, even if it is impossible to

observe.

The observability matrix for the linearized EKF system over the time step

[1, k] is defined as a function of the discrete time state transition matrix Φ and

the linearized measurement matrix H:

O(x) =


H1

H2Φ2,1

...

HkΦk,1

 (4.30)

To compute and analyze the observability matrix of the proposed system,

we first derive the state transition matrix following matrix differential equation:

Φ̇k,1 = FkΦk,1 where Fk =



03×3 I3×3 03×3 03×3 03×3

03×3 03×3

[
f̃n×

]
Cn

b 03×3

03×3 03×3 03×3 03×3 −Cn
b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(4.31)
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By conducting a block-by-block examination of (4.31), its analytic solution

can be obtained, which will be used for the observability analysis. The first

order linearized solution at k is in (4.12).

The null space of O for the proposed algorithm following each measurement

in chapter 4.3.2 explains in turn.

ZUPT

A rank test of zero velocity correction results in 8. The null space basis vector

for position, heading, gyro bias in down axis of n-frame, and accelerometer bias

are as follows.

NZUPT,1 =



I3×3

03×3

03×3

03×3

03×3

03×3


, δx′ = δx + NZUPT,1δp (4.32)

NZUPT,2 =



03×1

03×1

0

0

1

03×1

03×1


, δx′ = δx + NZUPT,2δψ (4.33)
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NZUPT,3 =



03×1

03×1

03×1

03×1

Cb
n,col3


, δx′ = δx + (NZUPT,2&3)εnD = δx +



03×1

03×1

0

0

1

03×1

Cb
n,col3


εnD (4.34)

NZUPT,4 =



03×2

03×2

0 1

−1 0

0 0

g 0

0 g

0 0

03×2



(4.35)

For simplified representation of null space-based vectors, we assume that

acceleromter bias and gyro bias are represented in NED frame. It is also noticed

that the acceleromter bias is coupled with attitude.

As a result, given ZUPT measurement, the position, heading, gyro bias

(down in n-frame), and coupled accelerometer bias (north and east in n-frame)

are unobservable.
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AHRS

A rank test of AHRS measurement results in 8. The null space basis vector

for position, velocity, and accelerometer bias are as follows.

NAHRS,1 =



I3×3

03×3

03×3

03×3

03×3

03×3


, δx′ = δx + NAHRS,1δp (4.36)

NAHRS,2 =



03×3

I3×3

03×3

03×3

03×3

03×3


, δx′ = δx + NAHRS,2δv (4.37)

NAHRS,3 =



03×1

03×1

mx

my

mz

−g ·my

g ·mx

0

03×1



(4.38)

Similarly, for simplified representation of null space-based vectors, acceleromter

bias is again represented in NED frame. It is also noticed that the acceleromter
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bias is coupled with attitude. As a result, given AHRS measurements, the po-

sition, velocity, and coupled accelerometer bias (north and east in n-frame) are

unobservable.

PA measurements

A rank test of IA-PA which is (4.21) and (4.28) results in 11. The null space

basis vector for heading, gyro bias in down axis of n-frame, and accelerometer

bias are as follows.

NIAPA,1 =



03×1

03×1

0

0

1

03×1

03×1


, δx′ = δx + NIAPA,1δψ (4.39)

NIAPA,2 =



03×1

03×1

03×1

03×1

Cb
n,col3


, δx′ = δx + (NIAPA,1&2)εnD = δx +



03×1

03×1

0

0

1

03×1

Cb
n,col3


εnD (4.40)
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NIAPA,3 =



03×2

03×2

0 1

−1 0

0 0

g 0

0 g

0 0

03×2



(4.41)

As before, for simplified representation of null space-based vectors, ac-

celeromter and gyro bias are again represented in NED frame. It is also noticed

that the acceleromter bias is coupled with attitude in (4.41). As a result, given

IA-PA for both match and mismatch measurements, the heading, gyro bias

(down in n-frame), and coupled accelerometer bias (north and east in n-frame)

are not observable.

In conclusion, if all the measurements are used at once, it becomes fully

observable. In the case of accelerometer bias associated with attitude in all

measurements, the observable varies depending on the attitude.

4.4 Experimental Results

4.4.1 AHRS results

As mentioned earlier, the IA and PA fusion proceeds under the assumption

that the attitude estimation algorithm proposed in chapter 3 and the gyro bias

error are well estimated. To confirm this assumption, the estimated attitude

comparison with the one provided by Xsens MTw is performed. In addition, in
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Table 4.5: Attitude error compared with Xsens MTw

[deg] roll pitch yaw

attitude error 1.99 1.59 2.99

Table 4.6: Gyro bias error compared with stationary data

[rad/s] εx εy εz

gyro bias error 0.908×10−3 1.42 ×10−3 0.715 ×10−3

Table 4.7: Initial gyro bias set

ini. ε [rad/s]

case 1
[
0.0 −0.0 −0.0

]
∗ 1e− 3

case 2
[
1.0 −1.0 −0.5

]
∗ 1e− 3

case 3
[
2.0 −2.0 −1.0

]
∗ 1e− 3

case 4
[
3.0 −3.0 −1.5

]
∗ 1e− 3

case 5
[
4.0 −4.0 −2.0

]
∗ 1e− 3

the case of the gyro bias, the comparison is performed with the gyro bias as a

true value with the sensor resting on the flat floor before the experiment.

The attitude accuracy provided by Xsens is as follows. Roll and pitch are

0.75 degrees in dynamic situations, and yaw is 1.5 degree. From the results in

Table 4.5 and 4.6, it can be seen that the attitude and the gyro bias are also

well estimated to satisfy the assumptions mentioned in this paper. Also, even

if the initial gyro bias value is changed as shown in the Table 4.7, it converges

as shown in the Fig. 4.10.
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Figure 4.10: Estimated gyro bias error in different initial values

4.4.2 PCA results

To check the performance of the walking direction calculated by PCA, the

dataset in chapter 4.2 is used. In short, the experimental scenario is a 25m

round trip linear trajectory, and the walking speed is 80, 90, 95, 100, and 105

BPM. The number of subjects participating in this experiment is 8 males and

4 females, a total of 12 subjects. Subjects are from 23 to 40 years of age with

no physical disability. The sensor used is the Xsens MTw. This is because this

sensor can be wirelessly attached to multiple locations on the body and get

synchronized data from all sensors. In this thesis, the sensors are attached to

the shirt pocket, hand, trouser pocket, and shoes. The sensor on the shoe is

used to get an accurate heel strike point.

When the heel strike point is extracted from the shoe, the acceleration in the

navigation frame during 1 stride, fn, is calculated using the attitude provided
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Table 4.8: Walking direction by PCA results

error[deg] Mean Std. 25% tile Median 75% tile 95% tile

Shirt -0.203 5.64 1.16 3.24 6.37 12.0

Trouser 0.025 3.21 0.706 2.02 3.65 7.00

Swing -0.100 5.97 1.29 3.39 6.48 13.2

by MTw as in Fig. 4.11. The figure shows the acceleration of the north and

earth axes during 1 stride, and over time the acceleration data changes from

blue to magenta. The green line shows 180 degree ambiguity in the direction

of progress calculated by PCA. Also, as you can expect, the shirt pocket fixed

to the upper body has the lowest acceleration and the greatest acceleration in

the swing situation where the hand is moved greatly. The result of Fig. 4.11

shows that although there is a difference in the magnitude of the acceleration,

the direction of progress can be extracted through PCA.

PCA results from 12 subjects are shown in the Fig. 4.12 and Table 4.8.

The results about 120 strides per person are checked, except for errors due to

body movement, errors in the starting, ending, and in-situ rotation situations.

In each box in the Fig. 4.12, the central mark represents the median, and

the bottom and top edges of the box represent the 25th and 75th percentiles,

respectively. The whiskers are extended to the most extreme data points that

are not considered outliers, and outliers are displayed individually using the +

symbol.

Overall, the best results are when the device is in the pants pocket. This

is because in the pocket, the sensor is fixed in the pocket and is completely

caused by the movement of the leg, so it can indicate the direction of progress.

On the other hand, the shirt pocket is fixed inside the pocket, but it seems that
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Figure 4.11: PCA and acceleration (n-frame) for 1 stride
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Figure 4.12: PCA results in box whisker plot
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an error occurred because the upper body movement is relatively small. In the

case of swing, the result is that the volatility is largely due to the movement of

the hand because the degree of freedom is the largest.

4.4.3 IA-PA results

To compare and prove the performance of the IA and PA-based PDR system,

the experiment is performed also with the IMU module, Xsens MTw [120,124].

The three trajectories are tested. The first trajectory is a straight trajectory

of 40m one way performed to check the results of the PCA under mismatch

case, and the second trajectory is an L-shaped trajectory of 58m round trip to

check whether the proposed algorithm works well even when rotation occurs in

a pose other than text. The trajectory is a square trajectory of 194.6m one way

to confirm that there is no problem even after operating for a long time.

In the IA-PA fusion system, each of IA and PA must be well estimated for

the best results, so the results for each component are presented as follows.

As mentioned before, the trajectory 1 as in Fig. 4.13 is tested to check the

feasibility of the proposed algorithm. Firstly, whether step detection is correct

or not for each pose is checked as Fig. 4.14. Two MTw sensors are synchronized

and tested at the same time, one attached to the right shoe and used to obtain

the correct true value, and one operated like a mobile phone. It has already

been proven that step detection using the peak value of acceleration magnitude

works well in text situations. Similar to other target poses, it is easy to detect

Figure 4.13: Trajectory #1
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Figure 4.14: Step detection results
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steps using the magnitude of acceleration. The gray areas in each figure in Fig.

4.14 are the stance phase intervals (per stride) detected by shoes, the blue is the

magnitude of acceleration, and the red is the step detected by the step detection

technique. In addition, the shirt pocket section is red, the pants pocket is green,

and the swing is blue, respectively. As looking at Fig. 4.14, it can be seen that

there is a step misdetection during the transition between poses, but the steps

are well detected in other situations.

In case of step length and heading, there are many features and functions

for estimating the step length other than the walking frequency, but it is ad-

vantageous for the independence of the mounting position as long as the step

is accurately detected. The (4.18) is the step length formula applied. For head-

ing, the estimated attitude results are compared with the attitude provided by

MTw because there are no reference.

Next, it is confirmed whether the walking direction obtained by the PCA

in the pose other than the text is correct. Fig. 4.15 shows the result of the

difference between the walking direction of each stride and the walking direction

calculated by PCA, and the difference between the walking direction and AHRS

in non-text pose when walking trajectory 1. When the pose changes as shown

in the figure, the position and attitude of the device changes, and the walking

direction and the device direction do not match. On the other hand, in the

case of walking direction calculated through PCA, you can see that it gives

information about the direction of walking.

The following Fig. 4.16 and Table 4.9 the results of position estimation cal-

culated for 10 subjects from the proposed algorithm. In Fig. 4.16, red indicates

the proposed algorithm, and black indicates the trajectory of the PA-based

algorithm. When the pose changed, it is marked with magenta and gray, re-

spectively. Through the proposed method, the problems that occur when the
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Figure 4.15: Walking direction difference of PCA and AHRS
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Figure 4.16: Estimated position
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Table 4.9: Position results for trajectory #1

Pos. Error[m]
PA only IA-PA

Mean Std. Mean Std.

Shirt Pocket 15.1 3.86 0.881 0.698

Trouser Pocket 8.99 5.72 0.920 0.442

Swing 2.59 2.59 0.999 0.686

Figure 4.17: Trajectory #2

existing PA-based PDR estimation changes its poses can be solved.

The walking scenario 2 is a total of 58 meters of L-shaped round-trip tracks,

as in Fig. 4.17, with the subject holding the sensor in hand and walking in the

area marked in red so that the walking direction does not match the sensor. In

addition, text pose with no mismatch case throughout the experiment is also

tested. The position and attitude estimation results for those poses are in Fig.

4.18-4.20.

As seen from the position results in Fig. 4.18a, in the beginning, the results

of PA and IA are the same during the text pose. The text pose is a situation in

which the direction of movement is the same as the direction of the device, so the

IA position is updated by the PA position. Therefore, the walking direction of
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IA calculated from the n-frame position and PA from the AHRS also correspond

as in Fig. 4.18b. When the device is put on the shirt pocket, the position of

PA is no longer corresponds to the walking direction, so the mode is changed

following the difference as transition or mismatch as in Fig. 4.18b. Mode 3

includes the transition of poses or turning of the subject, and it shows a shorter

step length than the regular walk between steps. After the transition phase,

the tester walks straight with the device tilted, so the mode changes into the

mismatch one. In Fig. 4.18b, it is noticeable that the device heading marked

as yawPA does not match with the walking direction represented as yawIA.

When the device returns to the match mode, the position of the proposed

method follows the characteristics of the PA. As seen from the results, the

proposed algorithm is able to detect the device condition and estimate position

by considering the heading difference between walking direction and heading. It

is also noticeable that position errors are reduced using the proposed algorithm

when the tester is rotating in place. This is because the step length and the

walking direction are accurately estimated based on the n-frame position, unlike

the period-dependent PA stride.

Similarly, when the device is placed in the trouser pocket, the heading mis-

match also occurs as in Fig. 4.19a. When the sensor is placed in the trouser

pocket, there are large attitude changes due to the repetitive leg movements. As

we are using the mean heading of two consecutive steps, the swaying heading

angle from the leg does not affect the position results. In addition, the results

show that the proposed algorithm works even under the trouser pocket poses.

This algorithm can be applied to swing pose as shown in Fig. 4.20a. In the

case of swing, if the step detection is performed correctly, the walking direction

result of the PA is not bad, but there are disadvantages that it is unstable, so

the proposed algorithm can obtain more stable position estimation results.
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Table 4.10: Position results for trajectory #2

RPE [m] PA only IA-PA

Shirt pocket 5.05 0.98

Trouser pocket 15.69 1.42

Swing 2.64 1.05

Text only 0.97 0.43

The position result in Fig.4.20a, however, shows one of the limitations of the

proposed algorithm that the IA results follow the PA features. To be specific, the

step length and heading of the device are incorrect; the measurement updates

of those lead to position errors. Therefore, the correct step length and device

attitude estimation of PA is the prerequisites of the proposed algorithm.

Lastly, the trajectory with the only handheld case is tested as in Fig. 4.21a.

As seen from the figure, the proposed algorithm is also advantageous during

rotating in place. The conventional PA algorithm calculates the step length

only based on the walking frequency, so errors occur in sections with short

strides, such as rotating in place.

The RPE (Return Position Error) results of multiple poses are in Table 4.10.

The above results show that the algorithm can be applied in other situations

wherever there is a heading mismatch. The proposed algorithm seems to work

well, but if the walking direction from PCA is incorrect, the heading error will

increase significantly over time. In this case, additional heading measurements,

such as the dominant direction, can improve the performance of the IA, which

is considered as future work. In addition, since the IA position error is com-

pensated based on the performance of the step length from the PA, an average

reasonable length estimation is still required.
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The trajectory 3 is performed to see that the proposed algorithm works

well even on the long trajectory, and the trajectory performed at Building 39

in Seoul National University is rectangular-shaped of 194.6m, as shown in Fig.

4.22a. The text trajectory is blue, and the rest of the poses are in the order of

shirt pocket, trouser pocket, and swing, and the section is marked in orange.

The result of running the proposed algorithm for a long time is shown in the

Fig. 4.22b. In the figure, red is the proposed algorithm, blue is the result of

the PA-based algorithm, and when the pose changes, it is drawn with magenta

and cyan, respectively. In the case of position error, it is calculated based on

four rotating sections and the arrival point, and the proposed algorithm has a

position error of 2.13m and PA of 20.01m. This shows that even after walking

for a long time, the proposed algorithm yields good results.

I would like to mention that the proposed algorithm has some limitations

to be improved. As mentioned earlier, the IA states are estimated based on

the PA measurements, so the PA position results by itself should be accurate

as possible. Therefore, the additional heading information from other sources

such as dominant direction of the building, BLE, Wi-Fi, etc. enables to use the

proposed algorithm for a long time. In addition, the mode is determined based

on walking direction and device heading, so the slight difference between those

could leads to the wrong position errors.

4.5 Summary

In this section, I propose the PDR system with the fusion of the IA and

PA for seamless smartphone position estimation. The algorithm is proposed in

order to avoid the severe position errors from the difference between the walking

direction and the device heading. The fusion algorithm estimates the position
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from the IA-based PDR system, with the measurement of step length from the

PA and device heading under the correspondence mode. In case of the heading

mismatch condition, the PCA from steps provides the wakling direction, so

the measurement is continuously updated during mismatch case. The proposed

algorithm shows its effectiveness in the experiments that position is correctly

estimated under shirt pocket, text, swinging, and trouser pocket pose.
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Chapter 5

Conclusions

5.1 Summary of the Contributions

In this dissertation, the fusion of IA and PA-based PDR system is newly

proposed for multiple poses in the smartphone, and the adaptive attitude es-

timation using ellipsoidal method is also proposed. The overview of PDR is

presented in chapter 2, and the PA and IA are described. Both for the PA and

IA-based PDR system, it is important to have accurate attitude estimation.

Therefore, in chapter 3, adaptive attitude estimation using ellipsoidal method

is proposed. The proposed algorithm considers the direction of the measure-

ment residuals, so it has a better accuracy than the conventional adaptive es-

timation technique without considering the direction. The conventional PA for

smartphone parametrically estimates the stride based on the step detection and

calculates the position using the device heading at that time. It suffers from

the attitude and position errors caused by device placements or motions. Espe-

cially when the walking direction and the device do not match, it causes severe

problems in position estimation. In order to solve this problem, this dissertation

proposes the algorithm that constructs state variables based on the IA and uses

the position vector from the PA as a measurement in chapter 4. If the walking

direction and the device heading do not match based on the pose recognized

through machine learning technique, the position is updated in consideration of
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the direction calculated using PCA and the step length obtained through the

PA.

The results and contributions of this dissertation are summarized as follows:

1. First, in order to accurately and consistently estimate the attitude of a

smartphone device for indoor navigation, an adaptive attitude estima-

tion using an ellipsoidal method is proposed. Residual vectors acquired

from accelerometers and magnetometers are used to deal with measure-

ment errors from the acceleration and magnetic disturbance in AHRS.

When the disturbance occurs, the measurement covariance is inflated to

generate covering ellipsoid by comparing the residual vectors and mea-

surement noises. The inflated measurement covariance is used in EKF

to estimate attitude errors and gyro bias errors. The proposed attitude

algorithm is confirmed to work accurately in the rate table, hand rota-

tion with visual markers, and magnetic disturbing experiments.

2. The fusion of the IA and PA for position estimation in PDR is designed.

There are many degrees of freedom when using the smartphone to move

indoors, so there is a variety of poses, such as sending text messages and

putting it in pants or shirt pockets. In the existing smartphone-based

positioning algorithm, the position is estimated by the PA-based PDR,

and it can be used only when the pedestrian’s walking direction and

the device’s direction match, otherwise the position error due to mis-

match angle error is large. To solve this problem, this paper proposes

an algorithm that constructs state variables based on IA and uses the

position vector of the PA as a measure. To be specific, the IA-based

PDR states are estimated using measurements from PA-based PDR and
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PCA. Using the classified poses from machine learning technique and the

heading difference, it is possible to choose when to use PCA-based an-

gle measurement. If the walking direction and the device heading do not

correspond based on the pose recognized through machine learning tech-

nique, the position is updated in consideration of the direction calculated

using PCA and the step length obtained through the PA. The EKF uses

ZUPT, AHRS, PA-based position, and PCA to estimate and correct the

error states of IA. The proposed algorithm, as a result, ensures observ-

ability of error states and position accuracy. Through the experiments

under various conditions and the four poses (text, shirt pocket, trouser

pocket, and swing), the proposed algorithm robustly and continuously

estimates the position.

5.2 Future Works

The proposed algorithm can be improved on the two aspects.

• Step length estimation in the PA-based PDR

The proposed IA-PA PDR fusion algorithm is dependent on the step

length estimation performance of the PA. In proposed algorithm, the

step length from the PA is assumed to be accurate, so the position of the

IA is limited to the accuracy of the PA position.

• Adjusting with external information

If there is a small angle difference between walking direction and device

heading during text message pose, the proposed algorithm just follows

the attitude of the device. In addition, it is reasonable to use the walking

direction obtained from the PCA as a measurement, but it is better to

further adjust the heading using other information such as the dominant
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direction and multiple virtual tracks. This helps in updating the wrong

measurements due to errors in the PCA. In addition, external location

information such as Wi-Fi and map information can be used to adjust

for accumulated location errors.

As mentioned earlier, the accuracy of the proposed algorithm is limited

to the one of the PA-based step length. This means that accumulated

step length errors are inevitable. Therefore, the external position source

helps in scaling the step length parameters.
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국문초록

본 논문에서는 저가형 관성센서를 이용한 보행항법시스템 (PDR: Pedestrian

Dead Reckoning)의성능향상알고리즘을제안한다.구체적으로보행자가실내에

서스마트폰을들고이동할때발생하는다양한동작상황에서도운용될수있도록,

매개변수 기반 측정치를 사용하는 적분 기반의 보행자 항법 알고리즘을 구성한다.

또한 타원체 기반 자세 추정 알고리즘을 구성하여 외란 상황에서도 강인하게 자세

를 추정하는 알고리즘을 제안한다. 추가적으로 기계학습 기반의 동작 인식 정보를

이용,동작에따른측정치업데이트를달리함으로써위치추정성능을향상시킨다.

먼저 스마트폰 기기의 이동 방향을 정확하게 추정하기 위해 타원체 기법 기

반 적응 자세 추정을 제안한다. 자세 추정 기법 (AHRS: Attitude and Heading

Reference System)은 자이로를 기반으로 자세를 계산하고 자이로 센서오차에 의

해 발생하는 드리프트를 보정하기 위해 측정치로 가속도계와 지자계를 사용한다.

일반적으로 가속 및 지자계 외란 상황에서는 자세 추정 성능이 떨어지는데, 추정

성능을 효과적으로 향상시키기 위해 본 논문에서는 타원체 기반 적응 자세 추정

기법을 제안한다. 측정치 외란이 들어오는 경우, 외란의 방향을 고려하여 타원체

기법으로 측정치 공분산을 조정해줌으로써 방향을 고려하지 않은 적응 추정 기법

보다 정확하게 측정치 업데이트를 할 수 있다. 특히 외란이 한 축으로만 들어오는

경우, 제안한 알고리즘은 방향을 고려해 나머지 두 축에 대해서는 업데이트 해줌

으로써 측정치를 부분적으로 사용할 수 있다. 레이트 테이블, 모션 캡쳐 장비를

통해 제안한 알고리즘의 자세 성능이 향상됨을 확인하였다.

다음으로 다양한 동작에서도 운용 가능한 적분 및 매개변수 기법을 융합하는

보행항법 알고리즘을 제안한다. 스마트폰을 이용해 실내를 이동할 때에는 자유도

가크기때문에전화걸기,문자,바지주머니넣기등다양한동작이발생가능하다.

기존의 스마트폰 기반 보행 항법에서는 매개변수 기법을 기반으로 위치를 추정하
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는데,이는보행자의진행방향과기기의방향이일치하는경우에만사용가능하며

일치하지 않는 경우 자세 오차로 인한 위치 오차가 크게 발생한다. 이러한 문제를

해결하기 위해 본 논문에서는 적분 기반 기법을 기반으로 상태변수를 구성하고 매

개변수 기법을 통해 나오는 위치 벡터를 측정치로 사용하는 알고리즘을 제안한다.

만약 기계학습을 통해 인식한 동작을 바탕으로 진행 방향과 기기 방향이 일치하지

않는 경우, 주성분 분석을 통해 계산한 진행방향을 이용해 진행 방향을, 매개변수

기법을 통해 얻은 보폭으로 거리를 업데이트해 줌으로써 보행 중 발생하는 여러

동작에서도 강인하게 운용할 수 있다.

다양한 동작 상황 및 경로를 고려한 실험을 통해 위에서 제안한 방법이 다양한

실내 환경에서도 안정적으로 위치를 추정하고 성능이 향상됨을 확인하였다.

주요어: 실내 항법, PDR, 확장 칼만 필터, 타원체 기법 기반 적응 자세 추정, 적분

및 매개변수 기법 융합 방법

학번: 2013-20674
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