12 research outputs found

    New Directions in Lattice Based Lossy Compression

    Get PDF

    Hybrid predictive/VQ lossless image coding

    Get PDF
    A multiplicative autoregressive model is used in a lossless predictive image coding scheme. The use of vector quantisation (VQ) for compression of the model coefficients leads to an improved compression ratio. Both image adaptive and universal codebooks are considered. A comparative analysis of the new coder is presented through simulation results

    Predictive multiple-scale lattice VQ for LSF quantization

    Full text link

    Vector Quantization Techniques for Approximate Nearest Neighbor Search on Large-Scale Datasets

    Get PDF
    The technological developments of the last twenty years are leading the world to a new era. The invention of the internet, mobile phones and smart devices are resulting in an exponential increase in data. As the data is growing every day, finding similar patterns or matching samples to a query is no longer a simple task because of its computational costs and storage limitations. Special signal processing techniques are required in order to handle the growth in data, as simply adding more and more computers cannot keep up.Nearest neighbor search, or similarity search, proximity search or near item search is the problem of finding an item that is nearest or most similar to a query according to a distance or similarity measure. When the reference set is very large, or the distance or similarity calculation is complex, performing the nearest neighbor search can be computationally demanding. Considering today’s ever-growing datasets, where the cardinality of samples also keep increasing, a growing interest towards approximate methods has emerged in the research community.Vector Quantization for Approximate Nearest Neighbor Search (VQ for ANN) has proven to be one of the most efficient and successful methods targeting the aforementioned problem. It proposes to compress vectors into binary strings and approximate the distances between vectors using look-up tables. With this approach, the approximation of distances is very fast, while the storage space requirement of the dataset is minimized thanks to the extreme compression levels. The distance approximation performance of VQ for ANN has been shown to be sufficiently well for retrieval and classification tasks demonstrating that VQ for ANN techniques can be a good replacement for exact distance calculation methods.This thesis contributes to VQ for ANN literature by proposing five advanced techniques, which aim to provide fast and efficient approximate nearest neighbor search on very large-scale datasets. The proposed methods can be divided into two groups. The first group consists of two techniques, which propose to introduce subspace clustering to VQ for ANN. These methods are shown to give the state-of-the-art performance according to tests on prevalent large-scale benchmarks. The second group consists of three methods, which propose improvements on residual vector quantization. These methods are also shown to outperform their predecessors. Apart from these, a sixth contribution in this thesis is a demonstration of VQ for ANN in an application of image classification on large-scale datasets. It is shown that a k-NN classifier based on VQ for ANN performs on par with the k-NN classifiers, but requires much less storage space and computations

    Contributions to unsupervised and supervised learning with applications in digital image processing

    Get PDF
    311 p. : il.[EN]This Thesis covers a broad period of research activities with a commonthread: learning processes and its application to image processing. The twomain categories of learning algorithms, supervised and unsupervised, have beentouched across these years. The main body of initial works was devoted tounsupervised learning neural architectures, specially the Self Organizing Map.Our aim was to study its convergence properties from empirical and analyticalviewpoints.From the digital image processing point of view, we have focused on twobasic problems: Color Quantization and filter design. Both problems have beenaddressed from the context of Vector Quantization performed by CompetitiveNeural Networks. Processing of non-stationary data is an interesting paradigmthat has not been explored with Competitive Neural Networks. We have statesthe problem of Non-stationary Clustering and related Adaptive Vector Quantizationin the context of image sequence processing, where we naturally havea Frame Based Adaptive Vector Quantization. This approach deals with theproblem as a sequence of stationary almost-independent Clustering problems.We have also developed some new computational algorithms for Vector Quantizationdesign.The works on supervised learning have been sparsely distributed in time anddirection. First we worked on the use of Self Organizing Map for the independentmodeling of skin and no-skin color distributions for color based face localization. Second, we have collaborated in the realization of a supervised learning systemfor tissue segmentation in Magnetic Resonance Imaging data. Third, we haveworked on the development, implementation and experimentation with HighOrder Boltzmann Machines, which are a very different learning architecture.Finally, we have been working on the application of Sparse Bayesian Learningto a new kind of classification systems based on Dendritic Computing. This lastresearch line is an open research track at the time of writing this Thesis

    Evaluation of glottal characteristics for speaker identification.

    Get PDF
    Based on the assumption that the physical characteristics of people's vocal apparatus cause their voices to have distinctive characteristics, this thesis reports on investigations into the use of the long-term average glottal response for speaker identification. The long-term average glottal response is a new feature that is obtained by overlaying successive vocal tract responses within an utterance. The way in which the long-term average glottal response varies with accent and gender is examined using a population of 352 American English speakers from eight different accent regions. Descriptors are defined that characterize the shape of the long-term average glottal response. Factor analysis of the descriptors of the long-term average glottal responses shows that the most important factor contains significant contributions from descriptors comprised of the coefficients of cubics fitted to the long-term average glottal response. Discriminant analysis demonstrates that the long-term average glottal response is potentially useful for classifying speakers according to their gender, but is not useful for distinguishing American accents. The identification accuracy of the long-term average glottal response is compared with that obtained from vocal tract features. Identification experiments are performed using a speaker database containing utterances from twenty speakers of the digits zero to nine. Vocal tract features, which consist of cepstral coefficients, partial correlation coefficients and linear prediction coefficients, are shown to be more accurate than the long-term average glottal response. Despite analysis of the training data indicating that the long-term average glottal response was uncorrelated with the vocal tract features, various feature combinations gave insignificant improvements in identification accuracy. The effect of noise and distortion on speaker identification is examined for each of the features. It is found that the identification performance of the long-term average glottal response is insensitive to noise compared with cepstral coefficients, partial correlation coefficients and the long-term average spectrum, but that it is highly sensitive to variations in the phase response of the speech transmission channel. Before reporting on the identification experiments, the thesis introduces speech production, speech models and background to the various features used in the experiments. Investigations into the long-term average glottal response demonstrate that it approximates the glottal pulse convolved with the long-term average impulse response, and this relationship is verified using synthetic speech. Furthermore, the spectrum of the long-term average glottal response extracted from pre-emphasized speech is shown to be similar to the long-term average spectrum of pre-emphasized speech, but computationally much simpler

    Structural Results for Coding Over Communication Networks

    Full text link
    We study the structure of optimality achieving codes in network communications. The thesis consists of two parts: in the first part, we investigate the role of algebraic structure in the performance of communication strategies. In chapter two, we provide a linear coding scheme for the multiple-descriptions source coding problem which improves upon the performance of the best known unstructured coding scheme. In chapter three, we propose a new method for lattice-based codebook generation. The new method leads to a simplification in the analysis of the performance of lattice codes in continuous-alphabet communication. In chapter four, we show that although linear codes are necessary to achieve optimality in certain problems, loosening the closure restriction in the codebook leads to gains in other network communication settings. We introduce a new class of structured codes called quasi-linear codes (QLC). These codes cover the whole spectrum between unstructured codes and linear codes. We develop coding strategies in the interference channel and the multiple-descriptions problems using QLCs which outperform the previous schemes. In the second part, which includes the last two chapters, we consider a different structural restriction on codes used in network communication. Namely, we limit the `effective length' of these codes. First, we consider an arbitrary pair of Boolean functions which operate on two sequences of correlated random variables. We derive a new upper-bound on the correlation between the outputs of these functions. The upper-bound is presented as a function of the `dependency spectrum' of the corresponding Boolean functions. Next, we investigate binary block-codes (BBC). A BBC is defined as a vector of Boolean functions. We consider BBCs which are generated randomly, and using single-letter distributions. We characterize the vector of dependency spectrums of these BBCs. This gives an upper-bound on the correlation between the outputs of two distributed BBCs. Finally, the upper-bound is used to show that the large blocklength single-letter coding schemes in the literature are sub-optimal in various multiterminal communication settings.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137059/1/fshirani_1.pd

    Nouvelles techniques de quantification vectorielle algébrique basées sur le codage de Voronoi : application au codage AMR-WB+

    Get PDF
    L'objet de cette thèse est l'étude de la quantification (vectorielle) par réseau de points et de son application au modèle de codage audio ACELP/TCX multi-mode. Le modèle ACELP/TCX constitue une solution possible au problème du codage audio universel---par codage universel, on entend la représentation unifiée de bonne qualité des signaux de parole et de musique à différents débits et fréquences d'échantillonnage. On considère ici comme applications la quantification des coefficients de prédiction linéaire et surtout le codage par transformée au sein du modèle TCX; l'application au codage TCX a un fort intérêt pratique, car le modèle TCX conditionne en grande partie le caractère universel du codage ACELP/TCX. La quantification par réseau de points est une technique de quantification par contrainte, exploitant la structure linéaire des réseaux réguliers. Elle a toujours été considérée, par rapport à la quantification vectorielle non structurée, comme une technique prometteuse du fait de sa complexité réduite (en stockage et quantité de calculs). On montre ici qu'elle possède d'autres avantages importants: elle rend possible la construction de codes efficaces en dimension relativement élevée et à débit arbitrairement élevé, adaptés au codage multi-débit (par transformée ou autre); en outre, elle permet de ramener la distorsion à la seule erreur granulaire au prix d'un codage à débit variable. Plusieurs techniques de quantification par réseau de points sont présentées dans cette thèse. Elles sont toutes élaborées à partir du codage de Voronoï. Le codage de Voronoï quasi-ellipsoïdal est adapté au codage d'une source gaussienne vectorielle dans le contexte du codage paramétrique de coefficients de prédiction linéaire à l'aide d'un modèle de mélange gaussien. La quantification vectorielle multi-débit par extension de Voronoï ou par codage de Voronoï à troncature adaptative est adaptée au codage audio par transformée multi-débit. L'application de la quantification vectorielle multi-débit au codage TCX est plus particulièrement étudiée. Une nouvelle technique de codage algébrique de la cible TCX est ainsi conçue à partir du principe d'allocation des bits par remplissage inverse des eaux

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore