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Abstract 

This thesis investigates efficient codeword search algorithms and efficient clustering algorithms 
for vector quantization (VOJ,  improved codebook design algorithms and improved codebook 
index assignment for noisy channels. 

In the investigation of codeword search algorithms, several fast approaches are proposed, such 
as the improved absolute error inequality criterion, improved algorithms for partial distortion 
search, improved algorithms for extended partial distortion search and a fast approximate search 
algorithm. The bound for the Minkowski metric is derived as the generalised form of the partial 
distortion search algorithm, hypercube approach, absolute error inequality criterion and improved 
absolute error inequality criterion. This bound provides a better criterion than the absolute 
error inequality elimination rule on the Euclidean distortion measure. For the Minkowski 
metric of order n, this bound contributes the elimination criterion from the L 1  metric to the L 
metric. This bound is also extended to the bound for the quadratic metric by using methods of 
metric transformation. The improved absolute error inequality criterion is also extended to the 
generalised form of the mean-distance-ordered search algorithm for VQ image coding. 

Several fast clustering algorithms for vector quantization based on the LBG algorithm are 
presented. Genetic algorithms are applied to codebook design to derive improved codevectors. 
The approach of stochastic relaxation is also applied to the mutation step of the genetic algorithm 
to further improve the codebook design algorithm. 

Vector quantization is very efficient for data compression of speech and images where the binary 
indices of the optimally chosen codevectors are used. The effect of channel errors is to cause 
errors in the received indices. A parallel genetic algorithm is applied to assign the codevector 
indices for noisy channels so as to minimize the distortion due to bit errors. The novel property of 
multiple global optima and the average distortion of the memoryless binary symmetric channel 
for any bit error in the assignment of codebook index are also introduced. 
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Chapter 1 

Introduction 

1.1 Importance of vector quantization 

Communication by the socially rich medium of speech is one of the most important capabilities 

possessed by human beings. The speech waveform conveys linguistic information, speaker's 

tone, speaker's emotion and speaker's state of health. Since the invention of the telephone by 

Alexander Graham Bell, human beings have been able to exchange information via the telephone 

without being face to face, communicating in real-time with one another in any place by using 

mobile phones or any suitable communication tool. One of the major recent advances in such 

remote speech communication is the development of speech coding techniques. In the area of 

speech coding, vector quantization (VOJ (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al., 

1980) has been shown to be a popular and essential speech coding technique. Furthermore, vec-

tor quantization also plays an important role in image coding (Gersho & Gray, 1992; Kubrick 

& Ellis, 1990; Ramamurthi & Gersho, 1986; Nasrabadi & King, 1988). 

Human-machine (computer) communication by speech provides a convenient way to communi-

cate with machines. It reduces the amount of typing a human needs to undertake leaving hands 

free and allowing access away from the terminal or screen. In addition the ears can be used as 

well as the eyes. The machine needs to both recognize speech and respond with the results using 

speech by employing speech recognition techniques and speech synthesis techniques. Although 

the performance of current speech recognition systems remains imperfect, implementations of 

efficient and accurate speech recognizers are in widespread use in many applications (Wilpon 

& Roe, 1994; Nitta, 1994). The automatic speech entry of data or commands in manufacture 

is popular and related applications include speech-based product inspection, inventory control 



and material handling. Speech recognition is also applied to automatic transcription and aids for 

the hearing impaired or physically disabled. The importance of vector quantization in speech 

recognition is reported in many papers (Rabiner & Juang, 1993; DeIler et al., 1993). The 

hidden Markov model (FRAM) (Huang et al., 1990; Rabiner & Juang, 1986; Huang, 1992) has 

been shown to be a promising method in speech recognition which relies on the preprocessing 

stage of vector quantization for discrete or semi-continuous HMM-based recognition. In speech 

synthesis, vector quantization is also useful for pattern matching to reduce data storage. 

Automatic speaker recognition (Forsyth, 1995) involves identifying people from their voices 

completely automatically. Speaker recognition can be separated into two categories: speaker 

verification and speaker identification. Both categories use similar techniques to speech recogni-

tion, such as dynamic time warping (DTW) (McInnes & Jack, 1988; Rabiner et al., 1978) vector 

quantization, hidden Markov models and neural networks (NN) (Lippmann, 1987; Wu & Chan, 

1993; Farrell et al., 1994). Vector quantization can be seen as the preprocess of DTW, HMM 

and NN. Vector quantization is also a key element in speaker recognition. Vector quantization is 

therefore a most fundamental and important technique in speech coding, image coding, speech 

recognition, speech synthesis and speaker recognition. 

Vector quantization has been widely used in various applications as described above. An ordered 

set of signal samples or parameters can be efficiently coded by matching the input vector to a 

similar pattern or codevector (codeword) in a predefined codebook. For any given input data 

vector, the encoder assigns one index to the data vector in which the index is the address of the 

best matching codevector. In the data compression of speech coding or image coding, the index 

is transmitted and the decoder replicates the corresponding codevector by a table lookup from 

a copy of the same codebook. The response time of encoding is a very important factor to be 

considered for real-time transmission (Cheng et al., 1984; Cheng & Gersho, 1986; Ramasubra-

manian & Paliwal, 1990; Vidal, 1986; Soleymani & Morgera, 1987b; Ra & Kim, 1993). In this 

thesis, improvements in the partial distortion search (PDS) algorithm and the extended partial 

distortion search (EPDS) algorithm are presented. These improve the performance of the partial 

distortion search method (Bei & Gray, 1985). The bounds for the Minkowski metric and the 

quadratic metric are derived and applied to codeword search problems to improve the efficiency 

for the Minkowski distortion measure and the Mahalanobis distortion measure. An improved 
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fast mean-distance-ordered partial codebook search algorithm for image vector quantization is 

also reported together with several efficient approaches for training VQ codebooks. 

In the application of vector quantization to waveform coding or recognition, the performance 

depends on the existence of a good codebook of representative vectors. A novel VQ codebook 

design algorithm using genetic algorithms (GA) (Goldberg, 1989; Davis, 1991) is proposed. 

This approach provides superior performance compared with the generalized Lloyd algorithm 

(G LA) (Linde et al., 1980). 

A very important problem in quantization theory is how to effectively overcome the performance 

degradation caused by noisy channels. One possible approach is to use redundant parity bits 

for error control coding. In this thesis, a parallel genetic algorithm (PGA) (Cohoon et al., 

1987; Pettey etal., 1987; Shonkwiler, 1993) is applied to assign the codevector indices for noisy 

channels so as to minimize the distortion due to bit errors without adding any redundant bit. 

1.2 Thesis structure 

There are five main chapters in this thesis. Chapter 2 introduces the mathematics and theory 

essential for the reader. It includes a review of probability and stochastic processes, distortion 

measures, the Lagrange multiplier technique, theory of vector quantization, hidden Markov 

models, genetic algorithms and parallel processing. In Chapter 2 a new approach to deriving 

bounds for the Minkowski metric based on the Lagrange multiplier technique is highlighted. 

The bound for the Minkowski metric is shown to be a general form of the hypercube approach, 

the partial distortion search (PDS) algorithm, the absolute error inequality criterion (AU) and 

the improved absolute error inequality criterion (IAEI). The improved absolute error inequality 

criterion is a new criterion presented in this thesis, being derived from this bound. It is shown to 

provide a better criterion than the absolute error inequality criterion on the Euclidean distortion 

measure. For the Minkowski metric of order n, this bound contributes the elimination criterion 

from the L 1  metric to the L metric. The bound for the Minkowski metric is also extended 

to the bounds for the quadratic metric by using the methods of the Triangular Matrix and the 

Karhunen-Loêve transform (KLT). The bounds for the quadratic metric can be applied to any 

codeword search in which the distortion measure is quadratic. One of the main contributions 
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in this thesis is the derivation of the bound for the Minkowski metric and the bounds for the 

quadratic metric. 

Chapter 3 reviews the history of many fast codeword search algorithms and introduces key ele-

ments of codeword search algorithms. A range of new and efficient codeword search algorithms 

are presented in this chapter. The processors can be separated into two classes, i.e., general 

processors and D S P processors. For general processors, such as Intel 80486, Intel Pentium and 

Motorola 680x0, the operation of multiplication is more expensive than the operation of addition 

and comparison. For DSP processors, such as the TMS320 series of processors, the operation 

of comparison is computationally expensive. The novel partial distortion search algorithm is 

shown to be very suitable for use with general processors and is less suited to DSP processors. 

By considering the cost ratio of the comparison computation time to dimension-distortion com-

putation time, an improved PD  algorithm and a new and improved DPPDS algorithm are also 

proposed here to enhance the performance of the partial distortion search algorithm which is in 

fact suitable for any processor. The extended partial distortion search (EPDS) algorithm is a 

modified version of the partial distortion search (PD S) algorithm and is an optimal PDS in the 

sense of reducing the number of multiplications. The EPDS algorithm is however, only suitable 

for general processors. An improved EPDS algorithm based on available computer architecture 

is derived in this chapter. By considering the cost ratio of the sorting time to dimension-distortion 

computation time of a given processor, the optimal inserting point of the sorting can be predicted 

from the derived equations. This improves the performance of the EPDS algorithm. 

The improved absolute error inequality criterion (IAE1) is a special case of the bound for the 

Minkowski metric. It is the most efficient criterion for reducing the number of multiplications 

for the full search algorithm based on a Euclidean distortion measure. An efficient algorithm is 

proposed in Chapter 3, combining the IAE1 criterion with the minimax method. Comparison 

of this new and efficient algorithm with the minimax method, demonstrates a reduction in the 

number of multiplications by more than 77% and with a slight reduction in the total number of 

mathematical operations for 1024 codewords. Since the absolute error inequality has already 

been shown to be the most efficient criterion in reducing the number of multiplications (Huang 

et al., 1992; Soleymani & Morgera, 1987b; Soleymani & Morgera, 1989), experiments are 

also reported in Chapter 3 to demonstrate that the IAE1 criterion can reduce the number of 
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multiplications by more than 21% and better than 3% for the total number of mathematical 

operations compared with the At! criterion. Also, Chapter 3 shows that (in theory) the IAEI 

provides a tighter bound than the At! criterion. A new fast algorithm for approximate search 

is also presented in this chapter and the IAEI criterion is also extended to the generalised form 

of the mean-distance-ordered partial codebook search (MPS) algorithm (Ra & Kim, 1993) for 

image coding. The improved mean-distance-ordered partial codebook search (IMPS) algorithm 

is developed by employing this generalised formula. The drawback of the MPS algorithm is 

addressed and the IMPS algorithm is shown to overcome this drawback. In codeword search 

experiments, without applying the PDS algorithm both in the IMPS algorithm and the MPS 

algorithm, the IMPS algorithm is shown to reduce the computation time by more than 43% 

compared with the MPS algorithm for 1024 codewords. The IMPS algorithm is also shown to 

reduce the number of multiplications by more than 27% and reduce the total number of math-

ematical operations about 15% for 1024 codewords for applying the partial distortion search 

algorithm both in the IMPS algorithm and the MPS algorithm. 

Several fast clustering algorithms for vector quantization are introduced in Chapter 4 and two 

tentative match approaches (previous vector candidate and previous partitioned centre) are used 

in the experiments. The triangular inequality elimination (TIE) and the codebook reorder method 

are introduced in this chapter. Many combinations of the improved absolute error inequality 

criterion, absolute error inequality criterion, hypercube approach, partial distortion search, tri-

angular inequality elimination criteria and codebook reorder method to produce fast clustering 

algorithms are presented here. Among these approaches, the most efficient algorithm for general 

processors is the IPC-type clustering algorithm which is a combination of the previous parti-

tioned centre, the IAEI criterion and the PDS algorithm. For DSP processors, the TPC-type 

clustering algorithm which is the combination of a previous partitioned centre, triangular in-

equality elimination (TIE) and PDS algorithm, outperforms the other algorithms. 

Chapter 5 reviews several codebook design algorithms. The K-means algorithm, ISODATA 

clustering algorithm, GLA, pairwise nearest neighbour algorithm, fuzzy C-means clustering 

algorithm, deviation reduction algorithm, codebook design by stochastic relaxation, codebook 

generation using simulated annealing method and vector quantizer design using path-following 

are discussed in this chapter. Finally, a novel codebook design approach based on genetic al- 
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gorithms is proposed. This algorithm is the combination of genetic algorithms and GLA which 

is called GA-GLA algorithm. An improved version of GA-GLA is also presented by inserting 

the stochastic relaxation method in the mutation step. Experimental results demonstrate that the 

GA-GLA algorithms are significantly better than the GLA algorithm. 

Chapter 6 introduces the importance of codevector index assignment for noisy channels. The 

property of multiple global optima and the average distortion of the memoryless binary sym-

metric channel for any bit error are demonstrated. The ensemble average distortion for any bit 

error in the memoryless binary symmetric channel is derived for the first time in this thesis and 

the property of multiple global optima is also reported here for the first time. The property of 

multiple global optima can be used to reduce the search space for codebook index assignment in 

noisy channels. A new (good) codevector index assignment based on parallel genetic algorithm 

is presented. It is further shown that applying the parallel genetic algorithm in the codebook 

index assignment, not only speeds up the computation time but also generates better results. 

The proposed use of genetic algorithms for codebook index assignment for noisy channels is 

suggested in this thesis for the first time. 

The final chapter summarizes the important discoveries and conclusions of this thesis. Several 

possible methods for future work are also addressed in this chapter. 
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Chapter 2 

Mathematics and Theory 

2.1 Review of Probability and Stochastics Processes 

2.1.1 Theory of Probability 

Probability is a set function P that assigns to each event E in the sample space Q a number P(E), 

called a probability of event E, such that the following properties are satisfied: 

Probabilities are non-negative, P(E) > 0. 

The probability of the entire space K2 is 1, P() = 1. 

The probability of the union of the mutually exclusive events E j , i. = 1, 2, ..., M is the sum 

of the probabilities of the individual events, i.e., P(E 1  U E2  U . . .EM) = P(E 1 ) + P(E2) + ... + 

P(EM), where mutually exclusive means E 1 fl E i  = 4 for any t 'j. 

A probability measure P can also be defined in terms of a teal valued function f defined on R 

with the following properties: 

f(x)>0,xcR. 

5°° f(x)dx=1. 
00 

P(F) = SF f(x)dx, i:  is an event. 

The function f is called a probabtU.ttj density function (pdf). Some of the more commonly 

used pdf's on R are listed below. 
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Gaussian pdf: 

	

1 	2 

f(x)= (2.1) 
v2w2  

where t is the mean of x and a is the standard deviation. 

Uniformpdf: 

{ 1  

a<x<b 
f(x) = 	 (2.2) 

0, 	otherwise 

where b > a. 

Exponential pdf: 
1 

	

f(x) = 	 (2.3) 
A 

where A > 0. 

Laplacian (doubly exponential) pdf: 

f(x) 	
1 	_y1L1 

- _____e 	, 	 (2.4) 
- v 

where a is the standard deviation of x. 

If the sample space Q is a discrete set of real numbers, then a function p can be defined for all 

points in g  which has the following properties: 

	

1. 	p(x)>0, 	xe. 

2. 	Lp(x)= 1 . 
xcfl 

	

3. 	P(F) = T p(x). 
xeFflQ 

The function p is called a probability mass function (pmf). Some of the more commonly 

used pmf's are listed below. 
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Binary pmf: 

p(1)=q,p(0)=1 —q,={O,1}. 	 (2.5) 

Uniform pmf: 

(2.6) 

Geometric pmf: 

p(x) = (1 - q)qX, xeQ = {O, 1, ...}. 	 (2.7) 

where q is a real number in [0,1]. 

Poisson pmf: 
Axe_A 

p(x)= 
x! 

 ,xe={O,1,...}. 	 (2.8) 

where A is a positive real number. 

Given a probability function P or the probability density function f, the cumulative 

distribution function (cdf) F(r) is defined by 

F(r) = P(xlx < r), for discrete sample space 	 (2.9) 

or 

J-CO

T  

F(r) 
=

f(x)dx, for continuous sample space. 	(2.10) 

This implies that 

dF(r) 
dr 
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2.1.2 Random Variable and Random Process 

A (real) random variable X is a mapping from the sample space into the real number line: X: 

R, i.e., X assigns a real number to every point in the sample space. if a random variable X 

is discrete and its allowable values are x1, x2, ..., x, then the probability of the discrete random 

variable taking the value Xt is denoted as p(X = xt). The sum of the probability over all values 

of the random variable is 

LPX=xt)= 1 . 
	 (2.12) 

If X is a continuous random variable, then the probability of the continuous random variable 

taking the value x is denoted as fx(x). The integral of the probability over all values of the 

random variable is 

J-0000

fx(x)dx=1. 
	 (2.13) 

A random vector is a vector whose components include multiple random variables, i.e., a random 

vector is a finite collection of random variables. A random vector is said to be independent and 

identically distributed (lid) if it has independent components with identical marginals, i.e., the 

corresponding probability functions are identical. A random process is an indexed family of 

random variables {X; teT}. The index t corresponds to time, If I is continuous, then the 

process is called a continuous time random process. if I is discrete, then the process is called a 

discrete time random process or a random sequence. A discrete time random process is said to 

be independent and identically distributed (lid) if the random variables produced by the process 

are independent and have identical distributions. 

2.2 Metrics and Distortion Measures 

A key component of pattern matching is the measurement of dissimilarity between two feature 

vectors. Assume X, Y and Z are three vectors in a multidimensional space. Without loss of 
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generality, k-dimensional real Cartesian space denoted R' is used as the collection of all 

k-dimensional vectors with real elements. On R I , a metric D is a real-valued function which 

fulfils the following three metric properties: 

Positive definiteness property 

O<D(X,Y)<oo for X,YeR', 	 (2.14) 

and D(X,Y)= 0 i.ff X = Y. 	 (2.15) 

Symmetry property 

D(X,Y)=D(Y,X) for X,Y CRk. 	 (2.16) 

Triangular inequality property 

D(X,Y):5 D(X, Z) + D(Y, Z) for X,Y,ZC Rk. 	 (2.17) 

If the measurement of dissimilarity satisfies only the positive definiteness property, it is called 

the distortion measure, such as the Itakura distortion measure and the likelihood distortion 

measure (or the Itakura-Saito distortion family) (Rabiner & Juang, 1993). Each metric has its 

own advantages and drawbacks. Three main characteristics (Devijver & Kittler, 1982) of the 

metric are computational complexity, analytical tractability and feature evaluation reliability. 

The choice of a particular metric depends on the actual application. 

2.2.1 Minkowski Metric 

Most of the metrics used in speech and image processing are special cases of the Minkowski 

metric. Let xt denote the i.th component of the k-dimensional vector X. The Minkowski metric 

of order p (Deller et al., 1993), or the L P  metric, between vectors X and Y can be expressed as 
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D p (X, Y) 	T Ixt_l,tIP, 	 (2.18) 

where X = {X1, X2 '...' xk} and ( = { 1 ,  2 ,  •••, k} .  

Three special cases are as follows: 

L1  or city block metric 

(2.19) 

L2 or Euclidean metric 

D 2 (X, Y) = 	Ixt-'Y t12. (2.20) 

L or Manhattan (Chebyshev) metric 

D(X,Y)= maxi  lx1 - y'. 	 (2.21) 

In the codeword search problem, usually the Euclidean metric is used because it fits the physical 

meaning of distance (or distortion). In order to avoid calculating the division, the squared 

Euclidean metric is employed instead of the Euclidean metric in pattern matching. This does 

not affect the result by deleting the square root from the Euclidean metric. Several researchers 

(Soleymani & Morgera, 1989; Lo & Charn, 1993; Mathews, 1992) also call the squared Euclidean 

metric as simply the Euclidean metric. For convenience and without causing confusion, the 

Euclidean metric is also used without the square root in this thesis. 

2.2.2 Signal to Noise Ratio Measure 

The signal to noise ratio (SNR) (Kitawaki, 1991) measure is appropriate for speech waveform 

coding. It is one of the common objective measures defined as 
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-m 
X  j l  

SNR = 10tog 10  (2.22) 
X1 Ix - 

Here, x1  is an undistorted input speech signal, il is the distorted output speech signal of waveform 

coding and in is the number of samples in the speech signal. This measure is also suitable for 

image coding. Generally, the SN R measure characterizes the ratio of long-term average speech 

power to long-term average quantizing noise power. The larger-power speech section dominates 

the long-term calculation of SN R measure. Hence, a smaller-power speech section is neglected, 

in spite of its importance, such as for consonant or transient periods. This measure can be 

improved by separating the speech waveform into several frames, taking the same measure over 

each frame and summing the measurement for all frames. It is named segmental SNR (SNR 8e9 ) 

which is defined as 

SNR se9  = 	SNR, 	 (2.23) 
1=1 

where N is the number of frames and SN R 1  is the SN R of the i.th frame. The typical duration 

of the frame is 20 ins for speech segments. 

2.2.3 Spectral Distortion Measure 

The spectral distortion measure (SD) is an objective measure containing the characteristics of 

the whole speech spectrum and is defined as 

1 tb  
SD = ft J {S(b) - S(b)} 2 db]"2 , 	 (2.24) 

U0 

where S, and S are input and output speech spectra, respectively, and b is the frequency band 

of the signal. The speech spectrum can be computed from the fast Fourier transform (FF1). 

2.2.4 Cepstral Distortion Measure 

The cepstrum (Rabiner & Juang, 1993) of a signal is defined as the Fourier transform of the log 

of the signal spectrum. Given two cepstrum coefficients C and C in the k-dimensional vector 

space, the cepstral distortion between C t  and C is expressed as 
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k 
I j 	t'2 

	

D C (Ct, C) = 	ICt  - Cr1 . 	 (2.25) 
1=1 

2.23 Quadratic Metric 

The quadratic metric is an important generalization of the Euclidean metric. Let Q denote 

the positive definite matrix, such as the inverse of the covariance matrix, the quadratic metric 

between vectors X and Y is defined as follows: 

D q (X,Y) = (X - Y) tQ(X - Y). 	 (2.26) 

One particular case of the quadratic metric is the weighted cepstral distortion measure (Tohkura, 

1987). It is defined as 

D W(Ct , Cr) = 	wjc' - cI 2 , 	 (2.27) 

where wj  is the reciprocal of the ith diagonal element of the covariance matrix of the feature 

vectors. The most significant characteristic of the weighted cepstral distortion is that it equalizes 

the importance in each dimension of cepstrwn coefficients. In the speech recognition, the 

weighted cepstral distortion can be used to equalize the performance of the recognizer across 

different talkers (Pan, 1988). 

2.2.6 Itakura-Saito Distortion Measure 

The Itakura-Saito distortion measure (O'Shaughnessy, 1987; Rabiner & Juang, 1993; Itakura & 

Saito, 1970) computes a distortion between two input vectors by using their spectral densities. 

The definition of this measure is as follows: 

	

sx 	sx 
D1(X,Y) = 	- 1n.(—) - i, 	 (2.28) 

	

s 	s 
where S and S  are the spectral densities of the vectors X and Y. 
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2.3 Lagrange Multiplier Technique 

The Lagrange multiplier technique is an efficient method for finding the minimum or 

maximum values of a function g(x, y, z) subject to a constraint condition '4(x, y, z) = 0. It 

is expressed with the formation of the auxiliary function 

f(x,tj,z,A)= g(x,y,z)+A(x,y,z), 	 (2.29) 

subject to the conditions 

af  
.—=0, 	—=0, 	—=0, 	 (2.30) 

which are necessary conditions for a relative minimum or maximum value and the parameter A 

is independent of x, y, and z. 

This technique can be generalized to find the minimum or maximum values of a function 

9(X1, X2,...,  x)subjecttothe constraint conditions 41(x1 , x2 , ..., x 1) = 0,i4,2 (x ;  , X2,..., x) = 

09  ..., 4'm(Xi , x 21  ..., x) =0. The auxiliary function is 

(2.31) 

subject to the necessary conditions 

af 	af 	 af 
—=0, 	—=0, 	... ,—=0, 	 (2.32) 

where A 1 , i= 1, 2, ...,in, is independent of xj ,j= 1, 2, 

2.4 Theory of Vector Quantization 

A fundamental purpose of data compression, such as image coding or speech coding, is to 

reduce the bit rate for transmission or data storage while maintaining the necessary fidelity of 

the data. One of the simple and essential examples of data compression is the transmission of 

speech by pulse code modulation (PCM) in which a sampler followed by scalar quantization 

is used to compress the speech data. According to Shannon's rate-distortion theory, improved 
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performance is always achievable in theory by coding vectors instead of scalars, even if the data 

source is memoryless. A vector can be used to represent almost any type of pattern, such as a 

block of image data by forming the vector which is composed of the values of the pixels in the 

block; or a segment of speech waveform by forming the vector from the values of the sample 

points in the segment. The vector may represent a number of different possible speech coding 

parameters including linear predictive coding (LPC) coefficients, cepstrum coefficients, gain 

parameters and prediction residual samples. It is also possible to represent the parameters in 

image coding, such as coefficients of the discrete cosine transform (DCT) or the Waish-Hadamard 

transform. Vector quantization can be viewed as a generalization of scalar quantization to 

the quantization of a vector, an ordered set of real numbers. Fig. 2.1 illustrates the basic 

Encoder 	 Decoder 

I  Input 	
Nearest 

] 	Neighbour 
Vector 	I 	Search 

Index ______ 	
Table 	I 	Output 

Lookup 	 Vector 

Codevectors 	 Codevectors 

Figure 2.1: Vector quantization diagram 

idea of vector quantization (Gersho & Gray, 1992; Gray, 1984; Gersho & Cuperman, 1983; 

Nasrabadi & King, 1988). The VQ encoder encodes a given set of k-dimensional data vectors 

X=f Xj IXi  E R k ; j = 1, ..., 1) with a much smaller subset C={ C 1  I C1  E Rk;  1. = 1, ..., N }(N <1). 

The subset C is called a codebook and its elements C 1  are called codewords, codevectors, 

reproducing vectors, prototypes or design samples. Only the index 1. is transmitted to the 

decoder. The decoder has the same codebook as the encoder, and decoding is operated by 

table look-up procedure. The performance of data compression depends on creation of a good 

codebook of representative vectors. 
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2.4.1 Vector Quantizers 

Xi Ij = i 

Figure 2.2: Vector quantization encoder 

As shown in Fig. 2.2, the index I, of the jth data vector is t which is transmitted to the receiver 

if the codeword Cj  is the nearest neighbour to the data vector X. This class of vector quantizers 

called Voronoi or nearest neighbour vector quantizer is particularly useful. The nearest 

neighbour encoding algorithm is described as follows: 

Step 1: Set d j =oo,p=1,t=1. 

Step 2: Calculate d = D(X,, C r ). 

Step 3: If dp  <d i , set dm = d and t = p. 

Step 4: If p <N, set p = p + 1 and go to step 2. 

Step 5: Terminate the search program and record the search index i.. 

The initial value dmjn = oo means that the initial d,j, is larger than any possible distortion 

in the decoding approach. The LBG algorithm (Linde et al., 1980) is a popular VQ training 

algorithm which was proposed by Linde, Buzo and Gray and their names are used to refer to 

this algorithm. LBG based vector quantizer belongs to the class of nearest neighbour quantizer. 

A lattice vector quantizer (Conway & Sloane, 1983; Jeong & Gibson, 1989; Gersho & Gray, 

1992) is a different class of vector quantizers whose codebook is either a lattice or a coset of a 
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lattice or a truncated version of a lattice or its coset so that the codebook size is finite. The lattice 

based vector quantizer provides design simplicity, reduces encoding complexity and yields high 

quantization performance especially for large codebook size. 

The performance of the vector quantizer can be evaluated by a distortion measure D which is a 

non-negative cost D(X , ) associated with quantizing any input vector X j  with a reproduction 

vector Xj . Usually, the Euclidean distortion measure is used. The performance of a quantizer 

is always qualified by an average distortion D = E[D(X, ))] between the input vectors and 

the final reproduction vectors, where E represents the expectation operator. Normally, the 

performance of the quantizer will be good if the average distortion is small. If the data vector 

process is stationary and ergodic, then the overall measure of performance can be expressed as 

the long term sample average or time average 

IL 

= urn !LD(Xj_j)HED(X,_j), 	 (2.33) 
fl-°° Ti. 

where I is the number of data vectors and it is large enough to qualify the performance. 

2.4.2 Speech Coding and Image Coding 

The most simple and original application of vector quantization to speech coding is to perform 

block waveform coding called vector pulse code modulation (VPCM) (Gersho & Cupennan, 

1983; Abut et at., 1982) on the speech signal vector. Vector quantization has been applied 

to the efficient coding of linear predictive coding (LPC) parameters (Kang & Coulter, 1976; 

Buzo et al., 1980; Wong et al, 1982), parameters of pitch predictor, gain parameters (Chen & 

Gersho, 1987; Sabin & Gray, 1984), the coding of the excitation or residual signal in analysis-

by-synthesis predictive coding techniques, such as vector excitation coding (VXC) (or code 

excited linear prediction (CELP)) (Davidson et al., 1987; Atal & Schroeder, 1985; Ahmed & 

Al-Suwaiyel, 1993; Cuperman et al., 1991). 

The application of vector quantization on digital images has been investigated in the spatial 

domain, such as the mean/shape VQ (Budge & Baker, 1985), the classified VQ (Gersho 

& Ramamurthi, 1982; Ramamurthi & Gersho, 1986) codebook replenishment VQ (Sun & 

Goldberg, 1985), hierarchical VQ (Nasrabadi, 1985) and the in.terfrante VQ (Goldberg 
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& Sun, 1986). The goal of transform coding for digital images is to convert statistically 

dependent or correlated picture elements into independent or uncorrelated coefficients. In the 

transform domain, vector quantization has been applied to the coding of adaptive transform 

(Saito et al., 1986), one - dimensional transform (Nasrabadi & King, 1983), two - 

dimensional, transform (Habibi, 1974) and tnterframe transform (Nasrabadi & King, 

1984). 

2.43 Computational Complexity 

In the VQ coding area, fidelity increases with the transmission rate r (bits per vector dimension). 

For a fixed transmission rate r and vector dimension k, the size of a VQ codebook N is 2 ". The 

search complexity to find a nearest codeword for a given input data vector is 0(k2 kr),  i.e., k2lT 

multiplications, (2k - 1)2 1r additions and 2 k - 1 comparisons for exhaustive full search (EFS). 

The search complexity increases exponentially as the vector dimension grows. This is one major 

drawback of VQ codeword search and it limits the fidelity of coding for real time transmission. 

In order to reduce the computational cost, two general approaches have been reported. The first 

proposes fast search algorithms for searching the same codebook (Cheng et al., 1984; Cheng 

& Gersho, 1986; Ra & Kim, 1991; Huang & Chen, 1990; Lo & Chain, 1993; Soleymani & 

Morgera, 1987a). The other reported techniques use structured codebook (Juang & Gray, 1982; 

Lowry et al., 1987; Moayeri et al., 1991; Mohammadi & Holmes, 1994) to achieve efficient 

codeword search. 

2.5 Hidden Markov Model 

Signal modelling based on hidden Maitov models (1-LMM) may be considered as a technique 

that extends conventional stationary spectral analysis principles to the analysis of time-varying 

signals. Hidden Markov model theory (Forsyth, 1995; Huang et al., 1990; Rabiner & Juang, 

1986) has been applied successfully in speech and speaker recognition. The principle of the 

hidden Markov model is to provide a probabilistic framework for VQ codewords for modelling 

temporal and contextual information. It is a collection of states connected by transitions which 

include a set of state transition probabilities and a set of output probability mass functions. 

The state transition probability is the probability of a state transition occurring. The output 
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probability mass function defines the conditional probability of each possible output symbol 

from a finite alphabet given a state. 

In the training phase, the forward - backward algorithm and Baum - Welch re-estimation 

algorithm are generally used to train the sets of state transition probabilities and output probability 

density functions. In the recognition phase, the Viterbi dynamic programming algorithm can 

be used to find the optimal assignment of frames to the states, based on maximising the total 

probability. There are four main categories in hidden Markov models: discrete hidden Maikov 

model (D1-[MM), continuous bidden Markov model (CHMM), semi.— continuous hidden 

Markov model (SCHMM) and Multi-VQ hidden Markov model (MVQ HMM). In D1-LMM, 

VQ codewords are assigned probabilities and the probability of the codeword which is nearest to 

the feature vector is used as the observation probability. These VQ codewords are shared for all 

states of all models. In CRMM, each state of each model has different mixture GaussianVQ 

functions. If the training data is inadequate, it is difficult to use the parameters of the G aussians 

to estimate each state of each model. SCHMM overcomes this difficulty by having a fixed set 

of Gaussians in a codebook that are shared for all states of all models. MVQ 1{MM is an 

approach to fill the gap between the SCHMM and CHMM by having different Gaussian 

codebooks for different models. 

2.6 Genetic Algorithms 

Genetic algorithms (GA) (Fang, 1994) are a group of methods which solve problems using 

approaches inspired by the processes of Darwinian evolution. The current genetic algorithms 

in science and engineering refer to a model introduced and investigated by Holland (Holland, 

1975) and by students of Holland. In genetic algorithms, a set of solutions to a problem is called 

chromosomes. A chromosome (string of solution) is composed of genes (features, characters 

or detectors). Usually, the individual of the whole population contains only one chromosome. 

The performance of the solution is called fitness. The fitness of chromosomes are evaluated and 

ordered, then new chromosomes are produced by using the selected candidates as parents and 

applying mutation and crossover operations. The new set of chromosomes is then evaluated 

and ordered again. This cycle continues until a suitable solution is found. The conventional 
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genetic algorithm is described as the following steps: 

Step 1. ImttaUzation: Encode and assign a chromosome to each individual in the population. 

Step 2. Eval.uati.on.: Decode and evaluate each chromosome's fitness. 

Step 3. Selection.: Select the survivors for the next generation from the better fitness of 

chromosomes. These survivors will be the candidate for the crossover and mutation 

operation. 

Step 4. Crossover: Pairs of survivors are selected as the parents to crossover to produce new 

chromosomes (children) for the next generation. 

Step S. Mutation. Mutation is operated among genes in chromosomes randomly. 

Step 6. Steps 2 to 5 are repeated until adequate fitness is found. 

2.6.1 Initialization 

A set of chromosomes is randomly generated. For example, if the problem is to minimize a 

function of a, b, c and d, then the initial step may be to generate a collection of random vectors 

(at , b, Ct, di), i. = 1, 2, ..., P, P is the number of chromosomes or population size. The gene 

in the chromosome can be binary or non-binary. The length of the chromosome (string) or 

the number of genes in the chromosome can be fixed or variable. The representation of the 

chromosome plays an important role in genetic algorithms. 

2.6.2 Selection 

The goal of selection is to choose the better individuals as the survivors which are then used as the 

parents and undergo subsequent crossover and mutation operations. Without the selection step, 

the crossover and mutation operations are useless, i.e., no better offspring could be generated in 

the next generation. The probability of each parent being selected is the function of its fitness. 

Even only keeping the best individual as the survivor, with the other survivors selected randomly, 

and the parents selected from the survivors, the GA can perform well. 
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Roulette Wheel Selection 

Roulette Wheel selection (Goldberg, 1989) or fitness-based selection is the original approach 

for parent selection. In Roulette Wheel selection, the probability of selection for each parent 

is directly proportional to its fitness. The performance of this selection depends strongly on 

the range of fitness values in the current population. For example, if the population size is 5 

and the fitness values are 1, 10, 100, 500 and 1000, then the probability of selecting the first 

individual is jj-1.  There is almost no chance to select the parent whose fitness is relatively low 

compared with the individual with highest fitness, even if the individual with lower fitness has 

some important genes. So a few individuals dominate the selection. Another example is where 

the range of fitness is very narrow, such as 1000 to 1005. Then the probability of selection for 

each individual is almost the same. These two conditions are undesirable. One way to overcome 

this difficulty is to scale the fitness before selection (Goldberg, 1989). 

Tournament-Based Selection 

The basic tournament selection (Brindle, 1981) is to choose M individuals randomly and 

return the best one of these. This is generally called size M Tournament selection. After this 

selection, the crossover and mutation operator are applied to generate a new child. When the 

fitness of this new child is better than the worst individual of the previous generation, replacement 

of this worst individual occurs. Boltzntan.n tournament selection (Goldberg, 1990) evolves 

a Boltzmann distribution across a population and time using pairwise probabilistic acceptance 

and anti-acceptance mechanisms. 

2.63 Crossover 

The crossover operator is one of the most important operators in genetic algorithms. The basic 

idea is to combine some genes from different chromosomes. It is the recombination of bit strings 

by exchanging the segments between pairs of chromosomes. Many crossover techniques and 

the example will be illustrated here. 
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One-Point Crossover 

The one point crossover technique is the most simple crossover technique, but it is very efficient. 

The procedure of one-point crossover is to select one crossover point at random. Genes up to 

and including the crossover point are copied to the respective child. The remaining genes are 

copied to the alternate child. Assume the chromosomes of parenti and parent2 are as follows: 

parenti: 	36718425 

parent2: 	18473256 

If position 3 is randomly generated as the crossover position, then two children are as follows: 

child!: 	367173256 

child2: 	184118425 

where the first child has the first three genes from parent!, the others from parent2, the second 

child has the first three genes from parent2, the others from parent!. 

Two-Point Crossover 

The procedure of two point crossover is similar to that of one-point crossover except that two 

positions are selected and only the bits between the two positions are swapped. The first part 

and last part of chromosomes are preserved. With the same parents above, positions 2 and 5 are 

generated as the crossover positions, then two children are as follows: 

child!: 	3614731425 

child2: 	1817181256 

N-Point Crossover 

The procedure of n-point crossover is also similar to one-point crossover except that n positions 

are selected and only the bits between odd and even crossover positions are swapped. The bits 

between even and odd crossover positions are unchanged. Assume the chromosomes of parent! 

and parent2 are as follows: 
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parenti: 	36671484258 

parent2: 	18647323256 

If positions 2, 5, 6 and 9 are selected as the crossover positions, then two children can be 

generated as follows: 

childi: 	361647141232158 

child2: 	1816 7 11318 4215 6 

Uniform Crossover 

There are two popular multi-point crossover techniques, one is n-point crossover, the other is 

uniform crossover. In uniform crossover (Syswerda, 1989), each gene is copied from a parent 

based on a random flip of a fair coin, i.e., each gene of the first parent has a 0.5 probability 

of swapping with the corresponding gene of the second parent. Assume the chromosomes of 

parentl and parent2 are as follows: 

parenti: 	34518625 

parent2: 	48379261 

A number between 0 and 1 is generated randomly for each position. if the random number 

generated for a given position is less than 0.5, then childl copies the gene from parent!, and 

child2 copies the gene from parent2; otherwise, vice versa. If the random numbers generated 

for each position are 0.9, 0.4, 0.1, 0.8, 0.6, 0.5, 0.4 and 0.7, then two children are as follows: 

childl: 	4* 4 5 7* 9* 2* 2 1 * 

child2: 	3*831*8*6*65* 

where the crossover points are marked by the symbol * 

Order-Based Crossover 

Order-based crossover technique (Davis, 199 1) is used when the search space is a permutation, 

so that, somehow, crossing 1 3 2 5 4 with 3 2 1 4 5 is always sure to yield another valid 

permutation, such as 1 5 324. Let the following be two parents: 
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parentl: 	13254 

parent2: 	54213 

One kind of order-based crossover operator works as follows: 

Choose two random genes of the first parent, for example 

parent!: 	13*25*4 

Make up the child by first copying the unchosen genes: 

child: 	1_2_4 

and then fill in the other values, 3 and 5, but in the same order as they occur in the second parent, 

yielding: 

child: 	15234. 

The uniform order-based crossover is a powerful order-based crossover technique. In this kind 

of crossover, several gene positions of the chromosome are chosen randomly and the order in 

which these genes appear in the second parent is imposed on the first parent to produce offspring. 

The genes in the other positions are the same as the first parent. 

2.6.4 Mutation 

Selection and crossover effectively search and recombine the chromosomes, but occasionally 

they may lose some potentially useful genes and it is also possible that some useful genes are 

not generated in the initial step. A better result cannot be reached for lack of some useful genes. 

This difficulty can be overcome by using the mutation technique. The basic mutation operator is 

to randomly generate a number as the crossover position and then change the value of this gene 

randomly. For example, if the length of the chromosome is 6 and a chromosome after crossover 

is 

147283 

A random number generator generates a position 2 as the gene position and the other random 

number generator generates any valid gene value, such as 6, then the chromosome is mutated to 
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16* 7283 

Another possible approach is to check each gene position using a random number compared 

with the mutation rate, if this number is less than the mutation rate, then this gene needs to 

mutate. Assume the mutation rate is 0.01, if the random number is 0.005 for the first position 

and the random numbers are larger than the mutation rate in the other positions, then this gene 

is mutated by a random number in the first position, such as 7. The result is as following: 

7*47283 

If the search space is a permutation, the mutation operation can work by swapping several genes 

in the chromosome randomly. 

2.63 Inversion 

In the procedure of inversion, two points are chosen at random along the length of the chromo-

some and the order of the genes between these two points is inverted. Only one parent is needed 

in the inversion operation. If two positions 3 and 6 are chosen and the inversion operator is 

applied to the string 

472* 598* 3 

then the new string is 

478* 9*5*2* 3 

2.6.6 Schema Theorem 

A schema H. is a pattern of gene values which may be represented by a string of binary symbols 

10, 1 } and a symbol # which matches any gene values. For example, the chromosome "01011" 

contains, among others, the schemata "#10111", "#1 OW', "Ol##l" and "#1 011". The order of 

a schema denoted by o(H) is the number of non-# symbols in the schemata. The defining 

length of a schema denoted by (H) is the distance between the outermost non-# symbols. 

In this example, the order is 3, 2, 3 and 4 respectively; the defining length is 3, 2, 5 and 4 

respectively. 
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m(H, t) denotes the frequency of a schema H at generation t. It will change for the next 

generation in proportion to the selection of probability of strings. Let nt(H, t + 1) be the 

frequency of schema H. at generation t + 1. The relationship between in(H, t) and m(H, t + 1) 

can be expressed as the following formula: 

m(1-t,t+ 1) = 	R, t)! 	 (2.34) 

where f(1-t) is the average fitness of a string containing schema H in generation t + 1 and f 

represents the average fitness of the whole population. 

Let PC  be the crossover probability and 1. be the length of the string. Because a schema survives 

when the crossover point is selected outside the defining length, the survival probability under 

simple crossover is 

P > 1 -  PC 
6(H)—i

- 	

. 	 (2.35) 

So, if the reproduction and simple crossover operation are independent, the frequency of schema 

for the next generation can be estimated as following: 

	

m(1-L,t+ 1) ~! nt(H.,t)!1[1 
- 

 P 	
. - 	 ]. 	 (2.36) 

The probability that the given schema 1-!. exists in the next generation will be high if the length 

of the string 1. is long and the defining length 6(H) is short. 

If the mutation operator is applied, a single gene will survive with probability 1 
- 

p ,, where p1  is 

the mutation probability. Since each of the mutations is statistically independent, the probability 

of surviving mutation is (1 - p)0. This is approximated by the expression 1 - Po(R) if 

p << 1. Hence, if reproduction, crossover and mutation operators are applied, the frequency 

of schema for the next generation can be expressed as following: 

6(H)—i 
in(H,t+ 1) ~ 	H,t)!1[i 

- Pc 
.- 	

- Po(H)1. 	(2.37) 
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This equation implies that the short, low order, above average schemata receives exponentially 

increasing probability in the subsequent generations, i.e., highly fit schemata of low order and 

short defining length are particularly important to genetic algorithms. 

2.7 Parallel Processing 

A conventional computer uses one processor which executes a set of instructions in order to pro-

duce results. At any instant time, there is only one operation being carried out by the processor. 

Parallel processing is concerned with producing the same results using multiple processors. The 

goal of using parallel processing is to reduce the running time in a computer system. 

Two basic parallel processing methods are pipeline processing and data parallelism. The prin-

ciple of pipeline processing is to separate the problem into a cascade of tasks where each of the 

tasks is executed by an individual processor. As shown in Fig. 2.3, data is transmitted through 

each processor which executes a different program on each of the data elements. Since the 

program is distributed over the processor in the pipeline and the data moves from one processor 

to the next, no processor can proceed until the previous processor has finished its task and passed 

the data to it. Data parallelism is a popular approach which involves distributing all the data to 

Data Output 

Figure 2.3: Task and data distribution of pipeline processing 

be processed equally amongst all the processors in the computer. As shown in Fig. 2.4, each 

processor contains the same program task operating on the subset of the data. Data parallelism 

can be easily applied to genetic algorithms by dividing the population into several groups and 

running the same algorithm for each group at the same time using different processors. This is 

called a paraUet genetic algorithm (PGA). The purpose of applying parallel processors to 

genetic algorithms is more than just a hardware accelerator. Rather a distributed formulation is 

developed which gives better solutions with less computation. In order to reach this function, 
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Processor 1 	Processor 2 	Processor 3 

All tasks 
	

All tasks 
	

All tasks 

Data set 1 
	

Data set 2 
	

Data set 3 

Figure 2.4: Task and data distribution of data parallelism 

the communication among these groups is executed for some fixed generations, i.e., the par-

allel genetic algorithm periodically selects promising individuals from each subpopulation and 

migrates them to different subpopulations. With the migration (communication), each subpop-

ulation will receive some new and promising chromosomes to replace the worst chromosomes 

in this subpopulation. This helps to avoid premature convergence. 

2.8 Bound for Minkowski Metric 

Given one codeword C and the test vector X in k-dimensional space, the distortion of the 

Minkowski metric of order n can be expressed as follows: 

k 
	tin D mtn  = D(X, C) = 	V - 	 2.38) 

1=1 

where C, = {c, c, ..., c} and X = {x' , x2, ..., 

The generalized bound for the Minkowski metric based on the L distortion measure can be 

found as follows: 

If 

where s < h < kandp <m. 

then. 

S ___________________ IX1 c4l> /h'Dmtn 	 (2.39) 
i-i 

k 

Ixt - On > D mtn 	 (2.40) 
t.1 

If p = ii., then Eq. 2.39 reduces to Eq. 2.40. For the case where p <n, the bound can be proved 



as follows: 

Apply Lagrange multiplier technique to 

minimize 	£. CL 	 (2.41) 

subject to 	at = c, 	at ~! 0 Vt. 	 (2.42) 

If the minimum is at an interior point, then it is a stationary point of 

f(a1 ,A) = a - AQ 	at - c) with respect to a(1 <t h) and A. 

Taking derivatives, -   = mar-  - A = 0 Vt. 

Hence at = (A/in)T Vi (which implies a t  = aj  Vt, j) and so, to make af =0, at = c/h Vt. 

Here Fh ,  aln = X i (c/h)m = h(c/h)m = hI - mcm. 

The next step is to prove that the climax F 11 1  a = hl_mcm is the minimum point, and so to 

prove the following proposition. 

If 	Lat=c 	 (2.43) 

them 	a ~ hlcm 	 (2.44) 

where in> 1,h> 1, and a 1  > O for all i. 

This can be proved by induction. When it = 1, Eq. 2.43 reduces to a 1  = C and Eq. 2.44 to 

ar > Ctm . Hence the proposition is true for It = 1. Assume it is true for h - 1. By using the 

Lagrange multiplier technique, if the minimum of ar is at an interior point (a 1  > 0 for all 

t), then this must be at the point where a t  = c/h for all i, at which point a = hltmcm. At 

anon-interior point (without loss of generality, aK=O), Z = ar ~ (K— 1) 1 _mctm> 

hltmctm. 

The minimum cannot be at the non-interior point since the value there is greater than at the 
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interior point already found and hence the value where a1 = c/h is in fact the minimum. The 

proof is completed. 

Hence ifc> 'Dmjn , then  .E i  aln hl_1Cm > hl_m(hm_lD mjn)=Dmtn . 

Set a1 = b', hence if 1  b' > then 	btm >  D n.mt 

Set pm= n.,hence if 	b' ~ /h'Dmjn , then 	b ~ D mtn . 

Set b1  = Ixt - c 
' 
hence 	Ixt - c P' ~ L I x - c ' if h ~ s, then the bound for Minkowski 

metric based on L p  metric is derived. 

If Eq. 2.39 is met, then C j  cannot be the nearest neighbour to X for the Minkowski metric of 

order it. 

This bound has the following properties: 

Set s = p = Ft = 1 and it =2, the hypercube approach. 

Set p = 2 and ii. = 2, the partial distortion search (PDS) for the Euclidean distortion 

measure. 

Set p = it, PDS for L distortion measure. 

Set it =2, p = 1 and Ft = k, absolute error inequality (AU) criterion. 

Set it = 2 and p = 1, defined here as the improved absolute error inequality (IAEI) 

criterion, provides a tighter bound than the absolute error inequality (AEI) criterion. 

For the Minkowski metric of order it, this bound provides the elimination criterion from L 1  

metric to Lft  metric and also provides an advanced approach by adapting parameters s and 

h. from 1 to k, i.e., this bound can be separated into several sections. For 13-dimensional 

coefficients and the Euclidean metric, it is possible to separate this bound into four sections. 

These four sections are to set Ft = 1 to check the first dimension-difference, h =4 for the 

sum from the first dimension-difference to the fourth, Ft = 9 for the sum from the first 

dimension-difference to the ninth and Ft = 13 for the sum of all dimension-differences. 
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2.9 Bound for Quadratic Metric 

In speech recognition, the bidden Maxkov model (H.MM) with the Gaussian mixture VQ 

codebook probability density function has been shown to be a promising method. The main 

computation time is in searching the nearest neighbour by evaluating the log likelihood of 

Gaussian mixture distributions, i.e., the calculation of 

•1 
log 	 -4(X-C)tW;'(X-Cm) 

(27t) 	
(2.45) 

"2IWm I 1 "2  

That is to computeiog(2it)+ log WI + (X - Cm)tW;l(X - Cm ), where mis from ito N 

and N is the number of mixture components. Cm and Wm are the mean value and the covariance 

of mixture component in. Obviously, the quadratic metric (X - Cm)tW;l(X - Cm) dominates 

the computation time. 

For convenience and brevity, assume that the covariance of every mixture component in is the 

same. The quadratic metric can be expressed as 

D(X, Cm) = (X - Cm)tW 1 (X - Cm ) 	 (2.46) 

where (X - Cm ) is error column vector and W is the covariance matrix given as: 

W = L(Xj - )(X1 - )t 	 (2.47) 

where lis the number of training vectors and Xis the mean ofX,i.= 1 , ..., T, i.e., 

X 
	

(2.48) 

W' is the inverse of the covariance matrix W. For the conventional exhaustive method, 

k(k +1 )N multiplications, (k 2  + k - 1)N additions and N - 1 comparisons are needed for every 

test frame. 

2.9.1 Metric Transform Using Triangular Matrix 

The quadratic metric is transformed to the Euclidean metric using the lower triangular matrix 

and the upper triangular matrix in this subsection. By applying the improved absolute error 
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111 1.21 1.31 •.. tkl 

o 1.22 1.32 ... Iki 

o o 1.33 ... tk3 
L= I (2.50) 

inequality criterion to the metric transform, the bound for quadratic metric is obtained. 

Given that W 1  can be represented in terms of the product of the lower triangular matrix and 

the upper triangular matrix according to Eq. 2.49 as 

W- ' =  LLt 
	

(2.49) 

0 	0 	0 	•.. 1.kk 

Set Em  = X - Cm , then the quadratic metric can be expressed as follows: 

D(X, Cm) = E t LLtEm = IELI 2 
	

(2.51) 

Set L = [V 1 V2V 3  .. .  Vk],  and assume 

D m  = D(X, Cm) = 	IE\I2  

If 	 IEVI ~: V'KD mtn , 

then 	D(X,C j)~:Dmtn  

where s<h<k. 

(2.52) 

(2.53) 

(2.54) 

After modification of the quadratic metric to Eq. 2.5 1, the improved absolute error inequality 
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(IAEI) criterion can be easily applied as shown in Eq. 2.52 to Eq. 2.54. 

2.9.2 Metric Transform Using KLT 

The Kathunen-Loêve transform (KLT) is also called the eigenvector transform, principal com-

ponent transform and Hotelling transform. It is an optimal transform in a statistical sense under 

a variety of criteria. The KLT has the following properties (Elliott, 1982): 

It is the best vector transform in the sense of decorrelating the sequence completely in the 

transform domain. 

It packs the most energy (variance) to the low order elements. 

It minimizes the mean squared error (MSE) between the original and reconstructed data 

for any specified bandwidth reduction or data compression. 

It minimizes the total entropy of the data sequence. 

Eigenvectors of the covariance matrix of a given sequence are the basis functions of the KLT. 

Assume P and A are the eigenvector and diagonal matrix of eigenvalues, respectively. The 

quadratic metric can be transformed to the Euclidean metric as follows: 

D(X, Cm) = (X - Cm)t  W(X - Cm ) 

= (X - Cm)t {PAP t}'(X - Cm ) 

A1 0 	0 ... 0 

o A2  0 ... 0 

= (X - Cm )t{P 0 0 A 3  ... 0 P t} (XCm) 

0 	0 	0 ... Ak 
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737 0 0 0 

A 
'I 

1 

A 
'' 

A " 1 

0 0 0 * 
= (X - C)t(P I 

0 	0 	0 

00 	.. 	0 

0 	0 	 0 
	

Pt}(XCm ) 

0 	0 	0 

Eff 

A 1  0 	0 ... 0 

o A2 0 ... 0 

= (X - Cm)t{Pt 	0 •  0 A3  ... 0 
	 - Cm ) 

0 0 0 	A ll  

=(XCin)t{P I 

Al 

00 0 Pt}(XCm ) 

o Ø 	I 

= (X - C in )t QQt(X - Cm) = UtU = Y-  j jjt12 , 	 (2.55) 
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where 

* 0 0 ... 	 0 

A V 
1 

Q=P o 0 ... 	 0 

o 0 0 
... 	* 

U = Qt(X_ Cm) and u' is the element of the row matrix U 

Apply the IAEI to Eq. 2.55 and assume the current minimum distortion 

D mtn  = D(X, Cm). 	 (2.56) 

if 	L 1u 	VhDmtn , 	 (2.57) 

then 	D(X, C) ~: Dintn 	 (2.58) 

where s < h < k. 

After the transform of quadratic metric to Eq. 2.55 using KLT, another bound for quadratic 

metric is derived as shown in Eq. 2.56 to Eq. 2.58. 
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Chapter 3 

Efficient Codeword Search Algorithms 

Vector Quantization (VQ) (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al., 1980) has been 

widely used for various applications involving VQ-based encoding and VQ-based recognition. 

The response time of encoding and recognition is a very important factor to be considered for 

real-time applications. Unfortunately, a full search algorithm is applied in VQ encoding and 

recognition and this is a time consuming process when the codebook size is large. A vector 

quantizer of rate r bits/sample and dimension k is a mapping from a k-dimensional vector space 

into some finite subset C = {C,;j = 1,..., N}, where N = The subset C is called acodebook 

and its elements C j  are called codewords, codevectors, reproducing vectors, prototypes, or 

design samples. A distortion measure D(X, C) is a non-negative dissimilarity measure between 

vector X and codewords C. This distortion is used to measure how close the input vector X 

is to these codewords C. The nearest codeword is to be selected in order to encode the input 

vector X. Therefore, encoding each input vector requires N distortion computations and N - 1 

comparisons. 

The codeword search problem in vector quantization is to assign one codeword to the test vector 

in which the distortion between this codeword and the test vector is the smallest among all 

codewords. Given one codeword C, and the test vector X in the k-dimensional space, the 

distortion of the squared Euclidean metric can be expressed as follows: 

k 

D(X, C) = 
	

- c)2 , 	 (3.1) 

where C = {c, c, ..., c} and X= {x', X2 '...'  xk}. 
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Each distortion calculation requires k multiplications and 2k - 1 additions. Therefore, it is 

necessary to perform k2kT  multiplications, (2k - 1 )2k' additions, and 21T 
- 1 comparisons 

for encoding each input vector. The computation complexity depends on codebook size and 

dimensions. It needs large codebook size and higher dimension for high performance in VQ 

encoding and recognition systems resulting in increased computation load during codeword 

search. 

3.1 History of Codeword Search 

Since codeword search is a serious problem in real time application of vector quantization, the 

history of codeword search will be introduced first, then a series of efficient methods will be 

presented in this chapter. 

3.1.1 Partial Distortion Search 

The partial distortion search (PDS) algorithm (Bei & Gray, 1985) is a simple and efficient 

codeword search algorithm which allows early termination of the distortion calculation between 

a training vector and a codeword by introducing a premature exit condition in the search process. 

Given the current minimum distortion, 

D(X, C) = D mtn , 	 (3.2) 

S 

if 	T (X - c)2  > D mtn , 	 (3.3) 
t1 

them 	D(X, C) ~! D(X, Ce), 	 (3.4) 

where s < k. 

The efficiency of PDS derives from elimination of an unfinished distortion computation if its 

partial accumulated distortion is larger than the current minimum distortion. This will reduce 

computation to (k - s) multiplications and 2(k - s) additions at the expense of s comparisons. 

The detail algorithm of the partial distortion search is described as follows: 

Step 0: Set D 1  = oo(a very large number),i=1,and jm=j =1. 
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Step 1: If j > N, then terminate the algorithm and record j 	as the index of the nearest 

codeword; otherwise D =0. 

Step 2: D = D + (xt 
- cl)2. 

Step 3: If  >D j , then j=j+1 and goto step l; otherwise goto step 4. 

Step 4: lft<k, then i.=t+1 and goto step 2; otherwise D jn =D,jmjn =j,j=j+1 and go 

to step 1. 

The efficiency of the partial distortion search (PDS) algorithm can be further improved by 

ordering the codewords (Paliwal & Ramasubramanian, 1989). This requires calculation of the 

probability P 1  for each codeword from the training data: P 1  is the probability of the codeword 

C1  which is nearest neighbour to the training data. The codewords are then arranged in the 

codebook in the order of decreasing P 1. After this arrangement, the probability of obtaining the 

nearest codeword in the early stage can be increased which helps in saving computation time. 

3.1.2 Hypercube Approach 

The hypercube approach is a well known premature method (Lo & Cham, 1993) which is 

efficient if the difference for any coefficient is generally larger than the difference of the other 

coefficients, such as the first coefficient of cepstrum coefficients. Assume Eq. 3.2 has already 

existed, 

if 	Ix'-clI ~ v'i5i, 	1 <t<k, 	 (3.5) 

then C, will not be the nearest neighbour to X. 

There is no multiplication operation required for the test of the hypercube approach. 

3.1.3 Absolute Error Inequality Criterion 

The absolute error inequality (AEI) criterion (Soleymani & Morgera, 1987b) is the mathematical 

relationship between the city block metric (or L,) and the Euclidean metric (or 1-2 ). Assume C 1  

is the current nearest neighbour to X, that is, 

D(X, C 1 ) = D mtn , 
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S 

if 	
- C 	 (3.6) 

k 

then 	37 (xt - cI 
)2 	 (3.7) 

1=) 

where s<k. 

This means C j  will not be the nearest neighbour to X if Eq. 3.6 is satisfied. This criterion can be 

estimated by comparing the first dimension-difference of the test vector and codeword with the 

right hand side of Eq. 3.6. If Eq. 3.6 is not satisfied for $ = 1, then this criterion is checked for 

higher s. This criterion is checked by increasing s until s = k or the criterion is satisfied. 

3.1.4 'friangular Inequality Elimination 

Triangular inequality elimination (Pan, 1988) is an efficient method for codeword search. Let 

V be the set of data vectors and C be the set of codewords and x, j  belong to the set V. On V, a 

distortion measure is defined as a mapping d: V x V - R, which is assumed to fulfil the metric 

properties: 

d(x,tj)':~ 0;d(x,y)=0 iff x=u 	 (3.8) 

	

d(x,y)= d(y,x) 
	

(3.9) 

d(x, y) + d(y, z) d(x, z) 	 (3.10) 

As shown in Fig. 3.1, let C1, C2, C3  be three different codewords and t be a test vector, then 

the following three criteria are obtained. 

. Criterion 1: 

Given the triangular inequality 

d(t, C2) + d(t, C 1 ) ~! d(C 1 , C2); 	 (3.11) 

IJ 



d( C I , C Z2) 	d( C 2, C 3) 

d( t, C 2) 

d( t , C 1) 
	

d( t, C 3) 

t 

Figure 3.1: Distortion diagram of test sample and codewords 

if 	d(C 1  , C2 ) ~! 2.d(t, C 1 ), 	 (3.12) 

then. 	d(t,C2 ) ~! d(t,CO- 	 (3.13) 

Criterion 2: 

Given the triangular inequality 

d(C3 , C2) !~ d(t, C2) + d(t, C3); 	 (3.14) 

if 	d(C3 , C2) ~! d(t, C 1 ) + d(t, C2 ), 	 (3.15) 

then 
	

d(t, C 1 ) :5 d(t, C 3). 	 (3.16) 

• Criterion 3: 

Assume 	d(t,C 1 )< d(t,C2 ). 

Given. 	d(C3 , C2) ~: d(t, C2) - d(t, C3 ); 	 (3.17) 
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if 	d(C3 ,C2) :5 d(t,C2) - M, CA 	 (3.18) 

then 	 d(t,C,)< d(t,C3). 	 (3.19) 

Criterion 2 and 3 can be merged to one criterion only, i.e., 

if 	d(t,C,):5 Id(C3 ,C2)-d(t,C2 )I, 	 (3.20) 

then 	 d(t,C,) d(t,C3 ). 	 (3.21) 

To use Criterion 1, these distortions between all pairs of codewords are calculated in advance. 

If Eq. 3.12 is met, then the computation of d(t, C 2) can be omitted if d(t, C,) has already been 

computed. Criterion 1 can be modified for square error distortion measure. In the codeword 

searching system, a table is made to store one-fourth of the values of square distortion between 

codewords, i.e., store the value of d 2(C, C1 )/4, for i. = 1, 2, ...,N; j = 1, 2, ...,N. Here N is 

the number of codewords. The overhead of criterion 1 is to establish the distortion table in 

which N (N - 1)k/2 multiplications and N (N - 1)(2k - 1)/2 additions are needed. As shown 

in Fig. 3.2, the physical meaning of Criteria 2 and 3 can be described as follows: 

If the codeword C, i. ' 1, 2, does not locate between the two concentric circles (or in general 

hyperspheres) centered on C 2  with radii d(t, C2 ) ± d(t, C 1 ), the computation of its distortion 

to the test sample can be omitted, i.e., if d(C 1 , C2) > d(t, C2) + d(t, CO  or d(C1 , C2) < 

d(t, C2)— d(t, C,), then eliminate the computation of C. For the special case d(t, C,) = d(t, C 2), 

Criterion 3 is inappropriate and Criterion 2 reduces to Criterion 1. Since Criterion 2 and 3 will 

induce square root computation, it is simple and efficient to use Criterion 1 only. 

3.1.5 Approximating and Eliminating Search Algorithm 

The approximating and eliminating search algorithm (AESA) was proposed by (Vidal, 1986). 

The detail of this algorithm is described as follows: 

Step 0: Calculate N(- 1) distortions for every possible pair of codewords, N is the number of 

codewords. 
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Figure 3.2: Geometric diagram for Criteria 2 and 3 of triangular inequality elimination 

Step 1: Compute d(X, C 1), C1  is a selected codeword and X is a data vector. Set U = {C1 } and 

it = i Here it is codeword index of the current nearest codeword and U is a set of used 

codewords. 

Step 2: Eliminate codeword C, if d(C, C 1) ~: 2d(X, Q. 

Step 3: If all codewords are eliminated or used, then terminate the program; otherwise, $ = 

C1cU Id(C, C1 ) - d(X, C1)I). C. is an unused and non-eliminated codeword. 

Step 4: Calculate d(X, C) and U = U U {C}. 

Step 5: Find the current nearest codeword index it = argmtn € { fl . 8}d(X, Cr). If it = s, then 

Q = U; otherwise, Q = {C}. 

Step 6: Eliminate the unused and non-eliminated codeword C j  if d(C,, Cq ) ~! d(X, C q ) + 

d(X, C) or d(C,, Cq ) :5 d(X, Cq ) - d(X, Ca ), where Cq CQ. Go to step 3. 
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In step 0, the distortions for every possible pair of codewords are calculated off line. Steps 1 and 

2 are initializations of this algorithm. Criterion 1 of the triangular inequality elimination used in 

step 2 is not efficient because the value of d(X, C 1 ) may be large, since C1  is selected randomly. 

The tentative matching codeword is found in step 3. In step 4, the distortion between the data 

vector and the tentative matching codeword is calculated. The nearest codeword is updated in 

step 5. The potential for matching impossible codewords is eliminated using Criteria 2 and 3 

of the triangular inequality elimination in the last step. The main effect of this algorithm is to 

find an efficient tentative matching codeword and then Criteria 2 and 3 of triangular inequality 

elimination are applied to eliminate impossible codeword matching. Here, the tentative matching 

codeword is a non-eliminated and unused codeword which satisfies Eq. 3.22. 

Cs =lntltcp(L  Id(C,C1 )— d(X,C1 )J). 	 (3.22) 
ci cu 

This tentative matching codeword is the approximation of the nearest to the intersection of all 

hyperspheres with radius d(X, C 1 ), VC1 cU. 

3.1.6 Minimax Method 

The minimax method (Cheng et al., 1984) is to take the codeword with the minimum value of 

the maximum dimension-distortion as the tentative match and then use the hypercube approach 

and the partial distortion search (PDS). The minimax method is depicted as follows: 

Step 1: For the given test vector X and codebook C, calculate the absolute error e  jj  x1  - ciI, 
1, 2, ...,k, 	1, 2, ..., N. 

Step 2: Find the maximum component of each error vector, that is to find ntax jejj  for each 

codeword. For convenience, interchange the maximum component of error vector with 

e 1j . 

Step 3: Find the minimum neighbour I =arg ntimmax1e1 . 

Step 4: Find the squared Euclidean distortion Dmtn = 	i. 

Step 5: Use the hypercube approach, i.e., if maxjetj  ~: 	then cj will not be the nearest 

neighbour to X. Use the PDS to delete the rest of the codewords. 
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3.1.7 Previous Vector Candidate 

For speech data, the classification result of the present vector is usually the same as or close to 

the classified result of the previous vector. The nearest codeword of the previous vector can be 

used as the tentative match called previous vector candidate which is first proposed by (Pan, 

1988; Chen & Pan, 1989). 

In vector quantization of images, data are first divided into subsequent blocks of size k = Mx M. 

The previous vector candidate has also been applied to image coding (Huang & Chen, 1990) 

by taking the advantage of high correlation between contiguous subimages. Let C(m, it) denote 

the nearest codeword of the block image X(m, it). As shown in Fig. 3.3, the nearest codewords 

of the four adjacent blocks are used as the tentative matching codewords, i.e., calculate the 

distortions between the data vector X(i., j) and codewords C(i. - 1, j),C(i. - 1, j - 1 ),C(i., j - 1) 

and C(i. +1, j - 1). The codeword with the minimum distortion is chosen as the candidate. Then 

the Criterion 1 of the triangular inequality elimination is used to eliminate impossible codeword 

matching. Partial distortion search (PDS) is used as the last stage to calculate the distortion for 

the rest of the codewords. The previous vector candidate has also been applied to image coding 

using vector quantization by (Ngwa-Ndifor & Ellis, 1991). Only one codeword C(i - 1, j) 

is used as the tentative match and only the partial distortion search (PDS) is applied in this 

algorithm. The previous vector candidate, Criterion 1 of the triangular inequality elimination 

and the partial distortion search were also applied to Manhattan (Chebyshev) metric for VQ 

image coding by (Nyeck et al., 1992). 

3.1.8 Subcodebook Search Algorithm 

A subcodebook search (S CS) algorithm (Lo & Cham, 1993) was developed for efficient VQ 

encoding of images. This algorithm also takes the advantage of high correlation between two 

adjacent blocks. The comtrot codeword is one of the four nearest codewords of the four 

adjacent blocks which has the smallest distortion to the current encoding block. In the training 

phase, the decision distortion for each control codeword is decided from Eq. 3.23. 

D1 = 	Pc 1 (C,)D(C, CO, 	 (3.23) 
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Figure 33: Diagram of four adjacent codewords for image coding 

where 1 < i. < N, P c, (C j ) is the probability that the best match to the training data vectors is 

the codeword C j  when the control codeword is C 1  and the squared Euclidean distortion measure 

is applied. 

The subcodebooks can be constructed by grouping those codewords having distortion to the 

control codeword C 1  smaller or equal to 4D 1. The additional memory requirements for SCS 

algorithm are two tables: the decision distortion for each subcodebook and the mapping codeword 

indices for each subcodebook. 

In the encoding phase, the control codeword C 1  is determined first. Compare the distortion 

D(X, C1) and the decision distortion D 1 , here X is the data vector. If D(X, C 1) > D 1 , then search 

the whole codebook; otherwise, search the corresponding subcodebook. In searching the whole 

codebook or subcodebook, the partial distortion search and hypercube approach are applied. 
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3.1.9 Fast Sliding Search Algorithm 

The fast sliding codeword search algorithm was presented by (Koh & Kim, 1988). This 

algorithm uses the codeword with the most similar sum of components to the data vector as the 

tentative matching codeword, i.e., find a codeword C j  such that 

1. =  argmtm1  Lxi 
- 	

c. 	 (3.24) 

In the training phase, the sum of all dimensions for each codeword is calculated first and these 

values are sorted in increasing order or decreasing order. In the encoding phase, the tentative 

matching codeword is obtained by using Eq. 3.24. Then p codewords are searched from C 1_ I to 

C + _ 1  which is illustrated in Fig. 3.4. If t— ~ 1, then search the codeword from C 1  to Ci,. If 

i. + - 1 > N, then search the codeword from C N to CN. This algorithm is an approximate 

search algorithm. 
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Figure 3.4: Search strategy of fast sliding search algorithm 

3.1.10 Equal-average hyperplane partitioning method 

The equal-average hyperplane partitioning method for vector quantization of image was pro-

posed by (Guan & Kamel, 1992). This method utilizes hyperplanes orthogonal to the central 

line 1 to partition the search space. Any point on 1 has the same value for every dimension. As 

explained in (Lee & Chen, 1994), each point on a fixed hyperplane H, which is orthogonal to 
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the central line land intersects 1 at point LR = (inR, m, ..., m1), will have the same mean value 

m, such a hyperplane is called an equat average hyperptan.e. 

In the training phase of the equal-average hyperplane partitioning method, the sum of all di-

mensions for each codeword is calculated and divided by k first. These values are sorted in 

increasing order. It is similar to the fast sliding search algorithm. In the encoding phase, the 

mean of the data vector is calculated as 

Mx= 

Then the tentative matching codeword is found first by using the same method as the fast 

sliding search algorithm, i.e., calculate Eq. 3.25. 

i. =  argITUn1Iin - 	 c. 	 (3.25) 

Compute the distortion between this data vector X and the tentative matching codeword C 1 , 

\J 
Any other codeword which is closer to the data vector X than the tentative matching code-

word C1  will be located inside the hypersphere centred at X with radius d1. Projecting 

the hypersphere on I, two boundary projection points L max  = lfllnax, ..., lltinax) and 

1-min = (ii )  11tth, ..., m) on I can be found, where 

1fllnax11+ (3.26)
di  

Vfk- 

and 

;;;. 	 (3.27) 

Hence, only the codewords with mean value from mmtn to in are searched. The equal-

average hyperplane partitioning method uses the mean value to eliminate unlikely codewords 

and hence much computation time is saved. This algorithm is further improved by introducing 

the following formula (Lee & Chen, 1994): 

if 	IVx 
- VcI ~! d1 , 	 (3.28) 
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then 	d ~! d1 , 	 (3.29) 

where 

VxH(XI 
_)2 	 (3.30) 

and 

V = 	 - 1Ttc)2 . 	 (3.31) 

If Eq. 3.28 is met, then C. will not be the nearest codeword to data vector X. By testing Eq. 3.28 

first, if it is not satisfied, then check if 

1111, ~! litInox 	 (3.32) 

or 

lTtp  !~ 11t fl • 	 (3.33) 

If they are still not met, then calculate the distortion between X and C p. Note that memory size 

of N (k+ 2) is needed for this algorithm compared with N (k+ 1) for the equal-average hyperplane 

partitioning method. 

3.1.11 Fast Full Search Equivalent Encoding Algorithm 

The fast full search equivalent encoding algorithms (Huang et al., 1992) utilize the minimum 

mean distance as the tentative matching approach, then apply the three criteria of triangular 

inequality elimination to reject unlikely codeword matching. The first algorithm uses the 

minimum mean distance as the tentative matching codeword and Criterion 1 of the triangular 

inequality elimination as the elimination method which is described as follows: 

Step 1: Compute r = 

Step 2: Find codeword C, such that 1. = arg1ntn 	- 	 c. 

Step 3: Calculate the L 1  distortion dm ,, = d(X, C) = 	Ix - cli. 

Step 4: Check the termination of this program. If d(C.Cu) 
~ d, then omit the distortion 

calculation of codeword Ci,, set p = p + 1 and goto step 4; otherwise, goto next step. 
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Step 5: Calculate d(X, Cr ), update dmtn = ntth.{d(X, Cr ), dmin}  and i. = argm.i.n1 {d(X, C)}, 

set  = p + 1 and goto step 4. 

From Criteria 2 and 3, codeword C can be eliminated if it does not satisfy the following 

inequality: 

	

d(X,Z)— d(X,C) :5 d(Z,C) :5 d(X,Z)+d(X,C), 	 (3.34) 

where d(X, Z) is the L 1  distortion between data vector X and any other vector Z. By setting the 

vector Z to the origin, this inequality can be rewritten as 

	

IxI - d(X,C) :5 Y IcI < EIxI+d(X,Ci). 	 (3.35) 

If Eq. 3.35 is not met, then eliminate codeword Cp. Combining Eq. 3.35 with the minimum 

mean distance as the tentative matching approach is the algorithm 2 in (Huang et al., 1992). 

Combining Criterion 1 of triangular inequality elimination, Eq. 3.35 and the minimum mean 

distance as the tentative matching approach is the algorithm 3. In terms of the total number 

of mathematical operations, algorithm 1 outperforms the other two algorithms. In terms of the 

number of multiplications, algorithm 3 is superior to the other two algorithms. 

3.1.12 Adaptive Fast Encoding Algorithm 

From Eq. 3.34, the vector Z can be set to any value. This inequality will be very efficient if 

small values of d(X, Z) and d(X, C 1) are selected. Eq. 3.34 provides different constraints on the 

test codewords for different values of vector Z. In previous work (Salari & Li, 1994), three 

values of vector Z are selected such that three smaller d(X, Z) are provided. Hence codeword 

Cp can be eliminated if C, cannot satisfy any of the following three inequalities: 

d(X, 4) - d(X, C1 ) :5 d(Z0 , C) :5 d(X, 4) + d(X, C1), 

d(X, Z1) - d(X, C1 ) !~ d(Z 1 , C) !~ d(X, Z1) + d(X, C1), 

d(X, Z2) - d(X, C1) d(Z2, C)  d(X, Z2) + d(X, CO, 
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where d(Zm, C) can be calculated off line, m=1,2 and 3, p=1,2,...,N. Z 0  is set to origin and 

codewords are sorted in ascending order of d(Z 0 , Cr ). Three tables A 0 , A 1  and A2 are built 

to store ascending ordered values of d(Z 0 , Cr ), d(Z 1 , C) and d(Z2, Cr), respectively. Two 

index tables B 1  and B2 are used to store the codeword indices corresponding to the ordered 

d(Z1 , Ci,) and d(Z21 C) tables. In the encoding phase, only the codewords Cp satisfying these 

three inequalities simultaneously are needed to compute the distortion, i.e., the final subset of 

codewords is 

{C:1. i :!~  BAP) :51.2,m;:5B1(p)<n2,m1:5p:5nt2}, 

where in 1  is the index of the first element of A 0  whose value exceeds d(X, Z 0 ) - d(X, C1 ) and 

in2  is the the index of the last element of A 0  whose value is smaller than d(X, Z0) + d(X, C1 ); 

n1  is the index of the first element of A 1  whose value exceeds d(X, Z1) - d(X, C1 ) and n2  is 

the the index of the last element ofA 1  whose value is smaller than d(X, Z 1 ) + d(X, C1 ); 11 is the 

index of the first element of A 2  whose value exceeds d(X, Z2) - d(X, C1) and 12 is the index of 

the last element of A 2  whose value is smaller than d(X, Z2 ) + d(X, C1 ). If any codeword cannot 

be eliminated using these three inequalities, then calculate the distortion of d(X, C) and update 

the current nearest codeword and the current minimum distortion. 

3.1.13 Fast MMSE Encoding Technique 

The fast minimum mean squared error (MMSE) encoding technique (Soleymani & Morgera, 

1989) assumes codewords C 1 , i. = 1,2, ... , N, partition the space R' into N regions S 1. t = 

1, 2, ..., N, such that 

	

S1  = {X: L(x1 - cj')2  ~ 	(x1' 	
- c')2 , aUj}. 

For each codeword C 1 , let r1  = vfD—j  where 

Dt  = maxx€51 	(x' - cr)2 . 	 (3.36) 

For any given input data vector X, if 

IXP - cr1 > r1 , 	 3.37) 



for some pe{1 , 2, ..., k}, then C t  will not be the nearest codeword to X. Combine Eq. 3.37 with 

the hypercube approach such that the codeword C 1  can be rejected if 

lxv - cI'I > r, 	 (3.38) 

where r = intn{r 1 , VDmjn} and D j, is the current minimum distortion found before checking 

the codeword C 1 . 

From the training data, calculate rt for each codeword C 1 , i. = 1,2, ..., N and sort rt in increasing 

order and also sort the codebook accordingly. Hence, after finding some codeword C 1  such that 

k 

(x1' - c)2  = D m 	T, 	 (3.39) 
P-1 

there is no need to compare '/D with r 1  for t> I. The fast MMSE encoding technique can 

be depicted as follows: 

Step 1: Set i. = 1 and j = 1. 

Step 2: While i < N (N is the number Of codewords), calculate step 3 to step 6. 

Step 3: Calculate e 1  = 1x1  - ciI. 

Step 4: Lfe1, > r1 , set i.=t±1,j=1 and go to step 2; otherwise, if j < k (k is the number of 

dimensions), set j = j + 1 and go to step 3. 

Step 5: Calculate din = r, d = e11  * Cti. Set  = 2. 

Step 6: If  > k, set m.=t+1, D mjn  = d and goto step l. Calculate d= d+e*e 11 ,if 

d> din, set i. = t + 1 and go to step 2; otherwise, set j = j + 1 and go to step 6. 

Step 7: Set  =1. While in< N, calculate step  to step 11. 

Step 8: Calculate Cmj = lx' - CL I. 

Step 9: If em, > 	set in = in + 1 and go to step 7. otherwise, if 3 <k, set 3 =3 +1 and 

go to step 8. 

Step 10: Calculate d = em i * Cmi. Set 3 = 2. 
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Step 11: Calculate d = d + emj  * e inj  if d> Dmi,  set in = in + 1 and go to step 7; otherwise, 

set j = j + 1 and go to step 11. 

Step 12: Set D min  = d,m=m.+1,record Cm as the current nearest codewordto vector Xand 

go to step 7. 

In this algorithm, the hypercube approach and PD  are combined with r j  from step 1 to step 6; 

the hypercube approach and P D S are also combined with the current minimum distortion D in  

from step 7 to step 12. The main idea of this algorithm is to create r 1  from tile training data and 

sort Ti in increasing order. 

In addition, t, the maximum dimension-distortion for the input data vector in S 1 , can be used 

instead of r 1 , defined as 

	

t1  = maxx€snLaxIx' 	- cfl. 	 (3.40) 

Since the maximum dimension-distortion is less than the square-root of the total distortion, using 

ti instead of Ti  may result in a more efficient algorithm. Note that the fast MMSE encoding 

technique is an approximate search algorithm and occasional encoding errors will happen in the 

nearest neighbour assignment. In order to reduce the encoding errors, a small value added to r 1  

or ti  is needed. 

3.1.14 Projection Method 

For the projection method of codeword search for vector quantization (Cheng et al., 1984), 

Eq. 3.41 and Eq. 3.42 are computed from the training data. 

	

= maxx€c1 xt . 	 (3.41) 

	

T10  = 1ni.nxc1 xt . 	 (3.42) 

Sort Ttjm inthe increasing order for each dimension, where  = 1,2,...,k,j = 1,2,...,N and 

in = OorI. There are 2N - 1 contiguous intervals for each dimension. For each dimension, 

create a table where the 1.th column indicates whether c I  is a candidate and the pth row indicates 

that xi  is located in the pth interval. The entry of this table can be I or 0 to express candidate or 
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non-candidate. It can also be the index of the codevector for the candidate. In the encoding stage, 

the interval for each dimension is determined first. The possible candidates are the candidates for 

the intersection of these k tables given the row for every table. This method is an approximate 

search algorithm. Occasional encoding errors will occur in the codeword search. In order to 

reduce the encoding error, Eq. 3.41 and Eq. 3.42 can be modified as follows: 

Tip = ntaxx€c xt  + 5 1 , 	 (3.43) 

Ttjo = 1TUItX€CJX - 	 (3.44) 

where 5 j , and 5 jo  are small values and j = 1,2, ..., k. The values of 5 j , and 6o  can be decided 

from experiments. 

3.2 Improved Absolute Error Inequality Criterion 

The improved absolute error inequality criterion (IAEI) (Pan et al., 1995a; Pan et al., 1995b) 

is a special case of the bound for Minkowski metric (Pan et al., 1996b). IAEI criterion can be 

depicted as follows: 

S 

if 	 Ix -  0 ~: V'hD min , 	 (3.45) 
t1 

k 

then. 	(x - c)2  > Dmtn , 	 (3.46) 
i1 

where s < K < k. 

The IAU criterion can also be proved as follows: 

Let a1= Ixt -  ands < h < k. Then 

o 
< 
	(at—L

)2 = 	a— 	a 	aj+(L 1)2 = 	a —  i(L a1) 2 . (3.47) 

	

t1 	 t1 	1-1 	j.1 	i-i 	i-I 	 1-1 	 1-1 

Hence 

a ~ L a ~ 	a1)2  ~( a1)2 . 	 (3.48) 

	

Hence if 	at  > /hDmtn , 
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then Eq. 3.4 becomes 	a ~ /hD mjn )2  = D. 

The main difference between the IAU criterion and the AU criterion is that $ and K are used 

instead of k in Eq. 3.45. Since h can be adapted with s which can be set to a smaller value than 

k,the IAEI criterion provides a tighter bound than the AU criterion. 

3.2.1 Fast Algorithms Using IAEI 

The fast algorithm is generated using the codeword with the minimum value of the maximum 

dimension-distortion as the tentative match and applying the improved absolute error inequality 

(IAEI) criterion and partial distortion search (PDS). This new fast codeword searching algorithm 

is described as follows: 

Step 1: For the given test vector X and codebook C, calculate the absolute error e jj  = x - 

1, 2, ..., 	 1, 2, ..., N. 

Step 2: Find the maximum component of each error vector, that is to find max te j  for each 

codeword. For convenience, interchange the maximum component of error vector with 

e 1 ,. 

Step 3: Find the minimum neighbour 1. =arg mth.inaxe1 . 

Step 4: Find the square Euclidean distortion D Tni ,, = 	e. 

Step 5: If F s=1  eij  ~! v'hD mtn , then cj  will not be the nearest neighbour to X, where s < K < k. 

Use the PDS to delete the rest of the codewords. 

In this new fast codeword search algorithm, for s = h = 1, it is the same as the hypercube 

approach in step 5 of the minimax method. By adapting the values of s and h from 1 to k, this 

algorithm eliminates a very large number of multiplications. 

3.2.2 Minimax method with AEI approach 

In this section, the new fast codeword search algorithm using IAU described in the previous 

sub-section is compared with the minimax method as well as the minimax method including 

the absolute error inequality criterion. The approach of the minimax method including AEI is 

described as follows: 



Step 1: For the given test vector X and codebook C, calculate the absolute error e jj  = Ix' -  c! 1, 

i.=1,2,...,k,j=1,2,...,N. 

Step 2: Find the maximum component of each error vector, that is to find max tejj for each 

codeword. For convenience, interchange the maximum component of error vector with 

Cjj. 

Step 3: Find the minimum neighbour I =arg mtnmax 1e. 

• 
Step 4:  Find the square Euclidean distortion D t,, = F k  e , . 

Step 5: Use the hypercube approach, i.e., if maxe 1  ~: VDintn , then delete the codeword C,. 

Use the AEI criterion, i.e., if Ix' - cI ~: /kDmjn , then cj  will not be the nearest 

neighbour to X, where s < k. Use the PDS to delete the rest of the codewords. Here the 

AEI criterion is applied by adapting s from 1 to k. 

3.23 Experiments 

The test materials for these experiments consisted of two hundred words recorded from one male 

speaker. The speech was sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients 

with inverse variance weighting were computed over 20 ms-wide frames with a 5 ms frame 

shift. The purpose of inverse variance weighting is to equalize the importance of every cepstrum 

coefficient. A total of 20,030 analyzed frames were used in the codeword searching experiments. 

Codebooks of size 64, 256 and 1,024 codewords with Euclidean distortion measure are used in 

these experiments. 

Experiments were carried out to test the performance of the minimax method; the minimax 

method with absolute error inequality elimination rule; and the new fast search algorithm 

described above. The bounds for IAEI were separated into four sections. These four sections 

were to set h = 1 to check the first dimension-difference, K = 4 for the sum from the first 

dimension-difference to the fourth, h = 9 for the sum from the first dimension-difference to the 

ninth and h = 13 for the sum of all dimension-differences. The choice of h =4 and K =9 allows 

the expression /hD in the elimination test (Eq. 3.45) to be evaluated using only additions, 

once /i7 has been computed, since /4D = 2/tY and V9Dmtn  = 3'/D min . 

Fig. 3.5 illustrates the experimental results for the elimination probability of IAEI at each 
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feature dimension for 16, 64, 256 and 1024 codewords, respectively. For 1024 codewords, 

92.7% of impossible codewords matches will be eliminated by using the IAEI criterion in the 

first dimension. Only 0.65% of codewords cannot be eliminated using the IAEI criterion. The 

numbers of eliminations at each dimension for 8, 32, 128 and 512 codewords are shown in 

Table 3.1. No codeword can be eliminated in the second or fifth dimension and only a few 

codewords are eliminated in the tenth dimension because the bounds of the IAEI criterion are 

separated into four sections and h is set to 1,4,9 and 13. If his set toi.at the ith dimension, then 

significant multiplication overhead is needed in the computation of fhD min. The statistics of 

the elimination probability for IAEI criterion at each feature dimension for 16,64,256 and 1024 

codewords, respectively, is depicted in Fig. 3.6 where his set to i. at the i.th dimension. Table 3.2 

shows the number of eliminations at each dimension for 8, 32, 128 and 512 codewords, where h 

is also set to i. at the tth dimension. The elimination efficiency for h set to i. at the ith dimension 

is better than h set to 1, 4,9 and 13 but significant multiplication overhead is needed if h is set 

to t at the ith dimension. Experimental data relating to computational complexity are depicted 

number of codewords 
dimension 8 32 128 512 

1 36,876 336,053 1,911,039 9,023,539 
2 0 0 0 0 
3 3,450 13,445 34,107 73,228 
4 13,800 46,887 112,603 228,730 
5 0 0 0 0 
6 1,057 5,866 14,536 32,387 
7 4,530 20,270 53,834 122,545 
8 9,355 32,694 81,887 175,040 
9 13,071 36,575 86,146 172,657 
10 181 1,074 3,507 7,646 
11 3,865 12,788 34,829 71,259 
12 8,355 21,331 50,946 99,451 
13 10,533 26,944 	1 56,529 94,848 

Table 3.1: Number of eliminations at each dimension (h is set to 1,4, 9 and 13) 

in Tables 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10. Table 3.10 shows that this new fast 

codeword search algorithm saves more than 77% and 21 % multiplication operations compared 

with the minimax method and the minimax method with AEI criterion respectively for 1,024 

codewords. Although several digital signal processing chips exist that can implement addition 
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number of codewords 
dimension 8 32 128 512 

1 36,876 336,053 1,911,039 9,023,539 
2 9,025 32,074 75,067 154,884 
3 7,246 21,708 49,707 99,302 
4 5,364 19,394 48,129 97,968 
5 4,521 16,657 42,762 94,449 
6 5,605 19,125 47,840 102,112 
7 4,731 18,720 48,622 106,165 
8 5,035 17,731 44,523 94,010 
9 6,486 17,634 41,062 81,403 
10 5,831 15,699 38,525 75,705 
11 5,299 14,786 35,937 68,688 
12 5,245 12,760 30,023 56,990 
13 5,446 14,530 	1 31,330 	1 52,575 

Table 3.2: Number of eliminations at each dimension (h is set to 1. for the ith dimension) 

and multiplication in approximately the same time, multipliers take up much larger chip areas 

than adders. Also since the multiplication operation is more expensive than the comparison and 

addition operations for general processors (Leibson, 1993), this new fast algorithm is better 

than the other two algorithms. 

This fast algorithm is implemented by using the IAEI, setting h to 1,4,9 and 13, adapting and 

comparing Eq. 3.45 for s from 1 to 13. Another possible approach is to adapt s from 1 to 13 

but only compare Eq. 3.45 at s = 1, 4, 9 and 13. As shown in Table 3.11, this approach will 

decrease the number of comparisons as well as the total number of operations at the expense of 

more additions. In terms of the total number of mathematical operations, this approach is a little 

better than the minimax method but drastically reduces the number of multiplications for 1024 

codewords. 

A fast codeword search algorithm must include two key elements: a good tentative matching 

approach and a powerful elimination criterion. The IAEI is a powerful elimination criterion. 

An efficient algorithm can therefore be implemented by combining IAEI with another tentative 

matching approach, such as the previous vector candidate (Pan, 1988; Pan et al., 1996c; Chen 

& Pan, 1989). 
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method mul.(x103) cmp.(x103 ) add.(x103) sum(x103) 

Mth.i.inax 1.023 2,833 2,973 6,829 
Mimimax..AEI 721 3,675 3,815 8,211 

IAELEucU.deam 700 3,40 3,679 7,859 

Table 3.3: Computational complexity of codeword search for 8 codewords on Euclidean metric 

method mul.(x103) cmp.(x103 ) add.(x103) sum(x103) 

Mi.ni.inax 1,575 5,535 5,515 12,625 
Mtnttrtax..AEI 985 7,084 7,064 15,133 

IAELEucUdean 932 6,662 6,708 14,302 

Table 3.4: Computational complexity of codeword search for 16 codewords on Euclidean metric 

3.3 Improvement in Partial Distortion Search 

The PDS algorithm (Bei & Gray, 1985) has been shown to be an efficient and simple codeword 

search algorithm. This method is always used in the last stage when the other elimination 

criterion cannot delete impossible codeword matching. As shown previously in section 3.1, 

subsection 3.1.1, this reduces to (k - s) multiplications and 2(k - s) additions at the expense of 

s comparisons. This algorithm is suitable for computer architectures in which the complexity of 

comparisons is negligible with respect to that of multiplications. However, PDS is less suited to 

processor architectures in which comparisons are computationally expensive. An improvement 

of the partial distortion search algorithm using dynamic programming (DP) procedure (Fissore 

et al., 1993) is called DPPDS. Here a new improved PDS method (Pan et al., 1994b) is 

proposed by determining which dimension is suitable to start inserting comparisons for every 

codeword assessed from the training data. 

Let r be the cost ratio of the comparison computation time to dimension-distortion computation 

method mul.(x 1 O) cmp.(x 1 03)  add.(x 1 03)  sum(x 10) 
Mthi.max 2,037 10,390 10,049 22,476 

Mi.nthtax..AEI 1,130 12,673 12,332 26,135 
IAELEucUdean. 1 	1,045 1 	11,921 1 	11,650 1 	24,616 

Table 3.5: Computational complexity of codeword search for 32 codewords on Euclidean metric 
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method mul.(x103 ) cmp.(x103 ) add.(x103 ) sum(x103) 

Mtittm.ax 2,865 20,035 19,053 41,953 
Mimthtax..AEI 1,400 23,581 22,600 47,581 

lAtLEuclidean 1,256 22,262 21,353 44,871 

Table 3.6: Computational complexity of codeword search for 64 codewords on Euclidean metric 

method mul.(x103) cmp.(x103 ) add.(x103 ) sum(x103) 

Mth.imax 3,827 38,750 36,487 79,064 
Mi.ntinax...AEI 1,644 43,926 41,663 87,233 

IAELEucUdean 1,422 41,765 39,577 82,764 

Table 3.7: Computational complexity of codeword search for 128 codewords on Euclidean 
metric 

time. The improved partial distortion search (improved PDS) algorithm can be described as 

follows: 

Step 1: Set t=1. 

Step 2: Set L=1 and d 1 =oo. 

Step 3: Calculate the distortion d for the ith codeword to the 1.th training vector. Compute the 

saving dimension-distortion number M and the induced comparison number C 1  at the 

insertion from the 5th dimension for the tth codeword. Set dmjn = Mth(d mtn , d). 

Step 4: ift< N, set t=t+1 and go to step 3. Here  is the number of codewords. 

Step 5: if 1. < 1, set 1. = I + 1 and go to step 2; otherwise, set c = T' Z
T I C and m = 

T- ' Here 1. = 1 to T and T is the number of training vectors. The comparison 

starts from 1(t) for the ith codeword if 1(i) = argMax(nt - rcl). 

method mul.(x 1 03)  cmp.(x 1 03)  add.(x 10) sum(x 1 03) 

Mth.i.max 5,088 75,640 70,813 151,541 
MtntimaxAEI 1,901 83,135 78,308 163,344 

IAELEucI.tdean 1,584 79,700 74,949 156,233 

Table 3.8: Computational complexity of codeword search for 256 codewords on Euclidean 
metric 



method mul.(x 1 O) cmp.(x 1 03)  add.(x 10) sum(x 10) 
Mi.ntntax 6,492 148,517 138,562 293,571 

Mirt.imax..AEI 2,115 158,799 148,844 309,758 
IAELEucU.deam 1,708 153,730 143,852 299,290 

Table 3.9: Computational complexity of codeword search for 512 codewords on Euclidean 
metric 

method mul.(x103) cmp.(x103 ) add.(x103) sum(x103) 
Mimimax 7,569 292,892 272,682 573,143 

Min.imax.AEI 2,133 305,783 285,573 593,489 
IAELEucttdeam 1,671 299,002 278,865 579,538 

Table 3.10: Computational complexity of codeword search for 1024 codewords on Euclidean 
metric 

A more efficient algorithm can be developed by combining this improved PDS a1goithm with 

the dynamic programming in the PDS method. It is referred to as improved DPPDS. The 

difference between the improved DPPDS and the DPPDS algorithm (Fissore et al., 1993) 

is that in the improved algorithm the dimensions at which comparisons are performed are 

determined separately for each codeword instead of being the same for all the codewords. 

Assume S is the number of successful comparisons for the ith codeword at position j for I 

data vectors. Hence the number of dimension-distortion computations for inserting comparison 

operations in position j for the ith codeword can be expressed as 

N(j, k) = Tj + (1 - S)(k - 	 (3.49) 

codeword no. mul.( xl 03)  cmp.( xl 0) add.(x 1 03)  sum( xl 03) 

8 700 2,796 3,720 7,216 
16 932 5,443 6,795 13,170 
32 1,045 10,221 11,805 23,071 
64 1,256 19,711 21,613 42,580 
128 1,422 38,205 39,975 79,602 
256 1,584 74,784 75,548 151,916 
512 1,708 147,301 144,707 293,716 
1024 1,671 291,360 279,969 1 	573,000 

Table 3.11: Computational complexity for comparison inserted only in s =1,4,9 and 13 
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where k is the number of dimensions, t=1,2,...,N, N is the number of codewords. 

If the previous comparison is performed in position j, the number of dimension-distortion 

computations for inserting comparisons in position t for the ith codeword is as follows: 

N(j,t) = T.j + (T - S)(t - j) + (1 - S)(k - t). 	 (3.50) 

The computational advantage for the i.th codeword is 

V t(j,t) = [N(j,k) - N(j,t)] - r(T - S) = (S - S)(k - t) - r(T - St). 	(3.51 ) 

The dynamic programming technique and Eq. 3.51 are applied to Eq. 352, i.e., find suitable 

inserting positions j to maximize Eq. 3.52. 

A1(t) = A t (j) + V t(j, t), 	 (3.52) 

where t = 1, 2,..., k, j < t. 

The speech databases used in training and test experiments consist of one hundred words recorded 

from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-

dimensional cepstrum coefficients are computed over 20 ms-wide frames with a 5 ma frame shift. 

The first data set recorded from two speakers is used to generate the codebook. The inserting 

dimension of comparison to every codeword for the improved PDS algorithm is computed from 

the codebook using the second data set recorded from two other speakers. The third data set 

recorded from the fifth speaker is used to test the performance of these approaches. 

The 12-dimensional cepstrum coefficients with variance weighting and 256 codewords are used 

in the experiment of PDS, improved PDS, improved DPPDS and dynamic programming in 

PDS referred as DPPDS. The purpose of variance weighting is to equalize the importance of 

every cepstrum coefficient. The experimental results are shown in Table 3.12. The performance 

is compared with the standard PDS. These results show that the performance of the improved 

PDS is almost the same as using DP to improve the performance of PDS. General speaking, if 

the cost ratio of the computer architecture defined as the comparison computation time divided 

by the dimension distortion computation time is smaller or equal to 1.2, it is better to use the 
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improved PDS than DP in PDS for the cepstrum coefficients with variance weighting. The 

improved DPPDS is superior to the other algorithms. 

cost ratio DP in PDS improved PDS improved DPPDS 
0.1 0% 0.82% 0.95% 
0.2 0.5% 2.2% 4.6% 
0.3 2.9% 4.0% 5.5% 
0.4 5.7% 5.8% 8.2% 
0.5 7.9% 7.9% 10.9% 
0.6 10.1% 10.0% 13.3% 
0.7 12.4% 12.1% 15.7% 
0.8 14.5% 14.2% 17.8% 
0.9 16.3% 16.1% 19.7% 
1.0 17.3% 18.1% 21.7% 
1.1 19.1% 19.8% 23.5% 
1.2 20.8% 21.5% 25.2% 
1.3 24.5% 23.1% 26.7% 
1.4 26.2% 24.6% 27.8% 
1.5 27.7% 26.0% 29.2% 
1.6 29.1% 27.3% 31.0% 
1.7 30.4% 28.6% 32.3% 
1.8 31.6% 29.7% 33.6% 
1.9 32.7% 30.9% 34.8% 
2.0 33.8% 31.7% 35.9% 
2.5 38.1% 36.8% 40.7% 
3.0 42.6% 40.5% 44.5% 
3.5 45.9% 44.5% 47.5% 
4.0 	1 48.5% 47.9% 49.9% 
4.5 	1 50.6% 1 	50.7% 	1 52.0% 

Table 3.12: The performance of DP in PDS, improved PDS and improved DPPDS (percentage 
improvement on standard PDS) 

3.4 Improvement in Extended Partial Distortion Search 

The extended partial distortion search (EPDS) algorithm (Chen & Pan, 1989; Pan, 1988) is 

a modified version of PDS which optimizes the calculation in terms of the number of multi-

plications for a minor overhead in data sorting. It can be used in vector encoding and word 

recognition. The EPDS algorithm for the frame-distortion accumulation in word recognition is 

stated as follows: 
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Step 1: Let L j  = 1 and calculate the distortion D  j  between the first feature frame X1 and the 

jth codebook, for j = 1 t V. Here V is the number of codebooks and L j  is the Lth frame 

for the jth codebook. 

Step 2: Find Df, = Mth.Df, and s = argMth. j Df,. 

Step 3: If L. = T, then set the sth codebook to be the best match and terminate the program; 

otherwise, set L 5  = L5  + 1, calculate the encoding distortion of X 1, frame by using the sth 

codebook and add it to D f ,, and go to step 2. Here T is the number of frames. 

Assume a recognition system including 10 words (10 codebooks) and one test word including 9 

frames. As shown in Table 3.13, Cb t  is the i.th codebook (word) and f 1  is the tth frame of the 

test word. The value of each entry is the accumulated frame-distortions for the codebook. The 

umdei-Itme used in this example means the last calculated frame-distortion for the corresponding 

codebook. The calculation of many frame-distortions can be omitted. Hence the EPDS algorithm 

is very suitable for word recognition. For vector encoding, this computes the dimension- 

- Cb 1  Cb2  Cb3  Cb4  Cb5  Cb6  Cb7  Cb8  Cb, Cb 10  
f1  8 7 9 6 5 ii 2 2 4 5 
f2 15 15 14 12 18 17 3 6 8 10 
f3  22 24 25 17 27 22 6 ii 12 11 
f4  1 	25 1 	35 29 1 	22 32 1 	28 9 17 18 1 	21 
f5  26 36 32 28 35 32 13 19 26 
f6 30 44 34 37 39 38 17 25 28 31 
f7  36 47 38 39 42 40 19 26 31 33 
f8  1  38 53 41 43 1 	47 44 20 27 1 	33 35 
f9 39 	1 58 43 	1 46 1 	51 1 	47 23 29 1 	36 38 

Table 3.13: Diagram of distortion calculation for EPDS in word recognition 

distortion for the first dimension of the input vector to the first dimension of all codewords, 

then sorts the dimension-distortion to obtain the nearest codeword. The distortion for the input 

vector to the nearest codeword in the second dimension is calculated and added to the previous 

distortion of the same codeword. The dimension-distortions are sorted again to obtain the 

nearest codeword. The procedure continues until the last dimension-distortion is calculated and 

the distortion is smallest. 

Assume the number of dimensions and the number of codewords are 10 and 8, respectively. 
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Table 3.14 illustrates an example of EPDS algorithm in vector encoding. The value of each 

entry is the accumulated dimension-distortions for the codeword. The underline used in this 

example means the last calculated dimension-distortion for the corresponding codeword. The 

calculation of many dimension-distortions can be omitted. The EPDS algorithm is an optimal 

PDS algorithm in the sense of reducing the number of multiplications. The detailed algorithm 

of the EPDS in vector encoding is described as follows: 

Step 1: Let tj  = 1 and calculate the distortion D 1  = (x 1  - c11)2  between the first dimension x 1  

of the input vector X and the first dimension c 1 1 of the ith codeword C 1 , for 1. = 1 to N. 

Here N is the number of codewords and t 1  is the t1th dimension for the i.th codeword. 

Step 2: Find D = Mtm1 D 1  and s = argMi1i1 D 1 . 

Step 3: If t = k, then set the sth codeword to be the best match and terminate the program; 

otherwise, set t = t + 1, calculate the encoding distortion of x 1, by using the sth 

codeword and add it to D,, and go to step 2. Here k is the dimension of the input vector 

and codewords. 

C 1  C2  C3  C4  C5  C6  C7  C8  
X ]  2 3 2 1 5 4 8 7 
X2 6 5 4 2 8 7 12 12 
X3 7 9 11 4 12 9 15 i 
X4 1 	9 11 13 5 16 13 18 19 
X5 14 13 18 6 18 14  21 22 
X6 17 15 21 8 20 16 25 23 
X7 18 16 22 10 21 17 27 24 

X" 

20 17 25 11 23 18 28 27 

X9 

22 18 28 12 24 20 30 29 

X 23 19 30 14 26 21 35 32 

Table 3.14: Diagram of distortion calculation for EPDS in vector encoding 

The EPDS algorithm is suitable for computer architectures in which the complexity of com-

parisons is negligible with respect to that of the multiplications, such as Intel 80486 processor. 

However, EPDS is less suited to some DSP processors, such as the TMS320 series of processors 

in which comparisons are computationally expensive. An improvement of the extended partial 

distortion search approach is proposed here. It involves inserting the sorting operation from 
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a suitable dimension to minimize the EPDS search cost for any computer architecture. Here 

sorting means that the comparisons are performed to find the codeword which has the minimum 

distortion at the present stage. 

In this improved algorithm, the sorting of the accumulated distortions to find the minimum D, 

is performed only after the first 5 dimensions' distortion terms have been accumulated for every 

codeword, where 5 is chosen to minimize the total computation. Let r be the cost ratio of the sort-

ing time to dimension-distortion computation time. To insert the sorting to dimension-distortion 

accumulation at the 5th dimension, the cost of sorting is lnjr, but there is a decrease of N - lnj 

dimension-distortion computations. Here N is the number of codewords and m  is the average 

number of codewords whose distortion computation cannot be omitted at the sorting insertion 

of the 5th dimension. From the above description, the following two equations are satisfied. 

in. ~:1, j=J,...,k-1 	 (3.53) 

fl11  ~: 1TLj+i, 5 = 1, ..., k - 2 	 (3.54) 

Let A(j) be the global advantage function of inserting the sorting from the 5th dimension onwards. 

The advantage can be expressed in terms of N, k, mj  and r as follows. 

A(k) =0 
	

(3.55) 

A(j)=A(j+1)+V(j), j=1,...,k-1 	 (3.56) 

where V(j) is the local advantage due to sorting at the 5th dimension, given by 

V(j)=(N — m) — inr=N —(r+1)m.1 	 (3.57) 

From Eq. 3.54 and 3.57, 

V(i) ~! Y(j) if 1.>  5 	 (3.58) 

Hence there is some t (1 < t < k) such that 
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V(j) ~!0 for j=t,...,k-1 	 (3.59) 

V(j):50 for j=1,...,t-1 	 (3.60) 

and so 

A(t) ~! NJ), 5 = 1,...,k, tlj 	 (3.61) 

This value t is the optimal sorting insertion dimension for the given value of the cost ratio r. 

From Eq. 3.57, 3.59 and 3.60, the cost interval r t  corresponding to the sorting insertion 

dimension t can be derived. 

N 
0<r:5 - -1, t=1 

Mt  
(3.62) 

	

—1<r<--1,t=2,...,k-1 	 (3.63) 
11t-1 	- 	 _ntt 

From the training data, calculate the cost interval r 
, j =1 to k - 1. The optimal sorting insertion 

is from the 5th dimension if the cost ratio of the computer architecture lies in the cost interval 

r. For the conventional exhaustive full search method, N k dimension-distortions are computed 

corresponding to the computation time of N k multiplications, N (2k —1) additions, and (N - 1) 

comparisons. One dimension-distortion computation involves approximately the computation 

time of one multiplication and two additions. The sorting time is N - 1 comparisons for the 

basic sorting method. The computation time of EPDS and improved EPDS are Nk - A(1) and 

N k - A(t). The performance of EPDS, improved EPDS, and the improvements of the improved 

EPDS are as follows. 

EPDS performance = 
Nk—A(1) 
	 (3.64) 

Nk 

Nk — A(t) 

	

Improved EPDS performance = 
Nk 	

(3.65) 

Improvement = 
A(t) - A(1) 
	 (3.66) 

Nk—A(1) 
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The speech databases used in training and test experiments consist of one hundred words recorded 

from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-

dimensional cepstrum coefficients are computed over 20 ms-wide frames with a 5 ms frame 

shift. The first data set recorded from two speakers is used to generate the codebook. Cost 

intervals for the improved EPDS algorithm are computed from the codebook using the second 

data set recorded from two other speakers. The third data set recorded from the fifth speaker is 

used to test the performance of these approaches. 

Table 3.15 illustrates cost intervals of 16 codewords and 128 codewords. From these cost 

intervals and the cost ratio of sorting time to dimension-distortion computation time for a given 

computer architecture, the dimension of sorting insertion can be decided. For example, the 

inserting should be from the third dimension if the cost ratio of the computer architecture is 6 

for 128 codewords. The performance comparison of improved EPDS and EPDS is shown in 

Table 3.16 and Table 3.17. These efficiencies can be calculated from Eq. 3.64, 3.65 and 3.64 

by using the maximum cost ratio from Table 3.15. For 128 codewords, if the cost ratio is 7.55, 

the performance of EPDS is 67%, but that of improved EPDS will be 50% for inserting from 

the third dimension, it improves 26%. This technique can also be applied to frame-distortion 

accumulation in a word recognition system. 

inserting 
dimension 

cost intervals of 
16 codewords 

cost intervals of 128 
128 codewords 

1 [0.00 , 1.56] [0.00 , 2.03] 
2 [1.56 , 3.29] [2.03 , 4.99] 
3 [3.29 , 4.321 [4.99 , 7.55] 
4 [4.32 	6.121 [7.55 	13.41 
5 [6.12,7.43] [13.4, 19.51 
6 [7.43 , 8.921 [19.5 , 29.31 
7 [8.92, 10.1] [29.3 , 39.01 
8 [10.1 	11.61 [39.0,52.9] 
9 [11.6, 12.6] [52.9 , 67.7] 
10 [12.6,13.4] [67.7 ,.84.2] 
11 [13.4, 14.31 [84.2, 1041 

Table 3.15: Cost intervals of 16 codewords and 128 codewords 
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inserting 
dimension 

EPDS 
performance 

improved EPDS 
performance  

improvement 

1 41% 41% 0% 
2 63% 58% 8% 
3 76% 66% 13% 
4 1 	99 0/0 77% 22% 
5 116% 84% 28% 
6 135% 90% 34% 
7 150% 93% 38% 
8 170% 97% 43% 
9 182% 98% 46% 
10 1 	192% 99% 48% 
11 1 	203% 100% 51% 

Table 3.16: The performance of 16 codewords 

inserting 
dimension 

EPDS 
performance 

improved EPDS 
performance  

improvement 

1 29% 29% 0% 
2 49% 42% 15% 
3 67% 50% 26% 
4 107% 60% 44% 
5 148% 68% 54% 
6 215% 78% 64% 
7 281% 84% 70% 
8 376% 90% 76% 
9 478% 95% 80% 
10 590% 1 	98% 1 	83% 
11 724% 1 	100% 1 	86% 

Table 3.17: The performance of 128 codewords 

3.5 Fast Algorithm for Approximate Search 

Multiplication operations are far more expensive compared with comparison and addition oper-

ations for general processors (Leibson, 1993). In this section, an efficient approximate search 

algorithm which can dramatically reduce the number of multiplication operations is presented. 

This algorithm is based on the modification of the Chebyshev metric or Manhattan metric. 

Assume the training data and codewords are X. = 	 and Ct  

respectively, p = 1, 2, ..., 1, 1. = 1, 2, ..., N. T, k and N are the total number of training data 
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vectors, the number of dimensions and the number of codewords, respectively. The distortion 

between data vector Xm  and codeword C 1  can be expressed as follows: 

	

d(, p) = 	- c)2 . 

The codeword with the minimum value of the maximum dimension-distortion is 

nP  = argmim1in.axjIx, 
- 

Ct  

and 

	

d(n.,p) = 	- c)2 . 

Separate all codewords C j  into two sets for every training data vectors Xi,. 

First set 	Ap =  {ild(t,p) ~! d(n.,p)}. 

Second set: 	B p  = {i.d(i.,p) < d(m,,,p)}. 

Calculate the parameter rate using Eq. 3.67 and 3.68 

1nax1€amaxIct 
- VI rater 

= 	n,ax.Ic - 41 	
3.67) 

for each training data vector X,. 

	

rate = maxrate + S. 	 (3.68) 

where 6 is a small value. After the parameter rate is obtained, a new codeword elimination 

criterion is developed as follows: 

if 	in.axjlxL - cI ~ rate.tnaxjjxL - cj, 	 (3.69) 

then. 	(xL - ct)2 
~ Y_

(xL - c)2 , 	 (3.70) 

where n,, = argm.th.jiitaxjlxL - ctj. 
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method mul. cmp. add. sum average distortion 
minimax 502,231 3,376,691 3,587,363 7,466,285 0.940086 
rate-1.0 0 3,099,888 3,129,984 6,229,872 0.959554 
rate-1.1 97,216 3,332,328 3,189,985 6,619,529 0.945844 
rate-1.2 142,396 3,345,996 3,230,290 6,718,682 0.941630 
rate-1.3 178,404 3,355,566 3,262,337 6,796,307 0.940600 
rate-1.4 209,539 3,362,509 3,289,937 6,861,985 0.940210 
rate-1.5 237,772 3,367,516 3,314,977 6,920,265 0.940139 
rate-1.6 262,278 3,371,061 3,336,813 6,970,152 0.940096 
rate-1.7 282,651 3,373,216 3,355,062 7,010,929 0.940093 
rate-1.8 301,284 3,374,809 3,371,852 7,047,945 0.940088 
rate-1.9 316,990 3,375,730 3,386,098 7,078,818 0.940086 
rate-2.0 330,482 3,376,189 3,398,439 7,105,110 0.940086 
rate-2.1 341,306 3,376,384 3,408,397 7,126,087 0.940086 
rate-2.2 352,263 3,376,497 3,418,520 7,147,280 0.940086 
rate-2.3 361,709 3,376,520 3,427,279 7,165,508 0.940086 
rate-2.4 370,395 3,376,539 3,435,332 7,182,266 0.940086 
rate-2.5 378,380 3,376,542 3,442,745 17,197,667 1 0.940086 

Table 3.18: Performance comparison of minimax method and fast approximate algorithm for 8 
codewords 

The efficiency of the codeword search depends on the value of the parameter rate. The smaller 

value the rate is, the more efficient this algorithm gets. In the extreme, rate =  1, it is Chebyshev 

metric or Manhattan metric. For this metric, the number of multiplications, comparisons and 

additions are 0, N.(k - 1) + (N - 1) and N.k, respectively. Parameter rate can be reduced 

to a smaller value if the increased distortion is small. The test materials for these experiments 

consisted of two hundred words recorded from two male speakers. The speech was sampled 

at a rate of 16 kHz and 13-dimensional cepstrum coefficients were computed over 20 ms-wide 

frames with a 5 ms frame shift. A total of 20,030 analyzed frames used as the training data were 

recorded from one male speaker. The test data includes 30,096 analyzed frames recorded from 

the other speaker. Codebooks of size 8, 256 and 1,024 codewords with Euclidean distortion 

measure are used in these experiments. 

Tables 3.18, 3.19 and 3.20 illustrate the performance of the minimax method and this new 

efficient approximate search algorithm with different rate. The training rates are 1.874833, 

2.028345 and 2.23 1797 for 8, 256 and 1024 codewords, respectively. Here & is set to 0. The 

average distortion is the same as the minimax method if the training rates are used. Obviously, 
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method mul. cmp. add. sum average distortion 
minimax 2,710,965 109,599,202 102,346,066 214,656,233 0.346460 
rate_1.0 0 100,129,392 100,159,488 200,288,880 0.388426 
rate_1.1 428,683 107,992,358 10,0517,026 208,938,067 0.364018 
rate_1.2 1 770,084 108,202,247 10,0818,487 209,790,818 0.353663 
rate-1.3 1,087,047 108,424,879 101,091,793 210,603,719 0.349195 
rate-1.4 1,388,239 108,647,096 101,344,105 211,379,440 0.347424 
rate-1.5 1,675,786 108,862,034 101,576,736 212,114,556 0.346771 
rate-1.6 1,932,988 109,051,837 101,777,160 212,761,985 0.346557 
rate_1.7 12,157,441 109,213,439 101,945,392 213,316,272 0.346482 
rate-1.8 2,337,348 109,338,814 102,075,174 213,751,336 0.346468 
rate-1.9 2,471,616 109,429,695 102,168,902 214,070,213 0.346461 
rate-2.0 2,563,560 109,490,166 102,231,336 214,285,062 0.346460 
rate_2.1 2,619,365 109,525,849 102,268,176 214,413,390 0.346460 
rate-2.2 2,650,193 109,544,662 102,288,120 214,482,975 0.346460 
rate-2.3 2,665,490 109,553,760 102,297,907 214,517,157 0.346460 
rate-2.4 2,672,197 1 109,557,447 102,302,218 214,531,862 0.346460 
rate -2.5 2,674,831 1 109,558,755 1  102,303,955 214,537,541 0.346460 

Table 3.19: Performance comparison of minimax method and fast approximate algorithm for 
256 codewords 

the parameter rate can be set to a small value if the codebook size is small. For 8 codewords, 

the number of multiplications will be reduced by 80% with only 0.6% increased distortion if the 

rate is 1.!. 

3.6 Efficient Search Algorithm for Image Coding 

The mean-distance-ordered search (MPS) algorithm (Ra & Kim, 1993) takes advantage of the 

fact that the nearest codeword is usually in the neighbourhood of the minimum squared mean 

distance. The basic inequality of this approach is as follows: 

if 	Xt 
Y- 	T

- 

C ~ /kD mtn , 	 (3.71) 

k 

them (x' - c)2  ~ D mtn . 
t=1 

This means C j  will not be the nearest neighbour to X if Eq. 3.71 is satisfied. In the MPS algo- 

rithm, the sum of all dimensions for each codeword is calculated first and these values are sorted 
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method mul. cmp. add. sum average distortion 
minimax 6,457,314 436,016,497 405,649,633 848,123,444 0.271357 
rate-1.0 0 400,607,856 400,637,952 801,245,808 0.310621 
rate_1.1 577,887 431,680,772 401,129,451 833,388,110 0.288017 
rate-1.2 1,110,517 432,055,772 401,599,403 834,765,692 0.278229 
rate-1.3 1,684,421 432,507,813 402,095,215 836,287,449 0.274065 
rate-1.4 2,307342 433,010,905 402,619,302 837,937,349 0.272393 
rate-1.5 2,960,568 433,533,163 403,152,623 839,646,354 0.271760 
rate-1.6 3,620,279 434,047,396 403,672,576 841,340,251 0.271497 
rate-1.7 4,255,817 434,526,434 404,154,916 842,937,167 0.271393 
rate_1.8 4,827,987 434,942,906 404,573,078 844,343,971 0.271366 
rate-1.9 5,301,655 435,275,810 404,907,048 845,484,513 0.271360 
rate-2.0 5,654,318 435,515,429 405,147,304 846,317,051 0.271360 
rate-2.1 5,890,136 435,671,173 405,303,503 846,864,812 0.271360 
rate-2.2 6,031,703 435,762,281 405,394,910 847,188,894 0.271360 
rate-2.3 6,106,298 435,808,957 405,441,729 847,356,984 0.271360 
rate-2.4 6,139,254 435,829,116 405,461,953 847,430,323 0.271360 
rate-2.5 6,152,092 435,836,743 1 405,469,710 1 847,458,545 0.271360 

Table 3.20: Performance comparison of minimax method and fast approximate algorithm for 
1024 codewords 

in the increasing or decreasing order. In the encoding stage, the sum of all dimensions of the 

data vector is computed and one codeword called the tentative matching codeword required for 

the minimization of the left hand side of Eq. 3.71, mean distortion (MD), is found. The squared 

Euclidean distortion between the data vector and this tentative matching codeword referred to 

here as D mjn is calculated. Then Eq. 3.71 is applied to eliminate impossible codeword matching. 

Codewords C for which c ~ + /kD mjn  or Z c ~ - VkD mtn  can 

be eliminated. Otherwise, the PDS is applied to calculate the distortion and update D 
. 

The efficiency of the MPS algorithm depends on the distortion of the tentative matching code 

word. If the distortion of the tentative matching codeword is small, then the MPS algorithm 

is very efficient. Unfortunately, some data vectors may have small mean distortion (MD) but 

the squared Euclidean distortion is significant, such as one data vector (200, 200,0,0) and one 

codeword (0, 0, 200, 200). In order to improve performance, a new algorithm is proposed from 

the extension of the bound for Minkowski metric (Pan et al., 1996b). This bound is as follows: 
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if 
	

Ix —cIP ~ Vh'Dmin 	 (3.72) 

k 

	

them 
	Ixt 

- cI ~: Dmin 	 (3.73) 
t1 

where  < h<kandp < n. 

This is an improved absolute error inequality (IAEI) criterion (Pan et al., 1996b) by setting 

m =2 and p = 1. Hence the IAEI criterion is expressed as follows: 

$ 

if 	>: Ixt - cli ~! /hDmtn , 	 3.74) 
t=1 

	

then. 	(x' - cl)2 > D min, 	 3.75) 

where s<h.<k. 

Because 	Ixt - cI ~ i 	x 
- 	

ciI, 	 (3.76) 

hence a new inequality is derived as follows: 
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- 	

c 	s/hD un , 	 (3.77) 
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them 	T (XI 
- cl)2 > Dmin, 

j1 

where s<h.<k. 

This new inequality (Eq. 3.77) is the generalized form of the the basic inequality (Eq. 3.71) 

of the MPS algorithm. By using this new inequality, the codeword can be separated into two 

vectors. The first vector is composed of the first half of the elements, the other elements belong 

to the second vector. Using these two separated vectors, the sum of the elements for these 

separated codewords can be calculated first. Therefore Eq. 3.77 can be applied to eliminate 

impossible codeword matching for these two separated vectors. Because the sum of the first part 

is considered as well as the sum of the second part, this approach overcomes the inefficiency 
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of the unsuitable tentative matching codeword using mean distortion (MD). By combining the 

MPS algorithm with Eq. 3.77 for the separated codewords, the improved algorithm is computed 

as follows: 

Step 1: FCode-surij 1,12 
 ct,  SCode.sum1  = 	c and TCode.su.m = FCode...sum.+ 

SCodesum1  are calculated for each codeword, 1. = 1,2,..., N, N is the number of code-

words. A sorting list is computed according to the increasing order of the TCode -sum  1 . 

Step 2: FDatasuxn. =  Lx,SDatasum = 	t,1 xandTData..sum.= FData..sum+ 

SData.sum are calculated. 

Step 3: Calculate the tentative matching codeword lusing arg Mint lTD atasunt— TCod&sum. I. 

Step 4: Calculate the squared Euclidean distortion D j, for the tentative matching codeword. 

Set I to be the nearest uncalculated codeword to the tentative thatching codeword in the 

sorting list. 

Step 5: Check the temiination of this program. Test Eq. 3.71 for the neighbour codewords in a 

back-and-forth manner as in paper (Ra & Kim, 1993), if it is satisfied, delete impossible 

codeword matching, set 1. to be the nearest uncalculated codeword to the tentative matching 

codeword in the sorting list and goto step 5; Otherwise, goto next step. 

Step 6: If lFDatasurn - FCode...sumt l ~: %/TD -t- or lSDatasum - SCodesumt l ~ 

then eliminate this codeword; otherwise use the PDS to the codeword search 

and update the D i,. Set I to be the nearest uncalculated codeword to the tentative 

matching codeword in the sorting list and goto step 5. 

The training material for these experiments was a LENA image. It consists of 512 x 512 pels 

with 8 bits/pel resolution. Codebook sizes of 64, 128, 256, 512 and 1024 are generated by the 

well known LB  algorithm. The vector dimension k is 16. An AIRPLANE image was used as 

the test material. Experiments were carried out to test the performance of the MPS algorithm 

and the proposed new algorithm. The performance is measured in terms of the number of 

calculated distortions. As shown in Table 3.21, Table 322, Table 3.23, 3.24 and 3.25, the 

new algorithm reduces 29%, 34%, 38%, 42% and 44% calculated distortions compared with the 

MPS algorithm for 64, 128,256,512 and 1024 codewords, respectively. In terms of the number 
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of multiplications, this new algorithm reduces 27.57 % compared with the MPS algorithm for 

1024 codewords. In terms of the total number of operations, 10.81%, 13.31% and 14.94% 

operations are reduced for 256,512 and 1024 codewords, respectively. Actually, this algorithm 

can be further improved by using IAE1 (Pan et al., 1996b) instead of PDS. Note that (k + 3)N 

memory is needed for this improved algorithm compared with (k + 1 )N memory for the MPS 

algorithm. From the experiments, the performance of the proposed algorithm is significantly 

better than the MPS algorithm. This improved algorithm can be extended by separating the 

codevector into several sub-vectors. 

[method mul. add. cmp. sum distortion no. 
MPS 938,360 2,068,161 820,387 3,826,908 69,088 
New 841,071 1,918,504 826,195 3,585,770 49,116 

Table 3.21: Performance comparison of MPS and New algorithm for 64 codewords, MSE=168 

method mul. add. cmp. sum distortion no. 
MPS 1,417,101 3,006,633 1,372,334 5,796,068 134,886 
New 1,203,841 2,721,519 1,373,637 5,298,997 89,061 

Table 3.22: Performance comparison of MPS and New algorithm for 128 codewords, MSE= 138 

method mul. add. cmp. sum distortion no. 
MPS 2,236,464 4,626,455 2,323,753 9,186,672 259,460 
New 1,798,428 4,082,844 2,312,421 8,193,693 161,573 

Table 3.23: Performance comparison of MPS and New algorithm for 256 codewords, MSE=1 15 

3.7 Fast Search Algorithm for Quadratic Metric 

In chapter 2, subsection 2.9.1, the bound for quadratic metric (Pan et al., 1996b) is derived. 

Assume that 

D mtn  D(X, Cm) = (X - C1)tw(X - Cm) = L 	(3.78) 
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If 	T IEVI ~! V'hD tnjn , 	 (3.79) 

them 	D(X, C,) ~: 0mm 	 (3.80) 

whereE m =X — Cm,W 1 =LLt,L=[VJV2V3 ... Vk], and s<h<k 

For speech or image data, the classification result of the present vector is usually the same as 

or close to the classified result of the previous vector. The nearest codeword of the previous 

vector can be used as the tentative match called previous vector candidate (Pan, 1988; Pan et al., 

1996c; Chen & Pan, 1989). A fast search algorithm for the quadratic metric is proposed by using 

the previous vector candidate as the tentative match, then the bound for quadratic metric 

is applied to eliminate impossible codeword match. This fast search algorithm is depicted as 

follows: 

Step 1: Compute the nearest neighbour for the first frame X 1 . For the other frame Xi,, use the 

nearest neighbour of X,_ 1  (previous vector candidate) as a tentative match and so find the 

initial value of D mtn . 

Step 2: For every codeword C, calculate steps 3 to 7. 

Step 3: For every dimension (i. from 1 to k), calculate steps 4 to 6. 

Step 4: Calculate the error vector component e 1, = (x' - c) and lEt V11 = I_ e11.. 

Step 5: If 	IEtVmI 	 11. > t, then C j  will not be the nearest neighbour to the 

frame Xi,, therefore go to step 3 for the next codeword. 

Step 6: Calculate lEt V u 2 . If 	, RtVinl2  ~ D mi t , then Cj  will not be the nearest neighbour 

to the frame XP  . therefore go to step 3 for the next codeword. 

Step 7: If L IEtVml2 < D,, set Dmjn = 	lVmI 2  and record C as the nearest 

neighbour to X. 

The test materials for these experiments consisted of 99 words recorded from one male speaker. 

The speech was sampled at a rate of 16 kHz and 13-dimensional cepstnim coefficients were 

computed over 20 ms-wide frames with a 5 ms frame shift. The total number of frames is 
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9,39 1. Codebooks with 256, 512 and 1,024 codewords with quadratic metric are used in these 

experiments. 

The conventional exhaustive method, the fast codeword search algorithm without tentative 

match approach (i.e. with C 1  as the tentative candidate) and the fast codeword search algorithm 

with quadratic metric were tested in these experiments. The conventional exhaustive method is 

referred to as "conventional". The fast codeword search algorithm without tentative match 

approach and the fast codeword search algorithm are referred to as "No - quadraUc" and 

"Pre - quadratic", respectively. The bounds for quadratic metric are separated into four 

sections (Ii. = 1, 4, 9,13). 

The experimental results are shown in Tables 3.26, 3.27 and 3.28. For 1,024codewords, 91.6% 

of the number of multiplications are saved, as well as considerable saving in the number of 

additions. The increase in the number of comparisons is moderate. 

A modified method can be applied to previous fast algorithm by preprocessing C t L first, then XL in 

can be operated outside the loop of the codeword search. This modified method is more efficient 

than previous one. Assume zmt  is the element of the vector CL, 1 <in < N, 1 < i < k. The 

modified algorithm is described as follows: 

Step 1: Compute the nearest neighbour for the first frame X1. For the other frame X,, use the 

nearest neighbour of X,_ 1  (previous vector candidate) as a tentative match and so find the 

initial value of D 

Step 2: Calculate XPtL = (V] , -Y2, ..., J. 

Step 3: For every codeword C, calculate steps 3 to 7. 

Step 4: For every dimension (i. from 1 to k), calculate steps 4 to 6. 

Step 5: Calculate I E tVjj = Iy. - zI. 

Step 6: If 	It4VmI -:?! \/hD m%fl , It > i, then C j  will not be the nearest neighbour to the 

frame Xi,, therefore go to step 3 for the next codeword. 

Step 7: Calculate JEV1 I 2 . If 	I"m I 2  ~ D, 	then C will not be the nearest neighbour 

to the frame Xi,, therefore go to step 3 for the next codeword. 
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Step 8: If 	IEYUJ2  < D, set 	= 	IEYm I 2  and record C as the nearest 

neighbour to Xi,. 

The same materials are used to test this modified method. Experimental results is shown in 

Table 3.29. In terms of the total number of mathematic operations, the modified version can 

reduce by more than 50 % computation complexity. No extra memory is needed if the same 

matrix W is used throughout. Hence the original codewords need not be stored, but can be 

replaced completely by the transformed codewords CL. 
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method mul. add. cmp_ sum distortion no. 
MPS 3,500,725 7,136,625 3,823,283 14,460,633 487,045 
New 2,644,173 6,118,165 3,773,868 12,536,206 281,031 

Table 3.24: Performance comparison of MPS and New algorithm for 512 codewords, MSE=92 

method mul. add. cmp. sum distortion no. 
MPS 6,352,245 12,818,199 7,156,645 26,327,098 962,662 
New 4,600,745 10,770,471 7,022,970 22,394,186 544,073 

Table 3.25: Performance comparison of MPS and New algorithm for 1024 codewords, MSE=85 

method mul.(x 1 0) cmp.(x 1 0) add.(x 10) sum(x lOs) 
Conventional 437,545 2,395 435,141 875,081 

No - quadratic 82,691 26,354 92,776 201,821 
Pie - quadratic 1 	50,685 1 	18,630 1 	57,003 1 	126,318 

Table 3.26: Computational complexity of codeword search for 256 codewords on quadratic 
metric 

method mul.(x 1 0) cmp.(x 1 0) add.(x 10) SUM(X103) 
Conventional 875,091 4,799 870,283 1,750,173 

No - quadratic 142,364 47,619 160,012 349,995 
Pie - quadratic 86,963 33,569 97,912 218,444 

Table 3.27: Computational complexity of codeword search for 512 codewords on quadratic 
metric 

method mul.(x JØ3)  cmp.(x 1 03)  add.(x 10) sum(x 1 0) 
Conventional 1,750,182 9,607 1,740,566 3,500,355 

No - quadratic 246,729 86,226 277,687 610,642 
Pre - quadratic 147,768 59,737 166,366 373,871 

Table 3.28: Computational complexity of codeword search for 1024 codeword on quadratic 
metric 

number of codewords mul.(x 1 03)  cmp.( xl 0) add.( xl 03)  suin(x 1 03) 
256 10,926 18,630 27,957 57,513 
512 18,837 33,569 49,433 101,839 

1,024 32,555 59,737 86,882 179,174 

Table 3.29: Computational complexity of modified method 
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Figure 3.5: Experimental results for the elimination probability of IAEI at each feature dimension 
(h.is set to 1, 4,9 and 13) 
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Figure 3.6: Experimental results for the elimination probability of IAEI at each feature dimension 
(h is set to i. for the Wi dimension) 
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Chapter 4 

Fast Clustering Algorithms 

4.1 Introduction 

Vector quantization (VQ) is a source coding procedure that can achieve improved data com-

pression ratios compared to linear approaches combined with a scalar quantizer such as 

predictive coding or transform coding. The encoder of VQ encodes a given set of k-

dimensional data vectors X={X j lXs E Ri'; j = 1, ..., T} with a much smaller set of codewords 

C={C11C1 E Rk ;  i. = 1, ...,N}(N < 1). Only the index i.is sent tothe decoder. The decoder has 

the same codebook as the encoder, and decoding is operated by table look-up procedure. The 

performance of data compression depends on a good codebook of representative vectors. 

The LBG algorithm (Linde et al., 1980) is an efficient VQ clustering algorithm. This algorithm 

is based either on a known probabilistic model or on a long training sequence of data. The main 

idea of this algorithm is the iterative application of a codebook modification operation where a 

distortion measure D is used to compute the cost D(X, C) of reproducing the data vector x, as 

the codeword C 1 . Usually the Euclidean distortion measure is used to compute the cost. The 

iteration is terminated if the average distortion D(X, C) converges. The iterative procedure is 

time consuming and it is difficult to apply the VQ clustering procedure for real time operation. 

The computational complexity of the LB G algorithm can be significantly reduced if an efficient 

codeword search algorithm is applied to the partitioning of the data vectors. Many fast algorithms 

have been proposed to increase the speed of codeword search. Fischer and Patrick (Fischer & 

Patrick, 1970) presented a preprocessing algorithm to reorder the design sample such that a large 
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number of distance computations could be eliminated. Fukunaga and Narendra (Fukunaga & 

Narendra, 1975) proposed a branch and bound (BAB) algorithm for computing some nearest 

neighbours. BAB algorithm is a tree search algorithm using a hierarchical decomposition of 

the sample set of known patterns. They used the criterion of triangular inequality elimination 

to develop two rules to eliminate the distance computation in the tree classifier. Kamgar-Parsi 

and Kanal (Kamgar-Parsi & Kanal, 1985) added another two rules to the BAB algorithm to 

improve the computation time. Niemann and Goppert (Niemann & Goppert, 1988) combined 

these four rules into one and used a hierarchical partition of pattern sample algorithm to get 

more efficient computation time. Jiang and Mang (Jiang & Zhang, 1993) developed a more 

efficient BAB tree search algorithm for finding the nearest neighbour to a new data vector in the 

codebook. All these efficient search methods described above are however not suitable to apply 

to VQ clustering algorithms due to the overhead of preprocessing required. 

Bei and Gray (Bei & Gray, 1985) proposed the partial distortion search (PDS) algorithm to re-

duce computational complexity. PD  is a simple and efficient codeword search algorithm which 

has no extra storage or preprocessing requirements. The minimax method was proposed by 

Cheng et al. to derive a tentative match and improve the search efficiency (Cheng et al., 1984). 

Vidal (Vidal, 1986) presented the approximating and eliminating search algorithm (AESA) in 

which the computation time is approximately constant for codeword search in a large codebook 

size. AESA is a very efficient algorithm to reduce multiplication operations for large codebook 

size but it needs a large number of comparison operations. Soleymoni and Morgera (Soley -

mani & Morgera, 1987b) proposed the absolute error inequality (At!) elimination criterion to 

improve the speed of VQ search. Chen and Pan (Chen & Pan, 1989) applied the triangular 

inequality elimination (TIE) on VQ-based recognition of isolated words taking advantage of the 

high correlation characteristics between data vectors of adjacent speech frames. In this chapter, 

several fast clustering approaches based on the LB G algorithm (Linde etal., 1980) are presented 

and compared. 
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4.2 Experimental Materials 

The cepstrum of a signal is defined as the Fourier transform of the log of the signal spectrum. 

Cepstrum coefficients are used as the test features in the clustering experiments because they are 

commonly used in speech coding, speech synthesis, speech recognition and speaker recognition. 

The test materials for these experiments consist of two hundred words recorded from one male 

speaker. The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients 

with pre-emphasis value 0.98 are computed over 20 ms-wide frames with a 5 ms frame shift. A 

total of 20,030 analyzed frames are used in the VQ clustering experiments. Normally, this data 

set size is used to train up to 1024 codewords. Here, it is used in the VQ clustering experiments 

for 8 codewords to 1024 codewords. 

4.3 LBG Algorithm 

All of the fast VQ clustering algorithms (Pan et al., 1994a; Pan et al., 1996c) described in 

this chapter are based on the LBG algorithm (Linde et al., 1980). This algorithm starts by 

assigning all the training data vectors to a single cluster, and proceeds by binary splitting until 

the desired number of clusters is achieved. After each splitting of the clusters there is an iterative 

procedure in which the cluster centroids are re-estimated and the data vectors are re-classified 

until the average distortion between the centroids and their classified vectors converges. The 

classification at each stage uses the full-search algorithm to find the nearest centroid to each 

vector. The detail algorithm based on unknown distribution is as follows: 

Step 1: Set m = 1. Calculate centroid C1 = + 	X, where I is the total number of data 

vectors. 

Step 2: Divide each centroid C 1  into two close vectors C 21_ 1  = C1  * (1 + b) and C21  = C1  * (1 - 

1 < i.<lm. Here 5isa small fixed perturbation scalar. Let m=2m.. Set n=O, here mis 

the iterative times. 

Step 3: Find the nearest neighbour to each data vector. Put X 1  in the partitioned set P 1  if C1  is 

the nearest neighbour to X. 
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Step 4: After obtaining the partitioned sets P = (P 1;1 < 1. < in), set n= n+ 1. Calculate the 

overall average distortion D = + Z 	D(X, C1), where Pt {X?, X, ..., 

Step 5: Find centroids of all disjoint partitioned sets P  by C = 4 	X. 

Step 6: If (D_ 1  - D,)/D, > e, go to step 3; otherwise go to step 7. Here e is a small 

distortion threshold. 

Step 7: If in = N, then take the codebook C t  as the final codebook; otherwise, go to step 2. 

Here N is the codebook size. 

4.4 Previous Vector Candidate and Previous Partitioned Centre 

In the VQ clustering procedure, speech data has the property that the classification result for the 

present vector is usually the same as or close to the classified result of the previous vector (Chen 

& Pan, 1989). Moreover, most of the vectors which are re-estimated in a full-search actually 

remain in the same partitioned set as for the previous re-estimation. With binary codeword 

splitting, the most probable partition to which data vectors belong can be chosen from the 

separated centres of the partitioned set. The previous vector candidate and previous partitioned 

centre can be used as tentative matches in the VQ clustering algorithm. Fig. 4.1 illustrates the 

relationship between the number of codewords and the probability that data vectors remain in 

the same partitioned set after re-estimation in full-search. For the fixed data vectors, the more 

codewords being generated, the larger is the probability that the data vectors belong to the same 

(previous) partitioned set. The probability is up to 0.949 for 1024 codewords. These results are 

averages across the re-estimation and re-classification iterations when 6 = 0.01 and c = 0.005. 

4.5 Codebook Reorder Method 

The codebook reorder method (Pan, 1988) is to reorder the codewords so as to increase the 

search efficiency. For speech encoding, it chooses the nearest codeword of the previous frame 

as a tentative match to encode the present frame. From training data, it is possible to calculate 

the probability of these codewords to be encoded and arrange these codewords in the order 



of decreasing probability. The codeword search is operated from the most probable codeword 

to the least probable. It is simple and efficient to create a state table where these elements 

are indices of codewords and arranged in the increasing order of distortion between the most 

probable codeword and the other codewords. In the VQ clustering procedure, the previous 

vector candidate or previous partitioned centre can be chosen as the most probable codeword 

so as to create the state table. The computational complexity is O(N 210 92N) using Heapsort 

(Press et al., 1986) to establish the state table. 

4.6 Fast Clustering Algorithms 

4.6.1 "V-type clustering algorithm 

An efficient clustering algorithm must include two key elements, i.e., a good tentative match 

and a powerful codeword elimination criterion. The previous vector candidate as the tentative 

match with AEI and PDS to improve the conventional clustering algorithm is proposed. This 

algorithm is called APV-type algorithm. It is described as follows. 

step 1: Set in = 1. Calculate centroid C1 = + 	X, where I is the total number of data 

vectors. 

step 2: Divide each centroid C 1  into two close vectors C21_ 1  = C1  * (1 + 5) and C21  = C1  * (1 - 5), 

1 < i. < in. Here Sisa small fixed perturbation scalar. Let m=2nt. Set n=O, here nis 

the iterative times. 

step 3: Compute the nearest neighbour for the first data vector X 1 . For data vector X, use the 

nearest neighbour of X... 1  (previous vector candidate) as a tentative match and apply AEI 

with a PDS to find the nearest neighbour to each data vector. Put X, in the partitioned set 

Pt if C1  is the nearest neighbour to X. 

step 4: After obtaining the partitioned sets P = (P 1 ; 1 < 1. < in), set m = it + 1. Calculate the 

m overall average distortion D , = 1 	i... D (X 0 , C1 ), where P 1  = {Xt 2 , 	v(l)' 

step 5: Find centroids of all disjoint partitioned sets P 1  by C1 = 	
t) 



step 6: If (D_ 1  - D,)/D,, > e, go to step 3; otherwise go to step 7. Here eisa small distortion 

threshold. 

step 7: If in = N, then take the codebook C 1  as the final codebook; otherwise, go to step 2. 

Here N is the codebook size. 

4.6.2 APC-type Clustering Algorithm 

The previous vector candidate is a very efficient tentative match for word recognition (Chen 

& Pan, 1989). It is not powerful compared with the previous partitioned centre in clustering 

algorithm because some adjacent data vectors are uncorrelated. It is possible to modify this 

clustering algorithm using the previous partitioned centre as a tentative match with AEI and 

PDS elimination criteria. This algorithm is referred to as APC-type algorithm and it is depicted 

as follows. 

step 1: Set in = 1. Calculate centroid C1 = + 	X,, where T is the total number of data 

vectors. 

step 2: Divide each centroid C 1  into two close vectors C 21_ 1  = C1  * (1 + 6) and C21  = Cj  * (1 - 6), 

1 < i. < in. Here 6 is a small fixed perturbation scalar. Let in = 2m.. Set it = 0, here it is 

the iterative times. 

step 3: For each data vector X, set D mjn  = MIN (D(X, C21 .. 1 ), D(X, C21)), C21_ 1  and C21  are 

split from C 1  associated to the partitioned set P 1  to which X1  previously belonged. Choose 

C21_ 1  or C21  as the previous partitioned centre which is the nearest neighbour to X j . 

step 4: Use the previous partitioned centre as a tentative match and apply AU with PDS to 

find the nearest neighbour to each data vector. Put X j  in the partitioned set P 1  if C1  is the 

nearest neighbour to X. 

step 5: After obtaining the partitioned sets P = (P 1;1 < t < in), set n=n+1. Calculate the 

overall average distortion D = + Z 	D(X, C1), where P = £ 1) 1 	'"2 	"T1 J 

step 6: Find centroids of all disjoint partitioned sets P 1  by C1  = 	X. 
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step 7: If (D_ 1  - D)/D > e, take C 1  as the previous partitioned centre for each X j € P1  

and go to step 4; otherwise go to step 8. Here e is a small distortion threshold. 

step 8: If in = N, then take the codebook C 1  as the final codebook; otherwise, go to step 2. 

Here N is the codebook size. 

Fig. 4.2 shows the statistics for the elimination probability of APC-type using AEI criterion at 

each feature dimension. The previous partitioned centre is used as the initial codeword in this 

experiment. For 1024 codewords, 61.6% of impossible codeword matches will be eliminated 

by using AEI at the first dimension and only 0.5% codewords cannot be eliminated using AEI 

criterion. 

4.63 APCH.type Clustering Algorithm 

The hypercube approach provides the tighter bound than AU for s = 1. The APC-type algorithm 

can be further improved by adding the hypercube approach to step 4, as an APCH-type algorithm. 

Use the previous partitioned centre as a tentative match. Check Eq. 3.5 to eliminate impossible 

codeword match. Apply AU to eliminate the codeword which cannot be eliminated using 

hypercube approach. A PD  scheme is used for the codeword which cannot be eliminated using 

hypercube approach and AU criterion. The detail of this algorithm is stated as follows: 

step 1: Set in = 1. Calculate centroid C1 = + :::i X,, where I is the total number of data 

vectors. 

step 2: Divide each centroid C 1  into two close vectors C 21_ 1  = C1  * (1 +6) and C21  = C1  * (1 -5), 

1 < L<1m. Here 6isa small fixed perturbation scalar. Let in=2m. Set m=O, here nis 

the iterative times. 

step 3: For each data vector X,, set D mjn  = MIN (D(X, C21_1), D(X, C21)), C21_1 and C21  are 

split from C 1  associated to the partitioned set P 1  to which X 1  previously belonged. Choose 

C21_ 1  or C21  as the previous partitioned centre which is the nearest neighbour to X. 

step 4: Use the previous partitioned centre as a tentative match and apply AEI, hypercube 

approach and PDS to find the nearest neighbour to each data vector. Put X j  in the 



partitioned set P 1  if C t  is the nearest neighbour to X,. 

step 5: After obtaining the partitioned sets P = (P 1;1 < t < m), set m= n+1. Calculate the 

overall average distortion D = + X 	D(X, Ci), where P t  = {X, 	..., 

step 6: Find centroids of all disjoint partitioned sets P 1  by C = L 	t)
TI _ 

step 7: If (D_ 1  - D)/D > e, take C i  as the previous partitioned centre for each Xj E P 

and go to step 4; otherwise go to step 8. Here e is a small distortion threshold. 

step 8: If nt = N, then take the codebook C i  as the final codebook; otherwise, go to step 2. 

Here N is the codebook size. 

Fig. 4.3 shows the statistics for the elimination probability of APCH-type using the hypercube 

approach at the first feature dimension and At! criterion at the other feature dimension. The pre-

vious partitioned centre is used as the initial codeword in this experiment. For 1024 codewords, 

88.9% of impossible codeword matches will be eliminated by using the hypercube approach at 

the first dimension and only 0.45% codewords cannot be eliminated using hypercube approach 

and At! criterion. For 8 codewords and 64 codewords, only 8.3% and 2.9% codewords cannot 

be eliminated using hypertube approach and AEI criterion. 

4.6.4 IPC-type Clustering Algorithm 

The hypercube approach and At! criterion are special cases of the improved At! (lAti) 

criterion. Here, the improved AEI criterion is adopted to increase the efficiency for the clustering 

algorithm in step 4. This algorithm is referred to as IPC-type algorithm. By applying Eq. 3.45, 

this criterion can be separated into several sections. For 13-dimensional cepstrum coefficients, 

it is possible to separate the improved At! criterion into four sections. These four sections are 

to set h=1 to check the first dimension-difference, h=4 for the sum from the first dimension-

difference to the fourth, h=9 for the sum from the first dimension-difference to the ninth and 

h=13 for the sum of all dimension-differences. A PDS scheme is used for the codeword which 

cannot be eliminated using the improved At! criterion. The detail algorithm is stated as follows: 

01 



step 1: Set in = 1. Calculate centroid C1 = + 	X, where T is the total number of data 

vectors. 

step 2: Divide each centroid C j  into two close vectors C 21_ 1  = C1  * (1 + 6) and C21  = C1  * (1 - 6), 

1 <t< in. Here bisa small fixed perturbation scalar. Let nt=2nt. Set n=O, here nis 

the iterative times. 

step 3: For each data vector X i , set D mj = MIN(D(X, C21_ 1 ), D(X, C21)), C21_1 and C21  are 

split from C 1  associated to the partitioned set P 1  to which X previously belonged. Choose 

C21_1 or C21  as the previous partitioned centre which is the nearest neighbour to X. 

step 4: Use the previous partitioned centre as a tentative match and apply IAEI with PDS to 

find the nearest neighbour to each data vector. Put X j  in the partitioned set P 1  if C1  is the 

nearest neighbour to X,. 

step 5: After obtaining the partitioned sets P = (P 1 ; 1 < i. < in), set it = it. + 1. Calculate the 

overall average distortion D, = + Li D(X, C1), where P1  = {X', X(  2 '•"r1f 

step 6: Fmd centroids of all disjoint partitioned sets P 1  by C1 = _L FTi X. 

step 7: If (D_ 1  - D,,)/D, > e, take C 1  as the previous partitioned centre for each X i € P 1  

and go to step 4; otherwise go to step 8. Here € is a small distortion threshold. 

step 8: if in = N, then take the codebook C 1  as the final codebook; otherwise, go to step 2. 

Here N is the codebook size. 

Fig. 4.4 shows the statistics for the elimination probability of IPC-type using IAE1 criterion at 

each feature dimension. The previous partitioned centre is used as the initial codeword in this 

experiment. For 1024 codewords, 88.9% of impossible codeword matches will be eliminated 

by using IAEI at the first dimension and only 0.38% codewords cannot be eliminated. For 8 

codewords and 64 codewords, only 5.401b and 2.2% codewords cannot be eliminated using IAEI 

criterion. 
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4.65 TPC-type, ATPC-type and TPCR-type Clustering Algorithms 

The triangular inequality elimination (TIE) criteria can also be applied to step 4 of the clustering 

algorithm. TPC-type is the clustering algorithm combining previous partitioned centre, TIE and 

PDS. An ATPC-type algorithm is the addition of AU to the TPC-type algorithm, i.e., if the 

codeword cannot be eliminated using TIE, then apply AEI and PDS. A TPCR-type algorithm is 

the addition of a codebook reorder method to the TPC-type algorithm, i.e., reorder the codewords 

in increasing order of distortion between previous partitioned centre and these codewords before 

applying TIE. Fig. 4.5 illustrates the elimination probability using TIE combined with previous 

partitioned centre in VQ clustering procedure. For 1024 codewords, the elimination probability 

is 0.949. 

4.7 Experiments and Results 

The test materials used in the VQ clustering experiments are described in the Section 4.2. To 

verify these fast algorithms, the mathematical operations (multiplications, comparisons, and 

additions) are used to calculate the computational efficiency. The experiments are carried Out 

by setting the small fixed perturbation scalar to 0.01 and the small distortion threshold to 0.005. 

Twelve approaches are compared in the VQ clustering procedure. The conventional exhaustive 

method is referred to as CVT-type. P-type and T-type are approaches using PDS and TIE in 

codebook design. TP-type is the approach using TIE to eliminate unlikely codeword matches, 

then applying PDS to the codeword search. TPC-type is the algorithm using the previous 

partitioned centre as the most probable matching with TIE and PDS to reduce the clustering 

time. TPCR-type is the TPC-type with codebook reorder method. It is called an APC-type if 

the previous partitioned centre is used as the tentative match with AEI and PDS to accelerate 

the clustering speed. Using the previous vector candidate instead of the previous partitioned 

centre in an APC-type is called the APV-type. The ATPC-type is an algorithm combining TIE, 

AEI, PDS and the previous partitioned centre. The APCH-type is the addition of the hypercube 

approach to the APC-type. IPC-type is an algorithm combining the previous partitioned centre, 

improved AU and PDS. The combination of previous partitioned centre, hypercube approach 
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and partial distortion search is referred to as the PCH-type. 

The experimental results for 8 codewords to 1024 codewords are shown in Table 4.1, 42, 4.3, 

4.4, 4.5, 4.6, 4.7 and 4.8. For a general processor architecture, the multiplication operation is 

more expensive than the comparison operation and the addition operation. It is better to use an 

IPC-type algorithm for large codebook size and a TPC-type algorithm or TPCR-type algorithm 

for small codebook size. Table 4.1 to Table 4.8 also illustrate the number of total mathematical 

operations. In terms of the total number of operations, TPC-type outperforms all of the above 

algorithms. It needs extra computation time to generate the distortion table for TIE approach 

and that is why the total number of multiplications in ATPC-type, TPC-type and TPCR-type 

are larger than IPC-type, APC-type, APV-type, PCH-type and APCH-type for 1024 codewords. 

The codebook reorder method is not very efficient in the VQ clustering algorithm owing to the 

overhead of the sorting procedure. In small codebook size (such as 8 codewords), TPCR-type 

is excellent. It is not however superior compared with IPC-type, APCH-type, APC-type, APV-

type, ATPC-type and TPC-type for large codebook size. For other codebook sizes between 8 

codewords and 1024 codewords, these fast VQ clustering algorithms are also very efficient in 

computation. 

The comparison of elimination probability of APC-type, APCH-type and IPC-type algorithms 

for 16 codewords is shown in Fig. 4.6. For 16 codewords, the elimination probability of 

APCH-type algorithm and APC-type algorithm are 0.85 and 0.37 at the first dimension. This 

means that the hypercube approach is efficient. The elimination probability of the APCH-type 

algorithm is the same as the IPC-type algorithm at the first feature dimension. At other feature 

dimensions, the elimination probability of the IPC-type algorithm is higher than the APCH-type 

algorithm. The IAEI criterion is superior to the AEI criterion with hypercube approach in the 

VQ clustering algorithm. Fig. 4.7 and 4.8 illustrate the saving in the number of multiplications 

at each iteration of IPC-type, PCH-type, TPC-type and ATPC-type algorithms for 128 and 1024 

codewords. Fig. 4.9 and 4.10 illustrate the saving in the total number of mathematical operations 

at each iteration of IPC-type, PCH-type, TPC-type and ATPC-type algorithms for 128 and 1024 
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codewords. The comparative efficiency of these algorithms are only influenced a little by the 

number of iterations. 

To sum up, the IPC-type algorithm, which is a combination of the previous partitioned centre, 

the improved absolute error inequality criterion and the partial distortion search, is judged to 

be the best VQ clustering algorithm approach for general processors. In contrast, the TPC-type 

algorithm, which is a combination of the previous partitioned centre, the triangular inequality 

elimination and the partial distortion search is judged to be the most suitable approach for DSP 

processors. 
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method mul( x 106
) cmp( xl 06

) add( x 106)  sum( x 10') saving sum saving mu! 
IPC 5.72 2.92 18.0 26.6 61.4% 73.5% 

APCH 5.82 3.57 18.5 27.9 59.6% 73.1% 
APC 5.88 6.87 25.0 37.8 45.2% 72.8% 
APV 5.90 8.53 26.1 40.5 41.3% 72.7% 
ATPC 5.87 5.87 21.3 33.0 52.2% 72.8% 
PCH 5.72 1.94 15.8 23.5 65.9% 73.5% 
TPC 5.63 2.30 15.0 22.9 66.8% 73.9% 

TPCR 5.63 2.30 15.0 22.9 66.8% 
-

73.9% 
TI' 13.6 11.1 30.4 55.1 20.1% 37.0% 
P 14.0 13.8 30.9 58.7 14.9% 54.3% 
T 16.2 2.31 35.7 54.2 21.4% 33.3 % 

CVT 21.6 1.36 46.0 69.0 0%  0 % 

Table 4.1: Computational complexity of VQ clustering for 8 codewords 

method mul(x 106
) cmp(x 106

) add(x 106
) sum(x 106

) saving sum saving mu! 
EPIC 8.59 6.98 30.0 45.6 71.1% 83.1 % 

APCH 8.77 8.45 31.3 48.5 69.3% 82.7% 
APC 8.87 15.2 45.0 69.1 56.3% 82.5% 
APV 9.41 18.4 47.8 75.6 52.2% 81.5% 
ATPC 8.86 12.8 35.9 57.6 63.5% 82.6% 
PcII 9.13 4.90 25.4 39.4 75.1% 82.0% 
TPC 8.91 5.59 23.0 37.5 76.3% 82.5% 

TPCR 8.91 5.60 23.0 37.5 76.3% 82.5% 
TP 28.1 25.8 60.0 114 27.8% 44.7% 
P 29.3 29.0 61.3 120 24.1% 42.3% 
T 35.2 5.73 74.3 115 27.2% 30.7% 

Cvi' 50.8 3.47 104 158 0% 	1 0% 

Table 4.2: Computational complexity of VQ clustering for 16 codewords 
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method mul(x 106)  cmp(x106) add(x 106 ) sum(x  106)  saving sum saving mul 
IPC 12.5 172 52.1 81.8 78.8% 90.1% 

APCH 12.8 20.6 55.8 89.2 76.9% 89.8% 
APC 13.0 34.6 84.6 132 65.8% 89.7% 
APV 14.7 40.9 91.8 147 61.9% 88.3% 
ATPC 13.0 28.4 61.6 103 73.3% 89.7% 
PCH 15.0 12.7 42.3 70.0 81.9% 88.1% 
TPC 14.5 14.1 35.6 64.2 83.4% 88.5% 

TPCR 14.4 14.1 35.6 64.1 83.4% 88.6% 
TP 60.2 61.1 123 244 36.8% 52.2% 
P 63.8 63.6 127 254 34.2% 49.4% 
T 81.0 14.7 165 260.7 32.5% 35.7% 

CVT 126 9.1 251 386 1 	0% 1 	0% 

Table 4.3: Computational complexity of VQ clustering for 32 codewords 

method mul(xlO') cmp(x106 ) add(x106) sum(x106) saving sum saving mul 
IPC 15.9 32.0 78.3 126 82.9% 93.4% 

APCII 16.3 37.9 85.4 140 81.0% 93.3% 
APC 16.5 61.0 133 211 71.4% 93.2% 
APV 19.7 71.8 147 239 67.6% 91.9% 
ATPC 16.7 48.6 88.3 154 79.1% 93.1% 
PCH 21.6 24.7 62.2 109 85.2% 91.1% 
TPC 20.3 26.4 48.0 94.7 87.2% 91.6% 

TPCR 20.2 26.8 48.0 95.0 87.1% 91.7% 
TP 99.4 107 199 405 45.1% 58.9% 
P 107 107 207 421 43.0% 55.8% 
T 147 28.4 294 469 36.4% 39.3% 

CVT 242 17.9 478 738 0% 0% 

Table 4.4: Computational complexity of VQ clustering for 64 codewords 



method mul(x 106)  amp(X106) add(x 106)  sum(x106) saving sum saving mul 
IPC 20.0 63.3 127 210 86.4% 96.1% 

APCH 20.5 74.4 141 236 84.7% 96.0% 
APC 20.7 115 225 361 76.6% 95.9% 
APV 26.6 135 255 417 72.9% 94.8% 
ATPC 21.8 87.7 131 241 84.4% 95.7% 
PCH 33.2 51.3 99.2 184 88.1% 93.5% 
TPC 29.7 53.0 67.0 149.7 90.3% 94.2% 

TPCR 29.7 54.7 67.0 151.4 90.2% 94.2% 
TP 163 188 318 669 56.6% 68.0% 
P 181 181 337 699 54.6% 64.4% 
T 287 59.3 565 911 40.8% 43.6% 

Cvi' 509 38.2 993 1540 0% 0% 

Table 4.5: Computational complexity of VQ clustering for 128 codewords 

method mul(x 106) p(x 106)  add(X106 ) sum(xlO') saving sum saving mul 
IPC 24.4 122 209 355 88.7% 97.7% 

APCH 25.0 141 234 400 87.3% 97.6% 
APC 25.2 210 381 616 80.4% 97.6% 
APV 35.2 249 441 752 76.1% 96.6% 
ATPC 29.7 154 191 375 88.1 % 97.1% 
PCH 51.4 103 163 317 89.9% 95.1% 
TPC 44.6 103 95.8 243 92.3% 95.7% 

TPCR 44.5 111 95.6 251 92.0% 95.7% 
TP 256 316 486 1058 66.3% 75.4% 
P 295 295 526 1116 64.5% 71.7% 
T 546 120 1065 1 	1731 1 	44.9% 1 	47.6% 

CVT 1042 79.1 2021 1 	3142 1 	0% 1 0% 

Table 4.6: Computational complexity of VQ clustering for 256 codewords 
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method mul(x 10 6
) cmp(x 106

) add(x 106 ) T1(x 106)  saving sum saving mu! 
LPC 28.5 218 335 582 90.2% 98.6% 

APCH 292 250 376 655 89.0% 98.5% 
APC 29.4 362 616 1007 83.1% 98.5% 
APV 44.8 431 731 1207 79.7% 97.7% 
ATPC 45.8 256 275 577 90.3% 97.7% 
PCH 77.6 190 265 533 91.0% 96.1% 
TPC 69.6 186 143 399 93.3% 96.5% 

TPCR 695 220 143 433 92.7% 96.5% 
TP 385 503 713 1601 73.1% 80.5% 
P 458 458 783 1699 71.4% 76.8% 
T 967 223 1877 3067 48.4% 51.1% 

CVT 1976 151 3817 5944 0% 0% 

Table 4.7: Computational complexity of VQ clustering for 512 codewords 

method mul(x 106)  cmp(x  106)  add(x1011) sum(x 106)  saving sum saving mul 
IPC 33.0 427 594 1054 91.5% 99.2% 

APCH 33.8 481 663 1178 90.5% 99.2% 
APC 34.1 680 1082 1796 85.5% 99.2% 
APV 58.6 812 1323 2194 82.2% 98.6% 
ATPC 105 463 465 1033 91.6% 97.4% 
PCH 127 384 479 990 92.0% 96.9% 
TPC 143 366 283 792 93.6% 96.5% 

TPCR 143 539 282 964 92.2% 96.5% 
TP 645 871 1165 2681 78.3% 84.3% 
P 777 777 1259 2813 77.2% 81.1% 
T 1887 453 3649 5989 515% 54.1% 

CVT 4109 315 7922 12346 0% 0% 

Table 4.8: Computational complexity of VQ clustering for 1024 codewords 
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Figure 4.4: The elimination probability of IPC-type using IAEI at each feature dimension 
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Chapter 5 

Improved Algorithms for VQ 
Codebook Design 

5.1 Introduction 

Data compression using vector quantization (VQ) has received great attention because of its 

promising compression ratio and simple implemented structure. For the simplest VQ imple-

mentation, it separates the signal into several sections and compresses each section into one 

vector. Each vector of the signal to be compressed is compared to the codevectors of a code-

book. The address of the codevector most similar to the signal vector is sent to the receiver. At 

the receiver, the decoder accesses a codevector from an identical codebook, thus an approxima-

tion of the original signal is reconstructed. Compression is obtained by sending the index of the 

particular codevector thereby requiring fewer bits than sending the signal vector. The key to VQ 

data compression is a good codebook design. 

Suppose that there are I training data vectors X, j = 1,2, ..., I and N codevectors C j , 

i. = 1, 2, ..., N, are generated from these training data vectors. The training data vectors are 

partitioned into N sets S j  and Cj  is the centroid of the training data vectors in the partitioned set 

S. The criterion of the VQ codebook design can be formulated as the following mathematical 

form: 
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minimize 	f(W,X,C)= yLwjjD(Xj,Cj), 	 (5.1) 
J1 t=1 

subject to the following constraints: 

= 1, 	1 < 	T 	 (5.2) 

wij 	or 1, 	 (5.3) 

Where X = {X 1 , X2, ..., XT}, X 	jth training data vector, C = {C 1 , C2, ..., CN}, C 	ith 

centroid vector, W a N x I matrix, 

1, ifXeS 
Wjj = 

0, if X 

T the total number of training data vectors, N the number of codevectors D(X, C 1) the 

distortion between the data vector X j  and the codevector C. 

If the squared Euclidean distortion measure is applied, then the criterion of the VQ codebook 

design can be expressed as 

minimize 	f(W,X, C) = > 	WjJ L(xi' - c1)2,( 5.4) 
j=1 (=1 	pl 

where kis the number of dimensions, C 1  = andX 1  = 	 The matrix 

W can be considered as the partitioned results of the training data vectors and from the matrix 

W, the codevector can be obtained as 

= LT 
	

(5.5) 

where IS 1 I denotes the number of training data vectors in the partitioned set S 1  or the number of 

non-zero WIJ, j = 1,2, ., T. The number of possible codebooks generated from these training 
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data vectors (Anderberg, 1973) is 

I tT 	 (5.6) 
N 	 (N\ 

.i=o 

If all the possible codebooks are tested, then a globally optimal codebook can be obtained. 

Unfortunately, such computation is normally prohibitive, making any kind of exhaustive search 

unrealistic even for the most powerful computers with relatively small values of codebook 

size N and the number of training data vectors T. In order to overcome this difficulty, many 

algorithms were applied to codebook design to produce sub-optimal codebook designs, such 

as the K-means algorithm, ISODATA clustering algorithm, GLA algorithm, pairwise nearest 

neighbour (PNN) algorithm, fuzzy C-means clustering algorithm, simulated annealing method, 

stochastic relaxation approach, continuation method and deviation reduction algorithm which 

will be described in the following subsections. New codebook design procedures using genetic 

algorithms and genetic algorithms coupled with the stochastic relaxation approach will be 

presented and experimental comparison of these algorithms with GLA will be presented in 

section 5.3. 

5.1.1 K-means and ISODATA Clustering Algorithms 

The K-means algorithm (MacQueen, 1967) is a well known iterative procedure for the clustering 

problem. It is also known as the C-means algorithm or basic ISODATA clustering algorithm. 

This algorithm can also be applied to VQ codebook design, and the K-means algorithm can be 

depicted as follows: 

Step 1: Randomly select N training data vectors as the initial codevectors C 1 , 1. = 1, 2, ..., N 

from I training data vectors. 

Step 2: For each training data vector X,, j = 1, 2, ..., 1, assign X 1  to the partitioned set S 1  if 

I = arginIn1 D(X, Q. 	 (5.7) 
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Step 3: Compute the centroid of the partitioned set (codevector) using 

ISd 	
(5.8) 

XI  .S '  

where I Sd denotes the number of training data vectors in the partitioned set S. If there is 

no change in the clustering centroids, then terminate this program; otherwise, go to step 2. 

The ISODATA clustering algorithm (Ball & Hall, 1967) is a highly interactive version of the 

K-means algorithm. This algorithm is characterized by the addition of several heuristics to 

eliminate, aggregate and/or split clusters based on several predefined parameters (Ball & Hall, 

1967). 

5.1.2 GLA Algorithm 

An iterative nonvariational technique for the design of scalar quantizer has been reported (Lloyd, 

1982). Linde, Buzo and Gray (LBG) extended Lloyd's (Linde et al., 1980) basic approach to 

the general case of vector quantizer. It is called the LBG algorithm and it is also known as 

the Generalised Lloyd algorithm (GLA). The GLA algorithm is a well known codebook design 

algorithm and has been described in Section 4.3 where the basic idea of finding the centroids of 

partitioned sets and the minimum distortion partitions is the same as the K-means algorithm. In 

the K-means algorithm, the initial centroids are selected randomly from the training vectors and 

the training vectors are added to the training procedure one at a time. The training procedure 

terminates when the last vector is incorporated. In contrast in the GLA algorithm, the initial 

centroids are generated from all of the training data by applying the splitting procedure and 

all the training vectors are incorporated to the training procedure at each iteration. Normally, 

the K-means algorithm is used to group data and the groups can change with time; the GLA 

algorithm is applied to generate the centroids and the centroids cannot change with time. 
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5.13 Pairwise Nearest Neighbour Algorithm 

An aggl.oiri.erattve clustering approach is a process in which each training data is placed in 

its own cluster and these atomic clusters are gradually merged into larger and larger clusters 

until the desired objective is attained. A divisive clustering approach reverses the process 

of agglomerative clustering approach by starting with all training data in one cluster and 

subdividing into several smaller clusters. The GLA algorithm starts from one cluster and then 

separates this cluster to two clusters, four clusters, and so on until N clusters are generated, 

where N is the desired number of clusters or codebook size. Therefore the GLA algorithm is a 

divisive clustering approach. The pairwise nearest neighbour (PNN) algorithm (Equitz, 1989; 

Equitz, 1987) is an agglomerative clustering approach. PNN is actually identical to Ward's 

hierarchical clustering method (Bottemiller, 1992; Ward, 1963) published in 1963. 

The PN N algorithm begins with a separate cluster for each vector in the training set and merges 

together two clusters at a time until the desired number of codevectors is achieved. At the start of 

this algorithm, there are T training data vectors and each data vector corresponds to a codevector, 

i.e., the codebook size is T. Then, these I clusters are converted to T - 1 clusters by merging 

together into a single cluster the two closest clusters. This merging process is repeated until the 

number of clusters is equal to the desired number of codevectors or the average distortion is 

greater than the predefined maximum average distortion. 

The pairwise nearest neighbour algorithm can be depicted as follows: 

Step 1: Set the current number of codevectors v = I and the codevector C 1  which belongs to 

the partitioned set S t , is the training data vector, i=1,2,...,T. T is the total number of 

training data vectors. 

Step 2: Calculate the pair distortion d(C 1 , C) between the codevectors C t  and C, 1 <i < v, 

i < j <v. 
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Step 3: Merge two partitioned sets S j  and S i  to S j  and calculate new codevector Ct = fl,CI+flJCJ 

fl.i+flj 

if d(C1 , C1 ) = {mth.d(Cm , Ca ), 1 < n < v,n < n < v}. Set C 1  = C,, Sj = S and 

v =v —1. Here, iii andn.1  are the number of training data vectors in the partitioned sets 

St  and S. 

Step 4: Calculate the average distortion for the partitioned sets. 

Step 5: Terminate the program if v = N or the average distortion is greater than the predefined 

maximum average distortion, where N is the desired codebook size. 

The pairwise nearest neighbour algorithm is an agglomerative clustering approach in which 

pairs of clusters are progressively merged together. The key to efficient execution of this 

algorithm is to find the closest pairs of centroids quickly among all centroids. The obvious way 

is to explicitly find each centroid's nearest neighbour, but this requires at least a 1092T  search 

(Equitz, 1989) and leads to a complexity of O(Tl.ogl) for each merge. In order to reduce the 

computation complexity, a K-d tree structure (Bentley, 1975; Friedman et al., 1977) can be 

applied to reduce the complexity of the entire PN N algorithm to O(Tlog 2T) and it is independent 

of the number of codevectors. 

5.1.4 Simulated Annealing Method 

Simulated annealing (SA) (Kirkpatrick et al., 1983; Bohachevsky et al., 1986) is a random 

search method which has been presented for optimization of NP-hard problems. Vechi and 

Kirkpatrick applied a simulated annealing method to the optimization of a wiring problem 

(Vecchi & Kirkpatrick, 1983). Gamal et al. also used the method of simulated annealing to 

construct good source codes, error-correcting codes and spherical codes (Gamal et al., 1987). 

Cetin and Weerackody first proposed the method of simulated annealing in vector quantizer 

design (Cetin & Weerackody, 1988). There are also many algorithms involving simulated 

annealing for codebook design (Vaisey & Gersho, 1988; Flanagan et al., 1989; Lu & Morrell, 

1991). The basic algorithm of simulated annealing for codebook design can be stated as follows: 
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Step 1: The training data X,j = 1,2,...,T,is partitioned intothe partitioned setS,i=1,2,...,N 

randomly. Set it. = 0 and calculate the codevector 

C=_X 	 (5.9) 
x I €s (  

where 1S 1 1 denotes the number of training data vectors in the partitioned set S 1 . 

Step 2: The codebook is perturbed by randomly selecting a data vector and moving this data 

vector from its current partitioned set to the different randomly selected partitioned set. 

Calculate the new centroids. 

Step 3: The change in distortion AD is defined as the distortion of current codebook minus the 

distortion of previous codebook. The perturbation is accepted if 

AD 

>1, 	 (5.10) 

where r is a random value generated uniformly on the interval [0,1]. 

Step 4: If the distortion of the current codebook reaches the desired value or the iterative number 

it. reaches the predetermined value, then terminate the program; otherwise, set it = it + 1 

and go to step 2. 

This algorithm starts with an initial temperature to.  The temperature sequence t o, ti , t2,... are 

positive numbers which is called an annealing schedule where 

(5.11) 

and 

iimit=0. 	 (5.12) 

If the resulting codebook decreases the distortion, the movement of the data is accepted. If 

the distortion is increased, it is accepted with the condition as in Eq. 5.10. Obviously, the 

perturbation is accepted easily for the earlier temperature and it is difficult to be accepted at 
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the final temperature. By accepting the perturbation for positive AD in some probability gives 

the opportunity for jumping off the local optimum. The performance of the codebook design 

depends on the annealing schedule. 

5.1.5 Stochastic Relaxation Approach 

In the previous subsection, the basic algorithm of simulated annealing in codebook design is 

to perturb codevectors by moving the training data vector from its current partitioned set to a 

different partitioned set. At each iteration of the simulated annealing algorithm, the perturbation 

is performed if and only if Eq. 5.10 is satisfied. This is called a stochastic relaxation algorithm 

(Zeger & Gersho, 1989; Zeger et al., 1992) if the perturbation is applied by adding some values 

to the codevectors definitely for each iteration. The stochastic relaxation algorithm is depicted 

as follows: 

Step 1: Select initial codevectors C' randomly, i. = 1, 2, ..., N. Set iterative number ut = 1 and 

D 0  = 00. 

Step 2: Assign the data vector X to partitioned set S 1  if d(X1 , CO :5 d(X 1 , Ci), t ( j, j = 

1,2, ..., N. Calculate the overall distortion D m . 

Step 3: if IDmlDmI <, then terminate the program; otherwise, set m.=m+1. 

Step 4: Compute the centroid for each partitioned set, 

C1  = 	X 	 (5.13) 
xIes 

where I S   denotes the number of training data vectors in the partitioned set S 1 . 

Step 5: Perturb the codevector using 

C = C +S1 (T,,J. 	 (5.14) 

Go to step 2. 
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S(T,) is a perturbation function in which the value of the temperature T m  decreases with the 

increase of the iterative number rn.. In previous work (Zeger & Gersho, 1989), S 1 (TJ is a 

uniform distribution with zero-mean and T m  is the range. 

5.1.6 Fuzzy C-means Clustering Algorithm 

The GLA algorithm, PNN algorithm, simulated annealing method and stochastic relaxation 

approach in codebook design assign each training data vector to one and only one cluster, i.e., 

the training data vectors are partitioned into disjoint sets. However, each training data vector 

can be assigned a membership function indicating the degree of its "belongingness" to each 

cluster rather than assign it to only one cluster because some clusters are not compacted and 

well separated (Dunn, 1974; Bezdek, 1973). Assume that T and N are the number of training 

data vectors and the number of codevectors. The object function of the fuzzy C-means (F CM) 

clustering algorithm (Bezdek, 1973) is to 

minimize 

J(U,C)=L14Djj, 	 (5.15) 
11 	j.1 

subject to 

(5.16) 

where D tj  is the squared Euclidean distortion between the training data vector X i  and the centroid 

C, i4j  is the value of membership for the training data vector X t  belonging to the cluster j, 

U = {u} is T x N matrix and C = {C 1 , C2 , ..., CN} is the COdCbOOk. 

The fundamental FCM clustering algorithm can be stated as follows: 

Step 1: Set in. = 1 and select the membership function U(1). Here in. is the current number of 

iterations. 

Step 2: Calculate C(m) by using 
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E T xj 
1<j ~ N. 	 (5.17) C(m.)= 	T  

L
2 

1 u1, 

Step 3: if D 1 (in) = 0, then u(nt + 1) = 1 and u(11t + 1) = 0 for  In; otherwise, calculate 

U(m. + 1) by using 

uij(n+1)= 	N 

1
Djj(in) 	1<t<T,1j:5N. 	(5.18) 

, 	D(in) 

Step 4: Terminate the program and take C(in) = {C 1 (m.), CAM), ..., CN(m.)} as the final code-

book ifmaxIu1 (m)—u1 (m4-1)I < e,1 < t < T,1 <i :5 N; otherwise, set m=nt+1 

and go to step 2. Here i is a small predefined value. 

5.1.7 Path-following Approach 

The path-following approach, also known as continuation method for vector quantizer (CMVQ) 

design was proposed by (Chung et al., 1993). Suppose that there are I input vectors in the 

training setS = {x p = 1,2, ..., T} and N codevectors in the codebook C =  I Ct li = 1,2, ..., N }, 

where 1>> N. The sum of the squared errors within the partitioned sets is 

D(S, C) = 37  T  d(X,, C1), 	 (5.19) 
p=' XpCS1 

where d(X )  C1) is the squared Euclidean distortion between X, and C1 , S1  = {XeSj d(X, C1 ) :5 

d(X, CO, Vi. V  j} and 1 < t < N. The centroid computation step of the GLA algorithm is 

found by evaluating = 
Cl 

 i.e., 

57  xp-IStl.Ct=0, 
	 (5.20) 

xp  Csi 

where I S1 I is the number of training vectors belonging to the partitioned set S 1 . If a training set 

SN consists of only N vectors randomly chosen from S, by evaluating =0, the following 

equation is obtained: 
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(5.21) 
X, eS 

where S N = {X CSN I d(X, C) ~ d(X, C)Vi i j}. The homotopy function (Stonick & 

Alexander, 1992; Richter & DeCarlo, 1983) for VQ codebook design can be defined as 

h.(C,t)=(1 —t)[ 	X - ISi.C1]+t[ 	X - 1S11.C1]. 	(5.22) 
X9 eS" 	 XcS 1  

By setting Eq. 5.22 to zero, the iterative algorithm for the codevector is derived as 

	

ci= ISn+t{II_ISn}(L X~ t 	XP). 	(5.23) 

	

XpeSr 	X€{S1—sr} 

The homotopy parameter t is a weighting factor in this centroid computation step.:  It can be set 

to a linear homotopy parameter sequence {t = n.tJm = 0, 1, 
..., }. If it = 0, it is the initial At 

step as inEq. 5.21. Ifn= 	,itis the final result asin Eq. 5.2O. By adapting n from Oto 

it = , the final codevectors are generated. At 

5.1.8 Deviation Reduction Algorithm 

The deviation reduction (DR) algorithm was proposed by (Chen et al., 1995). This algorithm 

generates N codevectors from the training data X = {X 1  , X2 , ..., X1} of k-dimensional vectors 

with 1>> N. These training data are grouped into N clusters first using K-d tree with N buckets 

which is generated from the greatest co-ordinate variance (Bentley, 1975). Each cluster is 

represented by the number of data 14 belonging to this cluster and the centroid C t  of this cluster, 

i. = 1,2, ..., N. The weighted distances defined in Eq. 5.24 are calculated. 

djj
= n.iitjlCt - Cu 2  

	

Tht+itj 	
' 	 (5.24) 

where t=1,2,...,N and j=t+1,i+2,...,N. 

The mean of these N(-1)  weighted distances among all clusters is 
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= N(N— 1
d. 	 (5.25) 

i-I) 	F1 

The difference between the djj and a indicates the deviation of the cluster C 1  and Cj  from the 

mean. Based on the assumption that the small value of deviation leads to the better optimum, 

the codevector C 1  can be generated iteratively by 

C1  = C1  + c(d - d)(C - C1), 	 (5.26) 

where t= 1,2,...,N,j =1,2,...,N and cisa small positive constant. Eq. 5.26 is applied to 

adapt codevector so as to reduce the deviation. 

5.2 Codebook Design Using Genetic Algorithms 

It has been shown (Lloyd, 1982) that two conditions are necessary but not sufficient for the 

existence of an optimal minimum mean squared error (MSE) quantizer: 

the codewords should be the centroids of the partitions of the vector space. 

the centroid is the nearest neighbour (NN) for the data vectors in the partitioned set. 

These conditions have been applied to codebook design by Linde et al. in the generalized Lloyd 

algorithm (GLA) (Linde et al., 1980). Since these conditions are necessary but not sufficient, 

there is no guarantee that the resulting codebook is optimal. The generalized Lloyd algorithm 

is widely used in codebook generation for vector quantization. It is a descent algorithm in the 

sense that at each iteration the average distortion is reduced. For this reason, GLA tends to get 

trapped in local minima. The performance of the G LA is dependent on the number of minima 

and on the choice of the initial conditions. 

Genetic algorithms refer to a model introduced and investigated by Holland (Holland, 1975) 

and by students of Holland. They are computer search methods whose mechanics are based on 

those of natural genetics. A genetic algorithm is any population-based model that uses selection 
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and recombination operators to generate new sample points in a search space. This evolutionary 

procedure yields an effective search in a broad range of problems. Genetic algorithms (Gold-

berg, 1989; Davis, 1991) have been proven to be powerful methods in search, optimization 

and machine learning. They encode a potential solution to a specific problem on a simple 

chromosome-like data structure and apply recombination operators to these structures in order 

to achieve optimization. Genetic algorithms have been used in VLSI layout, communication 

network design, medical imaging, automatic control and machine learning, facility layout prob-

lem and the optimization of generalised assignment problem. 

This chapter describes the GA-GLA1 and GA-GLA2 algorithms (Pan et al., 1995c; Pan et al., 

1996d) derived by applying genetic algorithms to codebook design to produce better optimum 

VQ codebook vectors. The four main steps involved in genetic algorithms are evaluation, selec-

tion, crossover and mutation. It is referred to as GA-GLA1 algorithm if the evaluation, selection 

and crossover are adopted in combination with GLA to produce a superior codebook design 

algorithm. 

The fitness of genetic algorithms can be represented by the mean squared error (MSE). In the 

VQ operation, a chromosome is designated as the centroid of the cluster. The individual of the 

population is the codebook. As shown in Fig. 5. 1, the proposed GA-GLA1 algorithm consists 

of the following steps: 

Step 1: Initialization— Calculate the central chromosome (centroid) G0 from the training vectors 

X (i.=l,2,...,T). Select N chromosomes G j  0=1,2,...,N) for every member of the popula-

tion using random number generator. Here N is the codebook size, so that each codebook 

consists of N single-vector chromosomes. P sets of N chromosomes are generated in this 

step, P is the population size. 

Step 2: Update - GLA is used to update N chromosomes for every member of the population.. 
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Step 3: Evaluation - Fitness (or MSE) of every member of the population is evaluated in this 

step. 

Step 4: Selection - The survivors of the current population are decided from the survival rate 

P. A random number generator is used to generate random numbers whose values are 

between 0 and 1. If the random number is smaller than P, this codebook survives; 

otherwise, it does not survive. The best fitness of the population always survives. Pairs of 

parents are selected from these survivors and undergo a subsequent crossover operation 

to produce the child chromosomes that form a new population in the next generation. 

Step 5: Crossover - The chromosomes of each survivor are sorted in decreasing order according 

to the squared error between the chromosome G j  of the current population and the central 

chromosome G 0 . Without sorting here, it is difficult to jump out of the local minima. 

The 1-point or2-point crossover technique (Goldberg, 1989) is used to produce the next 

generation from the selected parents. 

Step 6: Termination - Step 2 to step 5 are repeated until the predefined number of genera-

tions have been reached. After termination, the optimal codebook is generated from N 

chromosomes in the best member of the current population. 

As shown in Fig. 5.2, the GA-GLA2 algorithm is similar to the GA-GLA1 algorithm except 

that the stochastic relaxation scheme is applied to the mutation step in the codebook generation. 

A random value is added to selected genes in the mutation step. This perturbation gives the 

GA-GLA2 algorithm more opportunity to jump off the local optimum. The added value of the 

perturbation can be a normal distribution, uniform distribution or any other possible distributions. 

The proposed GA-GLA2 algorithm is stated as the following steps: 

Step 1: Initialization— Calculate the central chromosome (centroid) G0 from the training vectors 

X 1  (17-1,2,...,T). Select N chromosomes G j  0=1,2,...,N) for every member of the popula-

tion using random number generator. Here N is the codebook size, so that each codebook 
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Figure 5.1: Flowchart of GA-GLA 1 algorithm 

consists of N single-vector chromosomes. P sets of N chromosomes are generated in this 

step, P is the population size. 

Step 2: Update - GLA is used to update N chromosomes for every member of the population. 

Step 3: Evaluation - Fitness (or MSE) of every member of the population is evaluated in this 

step. 

Step 4: Selection - The survivors of the current population are decided from the survival rate 

P. A random number generator is used to generate random numbers whose values are 

between 0 and 1. If the random number is smaller than P 3 , this codebook survives; 

otherwise, it does not survive. The best fitness of the population always survives. Pairs of 

123 



parents are selected from these survivors and undergo a subsequent crossover operation 

to produce the child chromosomes that form a new population in the next generation. 

Step 5: Crossover - The chromosomes of each survivor are sorted in decreasing order according 

to the squared error between the chromosome C j of the current population and the central 

chromosome C 0 . The 1-point or 2-point crossover technique is used to produce the next 

generation from the selected parents. 

Step 6: Mutation - The genes (or features) in the chromosomes of the population are mutated 

according to the mutation rate P m . Here, the total number of mutations is set to population 

size P * number of chromosomes N * mutation rate P m. When one chromosome is 

selected to be mutated from random generation number, the new genes are generated from 

the old genes by adding the random value O. Here 1 < n < k and k is the number of 

genes in one chromosome; 0.5 crrj t < O < 0.5a11t, o is the standard deviation of 

the nth dimension of the vector, t is the number of generations processed at present and 

11< 1 . 

Step 7: Termination - Step 2 to step 5 are repeated until the predefined number of genera-

tions have been reached. After termination, the optimal codebook is generated from N 

chromosomes in the best member of the current population. 

Genetic algorithms have previously been applied to VQ codebook generation (Delport & 

Koschorreck, 1995). Although they use a genetic algorithm, it differs from the GA-GLA1 and 

GA-GLA2 algorithms considerably (Pan et al., 1996e). The main differences are as follows. 

Firstly, Delport and Koschorreck use the codebook indices of the training data as the coding 

string, the length of the coding string is thus the number of the training data points in the training 

set. In the GA-GLA1 and GA-GLA2 algorithms, the codebook vectors are used as the coding 

string, the length of the coding string is thus equivalent to the number of codewords. This means 

that the length of the coding string is much shorter in the GA-GLA1 and GA-GLA2 algorithms. 
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Figure 5.2: Flowchart of GA-GLA2 algorithm 

Theoretically and practically, it is difficult to converge to a more optimal value if the length of 

the coding string is too long. 

In addition, in the GA-GLA1 and GA-GLA2 algorithms, the coding strings of the initial popula-

tion can be assigned randomly from the training data, because it can be converged to an optimal 

value easily under any initial conditions. Delport and Koschorreck use the binary splitting 

method to derive the best initial population to improve their algorithm. 

Finally, a sorting technique is used based on the central value of the training data to facilitate 
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convergence to improved optima. This is unique to the GA-GLA1 and GA-GLA2 algorithms. 

To sum up, as shown in Fig. 5.3 and Fig. 5.4, Delport and Koschorreck apply a genetic algorithm 

to adapt the codebook index of points in the training data, whereas the genetic algorithms are 

applied to GA-GLA1 and GA-GLA2 algorithms to adapt the value of the codebook vector. 

1 	2 	3 	 T c 	Number of Training Data 

Coding String 

Codeword Index 

Figure 5.3: Coding String of Delport's Algorithm 

1 	2 	3 	 N< 	Number of Codewords 

Coding Siring 

Value of Codebook Vector 

Figure 5.4: Coding String of GA-GLA1 and GA-GLA2 Algorithms 

5.3 Experiments and Results 

Cepstrum coefficients are used as the test features in the codebook generation experiments. 

The test materials for these experiments consist of 9 words recorded from one male speaker. 

The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients (including 
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energy) are computed over 20 ms-wide frames with 5 ms frame shift. A total of 817 analyzed 

frames are used in the codebook generation experiments. 

Firstly, experiments are carried out to test the performance of GA-GLA1, GA-GLA2 and G LA 

algorithms for 32 and 64 codewords. 1-point and 2-point crossover techniques are tested in 

the experiments. The performance is measured in terms of mean squared error (MSE) and is 

averaged from 10 runs. The parameter values used for population size P, predefined number of 

generations, the survival rate P, the mutation rate P m  and i  are 20, 100, 0.5, 0.1 and 0.9. As 

shown in Table 5.1, 5.2, 5.3 and 5.4, in any run, the mean squared error of the GA-GLA1 

algorithm and the GA-GLA2 algorithm is smaller than the GLA algorithm. Table 5.5 and 5.6 

show that the average distortions of 10 runs for codebooks generated by these new algorithms 

are much better than those by the GLA algorithm. The 2-point crossover technique is better 

than the 1-point crossover technique and the GA-GLA2 algorithm is better than the GA-GLA1 

algorithm in these experiments. The mean squared error decreases by more than 9% using these 

new algorithms instead of the GLA algorithm. 

Fig. 5.5 depicts the mean squared error (MSE) versus the population size for the GA-GLA1 

algorithm using single point crossover and the number of codewords is 32. The most suitable 

population size is 30 which can be determined from this experiment. The mean squared error 

versus the number of generations for the GA-GLA 1 algorithm using single point crossover and 

50 individuals of population is shown in Fig. 5.6 for 32 codewords. This figure is generated 

from the data of only one run. The mean squared error remains constant for several generations. 

This means that the GLA algorithm is not useful in decreasing the mean squared error for the 

best population and the genetic algorithm can not perform better result for the other individuals 

of the population at the current generation. But after some generations, the genetic algorithm 

will cause the other individuals of the population to generate better codewords to decrease the 

mean squared error. The more generations for which this algorithm operates, the lower the mean 

squared error it generates but the running time will increase with the number of generations. 
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Another experiment tests the performance of the GA-GLA1, GA-GLA2 algorithms and the 

stochastic relaxation approach for generating 8 codewords. The single point crossover technique 

is used in this experiment. The parameter values used for population size P, predefined number 

of generations, the survival rate P, the mutation rate P andi are 20, 100,0.5,0.1 and 0.9. The 

results of ten runs are shown in Table 5.7. Both the GA-GLA1 and GA-GLA2 algorithms have 

similar performance to the stochastic relaxation approach in this experiment The mean squared 

error of the global optimum is approximately 0.5832. 

From the experimental results, the performance of the proposed GA-GLA1 algorithm and GA-

GLA2 algorithm are significantly better than for the GLA algorithm. These new algorithms can 

be extended by using powerful mutation techniques, chromosome encoding techniques and the 

other powerful selection and crossover techniques. 

GLA 0.28522 
Seed GA-GLA1 1-point crossover GA-GLA 1 2-point crossover 

1 0.2683 02602 
2 0.2549 02585 
3 0.2622 02583 
4 0.2593 02562 
5 0.2588 02584 
6 0.2592 02586 
7 0.2580 02593 
8 0.2566 02584 
9 0.2579 02566 
10 0.2595 02573 

Table 5.1: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 32 codewords 
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GLA 0.28522 
Seed GA-CILA2 1 -point crossover GA-GLA2 2-point crossover 

1 0.2609 02605 
2 0.2574 02558 
3 0.2643 02560 
4 0.2560 02578 
5 0.2566 02575 
6 0.2559 02564 
7 0.2595 02569 
8 0.2598 0.2566 
9 0.2572 02558 
10 0.2568 0.2544 

Table 5.2: Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 32 codewords 

GLA 0.187098 
Seed GA-GLA1 1-point crossover GA-GLA1 2-point crossover 

1 0.171316 0.168194 
2 0.171781 0.171443 
3 0.169128 0.167743 
4 0.172415 0.168878 
5 0.168015 0.167335 
6 0.174766 0.169959 
7 0.172679 0.172166 
8 0.171191 0.170286 
9 0.171656 0.170283 
10 0.171595 0.171260 

Table 5.3: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 64 codewords 
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GLA 0.187098 
Seed GA-GLA1 1-point crossover GA-GLA1 2-point crossover 

1 0.170653 0.168353 
2 0.168776 0.169391 
3 0.169161 0.168561 
4 0.171857 0.168010 
5 0.170882 0.165990 
6 0.166766 0.168568 
7 0.169233 0.168356 
8 0.171477 0.171594 
9 0.173121 0.168429 
10 0.168244 0.172010 

Table 5.4: Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 64 codewords 

Algorithm MSE 
GLA 0.28522 
1-point crossover 

GA-GLA1 without mutation 0.25947 
1-point crossover 

GA-GLA2 with mutation 0.25844 
2-point crossover 

GA-GLA1 without mutation 0.25817 
2-point crossover 

GA-GLA2 with mutation 	1 0.25677 

Table 5.5: Performance comparison of GA-GLA 1, GA-GLA2 algorithms and GLA for 32 
codewords 

Algorithm MSE 
GLA 0.187098 
1-point crossover 

GA-GLA1 without mutation 0.171554 
1-point crossover 

GA-GLA2 with mutation 0.170017 
2-point crossover 

GA-GLA1 without mutation 0.169755 
2-point crossover 

GA-GLA2 with mutation 	1 0.168926 

Table 5.6: Performance comparison of GA-GLA1, GA-GLA2 algorithms and GLA for 64 
codewords 
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Seed stochastic relaxation GA-GLA1 GA-GLA2 
1 0.5834 05838 0.5832 
2 0.5876 0.5838 0.5832 
3 0.5832 0.5832 0.5832 
4 0.5832 05832 0.5832 
5 0.5832 0.5832 0.5832 
6 0.5832 05838 0.5835 
7 0.5875 0.5832 0.5832 
8 0.5832 05839 0.5832 
9 0.5832 05832 0.5832 
10 0.5832 05832 0.5832 

Table 5.7: Mean squared errors for ten runs of GA-GLA1, GA-GLA2 algorithms and stochastic 
relaxation approach for 8 codewords 
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Figure 5.5: Mean squared error of GA-GLA1 algorithm for different population size 
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Figure 5.6: Mean squared error of GA-GLA1 algorithm for different number of generations 
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Chapter 6 

Improved Algorithms for Codebook 
Index Assignment 

6.1 Introduction 

Vector quantization (VQ) (Gray, 1984) is very efficient for data compression of speech and 

images where the binary indices of the optimally chosen codevectors are sent. As shown in 

Fig. 6. 1, a vector X = {x 1  , x2, ..., xk} consisting of k samples of information source in the 

k-dimensional Euclidean space R 1' is sent to the vector quantizer. The k-dimensional vector 

quantizer with the number of codevectors N is defined as follows by using the reproduction 

alphabet consisting of N codevectors, C = {C,, C2, ..., CN}, the partitioned set consisting of 

subspaces of the k-dimensional Euclidean space gk,  S = {S 1  , S2, ..., SN}, and the mapping 

function Q(•): 

Q(X) = C, 	if XeS 1 . 	 (6.1) 

The sets C and the partitioned set S t  satisfy 

U 1  St = Ri'. 	 (6.2) 

and 

St flSj =4 	if t. 	 (6.3) 

The output of the vector quantizer is the index i. of the codevector C t  which satisfies 
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i = argrnth,,, 	(x' - c)2 . 	 (6.4) 

Only the index t is transmitted over the channel to the receiver. The transmitting rate is defined 

as 

rn = 1092N bits/vector, 	 (6.5) 

and 

r = rn/k bits/sample. 	 (6.6) 

The performance of vector quantizer can be evaluated by the squared Euclidean distortion per 

symbol given by 

= L I P(X) L(xt - c)2 dX, 	 (6.7) 
"SI 

where P(X) is the probability density function of X. 

The channel noise will induce channel errors in the communication. The effect of channel 

errors is to cause errors in the received indices. Thus, distortions are introduced in the decoding 

step. Distortion due to an imperfect channel can be reduced by assigning suitable indices 

to codevectors. If the number of codevectors is N, the possible combination of indices to 

codevectors is N!. To test N! assignments is an NP-hard problem. 

6.1.1 Simulated Annealing for Optimization of Index Assignment 

As described previously, the optimization of index assignment for vector quantizer is compu-

tationally intractable for large codebook size even if very powerful computer is used because 

there exist N! possible ways to arrange the indices of codevectors for N codevectors. In order 

to avoid the full search procedure, a simulated annealing method has been applied (Kirkpatrick 

et al., 1983; Bohachevsky et al., 1986) to the codevector index assignment of vector quantizers 

for noisy channels (Farvardin, 1990). The channel model is assumed to be a binary symmetric 

channel with bit error probability e, i.e., 
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Vector Quantizer 

Source 	 Ci = Q(X) 	Encoder 

Channel Noise 

Ci 	 I 	i 
Destination 	 Decoder I 

Figure 6.1: Block diagram of VQ communication system for noisy channel 

P(b(c )/b(c1 )) = (1 - 	I{(h(c 	 (6.8) 

where b(c 1 ), i = 1,2, ..., N, is the index with in bit string of codevector C 1 , P(b(c)/b(c1 )), 

t, j = 1, 2, ..., N, denote the probability that index b(c 1 ) is received given the index b(c 1 ) is sent 

and H(b(c), b(c,)) denote the Hamming distance between b(c 1) and b(c). 

In this previous work (Farvardin, 1990), the channel bit error probability c is assumed to be 

sufficiently small (mc << 1), then the error probability due to more than one bit error can be 

ignored and the bit error probability of the channel model can be expressed as 

I 
P(b(c)/b(c 1)) = 

1 
H(b(c), b(c)) = 1 

1-t(b(c1), b(c)) = 0 

1-t(b(c1), b(c1))> 1 

(6.9) 

Based on this channel model, the average distortion per source sample caused by the channel 

noise for a given assignment of indices, b = (b(c ), b(c2), ..., b(cN)), can be expressed as 
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Dcs = 	P(cj)P(b(c)/b(cL))d(cl, c) 	 (6.10) 

57  
t1 i-i 

= 	P(c1) 	L 	d(cj ,cØ, 	 (6.11) 
i-i 	j:H(b(c).b(c1))1 

and the ensemble average distortion is derived as 

	

1 	N 

D cs  

	

d(c,c) 	 (6.12) 
i=1 	allh j:R(h(cj).b(cj)).1 

N 	 N 
- fin 

- k(N —1) 	
P(c)d(c 1 ,c). 	 (6.13) 

The algorithm using simulated annealing for optimization of index assignment for vector quan-

tizer can be stated as follows (Farvardin, 1990): 

Step 1: Choose an initial state b of the indices for codevectors at random and set the initial 

temperature T = T. 

Step 2: Randomly choose another state b' (perturbation of state b) and calculate &D 5  = 

D(b') - D(b). If &D < 0, replace b by b'; otherwise, replace b by b' with 

probability and go to step 3. 

Step 3: If the number of average distortion drops exceeds a prescribed number or if too many 

unsuccessful perturbations occur, go to step 4. 

Step 4: Terminate the program if the temperature I is below some prescribed freezing temper-

attire Tf  or a stable state is reached; otherwise, lower the temperature 1 and go to step 

2. 

Note that the simulated annealing approach in the optimization of codebook index assignment 

will not affect the quantization accuracy in the error-free case because this method does not 

change the value of codevectors. 
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6.1.2 Pseudo-Gray Coding 

Pseudo-Gray coding (Zeger & Gersho, 1990; Zeger & Gersho, 1987) provides a redundancy-

free error protection scheme for vector quantization of analogue signals when the binary indices 

of the signal codevectors are sent on a discrete memoiyless channel. The main idea of Pseudo-

Gray coding is to calculate the expected distortion due to the single bit error in the index of 

codevectors for every index swapping and swap the index pair that makes the largest improvement 

in distortion. The approach of Pseudo-Gray coding is stated as follows: 

Step 1: Initialization— Assign indices to the codevectors randomly. 

Step 2: Sorting - Sort the codevectors in the decreasing order of the expected distortion. Set 

t= —1. 

Step 3: Distortion Reduction - Set t = i. + 1. For j = 1. + 1 to N, calculate the distortion 

reduction after swapping the index t and j. Let gain = the maximum distortion reduction 

for swapping the index 1. and j. 

Step 4: Switching - If gain> 0, then switch index i. and j and go to step 2. 

Step 5: Termination— if 1. = N - 1, then terminate the program; otherwise, go to step 3. 

6.1.3 Channel Optimized Vector Quantization 

An improvement of vector quantizer performance against channel noise can be achieved by taking 

the error characteristics of the transmission channel into account in the codebook design as well 

as in the quantization process. Hence, the expected error of the reconstructed codevector in the 

decoder can be minimized instead of the irrelevant quantization error in the encoder (Kumazawa 

et al., 1984; Farvardin, 1990; Baiss et al., 1995). If the squared Euclidean distortion is used, the 

performance can be evaluated using Eq. 6.14 which is the expected squared error per sample in 

the decoder provided that index b(c) is received given that index b(c 1 ) is sent. 
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D c  = 	P(b(ci)/b(ct))J P(X)L(xt - c) 2 dX, 	(6.14) 

where P(X) is the probability density function of X. 

In codebook generation for channel optimized vector quantization, the indices as well as the 

codevectors are modified together. The index of the training data vector X is assigned using 

= argmi.m 	P(b(c,)/b(c1)) 	(X - cl)2, 	 (6.15) 

and the codevector is modified using 

CJ = 	
P 	

(6.16) 

	

x 	P(b(c3)/b(cj ))1S1 1 
where I St I is the number of training data vectors belonging to the partitioned set S 1 . 

When the codevector C = {C1, C2, ..., CN} is given, the partitioned set S 1  minimizing 

Eq. 6.14 is given by 

S = {X 	P(b(c,)/b(c1)) 	(xm_cp)2 < 	P(b(c)/b(c)) 	(xm _cr)2 , for all i. ' t}. 

(6.17) 

When the codevectors C,, j = 1,2, ..., N, partitioned sets S, j = 1,2, ..., N and the training data 

vectors X,, t = 1, 2, ..., T are given, the mean squared error per sample in the decoder can be 

evaluated as follows: 

	

1 1 N 	 k 

D e  = 	L P(b(c,)/b(cl( t))) 	(X - cl)2,  

	

t1 j1 	 1-1 

where b(cL(t)) is the index of the bit string to which the tth training data vector X belongs and 

I is the total number of training data vectors. 

In the training process, Eq. 6.16 and Eq. 6.17 are applied iteratively until a termination criterion 

is met. 
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6.2 Average Distortion 

N codevectors C, i. = 1, 2, ...,N, are assigned codevector indices with an in bit string b(c 1 ), 

where N = 2. The distortion between codevector Ct and C j  is given by a non-negative distortion 

measure d(c, Cj). Usually, the Euclidean metric is used. Let P(b(c)/b(c)), t, j = 1,2, ...N, 

denote the probability that the index b(c) is received given the index b(c 1 ) is sent. Assuming 

random assignment of the codevector indices b = (b(c 1 ), b(c2), ..., b(cN)), the average distortion 

for any possible bit errors caused by the channel noise is given by 

Dc = 	L P(C) T L P(b(c)/b(c))d(c,cØ. 	 (6.19) 
t=I 	b j- 

We assume that the channel is a memoryless binary symmetric channel with bit error probability 

e. Thus, the error probability is e'(l - )m_t, where 1. is the number of bits in which b(c 1 ) and 

b(c) differ. Let H.(b(c 1), b(c)) denote the Hamming distance between b(c) and b(c). The 

average distortion can be written as 

DC = 	P(ct)L d(c,c) 	Y 	et(1 - 	 (6.20) 
J=1 	 11 b:R(h(c).b(c)>4 

M 

There are N choices of b(c 1), 	 choices of b(c) and (N - 2)! choices of the rest of b 

I 

given I. Eq. 6.20 can be expressed as 

N 	N 	in 

Dc = 	P(c1)> d(c, cj)L c'(l - E)m_tN ( 

	J (N —2)! 	(6.21) 

1 	N 	N 

- N - 1 	
P(c) 	d(c, c) 	

J to

- E) 	(6.22) 
1.-i 	i-i 	 t1 

[Uri 



m 
Since 1 = {e +(I - 	= 	 t(1 - 

1. 

N 	 N 	 (ITL\ 

 N 	1 t1 	j1 
  

	 (6.23), 

	

( 

0 J 

	

N i 	
P(c1 ) 	d(c1 , Cj) 	 (6.24) 

	

- 	 — 

i1 

After the indices are assigned to the codevectors, the expectation of distortion for the transmission 

of indices b(c 1),t=i,2,...,N, can be written as 

N 	in 

D = 	P(cL) T EI(I - e' 	37 	d(c1, Cj) 	 (6.25) 
t1 	11 	 b(cj)cN'(b(ci)) 

where N'(b(c)) = {b(c)el, H(b(c), b(c)) = t}, is the 1.th neighbour set of b(c 1 ). 

6.3 Multiple Global Optima 

Assume f(c) = b 1  = (b11 , b12 , ..., birn) is the function of index assignment. Here b j e{0, 1), 

t=1,2,...,N,j= 1,2,...,imlffis globally optimal, then soisg defined by 

g(Cj) = ( a11 , aj2, ..., (Iim), 
	 (6.26) 

where 

chtj = btp() 	qtp(), 

qe{O,i}, 

p is a permutation of 11, 2,..., m}. 

There are 2  possibilities for qij, j = 1,2, ...,m, and m! possibilities for p. Thus, at least m.!N 

global optima exist for the problem of codebook index assignment. So, an N! search Space can 
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be reduced to an 	search space. If the number of codevectors is 8 and the globally optimal 

assignment of the codevector indices b = (000,001,010,011,100,101,110,111), then there 

are 8 possible combinations for qjj, j = 1,2,3, i.e., H(b(c), b(c)) = H(b(c 1 ) ED s, b(c1) ED s), 

t= 1,2,...,8,t= 1,2,...,8 and sc{000,001,O10,O11,100,1O1,11O,111} which isdepicted 

in Table 6.1. There are also 6 possibilities of using a permutation in the bit string for each 

possible combination in Table 6.1. Two examples are shown in Table 62 and Table 6.3. This 

property can be applied to algorithms for codebook index assignment, for example, by setting 

one index to one codevector at the initial step, and holding this codevector index assignment until 

the termination of these algorithms, i.e., reduce the search space from N! to (N - 1)! without 

reducing the possibility of producing a better optimum. 

globally optimal indices 000 001 010 011 100 101 110 111 
(D 000 000 001 010 011 100 101 110 111 
ED 001 001 000 011 010 101 100 111 110 
El) 010 010 011 000 001 110 111 100 101 
ED 011 011 1  010 001 1  000 1 	111 110 1 101 100 
ED 100 100 101 110 111 000 001 010 011 
ED 101 101 100 111 110 001 000 011 010 
ED 110 110 111 100 101 010 011 000 001 
ED 111 111 110 101 100 Oil 010 001 000 

Table 6.1: Example of 2 3  possibilities for qjj, j = 1, 2,3, i. = 1,2,..., 8 

bit position globally optimal indices 
123 000 100 010 110 001 101 011 111 
132 000 010 100 110 001 011 101 111 
213 000 100 001 101 010 110 011 111 
231 000 010 001 011 100 110 101 111 
312 000 001 100 101 010 1011 110 111 
321 000 001 010 011 100 1 101 110 111 

Table 6.2: Example of 3! possibilities for the permutation of bit strings b=(000, 001, 010, 011, 
100, 101, 110, 111) 
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bit position globally optimal indices 
123 100 000 110 010 101 001 111 011 
132 010 000 110 100 011 001 111 101 
213 100 000 101 001 110 010 111 011 
231 010 000 011 001 110 100 111 101 
312 001 1000 1 101 1 100 1011 1 010 1 111 110 
321 001 1 000 1 011 1 010 1 101 1 100 1 	111 110 

Table 63: Example of 3! possibilities for the permutation of bit strings b=(001, 000, 011, 010, 
101, 100, 111, 110) 

6.4 Algorithm 

Genetic algorithms (Holland, 1975; Goldberg, 1989; Fang, 1994) are adaptive methods which 

can be used in search and optimization problems. Here, a parallel genetic algorithm (Cohoon 

et al., 1987; Pettey et al., 1987; Shonkwiler, 1993) is used to optimize the codevector index 

assignment. The fitness is the expectation of distortion as in Eq. 6.25. The chromosome is 

the index string. The proposed algorithm consists of the following steps (Pan et al., 1996a): 

Step 1: Initialization - Randomly assign the indices (i.e. 0 to N - 1) to every individual of the 

population. A chromosome is composed of N indices. Separate the population into G 

groups. G sets of P members are generated in this step, where P is the population size for 

each group. Without loss of generality, set G = 2. 

Step 2: Evaluation—The fitness of every individual of the population in each group is evaluated 

in this step. 

Step 3: Communication - Send the top best B individuals of the jth group to the qth groups 

to substitute B individuals in each receiving group randomly for every R generations, i.e., 

receive some information from the other groups but keep the same population size. Here, 

q =j 21,j =0,1,...,G— 1 and t=O,1,...,m— 1. 

Step 4: Selection - Set the number of survivors within each group to P * P. where P 8  is the 

survival rate. For r = 1 to P * P 5 , randomly choose M individuals from the group and 
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select the best of these M individuals as a survivor. This selection scheme is also used in 

the Crossover step and Mutation step to select parents and candidates for crossover and 

mutation. 

Step 5: Crossover - The uniform order-based crossover technique (Davis, 1991) is used to 

produce the next generation from the selected parents for each group. P * P c  individuals 

for each group are generated in this step, where P c  is the crossover rate. Several gene 

positions of the chromosome are chosen randomly and the order in which these genes 

appear in the first parent is imposed on the second parent to produce offspring. The genes 

in the other positions are the same as the first parent. 

Step 6: Mutation— The genes (or indices) in the chromosomes of the population are mutated 

according to the mutation rate P m . Here, the total number of mutations for each group 

is set to group population size P * mutation rate P m. The mutation is only operated by 

exchanging two indices randomly in each group. Here, P + P + P m  = 1. 

Step 7: Termination - Step 2 to step 6 are repeated until the predefined fitness or the number 

of generations have been reached. After termination, the optimal codevector indices are 

generated from the best individual for all groups. 

6.5 Experimental Results 

The test materials for these experiments consisted of 200 words recorded from one male speaker. 

The speech is sampled at a rate of 16 kHz and 13-dimensional cepstnim coefficients (including 

energy) are computed over 20 ms-wide frames with 5 ms frame shift. A total of 20,030 analyzed 

frames are used to generate 8, 16,32 and 64 codevectors for the experiments of codevector index 

assignment. 

Experimentthe were carried out to test the performance of the new algorithm and the average 

distortion of the random assignment for 8, 16, 32 and 64 codevectors. The performance is 

measured in terms of the average distortion using Eq. 6.25 compared with the average distortion 
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of the random assignment for any bit error using Eq. 6.24. The inverse of the average distortion 

is used as the fitness in this new algorithm to test the worst case of the random assignment 

The distribution of the codevector probability is set to a uniform distribution. The parameter 

values used for the group population size P, the number of groups G, the predefined number 

of generations, the survival rate P, the crossover rate P. the mutation rate P m, the number of 

individuals for selection M, the number of top best for communication B and the number of 

generations for communication R are 50, 8, 500, 0.5, 0.4, 0.1, 3, 1 and 50 respectively. Table 6.4 

shows the average distortion with 0.01 bit error probability for 10 runs. The new algorithm 

reduces the distortion by more than 59 % compared with the random assignment and better than 

75 % compared with the worst case for 64 codevectors and 0.01 bit error probability. For 0.1 bit 

error probability, the average distortion for 10 runs is shown in Table 6.5. The new algorithm 

reduces the distortion by more than 51 % compared with the random assignment and better than 

66 % compared with the worst case for 64 codevectors and 0.1 bit error probability. The detail 

results of this algorithm for 0.01 and 0.1 bit error probability are depicted in Table 6.6, 6.7, 6.8, 

6.9, 6.10, 6.11, 6.12 and 6.13. 

The experimental results of the parallel genetic algorithm in codebook index assignment for 

different population sizes are shown in Fig. 6.2. The average distortion decreases with increase 

in the population size. This result is reasonable because for more individuals, the parallel genetic 

algorithm will provide more possible solutions. All previous algorithms (Marca & Jayant, 1987; 

Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho, 1987) are 

simulated on the assumption of single bit error. One of the contributions in this chapter is the 

derivation of the average distortion for any bit error and the application of the parallel genetic 

algorithm to codebook index assignment for any bit error. Experimental results for the bit error 

probability from 0.01 to 0.3 for 32 codewords are depicted in Fig. 6.3. 

The spirit of the parallel genetic algorithm is not only to accelerate the speed of running 

time, but also to produce improved index assignments. In order to reach these objectives, the 
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communication between groups should be operated for some fixed generations. By sending some 

top best individuals in the current group to the neighbouring groups, the problem of being trapped 

in the local optimum due to convergence in an earlier generation can be avoided because some 

promising individuals are migrated from the other groups to replace some worse individuals in 

the current group. Experiments have also been carried out to test performance in the separation 

of the groups. The number of possible solutions that the parallel genetic algorithm provides 

is  x G x N 9 ,where P, G and N 9  are the group population size, the number of groups and 

the number of generations, respectively. The comparisons in the performance of the separating 

groups are based on the same total number of possible solutions, i.e., P x G x N 9  is kept constant. 

The total number of individuals of the population are separated into 8 groups, 4 groups, 2 groups 

and 1 group (standard genetic algorithm) and the group population sizes are 50, 100, 200 and 

400, respectively. The other parameter values used for the predefined number of generations 

N 9 , the bit error probability, the survival rate P, the crossover rate P, the mutation rate P m , 

the number of individuals for selection M, the number of top best for communication B and the 

number of generations for communication R are 500, 0.01, 0.5, 0.4, 0.1, 3, 1 and 50 respectively. 

The experimental results for 32 codewonis are shown in Fig. 6.4, the more groups are used, the 

better result is generated. 

From the performance noted in these experiments, the proposed algorithm is an effective means 

for assigning codevector indices for noisy channels. The property of multiple global optima can 

also be employed to reduce the search space for codevector index assignment of the memoryless 

binary symmetric channel. Furthermore, the average distortion of random assignment for any 

bit error is also introduced in this chapter. 
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Number of codevectors New algorithm Random assignment Worst case 
8 0.05019 0.08091 0.11805 
16 0.05518 0.10667 0.17194 
32 0.05735 0.12900 0.21675 
64 0.06370 0.15695 0.26712 

Table 6.4: Performance (MSE) comparison of new algorithm, random assignment and worst 
case (bit error rate: 0.01) 

Number of codevectors New algorithm Random assignment Worst case 
8 0.49695 0.73824 1.00987 
16 0.54219 0.93094 1.35419 
32 0.56014 1.07788 1.57570 
64 0.60435 1.25663 1 	1.80073 

Table 6.5: Performance (MSE) comparison of new algorithm, random assignment and worst 
case (bit error rate: 0.1) 

random 0.08091  
Seed Parallel Genetic Algorithm Worst Case 

1 0.50194 0.118052 
2 0.50194 0.118052 
3 0.50194 0.118052 
4 0.50194 0.118052 
5 0.50194 0.118052 
6 0.50194 0.118052 
7 0.50194 0.118052 
8 0.50194 0.118052 
9 0.50194 0.118052 
10 0.50194 0.118052 

Table 6.6: Mean squared errors for ten runs of the new algorithm and the worst case for 8 
codewords (error bit rate: 0.01) 

147 



random 0.10667  
Seed Parallel Genetic Algorithm Worst Case 

1 0.055510 0.171944 
2 0.054983 0.171944 
3 0.054983 0.171944 
4 0.055472 0.171944 
5 0.054983 0.171944 
6 0.054983 0.171944 
7 0.055472 0.171944 
8 0.055472 0.171944 
9 0.054983 0.171944 
10 0.054983 0.171944 

Table 6.7: Mean squared errors for ten runs of the new algorithm and the worst case for 16 
codewords (error bit rate: 0.01) 

random 0.12900  
Seed Parallel Genetic Algorithm Worst Case 

1 0.057117 0.216169 
2 1 	0.057323 0.216480 
3 0.057218 0.216682 
4 0.057010 0.216950 
5 0.057371 0.217128 
6 0.057040 0.2 16832 
7 0.057020 0.217046 
8 0.058332 0.217064 
9 0.057118 0.216629 
10 0.057901 0.216559 

Table 6.8: Mean squared errors for ten runs of the new algorithm and the worst case for 32 
codewords (error bit rate: 0.01) 
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random 0.15695  
Seed Parallel Genetic Algorithm Worst Case 

1 0.063189 0.267354 
2 0.064277 0.266953 
3 0.064599 0.267502 
4 0.063936 0.267080 
5 0.064027 0.266898 
6 0.063622 0.267707 
7 0.063 165 0.267259 
8 0.063798 0.265945 
9 0.063265 0.267465 
10 0.063097 0.266987 

Table 6.9: Mean squared errors for ten runs of the new algorithm and the worst case for 64 
codewords (error bit rate: 0.01) 

random 0.73824  
Seed Parallel Genetic Algorithm Worst Case 

1 0.496949 1.009870 
2 1 	 0.496949 1.009870 
3 0.496949 1.009870 
4 0.496949 1.009870 
5 0.496949 1.009870 
6 0.496949 1.009870 
7 0.496949 1.009870 
8 0.496949 1.009870 
9 0.496949 1.009870 
10 0.496949 1.009870 

Table 6.10: Mean squared errors for ten runs of the new algorithm and the worst case for 8 
codewords (error bit rate: 0.1) 
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random 0.93094  
Seed Parallel Genetic Algorithm Worst Case 

1 0.540761 1.354326 
2 0.544333 1.354326 
3 0.540761 1.354326 
4 0.540761 1.354326 
5 0.540761 1.354326 
6 0.544333 1.354326 
7 0.544333 1.354326 
8 0.544333 1.352996 
9 0.54076 1 1.354326 
10 0.54076 1 1.354326 

Table 6.11: Mean squared errors for ten runs of the new algorithm and the worst case for 16 
codewords (error bit rate: 0.1) 

random 1.07788  
Seed Parallel Genetic Algorithm Worst Case 

1 0.561347 1.572520 
2 1 	 0.558456 1.575521 
3 0.559565 1.5771 15 
4 0.562493 1.575976 
5 0.558365 1.573213 
6 0.564351 1.574178 
7 0.560843 1.576259 
8 0.557643 1.578823 
9 0.561906 1.578223 
10 0.556460 1.575162 

Table 6.12: Mean squared errors for ten runs of the new algorithm and the worst case for 32 
codewords (error bit rate: 0.1) 

150 



random 1.25663  
Seed Parallel Genetic Algorithm Worst Case 

1 0.602386 1.799010 
2 0.601041 1.798727 
3 0.606692 1.797925 
4 0.606469 1.804297 
5 0.600100 1.801423 
6 0.604978 1.802993 
7 0.603606 1.802993 
8 0.606954 1.801774 
9 0.604795 1.798162 
10 0.606492 1.799980 

Table 6.13: Mean squared errors for ten runs of the new algorithm and the worst case for 64 
codewords (error bit rate: 0.1) 
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Figure 6.2: Average distortion of parallel genetic algorithm in codebook index assignment for 
different population size 
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Figure 6.3: Average distortion of parallel genetic algorithm in codebook index assignment for 
different bit error probability 
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Average Distortion of 10 Runs 
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Figure 6.4: Average distortion of parallel genetic algorithm in codebook index assignment for 
different number of groups 
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Chapter 7 

Summary and Conclusions 

7.1 Summary 

This thesis can be separated into four topics concerning fast VQ codeword search algorithms, 

efficient VQ clustering algorithms, improved codebook design algorithms and improved algo-

rithms in VQ codebook index assignment for noisy channels. 

In Chapter 3, several fast codeword search algorithms are proposed, such as improved al-

gorithms combining the minimax method and the improved absolute error inequality (IAEI) 

criterion; improved algorithms for partial distortion search; improved algorithms for extended 

partial distortion search; fast approximate search algorithm; and an improved algorithm for the 

mean-distance-ordered search algorithm (MPS) for VQ image coding. 

Several fast clustering algorithms for vector quantization are presented in Chapter 4. All these 

approaches based on the LB  algorithm are compared. From the experiments, the IPC-type 

clustering algorithm is confirmed to be the most suitable algorithm for the general processors in 

which the operation of the multiplication is more expensive than the operation of comparison 

and the TPC-type clustering algorithm is recommended for use with DSP chips in which the 

operation of comparison is computationally expensive. 

In Chapter 5, genetic algorithms are applied to the generation of codevectors. The approach 

of stochastic relaxation is also combined with the genetic algorithms and the GLA algorithm to 
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further enhance the search ability of the genetic algorithm in codebook design. 

Chapter 6 describes the importance of codebook index assignment for noisy channels and the 

problem that codebook index assignment is an NP-hard problem. In order to derive improved 

assignment in the codebook index, a parallel genetic algorithm is demonstrated. Furthermore, 

the ensemble average distortion with any bit error is derived and the property of multiple global 

optimal in codebook index assignment is highlighted. 

7.2 Conclusions 

7.2.1 Efficient Codeword Search Algorithms 

Vector quantization has been applied to data compression of speech and images, the coding of 

speech and images, speech recognition and speech synthesis. The response time of codeword 

search for vector quantization is a very important factor to be considered for real-time applica-

tions. However, the complexity of vector quantization increases exponentially with the bit rate 

per dimension and the number of dimensions. This limits the application of vector quantization. 

In order to reduce the computation time, several efficient algorithms for VQ codeword search 

have been demonstrated. 

The bound for Minkowski metric is derived in this thesis. By setting the parameters, this bound 

can generate the hypercube approach, the partial distortion search (PDS) algorithm, the absolute 

error inequality criterion (AEI) and the improved absolute error inequality criterion (IAEI) etc. 

For the Minkowski metric of order n, this bound contributes the elimination criterion from 

metric to L 11  metric. The bound for Minkowski metric is also extended to the bounds for quadratic 

metric by using the methods of Karhunen-Loêve transform (KLT) and Triangular Matrix. The 

bounds for quadratic metric can be applied to the HMM with Gaussian mixture probability 

density function. 

By combining the improved absolute error inequality criterion with the minimax method, sev- 

eral new algorithms are presented. Among these algorithms, the best algorithm will reduce the 
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number of multiplications by more than 77% and slightly reduce the total number of mathemat-

ical operations for 1024 codewords compared with the minimax method. Since the operation 

of multiplication is far more expensive than the operation of addition or comparison for the 

general processors, experimental results confirm this new criterion. From many experiments 

in the literature (Huang et al., 1992; Soleymani & Moiera, 1987b; Soleymani & Morgera, 

1989), the absolute error inequality criterion (AEI) is the most efficient criterion in reducing 

the number of multiplications for a full search algorithm. By comparing the improved absolute 

error inequality criterion (IAEI) with the absolute error inequality criterion (AEI) from theory, 

the IAE1 criterion provides a tighter bound than AU criterion. From experiments in subsection 

3.2.3, the IAU criterion is shown to reduce the number of multiplications by more than 21% 

and better than 3% for the total number of mathematical operations compared with the AEI 

criterion. 

The distortion computation of the quadratic metric dominates the computation time in searching 

the nearest codeword for evaluating the log likelihood of Gaussian mixture distribution in the 

hidden Markov model with the Gaussian mixture VQ codebook probability density function. 

The quadratic metric is also popular in clustering algorithms. Unfortunately, the computational 

complexity is high. That is why the bound for quadratic metric is developed in this thesis. The 

experiments in the codeword search of the quadratic metric reveal that the new algorithm using 

the bound for quadratic metric with the partial distortion search is very efficient. The idea of 

this algorithm is to apply the technique of metric transformation from the quadratic metric to 

the Euclidean metric. Each input data vector can be transformed from the quadratic metric to 

the Euclidean metric first, then apply the bound for quadratic metric with the partial distortion 

search to eliminate impossible codeword matching. As shown in section 3.7, in comparing 

the new algorithm with the conventional method, the new algorithm will reduce the number of 

multiplications and the total number of mathematical operations by more than 98 % and 94 %, 

respectively. 
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There are two key elements in the design of efficient codeword search algorithms, i.e., an 

efficient tentative match approach and a powerful elimination criterion. The tentative match 

approach is used to derive the nearest codeword as soon as possible and the powerful elimination 

criterion is used to eliminate impossible codeword matching to avoid the full computation of the 

distortion between the codeword and the data vector. One of the most efficient tentative match 

approaches in image coding is to use the codeword with the most similar sum of components to 

the data vector as the most possible candidate. In applying this tentative match approach to the 

mean-distance-ordered search algorithm (MPS) (Ra & Kim, 1993), a powerful algorithm was 

reported by Ra and Kim. By extending the IAEI criterion, an even more powerful criterion is 

obtained. This criterion is the generalised form of the inequality in the mean-distance-ordered 

search algorithm (MPS). A new and improved algorithm is obtained by modifying the sum 

of components to a partial sum of components as the tentative match approach and applying 

the generalised criterion. This algorithm is an improved version of the mean-distance-ordered 

search algorithm (MPS) and this novel algorithm can be called the improved mean-distance-

ordered search algorithm (IMPS). From experiments, without applying partial distortion search 

algorithm in the IMPS algorithm and the MPS algorithm, the IMPS algorithm will reduce the 

computation time by more than 43% compared with the MPS algorithm. By applying the partial 

distortion search algorithm both in the IMPS algorithm and the MPS algorithm, the IMPS 

algorithm will reduce the number of multiplications by more than 27% and also reduce the total 

number of mathematical operations about 15% for 1024 codewords. 

Normally, the partial distortion search algorithm (PDS) is used at the last stage of the efficient 

codeword search algorithms because no algorithm can eliminate all impossible codeword match-

ing and the rest of the codewords which cannot be eliminated using some powerful criteria, can 

be further eliminated using the partial distortion search algorithm. The partial distortion search 

algorithm is very suitable for general processors in which the operation of multiplication is more 

expensive than the operation of comparison. In order to enhance the performance of the PD S 

algorithm to be suitable for any processor, the cost ratio of the comparison computation time 
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to dimension-distortion computation time is considered, and an improved PDS algorithm and 

an improved DPPDS algorithm are proposed. If the computation time of the comparison is 

neglected compared with that of multiplication, the cost ratio will be nearly 0, then the compu-

tation time of the improved DPPDS algorithm will be the same as the PDS algorithm. If the 

cost ratio is 1.0, then the improved D PPDS algorithm will reduce the computation time by more 

than 27% in comparison with the PDS algorithm. 

As described in section 3.4, the extended partial distortion search (EPDS) algorithm is the 

optimal version of PDS algorithm for considering the number of multiplications needed. The 

EPDS algorithm is very suitable for computer architectures in which the complexity of com-

parisons is negligible with respect to that of the multiplications. EPDS algorithm is less suited 

to some DSP processors in which comparisons are computationally expensive. In order to 

evaluate and enhance the performance of EPDS algorithm, the cost ratio of the sorting time 

to dimension-distortion computation time is introduced and the improved EPDS algorithm is 

proposed. Especially, the optimal inserting point of the sorting and the performance of EPDS 

and improved EPDS are derived in theory. The improved EPDS algorithm can be applied to 

dimension-distortion computation for codeword search and the frame-distortion computation for 

word recognition. 

A fast algorithm for approximate codeword search is also presented. Based on the average dis-

tortion needed, a rate can be selected. For example, the number of multiplications and the total 

number of operations will be reduced by more than 80 % and 11 % with only 0.6 % increased 

distortion for 8 codewords if the selected rate is 1.1 by comparing with the minimax method. 

7.2.2 Fast VQ Generation Algorithms 

In the efficient algorithms of codebook generation, several fast clustering approaches based 

on LBG algorithm are proposed and compared. Among these approaches, using the previous 

partitioned centre as the tentative match with improved AEI and PDS which is called the IPC-

type clustering algorithm is the most suitable approach for computer architectures in which the 
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complexity of comparisons is negligible with respect to that of multiplications. For processor 

architectures such as those based on the Harvard architecture in which comparisons are com-

putationally expensive, the combination of the previous partitioned centre, triangular inequality 

elimination (TIE) and PDS which is called a TPC-type clustering algorithm outperfonns the 

other algorithms. 

7.23 Improved VQ Codebook Design Algorithms 

The performance of vector quantization depends on the quality of the codevectors and the exis-

tence of a globally optimal algorithm to generate the codevectors. Up to now, no efficient method 

has been discovered to generate globally optimal codevectors. Although several algorithms were 

proposed (Ball & Hall, 1967; Linde et al., 1980; Equitz, 1989; Cetin & Weerackody, 1988; 

Zeger et al., 1992; Chung et al., 1993; Chen et al., 1995) for the design of the codebook, none of 

these has proven to be globally optimal. In this thesis, genetic algorithms are combined with the 

GLA algorithm to produce a more optimal algorithm when compared with the GLA algorithm. 

The approach of stochastic relaxation is also inserted to the mutation of genetic algorithms to 

further improve this novel algorithm. The main idea of these algorithms is to apply the powerful 

search ability of genetic algorithms to adapt the value of codevectors. For 32 or 64 codewords, 

the novel algorithms reduce the mean square error by more than 9% comparing with the GLA 

algorithm. 

7.2.4 New Discoveries of Codebook Index Assignment 

Vector quantization is very efficient for data compression of speech and images where the binary 

indices of the optimally chosen codevectors are sent. Vector quantization as the central data 

reduction scheme is however highly sensitive to channel errors. The effect of channel errors 

is to cause errors in the received indices. A parallel genetic algorithm is applied to assign the 

codevector indices for noisy channels so as to minimize the distortion due to bit errors. A parallel 

genetic algorithm is a genetic algorithm running on many small subpopulations simultaneously 

with an occasional identification and exchange of useful information among subpopulations. 
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The purpose of applying the parallel genetic algorithm in VQ codebook index assignment is not 

only to use the powerful technique of parallel processors to accelerate the search speed but also 

a distributed formulation is developed to generate better solutions with less work. Experimental 

results show that applying a parallel genetic algorithm to the optimization of VQ codebook index 

assignment will reduce the distortions by more than 59% compared with the random assignment 

and better than 75% compared with the worst case for 64 codevectors and 0.01 bit error rate. 

The novel property of multiple global optima has been reported. Using the property of multiple 

global optima, the complexity of computation can be reduced. All the algorithms (Marca & 

Jayant, 1987; Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho, 

1987) are simulated based on the assumption of single bit error, a condition which is not always 

true for real applications. The average distortion of the memoryless binary symmetric channel 

for any bit error in the assignment of codebook indices is also introduced in this thesis. 

7.3 Future Work 

73.1 Quadratic Metric 

The bound for quadratic metric not only can be used in FRAM-based recognition, but it can 

also be applied to any codeword search in which the distortion measure is quadratic. In speech 

recognition systems based on the semi-continuous hidden Markov model, the output probabilities 

are evaluated as 

b1(x) = 	c4(x, 

where (I(x, titj, ) are often Gaussians and c jj  are the mixture coefficients. 

In the most practical implementations, the above summation is extended only to the L most 

likely Gaussians in the mixture. Thus, the bounds for the quadratic metric can be modified to 

the search of the L best likely Gaussians in the mixture for a given input data vector X. 

The bounds for the quadratic metric are derived from the bound for the Minkowski metric using 
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methods of metric transformation. This work can thus be extended to investigate other methods 

of metric transformation and to extend the bound for Minkowski metric to other distortion 

measures in addition to the quadratic metric. 

73.2 Vector Quantization of Images 

The generalised form of the inequality in the mean-distance-ordered search algorithm (MPS) 

has been presented. In the proposed new algorithm, each codevector is separated into two 

sub-vectors only. By using this generalised form, each codevector can be separated into more 

than two sub-vectors and each sub-vector can be the composition of any components in the 

codevector. It may be also possible to find the optimal separation of these vector components 

in theory so that it is the most efficient in the codeword search. In addition, if the sums of 

the components for the subvectors are calculated first and these values are sorted in increasing 

order including the indices of codevectors, then the proposed new algorithm can be modified as 

follows: 

Step 1: FCode...sum = 	2  c, SCodesum = 	c and TCode..surn. = FCode...sutn+ 

S Co de_suni are calculated for each codeword, t = 1, 2, ..., N, N is the number of code-

words. A sorting list is computed according to the increasing order of the TCode -sum 1 . 

Step 2: FDatasutn = x, SDatasum. = 	x and TData..suiri. = FData.surn+ 

SData.suin are calculated. 

Step 3: Calculate the tentative matching codeword 1. using arg Min t  TD atasum—TCode.sumjl. 

Step 4: Calculate the squared Euclidean distortion D in  for the tentative matching codeword. 

Set 1. to be the nearest uncalculated codeword to the tentative matching codeword in the 

sorting list. 

Step 5: Check the termination of this program. Test Eq. 3.71 for the neighbour codewords in a 

back-and-forth manner as in paper (Ra & Kim, 1993), if it is satisfied, delete impossible 
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codeword matching, set Ito be the nearest uncalculated codeword to the tentative matching 

codeword in the sorting list and goto step 5; Otherwise, goto next step. 

	

Step 6: Test IFDatasum - FCode..suin1 f ~! 	or ISDatasum - SCode...suint l ~ 

for the neighbour codewords in a back-and-forth manner as in paper (Ra & 

Kim, 1993), if it is satisfied, then eliminate impossible codeword matching; otherwise use 

the IAEI with PDS to the codeword search and update the 0 ,,. Set Ito be the nearest 

uncalculated codeword to the tentative matching codeword in the sorting list and goto step 

5. 

733 Inequality for Codeword Search 

Given codewords C = {c; 1 ~ i  ~ k}, 1 ~ t ~ N, training data vectors Y, = {i4;l ~ i :5k} , 

1 <— P < T and test data vector X = {x;1 < i :!~ k}, from the training data vectors and 

codewords, compute 

maxj Ic—j,l  
A(i)= in 	 +61 	 (7.1) 

	

axPk 	_4)2 

and 

max,Ic.-4I - 
B(i.)=mi.1t 	 6. 	 (7.2) 

Z'1(c 	12 
i - lip) 

where 6 and 62 are Small scalar values and 1 < t < N. For a test vector X, use the minimax 

method as tentative match and compute 

it = argiith,4max1c - xIT. 	 (7.3) 

If 

maxIc1 - xI I> 	--maxIc, - xII, 	 (7.4) 
- B(m) 

then 

- x)2 ~ 	(c - xi)2. 	 (7.5) 
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Eq. 7.4 and 7.5 can be proved as follows: 

Assuming that the training data set is sufficiently representative of the test dta so that the ratio 

maxjIc - xI/ E1(c - x)2  falls within the range of values max;Ic - i41/ L 1 (c - 

observed for the training vectors for each t. From Eq. 7.1 and Eq. 7.2, with the above assumption, 

the following two equations are obtained. 

maxjlct - xI A(l) ~ 	
1(c - xi)2 	

(7.6) 

and 

B(m) < 
Max i  Ic - xI 

- 	 1(c&_xi)2 	
(7.7) 

Given 
A() 	 A() 

Tn.axjjc - xI ~ -maxfc - = —maxjl4 - xI I, 	(7.8) 
B(n) 	 B(n) 

by substituting Eq. 7.7 into Eq. 7.8, Eq. 7.9 is obtained. 

maxlc - x'I ~: A(I)L(c - x)2 	 (79) 

Eq. 7.6 can be rewritten as 

A(t) L(ct - x)2  ~ max j Ic - xII. 	 (7.10) 

According to Eq. 7.9 and Eq. 7.10, Eq. 7.5 is obtained and the proof is completed. Eq. 7.4 and 

7.5 might be useful in the codeword search. This inequality could combine with the other fast 

codeword search algorithms. Note that Eq. 7.1 and Eq. 72 can be changed to Eq. 7.11 and 

Eq. 7.12 or some other mathematical forms without having influence on the existence of this 

inequality, in other words, this inequality can be extended to other distortion measures. 

maxjIc—lj, A(t) 	 I 	
1. 	 (7.11) = maxp 	t  
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B(i.)=mtm maxjlct - 4I 	
&2. 	 (7.12) 

_)2 

7.3.4 Codebook Design 

In the GA-GLA1 algorithm and the GA-GLA2 algorithm, the initial individuals of the population 

are obtained from a random number generator. if the K-means algorithm is used to generate the 

initial population, the result might be superior. In the codebook design, the average distortion 

will be high if the centres of two clusters are very near or too many training data vectors in 

the same cluster, i.e., the average distortion within one cluster is over some threshold. if two 

clusters' centres are very near, it is better to merge these two clusters together. if there are too 

many training data vectors in the same cluster, it is better to split this cluster into two clusters. 

These properties could be combined with the GA-GLA1 algorithm and GA-GLA2 algorithm, the 

stochastic relaxation approach and the simulated annealing method to create further improved 

codebook design methods. 
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VQ codebook design using genetic 
algorithms 

J.S. Pan, F.R. McInnes and M.A. Jack 

Indexing terms: Genetic algorithms. Vector quantisation 

A codebook design approach for vector quantisation using genetic 
algorithms is proposed. This novel approach provides superior 
performance compared with the generalised Lloyd algorithm 
(GLA). 

Introduction: Vector quantisation (VQ) [1] is a very efficient 
approach to data compression. The encoder of VQ encodes a 
given set of k-dimensional data vectors X={XX1  r= Rk; j = .....T} 
with a much smaller set of codewords C={CjC1  E Rk; j = 

N}(N << 7). Only the index i is sent to the decoder. The 
decoder has the same codebook as the encoder, and decoding is 
operated by a table look-up procedure. The performance of data 
compression depends on a good codebook of representative 

vectors. 
Lloyd [2] showed two conditions are necessary but not sufficient 

for the existence of an optimal minimum mean squared error 
(MSE) quantiser: 

The codewords should be the centroids of the partitions of the 

vector space. 

The centroid is the nearest neighbour (NN) for the data vec-
tors in the partitioned set. 

These conditions have been applied to codebook design by 

Linde et al., and called the generalised Lloyd algorithm (GLA) [3]. 
Since these conditions are necessary but not sufficient, there is no 
guarantee that the resulting codebook is optimal. The generalised 
Lloyd algorithin is widely used in codebook generation for vector 
quantisation. It is a descent algorithm in the sense that at each 
iteration, the average distortion is reduced. For this reason, GLA 
tends to get trapped in local minima. The performance of the 
GLA depends on the number of minima and choice of the initial 

conditions. 
Genetic algorithms refer to a model introduced and investigated 

by Holland [4] and by students of Holland. A genetic algorithm is 
any population-based model that uses selection and recombination 
operators to generate new sample points in a search space. Genetic 

algorithms [5] have been proven to be powerful methods in search, 
optimization and machine learning. They encode a potential solu-
tion to a specific problem on a simple chromosome-like data 
structure and apply recombination operators to these structures to 
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Fig. 1 Flowchart of GA-GLA algorithm  

achieve optimisation. To our knowledge, no one has applied 
genetic algorithms to optimisation of codebooks. We describe the 
GA-GLA algorithm derived by applying genetic algorithms to 
codebook design to produce globally optimum VQ codebook vec-
tors. The four main steps involved in genetic algorithms are evalu-
ation, selection, crossover and mutation. In this Letter, only 
evaluation, selection and crossover are adopted in combination 
with GLA to produce a superior GA-GLA codebook design algo-

rithm. 

GA-GLA algorithm: The fitness of genetic algorithms can be repre-
sented by the mean squared error (MSE). In the VQ operation, 
the chromosome is designated as the centroid of the cluster. The 
individual of the population is the codebook. As shown in Fig. I. 
the proposed algorithm consists of the following steps: 

Initialisation: Calculate the central chromosome (centroid) G0  

from the training vectors X, (i 1.2.....7). Select N chromosomes G1  

(j=l.2....,1V) for every member of the population using a random 

number generator, where N is the codebook size, so that each 

codebook consists of N single-vector chromosomes. P sets of N 

chromosomes are generated in this step, where P is the population 

size. 

Update: GLA - GLA is used to update N chromosomes for 

every member of the population. 

Evaluation: The fitness (or MSE) of every member of the pop-

ulation is evaluated. 

Selection: The survivors of the current population are decided 

from the survival rate P. A random number generator is used to 
generate random numbers whose values are between 0 and 1. If 
the random number is < P, this codebook survives; otherwise, it 
does not survive. The best fitness of the population always sur-
vives. Pairs of parents are selected from these survivors and 
undergo a subsequent crossover operation to produce the child 
chromosomes that form a new population in the next generation. 

Crossover: The chromosomes of each survivor are sorted in 
decreasing order according to the squared error between the chro-
mosome G of the current population and the central chromosome 

G0. Without sorting at this stage, it is difficult to jump out of the 
local minima. The single point crossover technique [51 is used to 
produce the next generation from the selected parents. 

Termination: Steps (ii)—(v) are repeated until the predefined 
number of generations has been reached. After termination, the 

optimal codebook is generated from N chromosomes in the best 
member of the current population. 

Experimental results: The test materials for these experiments con-
sisted of nine words recorded from one male speaker. The speech 

is sampled at a rate of 16kHz and 13-dimensional cepstrum co-
efficients (including energy) are computed over 20ms wide frames 
with 5ms frame shift. A total of 817 analysed frames are used in 
the codebook design experiments. 

Table 1: Performance comparison of GLA and GA-GLA algorithms 

GLA 1GA-GLA1 GLA GA-GLA 

Codebook size 8 1 	8 1 	32 1 	32 

MSE 0.60634 1 0.58345 1 0.28522 1 0.25947 

Experiments were carried out to test the performance of the 
GA-GLA algorithm and the GLA algorithm for 8 and 32 code-
words. The performance is measured in terms of the mean squared 
error (MSE) and is averaged from 10 runs. The parameter values 
used for the population size P, the predefined number of genera-

tions, and the survival rate F, are 20, 100 and 0.5, respectively. In 
any run, the mean squared error of the GA-GLA algorithm is 
smaller than for the GLA algorithm. Table I shows that code-
books generated by the GA-GLA algorithm are much better than 
those generated by the GLA algorithm. For 32 codewords, the 
mean squared error decreases by >9% using the GA-GLA algo- 



rithm instead of the GLA algorithm. 

Conclusions: From the preliminary experiments, the performance 
of the proposed GA-GLA algorithm is significantly better than 
the GLA algorithm. This algorithm can be extended by using 
mutation techniques. chromosome encoding techniques and the 
other powerful selection and crossover techniques. 

© lEE 1995 	 30 May 1995 
Electronics Letters Online No: 19951031 

J.S. Pan. F.R. McInnes and M.A. Jack (Centre for Communication 
Interface Research. University of Edinburgh. 80 South Bridge, 
Edinburgh ElI IHN. United Kingdom) 

J.S. Pan: also with Department of Electronic Engineering, Kaohsiung 
Institute of Technology. Taiwan. Republic of China 

References 

GRAY. R.M.: 'Vector quantization'. IEEE Mag., 1984. pp. 4-29 
LLOYD. S.F.: 'Least squares quantisaton in PCM'. IEEE Trans.. 
1982. IT-28. pp. 129-137 
LINDE. Y.. BUZO. A.. and GRAY. R.M.: 'An algorithm for vector 
quantiser design'. IEEE Trans.. 1980. COM-28. (I), pp.  84-95 
HOLLAND. J.H.: 'Adaptation in natural and artificial systems' 
(University of Michigan Press. 1975) 
GOLDBERG. D.E.: 'Genetic algorithms in search. optimisation and 
machine learning' (Addison-Wesley Publishing Company. 1989) 



Reply 

VQ codebook design using genetic 
algorithm 

J.S. Pan 

We wish to thank V. Delport for making us aware of his Lettc 
[1, 21. Although he uses a genetic algorithm, it differs from our 
considerably [3]. The main differences are as follows: Delport use 
the codebook indices of the training data as the coding string, th 
length of the coding string is thus the number of the training dat 
points in the training set. In our algorithm, we use the codeboo 
vectors as the coding string, the length of the coding suing is thu 
equivalent to the number of codewords. This means that th 
string is much shorter in our algorithm. Theoretically and practi 
cally, it is difficult to converge to better optimal value if the cod 
ing string is too long. 

In addition, in our algorithm, the coding strings of the initi 
population can be assicned randomly from the training data 
because it can be converged to optimal value easily in any initia 
condition. Deiport uses the binary splitting method to obtain th 
better initial population to improve his algorithm. 

Finally, we employ a sorting technique based on the centra 
value of the training data to facilitate convergence to bette 
optima. This is unique to our algorithm. 

To sum up. Delport applies a genetic algorithm to adapt th 
codebook index of points in the training data, whereas we apply 
genetic algorithm to adapt the value of the codebook vector. 
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Application of parallel genetic algorithm and 
property of multiple global optima to VQ 
codevector index assignment for noisy 
channels 

J.S. Pan, F.R. McInnes and M.A. Jack 

Indexing terms: Genetic algorithms. Vector quantisazion. Signal 
processing 

A parallel genetic algorithm is applied to assign the codevector 
indices for noisy channels so as to minimise the distortion caused 
by bit errors. The property of multiple global optima and the 
average distortion of the memox-vless binary symmetric channel 
for any bit error are also introduced. Experimental results confirm 
this approach. 

Introduction: Vector quantisation (VQ) [1] is very efficient for data 
compression of speech and image where the binary indices of the 
optimally chosen codevectors are sent. The effect of channel errors 
is to cause errors in the received indices. Thus, distortions are 
introduced in the decoding step. Distortion due to an imperfect 
channel can be reduced by assigning suitable indices to codevec-
tors. If the number of codevectors is N, the possible combination 
of indices to codevectors is An To test N! assinnments is an NP-
hard problem. 

Zeger and Gersho [2] proposed the binary switching algorithm 
to improve the codevector index assinnment. Farvardin (3) applied 
the simulated annealing technique to design the codevector indi-
ces. In this Letter the property of multiple global optima is intro-
duced. This property can be used to reduce the search space in the 
algorithms of [2. 3]. Furthermore, an algorithm based on a parallel 
genetic algorithm [4] is developed for codevector index assignment. 

Average distortion: N codevectors C,, i = 1. 2..... N, are assigned 
codevector indices with an in bit string b(c), where N = 2". The 
distortion between codevector C,- and ç is given by a non-negative 
distortion measure d(c,, c). Usually. the Euclidean metric is used. 
Let P(b(c)/b(c)). i.j = 1. 2..... N. denote the probability that the 
index b(ç,) is received given the index b(c) is sent. Assuming ran-
dom assitmment of the codevector indices b = (b(c,). b(c)..... 
bc)). the average distortion for any possible bit errors caused by 
the channel noise is given by 

Dc = 
	

P(cj) 	P(b(c,)/b(c1))d(c.c) 	(1) 

We assume that the channel is a memorviess binary symmetric 
channel with bit error probability E. Thus, the error probability is 
c'(l - cy"-', where / is the number of bits in which b(c) and b(c,) 
differ. Let H(b(c), b(c)) denote the Hamming distance between 
b(c) and b(c). The average distortion can be written as 

De  .LP(cj)Ed(c,cj)E  
i—i 	j=1 	1=1 b:H(b(cj).b(c))= 

 
There are N choices of b(c), (7')  choices of b(c1) and (N - 2)! 

choices of the rest of b given I. eqn. 2 can be expressed as 

Dc = 

 

57  = J\T_ip(C)d(Cici)E(l)e(l_) 	(4) 
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Alter the indices are assigned to the codevectors, the expecta-
tion of distortion for the transmission of indices b(c1). i = 1. 2..... 
N. can be written as 

D = 	P(c)r'(1 -s) 	 d(c.c) (7) 

1=1 	 jEV'(b(c)) 

where N7(h(c1)) = lb(c1 ) E I. ff(h(c,). h(c;)) = /} is the lth neighbour 
set of b(c). 

Multiple global optima: Assume J(c,) = 	= (b1 . hr. .... hh ) is the 
function of index assienment. Here h,E j 0.l}. j = 1. 2. .... N.J = 
I. 2. .... in. If] is globally optimal. then so is g defined by g(c) 
(a, a,. .... aij.  where a0  = b, J)  q1,,,,. q.e 10.l} and p is a permu-
tation of :1. 2. .... in}. There are 2' possibilities for q 11,j = 1. 2..... 
in. and in! possibilities for p. Thus, at least in!N global optima 
exist for the problem of codebook index assignment. So. an M 
search space can be reduced to an (N-l)!Iin! search space. This 
property can be applied to the algorithms of [2. 31. for example. by 
setting one index to one codevector at the initial step, and holding 
this codevector index assignment until the termination of these 
algorithms. i.e. reduce the search space from Al to (iV - I)! with-
out reducing the possibility of obtaining a better optimum. 

.-llgorithni: Genetic algorithms [5] are adaptive methods which can 
be used in search and optimisation problems. Here, a parallel 
genetic algorithm is used to optimise the codevector index assign-
ment. The fitness is the expectation of distortion as in eqn. 7. The 
chromosome is the index string. The proposed algorithm consists 
of the following steps: 

Initialisation. Assign one index to one codevector. say, N - 1 to 
C.... Randomly assign the rest of the indices (i.e. 0 to N - 2) to 
every individual of the population. A chromosome is composed 
of N - I indices. Separate the population into G groups. G sets 
or P members are generated in this step. where P is the popula-
tion size for eachgroup. Without loss of generality, set G = 2. 
Evaluation. The fitness of every individual of the population in 
each group is evaluated in this step. 
Communication. Send the top best B individuals of the Jth 
group to the qth groups to substitute B individuals in each 
receiving group randomly for every R generations. i.e. receive 
some information from the other groups but keep the same 
population size. Here. q =j ED 2',j = 0, 1.....G - 1 and i = 0, 

n - I. 

Selection. Set the number of survivors within each group to P * 
P,, where P, is the survival rate. For r = 1 to P * P,, randomly 
choose M individuals from the group and select the best of 
these M individuals as a survivor. This selection scheme is also 
used in steps 5 and 6 to select parents and candidates for cross-
over and mutation. 
Crossover. The uniform order-based crossover technique [6] is 
used to produce the next generation from the selected parents 
for each group. P * P, individuals for each group are generated 
in this step, where P is the crossover rate. Several gene posi-
tions of the chromosome are chosen randomly and the order in 
which these genes appear in the first parent is imposed on the 
second parent to produce offspring. The genes in the other 
positions are the same as for the first parent. 
Mutation. The genes (or indices) in the chromosomes of the 
population are mutated according to the mutation rate P,,,. 
Here, the total number of mutations for each group is set to 
group population size P * mutation rate P,,,. The mutation is 
only operated by exchanging two indices randomly in each 
group. Here, 1', + P + P. = 1. 

1. tciiiuiIauotl. .Lep. to step o are repeatcu until tile preuetine 
fitness or the number of generations have been reached. Afte 
termination, the optimal codevector indices are generated fron 
the best individual for all groups. 

E.vperiinental results: The test materials for these experiments con 
sisted of 200 words recorded from one male speaker. The speech i 
sampled at a rate of 16kHz. and 13-dimensional cepstrum coefli 
cients (including energy) are computed over 20ms wide frame. 
with Sms frame shift. A total of 20030 analysed frames are use( 
to generate 8. 16. 32 and 64 codevectors for the experiments o 
codevector index assignment. 

Experiments were carried out to test the performance of thl 
new algorithm and the average distortion of the random assign 
ment for 8. 16. 32 and 64 codevectors. The performance is meas 
ured in terms of the average distortion using eqn. 7 compared witi 
the average distortion of the random assignment for any bit erro: 
using eqn. 6. The inverse of the average distortion is used as th 
fitness in this new algorithm to test the worst case of the randort 
assignment. The distribution of the codevector probability is set tc 
a uniform distribution. The parameter values used for the grout 
population size P. the number of groups G. the predefined numbei 
of generations. the survival rate P,. the crossover rate P., th 
mutation rate P,,,, the number of individuals for selection M. th 
number of top best for communication B and the number of gen 
erations for communication Rare 50. 8. 500. 0.5. 0.4, 0.1. 3. 3 anc 
50. respectively. Table I shows the average distortion with 0.01 bii 
error probability for 10 runs. The new algorithm reduces the dis 
tortion by more than 59% compared with the random assignmenl 
and better than 75% compared with the worst case for 64 code 
vectors; 

Table I: Performance comparison of new algorithm. randoir 
assignment and worst case 

Number of codevectors New algorithm Random assienment Worst case 
8 0.05019 0.08091 0.11570 

16 0.05519 0.10667 0.17193 

32 0.05802 0.12900 0.21669 

64 0.06433 0.15695 0.26712 

Conclusions: From the performance noted in these experiments, 
the proposed algorithm is a good means for assigning codevectoi 
indices for noisy channels. The property of multiple global optima 
can also be employed to reduce the search space for codevectot 
index assignment of the memorvless binary symmetric channel. 
Furthermore, the average distortion of random assignment for an 
bit error is also introduced in this Letter. 
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Abstract—Some fast clustering algorithms for vector quantization (VQ) based on the LBG recursive 
algorithm are presented and compared. Experimental results in comparison to the conventional vector-
quantization (VQ) clustering algorithm with speech data demonstrate that the best approach will save more 
than 99% in the number of multiplications. as well as considerable saving in the number of additions. The 
increase in the number of comparisons is moderate. An improved absolute error inequality (AEI) criterion for 
Euclidean distortion measure is also proposed and utilized in the VQ clustering algorithm. 

VQ 	Partial distortion search 
	

Absolute error inequality 	LBG algorithm 
Triangular inequality elimination 

	Nearest neighbour 

I. INTRODUCTION 

Vector quantization (i) (VQ) is a very efficient ap-
proach:to data compression. The encoder of VQ en-
codes a given set of k-dimensional data vectors 
X = {XXeRk; j = 1,..., T} with a much smaller set 
of codewords C={C jICERk; i=1,...,N} (N<<T). 
Only the index i is sent to the decoder. The decoder has 
the same codebook as the encoder and decoding is 
operated by table look-up procedure. The perform-
ance of data compressing depends on a good codebook 
of representative vectors. 

The LBG algorithm 121  is an efficient VQ clustering 
algorithm. This algorithm is based either on a known 
probabilistic model or on a long training sequence of 
data. The main idea of this algorithm is the iterative 
application of a codebook modification operation 
where a distortion measure D is used to compute the 
cost D(X, C 1) of reproducing the data vector X as the 
codeword C. Usually the Euclidean distortion 
measure is used to compute the cost. The iteration is 
terminated if the average distortion D(X, C) converges. 
The iterative procedure is time consuming and it is 
difficult to apply the VQ clustering procedure for a real 
time operation. 

The computational complexity of the LBG algo-
rithm can be significantly reduced if an efficient code-
word search algorithm is applied to the partitioning of 
the data vectors. Many fast algorithms have been 
proposed to increase the speed of codeword 
search.°' 2  Fischer and Patrick (3)  presented a pre-
processing algorithm to reorder the design sample 
such that many distance computations could be elim- 

inated. Fukunaga and Narendrat 41  proposed a branch 
and bound (BAB) algorithm for computing some near -
est neighbours. The BAB algorithm is a tree search 
algorithm using a hierarchical decomposition of the 
sample set of known patterns. They used the criterion 
of triangular inequality to develop two rules to elimin-
ate the distance computation in the tree classifier. 
Kamgar-Parsi and Narendra 51  added another two 
rules to the BAB algorithm to improve the computa-
tion time. Niemann and Goppert 161  combined these 
four rules into one and used a hierarchical partition of 
a pattern sample algorithm to obtain more efficient 
computation time. Jiang and Zhang 17  developed 
a more efficient BAB tree search algorithm for finding 
the nearest neighbour to a new data Vector in the 
codebook. These efficient search methods are not suit-
able to apply to the VQ clustering algorithm due to the 
overhead of the pre-processing. 

Bei and Gray 81  proposed the partial distortion 
search (PDS) algorithm to reduce computational com-
plexity. PDS is a simple and efficient codeword search 
algorithm which has no extra storage or preprocessing 
requirements. Cheng et al.191  proposed the minimax 
method to obtain the tentative match and improve the 
search efficiency. VidalUO)  presented the approximat-
ing and eliminating search algorithm (AESA), in which 
the computation time is approximately constant for 
codeword search in a large codebook size. AESA is 
a very efficient algorithm to reduce multiplication 
operations for large codebook size, but it needs many 
comparison operations. Soleymoni and M orgeraU'l 
proposed the absolute error inequality (AEI) elimina-
tion criterion to improve the speed of VQ search. Chen 
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and Pan ' 2  applied the triangular inequality elimin-
ation (TIE) on VQ-based recognition of isolated 
words, taking advantage of the high correlation char-
acteristics between data vectors of adjacent speech 
frames. In this paper, we improve our previous 
work( 3)  in clustering algorithms by developing the 
improved AEI criterion. 

The structure of this paper is as follows. Section 
2 describes the detail of the LBG algorithm, tentative 
match approaches and codeword elimination criteria, 
which include the previous vector candidate and previ-
ous partitioned centre, partial distortion search (PDS), 
hypercube approach, absolute error inequality (AEI) 
criterion, improved absolute error inequality criterion, 
triangular inequality elimination (TIE) criteria and 
codebook reorder method. The improved absolute 
error inequality criterion is also proved in this section. 
Section 3 lists the fast VQ clustering algorithms which 
combine the tentative match approaches and code-
word elimination criteria described in Section 2. Ex-
perimental results are discussed in Section 4. Summary 
and conclusions are given in the last section. 

The cepstrum' 4 ' 5  of a signal is defined as the 
Fourier transform of the log of the signal spectrum. 
Cepstrum coefficients are used as the test features in 
the clustering experiments because they are commonly 
used in speech coding, speech synthesis, speech recog-
nition and speaker recognition. The test materials for 
these experiments consist of 200 words recorded from 
one-male speaker. The speech is sampled at a rate of 
16 kHz and 13-dimensional cepstrum coefficients with 
pre-emphasis value 0.98 are computed over 20 ms-
wide frames with a 5 ms frame shift. A total of 20, 030 
analysed frames are used in the VQ clustering experi-
ments. Normally, this data set size is used to train up to 
1024 codewords. Here, we use it in the VQ clustering 
experiments for eight and 1024 codewords. 

2. RELATED METHODS 

2.1. LBG algorithm 

All of the fast VQ clustering algorithms described in 
this paper are based on the LBG algorithm . ( 2)  This 
algorithm starts by assigning all the training data 
vectors to a single cluster and proceeds by binary 
splitting until the desired number of clusters is 
achieved. After each splitting of the clusters there is an 
iterative procedure in which the cluster centroids are 
re-estimated and the data vectors are re-classified until 
the average distortion between the centroids and their 
classified vectors converges. The classification at each 
stage uses the full-search algorithm to find the nearest 
centroid to each vector. The detail algorithm based on 
unknown distribution is as follows: 

Step 1. Set in = 1. Calculate centroid C1 =4JX,, 
where T is the total number of data vectors. 
Step 2. Divide each centroid Ci  into two close vectors 

= C. * (1 + (5) and C 2  = C *( 1 - (5), 1 1~  i  :!~ m. 

Here. 6 is a small fixed perturbation scalar. Let in = 2m. 
Set n = 0. here n is the iterative times. 
Step 3. Find the nearest neighbour to each data vec-
tor. Put Xi  in the partitioned set P. if C. is the nearest 
neighbour to X. 
Step 4. After obtaining the partitioned sets P = (P 1 ; 
I :5; i :!~; m), set n = n + I. Calculate the overall average 
distortion D = 	 D(X, C), where P 
{X, X .....X}. 
Step 5. Find centroids of all disjoint partitioned sets 
P1  by C, = EJ:.  1X. 
Step 6. If (D -' — D)/D > e, go to step 3; otherwise 
go to step 7. Here, E is a small distortion threshold. 
Step 7. If in = N, then take the codebook C, as the final 
codebook: otherwise, go to step 2. Here, N is the 
codebook size. 

2.2. Previous vector candidate and previous 
partitioned centre 

In the VQ clustering procedure, speech data has the 
property that the classification result for the present 
vector is usually the same as or close to the classified 
result of the previous vector.' 2)  Moreover, most of the 
vectors which are re-estimated in a full-search actually. 
remain in the same partitioned set as for the previous 
re-estimation. With binary codeword splitting, the 
most probable partition to which data vectors belong 
can be chosen from the separated centres of the par-
titioned set. The previous vector candidate and previ-
ous partitioned centre can be used as tentative matches 
in the VQ clustering algorithm. Figure 1 illustrates the 
relationship between the number of codewords and the 
probability that data vectors remain in the same par-
titioned set after re-estimation in full-search. For the 
fixed data vectors the more codewords being gener-
ated, the larger the probability that the data vectors 
belong to the same (previous) partitioned set. The 
probability is up to 0.949 for 1024 codewords. These 
results are average across the re-estimation and re-
classification iterations when (5= 0.01 and c = 0.005. 

2.3. Partial distortion search 

Given one codeword C, and the test vector X in 
k-dimensional space, the distortion of the Euclidean 
metric can be expressed as follows: 

k 
D(X, C,) 

= 	
— c)2 , 	 (1) 

where C, = {c,', c,, . .. , c} and X= {x 1 , x 2 ,. .. , x" }. 
Given the current minimum distortion: 

D(X, C,) = D min , 	 (2) 

S 

if 	(x1  - c)) 2  > D  i., 	 (3) 

then D(X, C) ;2! D(X, C,), 	(4) 

where s :5 k. 
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Fig. 1. Relationship between the number of codewords and the probability of the data vectors belonging to 
the previous partitioned set. 

The efficiency of PDS 8  derives from elimination of 
an unfinished distortion computation if its partial 
accumulated distortion is larger than the current mini-
mum distortion. 

2.4. Hypercube approach 

The hypercube approach is a well known premature 
method and it is quite efficient if the difference for any 
coefficient is generally larger than the difference of the 
other coefficients, such as the first coefficient of cep-
strum coefficients. Assume equation (2) already exists: 

if 	 1 ~i~ k, 	(5) 

then C will not be the nearest neighbour to X. 
This approach is quite straightforward. There is no 

multiplication operation required for the test of the 
hypercube approach. 

2.5. Absolute error inequality criterion 

The absolute error inequality (AEI) ( "I criterion is 
the mathematical relationship between the city block 
metric (or L 1 ) and the Euclidean metric (or L 2). 

Assume C is the current nearest neighbour to X: 

S 

if 	 (6) 
1=1 

then 	- c)2  > Dmin, 	(7) 

where s :!~ k. 

This means C will not be the nearest neighbour to 
X if equation (6) is satisfied. This criterion can be 
performed by comparing the first dimension-difference 
of the test vector and codeword with the right-hand 
side of equation (6). If equation (6) is not satisfied for 
s = 1, then check this criterion for higher s. This cri-
terion is checked by increasing s until s = k or the 
criterion is satisfied. Figure 2 shows the statistics for 
the elimination probability of AS at each feature 
dimension. The previous partitioned centre is used 
as the initial codeword in this experiment. For 
1024 codewords, 61.6% of impossible codeword 
matches will be eliminated by using AS in the first 
dimension where only 0.5% codewords cannot be 
eliminated. 
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Fig. 2. The elimination probability of AEI of each feature dimension. 

2.6. Improved absolute error inequality criterion 

The AEI is not efficient compared with the hyper-
cube approach by settings to 1. Based on this phenom-
enon, an improved AEI criterion is presented here: 

if 	 (8) 

k 

then 	(x - c)2  _> Dmin , 	 (9) 
i= 1 

where s :5 h :!~ k. 
The improved AEI criterion can be proved as fol-

lows: 

Given a1  ~! 0 Vi, 

fh a\
0:5 a 	

) i=1 	j=1 

= ±a — ±aiaj+ 	
( ,

hi) 2  

) 2 . 

 

Hence, 	a 	
( 	

at)2. 

Hence, if 	a1  ;~: 

then 	a ~ (t ai ) 2  ~ 

( '11hD
n)2 = Dmin . 

Set a1  = 	- c)j. 

Hence if  I x' -  c > 

then 	Xi - cJ 2  

where s:!~ h:!~ k. 

This criterron is similar to AEI, with h instead of 
k. Since h :!~ k, this criterion provides a tighter 
bound than AEI. It is flexible by adapting s and h 
from I to k. For h = 1, it is the same as the hypercube 
approach. 

2.7. Triangular inequality elimination criterion 

Triangular inequality elimination ( 6)  is an efficient 
method for codeword search. Let V be the set of data 
vectors and C be the set of codewords and x, y belong 
to the set V. On V. a distortion measure is defined as 
a mapping d: V x V— R, which is assumed to fulfill the 
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metric properties: 

d(x,y) ~:0; d(x,y)=0 iffx=y 	(10) 

d(x, y) = d(y, x) 	 (11) 

d(x,y)+d(y,z) ~:d(x,z) 	 (12) 

Let C 11  C21  C3  be three different codewords and t be 
a test vector, then the following three criteria are 
obtained. 

. Criterion 1. 

Given the triangular inequality: 

d(t, C 2) + d(t, C 1 ) ~: d(C 1 , C 2 ); 	(13) 

if d(C 1 , C 2) ~ 2d(t, C 1 ), 	 (14) 

then d(t, C 2) ~ d(t. C 1 ). 	 (15) 

. Criterion 2. 

Given the triangular inequality: 

d(C31  C 2) :!~ d(t, C2) + d(t, C 3); 	(16) 

if d(C 31  C2) 2~ d(t, C 1 ) + d(t, C,), 	(17) 

then d(t. C 1 ) :5; d(t, C 3). 	 (18) 

. Criterion 3. 

Assume d(t, C 1 ) :~ d(t, C2).  

is simple and efficient to use Criterion I only. Figure 
3 illustrates the elimination probability using TIE 
combined with the previous partitioned centre in the 
VQ clustering procedure. For 1024 codewords, the 
elimination probability is 0.949. 

2.8. Codebook reorder method 

The codebook reorder method(  161  is to reorder the 
codewords so as to increase the search efficiency. For 
the speech encoding, it chooses the nearest codeword 
of the previous frame as a tentative match to encode 
the present frame. From training data, calculate the 
probability of these codewords to be encoded and 
arrange these codewords in order of decreasing prob-
ability. The codeword search is operated from the most 
probable codeword to the least probable. It is simple 
and efficient to create a state table where these el-
ements are indices of codewords and arranged in 
increasing order of distortion between the most prob-
able codeword and the other codewords. In the VQ 
clustering procedure, the previous vector candidate or 
previous partitioned centre can be chosen as the most 
probable codeword so as to create the state table. 
The computational complexity is O(N 2  log2  N) using 
Heapsort 117  to establish the state table. 

Given d(C 31  C2) !- d(r, C2) - d(t, C 3); 	(19) 	
3. FAST CLUSTERING ALGORITHMS 

if d(C 31  C2 ) :!~ d(t,C 2) - d(t, C 1 ), 	(20) 3.1. APV-type clustering algorithm 

	

then d(t,C,):!5;d(t,C 3). 	 (21) 

Criteria 2 and 3 can be merged to one criterion only, i.e. 

if d(t, C 1 ) :!~; d(C3 , C2) - d(t, C2)I, 	(22) 

then d(t, C 1 ) :!~ d(t, C 3). 	 (23) 

To use Criterion 1, these distortions between all pairs 
of codewords are calculated in advance. If equation 
(14) is met, then the computation of d(t, C 2) can be 
omitted if d(t, C 1 ) has already been computed. Cri-
terion I can be modified for a square error distortion 
measure. In the codeword searching system, a table is 
made to store the one-fourth of square distortion 
between codewords, i.e. store the value of d 2 (C 1 , C)/4, 
for i= 1,2,...,N;j= 1,2.....N. Here, Nis the number 
of codewords. The overhead of Criterion 1 is to estab-
lish the distortion table in which N(N - l)k/2 multipli-
cations and N(N - 1)(2k - 1)/2 additions are needed. 
The physical meaning of Criteria 2 and 3 can be 
described as follows. 

If the codeword C1, i 1, 2, does not locate between 
the two concentric circles (or in general hyperspheres) 
centred on C2  with radii d(t, C 2) ± d(t, C 1 ), the compu-
tation of its distortion to the sample can be omitted, i.e. 
if d(C1, C 2) > d(t, C2) + d(t, C 1 ) or d(C1, C 2) < 

d(t, C 2) - d(t, C 1 ), then eliminate the computation of 
C1 . For the special case d(t, C 1 ) = d(t, C 2), Criterion 3 is 
in vain and Criterion 2 reduces to Criterion 1. Since 
Criteria 2 and 3 will induce square root computation, it 

An efficient clustering algorithm must include two 
key elements, i.e. a good tentative match and a power-
ful codeword elimination criterion. We proposed the 
previous vector candidate as the tentative match with 
AEI and PDS to improve the conventional clustering 
algorithm. This algorithm is called the APV-type algo-
rithm. It is described as follows. 

Step 1. Set m = 1. Calculate centroid C1 —+J1X,, 
where T is the total number of data vectors. 
Step 2. Divide each centroid C1  into two close vectors 
C2 _ 1  =C1 *(l+5) and C 21 =C1 *(l —5), 1 :!:~ i:5;m. 
Here, 5 is a small fixed perturbation scalar. Let m = 2m. 
Set n = 0, here n is the iterative times. 
Step 3. Compute the nearest neighbour for the first 
data vector X 1 . For data vector X, use the nearest 
neighbour of X.. 1  (previous vector candidate) as 
a tentative match and apply AEI with a PDS to find 
the nearest neighbour to each data vector. Place X in 
the partitioned set P1  if C1  is the nearest neighbour to 
xi. 
Step 4. After obtaining the partitioned sets P = (P1; 

I i :5 m), set n = n + 1. Calculate the overall average 
distortion D = EJ. 1 D(X 11 , C 1), where P, = 

{X, X, . . . , X}.  Ti 

Step 5. Find centroids of all disjoint partitioned sets 
P, by C, = 1 X]1 . 
Step 6. If (D_ 1  - D,J/D > e, go to step 3; otherwise 
go to step 7. Here, e is a small distortion threshold. 
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Fig. 3. Relationship between the number of codewords and the elimination probability using TIE. 

Step 7. If m = N, then take the codebook Ci  as the final 
.codebook; otherwise, go to step 2. Here, N is the 
codebook size. 

3.2. APC-type clustering algorithm 

We find the previous vector candidate is a very 
efficient tentative match for word recognition!"' It is 
not powerful compared with the previous partitioned 
centre in the clustering algorithm, because some adja-
cent data vectors are uncorrelated. We modify this 
clustering algorithm using a previous partitioned 
centre as a tentative match with AEI and PDS elimi-
nation criteria. This algorithm is referred to as an 
APC-type algorithm and is depicted as follows. 

Step I. Set m = 1. Calculate centroid C1 = +EJ 1X, 
where T is the total number of data vectors. 
Step 2. Divide each centroid C1  into two close vectors 
C 21 _ 1  =C*(1+ö) and C21 =C*(l —ö), l :5'--'5M-
Here,  5 is a small fixed perturbation scalar. Let m = 2m. 
Set n = 0, here n is the iterative times. 
Step 3. For each data vector Xj,  set Dmjn  = 
MIN(D(X,, C 21 .. ), D(X, C 2)), C 21 _ and C2i  are split 
from C, associated to the partitioned set P1  to which X 
previously belonged. Choose C2ior  C 2i  as the previ-
ous partitioned centre which is the nearest neighbour 
to X. 

Step 4. Use the previous partitioned centre as a tenta-
tive match and apply AEI with PDS to find the nearest 
neighbour to each data vector. Place X in the par-
titioned set P1  if C, is the nearest neighbour to X. 
Step 5. After obtaining the partitioned sets P = (P1 ; 
1 15; i !~ m), set n = n + 1. Calculate the overall average 
distortion D = 	 1 D(X, C 1), where P1  = 

.,Xi}. 
Step 6. Find centroids of all disjoint partitioned sets 
P, by C, = 4IJ'. 1X°. 
Step 7. If (D -' - D,J/D > a, take C1  as the previous 
partitioned centre for each XeP 1  and go to step 4; 
otherwise go to step 8. Here, a is a small distortion 
threshold. 
Step 8. If m = N, then take the codebook C, as the final 
codeboók; otherwise, go to step 2. Here, N is the 
codebook size. 

3.3. APCH-type clustering algorithm 

The hypercube approach provides the tighter bound 
than AEI for s = 1. The APC-type algorithm can be 
further improved by adding the hypercube approach 
to step 4, which is known as the APCH-type algorithm. 
Use the previous partitioned centre as a tentative 
match. Check equation (5) to eliminate impossible 
codeword match. Apply AEI to eliminate the code- 
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word which cannot be eliminated using the hypercube 
approach. A PDS scheme is used for the codeword 
which cannot be eliminated using the hypercube ap-
proach and AEI criterion. 

3.4. IPC-type clustering algorithm 

The hypercube approach and AEI criterion are the 
special cases of the improved AEI criterion. Here, the 
improved AEI criterion is adopted to increase the 
efficiency for the clustering algorithm in Step 4. This 
algorithm is referred to as the IPC-type algorithm. By 
applying equation (8), this criterion can be separated 
into several sections. For 13-dimensional cepstrum 
coefficients, we can separate the improved AEI cri-
terion into four sections. These four sections are set to 
/1 = I to check the first dimension-difference. It = 4 for 
the sum from the first dimension-difference to the 
fourth. It = 9 for the sum from the first dimension-
difference to the ninth and It = 13 for the sum of all 
dimension-differences. A PDS scheme is used for the 
codeword, which cannot be eliminated using improved 
AEI criterion. 

3.5. TPC-rype. A TPC-type and TPCR-type clustering 
algorithms 

Triangular inequality elimination (TIE) criteria can 
also be applied to Step 4 of the clustering algorithm. 
TPC-type is the clustering algorithm combining pre-
vious partitioned centres, TIE and PDS. The ATPC-.. 
type algorithm is the addition of AEI to the TPC-type 
algorithm, i.e. if the codeword cannot be eliminated 
using TIE, then apply AEI and PDS. The TPCR-type 
algorithm is the addition of a codebook reorder 
method to the TPC-type algorithm, i.e. reorder the 
codewords in increasing order of distortion between 
the previous partitioned centre and these codewords 
before applying TIE. 

4. EXPERIMENTS AND RESULTS 

The test materials used in the VQ clustering experi-
ments are described in the first section. To verify these 
fast algorithms, the mathematical operations (multi-
plications, comparisons and additions) are used to 
calculate the computational efficiency. The experi-
ments are carried out by setting the small fixed pertur-
bation scalar to 0.01 and the small distortion threshold 
to 0.005. Ten approaches are compared in the VQ 
clustering procedure. The conventional exhaustive 
method is referred to as the CVT-type. P- and T-types 
are approaches using PDS and TIE in codebook 
design. The TPC-type is the algorithm using the previ-
ous partitioned centre as the most probable matching 
with TIE and PDS to reduce the clustering time. The 
TPCR-type is the TPC-type with the codebook reor-
der method. It is known as the APC-type if the previ-
ous partitioned centre is used as the tentative match 
with AEI and PDS to accelerate the clustering speed. 

Table 1. Computational complexity of VQ clustering for 
eight codewords ( x I0) 

Method Mul. Cmp. Add. Sum 
Saving 

in mul. (%) 

IPC 5:72 2.92 18.0 26.6 73.5 
APCH 5.82 3.57 18.5 27.9 73.1 
APC 5.88 6.87 25.0 37.8 72.8 
APV 5.90 8.53 26.1 40.5 72.7 
ATPC 5.87 5.87 21.3 33.0 72.8 
TPC 5.63 2.30 15.0 22.9 73.9 
TPCR 5.63 2.30 15.0 22.9 73.9 
P 14.0 13.8 30.9 58.7 54.3 
T 16.2 2.31 35.7 54.2 33.3 
CVT 21.6 1.36 46.0 69.0 0 

Table 2. Computational complexity of VQ clustering for 
1024 codewords ( x 10°) 

Saving 
Method 	Mul. Cmp. Add. 	Sum in mul. (%) 

IPC 33.0 427 594 1054 99.2 
APCH 33.8 481 663 1178 99.2 
APC 34.1 680 1082 1796 99.2 
APV 58.6 812 1323 2194 98.6 
ATPC 105 463 465 1033 97.4 
TPC 143 366 283 792 96.5 
TPCR 143 539 282 964 96.5 
P 777 777 1259 2813 81.1 
T 1887 453 3649 5989 54.1 
CYT 4109 315 7922 12346 0 

The previous vector candidate instead of the previous 
partitioned centre in the APC-type is called the APV-
type. The ATPC-type is the algorithm combining TIE, 
AEI, PDS and the previous partitioned centre. The 
APCH-type is the addition of the hypercube approach 
to the APC-type. The IPC-type is the algorithm com-
bining the previous partitioned centre, improved AEI 
and PDS. 

The experimental results for eight codewords and 
1024 codewords are shown in Tables I and 2. For 
general processor architecture, the multiplication op-
eration is more expensive than the comparison oper-
ation and addition operation. It is better to use the 
IPC-type algorithm for large codebook size and the 
TPC-type algorithm or TPCR-type algorithm for 
small codebook size. Tables I and 2 also illustrate the 
total mathematical operation number. In terms of the 
total number of operations, the TPC-type outperforms 
all the above algorithms. It needs extra computation 
time to generate the distortion table for the TIE ap-
proach, which is why the total number of multiplica-
tions in the ATPC-, TPC- and TPCR-types are larger 
than the IPC-, APC-, APV- and APCH-types for 1024 
codewords. The codebook reorder method is not very 
efficient in the VQ clustering algorithm owing to the 
overhead of sorting procedure. In small codebook size, 
the TPCR-type is excellent. It is not superior com-
pared with the IPC-, APCH-, APC-, APV-, ATPC- 
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and TPC-types for large codebook size. For the other 
codebook size, between eight codewords and 1024 
codewords or more, these fast VQ clustering algo-
rithms are also very efficient in computation. 

5. SUMMARY AND CONCLUSIONS 

In this paper, some fast VQ clustering algorithms 
are proposed and compared based on the number of 
multiplications, comparisons and additions. Among 
these approaches, using the previous partitioned 
centre as the tentative match with improved AEI and 
PDS is the most suitable approach for computer archi-
tectures in which the complexity of comparisons is 

negligible with respect to that of multiplications. For 
processor architectures such as those based on the 
Harvard architecture in which comparisons are com-
putationally expensive, the combination of the previ-
ous partitioned centre. TIE and PDS outperforms the 
other algorithms. 

For the tentative match approach, the previous 
partitioned centre provides a better approach than the 
previous vector candidate in the VQ clustering pro-
cedure. 

The improved AEI criterion is presented which 
provides a tighter bound than the AEI criterion. For 
s = 1, it is the same as the hypercube approach. For 
s = k, it is the same as the AEI criterion. It provides the 
advanced criterion by adapting the parameters s and 
h from I to k. More than 40% of the total number of 
mathematical operations are saved comparing IPC 
with the APC approach and more than 10% compar-
ing IPC with the APCH approach for 1024 codewords 
in the VQ clustering algorithm. 
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Bound for Minkowski metric or quadratic metric 
applied to VQ codeword search 

J.S.Pan 
F.R. Mclnnes 
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indexing terms: Minkowski metric. Quadratic metric. Vector quantisation, Codeword search 

Abstract: A bound for a Minkowski metric based 
on L distortion measure is proposed and 
evaluated as a means to reduce the computation 
in vector quantisation. This bound provides a 
better criterion than the absolute error inequality 
(AEI) elimination rule on the Euclidean 
distortion measure. For the Minkowski metric of 
order n, this bound contributes the elimination 
criterion from L 1  metric to L metric. This bound 
can also be extended to a quadratic metric 
which can be applied to the hidden Markov 
model with Gaussian mixture probability density 
function. 

Introduction 

Vector quantisation (VQ) [1] has been widely used for 
various applications involving VQ-based encoding and 
VQ-based recognition. The response time of encoding 
and recognition is a very important factor to be consid-
ered for real-time applications. Unfortunately, a full 
search algorithm, applied in VQ encoding and recogni-
tion, is a time-consuming process when the codebook 
size is large. A vector quantiser, of rate R bits/sample 
and dimension k, is a mapping from a k-dimensional 
vector space into some finite subset C = { C; j = 1, 
N}, where N = 2 [2]. The subset C is called a code-
book and its elements C1  are called codewords, repro-
ducing vectors, prototypes, or design samples. A 
distortion measure D(X, is a nonnegative dissimilar-
ity measure between vector X and codewords C1 . This 
distortion is used to measure how close the input vector 
X is to these codewords C,. The nearest codeword is to 
be selected in order to encode the input vector X. 
Therefore, encoding each input vector requires N dis-
tortion computations and N - I comparisons. 

The codeword searching problem in vector quantisa-
tion is to assign one codeword to the test vector in 
which the distortion between this codeword and the 
test vector is the smallest among all codewords. Given 
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one codeword C and the test vector X in the k dimen-
sional space, the distortion of the square Euclidean 
metric can be expressed as 

D(X,C) = 	_c)2 	 (1) 

where C = {c ' , c12.....c/t'} and X = {x' ,x 2,...,x'}. 
Each distortion calculation requires k multiplications 

and 2k - 1 additions. Therefore, we need to perform 
k2kR multiplications, (2k -. 1)2kR additions, and 2' - 

comparisons for encoding each input vector. The com-
putation complexity depends on codebook size and 
dimensions. It needs large codebook size and higher 
dimension for high performance in VQ encoding and 
recognition systems resulting in increased computation 
load during codeword searching. 

Many algorithms [3-14] for fast VQ codeword search 
have been proposed. Vidal [3] presented the approxi-
mating and eliminating search algorithm (AESA) in 
which the computation time is approximately constant 
for codeword search in a large codebook size. Chen 
and Pan [4] applied the triangular inequality elimina-
tion (TIE) on VQ-based recognition of isolated words 
taking advantage of the high correlation characteristics 
between data vectors of adjacent speech frames. A sim-
ilar idea was employed for vector quantising image sig-
nals by Huang and Chen [5]. Ra and Kim [6] proposed 
a fast mean-distance-ordered partial codebook search 
algorithm for image vector quantisation. A subcode-
book searching algorithm was developed for fast VQ 
encoding of images by Lo and Cham [7]. Salari and Li 
[8] proposed a fast VQ encoding algorithm which takes 
the topological structure of the codebook into account 
and controls the search space adaptively. 

The partial distortion search (PDS) [9] is a simple 
and efficient codeword searching algorithm which has 
no extra storage or preprocessing requirements. Given 
the current minimum distortion, 

D(X, C) = Dmin 	 (2) 
if 

S 

(X 
i 

— c)2  > D 	 (3) 
i= 1 

then 

D(X,C3 ) ~: D(X,C) 	 (4) 

where s :5 k. 
The efficiency of PDS derives from elimination of an 

unfinished distortion computation if its partial accumu-
lated distortion is larger than the current minimum dis-
tortion. PDS can be improved further based on the 
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computer architecture [10. 11]. 
The hypercube approach is a well known premature 

method [7] and it is quite efficient if the difference for 
any coefficient is generally larger than the difference of 
the other coefficients, such as the first coefficient of 
cepstrum coefficients. Assume eqn. 2 has already 
existed, if 

1< It' <k (5) 

then C3  will not be the nearest neighbour to X. 
There is no multiplication operation required for the 

test of the hypercube approach. 
The absolute error inequality (AEI) [12] is the mathe-

matical relationship between the city block metric (or 
L 1 ) and the Euclidean metric (or L,). Assume C, is the 
current nearest neighbour to X, if 

Ix - c> /kD m in 	 (6) 

then 
k 	

- c1)2 > Dmin 	 (7) 

where s !~ k. 
This means C3  will not be the nearest neighbour to X 

if eqn. 6 is satisfied. Set s = I and compare eqns. 5 and 
6. The hypercube approach provides a tighter bound 
than the AEI for s = 1. This provides the motivation to 
investigate the AEI and extend the Euclidean metric to 
the Minkowski metric of order n. 

2 Bound for Minkowski metric 

Given one codeword C, and the test vector X in k-
dimensional space. the distortion of the Minkowski 
metric of order n can be expressed as 

Dmin = D(x,c) 
= 	

X' C i r (8) 

where C, = {c,',  C ,2 , 	C, and X = {x' ,x2,...,x" } . 
The generalised bound for the Minkowski metric, 

based on the L distortion measure, can be found as 
follows: if 

- 	I CI ~ (h
p 	min 	(9)  

and so, to make 	= 0. a1  = c/h Vi. Here 
hh 

a" 
= 	

= h(c/h)m = hl_m cm 

The next step is to prove that the climax/a7' = 
/z t_mcln is the minimum point, and so to prove the fol-
lowing proposition: if 

	

h 	
(13) 

then 

	

a im 	 (14) 

where in > 1, Ii ~ 1, and a, >_ 0 for all i. This can be 
proved by induction. 

When h = I. eqn. 13 reduces to a 1  = c and eqn. 14 to 
a(° ~! C". Hence the proposition is true for h = 1. 
Assume it is true for h - 1. By using the Lagrange mul-
tiplier technique, if the minimum of V 1 1ar is at an 
interior point (a, > 0 for all i), then this must be at the 
point where a, = c/h for all i, at which point jL j a7' = 
/z''c n  At a noninterior point (without loss of general-
ity, a1, = 0), 

a'  
= 

> a > (h - 1)1_mCm >  hl—  rnCm 

The minimum cannot be at the noninterior point 
since the value there is greater than at the interior point 
already found and hence the value where a i  = c/h is in 
fact the minimum. The proof is completed. 

Hence, if c ~! 41i1 _ l D,nin , then 

T aT  > 	> hl_m(hm_lD mjn ) = Dmin 

Set ai  = bf, hence if 
h  

b>Yhm_ 1 fl - 

i=1 
then 

h 

b m  > Dmin 
1=1 

Set pm = n, hence if 

then 	 b' V_ 1 Dmjn  

IXI ~:Dmin 	 (10) 

where s!~ h :5kandp 5n. 
If p = n, then eqn. 9 reduces to eqn. 10. For the case 

where p < n, the bound can be proved as follows. 
Apply Lagrange multiplier technique to minimise 

am (11) 

subject to 

>ai=c 	with a>0Vi 	(12) 

If the minimum is at an interior point, then it is a sta-
tionary point of j(a,, X) = E1tiaP - X(Z, 1 a1  - c) with 
respect to a 1(1 :5 i:5 h) and X. 

Taking derivatives, = aj7aai  = mar - 	 = 0 Vi. 
Hence a, = (AJm)I'(m_L) Vi (which implies ai  = a3  Vi, j) 

then 

> Dm z n 

Set b, = 	- cu, hence 

I xi c IP > I xi_ c IP if h > s 

then the bound for the Minkowski metric based on the 

LP metric is derived. 
If eqn. 9 is met, then C. cannot be the nearest neigh-

bour to X for the Minkowski metric of order n. This 
bound has the following properties: 

Set s 	p = h = I and n = 2, the hypercube 
approach. 

Set p = 2 and n = 2, the partial distortion search 
(PDS) for the Euclidean metric. 

Set p = n, PDS for L distortion measure. 
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Set n = 2. p = I and h = k, absolute error inequal-
ity (AEI) criterion. 

Set n = 2 and p = 1, defined here as the improved 
absolute error inequality (IAEI) [13] criterion, provides 
a tighter bound than the absolute error inequality 
(AEI) criterion. 

For the Minkowski metric of order n. this bound 
provides the elimination criterion from L 1  metric to L0  
metric and also provides an advanced approach by 
adapting parameters s and h from I to k. i.e. this 
bound can be separated into several Sections. For 13-
dimensional coefficients and the Euclidean metric, it is 
possible to separate this bound into four sections. 
These four sections are to set h = 1 to check the first 
dimension-difference, h = 4 for the sum from the first 
dimension-difference to the fourth, h = 9 for the sum 
from the first dimension-difference to the ninth and h = 
13 for the sum of all dimension-differences. 

3 Fast codeword search algorithm 

Here the minimax method [14] is introduced and com-
bined with the bound for the Minkowski metric to pro-
duce a very fast codeword searching algorithm, that 
uses steps I to 4 of the mirtimax method as the tenta-
tive match approach with IAEI and PDS to improve 
the searching speed. The other approach combining the 
minimax method with the absolute error inequality cri-
terion is also described. 

3.1 Minimax method 
The minimax method is to take the codeword with the 
minimum value of the maximum dimension-distortion 
as the tentative match and then use the hypercube 
approach and the partial distortion search (PDS). The 
minimax method is depicted as follows: 
Step 1: For the given test vector X and codebook C, 
calculate the absolute error, e, 

e=lx2—cI 	i=i,2....,k, 	j=1,2......1V 

Step 2: Find the maximum component of each error 
vector, that is to find max i eij  for each codeword. For 
convenience, interchange the maximum component of 
error vector with e 1 . 
Step 3: Find the minimum neighbour I = arg mini  
max, e. 
Step 4: Find the square Euclidean distortion D m in =  

Step 5: Use the hypercube approach, i.e. if maxje, ~ 

then Cj will not be the nearest neighbour to X. 
Use the PDS to delete the rest of the codewords. 

3.2 New algorithm 
The new algorithm is generated using the codeword 
with the minimum value of the maximum dimension-
distortion as the tentative match and applying the 
improved absolute error inequality (IAEI) criterion and 
partial distortion search (PDS). Steps 1 to 4 of this new 
fast codeword searching algorithm are the same as for 
the minimax method. Step 5 is described as follows: 

Step 5: If 	~ "J(hDmjn), then c3  will not be the near- 
est neighbour to X, where s 5 h :5 k. Use the PDS to 
delete the rest of the codewords. 

In this new fast codeword searching algorithm, for s 
= h = 1, it is the same as the hypercube approach in 
the step 5 of the minimax method. By adapting the val- 
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ues of s and Ii from I to k. this algorithm eliminates a 
very large number of multiplications. 

3.3 Minimax method with AEI approach 
In this paper the new fast codeword searching algo-
rithm. described in Section 3.2, is compared with the 
minimax method and the minimax method including 
the absolute error inequality criterion. Steps I to 4 of 
the approach of the minimax method including AEI 
are the same as for the minimax method. Step 5 is as 
follows: 

Step 5: Use the hypercube approach, i.e. if max1e ~ 

iD,,,j,,, then delete the codeword c. Use AEI criterion, 
i.e. if V - cJ ~! then c will not be the 
nearest neighbour to X. where s :!~ k. Use the PDS to 
delete the rest of the codewords. Here the AEI criterion 
is applied by adapting s from 1 to k. 

4 Codeword search for quadratic metric 

In speech recognition, the hidden Markov model 
(HMM) [16] with the Gaussian mixture VQ codebook 
probability density function has been shown to be a 
promising method. The main computation time is in 
searching the nearest neighbour by evaluating the log 
likelihood of Gaussian mixture distributions, that is, 
the calculation of 

lo 	
1 	e_(X_Cm)'_C) 	15 

g (7.)k/2171/2 

That is to compute k/2 log(2n) + 1/2 logj Wm I + 112(X - 
c)'W, 1 (X— C',0), where in is from 17 to N and N is the 
number of mixtures. C,n  and Wrn  are the mean value 
and the covariance of mixture in. Obviously, the quad-
ratic metric (X - C,)' W'(X - Cm) dominates the com-
putation time. 

For convenience and brevity, assume that the covari-
ance of every mixture in is the same. The quadratic 
metric can be expressed as 

D(X,Cm) = (X - C,0)tW_l(X 
- C'm) 	(16) 

where (X - C01) is error column vector. W is the covar-
iance matrix given as 

W = 	(X - 	
- 	 (in 

In eqn. 17 T is the number of training vectors and Xis 
the mean of X, i = 1, ..., T. that is, 

(18) 

W is the inverse of the covariance matrix W. For 
the conventional exhaustive method, k(k + l)N multi-
plications, (k2  + k - 1)iV additions and N - I compari-
sons are needed for every test frame. 

It is well known that PrI can be represented in terms 
of the product of lower triangular matrix and upper tri-
angular matrix according to eqn. 19 as 

	

W-1 LL' 	 (19) 

1 11 	121 
	

1 31 	1 k1 

0 	122 132 . 	 1k2 

L= 	0 	0 133 . 	 1 k3 	 (20) 

00 
	

0 	..: lkk 
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Set Em  = A' - Cm , then the quadratic metric can be 
expressed as follows: 

D(X. Cm) = E t LLtEm = IEI2 	(21) 

Set L = [V1  V, V 3 ... Vk],  and assume 
k 

Dmin = D(X, Cm ) = 	II2 	(22) 

i=1 

if 

EV > VhDm in 	 (23) 

then 

D(X,C3 ) ~:Dmin 	 (24) 

where s!5 Ii 5 k. 
After the modification of the quadratic metric to 

eqn. 21, the improved absolute error inequality (IAEI) 
criterion can be easily applied, as shown in eqns. 22-24 
and the procedure of the fast codeword searching algo-
rithm is similar to the Euclidean metric except that the 
previous vector candidate [4, 13, 15] is used as the ten-
tative match. For speech data, the classification result 
of the present vector is usually the same as or close to 
the classified result of the previous vector. The nearest 
neighbour of the previous vector can be used as the 
tentative match called previous vector candidate. This 
fast codeword searching algorithm is depicted as fol-
lows: 

Step 1: Compute the nearest neighbour for the first 
frame X1 . For the other frame Xp, use the nearest 
neighbour of X 1  (previous vector candidate) as a ten-
tative match and so find the initial value of Dmin . 
Step 2: For every codeword C1 , calculate steps 3 to 7. 

Step 3: For every dimension (i from 1 to k), calculate 
steps 4 to 6. 

Step 4: Calculate the error vector component e = (x' 
- cJ) and EJV = Tierj4r. 
Step 5: Ifj 1  Ij"jl > "J(hDmm), s = 1, ..., k, then C .  
not be the nearest neighbour to the frame X i,, therefore 
go to step 3 for the next codeword. 

Step 6: Calculate IE7 V 2 . If IL I  IEJ' V 2  ~ Dn,jn , then C1  
will not be the nearest neighbour to the frame X e,, 
therefore go to step 3 for the next codeword. 

Step 7: If Y1  EJ1  V1 2  <Dmjn , set Dmin  = 	i jL7 V and 
record C as the nearest neighbour to 

5 Experiments and results 

5.1 Experiments on Euclidean. metric 
The test materials for these experiments consisted of 
two hundred words recorded from one male speaker. 
The speech was sampled at a rate of 16kHz and 13-
dimensional cepstrum coefficients with inverse variance 
weighting were computed over 20ms wide 

 '
frames with 

a Sms frame shift. The purpose of inverse variance 
weighting is to equalise the importance of every cep-
strum coefficient. A total of 20 030 analysed frames 
were used in the codeword searching experiments. 
Codebooks of size 64, 256 and 1024 codewords with 
Euclidean distortion measure are used in these experi-
ments. 

Experiments were carried out to test the performance 
of the minimax method, the minimax method with 
absolute error inequality elimination rule and the new  

fast searching algorithm described above. n = 2 and p 
= 1 were chosen for this new bound. The bounds for 
Minkowski metric were separated into four sections. 
These four sections were to set h = 1 to check the first 
dimension-difference, Ii = 4 for the sum from the first 
dimension-difference to the fourth, Ii = 9 for the sum 
from the first dimension-difference to the ninth and I, = 
13 for the sum of all dimension-differences. The choice 
of h = 4 and h = 9 allows the expension 4(hD0110) in the 
elimination test (eqn. 9) to be evaluated using only 
additions, once "iDmin  has been computed, since 
'J(4Dm in) = 24Dmin  and "J(9Dm in) = 34D  in . 

The experimental results are depicted in Tables 1, 2 
and 3. Table 3 shows that this new fast codeword 
searching algorithm saves more than 77% and 21% 
multiplication operations compared with minimax 
method and minimax method with AEI criterion for 
1024 codewords. 

Table 1: Computational complexity of codeword search 
for 64 codewords (x 10) on Euclidean metric 

Method 	 Mul. Cmp. Add. 

Minimax 	 2865 20035 19053 

Minimax—AEI 	1400 23581 22600 

New—Euclidean 	1256 22262 21353 

Table 2: Computational complexity of codeword search 
for 256 codewords (x 10) on Euclidean metric 

Method 	 Mul. Cmp. Add. 

Minimax 	 5088 75640 70813 

Minimax—AE1 	1901 83135 78308 

New—Euclidean 	1584 79700 74949 

Table 3: Computational complexity of codeword search 
for 1024 codewords (x 10) on Euclidean metric 

Method 	 Mul. Cmp. Add. 

Minimax 	 7569 292892 272682 

Minimax—AE1 	2133 305783 285573 

New—Euclidean 	1671 299002 278865 

5.2 Experiments on quadratic metric 
The test materials are the same as the previous experi-
ments but only consist of 99 words and no weighting is 
used. The total number of frames is 9391. Codebooks 
with 256, 512 and 1024 codewords with quadratic met-
ric are used in these experiments. 

The conventional exhaustive method and the fast 
codeword searching algorithm on quadratic metric 
were tested in these experiments. The bounds for quad-
ratic metric are also separated into four sections. 

Table 4: Computational complexity of codeword search 
for 256 codewords (x 10) on quadratic metric 

Method 	 Mul. 	Cmp. 	Add. 

Conventional 	437545 	2395 	435141 

New—quadratic 	50685 	18630 	57003 

Table 5: Computational complexity of codeword search 
for 512 codewords (x 10) on quadratic metric 

Method Mul. Cmp. Add. 

Conventional 875091 4799 870283 

New—quadratic 86963 33569 97912 
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The experimental results are depicted in Tables 4, 5 
and 6. For 1024 codewords, 91.6% of the number of 
multiplications are saved, as well as considerable saving 
in the number of additions. The increase in the number 
of comparisons is moderate. 

Table 6: Computational complexity of codeword search 
for 1024 codewords (x 10) on quadratic metric 

Method Mul. Cmp. Add. 

Conventional 1750182 9607 1740566 

New—quadratic 147768 59737 166366 

6 Summary and conclusions 

A bound for the Minkowski metric has been derived. 
For the Euclidean distortion measure, p = 1 and n = 2, 
this bound is tighter than the standard absolute error 
inequality (AEI) elimination rule (k instead of h). This 
bound provides a better criterion than the standard 
AEI. For n = 2, p = 1, h = 1 and s = 1, this bound is 
the same as the hypercube approach for L, metric. For 
p = n = 2, it is the same as the partial distortion search 
(PDS) for the Euclidean metric. For the Minkowski 
metric of order n, this bound provides the elimination 
criterion from L 1  metric to L metric and also provides 
the advanced approach by adapting parameters s and h 
from 1 to k. This novel bound of the Minkowski metric 
extends the AEI from the Euclidean metric to higher 
order distortion measures and also provides better cri-
terion. The bound for Minkowski metric is also 
extended to the bound for quadratic metric and it may 
be used in the HMM with Gaussian mixture. Since the 
multiplication operation is more expensive than the 
comparison and addition operations for general proces-
sors [17], experimental results confirm the usefulness of 
these new bounds. 

References 

I GRAY. R.M.: Vector quantization', IEEE ASSP Mag., April 
1984. pp. 4-28 

2 LINDE. Y., BUZO. A.. and GRAY, R.M.: 'An algorithm for 
vector quantizer design'. IEEE Trans. Commun., 1980. 28. (1), pp. 
84-95 

3 VIDAL. E.: 'An algorithm for finding nearest neighbours in 
(approximately) constant average time', Pattern Recognit. Let:.. 
1986. (4), pp.  145-157 

4 CHEN. S.H., and PAN, J.S.: 'Fast search algorithm for VQ-
based recognition of isolated word', lEE Proc. 1, 1989, 136, (6), 
pp. 391-396 

5 HUANG. S.H., and CHEN, S.H.: Past encoding algorithm for 
VQ-based image coding', Electron. Let:., 1990, 26, (19), pp. 1618-
1619 

6 RA. S.W., and KIM. J.K.: 'A fast mean-distance-ordered partial 
codebook search algorithm for image vector quantization'. IEEE 
Trans. Circuits Svsz.. 1993. 40, (9), pp. 576-579 

7 LO. K.T., and CHAM. WK.: 'Subcodebook searching algorithm 
for efficient VQ encoding of images', lEE Proc. 1, 1993. 140. (5), 
pp. 327-330 

8 SALARI. E., and LI, W.: Adaptive fast encoding algorithm for 
vector quantization. Electron. Let:., 1994, 30. (21), pp. 1733-1734 

9 BEI. C.. and GRAY. R.M.: 'An improvement of the minimum 
distortion encoding algorithm for vector quantization'. IEEE 
Trans. Commun.. 1985, 33. (10), pp.  1132-1133 

10 FISSORE. L.. LAFACE. P., MASSAFRA, P., and RAVERA. 
F.: Analysis and improvement of the partial distance search algo-
rithm. IEEE international conference on Acoustics, speech and 
signal processing. 1993. pp.  [1-315-11-318 

11 PAN. J.S., McINNES, FR.. and JACK. M.A.: 'Improvements in 
extended partial distortion search and partial distortion search 
algorithms VQ search', Australian international conference on 
Speech science and technology, 1994, pp.  100-105 

12 SOLEYMANI. MR.. and MORGERA. S.D.: A high-speed 
algorithm for vector quantization', IEEE international conference 
on Acoustics, speech and signal processing, 1987, pp.  1946-1948 

13 PAN., J.S., McINNES, FR.. and JACK. M.A.: 'Fast clustering 
algorithms for vector quantization', Pattern Recognit. (to be pub-
lished) 

14 CHENG, D.Y.. GERSHO. A., RAMAMURTH, B., and SHO-
HAM. Y.: 'Fast search algorithms for vector quantization and 
pattern matching, IEEE international conference on Acoustics, 
speech and signal processing, 1984, pp.  9.11.1-9.11.4 

15 PAN, J.S.: 'Fast speaker independent isolated word recognition 
system', MS thesis. Department of Communication Engineering, 
Chiao Tung University, Taiwan, 1988 

16 HUANG, X.D.. ARIKI. Y., and JACK. M.A.: 'Hidden Markov 
models for speach recognition' (Edinburgh University Press. 
1990) 

17 LEIBSON, S.H.: 'EDN-microprocessor directory', EDN, Novem-
ber 1993, pp.  148-148 

lEE Proc. - Vis. Image Signal Process.. Vol. 143, No. 1. February 1996 	 71 


