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ABSTRACT 

Based on the assumption that the physical characteristics of people's vocal apparatus 
cause their voices to have distinctive characteristics, this thesis reports on investigations 
into the use of the long-term average glottal response for speaker identification. The 
long-term average glottal response is a new feature that is obtained by overlaying 
successive vocal tract responses within an utterance. 

The way in which the long-term average glottal response varies with accent and 
gender is examined using a population of 352 American English speakers from eight 
different accent regions. Descriptors are defined that characterize the shape of the 
long-term average glottal response. Factor analysis of the descriptors of the long-term 
average glottal responses shows that the most important factor contains significant 
contributions from descriptors comprised of the coefficients of cubics fitted to the long
term average glottal response. Discriminant analysis demonstrates that the long-term 
average glottal response is potentially useful for classifying speakers according to their 
gender, but is not useful for distinguishing American accents. 

The identification accuracy of the long-term average glottal response is compared 
with that obtained from vocal tract features. Identification experiments are performed 
using a speaker database containing utterances from twenty speakers of the digits zero 
to nine. Vocal tract features, which consist of cepstral coefficients, partial correlation 
coefficients and linear prediction coefficients, are shown to be more accurate than the 
long-term average glottal response. Despite analysis of the training data indicating that 
the long-term average glottal response was uncorrelated with the vocal tract features, 
various feature combinations gave insignificant improvements in identification accuracy. 

The effect of noise and distortion on speaker identification is examined for each of 
the features. It is found that the identification performance of the long-term average 
glottal response is insensitive to noise compared with cepstral coefficients, partial cor
relation coefficients and the long-term average spectrum, but that it is highly sensitive 
to variations in the phase response of the speech transmission channel. 

Before reporting on the identification experiments, the thesis introduces speech pro
duction, speech models and background to the various features used in the experiments. 
Investigations into the long-term average glottal response demonstrate that it approx
imates the glottal pulse convolved with the long-term average impulse response, and 
this relationship is verified using synthetic speech. Furthermore, the spectrum of the 
long-term average glottal response extracted from pre-emphasized speech is shown to 
be similar to the long-term average spectrum of pre-emphasized speech, but computa
tionally much simpler. 
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PREFACE 

The research reported in this thesis stems from the application of techniques devel
oped in one research discipline to another discipline. In particular, an astronomical 
image processing technique is applied to sReech to extract a long-term average glottal 
response as a new feature for speaker identification. The technique was suggested by 
my supervisor, the late Professor R.H.T. Bates, who was actively involved in the area 
of general inverse problems (especially computed tomography and ultrasonic imaging), 
various biomedical applications, radio antenna engineering and speech processing. It 
was from amongst this broad range of research areas that my research project arose. 

When I began my postgraduate studies there were three significant areas of research 
being pursued by Professor Bate's Speech Group that had a direct bearing on my 
research activity. These fell broadly under the headings of speech synthesis, speech 
therapy and, as it was then called, extraction of the 'glottal pulse'. I will discuss each 
of these briefly in the following paragraphs. 

In the area of speech synthesis I investigated different methods of producing good 
quality speech modelled by linear predictive coefficients(LPC) and examined the effect 
of varying parameters such as the number of poles, the glottal excitation, the window, 
and so on. All of the work was performed using a signal processing program, called 
SGPRC, which was written by Nigel Brieseman, a postgraduate student at the time. 
I wrote SGPRC routines to produce synthetic speech, but apart from producing inter
esting effects by adjusting the pitch of the synthetic speech and making nasal sounding 
speech by significantly reducing the number of LPC coefficients, no particularly inter
esting research directions emerged. Although this research area was not pursued any 
further, it gave me insight into the effect of varying the aforementioned parameters on 
synthetic speech. This experience was useful at a later date when I performed LPC 
analysis of speech for speaker recognition. 

The second area that I was involved in was an ongoing speech therapy project which 
aimed to assist the therapist and client by providing feedback, in real-time, of certain 
vocal parameters. The real-time feedback was provided by digital signal processing 
(DSP) hardware that was designed by a Masters student, Stephen Turner. The DSP 
hardware, and appropriate software, performed speech analysis to obtain the pitch, 
intensity and LPC coefficients and the graphics capability of a host PC was used to plot 
the results. A colleague, Tracy Clark, and I both worked on the speech therapy project 
and between us specified and wrote several therapy modules. It soon became apparent 
that in order to further development of the speech therapy aid more DSP boards were 
required. I modified Turner's original design to make it more manufacturable and 
had several produced by Departmental technicians. Although the investigations into 
speech therapy are now being pursued by Catherine Watson and I am no longer directly 
involved, the speech therapy DSP hardware was useful for the preliminary experimental 
investigations reported in the next paragraph. 

Professor Bates' long standing interest in astronomical signal processing led to the 
development of several useful image processing techniques. One of these techniques, 
called shift-and-add (SAA), was modified and applied to speech by Nigel Brieseman to 
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perform 'glottal pulse' (here called the long-term average glottal response, or LTAGR) 
recovery with the aim of iteratively improving the estimation of the linear prediction 
model of speech. In order to quickly evaluate the variation between long-term average 
glottal responses (between people and within a single person) the SAA algorithm was 
implemented in real-time using our DSP hardware (see §4.3.1). The real-time SAA 
algorithm (SAA1 in §4.3.1) worked well and at the suggestion of Dr. Richard Fright, 
then a postdoctoral fellow, I added the ability to store the 'glottal pulse' so that com
parisons could be made between different long-term average glottal responses. Informal 
experimentation revealed that people tended to have different long-term average glottal 
responses and this motivated a thorough investigation into the efficacy of the long-term 
average glottal response for speaker identification. The following paragraphs outline a 
series of investigations that firstly examine the effects of speaker's gender and accent on 
the long-term average glottal response and, secondly, compare the long-term average 
glottal response against other 'vocal tract' features for performing speaker identifica
tion. 

I examined the sensitivity of the LTAGR to speaker's gender and accent (§4.3.3.1) 
using a database of 352 American English speakers that were predassified into 8 dif
ferent accent regions (§4.3.3). A total of 21 descriptors were defined to represent the 
information recorded in the LTAGR (§4.3.2). The correlations between these 21 de
scriptors were examined by extracting orthogonal factors from the descriptors using 
factor analysis (§3.4.3,§4.3.3.1). This revealed that the largest factor, which accounted 
for 67.7% of the variance of the descriptors, was strongly correlated with descriptors 
that represented the overall shape of the LTAGR. The next two factors, which ac
counted for 11.5% and 4% of the total variance, were most highly correlated with the 
number of peaks in the LTAGR. It was apparent from these results that the overall 
shape of the LTAGR is important and there is no particular descriptor that can be 
identified as containing most of the information in the LTAGR. 

The usefulness of the LTAGR for identifying the gender and accent of speakers was 
investigated by employing discriminant analysis and then classifying speakers according 
to their gender and accent (§4.3.3.2). The database of 352 American speakers gave an 
accent classification error rate of 63.1 % and a gender classification error rate of 4.3%. 
This implies that the LTAGR is potentially useful for determining the gender of a 
speaker. 

The suitability of the LTAGR as a feature for speaker identification was evaluated by 
comparing it against other features that are commonly used for speaker identification 
(§5.4). The features selected here were linear prediction coefficients, cepstral coeffi
cients, partial correlation coefficients and the long-term average spectrum. The linear 
prediction coefficients, cepstral coefficients and the partial correlation coefficients were 
selected because they have been shown by other researchers to be useful for perform
ing speaker identification (§3.5). The justification for selecting the long-term average 
spectrum as a feature was that, like the long-term average glottal response, it records 
the long-time average characteristics of a person's voice (§4.4). 

Since the long-term average spectrum and the LTAGR might reasonably be expected 
to measure similar effects(§4.4.1), an investigation into the similarities and differences 
between these two features was undertaken (§4.5.1.1). It was found that the spectrum 
of the LTAGR matches the LTAS quite closely under certain conditions (§4.5.1.1). 
Furthermore, the LTAGR is shown to have a 5-10 times computational advantage over 
the LTAS (§4.5.1.2). 

Repeatable speaker identification experiments using recorded (digitized) speech 
were designed to further investigate the usefulness of the long-term average glottal 
response, and real-time processing became less critical. I collected and digitized a 
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database of utterances from 20 speakers to use for speaker identification experiments 
(see §4.1). The experiments were performed using SGPRC and several extensions to 
SGPRC that I programmed in the course of my research. 

Initially, characteristic descriptors of the LTAGR were used to perform speaker 
identification. However after much investigation I concluded that descriptors offered 
no advantage over the entire LTAGR waveform (§5.4.2.2). I also implemented one of 
the 'standard' speaker identification schemes that represent each speaker by a quan
tized (VQ) codebook containing 'characteristic' vectors (§2.7.4.3, §4.2.2). This method 
appealed to me because the matching of features against a person's codebook does 
not require any time alignment information, and accurate identification results were 
reported in the literature (§3.3.3). I used vector quantization to construct speaker 
codebooks for several different types of features. The identification error rate using 
the LTAGR was higher than that obtained using standard features such as partial 
correlation coefficients and cepstral coefficients (see §5.4). 

The degree of independence between the long-term average glottal response and 
vocal tract features was evaluated by examining the correlation between the long-term 
average glottal response and the vocal tract features (§5.2.2). Since the vocal tract 
filter features appeared to be independent of the LTAGR, I went on to investigate 
possibilities for combining these features to improve identification accuracy (§5.4.4). 
A small reduction in the identification error rate was observed for speaker templates 
containing 8 or 16 'characteristic' vectors, but this was not consistent across all template 
sizes (§5.4.4.6). 

I also examined the effects of various types of distortion and noise on the speaker 
identification accuracy of LTAGR and linear prediction based features (§5.5). Iden
tification experiments showed that the LTAGR is significantly better at performing 
speaker identification on noisy speech than any of the other features (§5.5.1). However, 
the LTAGR is particularly sensitive to variations in the phase response of the channel 
over which the speech is recorded (§5.5.2.3). The other features, which do not model 
the phase, were not so affected by the phase response. 

As research into the accuracy of the above features progressed I discovered that 
there were certain fluctuations in identification results that were difficult to account 
for. I therefore examined suitable methods for determining the confidence intervals for 
experimental results. This led to the use of statistically based methods for assessing 
whether results from two identification experiments were significantly different (§5.3). 

The following six paragraphs outline the structure of this thesis. The first 3 chapters 
contain principally background on the production and characteristics of human speech, 
speech processing techniques and speaker recognition, while Chapters 4, 5 and 6 report 
on the original contributions of my work. 

Speaker recognition is based on the properties of speech and these prop~rties de
pend upon the speech production mechanism. Chapter 1 is an introduction to the 
physiological processes that produce human speech. Terminology for describing speech 
is introduced and the characteristics of different classes of sounds are discussed. 

In order to perform speaker recognition, it is necessary to extract parameters from 
the speech that are useful for characterizing the identity of the speaker. Chapter 2 
pulls together into a single concise treatment the wide range of signal processing tech
niques used in this thesis to parameterize speech. Standard LPC analysis techniques 
are introduced, and the relationship between the vocal tract model and partial cor
relation coefficients is discussed. Methods of spectral estimation are described since 
both cepstral and linear prediction coefficients model the spectrum of the speech sig
nal. Vector quantization is introduced since it is used to form speaker templates (or 
codebooks) from partial correlation, cepstral and linear prediction coefficients. The last 
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section in Chapter 2 introduces shift-and-add and describes an original contribution I 
made concerning the way in which the voiced/unvoiced decision is implemented. The 
relationship between the LTAGR and the glottal excitation and vocal tract filters of 
synthetic speech is examined. 

Chapter 3 contains a wide ranging review of techniques that are useful for speaker 
recognition. The performance of human speaker recognition is· discussed, along with 
factors that affect that performance. Speaker recognition methodologies are divided 
into those that use dynamic features, those that use statistical features and those that 
use vector quantized features. The performance of several different systems described 
in the literature is critically assessed, followed by a brief discussion of practical consid
erations that are important when performing speaker recognition. 

Chapter 4 is the first chapter which contains major contributions of my work and 
is mainly concerned with defining the various features that I use for characterizing 
voices. The 20 speaker speech database that I collected and digitized for use in speaker 
identification experiments is described. The chapter reports in detail the testing of my 
implementation of the vector quantization training algorithm first reported by Linde, 
Buzo and Gray. Characteristic descriptors that I abstract to describe the LTAGR are 
defined and investigations I performed to determine the sensitivity of these descriptors 
to the speakers' accent and gender are presented. Since both the long-term average 
spectrum and the LTAGR are long-term average features the similarities and differences 
are discussed in some detail in this chapter. Several different methods of calculating 
the long-term average spectrum are evaluated and the spectral information recorded in 
the long-term average spectrum is compared with that recorded in the LTAGR. 

Chapter 5 is concerned primarily with reporting results from various speaker iden
tification experiments. The accuracy of speaker templates for various features is exam
ined along with the effect of unvoiced speech and silence on the templates. Statistical 
tests are described for determining whether recognition results between identification 
experiments are significantly different. The recognition performance of cepstral coeffi
cients, partial correlation coefficients, the LTAGR and long-term average spectrum are 
examined individually and in certain combinations. The effect of noise and distortion 
on the identification accuracy of different features is also explored. The computational 
overheads when using the different features described in this thesis is also discussed. 

Chapter 6 contains conclusions and suggestions for future research. 
Publications and presentations prepared during the course of my Ph.D. research are 

listed below. 
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CHAPTER 1 

SPEECH SOUNDS AND CHARACTERISTICS 

Human beings have a unique articulatory mechanism that allows them to produce 
a wide. range of sounds. Over many years combinations of these sounds have had 
particular meanings associated with them and have evolved into what we now call 
languages. The act of articulating a series of sounds according to the conventions of 
a language is called speaking and the emitted sound, perceived by the ears is called 
speech. The convenience with which speech can be used to convey thoughts, concepts, 
feelings and ideas is the motivation for research into automatic systems that recognize 
speech. The remainder of this chapter explains how human speech is produced and 
describes the way the character of the speech varies as different sounds are uttered. 

Section 1.1 introduces the physiology of speech production and provides background 
for the discussion of the range of sounds in the English language in § 1.2. Characteristics 
of human speech are disc.ussed in §1.3. Section 1.4 defines terminology for describing 
the quality of a person's voice. 

1.1 PHYSIOLOGY OF SPEECH PRODUCTION 

Described crudely, speech is the result of air molecules colliding with each other to 
force an acoustic wave to propagate through the atmosphere. Speech is manifested 
physically as the variations of pressure associated with the aforesaid acoustic wave. A 
person generates such a pressure waveform by causing the lungs to force air through 
the glottis and on out through the vocal tract. The term speech signal is used from 
now on to denote the content of recordings made by apparatus capable of sensing the 
pressure waveform. 

The automatic operation of our lungs during speech production comprises a compli
cated chain of events (Lieberman and Blumstein, 1988). Firstly, the intercostal muscles, 
which are interwoven with the ribs, work to expand the volume around the lungs. The 
lungs expand elastically to fill the increased volume and, as a result, air is taken into 
the lungs. A simplistic model of this expansion, consisting of balloons (lungs) within 
pistons (ribcage) is depicted in Fig. 1.1. Speech production occurs by air being moved 
out through articulators. The force required to do this is mostly provided by the lungs, 
since elastic lung expansion causes energy to be stored when the lungs are inflated. 

After leaving the lungs, air passes through the larynx (Fig. 1.2), which converts the 
steady flow of exhaled air into a series of 'puffs' or 'pulses' that form the excitation 
for voiced speech sounds. Inside the larynx are two fleshy cords that stretch across 
it. These are called the vocal cords or vocal folds. Cartilages that support the vocal 
cords allow them to be held open, or closed, under variable tension. The slit between 
the vocal cords is termed the glottis. When the tensed vocal cords are held together 
across the larynx the glottis is closed. The lungs, attempting to exhale air, produce a 
pressure beneath the glottis. This subglottal pressure increases until the vocal cords 
are forced apart and a rush of air occurs through the glottis. The subsequent suction, 
together with the tension on the vocal cords, causes the glottis to close (it is worth 
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Figure 1.1. A model of the lung mecha.nism for speech production. 

noting that the Bernoulli relation for fluid flow explains the reduction of pressure at 
the glottis assisting it to close (Ward Smith, 1980)). The result is that a single 'pulse' 
of air, known as the glottal pulse, passes through the glottis. The periodic repetition 
of the glottal pulse gives the pitch of a voice, but more importantly provides excitation 
for the upper vocal tract. 

The oral cavity and the nasal cavities above the larynx are called the supralaryn
geal vocal tract or, more commonly, the vocal tract. Articulators in the vocal cav
ity control the cross-sectional area of the vocal tract, thus modifying the frequencies 
that are present in the glottal pulse as it travels towards the lips. As early as 1779, 
Kratzenstein (1782) used a set of tubes to filter the output of a vibrating reed, thereby 
demonstrating the different vocal tract configurations for five Russian vowels. A few 
years later, in 1791, von Kempelen demonstrated a speaking machine of a more so
phisticated nature (Flanagan, 1972). His machine utilized a soft leather resonator to 
simulate the vocal tract. The shape of the leather resonator was modified by hand to 
produce different sounds. The use of a tube of varying diameter to make up the model 
vocal tract and the concept of a vocal tract filter is part of the source filter model, which 
is explained in detail in §2.3. The vocal tract has other speech functions in addition to 
filtering the glottal pulse. For certain sounds the air-flow from the lungs is completely 
stopped, while for others the articulators within the vocal tract generate the excitation. 

Linguists describe speech sounds in terms of the combinations of articulators utilized 
to produce them. The first of these categories of sound, bilabial, refers to sounds that 
are made with both lips while sounds formed by the lips and teeth are described as 
labiodental (Skinner and Shelton, 1978, p67). Dental sounds are produced by the tongue 
and the teeth. Because the tongue can touch either the tip of the teeth, or the base of 
the teeth (near the gum), dental refers to the former and the latter is termed alveolar. 
Just behind the teeth is the hard palate, and sounds made by the tongue and hard
palate are called palatal. Towards the throat from the hard palate is the soft palate, 
or velum (Hardcastle, 1976, p120). Velar utterances (sometimes called guttero0 are 
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Figure 1.2. A depiction of the glottis as viewed from above: (a) normal breathing, (b) complete 

closure of the glottis for speech (based on Lieberman and Blumstein (1988, p99)). 
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Figure 1.3. A cross-section of the human head (based on Lieberman and Blumstein (1988) and 
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Tongue position 

Front Middle Back 

Close Iii lui 
peat boot 

III lui 
pit p,!!t 

lei 131 
P§.t pert 

1001 IAI I=>I 
c~t b,!!t port 

Open lal Ivl 
part PQt 

Table 1.1. Vowel phonemes in New Zealand English (after Maclagan (1982)). 

produced by the back of the tongue and the soft palate forming a constriction. 
Note that the combination of the velum and the pharynx (a muscular tube that 

extends from the esophagus to the base of the skull - see Fig. 1.3) is often called the 
velopharyngeal system. The word system is used because the velum and pharynx work 
in a coordinated fashion to produce nasal sounds. 

1.2 TYPES OF SPEECH SOUNDS 

This section discusses classification of sounds. In order to uniquely identify an individ
ual sound, the phonetic alphabet is introduced. An individual sound typically belongs 
to more than one of the classes described below. For example, Ikl is unvoiced and also 
a stop consonant. 

1.2.1 Phonemes 

The word phoneme comes from the Greek words phoneo, to speak, and phonema, which 
means sound or speech. Each individual phoneme, or sound, has a phonemic symbol 
associated with it. The international phonetic alphabet is the preferred symbol system 
used throughout this thesis. Tables 1.1 and 1.2 define the sound that a particular symbol 
corresponds to. Phonetic symbols are bracketed by the 'I' character to distinguish them 
from text (e.g. Iii in sit). 

1.2.2 Voiced sounds 

By definition, voiced sounds occur when the vocal cords open and close regularly. The 
vowels, and certain consonants (for example Ir/), fall into this category. 

Vowels, which constitute one particular class of voiced sounds, are characterized by 
the vocal tract being relatively open, with only a small amount of coupling into the 
nasal cavity occurring. As a result of this, vowels contain more speech energy than 
unvoiced sounds. 

1.2.3 Unvoiced sounds 

Unvoiced sounds, in contrast to voiced sounds, rely on air turbulence to provide excita
tion. The turbulence can be generated at various locations within the vocal tract, the 
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Manner Place of articulation (obstruction) 

of V/ Bilabial Labio- Dental Alveolar Palatal Velar Glottal 

articulation UV dental 

stops V /b/ /d/ /g/ 
Qib Qid gig 

uv /p/ /t/ /k/ 
pet .tot key 

fricative V /v/ /0/ /z/ /s/ 
yery then eOO aeure 

UV /f/ /9/ /s/ /f! /h/ 
fat thin ~at sham had 

affricative V /dJ/ 
june 

UV /f! 
chin 

nasal V /m/ /n/ /u/ 
map !!lP sing 

liquid V /1/ /r/ 
lull run 

glide V /w/ /j/ /w/ 
why yet why 

Table 1.2. Consonant phonemes (from Edwards and Shriberg (1983)), The V /UV label identifies 

whether sounds are voiced or unvoiced. 

actual location depending upon the sound being formed. For example, the /s/ sound 
is due to turbulence being generated between the tongue and the teeth, while the /p/ 
sound relies on the explosive outrush of air from the lips. Fig. 1.4 illustrates the /s/ 
and /p/ sounds. Note that the /s/ sound is of low energy and has the appearance of 
noise. The /z/ sound is an example of a sound that has mixed voiced and unvoiced 
excitation, with the former predominating. The ~ompletely unvoiced version of /z/, is 
lsi. Similar pairs of voiced/unvoiced sounds are common among English consonants. 

1.2.4 Aspirated sounds 

Not all sounds fit neatly into the voiced/unvoiced classification. Aspirated sounds occur 
when the vocal cords are stretched across the larynx, but not tightly enough to close 
the glottis. Turbulence is pr()duced as air is forced through the glottal constriction. 
An example of an aspirated sound is /h/. Aspirated sounds are easily confused with 
breathing noises because they have similar amplitude. This can cause difficulties when 
attempting to process speech automatically by computer. 

1.2.5 Stop consonants 

When the vocal tract is completely closed for an instant, the sound produced as the 
closed vocal tract is abruptly opened, is called a stop consonant. The vocal tract closure 
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Figure 1.4. Waveforms of the words "stop sunlight,": (a) pressure waveform, (b) intensity (see 

§1.3.1). 

results in air pressure building up behind the blockage (closed vocal cords cause the 
same effect). The instant the blockage is removed, a rush of turbulent air escapes from 
the lips. Because of this sudden outrush of air, many texts refer to stop consonants as 
plosives (Catford, 1977, p73). The speech pressure waveform for a stop consonant has 
a very large pressure change when the vocal tract blockage is removed (see the It I and 
Ipi sounds in Fig. 1.4). 

1.2.6 Nasals 

A phoneme which sounds as though it comes from a speaker's nose (Laver, 1980, p77) 
is called a nasal sound. Simplistically, nasal and non-nasal sounds can be thought of as 
being formed with an open and closed velum respectively. To examine the velopharyn
geal setting for nasals, Lubker and Moll (1965) measured the nasal and oral air flows 
by fitting a special mask to a male speaker's face. The mask directed air flow from the 
mouth and nose to separate flow measuring devices. They conclude that nasal air flow 
depends not only upon velopharyngeal opening but also upon the oral constriction. For 
example, they find that an adult male saying the word 'nip' has oral and nasal flows of 
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o and 12 litres per minute for the Inl sound. Oral and nasal flows of 16 and 4 litres 
per minute respectively are measured for Iii sound, which indicates that the velum is 
not completely closed for non-nasal sounds. These flow rates are only approximate, but 
they highlight the fact that significant nasal air flow occurs for certain oral sounds. It 
is therefore incorrect to say that nasal sounds occur when there is nasal air flow. The 
main characteristic of a nasal sound is that the nasal air flow is significantly greater 
than the oral air flow. 

1.3 SPEECH CHARACTERISTICS 

Temporal variations of speech characteristics are the concern of this section. In partic
ular, the variation of speech characteristics from sound to sound within an utterance 
is illustrated. 

1.3.1 Loudness and intensity 

The term lou.dness is a perceptual measure of variations in amplitude of the speech 
pressure waveform. If we say that a particular noise sounds louder than another, we 
are forming an opinion from the perceived air pressure variations detected by our ears 
(Lieberman and Blumstein, 1988, p29). The acoustic measure of loudness is intensity, 
which is related to the energy present in the speech waveform. The intensity of a 
particular utterance is determined by the pressure of air coming from the lungs. 

Variations of intensity occur within words, depending on the type of sound being 
produced (Cruttenden, 1986, p3). For example, vowel sounds are uttered with the 
mouth relatively open and have more energy than fricatives, which are produced when 
the vocal tract is constricted. Syllables consist of single uninterrupted sounds that 
contain one or more vowels. Syllable boundaries within words occur at consonants and 
are therefore usually identifiable by their low intensities (see Fig. 1.4). 

1.3.2 Pitch variations 

The frequency of the glottal pulses, on which the perceived pitch (§1.1) depends, varies 
as we speak. Utterances of the average adult male and female lie within pitch ranges of 
80-100Hz and 160-200Hz respectively (Fry, 1979, p68). Deliberate variations in pitch 
are used to add extra information, or meaning, to the words being uttered. In Chi
nese, word meanings are often dramatically dependent upon the modulation of pitch as 
they are spoken (Cruttenden, 1986, p8)(Lehiste, 1970, p92). Languages that use pitch 
in this way are called tone languages. However, in English, pitch variations primar
ily distinguish questions (rising pitch) from statements (falling pitch). For example, 
pitch variation is the distinguishing feature between the utterances' You. 're going.' and 
, You're going?'. 

Apart from voluntary alterations of pitch, there are certain sounds such as Iii and 
lui that have a higher pitch than other vowels because of the connections between 
muscles in the tongue and the larynx (Lehiste, 1970, p69). As we speak there are also 
patterns of pitch, rises and falls called intonation (Cruttenden, 1986, p9), that recur 
consistently. 

1.3.3 Frequency content of speech 

As we make different sounds, the speech pressure waveform changes. This is the same as 
saying that the frequency content (spectrum) of the speech changes. The change occurs 
because certain frequencies are attenuated more than others as the glottal pulse travels 
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Figure 1.5. The spectral content of one frame of speech with the formants indicated. 

down the vocal tract. The frequencies that propagate with minimal loss of acoustic 
energy are called resonances. When a vowel sound is uttered, its spectrum contains 
a small number of peaks (typically 3-4), each corresponding to a resonance. These 
resonances are called formants (see Fig. 1.5) and are labelled Fb F2 , Fa, F4 , with the 
smaller numbers applying to lower frequencies. The pitch is labelled Fo and corresponds 
to the spacing of harmonics in the spectrum (see Fig. 1.5) (Fant, 1973, p5). As different 
sounds are produced the resonances within the vocal tract change and the formant 
positions alter. 

It is sometimes useful to describe the width of a particular formant. The standard 
description is the difference between the higher and lower frequencies at which the 
formant spectral energy is at half its maximum power. This difference is called the 
formant bandwidth. 

The spectrum depicted in Fig. 1.5 is of a single speech segment of 60 ms dura
tion. However, it is often useful to examine the changes in spectra across a number 
of speech segments and the spectrogram (Fig. 1.6) is a common representation of this 
information (Fry, 1979, p111). The horizontal and vertical axes represent time and 
frequency respectively. A dark area in the spectrogram indicates a high energy level 
and conversely a light area indicates low energy. The patterns, or bands, formed by the 
dark areas represent the formants and the way they change throughout the utterance. 
The spectrogram shown in Fig. 1.6 illustrates that unvoiced sounds (see the Is/) have 
more high frequency energy than the vowel sounds, because unvoiced excitation energy 
spans a greater range of frequencies than glottal excitation. Fant (1973, §1) considers 
spectrograms to be particularly useful for analysing the structure of sounds. 

The slow variation of the formant frequencies apparent in Fig. 1.6 is typical of the 
majority of speech sounds. Because they change slowly, and adequately represent the 
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Figure 1.6. The word "berries":(a) the time waveform, (b) the spectrogram of the signal depicted in 
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spectral content of a speech segment, it is possible to code speech efficiently in terms 
of formant positions. Coding techniques are described in more detail in Chapter 2. 

1.3.4 Emotional effects 

A person's emotional state is a \'ariable that affects speech production. The term 
neutral voice describes a person speaking in a relaxed way under what can reasonably 
be taken to be normal conditions. Intuitively we expect a voice to change when someone 
becomes angry. Williams and Ste\'ens (1972) studied a number of different emotional 
states by using trained actors to simulate particular emotions within the setting of a 
play. They report their results with particular emphasis on changes that occur in pitch 
and formants and the following paragraph summarizes their findings. 

The emotions of anger, fear and sorrow all significantly alter a person's voice. Anger 
causes the greatest change from neutral, with both the pitch and the first formant rising 
in frequency. Also, the extra emphasis with which certain words are spoken often 
increases irregularities in the glot tal pulse repetition (called voicing irregularity). Fear, 
by contrast with anger, manifests itself in the voice by slowing the rate at which words 
are uttered. Both the pitch and formants remain similar to those of a neutral voice. 
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The emotion of sorrow lowers the pitch and the pitch range is narrowed compared with 
neutral voice. The articulation rate drops dramatically, by a factor of two compared 
with neutral speech. In some instances the vocal excitation reduces to noise and the 
voice becomes a whisper. 

Emotional effects may have a significant affect on the voice if an automatic speech 
processing system (here taken to be either and word recognition or speaker recognition 
system) is analyzing the speech. For example, an angry person's voice may undergo such 
a drastic change from normal, that the automatic speech processing system performs 
incorrectly (which, of course, will just make the person more angry!). 

1.4 VOICE QUALITY 

Most of us are very conscious of the ability to recognize people from their voices. 
Laver (1980, p1) describes voice quality as "the characteristic auditory colouring of an 
individual speaker's voice". It is a long-term cumulative measure, not directly related 
to how pleasant a voice sounds to the ear. "Imagine a cineradiographic film being taken 
of the vocal apparatus over, say, 30 seconds. If the individual frames of the film were 
superimposed on top of each other, a composite picture might emerge which would rep
resent the long-term average configuration of the vocal organs." (see §2.8)(Laver, 1980, 
p13). This average configuration, is called the articulatory setting. The setting an in
dividual adopts is dependent on the language and characteristic individual deviations 
from the language norm. Deviations from the articulatory setting are made to form 
the variety of sounds that make up speech. 

The physical characteristics of individuals' vocal tracts affect the speech they utter. 
For example, individuals' different (finite) vocal tract lengths cause certain frequencies 
to propagate down the vocal tract with less attenuation than others. Other, less obvi
ous, factors that affect speech include the way a person's mouth is held and the type 
of excitation the larynx produces. 

Since there are a number of different articulatory settings, it is useful to define a 
neutral setting against which deviations can be measured. Laver (1980, p23) defines a 
neutral configuration of the vocal tract in the following manner. 

• the lips are not protruded. 

• the larynx is neither raised nor lowered. 

• the supralaryngeal vocal tract is most nearly equal in cross-section along its full 
length. 

• front oral articulations are performed with the blade of the tongue. 

• the root of the tongue is neither advanced nor retracted. 

• the muscles that connect the soft palate to the tongue, the side walls of the 
pharynx, and the larynx (faucal pillars) do not constrict the vocal tract. 

• the pharyngeal constrictor muscles do not constrict the vocal tract. 

• the jaw is neither closed nor unduly open. 

• the velopharyngeal system causes audible nasality only when necessary for lin
guistic purposes. 
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Apart from the vocal setting, the setting of the vocal cords (phonatory setting) 
also affects a person's speech. The usual operation of the glottis is described by the 
term modal. It is characterized by the glottis opening and closing regularly and by 
an absence of speech distortion (Le. the speech sounds normal). Modal is used to 
describe glottis vibrations within the range of frequencies commonly used for speaking 
and singing (Laver, 1980, pl09). 

Falsetto excitation occurs when the glottis opens and closes at a pitch approximately 
twice that of modal voice (Laver, 1980, p118). The glottis tends not to close completely 
after a glottal pulse, causing the sub-glottal air pressure to be lower than for modal 
voice. 

A whisper voice is produced by the glottis being held in a triangular opening, 
similar to an inverted Y. The characteristic whisper sound is produced by turbulence 
as air flows past the vocal folds. The whispery voice can be combined with either 
the modal or falsetto excitations. The spectral content of whispered speech tends to 
be somewhat noise-like, but with definite concentrations of energy where the formants 
occur (Laver, 1980, pU5). 

The creak is yet another form of excitation. It is characterized by a particularly 
low frequency of vibration (say 40Hz) and sounds like the series of rapid taps produced 
when a stick is run along a railing (Catford, 1977, p98). Folds of membrane around 
the glottis combine with the vocal folds to produce 'massive' vibrators that only make 
small amplitude movements. 

Sometimes, under tense situations, a person speaks with a harsh voice. It is typified 
by aperiodic vocal cord vibration which the listener hears as noise. Both the larynx 
and the pharynx are in a state of hypertension (Laver, 1980, p126). 

In contrast to the vocal cords being highly strung to produce a harsh voice, breath
iness occurs when the vocal cords are so relaxed that they fail to close properly at 
the end of each 'vibration' cycle. This results in a large volume of air being exhaled. 
The incomplete closure of the glottis causes the glottal excitation to be of lower am
plitude. Therefore, most speech produced by a breathy voice is of lower amplitude 
compared with that produced by a modal voice. It is also, almost invariably, of low 
pitch (Laver, 1980, p133). Breathiness and whisper voices sound similar, making it 
tempting to define them as different aspects of a common phenomenon. Physiologi
cally these sounds differ in the muscle groups each employs, resulting in different voice 
excitations (Laver, 1980, p134). 

Although only a selection of possible variations in vocal tract and excitation config
urations have been described here, it is important to realize that each configuration has 
the potential to make an individual's speech unique. Given that individuals have differ
ent vocal characteristics, it is reasonable to assume that each speech pressure waveform 
contains information pertaining to a particular individual. 

From the published literature (Doddington, 1985), it appears that the characteris
tics of the speech we utter varies between individuals. Many schemes have been pro
posed for recognizing people from their voices alone based on properties of the spectral 
characteristics of voices. Current speaker recognition research is reviewed in Chapter 
3. 
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CHAPTER 2 

SPEECH ANALYSIS AND MODELLING 

This chapter is concerned with methods of speech analysis and modelling. A number 
of approaches are described, and each provides insight into a different aspect of the 
speech signal. 

For ~peaker recognition, a good model is one that successfully represents the speech 
signal to within a tolerable error, when employing a finite, and preferably small, number 
of parameters. Such a model effects a significant reduction in the number of data-points 
required to represent speech signals. However, the choice of model is critical because 
the recognition accuracy depends upon the accuracy with which the model represents 
information specific to individuals. 

With the advent of digital computers, various signal processing and modelling tech
niques have been applied to speech (Fallside and Woods, 1985). Many signal processing 
techniques transform the speech signal into another domain either for computational 
convenience, or to illuminate aspects of the signal structure. Two of these transforms, 
the Fourier and the Z, are introduced in §2.1. A useful model of speech production, 
the source filter model, is presented in §2.2. An acoustic model of the vocal tract, also 
used in the source filter model, is described in §2.3. Section 2.4 specifies methods for 
analysing speech prosody. An analysis technique based on the acoustic model of the 
vocal tract, linear predictive coding (LPC), is discussed in §2.5. In §2.6 methods of 
estimating the spectrum of the speech signal are described and the relationship be
tween predictor coefficients and the spectrum of the speech is established. Techniques 
for producing a spectrogram of an utterance (see §1.3.3) are also explained. Cepstral 
coefficients, which are another way of representing speech, are presented in §2.6.3. Sec
tion 2.7 describes how a multi-dimensional vector, such as a set of LPC coefficients, 
can be quantized using a technique called vector quantization. In §2.8 a speech pro
cessing technique called shift-and-add is discussed and its origin in astronomical image 
processing is reviewed. Section 2.9 describes measures of speech noise. Finally, §2.10 
summarizes the main points in this chapter. 

2.1 SIGNAL ANALYSIS 

This section introduces the Fourier and Z-transforms and their associated notation in 
§2.1.1 and §2.1.2 respectively. Theoretical and practical aspects of sampling signals are 
discussed in §2.1.3. 

2.1.1 The Fourier transform 

Any signal, including speech signals, can be considered to be composed of many si
nusoidal signals, each having a different frequency and phase. Such a representation 
is called a spectrum. The Fourier transform constitutes the formal connection be
tween a signal and its spectrum. The one-dimensional direct Fourier transform is 
defined by (2.1), while (2.2) defines the one-dimensional inverse Fourier transform 



14 CHAPTER 2 SPEECH ANALYSIS AND MODELLING 

(Bracewell, 1986, p7). 

G(J) = 1:: get) e-i21rjtdt 

get) = 1:00 

G(J) e)
21fjtdj. 

(2.1) 

(2.2) 

An upper-case letter is used to represent a function of frequency and a lower-case letter 
indicates its transform in the time domain. The Fourier transform, or spectrum, of a 
signal get) is therefore written as G(J). This terminology can be even more concisely 
expressed by G(J) = :F {get)} or G(J) ~ get). The ~ notation conveniently em
phasises that G(J) and get) constitute a Fourier transform pair. The Fourier transform 
possesses properties which make it extremely useful for signal processing. A selection 
of those relevant to speech processing are presented below. 

2.1.1.1 Useful properties of the Fourier transform 

When a signal, g( t), is passed through a linear filter the filtered signal is modified 
according to the response of the filter. The output signal is specified by the convolution 
theorem which is stated as 

, ;+00 
q(t) = get) 0h(t) = -00 g(t')h(t t')dt' , (2.3) 

where 0 denotes the one-dimensional convolution operator and h(t) can be considered 
to be the filter response (Bracewell, 1986, p108). The integral in (2.3) constitutes the 
actual definition of convolution. The argument (t - f) of h(.) indicates that the latter 
is reflected in the origin of time before being slid past g( t') and multiplied by it. The 
Fourier transform of (2.3) is a product (Bracewell, 1986, pHO), so it follows that 

get) 0 h(t) ~ G(J)H(J). (2.4) 

Similarly, multiplication in the time domain transforms to convolution in the frequency 
domain. Convolution is commutative, associative and distributive (Bracewell, 1986, 
§7). 

Correlation is a measure of the similarity between two signals and is defined over 
all time by shifting one signal relative to the other, thus 

;

+00 

get) * h(t) = -00 g(t')h(t + t')dt', (2.5) 

where * is the one-dimensional correlation operator (Bates and McDonnell, 1986, §7). 
Auto-correlation is a special case of correlation. It is defined for the signal get) by 

;
+00 

gg(t) = g*(t) * get) = -00 g*(t')g(t + t')dt', (2.6) 

where gg(t) is the symbolic representation invoked here for the autocorrelation of get), 
and g"'(t) is the complex conjugate of get). Equation (2.6) has the property that its 
Fourier transform is the power spectrum IG(J)i2, i.e., 

g*(t) * get) +-+ IG(JW. (2.7) 

This is called the Weiner-Khinchine or autocorrelation theorem (Bracewell, 1986, pH5). 
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It is often useful to calculate the energy in a signal. Rayleigh's theorem or Parseval's 
theorem (Bracewell, 1986, p112), sometimes called the energy conservation theorem 
(Bates and McDonnell, 1986, §6), 

1
+00 1+00 

-00 Ig(tWdt = -00 IG(JWdf, (2.8) 

. equates the energy in the time and frequency domains. 
Note that the limits on the integrals in (2.1) through (2.8) are -00 to +00. Such 

integrals can sometimes be evaluated analytically, but for the majority of practical 
situations the infinite limits merely emphasise that all the significant values (i.e. above 
the prevailing noise level) of signals or spectra are to be included in the numerical 
integrations. 

A signal, whose spectrum contains energy at frequencies less than a particular 
maximum, or cut-off frequency, fe, is said to be bandlimitedto (-fe, fe) (Slepian, 1976). 
A simple example of a bandlimited signal is Woodward's (1953) sinc function, 

. (2') sin(21rfe t ) 
SIllC Jet = 2' ' 

1r Jet 

which has a spectrum (1/2fe)rect(J /2fe), where 

rect(J) = { ~ for I f I < fe }. 
for If I > fe 

2.1.1.2 The discrete Fourier transform 

(2.9) 

(2.10) 

The discrete Fourier transform (DFT)(Bates and McDonnell, 1986, §12) of a sampled 
signal (see §2.1.3) replaces the continuous integral of (2.1) by a summation. The one
dimensional discrete Fourier transform for a sequence of N samples is defined as 

N-l 

G[k] = L g[n] l1rnk with 11' = e-j27r/ N 

n=O 
N-l 

g[n] = L G[k] l1'-nk with 11' = e- j21r /N, 
k=O 

(2.11) 

where k and n are integers. A computationally efficient algorithm for evaluating the 
discrete Fourier transform is the Fast-Fourier-Transform (FFT) (Brigham, 1974; Berg
land, 1969). The FFT reduces the number of operations required to calculate the 
Fourier transform by manipulating the odd and even samples of g[k] separately, mak
ing use of the cyclic nature of l{mk. For a one-dimensional sequence comprising N 
samples (where N is a power of 2) the FFT involves only 2Nlog2 N complex oper
ations, compared with N 2 operations required to compute the spectrum by straight
forward application of the DFT. Because of this computational efficiency, the FFT is 
the preferred algorithm for evaluating the discrete Fourier transform. The spectrum of 
g[n], denoted G[k], contains spectral components spaced at discrete frequencies in the 
range of -1/2T to 1/2T (where T is the sampling period). The difference between the 
frequencies of adjacent spectral components is l/(NT) Hz. 

It is important to recognize that all of the useful properties of the continuous Fourier 
transform described in §2.1.1.1 remain valid for both the DFT and the FFT (Oppenheim 
and Willsky, 1983, p336). 
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2.1.2 The Z"Transform 

Practical speech processing applications manipulate a sequence of digital numbers ob
tained by sampling a speech signal at regular intervals. The Z-transform of such a 
sequence is defined here as 

+00 
G(z) = L g[n]z-n. (2.12) 

n=O 

It is standard to let 
(2.13) 

where (J represents an angle between -1f and 1f radians in the complex z plane. Sub
stituting (2.13) into (2.12) and comparing with the definition of the DFT in (2.11), it 
is apparent that the DFT corresponds to the evaluation of the Z-transform at points 
around the unit circle (Oppenheim and Willsky, 1983, p630), Le., 

G{z)lz=eJ// = :F {g[n]} , (2.14) 

when (J 21fkjN and N is the number of samples in the DFT. The convention in the 
rest of this thesis is to express spectra as functions of eie , i.e. 

(2.15) 

Digital filters, constructed using delays and multiplications, can be represented 
compactly in the Z-domain (see §2.5). The response of such a filter to an impulse 
applied at the input is called the impulse response and the Fourier transform of the 
impulse response is called the frequency response. 

2.1.3 Sampling considerations 

Sampling is the process of converting a continuous signal into a series of discrete num
bers or samples. The recording, or storage, of the instantaneous amplitude of a contin
uous signal at precisely determined instants, is called ideal sampling. When the interval 
between successive instants is constant it is called the sampling period and is denoted 
by T. Conceptually, ideal sampling is useful because it allows distortions introduced 
by practical sampling to be neglected. Practical sampling conditions under which it 
is reasonable to assume ideal sampling, the sampling period and sampling function 
are discussed here. An ideal sampling function is defined first, followed by a practical 
sampling function. 

The ideal function for characterizing a single sample (Bracewell, 1986, §5) is a unit 
area impulse, i.e., 

oCt) = 0 for t =J 0 I: oCt) dt = 1. 
(2.16) 

Impulses spaced at sampling period intervals constitute an ideal sampling function, here 
called an impulse train. The impulse train and its spectrum are denoted by 

00 look 
~(t) = L oCt - kT) ~ T L 0(1 - T)' 

~-oo ~-oo 

(2.17) 

A sampled signal is identified in this thesis by square brackets, replacing the standard 
parentheses that enclose the continuously varying parameters on which signals are 
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conventionally assumed to depend. Thus, g[k] denotes the kth sample of the continuous 
signal get) and, of course, k is constrained to be an integer. 

Samples can be either ideal or practical, where the latter term implies the sampling 
operation is of finite duration. The concept of ideal sampling assumes that a signal 
can be measured instantaneously. In practice, however, sampling takes a finite time 
Tad' called the aperture width and the sampling circuitry has only a finite bandwidth. 
A practical sampling function which describes the effects of both finite bandwidth and 
the aperture width centred about t == 0 is denoted here by samp(t). The samples, g[k], 
are obtained by convolving a signal with samp(t), e.g., 

g[k] == 1: g(n samp(kT - t') dt'. (2.18) 

Practical sampling causes a distortion in the estimates of the signal value. Although 
other effects (often called noise) also distort a signal, the focus here is on sampling 
distortion. To estimate this, it is first convenient to replace get') in (2.18) with the 
inverse Fourier transform of G(J): 

00 

g[k] = J J G(J) ej21rJt'samp(kT t') dt'df. (2.19) 

-00 

Rewriting the exponent j21ft'f in (2.19) as -j21ff(kT - t' - kT) and recalling (2.1), 
allows the following rearrangement of (2.19). 

g[k] == i: G(J) SAMP(J) ej21rkTJ df, (2.20) 

where samp(t) +---lo SAMP(J). From (2.2) and (2.20) it is clear that g[k] suffers dis
tortion, in the sense that it differs from g(kT), if G(J)SAMP(J) is not identical to 
G(J). This distortion is minimized when G(J) is bandlimited and the magnitude of 
SAMP(J) is close to unity out to the band limit, or cutoff frequency (Jc say), of G(J). 
If samp(t) is an impulse, g[k] is not distorted at all and in practical sampling systems, 
samp(t) is designed to be as close to an impulse as possible. Typically, for the speech 
signals considered in this thesis the bandwidth of samp(t) is significantly wider than 
fc, allowing the effect of sampling to be ignored. 

The sampling theorem (Shannon, 1949) states that a bandlimited signal is uniquely 
determined by its samples, provided the sampling frequency is greater than 2fe. It 
is therefore critical to determine the highest frequency of interest before sampling a 
signal and then sample at more than twice that frequency. Fig. 2.1( a) and 2.1(b) 
depict a signal get) and its spectrum G(J) respectively. The impulse response of the 
filter in Fig. 2.1( c) is convolved with the signal to attenuate signal components above 
fe, forming a bandlimited spectrum (see Fig. 2.1(f)). The ideal sampling function in 
Fig. 2.1(g) is multiplied by the filtered signal to produce a sampled representation of 
the signal. It is worth remarking that the repetitions apparent in the spectrum shown 
in Fig. 2.10) are due to the signal spectrum (Fig. 2.1(f)) being convolved with the 
spectrum of an ideal sampling function. Since the latter, shown in Fig. 2.1(h), consists 
of more than one impulse, Fig. 2.1(j) displays a sampled version of the spectrum shown 
in Fig. 2.1(£), repeated at the reciprocal of the sampling period. There is potential 
for spectral overlap in the sampled signal if the frequencies above fe in the original 
signal (Fig. 2.1(b)) are not attenuated sufficiently. Aliasing is the term given to this 
spectral overlap and any information lost through this process is irrecoverable. The 
filter responsible for attenuating frequencies higher than fe is often called an anti
aliasing filter (see Fig. 2.1(c) and Cd)). 



18 CHAPTER 2 SPEECH ANALYSIS AND MODELLING 

(a) g t) 

t 

(c) h t) (d) 
IH 1)1 

t -Ie I 

(e) get) 8. h(t) (f) IG(J)H(J)I 

t I 

(g) 
~(t) 

(h) IF {~(t)} I 

t I 

(i) 
9 k] 

k 

Figure 2.1. An illustration of the sampling theorem: (a) A signal g(t), (b) its spectrum G(f), 

(c) An anti-aliasing (low-pass) filter impulse response h(t), (d) its frequency response H(f), (e) the 

filtered (band-limited) signal g(1.) 0 h(t), (f) the spectrum of the filtered signal G(f)H(f), (g) an 

ideal sampling signal .6(t), (b) the spectrum of the ideal sampling function, (i) the sampled signal 

g[k] = g(kT), (j) its spectrum G[n] = G(n/T). 



2.2 THE SOURCE FILTER MODEL 19 

2.2 THE SOURCE FILTER MODEL 

Conveying information to another person by spoken language involves producing a 
wide range of sounds. A good speech model represents each of these sounds accurately 
enough for them to be reproduced from a set of model parameters. Fig. 2.2 illustrates 
three different speech models. The source filter model shown in Fig. 2.2( a) is the 
simplest of these models, consisting of only a source and a filter. This model takes no 
account of the lips and simplifies the effect of the glottis. Furthermore, any interaction 
that may occur between the source and the filter is ignored. A more detailed model 
which incorporates these lip and glottal effects is depicted in Fig. 2.2(b) and is called 
the speech production model. The third model, shown in Fig. 2.2( c), is the articulatory 
speech synthesis model (Sondi and Schroeter, 1987) which models the nasal tract and 
glottal pulse in de,tail. The latter two models are contrasted with the source filter 
model to highlight the various assumptions invoked in the models and to emphasize 
improvements that might be made to the simplified model. 

2.2.1 Source models 

The source is the part of the source filter model that represents the excitation of the 
human vocal tract (described in §1.1). It is called the source because it provides the 
energy to excite the vocal tract filter. The output of the source model is the excitation 
to the vocal tract filter modeL 

Voiced and unvoiced sounds are different in nature because they are excited in a 
different manner, as explained in §1.2. Accurate production of voiced and unvoiced 
sounds therefore requires that appropriate source models be postulated. The source 
model for voiced sounds is periodic and characterizes the repetitive opening and closing 
of the vocal cords. Unvoiced sounds are excited by turbulence which is conveniently 
modelled by a noise source. 

A regular train of impulses, occurring at pitch period intervals, constitutes a sim
ple source model for voiced sounds. Each impulse stimulates all resonant frequencies 
of the vocal tract filter, but its spectral characteristics are different from those of an 
actual glottal pulse. This difference causes the output from the model's vocal fil
ter to sound unnatural (Schroeder, 1985). The actual glottal pulse, as manifested in 
humans, has an amplitude spectrum which falls off roughly as 1/12 (where 1 is fre
quency)(Linggard, 1985, p90). The spectrum of a sawtooth shaped signal matches the 
glottal spectrum much better than does the flat spectrum of an impulse. The sawtooth 
excitation thus produces more natural sounding speech (cj. Linggard, 1985). Neither 
the impulse nor sawtooth excitations model the actual operation of the vocal cords. 
Although they are straightforward to implement, and produce speech of reasonable 
quality, such excitations are neither physically nor phonetically ideal. 

Ishizaka and Flanagan (1972) account more realistically for the functioning of the 
vocal cords with, what they call, the two mass model. Each vocal cord is approximated 
by two coupled masses attached to damped springs. The coupled masses represent 
the vocal cord in two sections, the division being depthwise into an upper and lower 
portion. The two vocal cords are assumed to be bilaterally symmetric and therefore 
the movement of only one of them needs to be modelled. An estimate of the constant 
sub-glottal air pressure, as might be produced by the lungs, provides the excitation 
for the model. The model glottal flow (or volume velocity) is evaluated by solving 
differential equations which describe the pressures within the glottis and the motion of 
the vocal cord masses. The most interesting results obtained from this model illustrate 
the importance of interactions between the vocal tract shape and the glottal flow. The 
first formant resonance of the vocal tract is identified as having the greatest effect on 
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Figure 2.2. Models of speech production;(a) source filter model,(b) speech production model,(c) 

articulatory speech synthesis model (Sondi and Schroeter, 1987). 

the glottal flow. For example, the glottal flow signal calculated for lal has ripples 
visible on the positive slope portion whereas IiI exhibits no ripples at all. Although 
the ripples appear to be relatively small when compared with the total amplitude of 
the glottal flow, they do alter the spectrum of the vocal tract excitation. This implies 
that the source is not completely independent of the resonances of the vocal tract filter 
(Rothenburg, 1983). 
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Unvoiced excitation, a noise-like turbulence, is usually modelled by a sequence of 
random numbers, as depicted in Fig. 2.2(a). In the standard source filter model the 
unvoiced excitation is applied to the input of the vocal tract filter. However, the ex
citation would be better applied at the point within the vocal tract model where the 
greatest air turbulence occurs. This would more accurately model the physiological 
production of unvoiced sound. The first synthesis scheme devised to model such exci
tation is described by Flanagan and Cherry (1969), who associate a noise source with 

. each section of the vocal tract. The vocal tract model consists of a number of tubular 
sections (see §2.3.2), with the air flow within each being determined during modelling. 
Noise excitation is automatically introduced at all constrictions where the conditions 
for turbulent flow are present. More recently, Sondi and Schroeter (1987) have modelled 
the turbulence at a vocal constriction by positioning a single noise source appropriately. 
However, ·these schemes are only useful for synthesizing speech with parameters that 
are set by hand. To the author's knowledge, algorithms have not yet been developed 
for estimating the position of a noise source within the vocal tract from the speech 
signal alone. 

The source depicted in Fig. 2.2(a) models the excitation as being either purely 
voiced or purely unvoiced. However, some sounds, for example Iv I, are excited by a 
combination of voiced and unvoiced excitation. In order to model the excitation for 
such sounds more realistically, Kwon and Goldberg (1984) calculate the voiced and 
unvoiced energy of a segment of speech and produce what they call 'mixed excitation'. 
The ratio of voiced to unvoiced excitation is estimated from the speech. They claim 
that speech analysed and then synthesized with their technique sounds slightly better 
than that produced using a binary voiced-unvoiced decision. 

Another common excitation consists of many carefully positioned impulses placed 
within one pitch period. It has been given the highly descriptive name multi-pulse 
excitation (Atal, 1985, plOl). The pulse positions and amplitudes are adjusted until 
the difference, or modelling error, between the model output and a given speech signal 
is minimized. The modelling error can also be reduced by increasing the number of 
pulses in the multi-pulse excitation. The error is weighted so that certain parts of the 
spectrum contribute less to the total error than others. Larger errors are acceptable 
in the parts containing the formants because they contain more energy than the parts 
between formants (Atal, 1985, p107). A weighting function is therefore chosen which de
emphasises the error contribution in the region of the formants. In practical application 
multi-pulse approximates both the voiced and unvoiced excitation, with only a few 
pulses (typically 8 pulses per 10ms) being sufficient for generating both voiced and 
unvoiced sounds with little audible distortion. Separate voiced and unvoiced source 
models are not required since the same pulse positioning algorithm is utilized for both 
excitations. However, the lack of pitch information necessitates coding the positions 
and times of all the impulses. Good quality speech synthesis using the multipulse 
technique has been reported by Kroon et at. (1986). 

2.2.2 Filter models 

In order to accurately model the response of the vocal tract it is important to choose 
the correct type of filter for the source filter model. A general digital filter which could 
conceivably be used to model the vocal tract is 

V(z) 
B(z) 
A(z) , 

(2.21) 
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Figure 2.3. Spectrum of the sound Iml and the sound lal taken from the word "mad". 

with A(z) and B(z) being polynomials defined by, 

P 

A(z) = L aiz- i (ao = 1), 
i=o 

M 

B(z) = L biZ- i (bo = 1). 
i=O 

(2.22) 

As A(z) tends to zero, V(z) approaches infinity. The complex values of z for which 
A(z) = 0 are called the poles of V(z). Likewise, since V(z) = 0 when B(z) = 0, the 
complex values of z for which B{z) = 0 are called the zeros of V(z). P and M define 
the number of poles and zeros respectively of V(z). 

The poles of the filter can be revealed explicitly by factorizing A(z), Le., 

P-l 

A(z) = IT (z - ~i)' (2.23) 
i:=O 

where ~i is the ith pole in the complex z-plane. Poles cause peaks in the filter frequency 
response because V(z) tends to infinity as z approaches a pole. In a vocal tract filter 
these 'peaks' correspond to formants in the speech spectrum (Schroeder, 1985). The 
bandwidth of a formant associated with a pole depends upon the pole's distance from 
the unit circle. A pole located close to the unit circle projects a narrower bandwidth 
than a pole nearer the origin. It is important to realise that a formant on the unit circle 
is comprised of the projections from all the poles of the filter. The formant bandwidths 
of speech are modelled by positioning the vocal tract filter poles at appropriate distances 
from the unit circle (Linggard, 1985, p85). Similarly, the zeros of the filter are revealed 
by factorizing B(z). These zeros model the absorption of energy in the vocal tract. This 
absorption attenuates the energy in the speech spectrum close to the real frequencies 
of the zeros. The resulting reduction in speech energy is observed as a 'valley' in the 
speech spectrum, as shown in Fig. 2.3. 

One method of faithfully modelling speech is to choose a combination of poles 
and zeros and position them appropriately. Both speech production and perception 
influence the number of poles and zeros required in the vocal tract filter. For instance, 
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nasal sounds are produced when the velum is lowered, the nasal cavity opened and the 
oral cavity closed. However, the oral cavity still resonates and traps acoustic energy 
quite strongly at certain frequencies (Linggard, 1985,47). The 'valley' in the spectrum 
of the nasal Iml sound, shown in Fig. 2.3 at approximately 500 Hz, can be modelled 
by appropriately positioning zeros of the vocal tract filter. 

Song and Un (1983) describe tests of four different algorithms for determining pole
zero models for speech. They propose a system that uses ten poles and ten zeros and 

. report that nasal speech synthesized with the aid of the pole-zero model is of better 
quality than the same speech synthesized utilizing only poles. However, they also report 
that the improvement in the quality of speech comprising nasal and non-nasal sounds 
is not apparent to normal listeners. 

It is important to take into account the relative ability of our ears to detect spec
tral poles and zeros when accessing the relative importance of poles and zeros in the 
vocal tract filter. Our hearing is known to be more sensitive to 'peaks' in the speech 
spectrum than to 'valleys' (or zeros) (Schroeder, 1984). Correspondingly, against a 
noisy background, it is easier to detect the presence of a signal comprising a single 
frequency tone, a sharp peak, than its absence. For the above reasons, the vocal tract 
filter utilized in this thesis contains only poles and is called an all-pole modeL The 
polynomial B(z), introduced in (2.22), is replaced by a constant which is set to unity 
for convenience. The effect of the zeros on the frequency response can be emulated by 
incorporating additional poles (Atal, 1985) which are positioned in such a manner that 
the 'valleys' between pole peaks reproduce as closely as possible the 'valleys' produced 
by the spectral zeros. 

The modelling schemes illustrated by Figs. 2.2(a) and (b) approximate both the 
nasal and oral tracts by single filters that are isolated from the vocal tract source. 
However, as mentioned in §2.2.1, there is considerable interaction between the source 
and vocal tract components. Fig. 2.2( c) shows an articulatory speech synthesis model 
which has compartments that represent both the nasal and oral tracts. The response 
of each of these compartments is modelled, resulting in more accurate speech synthesis 
than that obtained from the the simple source filter model of Fig. 2.2(a). Although such 
a model is physiologically accurate, its usefulness is restricted because an algorithm has 
not been developed for determining articulatory parameters directly from the speech 
signal (Sondi and Schroeter, 1987). 

2.3 ACOUSTIC MODEL OF THE VOCAL TRACT 

When we wish to utter a particular sound, we configure our vocal tracts in the ap
propriate manner. The spectral characteristics of the uttered sound depend upon the 
vocal tract shape (and also upon voicing and pitch, but this discussion concentrates on 
the vocal tract). The vocal tract can be modelled as a series of concatenated tubes of 
different sizes that correspond to the size of the vocal tract at various places. Articu
lators, such as the tongue, are considered to alter the sizes of the vocal tract tubes as 
different sounds are produced. 

Certain simplifying assumptions about the tube model are outlined in §2.3.1 and, 
under these assumptions, propagation of a speech signal in a single tube section is 
discussed in §2.3.2. Propagation along a number of concatenated tubes is described in 
§2.3.3. This vocal tract model can be invoked to determine the reflections which ocCUr 
at the boundaries between tubes. The fraction of the speech signal reflected a.t ea.ch 
boundary is defined by a reflection coefficient. Section 2.3.4 discusses computation of 
the cross-sectional area of vocal tract tubes from reflection coefficients. 
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2.3.1 Simplifying assumptions 

By ignoring the effect of the nasal tract on speech production, modelling can be con
siderably simplified. Fortunately, nasal sounds constitute a small fraction of English 
speech sounds. Therefore, little modelling error results from neglecting the overall ef
fect of the nasal tract on the speech signal. Such a model, that consists only of a vocal 
tract, does not model the nasal tract, so any nasal effects in the speech signal must be 
approximated by the vocal tract. 

The vocal tract is modelled as a series of tubes, which are assumed to be lossless. It 
is also assumed that losses in the speech signal due to viscosity and heat conduction are 
negligible. Although certain synthesis models incorporate lossy tubes (Flanagan, 1972; 
Sondi and Schroeter, 1987), such models are not suitable for evaluating vocal tract 
parameters (see §2.2) because analysis required is too complicated: 

The complete vocal tract model comprises a number of tubes of different cross
sectional area. Within each acoustic tube it is assumed that the acoustic variables 
(density, pressure, etc.) have constant amplitude on any given plane perpendicular to 
the direction of propagation of the speech signal (Kinsler et al., 1982). These assump
tions are reasonable when the transverse dimension of each tube is small compared 
with the wavelength of the speech (Wakita, 1973). 

2.3.2 A single .tube 

The speech pressure and volume velocity signals are here denoted as functions of po
sition within the tube and time by p(x, t) and u(x, t) respectively. For convenience, 
the subscript m is introduced to refer to separate tube sections of the complete vocal 
tract. Quantities relating to the mth tube are identified by the subscript m, with m = 0 
being at the lips and m increasing towards the glottis. Because the cross-sectional area 
of the tube is constant along its length, both the pressure and volume velocity satisfy 
one-dimensional wave equations (Markel and Gray, 1976, p63): 

and 

um(x, t) = u~(t - x/c) - u;;(t + x/c), 

Pm(x, t) = p~(t - x/c) - p~(t + x/c), 

(2.24) 

(2.25) 

where (.) represents either um(x, t) or Pm(x, t). Signals labelled with a + superscript 
travel from the glottis to the lips and are called forward travelling waves. Similarly, 
the - superscript identifies backward travelling signals which propagate from the lips 
to the glottis. The tube is of total length I and x is the distance along the tube axis 
from the centre of the tube. The time taken for the forward travelling signal to pass 
from the centre of a tube (x = 0) to its end (x = 1/2) is 1/2c, where c is the speed of 
sound in ms- I . The forward travelling volume velocity signal, at the end of the tube 
(Le. x = 1/2) is written as u~(t-r) where r 1/2c. Fig. 2.4 shows the volume velocity 
at the edges of a tube for both the forward and backward travelling signals. 

2.3.3 Lattice formulation 

A complete vocal tract tube model consists of a number of constant diameter tubes 
concatenated together. Within these tubes the velocity signal propagates from the 
glottis to the lips. Reflections occur at interfaces between tubes of different diameters. 
The fraction of the volume velocity signal that is reflected at the end of the mth tube is 
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Figure 2.4. The volume velocity at the boundaries of the tubes constituting the vocal tract model 

(from Markel and Gray 1976). 

denoted by /-Lm, which is called the reflection coefficient. The component of a forward 
travelling signal that is reflected from a tube boundary becomes part of the backward 
travelling signal wave in the same tube. This is illustrated in Fig. 2.4. 

By utilizing the reflection coefficients, and realizing that air is continuous within 
the vocal tract model, Wakita (1973) develops expressions for forward and backward 
travelling signals. A forward travelling signal in the mth tube is composed of the forward 
travelling signal transmitted in the (m + 1 )th tube plus the reflected component of the 
backward travelling signal in the mth tube. An analogous statement holds for backward 
travelling signals. The forward and backward travelling signals at the right hand edge 
of the mth tube are defined by Markel and Gray (1976, p66) as 

U~_l(t + r) 

u~(t + r) 

/-LmU~_l (t - r) + (1 + /-Lm)u~(t - r) 

(1-/-Lm)u;;"_1(t - r) -/-Lmu~(t - r). 
(2.26) 

In order to solve (2.26) it is necessary to specify vocal tract boundary conditions 
(Le. the termination conditions at the glottis and mouth). Wakita (1973) outlines 
conditions which produce realistic vocal tract configurations. At the boundary of the 
vocal tract formed by the lips, it is assumed that the final vocal tube is connected to 
another tube of infinite cross-sectional area. This implies that the pressure signal goes 
to zero at the lips and that there is no radiated pressure wave. The reflection coefficient 
J.Lo is therefore set to be unity. Fortunately, this assumption produces almost identical 
results to those obtained with a more realistic description of the lip radiation (Markel 
and Gray, 1976, p68). At the other vocal tract boundary, formed by the glottis, the 
glottal excitation is taken to be a forward travelling volume velocity signal applied to 
the tube nearest the glottis (Markel and Gray, 1976, p71). 

Rearranging the expressions for forward and backward travelling signals and trans
forming to the Z-domain gives (Markel and Gray, 1976, §4) 

Y~(z) 

Y~(z) 

Y~_l(Z) + /-Lm Y~-l (z) 
z-l(/-Lm Y~_l(Z) + Y~_l(Z)), (2.27) 

where y+ and Y- represent the volume velocity along with terms containing (1 + /-Lm), 
but in terms of a Lattice formulation as depicted in Fig. 2.5. The variables y+ and 
Y- describe the forward and backward propagating error signals in the lattice (Itakura 
and Saito, 1973). 
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(a) 

Figure 2.5. A lattice arrangement of the forward and backward propagating error signals within the 

vocal tract model: (a) analysis, (b) resynthesis. 

The role of the error signal is best demonstrated by considering the lattice analysis 
scheme shown in Fig. 2.5( a), where each individual lattice stage corresponds to a single 
tube of the vocal tract model. The positive and negative travelling errors are optimized 
as they travel through the lattice by choosing an appropriate value for J-Lm at each stage. 
These errors are minimized by predicting the value of the current speech sample from 
previous samples. The first stage of the analysis filter predicts the current sample from 
the last sample. The second stage adds prediction information from the second to 
last sample. Thus, two lattice stages predict the current sample from the two previous 
samples. Further lattice stages add to the order of the prediction, up to the total number 
of stages in the filter. The component of the speech that is not predicted is called the 
prediction error and the J-Lm are chosen so that this prediction error is minimized. The 
optimum values for J.Lm are determined by evaluating the partial correlation between the 
forward and backward travelling error signals (Markel and Gray, 1976, p41). The J-Lm 
are therefore sometimes referred to as PARCOR (from partial correlation) coefficients. 
The PARCOR equation is (Makhoul, 1977) 

00 

2:::: Y~_l[n]Y;_l[nl 

J-Lm 
n=-(X) 

(2.28) 
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where the denominator of (2.28) is the geometric mean of the sum of the forward and 
backward travelling error signals in the (m-1)thstage. The numerator of (2.28) contains 
the correlation between the forward and backward travelling error signals within the 
same section. The lattice structure allows updating of reflection coefficients on a sample 
by sample basis. This contrasts with the standard LPC approach which requires that 
a complete speech segment be collected before analysis can proceed (see §2.5). 

A reflection occurring at any tube boundary is always ofless energy than the incident 
. signal, implying that the magnitude of the reflection coefficient must always be less 
than unity. Provided computation of vocal tract model coefficients yields Jtm < 1 
for all m, the energy at the output of the vocal tract model tends rapidly to zero 
after the input vanishes (as is of course physically necessary). Since a stable output is 
produced when all the Jtm < 1, such Jtm constitute what is called a stable set ofrefiection 
coefficients. If, as a result of accumulated round-off error in the optimizations, one or 
more of the Jtm becomes greater than unity, the output of vocal tract model ceases to 
be physically acceptable because its energy density can then exceed that of the input. 
The set of refiection coefficients is then said to be unstable. However, a useful property 
of employing (2.28) to compute Jtm is that the stability of refiection coefficients is 
guaranteed (Makhoul, 1977). Other methods of computing the coefficients (see §2.5.3) 
do not guarantee stability. 

Stability of refiection coefficients is guaranteed if they are calculated by linear in
terpolation between two other sets of stable refiection coefficients. This is because the 
coefficient interpolated between two coefficients that are both less than unity, is also al
ways less than unity (Rabiner and Schafer, 1978, p446). This property is often utilized 
when averaging between sets of refiection coefficients, as might occur in the training of 
a vector quantizer (see §2.7.4.2). 

2.3.4 Area function 

The relative cross-sectional areas of the vocal tract tubes can be calculated from reflec
tion coefficients by invoking Wakita (1973) 

1 Jtm 

1 + Jtm' 
(2.29) 

where Am is the cross-sectional area of the mth tube. It is important to realize that 
(2.29) defines the ratio of the areas of adjacent tubes. Typically, the area of the first 
or last tube is normalized to unity and all other areas are evaluated relative to it. This 
normalized cross-sectional area of the model vocal tract, expressed as a function of 
position, is called the area function and is written area(x). 

The exact relationship between the calculated area function of a particular sound 
and the vocal tract shape utilized for producing the sound is critical if vocal tract shapes 
are to be inferred from area functions. Sondhi (1979) raises some interesting points in 
this regard. First, for a lossless tract which is modelled as being closed at the glottis and 
open at the lips, the area function is not unique. For instance, area functions area(x) 
and 1/area(x) both have the same transfer function (Bonder, 1983). Second, the area 
function is critically dependent on the formant bandwidths. Sondhi (1979) illustrates 
this by plotting a set of four area functions for each of the vowels lal and lui. Each 
member of each set is derived from four formants which have the same frequency and 
amplitude, but slightly different bandwidths. For the lal sound, the area functions have 
the same overall trend and worst case differences between them are as large as 50%. This 
sensitivity to formant bandwidth is highly significant because formant bandwidths are 
difficult to estimate accurately from the speech signal (Sondhi, 1979). Third, because 
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the energy density of the glottal source falls off rapidly at high frequencies (see §2.5.2), 
the transfer function of the vocal tract cannot be estimated reliably at frequencies higher 
than 3kHz. Wakita (1973) calculates area functions for a number of vowels and reports 
results that correspond closely to the expected vocal tract shape. These area functions 
are obtained after (approximately) removing the effects of the lips and glottis by pre
emphasizing the speech. Wakita also examines area functions for sounds that have not 
been pre-emphasized and finds that the area functions have a physically unrealistic 
shape. He therefore concludes that pre-emphasis is essential for determining realistic 
models of the vocal tract shape. Sondhi's (1979) explanation of these different results is 
that the shape of the final area function depends strongly on assumptions made about 
the glottal source and the lip radiation (pre-emphasis models these effects). 

An alternative method of determining the vocal tract shape involves measuring the 
response of the vocal tract to an impulse applied at the lips. Sondhi and Gopinath (1971) 
describe a method that uses an impedance tube placed next to the subject's lips. The 
impedance tube contains both a source for exciting the vocal tract and a microphone 
for measuring the vocal tract response. To calculate the area function of a particular 
sound, subjects attempt to hold their mouths in positions which they would use to 
produce that sound. The source in the impedance tube excites the vocal tract and the 
area function is computed from measurements of the reflected signal. The disadvantage 
of this method is that the placement of the impedance tube against the lips inhibits 
the subject physically and is likely td cause the shape of the subject's vocal tract to 
differ significantly from the shape it would have in unconstrained speech. The authors 
report tests of the impedance device on a metal tube of known shape. The calculated 
tube shape, determined from measurements of the tube response, closely matched the 
actual shape of the tube. 

Interestingly, although the approach developed by Wakita (1973) cannot lead to a 
unique connection between what is measured and the shape of the vocal tract, it usually 
generates what appear to be quite reasonable estimates of the vocal tract shape (Elder 
et al., 1987; Watson et al., 1991). From a practical point of view, it is irrelevant whether 
Wakita's shapes are non-unique if reasonably accurate vocal tract representations are 
generated from actual speech signals. 

2.4 PROSODIC CHARACTERISTICS 

As people speak they utter a range of sounds that are either voiced or unvoiced, with the 
voiced sounds having a particular pitch. Speech model parameters must be updated 
regularly so that these changes are recorded. Speech segmentation, as described in 
§2.4.1 is used to extract a portion of the total speech signal for analysis. Methods 
of intensity computation, pitch detection and voiced/unvoiced analysis are described 
respectively in §2.4.2, §2.4.3 and §2.4.4. 

2.4.1 Speech segmentation 

Speech comprises a succession of various phonemes (§1.2) of short duration, typically 
less than O.ls. Each phoneme can be characterized by a set of parameters which 
describe properties of the sound. These parameters vary rapidly as different phonemes 
are produced, particularly for short phonemes such as /t/. To record the temporal 
variations of these parameters it is necessary to divide the speech into short speech 
segments or frames which are less than the phoneme length. The length of a speech 
segment is called the segment length and is typically 0.01-0.02s. Reference is often made 
in this thesis to 'short' or 'long' speech segments. The implication is that the lengths 
of these segments are chosen to be significantly longer (or shorter, as the case may be) 
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than the pitch period. When a speech record (of an utterance) is divided into a number 
of segments, the time difference between consecutive speech segments is called the time 
step. It is also convenient in certain contexts to state the length of a speech segment 
in samples. Whenever the sampling rate is given or known, the segment length and 
number of samples in a segment are used interchangeably. 

2.4.2 Intensity 

Recall from 1.3.1, that intensity is a measure of the speech signal that is related loosely 
to the perceived loudness. In applications such as speech analysis and synthesis, it does 
not matter that the intensity does not correspond to a defined loudness scale, because 
it is used to ensure that the correct loudness levels are preserved, rather than as an 
absolute measure. 

The RMS intensity of a single frame of N speech samples, is expressed as 

1= 
",N-l [']2 
L..i=O S Z 

N 
(2.30) 

where I is the RMS intensity. Note that the RMS intensity of a sequence of speech 
frames is denoted I[m], where m is the frame number. 

Throughout this thesis the RMS intensity is used to estimate the amplitude of the 
speech signal within a speech frame, Compared with the energy of the signal, which 
is the correlate of loudness used by many researchers (Rabiner and Schafer, 1978, §4), 
the RMS intensity has the advantage that the intensity value is of the same scale as 
the speech signal. 

2.4.3 Pitch estimation 

This section reviews a wide range of pitch estimation techniques and describes the 
particular method employed in the work reported in §4.4.2.3. 

Recall from § 1.2.2 that the pitch is related to the periodic vibration of a person's 
vocal cords. The pitch is difficult to estimate because the resonant cavities of the vocal 
tract distort the glottal excitation as it travels towards the lips. In addition, there 
are small perturbations in the period of the glottal excitation that complicate pitch 
detection methods. 

Apart from the speech production process, external factors such as signal condi
tioning also affect the pitch procedure. For example, when speech has been bandpass 
filtered, as often occurs in the telephone system, the pitch, which is below the 200~300 
Hz cutoff, must be detected from its harmonics. 

Note that some researchers extend the pitch detection problem into the investigation 
of ways to determine the exact opening and closing times of the glottis (Cheng and 
O'Shaughnessy, 1989; Ananthapadmanabha and Yegnanarayana, 1979; Moulines and 
Di Francesco, 1990), but here the discussion is restricted to pitch detection methods. 

Rabiner et al. (1976) divide pitch finding algorithms into the categories of time 
domain methods, frequency domain methods.and hybrid methods that incorporate both 
time and frequency domain methods. The reader is referred to Rabiner et al. (1976) 
and McGonegal et al. (1977) for comparative tests of many of the algorithms described 
below. 

2.4.3.1 Time domain methods 

Time domain methods use the time domain properties of the speech signal, such as the 
position of peaks or zero crossings, to estimate the pitch period. The detection of such 
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temporal features in the speech is usually a computationally straightforward procedure, 
so time domain techniques are well suited to real-time implementation (cf. Samouelian 
and Holmes, 1985). 

One of the early, and well known, time domain methods is the parallel processing 
method proposed by Gold and Rabiner (1969). The name parallel-processing arises 
because the speech signal is processed simultaneously by several different pitch detec
tors. Rabiner and Schafer (1978, p136) summarize the basic principles of the scheme 
as follows: 

1. The speech signal is processed to create a number of impulse trains which retain 
the periodicity of the original signal but discard features that are irrelevant to 
the pitch detection process. 

2. Simple pitch detectors are used to estimate the period of each impulse train. 

3. The estimates obtained from several of these simple pitch detectors are logically 
combined to infer the period of the speech waveform. 

Several other pitch algorithms have evolved from Gold and Rabiner's algorithm 
(Sutherland et al., 1988; Tucker and Bates, 1978). The pitch detector used for the work 
reported in §4.4.2.3 was developed by Brieseman (1984) and is a modification of Gold 
and Rabiner's algorithm and the peak tracking pitch detection algorithm developed by 
Tucker and Bates (1978). 

Brieseman's pitch detector performs pattern matching amongst positive and nega
tive peaks (extrema) in the speech signal. First the speech signal is filtered to remove 
any components with frequencies higher than 500 Hz. Extrema in the signal are located 
and their positions and amplitudes stored. Note that the extrema amplitude and po
sition information represents a considerable compression of the original speech signal, 
making it feasible to store all the extrema from many past pitch periods for matching 
purposes. A matching algorithm is then invoked to match extrema amplitudes with 
previous extrema, and if enough extrema are matched (to within a specified' threshold 
and having a similar time shift) the pitch period is taken to be the common time shift. 
Fig. 2.6 shows a segment of filtered speech, the extrema, and the computed pitch pe
riod. If the extrema match well across a single pitch period, they usually also match 
across two pitch periods. It is therefore important to choose the smallest possible pitch 
period for which the extrema are matched. The range of possible pitch values is limited 
by this algorithm to lie within the range of 75 to 500 Hz so that the amount of matching 
required is reduced. 

An alternative time domain technique is to compute the difference between segments 
of the speech signal rather than locating and matching peaks. Ross et al. (1974) use 
such a method to form a difference signal between a delayed version of the speech signal 
and the original. Hence their technique is entitled the average magnitude difference 
function (AMDF) pitch extractor. The main advantage of the AMDF method is that 
it is computationally efficient, because no multiplications are required. 

2.4.3.2 Frequency domain methods 

Frequency domain methods use spectral properties of the speech waveform to estimate 
the pitch. A typical example of such a method is the cepstral technique described by 
Rabiner and Schafer (1978, p314). The cepstrum of a section of speech has a peak 
due to pitch harmonics in the spectrum (for example, see Fig. 2.10(a) in the region of 
n = 85). The pitch can be reliably estimated from the position of this peak. However, 
this method requires a considerable amount of computation to determine both the 
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Figure 2.6. An example of part of the pitch calculation algorithm: (a) the original speech, (b) the 

positions of extrema in the speech after components above 500 Hz have been removed. 

spectrum and cepstrum (Rabiner et al., 1976). Other pitch detection algorithms are 
therefore more attractive since they perform at least as well as the cepstral algorithm 
and have lower computational requirements. 

Another example of a frequency domain pitch detection method is the comb filter 
technique (Moorer, 1974). This approach works by computing the inner product be
tween the autocorrelation of the speech and a comb filter, for various comb spacings 
(Wise et ai., 1976). The spacing that has the largest inner product is directly related 
to the pitch period of the speech. 

2.4.3.3 Hybrid frequency domain and time domain methods 

A typical time and frequency domain pitch detection algorithm performs signal condi
tioning on the speech signal in the frequency domain before applying a time domain 
technique to the conditioned signal to determine the pitch period. 

An early published example of this type of pitch algorithm is the method proposed 
by Sondhi (1968) which uses the autocorrelation of spectrally flattened speech to esti
mate the pitch. Sondhi's spectral flattening technique uses band-pass filters and time 
delays to produce an effect that is similar to filtering by an inverse linear prediction 
filter (see §2.5) in that sharp peaks at pitch period spacing are made prominent. The 
autocorrelation of the spectrally flattened speech has a peak at the time shift that cor
responds to the pitch period. Another method of pitch detection, based on a similar 
concept, is the simplified inverse filtering technique (SIFT) developed by Markel and 
Gray (1976, p206) (see Rabiner et ai. (1976) for a detailed evaluation). The SIFT 
algorithm works by low pass filtering at 900 Hz a block of 40 ms of speech (10kHz 
sample rate), decimating the speech at a ratio of 5 to 1 and then passing the decimated 
speech through a 4th order inverse linear prediction filter (see §2.5) before performing 
autocorrelation analysis 011 the residual signal. The significant peaks in the residual 
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signal occur in the regions of glottal excitation within the original speech, so the main 
peak in the autocorrelation function can be used to indicate the time between the peaks 
in the residual signal. The SIFT algorithm accurately determines the position of the 
peak in the autocorrelation function by interpolating sample values around the peak. 

2.4.4 Voiced/unvoiced decision methods 

An important aspect of speech analysis is the determination of whether a segment of 
speech is voiced or unvoiced. This is particularly true for any speech analysis algorithm, 
such as pitch detection, that is critically dependent on whether or not the vocal cords 
are vibrating. This section reviews several different voiced/unvoiced (V /UV) decision 
methods and specifies the particular methods used in this thesis for performing the 
V /UV decision. 

V /UV classifiers are closely related to silence detectors (De Souza, 1983) and are 
sometimes called voiced/unvoiced/silence detectors (cf. Atal and Rabiner, 1976). They 
also often operate in conjunction with pitch detectors. 

One approach to performing the V /UV decision is to adopt the pattern classification 
technique of Atal and Rabiner (1976). Parameters measured from a segment of speech 
are used to decide whether the particular segment of speech should be classified as 
voiced, unvoiced or silent. Atal and Rabiner (1976) employed as parameters the zero 
crossing rate, the speech energy, the correlation between adjacent samples, the first 
predictor from a 12~pole linear predictive coding (§2.5) analysis, and the energy in the 
prediction error (§2.5.3). A training set of manually classified speech data is used to 
determine the means and covariances of the specified parameters. Speech segments are 
then classified under the assumption that the parameters are distributed according to 
the multidimensional Gaussian probability density function. 

Tests of a neural network V /UV classifier are reported by Bendiksen and Stei
glitz (1990) who use a neural network with 6 input nodes, 10 internal nodes and 2 
output nodes to implement a V /UV decision. In their system the 6 input features 
were the RMS energy of the speech, the RMS energy of the pre-emphasized speech, 
the first auto-correlation coefficient of the speech, the first auto-correlation coefficient 
of the pre-emphasized speech, the ratio of the speech energy above 4000 Hz to the 
energy below 2000 Hz and the product of the speech energy above 4000 Hz and below 
2000 Hz. The neural network was trained with a total of 72 frames of speech taken 
from 2 speakers and tested with 479 frames of speech taken from 4 speakers. A total 
of 2 misclassifications were reported from all the test frames. Bendiksen and Steiglitz 
concluded that the network classifier performed as well as other V /UV classifiers based 
on pattern recognition methods. 

For any sort of V /UV classifier, Siegel (1979) points out that it is important to 
ensure that the training segments of speech are taken from a range of sounds and 
speakers in order to ensure the classification algorithm works correctly on speech from 
people not included in the training set. However, training is more complicated with 
large numbers of training utterances, so a compromise is usually made between using 
large quantities of training data and inadequately describing the V /UV characteristics 
of speech. Siegel (1979) found that 179 training patterns and 6 features were enough to 
specify a good classifier. However, the methodology for evaluating the effect of varying 
the number of training patterns is not described in detail so it is difficult to know what 
significance to attach to this result. 

A particularly simple V /UV decision method is to compare energy in different parts 
of the speech spectrum (Knorr, 1979). The energy contained in the speech signal above 
5kHz is compared with that below 1kHz to determine whether the speech is voiced or 
unvoiced. The main features of this type of method are its simplicity and the ease with 
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which it can be implemented in real-time. Furthermore, Knorr (1979) reports that the 
classification accuracy is similar to that obtained by Atal and Rabiner (1976). 

For the V jUV decisions required in this thesis (§4.4 and Chapter 5) two different 
V jUV decision algorithms are used. They are labelled here respectively as VUV1 and 
VUV2. The first algorithm, VUV1, is similar to that described by Knorr (1979). The 
RMS intensities of three different signals are compared to determine whether speech is 
voiced, unvoiced or silent. These signals are; the RMS intensity of the speech signal 
Is[m], the RMS intensity of the speech signal after it has been low-pass filtered to 200 
Hz I/[m] and the RMS intensity of the speech after the high frequencies have been 
emphasized by pre-emphasis (§2.5.2) h[m]. The following decision rule is then invoked 
to determine whether the frame is voiced, unvoiced or silent: 

Segment m is 
Silent if Is[m] < (s, 
unvoiced if Is[m] > (s and I/[m] < 1.25Ih[m], 
voiced if Is[m] > (s and I/[m] > 1.25h[m]. 

where (s is the silence threshold. The 1.25 scale factor was determined by trial and 
error and is included to improve the accuracy of the V jUV decision. Examples of the 
two signals I/[m] and 1.25Ih[m] which are compared to perform V jUV decision are 
plotted in Fig. 2.7(e). It is apparent that the energy in h[m] is significantly higher 
than that in I/[m] for unvoiced sounds and vice-versa for voiced sounds. 

In an application such as speaker identification, a highly accurate V jUV decision 
is not necessary because the speech excitation is not important. Instead the aim is to 
extract those frames that contain significant information about a person's vocal char
acteristics. Here the claim is that if the energy of a speech frame is greater than a 
particular threshold, that frame contains potentially useful information for distinguish
ing speakers. The justification for excluding silent frames is that they do not contain 
any speaker information. 

In the speaker identification experiments described in Chapter 5 a large number of 
utterances must be analysed, making it desirable to extract voiced frames of speech in a 
computationally efficient manner. The VUV2 algorithm uses the RMS intensity of each 
frame to indicate whether or not it is likely to be voiced. A threshold is selected relative 
to the maximum amplitude of the speech utterance and the RMS values of the speech 
throughout the utterance are compared against it. This algorithm does not perform 
the V jUV decision in a rigorous manner since, as shown in Fig. 2. 7(b), certain loud 
unvoiced speech frames are erroneously considered to be voiced. However, the silent 
portions of the speech and those unvoiced frames that have little energy are excluded, 
thereby reducing the range of sounds to be represented by the speaker template. 

2.5 LINEAR PREDICTIVE CODING OF SPEECH 

Linear predictive coding (LPC) is a powerful modelling technique which has become well 
established in many areas of speech research (Rabiner and Schafer, 1978). It has been 
usefully applied in the fields of speech coding, word recognition, speaker recognition 
and geophysics. These applications all utilize the significant data reduction brought 
about by LP C to process, store, or transmit signals more efficiently. 

An early speaking device which was a forerunner of LPC techniques is described in 
§2.5.1. The device was used to demonstrate that the information required to reproduce 
speech could be stored in a (relatively) small number of parameters, or coefficients. 
The way in which lip and glottal effects are accounted for in LPC is described in §2.5.2. 



34 

Amplitude 

loud 
soft 

CHAPTER 2 SPEECH ANALYSIS AND MODELLING 

unvoiced ] I" 
not unvoiced ;:, ======~--=========:;=====~~-~=--=====::; 

o 
voiced ] 

not voiced ,.----___ I!..':LJ=::::::.. ___ ----:-.,----__ -==-!:::===!:::=~ _ ____, 
o 

Intensity 

o (e) 883 ms 

Figure 2.7. An example of the voiced/unvoiced decision for the phrase "When sunlight strike": (a) 

the speech signal, (b) detection ofthe 'loud' portions of the speech, (c) unvoiced portions of the speech, 

(d) voiced portions of the speech, (e) the RMS intensity levels h[m] and 1.25lh[m] that are used to 

perform the voiced/unvoiced decision. 

The process of determining LPC coefficients involves solving linear prediction equa
tions in the manner outlined in §2.5.3. Section 2.5.4 shows that the LPC formulation 
corresponds to the lattice structure solution for reflection coefficients, as presented in 
§2.3.3. 

2.5.1 An historical perspective 

The first electrical device to analyse and reproduce speech is attributed to Dudley (1939). 
He called the process of reproducing speech 'remaking', although synthesis has since 
become the more commonly used term. His speech remaking device consisted of a 
number of filters, each of which determined the energy in a particular frequency band. 
The bands were specified to have widths (at the 3dB level) of between 200 and 300 Hz. 
By splitting the speech spectrum into ten bands and determining the energy in each, 
the vocal tract transfer function was estimated. To synthesize speech, the estimate of 
the power in each of the fixed frequency bands was modulated by one of two source 
signals. Dudley's sources consisted of a 'hiss-like' noise signal for unvoiced speech and a 
'buzz-like' periodic source for voiced speech. Systems that code speech in this manner 
derive their names from the words VOice CODER and are called vocoders. The signif-
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icance of Dudley's work is that it demonstrated that much of the unprocessed speech 
signal is redundant (Schroeder, 1966). Further developments in voice coding proceeded 
from this assumption. 

Pioneering vocoder developments, of the type reported by Dudley (1939), were 
constructed with analog electrical components. However, contemporary speech coders 
are implemented via algorithms which reside in digital computers. The LPC algorithm 
is one such technique. It is a method of estimating parameters for a low-order filter 
that models the vocal tract and was first applied to speech signals by Itakura and 
Saito (1968) and Atal and Hanauer (1971). 

2.5.2 Lip and glottal effects 

This section examines the way in which the characteristics of the glottal pulse and lip 
radiation are accounted for in LPC modelling. The effects of glottal pulses and the lip 
radiation can be incorporated into the standard source filter model to create a voice 
production model (Markel and Gray, 1976, p6) as previously indicated in Fig. 2.2(a) and 
(b). The excitation impulses e(t) are filtered with the aim of making them correspond 
more accurately to actual glottal pulses. The input to the vocal filter is then the 
excitation signal e(t) convolved with the glottal shaping filter with impulse response 
get). The output of the vocal tract filter is convolved with a lip radiation model 
having impulse response let) to produce a synthetic speech signal set). Such a model 
is represented compactly in the Z-domain as 

S(z) = E(z)G(z)V(z)L(z). (2.31) 

The interface between the vocal tract and free space is at the lips. It is important to 
realistically model the effect of the lips because it defines how the speech sound actually 
comes out of the vocal tract. The radiated pressure signal can be quite accurately 
approximated by a 1st order differentiation(Fant, 1973, p7) of the sound within the 
vocal tract(Flanagan, 1972, p36), i.e., 

L(z) = 1 - z-l. (2.32) 

Section 2.2.1 mentions that the spectrum of the typical human glottal excitation 
falls off approximately as 1//2 • This spectral characteristic is conveniently modelled 
as a two-pole low pass filter with a cutoff frequency of approximately 100 Hz (Markel 
and Gray, 1976, p7). Such a filter is of the form 

1 
G(z) :::: T' (2.33) (1- e-C z-1)2 

where c is the speed of sound in air and T is the sampling period. Since cT is much less 
than unity, G( z) can be thought of as a filter having a -12dB / octave slope. Combining 
L(z) and G(z), and observing that one of the terms in the denominator of (2.33) is 
effectively cancelled by L(z) (since cT is generally much less than unity) gives a filter 

1 1 
L(z)G(z) ~ P(z) :::: 1- (2.34) 

where u is close to unity. To separate the contributions from L(z) and G(z) from V(z) 
it is useful to rewrite (2.31) 

S(z)P(z) = V(z)E(z), (2.35) 

where P(z) ~ L(zlG(z)' P(z) is called a pre-emphasis filter because it is applied to S(z) 
to give V(z), which is then analysed to find the vocal tract parameters. Normally u is 
set to the value of 0.95 which implies a gain of 6dB/octave for a sampling rate of 10 
kHz. 



36 CHAPTER 2 SPEECH ANALYSIS AND MODELLING 

2.5.3 Linear prediction 

The basic idea in linear prediction is that it is possible to predict the next sample in 
a sequence from a linear combination of the previous P samples. This corresponds to 
an all-pole system whose output is a linear combination of previous outputs and the 
current input (Makhoul, 1975). The coefficients used to predict the next sample are 
called prediction coefficients and are denoted by aj. The linear prediction model for a 
sequence s[n] is defined by (Markel and Gray, 1976, plO), 

P 

s[n] =:: L -ajs[n - i] + ern], (2.36) 
i=l 

where ern] is the residual or prediction error. The ais can also be thought of as the . 
coefficients of an all-pole filter which models the transfer function of the vocal tract, 
as intimated in §2.2.2. The vocal tract, and therefore the ajS, are considered to be 
invariant throughout a short speech segment. Typically, lengths of 10ms to 25ms are 
found to be suitable for estimating vocal tract filter parameters (Witten, 1982, p126). 

The total power a in the prediction error over a speech segment defined between 
n = 0 and n =:: N - 1 is 

N-1 N-1 ( P ) 2 

a = E e[n]2 = t; s[n] + ~ ais[n - i] (2.37) 

This error power is minimized by setting its derivative with respect to each aj to zero, 
i.e. 

a N-1 ( P ) a:. = -2 L s[n - j] s[n] + ?= ajs[n - i] , 
J 11=0 1=1 

(2.38) 

and setting aa/ aaj = 0 gives the set of equations 

N-1 P N-1 

L s[n]s[n - j] = L aj L s[n - j]s[n - i] for j = 1,2, ... , P. (2.39) 
n=O 1=1 n=O 

Assumptions about the signal at the edge of the speech segment are required before 
the summation of the s[n - j]s[n - i] can be evaluated (Rabiner and Schafer, 1978, §8). 
One approach is to assume that the summations in (2.39) runs from -00 to +00, but 
that the signal is zero outside the range of O:S; n:S; N - 1. These conditions reduce 
(2.39) to the autocorrelation method (Markel and Gray, 1976, p14), viz, 

(1) Set 

(2) Solve 

or, in matrix form 

Tm = r:,;[';ol-m s[n]s[n + m] 
r:,k1 aiTli-il = -Tj for j =:: 1,2, ... , P 

alTO + a2T1 + a3T2 + ... apTp_t = -T1 

alTl + a2TO + a3Tl + ... apTp_2 -T2 

a1 T2 + a2T1 + a3TO + ... apTp_3 -T3 

........... " ................................... = 
atTp-1 + a2 Tp-2 + a3Tp-3 + ... apTo = -Tp. 

(2.40) 

(2.41) 

The matrix formulation of the autocorrelation is symmetric and components along 
each diagonal are equal. These properties identify the autocorrelation matrix as a 
Toeplitz matrix (Rabiner and Schafer, 1978, p403). Toeplitz matrices can be inverted 
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efficiently using a recursive technique such as that proposed by Durbin (see §2.5.3.1) 
(Makhoul, 1975). 

The autocorrelation defined by (2.40) stipulates a summation which runs over a 
signal segment consisting of N samples. This is the same as multiplying a signal that 
extends from -00 to +00 by a rectangular window which is N samples long. However, a 
rectangular window causes large prediction errors at the beginning of a speech segment 
because samples are estimated from other samples which are defined to be zero. A 
similar situation arises just past the end of the segment, where samples that are zero 
are predicted from other nonzero samples. These large prediction errors are avoided if 
the speech samples reduce smoothly to zero at the edge of the defined speech segment 
(Rabiner et al., 1977; Chandra and Lin, 1974). This can be achieved by multiplying the 
speech segment by windows such as the Hamming or Blackman windows (Harris, 1978), 
which both tend smoothly to zero at the ends. 

The second approach to the summation in (2.39) is to fix the limits over which the 
summation is evaluated: 

(1) Set 

(2) Solve 
¢>ij 

Ef=l ai¢>ij 

E~:;ls[n - i]s[n - j] 
= -¢>OJ for j = 1,2, ... , P. 

(2.42) 

Equation (2.42) represents the covariance method. In contrast to the autocorrelation 
method, the speech segment no longer requires tapering at the ends since the summation 
used to calculate ¢>ij incorporates samples outside the interval 0 ~ n::; N - 1. 
Parameters calculated by solving (2.42) are still coefficients for the filter 1/A(z), but 
differ from those calculated via the autocorrelation method. 

Calculating prediction coefficients using either the autocorrelation method or the 
covariance method requires a matrix inversion. Theoretically, the autocorrelation ma
trix is guaranteed to be invertible, however, it can occasionally become ill-conditioned 
due to computational roundoff (Rabiner and Schafer, 1978,418). The covariance matrix 
is not guaranteed to be invertible (Makhoul, 1975). 

2.5.3.1 Solution of LPC equations 

Several methods have been developed for implementing the autocorrelation formulation. 
The Durbin-Levinson method is the most efficient of these methods and is specified as 
follows (Makhoul, 1975), 

Eo TO (2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.4 7) 

The recursion equations (2.44) - (2.47) are solved for i = 1,2, .,., P. Each step of the 
recursion increases the order of the prediction by one and recomputes the predictor 
coefficients for the increased model order. On completion of the recursion the predictor 
coefficients are defined by af, 1 ::; k ::; P. Note that the sets of ki and aj defined in 
the recursion are employed in the speaker identification experiments reported in §5.3. 

The equations which define the covariance method can be stated in matrix notation 
as 

(2.48) 
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where 4? is a positive definite symmetric matrix with (i, j)th element <Pii' and A and 
c.p are column vectors with elements ai and -<POj respectively. Because 4? is symmetric 
and positive definite, Cholesky decomposition can be invoked to solve for A (Rabiner 
and Schafer, 1978, p407). 

The computational requirements of the autocorrelation and covariance methods are 
dominated by the calculation of the autocorrelation coefficients Ti or the <Pii which both 
require O( P N) operations (multiplications). Solving for the aiS requires O( p2) oper
ationsfor the autocorrelation method and O(P3) for the covariance method (Rabiner 
and Schafer, 1978, p418). 

2.5.4 Lattice filtering 

The lattice models constitute an important link between the LPC predictor coefficients 
and the vocal tract acoustic model described in §2.3.2. The coefficients ki calculated 
as intermediate results in the Durbin-Levinson recursive procedure correspond to the 
reflection coefficients of the lattice filter (see §2.3.3), as derived from the vocal tract 
tube model (Rabiner and Schafer, 1978, p415). LPG coefficients calculated using the 
autocorrelation method are therefore directly related to the vocal tract tube model. 

Section 2.3.3 describes the relationship between the vocal tract model and the lattice 
filter. In this section the solution for the elements of the lattice filter is shown to be 
based on the same relationship as the autocorrelation method of LPG. Forward and 
backward prediction errors are defined in terms of the speech signal and then in terms 
of each other. Methods for calculating reflection coefficients that minimize both of 
these prediction errors are then presented. 

The lattice filter can be derived as a direct consequence of the Durbin-Levinson 
algorithm outlined in the previous section. As the Durbin-Levinson algorithm recurses, 
the order of the prediction filter increases. The coefficients of this prediction filter can 
be configured as an ith order inverse filter, 

1 

A(i)(z) 1 I: a~i) z-k, (2.49) 
k=l 

where i is the iteration number of the Durbin-Levinson algorithm and ak is the kth 
filter coefficient. The filter is applied to a segment of speech sl[n] = s[1 + n]w[n] , where 
w[n] is a window and the speech segment s{[n] begins at sample number 1, resulting in 
a prediction error yt( i) [n] defined by 

(2.50) 

For clarity the subscript 1 is discarded, so the prediction error then becomes y+(i) [n]. 
This is called the forward prediction error since the speech sample s[n] is predicted 
from the preceding i samples. The Z-transform of (2.50) is 

(2.51) 

The final prediction error of the LPG filter is obtained from (2.51) by allowing the 
recursion to run to P. 

A backward prediction error is defined as 

i 

y-(i)[n] = s[n - i] - I: a~i) s[n + k i], (2.52) 
k=l 
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where s[n - i] is predicted from the i input samples that follow s[n - i]. By substituting 
(2.46) into (2.49), and utilizing the Z-transform of (2.52), the forward prediction error 
sequence can be expressed as 

Y
+(i) [n] +(i-1) [ ] _(i-1) [ 1] Y n + J.Li Y n - J. , (2.53) 

and similarly, the backward prediction error becomes 

_(i) [ ] _(1-1)[ 1] + +(;-1)[] y n = y n - J.LiY n , (2.54) 

where the J.Li are the -reflection coefficients. Note that (2.53) and (2.54), which are 
derived from the Durbin-Levinson algorithm, correspond to the inverse Z-transform of 
(2.27): derived from the vocal tract tube model (Rabiner and Schafer, 1978). They also 
describe exactly the lattice filter derived from the vocal tract tube model and depicted 
in Fig. 2.5. 

In order to solve for the reflection coefficients using a filter of the lattice form it is 
necessary to formulate an equation that defines reflection coefficients minimizing both 
the forward and backward prediction errors. One approach is to use the PARCOR 
equation defined by (2.28). An alternative approach minimises the sum of the squared 
forward-prediction errors and the squared backward prediction errors. This is the so
called Burg method and involves recursive computation of (Barnwell, 1980), 

(2.55) 

Burg's method and the Durbin-Levinson method of LPC have different windowing 
requirements. A window is required in the autocorrelation method to limit the range of 
the summation used to compute the autocorrelation coefficients. However, windowing 
is unnecessary for the Burg lattice formulation (Barnwell, 1980) since the autocorre
lation is not one of the inputs to the Burg algorithm. Barnwell (1980) compares how 
well the speech spectrum is modelled by coefficients calculated using the unwindowed 
Burg method and the windowed autocorrelation method. He finds that the Burg tech
nique consistently gives better spectral estimates, where the criterion is the quality of 
synthetic speech resynthesized from the estimates. In the listening tests it was judged 
that the Burg technique maintained a higher synthetic speech quality when the seg
ment length was reduced. The main form of spectral distortion is that the spectral 
peaks are broadened when short windows are used with the autocorrelation method 
(Barnwell, 1980). 

Although the lattice techniques are based on the same error criterion as the Durbin
Levinson solution of the autocorrelation matrix, they are not globally optimal. The 
error is minimized stage by stage in the lattice filter and updated for every new sample, 
whereas Durbin-Levinson's method uses the autocorrelation of the complete speech 
segment. A lattice method that updates the reflection coefficients using (2.28), and 
the Durbin-Levinson autocorrelation method, will produce the same coefficients for a 
stationary signal (in the sense defined in §2.7.1.1), but because speech signals are not 
strictly stationary, even for 10 ms, the two methods generally give different results. 

In this thesis the autocorrelation technique is used to compute the J.Li since it is more 
computationally efficient than the Burg method, which requires O(5N P) operations 
(Rabiner and Schafer, 1978, p418) to compute one set of P reflection coefficients (for 
N samples). 
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2.6 SPECTRAL ESTIMATION 

Many of the speech analysis techniques invoked in this thesis use spectral estimation 
in some form. It is important, therefore, to review the limitations of various spectral 
estimation techniques in terms of their spectral resolution, accuracy and other relevant 
short-comings. This section discusses several different methods of spectral analysis and 
their application to speech signals. Section 2.6.1 describes certain limitations of the 
FFT for estimating the spectral content of a signal, while §2.6.2 defines the way in 
which the LPC filter models the spectrum of a speech signal. The cepstrum of a speech 
signal and its properties are discussed in §2.6.3. 

, 2.6.1 Fast Fourier Transform 

The FFT, as introduced in §2.1.1, is a computationally efficient technique that produces 
reasonable spectral estimates for diverse classes of sampled signals. However, spectral 
estimates obtained via the FFT are subject to unavoidable limitations, which means 
that care must be taken when interpreting spectra. 

The most prominent limitation of the FFT is the frequency resolution which, in 
Hertz, is the reciprocal of the duration of the sampled data (Kay and Marple, 1981). 
The only way that the frequency resolution can be improved is to take a longer sequence 
of sampled data .. However, a longer data sequence precludes accurate identification of 
short-term changes in the spectral content of the signal with time. This trade-off 
between frequency resolution and time resolution of the time-varying spectrum must 
be accommodated when performing spectral analysis. 

Another limitation of the FFT is that it operates on a finite number of samples. 
Conceptually the infinite duration digitized signal is multiplied by a window which 
excludes all samples outside a certain interval. The choice of windowing function is 
critical since the calculated spectrum is the ideal spectrum convolved with the spectrum 
of the windowing function (Fallside, 1985). The power of a signal at any given frequency, 
will be spread by the convolution into adjacent frequency regions. This phenomenon is 
called leakage since the power in one spectral component 'leaks' into adjacent spectral 
components. Judicious choice of a window function significantly reduces the effect of 
leakage (Harris, 1978), but at the expense of decreasing the spectral resolution due to 
the effective reduction in segment length and the associated broadening of the main 
lobe of the window's spectrum. 

It is important to remember that noise present in a signal is also present in its 
spectrum, although the effect of the noise can be reduced if the spectra from several 
speech segments are averaged together. However, it is only valid to do this when the 
spectra to be averaged together have the same spectrum, so this method has limited 
application to speech. 

Notwithstanding limitations in spectral resolution and the leakage due to window
ing, useful information about formant positions can be extracted from the speech spec
trum. Fig. 2.8( a) and (b) respectively show a windowed segment of voiced speech for 
the vowel sound /0/ and the log magnitude of its spectrum (computed via the FFT). 
The approximate position of the formants can be reasonably estimated from Fig. 2.8(b), 
but the exact position is obscured by a strong harmonic structure superimposed on top 
of the underlying formant structure. These harmonics are due to the periodic glottal 
excitation which, in the frequency domain, gives rise to components spaced at the pitch 
frequency. By the convolution theorem, the speech spectrum is composed of the glot
tal shaping, vocal tract, and pitch spectra multiplied together, hence the pitch fp is 
observed in the resulting spectrum. 
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Figure 2.8. An example of the effect of voicing on the speech spectrum: (a) a windowed segment of 

the voiced sound /0/, (b) the spectrum of the speech depicted in (a). 

2.6.2 Linear predictive coding 

In this section the nature of the relationship between the spectrum of a segment of 
speech and the LPC prediction filter is defined. The approach is via the maximum 
likelihood method proposed by Itakura and Saito (1968). 

The LPC filter can be considered to approximate the spectrum of the speech that 
it is modelling. Here the Z-transform of a speech segment is denoted by X( ei/l). The 
energy in the speech spectrum is matched to the energy in the model spectrum by 
choosing an appropriate value for 0- such that 

(2.56) 

where 0-2 = Q, the energy in the prediction error as defined by (2.37). It is useful at 
this point to state that on a log magnitude scale, both A( ei/l) and 1/ A( ei/l) have zero 
mean, provided all the zeroes of A( ei/l) lie inside the unit circle (Markel and Gray, 1976, 
p130). It follows that the average value of the log spectrum of the model filter is 

11' 1 0- 12 dB 2 
-1' In A( ei/l) 27r = In( a ). (2.57) 

As the number of coefficients in the prediction filter A( z) is increased, the prediction 
error Q decreases. The autocorrelation sequences of X( ei/l) and a / A( ei/l) are therefore 
identical when the number of prediction coefficients approaches infinity. Replacing 
o-/A(ei/l) with X(ei/l) in (2.57) gives 

(2.58) 

where Q oo represents the minimum squared error possible for predicting x[n]. In ex
pressing the accuracy of the model, the mean square prediction error Q should therefore 
be compared with Qoo, since the minimum possible prediction error is not actually zero. 
It is not immediately obvious 'ovhy Q oo should be non-zero. One explanation for this 
is that the filter 0-/ A( ei/l) still requires an excitation in order to match the spectrum 
of X( ei/l). Makhoul (1975) reasons that the impulse response of an all-pole filter is 
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perfectly predictable, except for its initial value. It is the energy of this initial value 
that is represented by 0:00 , giving rise to the name one-step prediction error. 

The relationship between the LPC and speech spectra can be expressed by defining 
a 'distance measure' between a speech spectrum and a model spectrum. Itakura and 
Saito (1968) propose a statistical formulation of such a measure. They maximize the 
probability that describes how 'likely' the spectrum of a speech signal is, given the 
spectrum of a model filter. This method, called the maximum likelihood method, can 
be expressed as a minimization of the following integral, 

(2.59) 

where 

(2.60) 

is the difference between the log spectra of the speech and the model. The measure de
fined by I is sometimes called the Itakura-Saito (or IS) distortion measure. Expanding 
(2.59) by substituting V(B) gives 

1 J1r IX (ejo)A( ejOW dB + J1r In 1 (J '0 12 dB -
-11' 211" -11' A( eJ ) 211" 

J1r In IX(ejOW
dB 

- 1, 
-11' 211" 

I = 
(2.61) 

which, by recalling that E(ejO) = X(ejO)A(ejo), and utilizing (2.58) and (2.57), results 
in 

(2.62) 

Minimizing I is the same as minimizing the average energy in E( ej O) since the last three 
terms in (2.62) are independent of the prediction coefficients (Markel and Gray, 1976, 
pI35). 

The energy in E(ej O) represents the prediction error power, which is the criterion 
minimized in the autocorrelation method. Therefore, the autocorrelation method of 
LPC can be interpreted as minimizing a non-uniformly weighted spectral error between 
the model spectrum and the signal spectrum. Fig. 2.9 shows the spectrum of a segment 
of speech and also the spectrum of the LPC filter. 

Because of the non-linear formulation of I, peaks and valleys in the speech spectrum 
are treated differently. When V(B) ::» 1, the integrand of (2.59) approximates eV(O). 
Very large contributions to the total error are therefore produced when the log model 
spectrum is much less than the log speech spectrum. However, when V(B) ~ 1, the 
integrand in (2.59) is approximately V( B). The log model spectrum is therefore only 
penalized 'lightly' wherever it is greater than the log spectrum of the speech, but is 
penalized more 'heavily' where it is less than the log speech spectrum. This property 
implies that the poles of the speech spectrum are modelled more accurately than the 
zeros. 

2.6.2.1 Formants 

The positions of the formants are important in characterizing the phonetic identity 
of a sound (Fant, 1973). Consequently, many techniques have been developed for 
determining formant positions. 

This section introduces the use ofLPC techniques to estimate the formant positions. 
The use of LPCs to estimate formant positions has several advantages. The amount 
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Figure 2.9. An example of the spectrum determined from LPCs. The signal is the same as that 

utilized in Fig. 2.8 

of data required to represent the speech spectrum is reduced significantly, while main
taining an accurate representation of the positions of peaks in the speech spectrum 
(§2.6.2). Also, as illustrated in Fig. 2.9, the 'pitch ripple' is removed from the speech 
spectrum, enabling formant positions to be identified more readily. 

Once the LPC filter 1/ A( eiB ) is determined, the roots of A( eiB ) can be computed 
and utilized to determine the formants and their associated bandwidths. In an LPC 
filter of order P, the zeros of A( eiB ) occur in conjugate pairs which are denoted here as 
Zl, zi, Z2, zi, "zp/2, zp/2 (for even P). The formant frequency and two-sided bandwidth 
associated with the pole Zk is given by (Atal and Hanauer, 1971) 

(2.63) 

and 

Bk= ITRe{-11 }. 
1l' nZk 

(2.64) 

Pole positions can be computed using a root solving program, however, this is a com
putationally expensive procedure. An alternative approach, outlined by Markel and 
Gray (1976, pI67), evaluates 1/ A(eiB ) at a number of discrete points around the unit 
circle. Parabolic interpolation together with a peak picking algorithm is then employed 
to locate the formant positions and their bandwidths. 

The positions of poles located deep within the unit circle can be refined by evaluating 
1/ A( eiB ) on concentric circles within the unit circle (Markel and Gray, 1976; Duncan 
and Jack, 1988). This technique is called 'off-axis' spectral estimation or pole-focussing 
and allows the positions of broad-bandwidth poles (those far from the unit circle) to 
be determined more accurately. 
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2.6.3 Cepstral analysis 

Cepstral analysis is a technique for obtaining coefficients that describe the log spectrum 
of a signal. The complex cepstrum of a signal is defined in this section, and some 
of its useful properties are discussed. In addition, a method for calculating cepstral 
coefficients from LPC prediction coefficients is presented. 

The complex cepstrum x[n] is defined to be the inverse Fourier transform of the log 
of the spectrum X( eiIJ ) of a signal, viz 

x[n] (2.65) 

where both the magnitude and phase of X(e jIJ ) are incorporated into the calculation 
of x[n]. Oppenheim and Schafer (1975, p503) show that when X(e jIJ ) has no poles 
or zeros outside the unit circle, x[n] =: 0 for all n < O. A signal which satisfies this 
criterion is called a minimum phase sequence. However, if X( eiB ) has all its poles and 
zeros outside the unit circle, x[n] =: 0 for all n > 0, which corresponds to a maximum 
phase sequence. 

Cepstral coefficients can be computed from the spectral magnitude and here they 
are denoted e[n], to distinguish them from the complex cepstrum x[nJ computed from 
the complex spectrum. The e[n] are called the cepstrum, with the term 'complex' being 
omitted because only the magnitude of the spectrum is considered. The cepstrum is 
defined by 

(2.66) 

Since the cepstral domain represents the log spectrum, additions in the cepstral 
domain transform to multiplications in the frequency domain and convolutions in the 
time domain. Deconvolution operations can therefore be implemented in the cepstral 
domain by subtraction. It is this feature that makes cepstral analysis useful for the 
purpose of separating different components of the speech signal via cepstral analysis. 

Ignoring the effect of the lips, a segment of speech can be modelled as 

s[n] = (e[n] 0 g[n] 0 v[n])w[n], (2.67) 

where ern], g[n] and v[n] represent the excitation (or pitch), glottal pulse model and 
vocal tract model respectively. A portion of the speech signal is defined to be non
zero by a window w[n]. The vocal tract response can be considered a minimum phase 
sequence because V( eiB ) is a stable all-pole filter with all its poles inside the unit circle. 
However, the glottal excitation G( ei (}) is modelled by a time-limited pulse whose Z
transform can be represented by zeros that occur both inside and outside the unit 
circle making it nonminimum phase and causing x[n] =f 0 for n < 0 (Oppenheim and 
Schafer, 1968). 

The complex cepstrum can be invoked to separate the vocal tract response from 
the pitch synchronous contributions of the glottal pulse. In the cepstral domain, con
tributions from the pitch (e[n]) are dominant for values of n round the pitch period 
and greater, while coefficients corresponding to the vocal tract and glottal pulse are 
dominant for n less than the pitch period (Oppenheim and Schafer, 1968). Furthermore 
the nonminimum phase contributions from the glottal excitation can be removed by 
setting x[n] =: 0 for n < O. These properties can be invoked to calculate a 'smoothed' 
spectral estimate of the vocal tract response. 

Fig. 2.10( a) shows the cepstrum of a segment of speech. The peak at np = 85 can 
be attributed to the effect of the pitch on the log spectrum. By setting e[n] = 0 for 
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Figure 2.10. An example of cepstral analysis of a segment of speech: (a) the cepstrum of the voiced 

speech in Fig. 2.8 and (b) the cepstrally 'smoothed' spectrum. 

values of n from np -1 to n = 00, the pitch information can be removed and the smooth 
spectrum shown in Fig. 2.10(b) is obtained. 

Both (2.65) and (2.66) utilize double Fourier transforms to calculate the cepstral 
coefficients from the speech signaL An alternative method is to calculate the cep
stral coefficiimts from the spectral representation of the speech signal provided by the 
LPC prediction filter a/A(ej(J). If all the poles of a/A(ej(J) are within the unit circle, 
In(la/A(ej(J)I2) can be expanded as a power series as (Markel and Gray, 1976,230) 

co 

In (ia/A(ej(JW) = In(a2
) + L c[n]z-n. (2.68) 

n:::l 

Note that c[O] = In(a2 ), which is exactly the property defined by (2.57). Higher order 
cepstral coefficients are obtained by the following recursive relationships (Atal, 1974), 

Cl = al 

p-l 

Cn = L(1 k/n)akCn-k + an, for l<nsp (2.69) 
k=l 

and 
p-l 

Cn L(l- k/n)akCn_k, for n>p 
k=l 

where p is the number of poles. 
The cepstral coefficients calculated from prediction coefficients are different from 

those obtained by invoking Fourier transforms because the prediction coefficients con
stitute an approximation of the speech spectrum (as outlined in §2.6.2). However, 
cepstral coefficients can be computed very efficiently using this approach. 

2.7 VECTOR QUANTIZATION 

Vector quantization (VQ) is a compression technique which can be used to reduce the 
data rate required for speech transmission (Juang et al. , 1982; Makhoul et al., 1985). 
It became a practical speech compression option after the development of LPC coding, 
in the early 70s, and the later development of a vector quantization training by Linde 
et al. (1980). It has been extensively applied in the low bit rate speech roding field 
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Figure 2.11. Information transmission across a channel. 

where transmission rates as low as 800 bits/s have been achieved (Wong et ai., 1982). 
VQ is also often used in speaker recognition (Soong et ai., 1985; Soong et ai., 1987; 
Burton, 1987) and speech recognition systems (Rabiner et ai., 1983; Burton et ai., 1985), 
where VQ is utilized within a pattern classifier rather than a speech coder/decoder. It 
has even been applied to the problem of quantizing the range of vocal tract shapes that 
span the articulatory space (Larar et ai., 1988). 

Section 2.7.1 introduces a general speech compression system and its constituent 
components. Section 2.7.2 highlights the advantages of vector quantization by way 
of two-dimensional VQ examples and briefly describes the measures that are used to 
characterize the performance of a VQ scheme. Many different distortion measures 
can be used in VQ systems and some of those commonly used for quantizing speech 
are defined in §2.7 .3. Section 2.7.4 outlines methods for calculating the codevectors 
which define a VQ system and discusses options for storing and accessing them. These 
techniques are utilized in the speaker recognition experiments reported in Chapter 5 to 
construct templates of individual's voices. 

2.7.1 Introduction 

The basis for data reduction using VQ is best explained by assuming that speech can be 
represented as information emanating from a source with defined characteristics. The 
information source model is described in §2.7.1.1 and is restated in §2.7.1.3 in terms of 
a speech signal. 

2.7.1.1 The information source 

Information theory provides the terminology for describing an information source and 
the amount of distortion introduced when the information is coded in some manner. 
In general, information emanating from a source is encoded in the manner depicted in 
Fig. 2.11. The source encoding stage shown in Fig. 2.11 introduces distortion of the 
original information. For example, if speech is considered to be a continuous amplitude 
pressure waveform, the process of digitizing such a waveform will introduce distortion. 
In speech coding the challenge is to design encoders that encode the source information 
efficiently and only distort the original information in an acceptably small way. 

To begin with, it is convenient to assume that the source is continuous and can 
take on any value within a defined range. The probability of the source producing a 
particular value is defined by the source probability density function (pdf). In practice a 
source output can never be measured in a completely continuous fashion, but reasonable 
estimates of the continuous case can be approximated if the resolution of the quantizer 
is high. For modelling purposes a useful model for the source pdf is the Gaussian, since 
it is well suited to mathematical manipulation and adequately approximates the pdf of 
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many systems. The Gaussian pdf of a source with zero mean is defined by, 

p( x) = _1_ef-x2/2u2], 
..j2icr 

47 

(2.70) 

where cr 2 is the variance of the source and p( x) is the probability of observing x. 
Instead of a continuously varying output, some sources have a discrete output and 

produce symbols from a symbol space {8t,82, . .. ,8K}, where a symbol Sk occurs with 
probability Ps( Sk) with the subscript 8 indicating that the probability Ps applies to 
members of the sample space {8k}. Such a source that produces discrete symbols is 
called a discrete source (Gallager, 1968, p71). The expected value E{Sk} of the source 
output is a weighted average over all the symbols. It is defined as 

K 

E{sd = L>kPs(Sk). (2.71) 
k=l ' 

The underlying law governing the generation of symbols and the complete set of 
all possible symbols is called the process (Robinson, 1980, p163). In many practical 
situations it is not possible to specify an exact model for the process that generates the 
observed output, but nevertheless it is often feasible to construct models that seem to 
match the observed behaviour quite closely. An example of this is speech modelling, 
where the source output is the result of a complicated physical process that is only 
approximated by a source modeL 

Although the probability distribution defines the expected distribution of symbols, 
it does not describe the process that generates those symbols. Robinson (1980, p163) 
states that "a process is termed deterministic if it does not contain any features of 
randomness; otherwise it is termed stochastic". He also points out it is acceptable to 
use the term random process interchangeably with stochastic process. A random process 
whose statistical properties are invariant with time is called a stationary random process 
(Gallager, 1968, p163). If a signal is produced by a stationary random process, one 
segment of the signal, recorded at a particular time, will have essentially the same 
statistics as another segment of the same signal observed at any other time-period. 
Additionally, if the long time ayerage over any selected subset of the source output is 
equal to the ensemble average of an infinite sequence of source outputs, the process is 
said to be ergodic (Gallager, 1968, p59). 

One particularly useful source model is the discrete memoryless source, where each 
symbol is statistically independent (Gallager, 1968, p38). Independence implies that 
there is no memory in the model, so each successive output is independent of the pre
vious outputs. This type of source is particularly useful for testing vector quantization 
algorithms since the source output is straightforward to generate. 

2.7.1.2 Preliminary notation 

Much of the terminology introduced here relates to the speech transmission system 
depicted in Fig. 2.12. The speech signal s[n] is analysed to produce an unquantized, 
N -dimensional vector x = [Xl X2 ••• X N]T where the vector components Xi are real
valued, continuous amplitude variables. The VQ task involves mapping the vector x 
onto another real-valued, discrete-amplitude, ,iV-dimensional vector y, i.e. 

y q(x), (2.72) 

where q(.) is the quantization operator a.nd the vector y is called the output vectol'. 
The finite set of values for y is called the codebook and consists of Y = fYi, 1:::; i :::; L} 
where L is the total number of vectors in the codebook a.nd each Yi is a codevector. 
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Figure 2.12. A data compression system for speech coding: (a) speech is analysed and transmitted 

over a channel, (b) the received sequence of bits is decoded to reconstruct the speech signal. 

To design a VQ codebook, the N-dimensional space of the vector x is partitioned 
into L regions, or cells, each denoted Gi. The quantizer assigns the code vector Yi if x 
lies in the region Gi, i.e. 

q(x) = Yi if x E Gi. (2.73) 

Determining which cell, Gi, x belongs to is called partitioning or clustering (Makhoul 
et al., 1985). The group of vectors belonging to each of the cells C = {Gi; i = I, ... , L} 
is called a partition. Provided a distance measure is specified, the cell shapes and 
the positions of the code vectors Yi contain the same information because each can 
be uniquely determined from the other. To determine which cell contains a particular 
vector x requires 'distances' to be calculated between the x and each of the L code
vectors in the N-dimensional space. The quotation marks around the word distance 
are included to imply that often it is not the distance, in the Euclidean sense of the 
word, that is employed. For speech signals, perceptually relevant distortion measures 
are often invoked (Gray and Markel, 1976). 

2.7.1.3 A quantizer for speech transmission 

The basic components of a speech compression system are shown in Fig. 2.12. In 
the first stage of compression the input signal s[n] is analysed to produce a vector 
of un quantized parameters x[n]. An example of the type of parameters produced at 
the output of the analyser are LPCs, calculated in the manner outlined in §2.5.3. 
The unquantized vector is then quantized into a vector y[n] which is chosen from a 
code book containing all the allowable code vectors. The codevector is in turn encoded 
as a sequence of bits d[n] before transmission on a channel. Errors in the channel are 
accounted for by defining the channel output to be d'[n] which will differ from d[n] 
whenever a channel error occurs. The estimate of the quantized vector y'[n] is then 
decoded from d'[n] and applied'to a synthesis stage which implements the opposite of 
the analysis process. 
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(a) (b) 

Figure 2.13. The joint pdfs of the two random variables where shading indicates a uniform non

zero probability: (a) P(XI,X2) where Xl and X2 are correlated, (b) P(UI,U2) where UI and U2 are 

uncorrelated but depend upon each other nonlinearly. 

2.7.2 Advantages of vector quantization 

The advantage of VQ over scalar quantization is described here in terms of: (a) vector 
properties that can be exploited to increase coding efficiency and (b) the theoretical 
performance bounds of VQ. 

2.7.2.1 Vector properties 

This section briefly describes four examples which illustrate properties of vector compo
nents that can be used to effect gains in coding efficiency. Makhoul et ai. (1985) state 
that these four properties "when utilized appropriately result in optimum codebook 
design". The properties are: linear dependency, nonlinear dependency, cell shape and 
the pdf (see also Lookabaugh and Gray (1989)) 

The first property, linear dependency, occurs when two or more vector components 
are correlated or dependent. Fig. 2.13(a) shows the joint pdf of two correlated random 
variables Xl and X2. If both Xl and X2 are quantized using uniform scalar quantization, 
the complete area Q is divided up into square cells of equal size and spacing. However, 
certain combinations of Xl, X2 do not occur because the pdf is zero within much of Q. 
It is inefficient, in terms of coding, to assign cells to regions of zero probability. Linear 
dependency can be removed by redefining the axes so that each axis is parallel to either 
the boundary labelled a or the boundary labelled b. Maintaining a defined level of 
distortion and assuming the joint pdf has sides a = 2b, the transformed vector can be 
transmitted with a saving of 1.17 bits per vector (Makhoul et ai., 1985). Although 
the actual data rate reduction in any specific case depends on the particular joint 
pdfs involved, the principle that the bit rate can be reduced by ensuring the vector 
components are un correlated holds for all distributions. 

Rotating the coordinate system removes all linear dependencies( or correlations) 
but nonlinear dependencies will remain after rotation. Fig. 2.13(b) illustrates such a 
nonlinear dependency for the two vector components Ul and U2. Assigning codebook 
cells to the zero probability area within the probability distribution wastes bits, so an 
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Figure 2.14. Arrangements for packing cells in a two dimensional space (from Makhoul et al.1985): 

(a) Square shaped cells of area As, (b) Hexagon shaped cells of area AH. 

efficient vector quantizer would only assign cells within the hatched region. 

The two aforementioned examples assume the same regular quantization of both 
vector components, causing cells associated with each codevector to be square. How
ever, it is plausible that other cell shapes can represent the vectors with a smaller total 
distortion. VQ allows various cell shapes to be chosen, allowing a departure from the 
standard N-dimensional cubic cells for N-dimensional vectors. The effect of choosing a 
different cell shape is illustrated in two dimensions by choosing hexagonal shaped cells 
instead of square cells. In the particular example shown in Fig. 2.14 it is assumed that 
the cells have the same area so As = AH. The bit rate of the two quantizers is therefore 
identical since the same number of cells is required to cover a given area (neglecting the 
edges). However, the average distortion of the two quantizers differs. The ratio of the 
distortion from the hexagonal quantizer to that of the square quantizer is calculated 
by Makhoul et al. (1985) to be 0.962. The hexagonal quantizer therefore requires fewer 
cells than the square quantizer to cover the same area with a given distortion. 

The final aspect of VQ design identified by Makhoul et al. (1985) is the pdf shape. 
When the pdf is uniform it is reasonable to choose a uniform cell shape. However, a 
non-uniform pdf is represented much more accurately by cells with a variety of shapes. 
This is because the overall distortion can be reduced by representing vectors with a 
high probability of occurrence more accurately than vectors with a low probability of 
occurrence. Correspondingly, large cells are assigned to regions of low probability and 
small cells to regions of high probability. 

The VQ training algorithm used in this thesis (§2.7.4.3, §4.2.2) makes use of the 
above properties to effect a reduction in the storage required for vectors that charac
terize a person's speech. The VQ training algorithm adapts the positions and sizes of 
cells in a non-linear fashion and therefore takes into account the distribution of the 
training vectors (see §2.7.4). 
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Figure 2.15.' Qualitative sketches of the rate distortion functions for: (a) a continuous-amplitude 

source, (b) an discrete-amplitude source. After Jayant and Noll (1984) 

2.7.2.2 Theoretical performance 

The theoretical performance of a vector quantizer is predicted by information theory. 
A useful measure of VQ performance is the rate, expressed in bits per source sample, 
required to reconstruct the source information given that a specified average distortion 
D can be tolerated (Berger, 1971, p7). This is called the rate-distortion function and 
is denoted R(D). The actual transmission rate, R, has to obey 

R ~ R(D) for a distortion D. (2.74) 

The inverse of R(D) is D(R), the distortion-rate function which defines the distortion 
for a given rate. 

Before discussing R(D) in more detail it is necessary to define the quantity of infor
mation emanating from a source. Information is measured in bits and the information 
rate is specified in bits/vector or bits/symbol. The maximum rate required to transmit 
a vector Y i from a set containing a total of L codevectors is 

R = log2 L. (2.75) 

The minimum information rate required to transmit these vectors (assuming a memo
ryless source) with zero distortion is given by the entropy of Y (Shannon, 1948), 

L 

H(y) = - L P(Yi) log2 p(Yi). (2.76) 
i=l 

Figs. 2.15( a) and (b) show that as the distortion increases the rate decreases mono
tonically. A memory-less zero-mean Gaussian source with variance a 2 would typically 
produce the type of rate-distortion curves depicted in Fig. 2.15. For such a source, a 
rate of zero corresponds to an a\'erage distortion of a 2 (which is the average distortion 
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associated with assuming that the source vector is zero), whereas a rate equal to the 
entropy produces zero distortion in the ideal case. 

Typically, symbols Yi will occur within a sequence of symbols with different prob
abilities p(Yd. It is therefore inefficient to assign the same number of bits to each of 
the symbols (Shannon, 1948). The most efficient number of bits required to represent 
each symbol (or vector) is given by 

Bi = -log2 p(Yi) bits per vector, (2.77) 

so that vectors that occur often are represented with fewer bits than vectors which occur 
less often. This is called entropy coding and Huffman (1973) defines a straightforward 
procedure for generating codes which approximately obey (2.77). Since Bi varies for 
vectors of different probability, the vector codes are of different lengths, which gives rise 
to the name variable-length entropy encoding. For speech transmission it is important 
to remember that a continuous output of decoded speech is desirable, so if a variable 
length code is utilized, a certain amount of buffering delay must be incorporated into 
the decoder to ensure output continuity (Jayant and Noll, 1984, p149). 

2.7.3 Distortion measures 

This section details the types of distortion measures that can be used for evaluating 
the 'distance' between vectors. The term 'distortion' is used here in the sense defined 
by Gray et al. (1980). The distortion is a positive number which represents the cost 
or distortion resulting when an input vector is represented by a particular quantized 
output vector. For the purposes of this description the distortion between two frames 
of speech data is denoted d(x, y). It is desirable for the distortion measure to satisfy 
at least the first two, and preferably all, of the following properties. 

1. d(x,y) > 0 for x i y and d(x, x) =- 0, i.e. the distance between x and y is 
positive except when x = y for which the distance is zero. 

2. d(x,y) should have a physically meaningful interpretation in the frequency do
main so that the distance measure relates to the spectral properties of the speech. 

3. It should be possible to efficiently evaluate d(x,y). 

4. d(x,y) =- d(y,x),i.e. the measure is symmetric. 

The above properties are identified as being important by Gray and Markel (1976) 
in their study of distance measures. Generally measures that have all of the above 
properties are called distance measures while those measures which are not necessar
ily symmetric are called distortion measures (Gray et al., 1980). Property 2 implies 
that the distortion measure should be perceptually meaningful so that small and large 
distortions correspond respectively to good and poor speech qualities. The distortion 
measure must also be amenable to mathematical analysis as a precursor to the design 
of practical algorithms. Finally, it must be computationally efficient since it will be 
evaluated many times in any practical application. The properties of various distortion 
measures are described later in this section. 

The most common distortion measure is the mean-square error (MSE) or Euclidean 
distance, viz 

(2.78) 

where x and yare two N-dimensional vectors. The MSE is a popular distance measure 
because it is straightforward to compute, requiring only N subtractions and multipli
cations. 
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A weighted MSE can be defined which allows contributions to the distortion from 
the various components of a vector to be assigned different weightings, 

1 
dw(x,y) = N(x - yfH1(x - y), (2.79) 

where W is a positive definite weighting matrix. If VI1 is set to be the identity matrix 
dw simplifies to the MSE. In addition, if W is symmetric, it can be factored and the 

. vectors x and y transformed into a new set of vectors x and y, i.e. 

W=pTp 

x= px 

y=Py. 

Substituting pT P for TV in (2.79) and simplifying gives 

(2.80) 

(2.81) 

This particular distance measure has the interesting property that it is invariant under 
any arbitrary nonsingular linear transform of the vector space. A linear transform, such 
as the one dimensional Fourier transform, will not have any effect on the distortion 
(Atal, 1974). 

d2 and dw are general measures that do not incorporate any information about 
the type of vector being quantized. Several distortion measures have been defined that 
measure the distortion between the coefficients which represent an LPC filter model 
and a segment of speech. 

The first of the speech based distortion measures was defined by Itakura and 
Saito (1968). This is the same distortion measure which is minimized when the speech 
spectrum is approximated by an LPC filter. Refer to §2.6.2 for a more detailed descrip
tion ofthis approximation. Support for the Itakura-Saito distortion measure stems from 
the fact that speech which has been synthesized by invoking LPC techniques sounds 
reasonable, implying the Itakura-Saito distortion measure is subjectively accurate. For 
calculation purposes the Itakura-Saito distortion measure can be expressed in the form 
(Buzo et al., 1980) 

(2.82) 

which follows directly from (2.62) if the integral containing IE(ejll)1 is replaced by the 
residual 0:. There are a number of different approaches to evaluating (2.82) (Gray, 1984; 
Gray et al., 1980; Buzo et al., 1980). An efficient method is proposed by Buzo et 
al. (1980) who use the Itakura-Saito distortion measure to find the closest match be
tween a number of spectra, rather than the actual value of the distortion. If only a 
closest match is required then In(o:oo) and the -1 term in (2.82) can be omitted since 
they are constant for all values of IX( eill )j2 and (2.82) reduces to 

(2.83) 

where (12 is the gain of the LPC filter as defined in §2.6.2. The residual 0: represents 
the energy in the error signal after x[n] is passed through the inverse filter A(ejll ). This 
can be expressed in the time domain as (Buzo et al., 1980) 

p 

a x+2""" a x 0: = TOTO L."TnTn, (2.84) 
n=l 
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where 

N-k 
(2.85) 

r~ = L: x[k]x[k + n], 
k=O 

are the components of the vectors r U and rX respectively. The Itakura-Saito distortion 
measure is not a symmetrical measure (see §2.6.2) which imposes the restriction that 
before evaluating the distortion between two signals, a decision must be made about 
which way around to have them. In a recognition context it is usual for one signal 
to be the reference, or template, and another test signal to be cOII,lpared against it. 
Typically r U is chosen to correspond to the reference and rX to correspond to the 
test. It is reasonable for recognition schemes and vector quantizers to operate in this 
configuration, since a test segment, or even a complete word is matched against a 
collection of reference templates, so the lack of symmetry in the distortion measure 
does not affect its applicability. 

The Itakura-Saito distortion measure incorporates the gain cr2 of the LPC filter 
into the distortion measure. This means that two spectra that are represented by 
identical filter coefficients aj, but have different gains, will produce a significant Itakura
Saito distortion. The LPC filter gain IS dependent on the loudness of a persons voice, 
but in many recognition situations the spectral parameters of the voice, rather than 
the loudness, are considered to be more important. To remove this gain dependency, 
Itakura (1975) defines a gain-optimized version of the Itakura-Saito distortion measure 
which can be expressed as, 

(2.86) 

If crX jAt:(e jfJ ) is the autoregressive model of X(ejfJ ), 

(2.87) 

This is sometimes referred to as the log likelihood ratio because the bracketed term 
is a likelihood ratio under the assumption that the data source is Gaussian and the 
analysis window is much greater than the inverse filter length (Gray and Markel, 1976; 
Itakura, 1975). Note that dI is related to dIS through the following relationship (Gray 
et ai., 1980), 

dls(IX(ejfJW, Icr/A(ejfJ )12) = (;~) ed/(IX(ei9)j2,lo-jA(ei9W) -In (;~) -1. (2.88) 

For practical calculation purposes (2.87) can be expressed in terms of autocorre
lation coefficients and prediction coefficients by invoking the autocorrelation matching 
property (Markel and Gray, 1976, p31) and the Toeplitz property of the autocorrelation 
matrix R (Soong and Sondhi, 1988), viz 

(2.89) 

where aX is the LPC prediction coefficient vector of the sequence x[n] and RX is the 
matrix of autocorrelation coefficients for the same sequence. The vector a contains the 



2.7 VECTOR QUANTIZATION 55 

LPC prediction coefficients which represent the impulse response of the filter A( ejli ). 
Equation (2.89) can be further simplified by realizing that the term aXRxaxT is the 
same as the gain of the LPC filter (oX)2 (Rabiner and Levinson, 1981). Rewriting 
(2.89) as a summation gives, 

(2.90) 

If A( ejli ) is a reference vector in a recognition system, the coefficients r'j can be calcu
lated immediately after determining the ajS (as defined in (2.85)). The rf autocorre
lation coefficients of the sequence x [n], are also required for the LPC analysis and so 
do not increase the computational overhead. In addition, the summation specified in 
(2.90) is symmetric about P = 0 so it need only be evaluated from 1 to P. Computation 
of (2.90) therefore requires only P + 1 multiplications and additions and one logarithm. 

A necessary operation in the design of VQ codebooks is the calculation of the 
centroid of a cluster of vectors (§2.7.4.2). The gain-optimized Itakura-Saito distortion 
is not well formulated for this task, but another distortion measure that is closely related 
to both dI and dIS provides tractable solutions for centroid calculations. Called the 
model distortion (Gray et ai., 1980), it is written in a gain-normalized form as, 

111' (1 _ A(ej~)) 2 dB 
-11' AX(eJIi ) 271' 

111' 1 A(ej~) 12 dB -1 
-11' AX(eJIi ) 271' 

eaI(IX(ei6)12,lo-jA(e)6)12) _ 1 , (2.91) 

where the superscript * indicates that the spectrums IX(ejIiW and lojA(ejli )12 are gain 
normalized by dividing IX( ejli )1 2 and 10 j A( ejli )1 2 by their respective gains (ox)2 and 02. 
The two distortion measures d:n and d1 measure the same effect since d:n is expressed in 
(2.91) as a function of dI only. In this sense they can be considered equivalent, although 
actual distortion values will differ. It is therefore acceptable to use d':n instead of dI 
in certain circumstances (see §2.7.4.2). Furthermore, by comparing d':n with dIS, as 
expressed in (2.88), one can see that gain normalizing (2.88) gives d':n (as defined in 
(2.91») exactly. 

2.7.4 Quantizer design 

The task of designing a vector quantizer is to determine a codebook which represents a 
particular distribution of vectors with minimum quantization distortion. One approach 
to designing such a codebook is to use a type of neural network, the Kohonen self
organizing feature map (Kohonen, 1990), and to train it to represent the distribution 
of training vectors. However, here the approach is to use the more usual iterative 
methods for training a VQ system developed by Linde et ai. (1980). The reader is 
refered to Wu and Fallside (1991) for a comparison between the self-organizing feature 
map and the Linde, Buzo and Gray training method. 

2.7.4.1 Notation 

Recall from §2.7.3 that the distortion between an input vector x and the quantizer 
output y is written d(x: y). The notation x[n] is used to represent one of J..1 unquantized 
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vectors. The overall average distortion due to the vector quantization of M vectors is, 

D 
1 M 

Ji~= M ; d(x[n],y[n]). (2.92) 

]f a vector process x[n] is stationary and ergodic, the limit in (2.92) exists and tends 
towards the expectation E( d(x, y»(Makhoul et al., 1985). 

Partitioning of the vectors x by the codebook Y is written P(Y) where P(Y) is 
defined as 

(2.93) 

where the notation x E Gi means that x is an element of cell C; under the conditions 
specified. The vectors in all L cells are defined in this manner. Summarizing (2.93) in 
words, a partition that is optimum for a given codebook Y is determined by associating 
each x with the cell corresponding to the minimum distortion or nearest-neighbour 
codeword. 

An N level quantizer is said to be globally optimal if its expected distortion is 
less than that of all other quantizers. Like the globally optimal quantizer, a locally 
optimal quantizer has the property that the distortion increases for slight changes in 
the codebook .. However , the distortion is only a local minimum so better codebooks may 
exist. Although it is preferable to .determine a globally optimal quantizer, in practice 
it is more straightforward to identify a locally optimal quantizer that is adequate for 
the quantization task at hand. 

It is useful to introduce notation for describing the total distortion between a set of 
training vectors and the current codebook so that the progress of a training algorithm 
can be monitored. Here the use of curly braces, for example D( {X, Y}), indicates that 
the distortion measure is the sum of the distortion between each training vector x[n] 
and its closest match y[n]. This can be expressed in the following two ways, 

D({X, Y}) = 
1 M 

M I:: d(x[n],y[n]) 
11,=1 

L IIG;II 
(2.94) 

I:: I:: d(x[j], Yi), 
i=1 j:x[3]EG; 

where IIGil1 is the number of vectors in cell Gi) and the notation j : x[j] E Gt means j 
such that the vector xU] lies in the cell Gi. 

A number of the distortion measures described in this section are between spectra 
rather than a vector x or y. In the same way that d(x,y) denotes the distance between 
the vector x and the vector y, d(IX(ei(l)12,IG(ei (l)12) denotes the difference between 
the spectrum IX(ei (l)12 and another spectrum IG(ei (l)12. It is convenient to represent 
IG(ei (l)12 by the LPC filter lu/A(ej (l)1 2, where the coefficients and gain for the filter 
lu/A(ei O)12 are computed to match the spectrum IG(e j (l)12. 

2.7.4.2 Centroid calculation 

Each codevector has associated with it a partition of training vectors which, by defi
nition, are 'closest' to the codevector. The centroid of the partition is the minimum 
distortion codevector for the partition. Ideally, the codevector should be in exactly the 
same position within the N-dimensional vector space as the centroid of the partition. 
This relationship between partitions, code vectors and centroids is utilized in the iter
ative algorithm described in §2.7.4.3 to improve the quantizer. The method selected 
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for determining the minimum distortion centroid vector of a cluster of vectors depends 
upon the type of distortion measure used. 

For the MSE criterion, the centroid of the vectors lying within cell Ci is given by 
the arithmetic mean 

1 
centCi = ---c:- L x[j] 

II ,II j:X!J1EOi 

(2.95) 

of the vectors. The number of training vectors in the cell Ci is denoted IICill. 
The justification of the centroid calculation method for the Itakura-Saito distortion 

measure is described in Gray et ai. (1980) and is included here for completeness. Assume 
that for some given distortion measure d, j( 0) = q2/1A.( ei9 )!2 describes the centroid 
of a cluster containing n vectors of the form fi(O) = O'[!IAi(ej9)12. For the Itakura
Saito distortion measure the total distance DIS(f) between the centroid and each of 
the vectors is given by , 

= ~ L (jT. (fi(O)) dO -In (~~) _ 1) 
n i -11'" f( 0) 0' 

= jT. (~(O)) dO _ ~ Lin (~~) _ 1, 
-T. f(O) 211" n i 0' 

where /(0) is the arithmetic mean of all the fi(O). Furthermore, if a-2 is the gain of 
/(0) then 

j ll'" /(e) de 
-'If j(o) 211" (-2) 1 0' 2 2 In -~ - 1 + In(a- ) - - ~ln(O'.) 

0'2 n ~ , 
t 

= dISU, j) + In(a-2
) - ~ L In( O'[), 

n . 
t 

(2.96) 

which is minimized when j equals j, since the gain a-2 and 0'[ terms depend upon the 
cluster itself so are independent of j. The fie e) and the autocorrelation coefficients rX[i] 
are related by the Fourier transform. It is therefore acceptable to compute &2/1A.( ej9 )!2 
(which corresponds to j) by averaging autocorrelation coefficients and performing LPC 
in the usual manner. 

The gain-optimized Itakura distortion between a centroid q / A.( ej9 ) and a cluster of 
n vectors has a logarithm incorporated within the summation (Gray et ai., 1980), 

= ~ L dl(lO'i/A i(ej9 )12, 1&/A.(ej9 )1 2
) 

n . 
1 

= ! ~ {In f: I :i~ ::)) ~:}, (2.97) 

which is minimized when A.(ej9 ) is the geometric mean of the Ai(ej9 ). The geometric 
mean of the Ai( ej9 ) is computationally intractable, but it can be approximated by 
the arithmetic mean, which constitutes an upper bound (in a distortion sense) on the 
geometric mean (Gray et al., 1980). This is equivalent to minimizing the normalized 
model distortion d:n. as defined by (2.91). The total distortion between a cluster of 
vectors and j when using d:n is 

. 1 ~ ~ 
D':n(f) = - L.J d;"'(fi, 1) 

n . 
1 

~ L ~ j7f h(0)1A.(ej9W de 
n . 0' -iT" 211" , 

== d;"'U,J) , (2.98) 
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where 

(2.99) 

Recall from §2.7.3 that d':n is equivalent to d[ in that they are both based on the 
gain optimized Itakura-Saito distance measure. They therefore give the same subjec
tive speech quality. The use of d;", however, provides a more tractable method for 
determining centroids. 

2.1.4.3 Iterative codebook design 

This section describes the locally optimal iterative vector quantizer design algorithm 
proposed by Linde et al. (1980). The Linde, Buzo and Gray algorithm (LBG), as it 
is often called, has become a standard method for designing VQs with a constrained 
number of codevectors. 

Identification of a locally optimal codebook requires a practical method for updating 
a set of cells G in such a manner that the total codebook distortion is reduced. The 
expected distortion from using codebook Y to quantize a training set X can be written 
as 

D( {Y, P(Y)}) = E( min d(X, Yi)), 
YEY 

(2.100) 

where the partition P(Y) is determined in the manner defined by (2.93). Because 
the partition in (2.100) has been constructed so that the total distortion for the given 
codebook Y is minimized, any other partition will produce at least as great a distortion. 
For example, comparing any partition C with P(Y) gives 

D({Y,C}) 2: D({Y, P(Y)}), (2.101) 

because the best possible partition of the codebook Y is P(Y). 
Even though the best possible partition of the codebook Y is P(Y), it does not 

necessarily follow that the codebook Y is the best possible codebook for P(Y). This 
is best illustrated by considering the situation where a large number of vectors in 
the training set lie to one side of the cell and the overall distortion for the cell can 
be reduced by moving the codevector to new location at the 'centre' of the group of 
training vectors. It is therefore necessary to determine the set of Y centroid vectors 
that minimizes the distortion for a given partition. Assume that a known partition 
C {Gi; i = 1" . " L} describes a quantizer and the distribution of x is such that each 

of the Cj cells contains one or more vectors. For each cell Gi there exists a minimum 
distortion centroid vector (denoted here centCj) defined by 

E(d(x, centGdlx E Ci) minE(d(x,Yi)lx E Ci). 
Yi 

(2.102) 

The codebook which yields the least distortion for a fixed partition C is therefore written 
Y = {centGi; i = 1",', L}. 

An iterative algorithm which improves a given quantizer by alternately partitioning 
and identifying codebooks is now developed. The iteration index is denoted by the 
subscript m and the initial code book by Yo. For this particular algorithm the initial 
values of Yo are defined to be a set of L codevectors that are uniformly spaced in the 
N-dimensional sample space. These initial codevectors are then iteratively adjusted by 
Algorithm 2.1. 

Algorithm 2.1 



2.7 VECTOR QUANTIZATION 59 

Step 1: Initialization: Let L equal the number of codevectors and Jill be the number 
of vectors in the training sequence. Let Yo be a set of L uniformly distributed 
N-dimensional codevectors and X a set of M training vectors. Set m = 0 and 
D-l = 00. 

Step 2: Partitioning: Given a codebook Y m, find its minimum distortion partition 
P(Y m) by invoking (2.93) for all vectors x of X. Compute the average distor
tion for the resulting partition from Dm = D( {Y ml P(Y m)}) using (2.100). 

Step 3: Termination test: Check the decrease in distortion. If (Dm- 1 - Dm)/ Dm ::; f. 

(where £. is 0.001) call Y m the final codebook and exit the algorithm. Otherwise 
continue. 

Step 4: Codebook Updating: Find the optimal codebook from the latest partition by 
computing 

Y m+l = centp(Ym ). (2.103) 

Go to step (2). 

Linde et al. (1980) test Algorithm 2.1 using a source with known characteristics, in 
this case a zero-mean, unit variance memoryless Gaussian source. Optimum distortion 
values for this source can be determined theoretically and are reported by Max (1960). 
For the scalar case with the number of output levels set to L = 2,3,4,6 and 8 and 
using 10 000 samples per quantizer output, no more than 20 iterations of Algorithm 2.1 
were required to reduce the distortion to within 1% of the optimal values reported by 
Max (1960). 

Linde et al. (1980) also report tests of Algorithm 2.1 for designing quantizers to 
work with blocks of samples. Note that a block containing 2 samples is treated as 
a single vector having 2 dimensions, and so on for the other block sizes. They report 
convergence in fewer than 50 iterations of Algorithm 2.1 for quantizing a 100 000 sample 
sequence into equal length blocks containing 1, 2, 3, 4, 5 and 6 samples for a rate of 
one bit per sample. The performance of Algorithm 2.1 for the block quantization task 
is depicted in Fig. 2.16. The block quantizer outperforms the scalar quantizer, but 
is still significantly worse than the rate distortion bound D(R) 2-2R , which equals 
0.25 for R 1 bit per sample. However, in principle, D(R) is only approached in the 
limit as N -+ 00. Yamada et al. (1980) formulated a lower distortion bound for an 
L-Ievel N-dimensional quantizer when L is large. The distortion bound tends to the 
rate-distortion bound as N -+ 00 and, as indicated in Fig. 2.16, the training algorithm 
is within 6% of this optimal bound (Linde et al., 1980). 

Iterative codebook design techniques of the type described by Algorithm 2.1 provide 
methods for calculating better codebooks given an initial codebook of a specific size, 
in this case Yo. However, the method for choosing an initial codebook of the required 
size is not specified. Provided a locally optimal codebook of half the required size 
is known, a new codebook of the required size can be obtained by splitting each of 
the codevectors. Linde et al. (1980) call this "initial guess by splitting" method since 
the new codebook is produced by splitting each Yi into two close vectors Yi + e and 
Yi - E, where E is a small perturbation vector. Note that the actual direction of the 
vector E is not critical since the newly 'split' vectors are iteratively moved to a more 
optimal (lower quantization error) position. The magnitude of e should be chosen to 
be small compared with the magnitude of Yi and here all the components of e have 
small positive values (§4.2.2.2 contains details of the value of E used in the computation 
of speaker codebooks). The number of centroid vectors doubles at each split and the 
final codebook is constrained to 2R vectors, where R is the number of splits that ha\'e 
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Figure 2.16. Distortion produced by block quantization of a Gaussian source at a rate of 1 bit per 

symbol (after Linde et al. (1980». 

occurred. R is often referred to as the code book rate since it defines the number of 
bits required to uniquely identify a vector within a codebook. So as to record the 
total number of vectors in Y, the number of vectors is inserted in parenthesis after 
the Y. In a speaker recognition context the sequence of vectors x[j]; j ::;: 0, ... ,M - 1 
used to obtain speaker codebooks is computed from the training utterances belonging 
to a particular speaker. The following algorithm, based on that defined by Linde et 
al. (1980), is invoked to determine the set of codevectors Y that represents a particular 
speaker's speech. Tests of the algorithm implementation on speech signals are reported 
in §4.2.2.3. 

Algorithm 2.2 

Step 1: Initialisation: Fix the largest number of codevectors desired to be 2R , where 
R is an integer. Set M to the number of vectors in the training sequence and 
L, the number of codevectors, to 1. Define Co = {x[j]; j = 0, ... ,M - I} and 
Y(l) ::;: centCo, the centroid of the entire training sequence. 

Step 2: Splitting: Given Y(L) {y[j]ij::;: 0,' ··,L}, split each codebook vector into 
Yi +E and Yi E. Set Y m(2L) == {Yi +E,Yi - E, i::;: 1"" ,L} and replace L by 
2L. 

Step 3: Reset variables: Set m = 0 and D-l = 00. 

Step 4: Partitioning: Find the optimum partition for the codebook Y m(L),P(Y meL)) 
using (2.93). Compute the resulting distortion 

Dm = D({Ym(L), P(Ym(L))}). (2.104) 

Step 5: Termination Test: If (D(m-l) - Dm)/ Dm ::; E = 0.005, go to step 7. Otherwise 
continue. 
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Figure 2.17. An example of splitting centroids to form new codebooks: (a) a single centroid of the 

entire training sequence, (b) the single codevector is split into two codevectors, (c) good positions for 

the two centroids are obtained by iteratively updating their positions, (d) the two centroids are split, 

(e) the four centroids are iteratively refined to give the final positions of the four centroids and cell 

boundaries are indicated with dotted lines. 

Step 6: Update Codebook: find the next codebook Ym+1(L) = centP(Ym(L)), the 
centroids of the partitions for the codebook Y m(L). Replace m by m + 1 and 
go to step 4. 

Step 7: Final Rate Test: Set Y(L) = Y m(L). If L < 2R go to step 2, otherwise halt 
with the final quantizer Ym(L). 

Fig. 2.17 shows a two-dimensional example of the VQ splitting process. A single cen
troid, as shown in Fig. 2.17(a) is split into two centroids which are separated by 2e. 
These two centroids are adjusted by partitioning (step 4) and then updating the code
book (step 6). Once centroid adjustments no longer reduce the distortion significantly 
(Le. < f), new centroids are split off the current ones, as depicted in Fig. 2.17(c), and 
the process continues. 

2.7.4.4 Aspects of codebook storage and codebook searching 

Once a codebook has been designed it can be used to quantize any sequence of input 
vectors x[n]. This involves searching the codebook to identify a codevector to associate 
with each input vector. The type of search employed depends on the codebook struc
ture and the relationship between the stored codevectors. Codebook design involves 
choosing an appropriate codebook structure for the task at hand, taking into account 
the storage requirements and the computational complexity of the search algorithm. In 
general, the computational effort required to quantize a single vector can be reduced 
at the expense of additional codebook storage. 

For the purposes of comparing the storage requirements of different codebooks a 
memory unit is defined as the amount of memory required to store a single real number. 
Recall that the number of dimensions in the unquantized vector is denoted N and the 
number of codevectors in the codebook is L. 
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Figure 2.18. Tree structures for vector quantizer codebooks: (a) a binary tree which is searched by 

comparing the intermediate Vi vectors with the input vector X, (b) a nonuniform tree. 

Full search codebook 

One method of searching a codebook is to compute the distortion between the input 
vector and every vector in the codebook and choose the codevector with the minimum 
distortion. This method is called full search vector quantization. If the distortion 
calculation between an N-dimensional vector and a codevector requires N operations, 
and a codebook contains L code vectors, the number of operations to quantize a single 
vector is NL. The codevectors of a full search codebook are stored consecutively in 
memory, in no particular order. The total storage requirement for a full search codebook 
is therefore NL 

Tree-search codebook 

An alternative codebook structure is the uniform binary tree structure depicted in 
Fig. 2.18( a). The codebook is split into levels and the uppermost level is used to split 
the set of codevectors into two. Each successive level continues this splitting process 
until each set contains only a single codevector. 

The computational requirements for searching a binary tree are significantly less 
than for a full search. The total number of operations is 2N log2 L which only increases 
linearly with the number of bits. However, compared with a full search codebook, the 
total storage requirements are almost doubled to 2N(L - 2) memory units, because, 
in addition to the codevectors, vectors representing the intermediate branches in the 
tree must be stored. Furthermore, the best match codevector is not guaranteed to 
be selected since the entire set of codevectors is not searched for the lowest distortion 
codevector. 

Buzo et al. (1980) report comparisons between full-search and binary-search vector 
quantizations systems applied to speech coding. At a rate of 10 bits per speech frame, 
which corresponds to 1024 vectors in the codebook, the spectral distortion for the 
binary-search method was approximately 0.6 dB higher than the full-search method. 
However, the authors remark that this difference in spectral error is not significant 
when the computational reduction from 1024 distortion calculations to 20 distortion 
calculations is taken into consideration. 

The binary tree depicted in Fig. 2.18(a) is uniform in the sense that each of the 
nodes splits off into two lower nodes. At some stage in the iterative training process 
it is possible that one of the clusters will have few vectors within it. To further split 
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Figure 2.19. Gain/shape VQ with a gain rate of Rg and a (spectral) shape rate of R •. The spectrum 

of the input speech is initially compared normalized spectral models. A filter is selected and the 

required gain is then determined via a scalar quantizer. Note that the ordering of the gain codebook 

from the smallest to largest removes the need for a full search of the gain codebook. 

up such a cluster is wasteful of codevectors since the overall distortion will not be 
significantly reduced. Forming a VQ based on a nonuniform tree structure alleviates 
this difficulty because the cluster that distorts the input vectors most (or contains the 
most training vectors) is always the next to be subdivided. In this way the tree 'grows' 
in the direction where the most significant distortion reductions can be achieved (see 
Fig. 2.18(b ). 

Product codes 

Sometimes the parameters that are to be quantized consist of the product of two or 
more identifiably different components. If these components are quantized separately, 
each with their own code book , the product of the component codebooks is called a 
product code (Makhoul et aZ., 1985; Gray, 1984). 

An example of components of a product code is the gain of an LPC filter and the 
filter coefficients(Buzo et aI., 1980). This method of VQ is often called gain/shape VQ. 
A block diagram of gain/shape VQ system employing the Itakura-Saito distortion mea
sure is shown in Fig. 2.19. The steps in performing quantization using the gain/shape 
VQ depicted in Fig. 2.19 are sequential since the LPC filter component is quantized 
first and the value of the quantized vector is used in the quantization of the gain com
ponent. Buzo et a1. (1980) argue that separate gain/shape quantization allows smaller 
codebooks, although the total distortion increases slightly. If A( eifJ ) is represented by 
Rs bits and (1 by Rg bits, the codebook size can be reduced from 2R.+R

g for a full 
codebook to 2R • + 2R

g by separating parameters into different codebooks. 

2.8 SHIFT-AND-ADD 

This section introduces a processing technique called shift-and-add (SAA) which forms 
the basis of much of my research work. SAA is used to obtain an estimate of the 
long-term average glottal response, or LTAGR. Thorpe (1990) describes detailed in
vestigations into the nature of the signal that is obtained by applying SAA to voiced 
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speech. Section 2.8.1 outlines the historical background of the technique, while §2.8.2 
describes its application to speech. Section 2.8.3 describes the computational details 
of the SAA algorithm. The effect of pre-emphasis on the LTAGR is described in §2.8.4 
and the use of a threshold to perform the voiced/unvoiced decision within the SAA 
algorithm is discussed in §2.8.5. The relationship of the LTAGR of synthetic speech to 
the artificial glottal pulse used to produce the speech is described in §2.8.6. 

2.8.1 Historical background 

Shift-and-add (SAA) processing was first postulated as a technique for improving the 
observable detail in astronomical images (Bates and Cady, 1980). Due to the optical 
transmission properties of the atmosphere such images are distorted versions of the ce
lestial (or true) object. The atmospheric distortion is usefully modelled as a convolution 
of the true object with a wide band blurring function that is essentially invariant over 
short intervals of time but varies randomly over long intervals (Bates and Cady, 1980). 
SAA is one of a group of techniques that counteracts the image distortion by process
ing a sequence of short-time exposures (Bates and McDonnell, 1986). Each exposure 
or speckle image is distorted with a statistically independent blurring function. The 
ensemble of speckle images are combined so that the blurring tends to cancel, while the 
image is reinforced. SAA is based on the assumption that if the true object contains a 
dominant poin:t, the brightest point of any speckle image is more likely to correspond 
to that point than to any other pint of the object. Since convolution can be viewed 
as the superposition of many amplitude scaled and shifted copies of the true object 
(speckles), it is appropriate to shift the speckle image so that the brightest point of 
the speckle image lies at the origin (Bates, 1982). All the speckle images are similarly 
processed and then added together, causing portions of the image that are aligned at 
the origin to reinforce, while other randomly distributed lower amplitude 'speckles' 
tend to be cancelled. In experiments using simulated speckle images (Sinton, 1986, §5), 
and later actual astronomical data (Davey, 1989, §4.8.1), SAA was shown to faithfully 
reconstruct an image and reduce the atmospheric blurring to a background 'fog'. 

2.8.2 SAA processing of speech 

Interaction between researchers at the University of Canterbury working in the fields 
of astronomical image processing and speech processing led to SAA being applied to 
speech by Brieseman et al. (1987). The description of SAA in §2.8.1 can be applied to 
speech by making a correspondence between the celestial object and the glottal excita
tion, and the atmospheric distortions and the vocal tract 'distortion' filter. Similarly, 
choosing the brightest point of a speckle image as a reference point corresponds to 
the assumption that the largest magnitude within a pitch period of voiced speech is 
most likely to represent the largest peak in the glottal pulse (Thorpe and Bates, 19XX; 
Davey and Thorpe, 1987). 

Using the source-filter model of speech introduced in §2.2, each pitch period of 
speech can be sub-divided into its glottal excitation and a vocal tract filter. Here the 
mth glottal pulse is represented by gm(t), which is constrained in the following manner, 

gm(t) = 0 for t < -r/2 and t > r/2 
Igm(O)1 ~ Igm(t)1 for r/2 < t < r/2. 

(2.105) 

Note that constraining the extent of gm(f) to be ±r/2 is an arbitrary choice that is 
computationally expedient. The contribution from the excitation signal and the vocal 
tract response during the mth pitch period are denoted respectively by gm(t) and vm(t). 
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The mth pitch period of a speech record sm(t) is expressed as 

(2.106) 

where, during the mth pitch period, Tem is the instant at which the excitation is at 
its maximum. The range of m is 1 to M, the total number of pitch periods in the 
speech record. The contamination term em(t) includes any overlap in the pitch periods, 
recording noise, and interactions between the vocal tract and the glottal source. Recall 
from §2.4.1 that, for modelling purposes, the vocal tract can be considered stationary 
for at least a single pitch period. Therefore, vm(t) can be expected to represent the 
vocal tract response for the entire mth pitch period. 

After a speech record has been partitioned into segments sm(t), SAA is invoked 
to estimate the long-term average glottal excitation get). For each m, the instant at 
which ISm(t)1 is maximum is assigned to Tm. Each sm(t) is then shifted so that the 
maximum occurs at the time origin and jf the largest peak is negative, the sign of sm(t) 
is reversed. All of the M sm(t) so processed, are averaged, 

1 M 
saaa(t) = 111 I: sgn(sm(Tm)sm(t + Tm) 

m=l 

(2.107) 

(2.108) 

where < . >m denotes an average over m. In general, Tm is not the same as Tern because 
Tem is the instant that the glottal pulse is at its maximum and one would expect the 
instant of the maximum amplitude in the speech signal to differ because of the effect 
of the vocal tract filter. 

The relationship between ssaa(t) and gm(t) depends upon the variations in get) and 
vm(t) recorded in sm(t). Brieseman et al. (1987), in a more rigorous formulation of 
SAA, represent gm(t) and vm(t) in terms of contributions that persist throughout an 
utterance and variable parts. SAA assumes that the vocal tract varies significantly 
(quasi randomly) and that a major component of the glottal pulse can be considered 
invariant under different vocal tract conditions (Thorpe, 1990, §4.2.2.1). Ananthapad
manabha and Fant (1982) show that the shape of the glottal pulse is not constant, 
since variations in the first formant cause slight variation in the skewness of the glottal 
flow. Kiozumi et al. (1985) extend the analysis of the glottal flow across all the for
mants and find that higher order formants also affect the 'skewness' of the glottal flow 
pulses, but the first formant has the dominant effect. Although the glottal flow is shown 
to be skewed by varying amounts, depending upon the formants, the variation in the 
overall shape of the glottal flow is quite small. The variation of the vm(t) is therefore 
considered to dominate variations recorded in sm(t). However, the average vocal tract 
response is not an impulse, so it is not averaged out of the convolution expressed in 
(2.106). The signal saaa(t) therefore represents the average of the gm(t) convolved with 
the average of the vocal tract response (Davey and Thorpe, 1987) and for this reason 
is called the long-term average glottal response (LTAGR) (Brieseman et al., 1987). 

Thorpe (1990, §4.3.3) describes a simulation where vocal tract filters are excited by 
a fixed 'glottal pulse' and demonstrates that SAA processing does indeed recover an 
estimate of the 'glottal pulse' convolved with the average response of the vocal tract 
filter. 

2.8.3 Computation details of the SAA algorithm 

The SAA algorithm, while not being computa.tionally intensive, requires that voiced 
speech be identified from the rest of the speech record. This voiced/unvoiced decision 
can be most easily implemented using one of the algorithms described in §2.4.4. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.20. LTAGR signals from the phrase "When sunlight strikes raindrops in the air, they act 

like a prism and form a rainbow". Speakers and sex; (a) AE, male, (b) WT, male, (c) BM, male, 

(d) DR, female, (e) KG, female and (f) Te, female. 

The SAA of the voiced portion of the phrase "lVhen sunlight strikes min drops in 
the air, they act like a prism and form a rainbow" is shown in Fig. 2.20 for six different 
speakers. For ease of display the ma..ximum amplitudes of the LTAGR signals are nor
malized to unity, and this convention is followed throughout the thesis. The horizontal 
line running through the centre of the plots represents the d.c. level. Furthermore, 
unless specifically mentioned, the duration of ssaa(t) is 12.8ms in all the examples pre
sented here. This duration has been found to be acceptable for both male and female 
speech (Thorpe, 1990). The original phrases were recorded at a sampling rate of 10kHz, 
so 12.8ms corresponds to 128 samples. All LTAGR signals in this thesis are derived 
from speech signals that have been sampled at 10kHz. 

The SAA computation, as posed in (2.107), indicates that the speech signal should 
be divided into segments, each containing a single pitch period, before the actual SAA 
averaging occurs. These two steps can be combined to give a more computationally 
efficient algorithm. This is defined in Algorithm 2.3 and illustrated by Fig. 2.21. 

Variables introduced in Algoritllm 2.3 are: a sequence of samples of voiced speech, 
sv[n], the position (in samples) of the start of a speech frame, nl, the number of samples 
in the SAA frame, 1, the amount that the SAA frame is moved each iteration of the 
SAA algorithm, ns , the position of the maximum absolute amplitUde within the SAA 
frame, kma:c, and a threshold used to test whether a frame is of suitable amplitude to 
be added to the SAA signal, Sthres. The significance of Sthres is explained later in this 
section. 
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Figure 2.21. An example of SAA processing showing how frames are selected. The subscripts on the 

kmaz and nf variables indicate the it.eration number of algorithm 2.3. 

Algorithm 2.3 

Step 1: Initialization: Set the frame index n j to O. Set 1 to be the length of each frame 
in samples and let ns be the number of samples that the frame is moved after 
each processing operation. Set Sthres to a reasonable level (typically 10% of the 
maximum amplitude) and zero Ssaa [n]. 

Step 2: Shift: Find 
kmax = argm:x Isv[nj + k]li k = 1, .",1 

and record the index kmax of the maximum value. 

Step 3: Add: If Isv[nj + kmax:11 > Sthres then 

(2.109) 

add a normalized version of the frame centred on sv[nj + kmax] to Ssaa, viz 

Ssaa[n] = ssaa[n] + sv[nj + kmax + n]/sv[nj + kmax]i 11 = -1/2, ".,1/2. (2.110) 

Step 4: Next frame: Calculate the next frame position 

n j = nj + kmax - 1/2 + ns. (2.111) 

Step 5: Termination: If 11j is past the end of the speech record sv[n] then halt with 
ssaa[n]. 

Observe in Fig. 2.20 that the males (( a)-(c)) and females ((d)-(f)) have different 
SAAs. This is because females tend to have a shorter pitch period than males, which 
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often causes the selected speech frame s\)[nf + kmax ] (-1/2 < n < (/2) to contain the 
previous peak in the speech signal, the current peak, and also the next peak. The exact 
positions of the peaks to the side of the central peak in the LTAGR of a female voice 
are therefore dependent on the average pitch of the utterance. 

In (2.110) of Algorithm 2.3 each frame of speech is normalized to a maximum value 
of unity before being added to the SAA signal. Normalization makes the assumption 
that the glottal response is equally well recorded in both quiet and loud portions of 
the speech utterance. However, the alternative is not to normalize at all and instead 
to add the sample values of the located SAA frame to ssaa[n]. The main difference be
tween LTAGRs from the two methods is that the normalized addition results in a peak 
that is slightly broader than that produced from SAA incorporating non-normalized 
frame addition. From Fig. 2.22(c) and (f) it is apparent that the larges~ difference is 
in the rising edge of the central LTAGR peak. The normalization of the peak of each 
LTAGR frame causes lower amplitude, broader, peaks to contribute significantly to the 
final LTAGR, whereas if each SAA frame is not normalized, the major contribution 
to the final LTAGR is from large amplitude peaks. Although the LTAGRs are taken 
from only two speakers, experimental experience shows that the aforementioned obser
vations hold generally. The principal justification for normalizing is that various vocal 
tract shapes (or filters) attenuate the glottal pulse differently depending on the filter 
damping. Therefore, each of the frames should be normalized to prevent vocally 'loud' 
sounds dominating the SAA. As an aside, it is \vorthwhile noting that if each frame 
is normalized to unity before addition to the SAA signal, the maximum amplitude of 
ssaa[n] represents the number of SAA frames accumulated. 

The threshold Sthres is incorporated into Algorithm 2.3 to remove a particular error 
that sometimes occurs when a frame with a small maximum amplitude is normalized. 
In the artificial situation depicted in Fig. 2.23, the original speech frame, starting at 
su[nfJ, has a small maximum value, but the shifted frame extends to su[nf + kma:c + 
1/2J and encompasses a significantly larger 'false' peak near the edge of the frame. 
Thus, normalizing the small value sv[nf + kma:cl to unity causes the false peak to 
make a significant, and sometimes completely dominant, contribution to ssaa[n]. Such 
extraneous frames occur when the shifted frame sv[nf + kma:c + n] (-1/2 < n < 1/2), 
labelled SAA frame in Fig. 2.23, does not have its maximum value at the centre, but 
can be excluded from the SAA summation by setting a threshold that Isv[nJ + kma:cJI 
must exceed before the frame is added to ssaa[n]. A threshold level of 10% of the 
maximum amplitude has been found to be satisfactory (Thorpe, 1990). 

2.8.4 The effect of pre-emphasis on the LTAGR 

Thorpe (1990, §4.2.4.7) discusses the application of SAA to pre-emphasized speech 
and points out that pre-emphasis flattens the speech spectrum and causes each glot
tal 'response' in the speech signal to be more nearly impulsive, thereby reducing the 
likelihood of the SAA algorithm selecting erroneous peaks. Fig. 2.24 shows the effect 
of pre-emphasis on the LTAGR signaL The most obvious difference between the pre
emphasized LTAGR and a normal SAA is the 'peakiness' of the central peak. The 
narrowing of the central peak of the LTAGR is caused by the increased 'impulsiveness' 
of the speech signal. 

The voiced/unvoiced decision is more crucial when performing SAA on pre-emphas
ized speech since unvoiced sounds have most of their energy above 2 kHz and their am
plitude relative to the voiced sounds is increased by pre-emphasis. Any pre-emphasized 
unvoiced speech incorporated into the SAA processing will therefore have a greater 
affect on the final LTAGR signal. 
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Figure 2.22. An example of the effect of normalizing on the LTAGR of voiced speech: (a) SAA 

where each frame is normalized before being added for speaker AE, (b) SAA where each frame is not 

normalized for speaker AE, (c) I(a) - (b )1, (d) SAA where each frame is normalized before being added 

for speaker BM, (e) SAA where each frame is not normalized for speaker BM, (f) I(d) - (e)l. 

n1 + I 

Figure 2.23. An artificial example of the selection of a SAA frame which has its major peak incorrectly 

positioned. Normalization of this type offrame within the SAA algorithm amplifies the off center peak, 

resulting in an erroneous LTAGR. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.24. An example of the effect of pre-emphasis on the LTAGR of speakers for the same speakers 

and utterances as Fig. 2.20. 

2.8.5 Incorporation of the voicing decision into SAA 

A good estimate of the long-term average glottal response can be obtained only if the 
frames selected for addition to the accumulated SAA signal contain information about 
the glottal excitation. In the above description it is assumed that only voiced frames 
of speech are searched for instances at which the excitation of the vocal tract filter is 
most strongly present. Since speech contains voiced, unvoiced and silent periods, the 
voiced portions must be identified within the utterance. This voiced/unvoiced decision 
can be performed in a computationally efficient manner by comparing the maximum 
amplitude within each search frame against a predefined threshold v. If the maximum 
amplitude is greater than the threshold, the frame is assumed to be voiced, otherwise 
it is assumed to be unvoiced and is discarded. This simplified voiced/unvoiced decision 
is computationally efficient compared with other voiced/unvoiced schemes (see §2.4.4) 
and although certain unvoiced frames, such as those containing plosive sounds, are 
occasionally included in the SAA calculation, overall they have only a small effect on 
the final long-term average glottal response. Fig. 2.25 shows the effect of varying v 
between 0% and 25% of the maximum amplitude for the utterance" When sunlight 
strikes mindrops in the air, they act like a prism and form a rainbow". It also shows 
the LTAGR obtained when using an accurate voiced/unvoiced decision algorithm that 
compares energies in different bands of the speech spectrum (VUVI defined in §2.4.4). 
The LTAGRs depicted in Fig. 2.25 are all normalized to have a value of unity at the 
central peak. Their similarity indic<l;tes that the shape of the LTAGR is relatively 
independent of the threshold level chosen for the voiced/unvoiced decision. The central 
peaks of Fig. 2.25(b), (c) and (d) are more pointed than that of Fig. 2.25(a) due 
to unvoiced 'spikes' being occasionally included in the SAA accumulation. Comparing 
Fig. 2.25(a), (b), (c) and (d), one can observe that the amplitude of the spike is reduced 
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Figure 2.25. A comparison between LTAGRs obtained from the rainbow passage using different 

thresholds for performing the voiced/unvoiced decision: (a) LTAGR obtained from voiced speech only, 

(b) LTAGR obtained from analysing the entire utterance with threshold // = 0, (c) // = 0.10, (d) 

v = 0.25. 

by having a larger voiced threshold level. Although Fig. 2.2.5 is obtained from applying 
SAA to a single utterance and a single speaker, experimental experience indicates that 
similar results are obtained for a wide range of speakers and utterances. 

2.8.6 Relationship to the source filter model 

This section explores the relationship of the LTAGR to the glottal excitation used to 
produce synthetic speech. Synthetic speech is used so that both the excitation and 
vocal tract filter are known. 

Assuming that get) is a single glottal excitation a.nd vm(t) is the impulse response 
of the vocal tract filter for pitch period 171, the synthetic speech for pitch period m is 
written (cf §2.8.1) 

(2.112) 

and since convolution is associative, 

< sm(t) >m= get) 0 < vm(t) >m . (2.113) 

Note that < Sm(t) >m is equivalent to < sgn(sm(Tm))sm(t + Tm) >m if Tm = 0, i.e., 
the position of the maximum peak in frame m of the synthetic speech is positioned at 
t = O. Examples of < sm(t) >m and ssaa(t) are presented here for synthetic speech. 

The LPC filters used for the synthetic speech are computed from voiced, pre
emphasized segments of the utterance "When sunlight st7'ikes raindrops in the air, 
they act like a prism and lann a minbaw". These filters are excited, to produce two 
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utterances of synthetic speech, using a sawtooth excitation for the first and a sine
squared excitation for the second. Fig. 2.26{a) and (b) show that g(t) 0 < vm{t) >m 
corresponds closely to ssaa(t). This correspondence supports the claim that the long
term average glottal response approximates the glottal excitation convolved with the 
average of the vocal tract impulse response. However, it is also obvious that ssaa(t) 
and < sm(t) >m are not identical. The difference occurs because the vocal tract fil
ter (vm (t)) alters the position of the maximum peak in the speech compared with the 
excitation. Fig. 2.27 shows the values of T m used in the SAA algorithm to compute 
ssaa(t). Each of the bars in Fig. 2.27{ c) corresponds to the value of Tm for a particular 
segment, sm(t), of the synthetic speech. Although many of the Tm are zero, there are 
a significant number of non-zero values. The non-zero values indicate that the position 
of the maximum of the model glottal excitation is not the same as the maximum of the 
synthetic speech for speech segment sm(t). However, comparison between ssaa{t) and 
< sm{t) > in Fig. 2.26( a) and (b) shows they are still of similar shape. 

The average vocal tract filter response is impulse like, so the main contribution to 
ssaa(t) is from the glottal excitation. Therefore, provided speech utterances contain 
a wide range of different sounds, the average vocal tract response can be expected to 
be impulse like, and theLTAGR will mainly contain contributions from the glottal 
excitation. 

2.9 MEASURES OF SPEECH NOISE 

Speech signals are always corrupted by noise, so it is important to assess the effects of 
noise on speaker identification accuracy. Here two separate noise measures are discussed 
that are computationally straightforward and can be used to generate speech with a 
defined amount of noise. 

2.9.1 Signal-to-noise ratio 

The simplest measure of the noise in a speech signal is the ratio of the average signal 
power to the average noise power. For a sampled signal s[n] with noise ern] added, the 
signal-to-noise ratio is defined as 

SNR = L:n s[nj2. 
L:n e[nJ2 

(2.114) 

It is quite common to express the ratio in decibels (Stremler, 1982), viz 

SNR(dB) (2.115) 

By generating noise ern] of an appropriate amplitude and adding it to the speech signal 
s[n], a speech signal with a known SNR is obtained. 

While the SNR is useful for measuring noise levels, it is of limited usefulness for 
assessing the degradation of speech signals that have been coded in some manner. For 
example, two signals which are indistinguishable to the ear are, s(t) and -s{t), but the 
difference between the two signals is 2s(t) so compared with s(t), -s(t) has a signal-to
noise ratio of -6dB. This discrepancy is due to the ear's insensitivity to certain types 
of phase distortion (Schroeder, 1975). 

The perceived degradation in speech quality is the most important quality measure. 
Consequently, it is best to use a noise measure that is directly related to the perceived 
speech quality. 
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Figure 2.26. A comparison of the LTAGR obtained from synthetic speech, S,aa{t), with a synthetic 

glottal pulse convolved with the average of the vocal tract filter responses, < Sm{t) >m. Synthetic 

speech generated from: (a) sawtooth excitation and (b) sine-squared excitations are depicted. 
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Figure 2.27. Details of the values of Tm used in the SAA algorithm. The five speech and excitation 

frames illustrate the way in which the positions of the maximum peaks in the speech signal are altered 

when the excitation is used to excite vocal tract filters. 

2.9.2 Speech correlated noise 

Speech degradation can also be determined by subjectively comparing the test speech 
signal with a 'standard' signal of high quality that has been contaminated with various 
amounts of noise. The method of generating the contamination is critical since the 
'standard' signal should be perceptually similar to the the contaminated signal under 
evaluation (Schroeder, 1968). One method of contaminating the 'standard' signal is 
to add a noise signal that is correlated with the amplitude of the speech signal. The 
contaminated signal r[n] is called a reference signal and is defined by 

r[n] = s[n] + k(s[n]no[n]) (2.116) 

where s[n] is the 'standard' signal, k is a positive constant representing the amount 
of degradation and no[n] is a noise source of the type specified by Schroeder (1968) 
and IEEE (1969). Equation (2.116) forms the basis for the Modulated Noise Reference 
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Unit (MNRU) as specified by CCITT (Kitawaki and Nagabuchi, 1988) for adding speech 
correlated noise to a speech signal. A number of reference signals, with a known signal
to-noise ratio, can be created by choosing different values for k, thereby contaminating 
s[n] with varying amounts of noise. The quality of the reference signals is described by 
the signal-to-speech-correlated-noise ratio which is denoted Q(dB) and expressed as 

Ln s[nJ2 
Q(dB) = 10log10 Ln(k(s[n]no[n]))2' (2.117) 

Subjective comparisons between these reference signals and the trial speech signal allow 
the trial signal to be ranked within the reference quality range. The matching quality 
is expressed as the "opinion equivalent Q (dB)" (Kitawaki and N agabuchi, 1988). Here 
the Q( dB) measure is used to specify a, noise le:'el that is perceptually related and can 
be generated in a straightforward manner. 

2.10 SUMMARY 

This chapter introduces the speech analysis and modelling techniques that are used for 
performing speaker identification experiments. The main points are as follows: 

• The concept of the source filter model for speech production is introduced and 
assumptions involved in using this model are discussed. The filter portion of the 
source filter model is related to a vocal tract tube model and it is shown that 
under certain conditions these two models can be considered to be equivalent. 

• Algorithms for performing pitch detection and making voiced/unvoiced decisions 
are described. The particular pitch and voiced/unvoiced algorithms used in ex
periments reported in this thesis are presented. 

• Linear predictive coding is introduced and the relationship between the spectrum 
of the speech signal and the spectrum of the LPC filter is described. 

• Vector quantization is illtroduced and the advantage of VQ defined. Various 
distortion measures are discussed and their suitability for VQ evaluated. Details 
are given of algorithms that are invoked to train vector quantization codebooks. 

• Shift-and-add, the algorithm used in this thesis to compute the long-term average 
glottal response is defined. Aspects of the operation of the SAA algorithm are 
discussed. 

• Measures of the amount of noise present in a signal are presented as background 
for experiments reported in Chapter 5 that evaluate the effect of noise on the 
speaker identification accuracy. 
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CHAPTER 3 

SPEAKER RECOGNITION FUNDAMENTALS 

Often a person answers the telephone with a simple "hello" and we are able to identify 
who has answered. Although "hell<?" is a short utterance, in many instances it contains 
enough speaker-specific information for us to associate a particular person with the 
voice. Furthermore, without any formal training at all, people seem to be able to 
perform this recognition task. It is this innate ability of humans to recognize speakers 
that points to the possibility of automatic speaker recognition systems. 

Section 3.1 introduces speaker recognition terminology and reviews various aspects 
of speaker recognition as reported in the literature. Assumptions about the parallels 
between fingerprints and voiceprints are discussed in §3.1.2. Experiments reported in 
the literature that determine the recognition accuracies obtained by people listening 
to recorded voices are reported in §3.2. Since all speaker recognition schemes rely on 
the extraction of features to describe each speaker, §3.3 discusses the broad classes 
of techniques used to process features for speaker recognition. The main problem in 
speaker recognition is choosing a set of features which allow individuals to be readily 
distinguished from each other. Statistical analysis is often invoked to determine the set 
of features that is likely to produce the best recognition performance. §3.4 discusses 
several of the more commonly utilized methods of feature analysis, paying particular 
attention to those techniques most suited to speaker recognition tasks. The features 
commonly selected for speaker recognition and the recognition accuracies of various 
methodologies are compared in §3.5. The effect of the quality of speakers' test utter
ances in speaker recognition performance is examined in §3.6. The effects of mimicry, 
disguise, noise and voice variation with time are all discussed. Commercial speaker 
verification systems that operate in real-time are reviewed in §3.7. Section 3.8 contains 
a summary of the main points in this chapter. 

3.1 INTRODUCTION 

This section introduces speaker recognition in general terms. Terminology for describ
ing speaker recognition tasks is presented in §3.1.1 and error measures that are useful 
for describing the inaccuracies in a speaker recognition scheme are presented. Pio
neering work in the field of speaker recognition took place in the 1960s and §3.1.2 
outlines some of the debate that transpired over the relationship between fingerprints 
and voiceprints. Finally, §3.1.3 contains a brief description of practical applications of 
speaker recognition. 

3.1.1 Terminology 

Speaker recognition tasks can be subdivided into two distinct categories. One cate
gory associates an unknown voice with a single individual from a known population of 
speakers, and is called speaker identification. The other category tests the voice of a 
person, who has claimed a particular identity, to confirm whether the voice matches 
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Figure 3.1. A general speaker recognition system. 

the claimed identity. This is called speaker verification since the goal is to verify, or 
not, the speaker's claimed identity. 

Speaker verification is predicated on an identity having already been claimed through 
an independent method, such as a personal identification number (PIN) entered via a 
keypad. The system can then check a person's 'voiceprint' against that stored for the 
entered PIN number to verify the identity of the person. If the person's claimed identity 
is verified, the claim is said to be accepted, otherwise it is rejected. 

Aspects ofthe recognition procedure differ between speaker verification and speaker 
identification tasks. Speaker identification requires the test utterance to be compared 
with every template recorded in the reference database, and the closest match is then 
chosen as the identified match. Therefore, as the number of speakers increases the 
probability of incorrectly identifying a speaker increases. However, in a speaker veri
fication task the test utterance is only compared with the template corresponding to 
the claimed identity, so the probability of error remains constant as the population of 
approved users is increased. 

Speaker recognition systems can be further classified according to the way in which 
the spoken phrases are selected. When the recognition phrase is specified, and unchang
ing, the recognition system is said to be text-dependent. Instead of defining the text for 
every utterance to be used in the speaker recognition system, some recognition systems 
perform recognition on any test utterance. Such systems are called text-independent. 
An advantage of a text-independent system is that the user does not have to memorize, 
and later recite, a particular phrase. However, for this type of recognition the uttered 
phrase must be of sufficient duration to ensure that a phonetically balanced represen
tation of the speaker's characteristics are obtained. These characteristics are usually 
described by long-term statistical features obtained from an utterance that is of 20-40 s 
duration. 

The process of extracting speaker-specific information to store in a speaker recogni
tion system is called training. Utterances that are used to train the speaker recognition 
system are called training utterances, while those used for testing purposes are called 
test utterances. The speaker-specific information, extracted during the training phase, 
is stored in templates, a single template representing speaker-specific information for 
one individual. Fig. 3.1 depicts a general recognition system. The trial utterance is 
input to the recognition system and features which constitute the test template are 
extracted from it. The next stage in the recognition task is to compare the test tem
plate with all of the prestored reference templates. The specific method of comparison 
invoked depends on the set of features being utilized and the final recognition result is 
defined by a decision rule, which specifies the method for selecting the closest match. 

The number of template comparisons required for the identification and verification 
tasks governs the computation effort required for each of these recognition tasks. Since 
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Figure 3.2. A sketch of the dependence of the false acceptance and false rejection error probabilities 

on the acceptance threshold. 

speaker verification requires test template comparisons against only a single template, 
the computation time is not increased when additional speakers are incorporated into 
the speaker database. However, when a speaker is added to a speaker identification 
system database, the recognition time increases by the time taken to compute a distance 
measure between the test utterance and a single template. From a computational and 
accuracy standpoint, speaker verification is more feasible than speaker identification 
when large numbers of speakers are involved. 

The types of error that occur in speaker recognition depend upon the recognition 
task being performed. In speaker identification an error occurs when an individual is 
incorrectly recognized, and here this is called false identification. Experimental results 
are often reported in terms of the error rate, which is the total number of false iden
tifications divided by the total number of identification trials. In speaker verification 
two distinctly separate errors can occur. A false rejection occurs when an approved 
speaker is rejected by the recognition system, while a false acceptance occurs when 
an imposter assumes an approved identity and is accepted by the verification system. 
Some researchers refer to the false rejection and false acceptance errors as type I and 
type II errors respectively (Naik, 1990). The speaker verification decision is performed 
as follows. The distance between a test template and the reference template of the 
claimed speaker is compared with a threshold, and if the distance is less than the 
threshold the speaker is accepted, otherwise the speaker is rejected. The probability 
of false rejection or false acceptance is a function of the acceptance threshold, as the 
the sketch in Fig. 3.2 of the variation of the probability of error against threshold value 
shows. The probability of error at which the two error curves intersect is called the 
equal error rate (EER). The acceptance threshold which corresponds to the equal error 
rate is not necessarily the best threshold to use for verification since the sum of the 
false acceptance and false rejection rates may not be minimized at that threshold. 

3.1.2 Fingerprints vs. voiceprints 

In 1962, Kersta published an article entitled "voiceprint identification" which implied 
that voiceprints could be used to identify people in much the same way as finger
prints. This prompted many experiments and considerable debate over the reliability 
of voiceprints for identification and for legal purposes (Bolt et ai., 1970). A summary 
of the arguments and important results is presented here. 
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In the case offingerprints, extensive research into their use for personal identification 
was performed by Francis Galton, a British geneticist and anthropologist, in 1888 
(Bolt et al., 1970). In 1894 the fingerprint was adopted by the British government as 
ultimate proof of a person's identity. Broad fingerprint classes are defined by gross ridge 
patterns, such as loops and whorls. These assist the filing and indexing of fingerprints, 
but for final identification, details such as bifurcations, terminations and interruptions 
are compared. Galton concluded in his study that the probability of false identification 
by fingerprint is approximately 1/(64 X 109). Apart from the probability of incorrect 
identification, an important consideration for any method which attempts to identify 
humans is the effect of aging. Although fingerprints change size as a person ages, the 
relative position of features within the fingerprint have been found to remain constant. 
Aging does, however, affect the texture, or grain, of a fingerprint. 

The rationale behind voiceprint identification is that one would expect physical 
characteristics of the vocal mechanism, such as the size of the vocal tract and the nat
ural frequency (or pitch) at which the vocal cords vibrate, to vary between individuals. 
As well as the speech characteristics defined by a person's physical makeup, certain 
additional characteristics such as patterns of loudness and pitch variations are a con
sequence of a person's style of speaking. The learned, and individually characteristic 
speech style is formed within the confines of a particular speech accent. The prevalent 
accent during the formative years of speech acquisition (provided no accent retraining 
has been undertaken) is also a characteristic of an individual's voice. 

Classically, the term voiceprint as defined by Kersta (1962) refers to either a spec
trogram, or a contour plot of a spectrogram, as depicted in Fig. 3.3. Usually the 
voiceprint is taken of a single word uttered in isolation. Kersta (1962) refers to the 
spectrogram and contour spectrogram as bar voiceprints or contour voiceprints respec
tively. He points out that voiceprints display only one or two amplitude levels because 
they are drawn on paper as either black or white, whereas the contour representation 
contains more information about the spectral energy variations within speech. 

Kersta (1962) reports a speaker identification experiment using voiceprints. Sub
jects, in this case female high school students aged 16-17, were given about 1 week's 
training in reading voiceprints and identifying voiceprint features. The students worked 
in pairs during the identification experiments because it was found that identification 
results were much better when consultation occurred between two students. Identifi
cation experiments utilized the words the, to, and, me, on, is, you, i, it, and a and 
each word was recorded four times by 12 speakers. Separate identification experiments 
using populations of 5,9 and 12 speakers were performed using the 4 voiceprints of each 
utterance. It is difficult to deduce the exact experimental details from Kersta's paper, 
however it is apparent that the recognition experiment involved sorting the voiceprints 
into piles representing the individual speakers. The students may, or may not, have 
been told how many piles to sort the voiceprints into, or that there were the same 
number of utterances from each person. For the trials containing populations of 5, 
9 and 12 speakers, the average accuracies were respectively 99.6%, 99.2% and 99%. 
The bar voiceprints were found to give higher identification accuracies than the con
tour voiceprints, which is in conflict with Kersta's earlier statement about the contour 
voiceprints containing more information than the bar voiceprints. Kersta also evalu
ated the effect of extracting words out of standard sentences by keeping the speaker 
population and test utterances constant and comparing the accuracies with those ob
tained from isolated words. He reports accuracies of 99.2% and 99% for the same 
word uttered in isolation and within a sentence respectively, indicating that utterances 
extracted from within a spoken sentence are slightly more difficult to recognize. 

Several other researchers also evaluated the suitability of spectrograms for speaker 
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Figure 3.3. An example of: (a) a contour voiceprint, (b) a bar style voiceprint and (c) a modern 

gray level voiceprint for the word "the". 
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recognition. Since the experimental procedures differed significantly from Kersta's, 
each procedure is introduced briefly. 

Stevens et ai. (1968) used college students with no previous spectrogram reading 
experience to identify eight speakers. The utterances consisted of five repetitions of six 
two syllable words and three one syllable words which were recorded in two recording 
sessions spaced one week apart. A number of experimental sessions were conducted in 
which individual students were asked to match the test utterances, one at a time, to 
one of eight randomly selected reference spectrograms of the same utterance, spoken 
by each person, spread on the table in front of them. Error rates ranged from 18% for 
utterances consisting of many syllables to 50% for brief single syllable words. 

Young and Campbell (1967) report a recognition experiment using highly trained 
observers, who all had training in speech pathology and audiology and were familiar 
with spectrographic analysis. The observers received additional training to familiarize 
them with the spectrograms of the speakers and the types of acoustic cues that might 
be useful for identification purposes. The short words you, me and it were used as 
recognition utterances. When these words were uttered in isolation the error rate was 
1.6%, and in a context sentence the error rate increased to 62.7%. 

It is interesting to compare Kersta's identification results with those of other re
searchers. The fact that Kersta's high recognition accuracies were not duplicated by 
other researchers highlights the effects of different experimental procedures. Kersta 
omits a description of his speakers and it is feasible that a cross-section of ages and 
sexes were used. This would introduce considerable variability between the speaker's 
voices, making his identification more reliable. Furthermore, the set of spectrograms 
employed by Kersta could assist the students in making their identifications if the num
ber of piles (or people) to sort the spectrograms into was specified a priori and it was 
also known that there were an equal number of utterances by each individual. 

It is mentioned elsewhere in this section that fingerprints remain essentially invariant 
with age. However, the same does not hold for voices. In a study by Endres et ai. (1971) 
the variations in the voices of four males and two females over a period of 13-15 years 
are examined. The trend across all the subjects studied was that the average frequency 
of the formants decreased with age. In addition, the pitch frequency was found to 
decrease with age and the distribution of pitch frequencies utilized by a given speaker 
narrowed. Table 3.1 summarizes a comparison between fingerprints and voiceprints. 
It shows that voiceprints are inherently less reliable than fingerprints for identifying 
people. However, the convenience of voice for recognition purposes remains a strong 
incentive for developing voice recognition systems. Section 3.5 reports recent results 
that are much more accurate than those obtained by visually matching spectrograms. 

3.1.3 Applications 

Applications of automatic speaker recognition can be broadly classified according to 
whether speaker identification or speaker verification is performed. 

The most common application of automatic speaker identification is in identifying 
a person from their voice in forensic applications. Although there are inaccuracies in 
voice identification, especially when compared with fingerprints, the ease of collection 
over telephone lines makes speaker identification a convenient method for identifying 
suspects. 

Speaker verification is most often applied in a security context. A commonly cited 
example of such an application is telephone banking. As a precursor to a banking 
transaction, individuals would be required to utter a phrase which would serve as a 'key' 
into their accounts. If their claimed identities are verified, the banking transactions 
could proceed, otherwise they would be terminated. Another application of speaker 



3.1 INTRODUCTION 

I Fingerprint patterns 

Patterns are inherent in anatomy, not 
changeable in kind, i.e., they cannot be 
changed from one pattern to another. 
Parts of a pattern, large or small, can only 
be obliterated. 

Details of patterns: 

(a) are permanent; 
(b) are not affected by growth (aging 
merely changes the size or print grain); 
( c) are not affected by habits (calluses 
merely change the print grain). 

Pattern similarity depends entirely on un
derlying anatomical structure. 

Patterns result .from a direct transfer 
from the skin of the finger to the surface 
touched by it. 
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Voice patterns 

Patterns are dependent only on anatomy 
and are changed only by the articulatory 
movements needed to realize the language 
code. 

Details of patterns: 

(a) are just as variable as the overall pat
terns; 
(b) are affected by growth; 
( c) are affected by habits (learning new 
dialects and voice qualities). 

Pattern similarity depends primarily on 
acquired movement patterns used to pro
duce language code and only partially on 
anatomical structure. 

Patterns result from an analysis of voice 
sounds which, in turn are related only 
indirectly to the vocal anatomy of the 
speaker. Moreover, the transmission 
channel from speaker to spectrograph is 
vulnerable to acoustical and electrical 
distortions. 

Table 3.1. A comparison of aspects of fingerprint and voiceprint patterns (from Bolt et al. (1970)). 

verification is in controlling access to a building for security purposes. A simple code, 
such as an employee number, could define the claimed speaker identity, and entry be 
decided by a speaker verification system. In an access system of this type it is not 
desirable to require individuals to utter a long phrase, since talking to a 'door' for 20 s 
or more would tend to frustrate anyone who actually wants to pass through it! In order 
to keep the speaker recognition accuracy high, while maintaining short utterances, 
text-dependence is often incorporated into such a speaker verification system. 

Currently, few speaker recognition systems have been used in real life applications. 
Section 3.7 describes a number of practical systems that are either currently used for 
speaker verification or have the prerequisite hardware to perform speaker verification 
in a commercial environment. 

One of the drawbacks of current speaker recognition systems is that they require 
keypad entry of a PIN number. It would be much better if the person using the sys
tem could just say "my name is John Brown" to assert their identity, thus making the 
complete transaction voice driven. With current technology (particularly banking) the 
PIN number is usually used for identity verification and a plastic bank card has infor
mation recorded on it that asserts the identity of the person using the banking facility. 
This is a convenient banking method and current speaker recognition machines do not 
offer significant advantages over these types of facilities. Until speaker recognition and 
speech recognition are successfully linked together, so that transactions can occur in a 
'natural speech' environment, speaker recognition will remain somewhat of a novelty. 
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Group N Percent Correct Identifications 

listeners who know speaker 10 98.0 

listeners who don't know speaker 47 39.8 

foreign listeners 14 27.1 

Table 3.2. Speaker identification accuracy for different familiarities as determined by Hollien et al. 

(1982). Nate that N is the number of listeners used far the experiment. 

3.2 FACTORS THAT AFFECT RECOGNITION 
PERFORMANCE BY HUMAN LISTENERS 

Humans demonstrate a natural ability to recognize a speaker. There has been consid
erable research into aspects of speaker recognition, particularly towards understanding 
what cues, or features, are important for recognizing people from their voices. This 
section summarizes aspects of human speaker recognition performance. Section 3.2.1 
discusses the relationship between identification accuracy and familiarity with the per
son's voice. The contribution that the duration of the sample utterance makes to the 
identification accuracy is described in §3.2.2, while §3.2.3 discusses the importance of 
pitch in speaker recognition. Finally, §3.2.4 describes experiments reported in the lit
erature to assess which voice characteristics are used by human listeners when they 
perform speaker identification. 

3.2.1 Familiarity 

To recognize a speaker, the listener must have an impression or template of the speaker's 
voice. The more familiar the listener is with the speaker's voice the more accurately 
the listener remembers (or recalls) the speaker's personal speaking nuances. This is 
supported by experiments conducted by Rollien et al. (1982) and Schmidt-Nielsen and 
Stern (1985). Rollien et al. (1982) tested listeners on a population of 10 healthy male 
speakers who uttered phrases consisting of 50-58 words. The listeners were partitioned 
into three groups; (a) those who knew the speakers, (b) those who didn't know the 
speakers and (c) those who didn't know the speakers and didn't speak the language 
(foreign listeners). The experimental findings are summarized in Table 3.2. Before 
the experiment began 24 listeners were asked to rate their familiarity with the voices 
of 39 individuals on a scale of 0-6, with 0 representing 'totally unfamiliar' and 6 rep
resenting 'highly familiar'. The distinctiveness of each of the individual's voices was 
also rated on a scale of 0-6 by the listeners. Using speech of 29.8s average duration, 
recorded from a battleship game, listeners were required to identify 24 speakers and 
after each recognition record how confident they were of their choice. The confidence 
scale consisted of a 3-point scale with levels described by 'guessing,,'fairly sure' and 
'very sure'. For the 0 familiarity score the recognition accuracy was 44.4%, whereas 
the highly familiar listeners scored 92.0% correct. The overall trend in the recognition 
accuracy as a function of familiarity led Schmidt-Nielsen and Stern (1985) to conclude 
that familiarity is highly correlated with recognition accuracy. 

Schmidt-Nielsen and Stern (1985) make what appear to be contradictory claims 
about the relationships between speaker identification accuracy, the rated familiarity 
and rated distinctiveness. On the one hand, they state that the average rated distinc
tiveness for each speaker and the percentage of times that the speaker was correctly 
identified were correlated at a level of 0.40, which is statistically insignificant. On the 
other hand, they claim that the rated distinctiveness and rated familiarity are signifi
cantly correlated (r = 0.79, p < 0.01) and that the percentage of times a speaker was 
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correctly identified was correlated with the familiarity at a level of (r = 0.592, p < 0.01). 
P < 0.01 implies that the probability of the two variables being uncorrelated is at the 
low level of 0.01, so the levels of correlation are quite significant. Comparison between 
the accuracies obtained for various familiarity and distinctiveness ratings show that as 
the familiarity rating increases from 0 to 4 the identification accuracy increases from 
44.4% to 94.4%. The distinctiveness rating levels of 0 to 4 have identification accuracies 
of 84.4% and 92.5% respectively. From these accuracies it is apparent that the accuracy 
of distinctiveness level 0 is much higher than that of familiarity level O. One problem 
with the distinctiveness level, as measured by Schmidt-Nielsen and Stern (1985), is that 
it requires prior knowledge of the person's voice, which implies some level of familiarity. 
It seems unreasonable, therefore, to compare results from level 0 of the familiarity scale 
with results from level 0 of the distinctiveness scale. It is this dependence of the distinc
tiveness ratings on familiarity that is overlooked by Schmidt-Nielsen and Stern (1985) 
and leads to inconsistencies in their results. This example highlights the importance of 
careful experimental procedures and a thorough understanding of relationships between 
the variables that are recorded. 

3.2.2 Duration 

The ability of listeners to identify a speaker also depends upon the duration of the test 
(or sample) utterance. Pollack et ai. (1954) attempted to evaluate whether the dura
tion of a speech sample affects the ability of listeners to identify speakers by performing 
tests with utterances containing the same amount of speaker specific information, but 
having different duration. Utterances of short duration, consisted of a single monosyl
labic word, while utterances of long duration, consisted of the same utterance repeated 
three times. The exact duration of the monosyllabic word is not reported. Pollack et 
al. (1954) found no significant difference between the short and repeated utterances for 
speaker identification. They therefore concluded that the duration of an utterance is 
important only because more speaker specific information is added to the sample, not 
because listeners are particularly sensitive to the length of an utterance. A limitation 
of this study is that no attempt was made to determine the minimum duration of sam
ple required for speaker specific information to be perceived by a listener. Bricker and 
Pruzansky (1966) reached a similar conclusion by way of an experiment that varied the 
number of syllables in the trial utterances. Again, listener's found that the duration 
was relatively unimportant, except that it allowed a wider sampling of the sorts of 
sounds that an individual utters. No additional information is extracted by a listener 
when utterances are replayed. 

3.2.3 Pitch 

The particular cues, or characteristics, that a listener invokes to recognize a person are 
difficult to isolate. Several researchers have cited pitch as being very important for voice 
recognition (Voiers, 1964; Murry and Singh, 1980; Atal, 1974). To investigate the effect 
of pitch, Van Lancker et al. (1985) performed an experiment in which test utterances 
were played backwards so as to remove phonetic information from the speech and to 
reverse temporal information such as loudness changes, pitch and pitch range, but leave 
them still recognizable. If the pitch and pitch contour are the most important features 
for recognizing voices, one would expect that when voices are presented in reverse the 
identification accuracy would be degraded uniformly across all speakers. 

Van Lancker et al. (1985) tested this assertion in an experiment using utterances 
from 45 famous people and 94 listeners. They found that the degradation in identifi
cation accuracy was not uniform across all the speakers. Some of the familiar voices 
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were recognized nearly as well backward as forward. Interestingly, 20% of the voices 
were recognized better when presented in reverse, but most were recognized more accu
rately when presented normally (forward). This difference in identification accuracy led 
Van Lancker et al. (1985) to suggest that listeners use cues within utterances that are 
dependent upon the voice being listened to. In contrast with this, consistently poorer 
recognition accuracies for reversed speech were obtained in an earlier experiment by 
Bricker and Pruzansky (1966). Their sample of 10 speakers and 16 listeners was con
siderably smaller than the 45 speakers and 94 listeners examined by Van Lancker et 
al. (1985), so it is possible that the differences in the two sets of results can be attributed 
to the different sizes of their speaker and listener populations. However, if it is assumed 
that the sample of the total population taken by Van Lancker et al. (1985) is a reliable 
estimate of the entire population, Bricker and Pruzansky (1966) would only have an 
11 % chance of selecting a speaker population whose forward voice is consistently more 
recognisable than their backward voice. It is difficult to reconcile these two conflicting 
results, but the larger sample and listening population of Van Lancker et al. (1985) 
would tend to indicate that their results should be more reliable. 

Although the pitch of a voice contains speaker dependent information, it is not 
the only speaker specific· information in an utterance. This is demonstrated in an 
experiment by Coleman (1973) where the glottal excitation is replaced by an electro
larynx which produces a steady buzz of 85 Hz ± 3 Hz, thus removing the pitch variable 
from the speech completely. A total of twenty subjects, ten male and ten female, 
were trained in the use of the electro-larynx, and each subject then recorded four 
utterances. From these recordings 40 pairs of utterances were produced, 20 pairs of the 
same speaker, 10 pairs of a male speaker with a female speaker, 5 pairs of two different 
male speakers and 5 pairs of two different female speakers. Therefore, 50% of these 
paired utterances contained the same voice and 50% contained different voices. Twenty 
eight listeners were then required to decide whether two utterances (which constituted 
a pair) were spoken by the same person. The listeners correctly chose whether or not 
the utterances were spoken by the same person for 90% of the trials, indicating that 
the differences amongst individuals other than pitch and glottal pulse shape are readily 
detectable by the human ear. 

Another method of speaking without generating any pitch information is to whis
per. Pollack et al. (1954) used two separate groups comprised of four and eight male 
speakers to examine the identification accuracies for normal and whispered voices. They 
discovered that whispered utterances can be used for identification, but such utterances 
do not contain as much speaker specific information as 'normal' voices. For both the 
four and eight speaker experiments they concluded that a whispered utterance must 
be approximately three times the duration of a normal utterance to attain the same 
recognition accuracy (and, therefore, contain the same quantity of speaker specific in
formation). From these experiments it is apparent that, although the pitch contains 
speaker specific information, other vocal tract information can also be used to identify 
speakers. 

3.2.4 Perceptual factors 

For the purpose of building an automatic system to perform speaker recognition it would 
be useful to estimate other perceptual factors that humans use to recognize voices. 
Voiers (1964) reports an experiment where 32 listeners described their perceptions of 
16 voices by scoring several bipolar items (e.g. 'loud-soft ') on a 7 category rating scale. 
A total of 49 items such as 'laboured-easy','low-high' and 'rich-thin' were scored in 
this manner. The aim was to determine what perceived auditory information (called 
the speaker effect) was used to establish the identity of a speaker. Listener biases and 
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listener idiosyncrasies constituted what was called the listener effect. Factor analysis 
(see §3.4.3 or Dunteman (1984, §7)) was performed on the experimental results to 
determine the significant factors that contributed most to the speaker effect and those 
that contributed most to the listener effect. For the speaker effect 4 factors were found 
to account for 88% of the total item variance. The first factor, which accounted for most 
of the variance, contained items such as 'clear-hazy', 'deliberate-careless' and 'beautiful
ugly' and was given the label 'clarity' or, perhaps, 'intelligibility' of the person's voice. 
The second factor was labelled 'roughness' since it contained large contributions from 
items such as 'rough-smooth' and 'scraping-gliding'. Voiers labelled the third and 
fourth speaker factors 'magnitude' and 'animation' respectively. In addition to the 
speaker effect, Voiers calculated the listener effect and found that 6 factors accounted 
for 57% of the variance. It is not immediately obvious how to apply Voier's results in an 
automatic system since it is difficult to relate the perceptual descriptions (for example 
'happy-sad') to the sampled speech signal. However, the number of items examined, 
and found to be significant, does indicate that many descriptors should be extracted 
from the speech signal if the goal is to represent a speaker's voice characteristics. 

3.3 CLASSES OF TECHNIQUES USEFUL FOR SPEAKER 
RECOGNITION 

This section describes techniq~es for processing parameters that characterize certain 
aspects of a voice. An utterance spoken by a particular individual, processed on a 
frame by frame basis, yields a sequence of parameters (or features) which are then pro
cessed using one of several techniques. Adopting the terminology of Furui (1981), these 
techniques are broadly classified into two groups; dynamic techniques and statistical 
techniques. Dynamic techniques, described in §3.3.1, utilize the way speech parameters 
change with time, while statistical techniques, described in §3.3.2, utilize long-time sta
tistical information. Another technique, called vector quantization (VQ), (described in 
§2.7), can be invoked to reduce the storage requirements of speech parameters used in 
speaker recognition. Section 3.3.3 describes the use of VQ in comparing test and ref
erence templates and the way in which VQ can be used to characterize an individual's 
voice characteristics. 

3.3.1 Dynamic techniques 

Dynamic techniques use features that are recorded in a temporal sequence throughout 
an utterance. Matching the features of a test utterance and template utterance involves 
computing the distance between the two time-registered sequences. However, spoken 
repetitions of the same phrase are typically of differing durations. The human listening 
mechanism and its associated recognition processing is not critically sensitive to small 
changes in speech duration, but computer-based recognition systems must use either 
duration insensitive models, or special matching procedures to reduce the effects of 
duration variations. 

One simple method of accounting for changes in duration has been implemented 
by Atal (1972). He adjusted the length of the analysis frames by a constant amount 
throughout the utterance to ensure that each utterance was segmented into the same 
number of frames. Atal (1972) achieved considerable success (97% recognition accu
racy) with this method when using the pitch contour to characterize a speaker's voice. 
Atal (1974) also utilized the same alignment method, but this time with a variety of 
LPC related parameters. In most instances it seems reasonable to vary the size of 
all the frames throughout the utterance, thus time-aligning two utterances of different 
duration. Although Atal varied the size of the speech frame between utterances, it 
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b3(x) b5(x) 

State transition matrix 

A = [ajj] Pr(state jl state i) 

Observation matrix 

B [bj(x)] = Pr(analysis vector xl state j) 

Figure 3.4. An exa.mple of a. five state Hidden Markov Model. 

remained a constant size throughout any utterance, and can thus be considered to be a 
linear warping of the time scale. In an attempt to improve on the linear warping, more 
flexible alignment techniques and parameter representations have been introduced. One 
such technique represents a time ordered sequence of templates as a probabilistic model 
called the hidden Markov model. This model, and the corresponding matching method, 
is outlined in §3.3.1.1. An alternative time-alignment method for matching a sequence 
of speech parameters in a non-linear manner is called dynamic time warping (DTW). 
The principles of dynamic time warping are summarized in §3.3.1.2. 

3.3.1.1 Hidden Markov Models 

The time varying characteristics of a speech utterance can be represented by a proba
bilistic model such as the hidden Markov Model (HMM). The HMM models a doubly 
stochastic process with an underlying stochastic process that is not observable (it is 
hidden), but can be observed only through another set of stochastic processes that pro
duce a sequence of observed symbols (Rabiner and Juang, 1986). The HMM represents 
the speech production mechanism as being in a finite number of states throughout an 
utterance. Each state is capable of producing an output which, in some HMMs, is 
restricted to one of a finite number of defined outputs - the output levels are quantized. 
An alternative to quantized outputs is to allow the output to take on any value from a 
continuous range (Rabiner et ai., 1985), but this is more complicated computationally. 

Fig. 3.4 depicts a left-to-right HMM with five states. The left-to-right HMM imposes 
a temporal order on the HMM since states at the left occur before states at the right. 
Each state corresponds to a set of temporal events in the speech sound. The left-to-right 
constraint is important in word recognition applications and text-dependent speaker 
recognition since it is desirable to encode the order of acoustic events within the model. 

The HMM is defined by the state transition matrix A which describes the proba
bilities of transiting to a particular state, given the current state, and the observation 
matrix B which describes the probability of observing a particular set of speech char
acteristics for all the states (Rabiner, 1989). Training an HMM involves the determi-
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(a) 

(b) (c) 

Figure 3.5. Three different HMM structures (from Zheng and Yuang (1988)); (a) a left-to-right 

Markov chain,(b) a parallel Markov chain, (c) a circular Markov chain. 

nation of values for the matrices A and B which best describe the observed training 
sequence. In discrete word recognition a single HMM represents the acoustic transi
tions for a single word. However, to increase recognition accuracy, speaker recognition 
systems typically utilize multiword phrases, making training more complicated. Multi
word utterances can be modelled with HMMs by separately representing the individual 
words in the utterance and the silences between the words with their own HMMs. 

Recognition by HMM requires computation of the probability that the observed 
sequence of acoustic features was generated by the model under evaluation. An entire 
phrase can be recognized by suitably combining probabilities for individual words within 
the phrase (Naik et al., 1989). In a speaker identification system the person whose 
HMM scores the highest probability of producing the observed set of acoustic features 
is recognized as the speaker. Rabiner (1989) contains concise algorithm details for 
HMM training and recognition. 

The computational requirements for training an HMM and for performing recog
nition differ significantly. Estimating the state transition matrix for the model which 
maximizes the probability of the observation sequence is a complicated problem. It 
can be solved only by iterative techniques, since there are no known analytical solu
tions (Rabiner and Juang, 1986). Typically, training involves many iterations of an 
algorithm called the Baum-Welch algorithm to improve estimates of both A and B. 
Training of the HMM is slow compared with recognition, since recognition uses the 
somewhat faster forward-backward procedure which, for an N state model and NT 
frames in a test utterance, requires in the order of N 2 NT operations (Rabiner and 
Juang, 1986). 

( 

The application of HMM to speaker recognition is a relatively recent development. 
Naik (1990) in his review of speaker recognition described HMM as a viable scheme for 
speaker verification, but did not give any recognition results. Zheng and Yuang (1988) 
carried out a comparative study between the identification performance of three dif-
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ferent HMM configurations using 12th order LPCs vector quantized to 64 codewords. 
Depicted in Fig. 3.5 are the left-to-right chain, the parallel chain and the circular chain 
that they used in their verification experiments. They found that the identification 
accuracies for a population of 6 males and 4 females were 93.7%, 88.7% and 90% for 
the circular chain, left-to-right and parallel HMMs respectively. They concluded that 
the circular HMM is better suited to speaker identification than the other HMM con
figurations, since states can be 'revisited' as sounds are repeated in an utterance. 

3.3.1.2 Dynamic time warping 

Dynamic time warping is a method of evaluating the distance between two time ordered 
sets of feature vectors. Vectors, such as LPCs, are matched using one of the distortion 
measures described in §2. 7 .3. The time registration is allowed to 'compress' or 'expand', 
causing non-linear warping of the time sequence of feature vectors. An example of a 
DTW match between a test and reference sequence consisting of a one-dimensional 
feature vector is shown in Fig. 3.6. Th~ minimum warped distance is determined using 
a dynamic programming technique that 'tracks' the minimum distance path through a 
space containing distances between the sequence of template vectors and the sequence 
of test vectors. For the purposes of this explanation the test sequence is denoted T 
and the reference sequence is denoted R. The number of analysis frames in T and R is 
denoted by NT and NR respectively. DTW determines a warping function, m = wen), 
which maps the time (or frame number) axis, n, of the test template onto the time axis, 
m, of the reference template. To prevent the dynamic programming algorithm from 
producing an undesirable warping function, the warping function is restrained to lie 
within the bounds of the shaded area depicted in Fig. 3.6. The final warping function 
is derived from the solution to the following optimization problem, 

D = min [~d(T(n),R(W(n)))]. 
w(n) n=l 

(3.1) 

One might expect that to locate the minimum warping path through the shaded 
region depicted in Fig. 3.6, the distances for all possible paths falling within the shaded 
region must be computed. However, in practice this is not the case, because the warping 
path can be determined by extrapolating the minimum error path from the first frame. 
In other words, the warping path, w( n), is computed incrementally, with each incre
ment being the minimum distance option from a number of possible path directions. 
The number of possible, path directions is constrained so that only a few 'reasonable' 
directions for the warping path are examined. 

The usefulness of DTW for speaker verification was demonstrated using pitch and 
intensity contours by Rosenberg (1976) (see also Rosenberg and Sambur (1975)). Uti
lizing only these two parameters, extracted from speech that was transmitted over 
standard telephone lines, an error rate of approximately 5% was obtained for a test 
population of over 100 males and females. Furui (1981) obtained verification error 
rates of less than 1% using DTW and cepstral coefficients computed from utterances 
transmitted over standard telephone lines. 

The DTW example depicted in Fig. 3.6 indicates that the end points of the test and 
reference phrases are to be strictly aligned with each other and that warping can only 
occur between the endpoints. This is called constrained endpoint DTW and requires 
accurate location of the endpoints of the two words (or the phrases), otherwise the 
alignment is not valid. In practice, endpoint detection is a difficult problem (Rabiner 
and Sambur, 1975), however, the development of unconstrained endpoint DTW cir
cumvents this difficulty by allowing the warping path to be broad at each end. Rabiner 
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Figure 3.6. An example of matching between a sequence of test vectors, T(n), and a sequence of 

reference vectors, R( m), using dynamic time warping. 

et al. (1978) report improved recognition accuracies from this method compared with 
constrained endpoint DTW. 

Although DTW and HMM are structured quite differently, DTW can be written 
in a statistical framework when LPCs are utilized to code speech and the maximum 
likelihood difference is invoked to measure the difference between the test and refer
ence vectors. If the underlying state transition structure of the HMM is equiprobable, 
Juang (1984) shows that HMM is equivalent to performing DTW on all possible warping 
paths. 

3.3.2 Statistical techniques 

Statistical techniques utilize long-term characteristics of a person's voice (Furui and 
Itakura, 1973) and ignore the particular phonetic sequence of sounds that comprise 
an utterance. Examples of features having useful statistics are, a person's average 
pitch, the long-term average spectrum (LTAS) and the average reflection coefficients. 
Statistical measures, such as the mean, variance and covariance of these features, are 
often used to characterize a speaker and this is described in more detail in §3.4. Since 
there is no time registration and the statistics are computed from the entire utterance, 
statistical techniques are useful for text-independent speaker recognition. 

Typically, many statistics are calculated for each utterance, but only a subset of 
them used for recognition purposes. For example, Furui (1981) extracts more than 80 
statistical features from each word and selects the 'best' 20 elements for recognition. 
Methods for choosing the combination of statistical features that is likely to be most 
accurate for speaker recognition are described in §3.4. 

Since the statistics are based on so-called 'long-term' averages, it is important to 
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Figure S.7. An example of two-dimensional feature vectors for 5 utterances from 3 different speakers. 

This example is for illustration only, and does not correspond to acoustic features that might be 

extracted from an utterance. 

quantify the affect utterance duration has on the stability of the features. The goal 
is to produce the type of separation depicted in Fig. 3.7, where the variation in the 
two-dimensional feature vector is considerably smaller between utterances spoken by 
the same speaker than between different speakers (terminology, along with exact math
ematical descriptions for describing these variations is presented in §3.4). Markel et 
ai. (1977) present results which examine the effect of increasing the number of speech 
frames, and therefore the utterance duration, on the variations of statistical features 
between and within four speakers. They find that the average standard deviation of 
the long-time average reflection coefficients decreases proportionally to N;;1/3, where 
Nv is the number of voiced speech frames used in the analysis and Nv ranges from 1 to 
1000. In a later study in which 17 speakers were evaluated, Markel and Davis (1979) 
also find a significant decrease in the standard deviation of long-term features as the 
number of voiced frames increased. Using 1000 frames of speech they achieve recog
nition accuracies of 98.05% for speaker identification and an equal error rate of 4.25% 
for speaker verification. Although longer utterances allow a more statistically accu
rate representation of a person's speech, in an application it may be inconvenient for a 
person to speak into a recognition system for an extended period. 

Computationally, statistical techniques use fewer operations than dynamic tech
niques, since matching is between the single vectors containing statistical features, 
rather than sequences of vectors. Furui (1981) found in his speaker recognition experi
ments that it is more efficient to utilize statistical techniques than dynamic techniques, 
since the computational effort is approximately one-tenth that required for dynamic 
techniques. However, as mentioned in the previous paragraph, statistical techniques 
require longer utterances than dynamic techniques, so the computational effort in de
termining the feature vectors is increased. 

3.3.3 Vector quantization techniques 

VQ can be utilized in a number of standard speaker recognition schemes, but is de
scribed separately from both the dynamic and statistical techniques because it does 
not fit neatly into either the dynamic or statistical class. For example, it is often incor
porated into DTW or HMM schemes, but it can also be used in a manner more closely 
associated with statistical recognition techniques. 

In a recognition scheme that uses DTW, vector quantization can be invoked as a 



3.3 CLASSES OF TECHNIQUES USEFUL FOR SPEAKER RECOGNITION 93 

data reduction technique, thereby facilitating a reduction in the storage requirements of 
an individual's speech parameters. Fig. 3.8(a) depicts a VQ-based speaker identification 
system which uses a separate codebook for each speaker and DTW to determine the 
distance between a test utterance and a previously stored sequence of quantized vectors. 

Another method of configuring a VQ recognition system, shown in Fig. 3.8(b), is to 
construct a codebook which represents a speaker's reference utterances, ignoring any 
time-alignment considerations. Such a VQ codebook represents an individual speaker's 
characteristic vectors within a multi-dimensional space as a number of codevectors. Of 
course, not every possible acoustic combination for an individual will be represented by 
their codebook, but a person's codebook should more accurately represent the types of 
sounds present in that person's utterances than the sounds in any person's utterances. 
Fig. 3.9 depicts this in a stylized manner, showing the way in which frames from a 
speaker's utterance (hopefully~) fall close to one of the centroids that are stored in 
the codebook describing that person's speech characteristics. Recognition proceeds 
by quantizing an unquantized sequence of test vectors and recording the quantizing 
error that results from using each individual's codebook. The quantization process 
can be described as follows. Each vector in the test sequence is matched against the 
'closest' codevector in a codebook and the error summed over the entire utterance. The 
codebook associated with the smallest quantization error is assumed to correspond to 
the speaker who spoke the test utterance. Soong and Rosenberg (1988) find that 
removing time-alignment information from the feature set causes a reduction in the 
identification accuracy of 2;5% when the test utterance is a single spoken digit. 

Soong et al. (1985) examined the effect of varying the of the codebook and 
the length of the test utterance on the speaker identification accuracy. The utterances 
used consisted of the digits zero to nine recorded over telephone lines by 100 speakers. 
The recognition accuracy increased significantly as the codebook size was increased. 
For example, test utterances of ten digits and codebooks of 1, 2 and 64 codevectors 
gave identification error rates of 34%,22% and 1.5% respectively. When 64 codevectors 
were used per individual and the number of digits in the test utterance was reduced, 
the identification error rate increased to 25% for one digit, compared with 1.5% for 
ten digits. The identification error rate is therefore reduced as the duration of the test 
utterance is increased and as the code book size is increased. 

Shirai et al. (1988) describe an interesting variation on the use of vector-quantized 
features for speaker identification. They used 100 words recorded from each of 200 
speakers to construct a universal 256 vector codebook. Each speaker's template con
sisted of the frequency distribution against centroid number when 100 words were 
spoken and quantized. The identification procedure compared frequency distributions 
using a Euclidean distance. For the 200 speakers (97 female and 103 male), uttering 
10 test words, the error rate was 12%. Shirai et al. (1988) omitted to apply the more 
standard method of using one VQ codebook per person, so it is not possible to ascertain 
whether or not identification accuracy is actually improved through using their tech
nique. One obvious advantage is that since only the distribution of vector occurrences 
are compared across the speakers, there is no need to search through codebooks belong
ing to each speaker. Instead, a straightforward vector (the distribution) comparison 
suffices. 

Although a VQ codebook can not strictly be considered a statistical description of 
a person's voice, it does contain representative vectors which minimize the long-time 
average difference between the reference phrases and the VQ codebook. In this respect, 
and also because there is no time-alignment information recorded in the codebook, the 
VQ codebook can be considered to be more closely associated with statistical rather 
than dynamic techniques. O'Shaughnessy (1986) argues that matching against a VQ 
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Figure 3.9. A conceptual diagram illustrating how the frames of analysed utterances are matched 

against codewords (centroids) for speaker recognition purposes (from Soong et al. (1987)). 

codebook attempts to locate specific sounds in the test utterance, but avoids the com
plicated problem of time-alignment. Performing recognition using VQ codebooks can 
be considered an alternative to DTW and therefore does not fit neatly into either the 
dynamic or statistical techniques. 

3.4 STATISTICAL METHODS FOR ASSESSING 
DISCRIMINATION ABILITY OF FEATURES 

Typically, when designing a recognition system, a large number of features are extracted 
to characterize, in varying degrees, whatever it is that is to be identified. In a speaker 
identification context, the larger the number offeatures that characterize a speaker the 
better one might expect the recognition system to perform. However, the drawback 
of having a large number of features is the increased time required to compute the 
features and to compare them with the set of reference features. Furthermore, unless 
the features are to a certain degree independent from each other, adding extra ones will 
not necessarily increase the recognition accuracy. Most researchers, therefore, perform 
statistical analysis on the features extracted from the training data and discard those 
features that do not improve the recognition accuracy. In addition, weightings are 
calculated for the remaining features so that the discrimination between speakers is 
enhanced. This section is concerned with methods for determining which features will 
produce the best recognition performance. 

Notation is now introduced based on that used by Bricker et at. (1971) for describ
ing statistical techniques for speaker identification. Let i denote the speaker number, 
ranging from 1 to k and u denote the utterance number which ranges from 1 to ni where 
ni is the number of utterances for speaker i. The total number of features evaluated is 
p. A single feature vector corresponding to the ith speaker uttering the uth utterance 
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would be, 

X;u = (Xilu,Xi2u,Xi3u, "',Xipu), i 1,2,···,k, u = 1,2,···,ni' (3.2) 

Typically each speaker in a speaker recognition system is represented by a single feature 
vector that contains feature averages, Le., 

(3.3) 

The distribution of individual utterance features about their means directly affects the 
expected recognition accuracy. 

The average feature vector, taken acro;s all the individual speaker averages is, 

1 k k 

- I: niX~, where n = I: ni 
n~l ~1 

(Xl,X2,X3,'" ,'Xp). 
(3.4) 

Ideally, the X: should be well spread out in the p-dimensional space, since the further 
apart they are, the better separated the feature vectors corresponding to each individ
ual. This has the effect of lowering the probability of recognition error. Conversely, it 
is desirable that the X~u be distributed close to the X~ (i, the speaker number, held 
constant) so that repeatability is maintained. Measures of these two distributions are 
the between speaker variance and the within speaker variance. The between speaker 
variance, often called the interspeaker variance, and specified for each feature separately 
is defined by, 

(3.5) 

where j is the feature number and can take on any value between 1 and p. The 
average (or pooled) within speaker variance, or the intmspeaker variance averaged over 
all speakers is defined by, 

(3.6) 

The above expressions of the interspeaker and intraspeaker variances for each feature 
are utilized in the following measures of the 'usefulness' of individual features. 

3.4.1 F-ratio 

One measure of the usefulness of a feature is its F -ratio. Pruzansky and Mathews (1964) 
define an F-ratio in terms of speaker features to be, 

variance of speaker means 
F=------=--:-----:---mean intraspeaker variance 

The F-ratio can be calculated for feature number j from (3.5) and (3.6), viz, 

b· 
F . - J 

J --. 
W· :J 

(3.7) 

(3.8) 

This is straightforward to calculate and Mohn (1971) points out that it is a reasonable 
measure of feature worth, even in the absence of Gaussian distributed feature variables. 
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As intimated earlier, it is desirable that bj be large and Wj small, which implies that the 
larger the value of Pj the better the lh feature should perform in a speaker recognition 
system. However, O'Shaughnessy (1986) argues that choosing features with high F
ratios does not necessarily guarantee fewer recognition errors, since F-ratios tend to 
be high for features where the utterances of one or two speakers are very different 
from those of the rest. A drawback of F-ratio ranking of feature effectiveness is that, 
if features are not independent, choosing the best few (as measured by F-ratios) for 
recognition may result in a performance that is worse than that obtained by choosing 
a random selection of features (Mohn, 1971). 

Markel and Davis (1979) examined the effects of the choice of population on F
ratios for gain, pitch and ten reflection coefficients. The aim was to ascertain whether 
a set of F-ratios calculated for one set of speakers could be used to approximate the F
ratios of another set of speakers. They found that F-ratios varied significantly between 
male and female populations. In addition, when the male population was arbitrarily 
divided into two equally sized subsets, significantly different F-ratios were obtained 
from each subset. Markel and Davis (1979) therefore concluded that their sample of 17 
speakers was not large enough to produce consistent F-ratios representative of general 
sets of speakers as well as subsets, and that a larger database of perhaps more than 
100 speakers would be required. 

3.4.2 Discriminant analysis 

The description of discriminant analysis presented here is based on the statistical tech
niques described by Bricker et al. (1971). Firstly, it is useful to define additional 
measures of the variations in the training data. The within speaker covariance matrix 
for speaker i is given by, 

1 ni 

Wi = -:--~ I: {(Xiu - Xi)(Xiu - Xi)t}, (3.9) 
u=1 

which defines the variation of feature values around the centroid of a single person's 
utterances. Averaging all the individual covariance matrices results in the pooled within 
speaker covariance matrix which is defined as, 

1 k k 

W = -:-----:':7 I:(ni - 1)Wi' where n = I: ni. (3.10) 
i=1 i=1 

The diagonal of W contains the elements Wj as defined by (3.6). The between speaker 
covariance matrix is determined by eValuating, 

k 

B = (k ~ 1) ~ {(Xi - X)(Xi - X)t}. (3.11) 

Certain variance measures can be incorporated into distance measures to make 
use of the covariance information from the training data to weight the features being 
utilized in recognition. The weighted distance measure, introduced in §2. 7 .3, is restated 
here in a form that defines the distance between Z, a test vector calculated from the 
test utterance, and the template (or mean) vector corresponding to speaker i, viz, 

(3.12) 

The weighting matrix M,x can be chosen in a number of different ways, as indicated by 
the subscript x. One solution is to choose, 

(3.13) 
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which sets the weighting matrix to be the inverse of the within speaker covariance 
matrix of the feature vectors for speaker i. The matrix, Wi) must be invertable for 
each speaker l requiring the number oftraining utterances for each speaker to be greater 
than the number of features (Bricker et al., 1971). Otherwise, the estimates of the 
within speaker variance contained Wi are inaccurate. An alternative option is to set 

W-1 , (3.14) 

where W is the pooled within speaker covariance matrix. Note that this is often 
called the Mahalanobis distance, which has its origins in statistical decision theory 
(O'Shaughnessy, 1986). W is much more likely to be non singular than Wi, since more 
sets of feature values are incorporated into the estimate of W than Wi. Bricker et 
al. (1971) recommend this particular weighting for use in speaker recognition systems. 

In §3.4.1 the F-ratio is defined for an individual feature, whereas the following 
F-ratio depends upon all of the features and the vector a, which defines a linear com
bination of the original feature variables. It uses the ratio of the between speakers 
covariance to the pooled within speaker covariance (Gnanadesikan, 1977, p85) and can 
be maximized by the appropriate choice of a. This F -ratio is defined as 

atBa 
Fa = tW' a a 

(3.15) 

Fa can be maximized by the appropriate choice of a. The solution for a is obtained by 
calculating the set of eigenvectors which satisfy the following equation, 

(W- I B - AI)a = O. (3.16) 

The ordered eigenvalues Al ~ A2 2: ... 2: Ar > 0 of W-I B and the corresponding 
eigenvectors al, a2, ... , a r can be used to define a transformed coordinate space which 
is called the discriminant space. The number, r, of positive eigenvalues of W-I B is 
usually the smaller of (k 1) (recall that k is the number of speakers) and p (recall 
that p is the number of features). Each ai can transform the original vector onto a 
coordinate in the discriminant space. In general, a subset of I vectors is chosen from 
the al, a2, ... , an because the higher order eigenvectors, with small eigenvalues, do not 
contribute significantly to the F-ratio. A suitable value for I can be determined by 
altering the number of eigenvectors and using the F-ratio to calculate the expected 
separation of the training data into individual speakers. 

Once a subset of I eigenvectors has been selected they can be combined into a 
matrix Af which is an I x p matrix, having the eigenvectors ai, a~, ... , af as rows. A 
vector of features, say y, is transformed into the i-dimensional discriminant space by 
premultiplying it by Af, viz, 

- At q - IY' (3.17) 

The transformation from the original feature space to the discriminant space is incor
porated into the distance measure specified by (3.12) by setting 

(3.18) 

Gnanadesikan (1977, p94) points out that using M2 in the distance measure is identical 
to using M3 with all r = p eigenvectors included. However, often r = (k - 1) < p, 
causing only an equivalence relationship to hold. 

The advantage of using M2 is its simplicity, since it avoids the computation of eigen
vectors. However, computation of eigenvectors may highlight certain features that are 
essentially noise, leading to a reduction in dimensionality and a possible improvement 
in recognition performance (Gnanadesikan, 1977, p98). 
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3.4.2.1 Stepwise inclusion of features 

Stepwise inclusion of features into a set of discriminating features aims to select an 
optimal set of features without including any features that have poor discriminating 
power. 

A forward stepwise procedure begins by selecting the feature that has the most 
discriminating power and then testing the improvement in discrimination when each of 
the other variables is used, one at a time, to improve the discrimination. The feature 
that produces the largest improvement in discrimination is then added to the set of 
discriminating features. This procedure continues until either the remaining variables 
do not improve the discrimination by a sufficiently large margin to be considered useful, 
or all of the features have been added to the set of discriminating features. 

A backward stepwise procedure works in the reverse direction by beginning with all 
of the variables in. the selected feature set and discarding the feature that contributes 
the least to the discrimination. Forward and backward selection can also be com
bined by performing forward selection and then using backward selection to ascertain 
whether any of the previously included variables have become insignificant and should 
no longer be included in the selected set. This situation can arise when a variable shares 
discriminating information with another variable that is selected on a subsequent step. 

Stepwise procedures require a measure of discrimination of a set of features in or
der to compare the usefulness of various feature combinations. Klecka (1980) reviews 
several different criterion for measuring discrimination, but here the description is re
stricted to Wilk's Lambda, since this is the discrimination measure used in the stepwise 
discriminant analysis of §4.3.3.2 and §5.4.2.1. Wilk's Lambda is defined to be 

q 1 
A=II-, 

i=l 1 + Ai 
(3.19) 

where q is the total number of functions and Ai are the eigenvalues defined in (3.16). 
This can also be expressed as 

IWI 
A= IB+WI' (3.20) 

where Band Ware defined in equations (3.11) and (3.10) (Lindeman et al., 1980, 
p225). 

Wilk's Lambda is an inverse statistic so the smaller the value of A, the better the 
discrimination. Therefore, the feature that produces the smallest A for a particular 
step is added to the set of selected features. 

3.4.3 Factor analysis 

Factor analysis is a generic term that describes procedures for analysing the correlations 
amongst variables (Cooley and Lohnes, 1971). The aim is to identify a small number of 
new variables (typically 2-4), called factors, that describe most ofthe variance recorded 
in the total set of variables. A commonly used method for identifying factors is called 
principal component analysis (PCA) (Comrey, 1973). PCA finds orthogonal factors by 
extracting the eigenvectors of the correlation matrix R. The components of the corre
lation matrix R, computed from the feature vector defined by (3.2) across all speakers 
(i = 1,2"", k) and all utterances (u = 1,2"", nj) are expressed as (Gorsuch, 1983, 
p49) 

nO'mO'n 
(3.21) 
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Figure 3.10. An example of applying factor rotation to two factors. (a) Unrotated factor axes for the 

six variables VI, V:z, .•• , V6, (b) Rotated factor axes for the six variables VI, V2, ••• ,V6. The contributions 

each variable makes to the factors is now more obvious than for the unrotated case. 

where n = E7=1 ni, and 
k ni 

0'/ = .2:::: .2:::: (Xi/u - x/)2. (3.22) 
i=l u=l 

The eigenvectors of the correlation matrix are determined from the solution of 

IR - All = o. (3.23) 

The matrix S, containing the factor structure, is related to the eigenvectors by (Cooley 
and Lohnes, 1971, p106) 

I 
S = VL'2, (3.24) 

where V is a matrix of eigenvectors (the solution of (3.23» organized in columns, and 
L is a diagonal matrix with Ai in the jth position on the diagonal. The elements of 
each factor, recorded in the columns of S, specify the strength with which a particular 
variable is present in the factor and are called the factor loadings. Note that the factor 
loadings can also be considered to represent the correlation between a factor and the 
variables. 

The eigenvalue associated with a particular factor defines the proportion of the 
total variance accounted for by that factor. Factors with small eigenvalues describe 
little of the variance and are deemed unimportant. Such factors are discarded, thereby 
reducing the dimensionality of the feature space. Such a reduction in dimensionality 
allows combinations of factors to be plotted against each other, giving insight into the 
structure of the dataset. For example, if there are two or more separate clusters of 
variables within the dataset they are likely to be observable in the factor plots. The 
main function of factor analysis, therefore, is to provide insight into any underlying 
structures that might be present in a set of variables (or descriptors). 

3.4.4 Factor rotation 

Factor rotation is employed to aid the interpretation and labelling offactors by rotating 
the factor axes so that the factor loadings become either large (±1.0) or small (0.0), 
while maintaining an orthogonal relationship between the factors. Fig. 3.10 shows 
two unrotated factors and the same factors after a rotation. The advantage of such 
a rotation is that the relationships between the variables and factors become more 
obvious. For example, in Fig. 3.1O(a), variable Vs is equally correlated with factor 1 
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and factor 2, since the loadings for both are approximately 0.5. However, after rotation 
the loading for factor 1 has increased to approximately 0.6, while the loading for factor 
2 has been reduced to O. This implies that Vs is correlated with factor 1, but not with 
factor 2. The rotation also highlights that variables VI, v2 and V3 are highly correlated 
with factor 2, while variables V4 and V5 are highly correlated with factor 1. 

There are several different methods of rotating factors so that the correspondence 
between factors and variables appears more obvious. One method, called varimax 
(Cooley and Lohnes, 1971; Gorsuch, 1983), rotates factors so that the variance of the 
squared factor loadings across all the factors is maximized. This maximized variance 
is achieved by adjusting the factor loadings so that the loadings are either large (±1.0) 
or small (0.0). 

Orthogonal rotations maintain an orthogonal relationship between factors. How
ever, other rotations are sometimes used that allow minor correlations between factors. 
Such a rotation produces factors that are oblique. One popular oblique rotation is the 
promax rotation which adjusts factor loadings subject to a constraint on the amount 
of correlation allowed between factors. 

Gorsuch (1983, §9.4.3) compared 19 different factor rotation procedures which per
form either orthogonal or oblique rotations. He recommended that rotation using the 
varimax procedure should be performed prior to an oblique rotation using either pro
max or Harris-Kaiser criteria (Gorsuch, 1983, p205). An advantage of performing a 
two-stage rotation is that both the varimax solution and the oblique solution can be 
examined and compared. This two-stage rotation is used in the factor analysis per
formed in §4.3.3.1. 

3.5 COMPARATIVE PERFORMANCE OF SPECIFIC 
TECHNIQUES AND FEATURES FOR SPEAKER 
RECOGNITION 

This section is concerned with the performance of different techniques and sets of fea
tures for speaker recognition purposes. Results from papers that compare different 
features and recognition strategies are presented. ill general, it is not possible to com
pare recognition accuracies across experiments since they are usually performed under 
very different experimental conditions (including speech databases). illstead, where 
possible, trends from experiments that use the same speech databases are described. 

3.5.1 Statistical vs dynamic techniques 

ill §3.3.1 and §3.3.2 both dynamic and statistical techniques for speech recognition are 
described. Since they represent speech parameters in a different format one would 
expect their recognition performances to be different. Furui (1981) compared their 
performances using log-area ratio coefficients. The selected statistics were: a subset of 
the mean, the standard deviation, the covariance matrix and the correlation matrix. 
The dynamic technique used DTW with unconstrained endpoints. He found that when 
the training period was longer than 3 months, the statistical technique was more ac
curate than the dynamic technique. However, if the training period was less than 3 
months, the dynamic technique performed better than the statistical technique. Fu
rui (1981) asserted that the statistical and dynamic techniques characterized speaker 
dependent information in an independent manner. By combining both techniques, the 
identification and verification accuracies were increased. 

Another evaluation of the effect of incorporating the dynamic information into a 
recognition procedure is reported by Soong and Rosenberg (1988), who compare VQ
based speaker identification with and without DTW. The results of this aspect of their 
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Transitional • • • • • 
Instantaneous • • • • 

Weighting • • • • 
DTW • 

Accuracy 75.5 82.6 84.3 88.3 89.2 

Table 3.3. Speaker identification accuracies for instantaneous and transitional cepstral coefficients for 

a single digit test token (taken from Soong and Rosenberg (1988)). 

Parametric representation Identification accuracy 

Predictor coefficients 63.8% 

Impulse response 60.6% 

Autocorrelation function 59.7% 

Area function 57.0% 

Cepstrum function 70.3% 

Table 3.4. A summary of the average identification accuracies for a single speech frame for various 

parametric representations of speech segments (from Atal (1974)). 

experiments are recorded in the final two columns of Table 3.3. They found that 
incorporating time registration and DTW matching into the identification procedure 
increased the recognition accuracy compared with the non-time-aligned VQ approach. 

3.5.2 Transitional vs instantaneous features 

Usually features extracted from speech are calculated on a frame-by-frame basis and no 
attempt is made to record the way in which the features vary between frames. However, 
recently there has been research into the information contained within the transition 
of features from one frame to the next. Soong and Rosenberg (1988) evaluated and 
compared the recognition performance of both instantaneous and transitional CEP 
coefficients for speaker identification. The reference information for each speaker was 
stored in the form of a VQ codebook, a separate codebook being used for each person's 
instantaneous and transitional features. Table 3.3 contains recognition results for both 
instantaneous and transitional cepstral coefficients. The weighting option indicates that 
coefficients from the inverse of the pooled intra-speaker covariance matrix were used to 
weight contributions to the distance from the cepstral coefficients. The instantaneous 
and transitional parameters did not perform as well individually as they did when 
combined. This implies that the instantaneous and transitional parameters contain 
independent speaker information. 

3.5.3 Vocal tract features 

One of the issues of speaker recognition is deciding which of the many sets of parame
ters derived from LPCs perform best for speaker recognition. Atal (1974) describes a 
comparison between: predictor coefficients, the vocal tract impulse response, the au
tocorrelation function, the area function and the cepstral function. From Table 3.4, 
a summary of Atal's results, it is obvious that cepstral coefficients are considerably 
more accurate than the other parametric representations of the speech signal. It is 
worth noting that Atal utilized a weighting matrix corresponding to M2 = W-1 for 
calculating the distance between test vectors and reference vectors. 
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3.5.4 Glottal flow 

Boves (1984) applied inverse filtering techniques to estimate the glottal flow spectrum. 
First, the vocal tract filter was calculated for the portion of a speech frame where the 
glottis was closed. The speech signal was then filtered by the inverse of the vocal tract 
response and the glottal flow spectrum computed. The energies in 13 different fre
quency bands were determined and a 'critical band spectra' constructed (Scharf, 1970). 
Glottal flow spectra were computed for 60 Dutch vowel sounds uttered by 5 speakers 
(Boves, 1984). Speaker identification accuracies of approximately 60% were achieved 
when 60 glottal flow spectra per person were matched against templates containing the 
mean glottal flow spectra. Boves (1984) attributed this poor recognition accuracy to 
the fact that the glottal flow spectra were derived from speech segments of less than 
120 ms duration, which caused any short term variations in the vowel sounds to be 
significant. 

Bove's results should be contrasted with those of Hollien and Majewski (1977) who 
performed speaker identification experiments using the long-term average spectra of 
100 male (50 American and 50 Polish) speakers recorded under laboratory conditions 
(high quality recording equipment housed in a sound-proof room). Matching was per
formed using Euclidean distances between the long-term average spectra. Hollien and 
Majewski (1977) recorded 100% speaker identification accuracy for the 50 Poles and 
96% accuracy for the 50 Americans. These results imply that there is characteristic 
information recorded in the long-term average spectrum of a person's speech. 

3.5.5 The effect of removing glottal characteristics 

In §2.2 the speech signal is modelled as the convolution of a glottal source with a 
vocal tract filter. This section reviews experiments which investigate the effect that 
removing glottal characteristics from the speech has on the stability of parameters 
estimated from the speech. Stable parameters are desirable since the task of speaker 
recognition is less difficult if a person's speech features do not vary too much between 
utterances. Results of speech identification experiments with and without the glottal 
characteristics removed are also reported. 

Furui (1974) removed (approximately) the glottal characteristics by glottal inverse 
filtering. The glottal inverse filter is constructed from the long-term average spectrum 
of the speech and Furui (1974) states that the long-term average spectrum contains 
mainly contributions from glottal characteristics and the lip radiation. The assumption 
is that vocal tract responses are averaged across the various phonemes and so the 
main effect recorded in the long-term average spectrum is that of the glottis and lip 
radiation. This is not entirely true since the average of the vocal tract response is not 
an impulse, so vocal tract effects are present in the long-term average spectrum (this 
also holds for SAA, see §2.8.2). Nevertheless, for the same reasons as those outlined in 
§2.8.2, it is reasonable to assume that the long-term average spectrum contains mainly 
contributions from the glottal excitation. 

Furui used PARCOR coefficients from normal and glottal inverse filtered speech to 
perform speaker identification. Glottal inverse filtering improved the speaker identifi
cation accuracy when the training sequences were recorded over 10 days (short-term 
training). Furui's test utterances consisted of either one or two words and he found that 
the recognition accuracy using the one word test utterance was improved by 4.0% (from 
88.3%), while the two word test utterance showed a 5% improvement from 94.5%. How
ever, removal of the glottal characteristics did not improve the identification accuracy 
when the reference templates were constructed from long-term (10 months) training 
data. Single word test utterances with the glottal characteristics removed performed 



104 CHAPTER 3 SPEAKER RECOGNITION FUNDAMENTALS 

1 % worse than the unfiltered speech and the two word test utterances gave exactly 
the same recognition accuracy. Furui asserted that this was due to the fact that the 
long-term variation in parameters was irregular, but he didn't specify the nature of 
these irregular parameter variations. He also stated that the long-term effect of the 
glottal spectrum on the parameters used to characterize a speaker was small. A similar 
trend was observed for speaker verification experiments. 

3.5.6 The effectiveness of different phonemes 

One might expect that the particular sounds, or phonemes, utilized in an utterance 
would affect the accuracy of speaker identification. Kashyap (1976) examines the inter
action between speakers and their speech and concludes that some phonemes vary more 
significantly between speakers than others. The more accurately a particular phoneme 
can be recognized when uttered by different speakers, the less it varies between speakers 
and, therefore, the less useful it will be for speaker recognition. The opposite holds for 
phonemes that are unable to be accurately recognized across speakers. Kashyap (1976) 
finds that the phonemes III and lei give the best speech recognition performance. It 
has been suggested that nasals, which use the invariant nasal passage, might be bet
ter suited to speaker recognition than vowel sounds (Glenn and Kleiner, 1968), but 
Kashyap's results indicate that the nasals Iml and Inl are not necessarily superior to 
vowels. 

Matsumoto (1989) reports a more comprehensive set of experiments that utilized 
phonemes to identify ten male speakers by applying discriminant analysis (see §3.4.2) 
to determine the phoneme-dependent and phoneme-independent speaker information 
in a set of observation vectors. Each observation vector consisted of 20 cepstral coeffi
cients and the pitch extracted from a 40 ms segment of voiced speech. In the training 
stage, phonemes were grouped into sets before performing discriminant analysis to op
timize speaker discrimination. The speaker identification accuracy was shown to vary 
depending on how the sets of phonemes were partitioned. For example, nasal phonemes 
performed best when each phoneme was separated into its own subspace, but vowels 
performed best when the subspaces were overlapped so that certain phonemes appeared 
in more than one subspace. For 10 male speakers the text-independent identification 
accuracy was 90% and 100% for 0.5 sand 1.4 s of voiced speech respectively. Compared 
with text-independent identification, which is based on long-time statistical averaging, 
phoneme based identification represents a considerable saving in terms of the duration 
of speech required for accurate independent identification. Although these identification 
accuracies are excellent considering the shortness of the test utterances, only a small 
number of speakers were tested, and comparative results using standard techniques 
were omitted. 

In general, the drawback with phoneme specific identification methods is that indi
vidual phonemes require labelling in the training phase, and this is a tedious process. 
This phoneme labelling procedure occurs implicitly when vector quantization is per
formed. Assuming that each phoneme occurs reasonably frequently in the training 
utterances, the final centroid vectors will be positioned so as to represent the average 
phoneme positions in the feature space. 

3.5.7 Feature spacing and dimension 

All of the features described in this chapter are determined from segments of speech 
extracted from speech utterances. It is therefore important to choose a segment size 
that will give reliable and consistent speech features and ensure high speaker recognition 
accuracy. Velus (1988) examined speaker verification error as a function of the segment 
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length and found that the equal error rate (EER) varied approximately 0.5% between 
segment lengths of 15 ms and 60 ms, with 30 ms producing the minimum EER. 

As well as the segment duration, the number of LPC coefficients extracted from 
each speech segment critically affects the recognition accuracy. In general the accuracy 
with which a segment of speech is modelled is increased when more coefficients are 
used. However, there is a tradeoff between computational complexity and modelling 
accuracy. Velus (1988) reported that when using cepstral coefficients the EER for 

. speaker identification decreased almost 0.7% (from 6.3%) when the model order was 
increased from 10 to 14, but decreased by only 0.3% when the model order was further 
increased to 20. As the model order became greater than 20, the improvement in 
verification accuracy was insignificant. 

3.6 EFFECT OF VOICE DISTORTION ON SPEAKER 
RECOGNITION ACCURACY 

This section describes types of voice distortion that can affect the accuracy of speaker 
recognition. These can be broadly classified into distortion originating from the speaker 
and distortion induced by the transmission medium. Various distortions are discussed 
under the following headings; mimicry, disguise, noise and transmission distortion, voice 
variation with time and health. 

3.6.1 Mimicry 

Mimicry, the act of copying another person's voice, may occur in either a speaker 
identification or speaker verification context. Only limited research has been reported 
on the accuracy with which mimics can copy another's voice. This is probably because 
the ability to mimic people's voices is not a common skill, so mimicry research would 
require the services of professional mimics. 

The most significant research into the effect of mimicry on speaker verification ac
curacy is described in Rosenberg (1973). Professional mimics were employed to copy 
the 8 speakers that constituted the set of accepted speakers. Subjective tests were in 
the form of paired comparisons, where a test and reference utterance were presented 
and a listener then decided whether or not the test utterance belonged to the reference 
speaker. The mimics had a 22% false acceptance rate, compared to 4% for natural 
sounding speakers. The success with which the mimics confused listeners, indicates 
that mimicry can be difficult to detect. It is worthwhile noting that when the same 
utterances were processed by an automatic verification system using pitch and ampli
tude profiles the false acceptance rate was 14% (Lummis, 1971). This indicates that 
computer-based speaker verification systems should combat mimicry at least a well 
as the average human listener, although Rosenberg (1973) found that the best human 
listeners outperformed the automatic system, with a false acceptance rate of only 3-4%. 

3.6.2 Disguise 

In a speaker recognition context, disguise occurs when people alter their voices in 
an attempt to conceal their identity. A typical disguise for a male speaker is to use a 
falsetto voice. In forensic applications there are two distinct types of voice disguise that 
can be expected to occur. One of these is when a speaker wants to speak in a voice that 
is understandable enough to COllyey an anonymous message, but is not concerned with 
how distorted it sounds. Typical examples of this type of disguise are bomb threats and 
ransom demands. Another type of disguise occurs when a person does not want the 
listener to know that a disguised voice is being used. An example of this situation is 



106 CHAPTER 3 SPEAKER RECOGNITION FUNDAMENTALS 

mimicry, where the mimic might attempt to obtain access to classified information. If 
such mimicry is detected, access will, of course, be barred. Voice disguise is a problem 
in any type of speaker recognition problem, since recognition accuracy is significantly 
reduced for disguised voices. 

An example of the degradation in speaker identification accuracy with disguised 
speech is reported by Reich and Duke (1979). As well as undisguised recordings from 
40 adult speakers, 5 different disguised voices were recorded. The 5 different disguises 
were '70-80 years old"'severely hoarse voice quality"'severely hyper-nasal voice qual
ity','extremely slow rate' and a disguise of the speaker's choice. All of the speakers 
spent time rehearsing the various disguises. The experiment involved listeners deciding 
whether pairs of utterances were both spoken by the same person. In this type of ex
periment, false identification errors (listener ,yrongly identifies two utterances as being 
the same person) or false elimination errors (listener wrongly says the utterances are 
different) could occur. Listeners could discriminate between speakers with 97% accu
racy for undisguised speech, but this fell to 59%-81% for disguised speech, depending 
upon the particular disguise. 

The effect of voice disguise on voiceprint identification is also considerable. Ker
sta (1962) claimed that voiceprints were unaffected by attempts at vocal disguise, how
ever Reich et al. (1976) found that disguising speech increased the false identification 
errors significantly. For example, speaking at a slow rate lowered the recognition accu
racy by 14%, while a disguise of the speaker's choice lowered the recognition accuracy 
by 35%. Reich et al. (1976) considered that the large variations in the formant structure 
affected by voice disguise constituted a formidable stumbling block for spectrographic 
examiners. 

Although it is difficult to perform speaker identification on disguised voices, it seems 
that it might be possible to at least detect when a voice is disguised. Reich (1981) 
reports an experiment where listeners were able to detect a disguise in male voices 
with more than 90% accuracy. Furthermore, both naive (undergraduate students) and 
sophisticated (doctoral students and professors of Speech and Hearing Science) listeners 
identified disguise in voices with the same accuracy. Although Reich's experiment shows 
that disguise can be detected reliably, it does not evaluate the aural cues within the 
utterance that indicate that the voice is disguised. In this respect, the findings are 
not helpful for the design of practical speaker identification systems, although they do 
indicate that it should be possible to detect voice disguise in most instances. 

3.6.3 Noise and transmission distortion 

Noise and distortion are included here to account for differences in the speech signal 
between the uttered speech, and the signal that is heard by a person or recorded by 
an automatic system. Noise accounts for the random, extraneous events in the speech 
waveform that are not produced by the speaker, while distortion accounts for non
random alterations of the speech signal. A typical example of such a distortion is 
the anti-aliasing filter which removes high frequency components of the speech signal. 
Obviously, both noise and distortion are always present to some extent, particularly if 
the speech is encoded into a low bit rate format. In almost all practical situations there 
are significant levels of distortion (Krasner et al., 1984), prompting an examination of 
the effects of distortion on recognition accuracy. 

The effect of coding speech on speaker recognition accuracy has been examined 
by McGonegal et al. (1979) and Schmidt-Nielsen and Stern (1985). McGonegal et 
al. (1979) utilized both ADPCM and LPC coding to process speech that was recorded 
over a system having the nominal telephone bandwidth of 100-3200 Hz. The speech 
database consisted of 10 male and 10 female customers and 40 male and 40 female 
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imposters who were all recorded over a period of 2 months. They reported that human 
listeners could perform verification equally well for high quality speech and speech 
that was recorded over the telephone. However, the error rate increased when high 
quality speech was used for the reference utterances and test utterances were coded 
(and decoded) using ADPCM or LPC coding. This indicates that speaker verification 
by human listeners is sensitive to differences between the types of noise and distortion 
introduced to the test and reference utterances. The accuracy of automatic verification, 
using pitch and intensity, remained independent of the transmission system used for 
the test and reference utterances. Schmidt-Nielsen and Stern (1985) reported that 
identification accuracy was significantly lowered by the distorting effects of LPC-I0 
(2400 bits/s) coding. The identification accuracy of 24 speakers by listeners fell from 
88% to 69% for LPC coded phrases. 

Speaker recognition accuracy can be improved if the recognition system is designed 
to be insensitive to noise and transmission distortions. A partial solution to the problem 
of noise in transmission systems is proposed by Noda (1988). Noda utilized spectral 
parameters for speaker verification and warped those portions of the speech spectrum 
where the noise power was small compared with the speech power. He found that the 
warping he introduced to counter the effects of the noise increased speaker verification 
accuracy for clean (no noise added) utterances and also for noisy utterances with a 10 
dB SNR (created by adding white noise). This indicates that by invoking procedures 
to counter noise in the speech. signal, recognition accuracy can be increased, making 
recognition practical in the less than perfect transmission conditions that prevail in all 
communication networks. 

One method of removing the effects of any constant linear distortion that occurs in 
the transmission channel is to apply an inverse filter determined from the mean spec
trum of the speech signal. This is called channel normalization or spectral equalization. 
Birnbaum et al. (1986) describe a speaker verification system that performs channel 
normalization by subtracting the mean of a set of cepstral coefficients from the com
plete set of coefficients, thereby performing inverse filtering. Of course, the long-term 
spectral characteristics of the speech are also removed, but this does not reduce the 
verification accuracy. Furui (1981) performed a similar operation using an inverse filter 
constructed from the long-term average spectrum of the speech (the same technique 
as described in §3.5.5). Spectral equalization was shown to improve the speaker verifi
cation accuracy, especially when the test utterances were recorded five years after the 
training utterances. 

The sensitivity of voice-personality to alterations in pitch, formant frequency and 
formant bandwidth was examined by Takagi and Kuwabara (1986). In their experi
ment the aforementioned features of a speech utterance were perturbed independently 
and three listeners decided whether the perturbed speech corresponded to a particu
lar speaker (yes or no). Perceived voice personality was found to be very sensitive to 
changes in the formants. The individual characteristics of the voice were found to be 
almost completely removed when all formants were shifted more than 5%. The per
ceived voice-personality was less sensitive to changes in the lower three formants than 
the upper formants. Variation of the pitch of a person's voice was found to have little 
effect on the recognition accuracy, since 50% recognition accuracy was still achieved for 
pitch scalings of between 0.6 and 1.45. 

3.6.4 Voice variation with time 

This section reviews studies of the effects of voice variation on speaker templates and the 
identification accuracy. It has been well established that speaker recognition accuracies 
decrease wHh time due to changes in individuals' voices (Matsumoto, 1989; Furui, 1974; 
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Furui,1981). The following paragraphs outline a number of different ways this reduction 
in recognition accuracy can be minimized. 

Recognition accuracy is critically dependent on the template of features that is used 
to represent a speaker's speech characteristics. Obviously, the aim is to construct a tem
plate that represents the constant characteristics of a person's voice, rather than the 
small scale deviations that might occur on a day to day basis. Furui (1981) compared 
the identification accuracy of templates constructed from 9 or 12 utterances collected 
over 10 days (short-term) and 12 utterances collected over 10 months (long-term). One 
limitation of this experiment was that a different number of utterances were collected 
for short-term and long-term training, making it difficult to deduce whether the differ
ences obtained from the two different templates should be attributed to differences in 
training duration or differences in the number of training utterances. Furui (1981) did 
not discuss this in his paper, so he must have considered the variation in the number 
of training utterances to be insignificant. He went on to demonstrate that templates 
constructed from utterances collected over a short term were not as accurate for identi
fication as those collected over the long-term. For example, after four and a half years 
had passed between the training and recognition, 9 male speakers uttering two words 
could be identified with approximately 90% and 73% accuracy for long and short-term 
training respectively. 

A drawback of long-term training is that speakers must be involved in the time con
suming task of having their voices recorded. An alternative to collecting training data 
over an extended period is to utilize each test utterance to update the speaker template. 
Assuming that the recognition algorithm successfully locates a template that matches 
the test template, the reference template is then modified so that the distance between 
the test and reference templates is reduced. In this manner the reference template 
adapts to the changes in a speaker's voice. Texas Instruments utilized this technique in 
their speaker verification system and observed an overall decrease in verification errors 
with successive trials (Naik, 1990). 

3.6.5 Health 

Health can have a significant effect on the sound of a person's voice. Everyone is familiar 
with the vocal changes that occur during colds, coughs or sore throats. However, to the 
author's knowledge there has been no systematic investigation of the effects of these 
conditions on speaker recognition. 

One factor that makes the investigation of the effects of colds, coughs and sore 
throats difficult is that they do not occur regularly. Furthermore, people having these 
conditions are often at home resting, and are therefore unable to participate in recording 
procedures. 

Current speaker recognition systems do not account for the speaker's health, so one 
would not expect good recognition performance when people do not 'sound themselves'. 
Investigation into the changes in our voices that occur for various maladies would be 
required as a first step towards ensuring that speaker recognition systems perform 
accurately when people are 'sick'. 

3.7 REAL-TIME SPEAKER VERIFICATION 

This section reviews the performance of three speaker recognition systems. These 
systems are of interest because they constitute the practical application of techniques 
described elsewhere in this chapter. Note that only speaker verification systems are 
discussed here, since speaker identification requires matching against many templates 
and is therefore not well suited to real-time evaluation (see §3.1.1). One of the systems 
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reviewed in this section is available commercially and can therefore be considered to be 
mature technology. 

As early as 1974 Texas Instruments developed and deployed a speaker verification 
system for controlling access to its computer center premises (Naik, 1990). The incom
ing speech was filtered by a 14-channel filter-bank representation and dynamic time 
warping (DTW) was utilized to compare test and reference utterances. The verifica
tion phrase was four words chosen from a set of sixteen (Doddington, 1985). A random 
combination of words was selected in order to foil any recording imposters wishing to 
gain access with prerecorded messages. The operational system had an overall rejec
tion rate of 0.9% and an imposter acceptance rate of 0.7%. The verification system was 
housed in a booth that could hold several people and it was observed that the rejection 
rate was 0.5% when only one person was in the booth, compared with 1.8% for more 
than one person in the booth. The added distraction of having a second person in the 
booth must have affected the quality of the speech sample! 

More recently, Texas Instruments (TI) have developed another verification system 
based on the spectral information contained in LPCs and using DTW as the matching 
technique (Naik, 1990). The recognition text consists of two phrases. The first phrase 
is a five digit code followed by a two word code phrase and the second phrase, a random 
sequence of 5 digits, is included to counter imposter access via tape recorded messages. 
Speech processing is performed on a specialized subsystem consisting of a TMS32010 
and an analog I/O board. The system was evaluated on a population of 100 males and 
100 females over a four month period and every user attempted to impersonate every 
other user at least once. The false rejection rate was 0.80% and 0.87% for males and 
females respectively and the false acceptance rate (for casual imposters) was 0.07% and 
0.12% for males and females respectively. 

In contrast with the types of systems developed by TI, AT&T have developed 
a speaker verification system specifically designed for operation over telephone lines 
(Birnbaum et ai., 1986). The identity claimed by a user is entered via the touch-tone 
keypad on a standard telephone. A speech synthesis chip is utilized to prompt the 
user at various stages of the verification procedure. The system uses CEP coefficients 
and DTW to implement text-dependent speaker verification. Channel normalization 
(§3.6.3) is performed to reduce the effects of different channel characteristics. Twenty 
one speakers evaluated this system, each making a minimum of 40 calls to the system 
over a ten day period. Sixteen of the speakers made local calls while the other five 
made long distance calls. In addition, a further 23 males and 22 females were recruited 
as imposters. At the verification threshold chosen for this trial population, the false 
rejection rate was 3.1% and there were no false acceptances. Although these results 
appear reasonable, the equal error rate (EER) was actually 1.9%, so the operational 
verification threshold selected had the effect of decreasing the false acceptance rate at 
the expense of the false rejection rate. Further examination of the cause of the false ac
ceptances led to improved endpoint detection in the test utterance and a corresponding 
reduction of the EER to 0.4%. This is an impressive result considering the variations 
in transmission characteristics that can occur between telephone calls. 

Another system that performs text-independent speaker verification has been de
signed and tested by Attili et at. (1988) at the Rensselar Polytechnic Institute. It is 
based on a TMS32020 DSP (with ancillary hardware) and a host PC which houses the 
DSP hardware, stores speaker templates and provides the user interface. Only 2-3 s 
of unconstrained speech is required to perform verification, which is shorter than that 
required by most other text-independent verification schemes. The parameters utilized 
in verification are 12 PARCOR coefficients, 12 log area coefficients, 12 (LPC) cepstral 
coefficients and a normalized gain coefficient. During training, discriminant analysis 
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is performed on each individual speaker's characteristics in order to determine a new 
feature space which separates the individual speaker as much as possible from all the 
others. The system was tested on a population of ninety speakers using recordings of 
70 s duration that were collected in a single session. The first 10 s of speech formed 
the training utterance while the remaining 60 s was used for testing the verification 
accuracy. For text-independent operation the false rejection and false acceptance error 
rates were 2.3% and 1.6% respectively. The system was also evaluated in text-dependent 
mode and the error rates reduced to 1.5% and 0.52% for false acceptance and false rejec
tion respectively. Verification is fast, occurring in 75% of real-time, although training 
the system is considerably slower. 

The development of accurate real-time speaker verification systems shows that 
speaker verification techniques are now well established and constitute a viable tech
nology for security and access applications. 

3.8 SUMMARY 

This chapter introduces speaker recognition and describes factors that influence speaker 
recognition accuracy. The merits of several different speaker recognition techniques and 
features are discussed. The main points of the chapter are as follows: 

• Factors that affect the recognition performance of human listeners are discussed. 
It is found that the more familiar a person is with the speaker, the more likely 
they are to be recognised correctly. 

• Techniques for performing speaker recognition are divided into dynamic tech
niques, statistical techniques and vector quantization techniques. Features such 
as LPCs can be used in any of these techniques. 

• Provided several training utterances are available for each speaker, interspeaker 
and intraspeaker variance can be used to assess the usefulness of features. Fur
thermore, contributions from various features can be weighted so as to enhance 
recognition accuracy and statistical techniques can be employed to assess the 
usefulness of individual features. 

• Speaker identification results using many different techniques and features are 
reviewed. On populations of 100 speakers, vocal tract features can be expected 
to give identification error rates of less than 10%. Instantaneous and transitional 
parameters contain independent information. Text dependent recognition, where 
the sequence of features is recorded, is more accurate than text independent 
recognition. 

• Speaker verification systems are available that work in real-time and have false 
rejection rates and imposter acceptance rates of less than 1.0%. 
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CHAPTER 4 

FEATURES USED IN IDENTIFICATION EXPERIMENTS 

This chapter describes details of those features abstracted for characterizing voices that 
are utilized in the recognition experiments presented in Chapter 5. 

An important consideration in evaluating speaker identification systems is the data
base of speaker utterances. Details of the composition and recording protocol of the 
speech database are described in §4.1. Several of the features are quantized by using 
codebooks obtained with the Linde, Buzo and Gray (LBG) algorithm (as defined in 
§2.7.4.3). Section 4.2 describes the vocal tract features used and the implementation of 
the LBG algorithm used to form vector quantization codebooks. Details are presented 
ofthe procedure followed to ensure that the results concurred with those ofLBG. In §4.3 
important aspects governing the calculation and characterization of long-term average 
glottal responses are discussed. Real-time implementations of the shift-and-add (SAA) 
algorithm are described and several descriptors that characterize the shape of the long
term average glottal response (LTAGR) are defined in §4.3.2 and evaluated in §4.3.3. 
The sensitivity of the LTAGR to accent variation and speaker gender is examined in 
§4.3.3.1 and §4.3.3.2. Section 4.4 compares several methods of calculating the long
term average spectrum (LTAS), and §4.5 compares the spectral content of the LTAS 
and the LTAGR. The final section, §4.6, is a summary of the main results reported in 
this chapter. 

4.1 THE SPEECH DATABASE 

This section describes the database utilized for speaker recognition experiments and 
the procedures followed to record it. 

The group of words chosen for recognltion experiments consisted of the digits zero to 
nine spoken with a small pause between digits, i.e. the words were discrete. There were 
two reasons for selecting this particular group of words: firstly, other researchers (Bur
ton, 1987; Soong et al., 1985) have used these words for speaker recognition; secondly, 
the isolated words were to be used in speech recognition experiments by my colleagues 
Tracy Clark (Clark et al., 1990), Lim Ching Aun (Lim et al., 1990) and John Kirkland 
(Kirkland and Garden, 1991). Twenty speakers are recorded in the speech database 
and a particular recording is referred to by the person's initials and a recording num
ber. For example, AE3 is the third recording made by speaker AE (Andrew Elder). 
Table 4.1 contains personal information pertaining to each individual. Between sixteen 
and twenty recordings were obtained from each individual, but of these only the first 
fifteen were utilized for speaker recognition experiments unless there was an obvious 
recording mistake, such as missing the digit zero out of the zero to nine sequence. 

A database recorded for use in speaker recognition experiments should include typ
ical variations in an individual's voice. For this reason a maximum of two recordings 
were made each day, with a minimum separation of one hour between recordings. Fur
thermore, recordings were unsupervised and participants were free to record utterances 
at their own convenience. As a consequence of this somewhat unstructured recording 
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Speaker Initials Sex Age group Native country 

number 

1 AE M 20s New Zealand 

2 AM M 20s New Zealand 

3 AS M 20s Iran 

4 AW F 20s New Zealand 

5 BD M 20s New Zealand 

6 CA M 20s Malaysia 

7 CC M 20s New Zealand 

8 CP M 20s New Zealand . 
9 CW F 20s New Zealand 

10 DB M 40s ~New Zealand 

11 DR F 30s New Zealand 

12 JK M 20s New Zealand 

13 MC M 20s New Zealand 

14 PK M 20s New Zealand 

15 RC M 40s South Africa 

16 RM M 20s New Zealand 

17 TC F 20s New Zealand 

18 TE M 20s New Zealand 

19 VS M 20s New Zealand 

20 WT M 20s New Zealand 

Table 4.1. Personal information pertaining to people recorded in the speaker database. 

timetable many participants regularly forgot to make recordings, which meant that the 
period over which utterances were recorded ranged up to four weeks - much greater 
than the eight working-day minimum. The time-dependent variations in the recorded 
voices are therefore larger than might be expected if recordings were made within a 
short time span. 

All recordings utilized a hand-held microphone which participants kept a comfort
able distance from the mouth. One of two different microphones was used at each 
recording, though both have a similar performance. One microphone was an AIWA 
CM-53, which has a flat frequency-response from 50-13000 Hz while the other was a 
Audio-Technica AT818II which is specified to have a flat frequency response from 50-
15000 Hz. Recordings from nine people were made using the AIWA microphone in one 
series of sessions, and at a later date recordings of a further eleven people were made 
using the AT818II microphone. The microphone was connected to an AIWA F990 cas
sette tape-recorder, which recorded the speech signal on a low-noise tape employing 
Dolby-C noise-reduction. Measurements of the transfer function of the tape recorder 
by Thorpe (1990, p32) show it to have a flat frequency-response between 20-18000 Hz 
and a linear phase-response (to within 10°) between 100-5000 Hz. 

Recordings were digitized by playing the tape recordings into an SXlO digital audio 
board (manufactured by Antex Electronics (Antex, 1990)), which stored the digitized 
utterances on the hard disk of a personal computer (PC). The sampling rate was 10 kHz 
and the sample resolution 16 bits. In order to detect any irregularities, each recording 
was monitored on headphones as it was 'played' into the SXlO board. Disk space was 
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conserved by restricting the amount of silence digitized at the beginnings and ends of 
utterances. The storage requirements for a single utterance ranged between 150 and 
300 kBytes. The anti-aliasing filter incorporated into the SXI0 digital audio-board 
(Antex, 1990) consists of a 7th order elliptic filter with a cut-off at 4.4 kHz. This anti
aliasing filter has an almost linear phase-response in the pass-band, but becomes less 
linear near and above the cutoff frequency (§5.5.2.3 evaluates the effect of phase dis
tortion on the speaker identification performance of various features). After digitizing, 
the utterances were transferred to the Departmental VAX 3500 for further processing. 

In order to check the integrity of the digitized database, all utterances in the 
database were plotted out in the format depicted in Fig. 4.1( a). This allowed the 
digitized recordings to be checked for incorrect truncation. In addition, if a digitized 
utterance was found to contain considerable silence at either end, a plot of the rms 
intensity, as depicted in Fig. 4.1(b), was used to select new beginning and end points, 
thereby removing surrounding silence from the utterance. 

The final database labelling was checked aurally by playing back all the digitized 
utterances belonging to each individual and listening for any 'imposters'. This revealed 
that four utterances in the database had been incorrectly labelled when being trans
ferred from the PC to the VAX, and these were redigitized. Although this procedure 
for checking the labelling relies on human speaker identification performance, in my 
experience it is a fairly straightforward task to identify an extraneous utterance within 
a sequence of utterances from a particular speaker. 

4.1.1 Observations on the speech database 

Several aspects of the speech database are worth noting briefly. Firstly, within a single 
utterance there is sometimes considerable variation in loudness amongst the digits that 
constitute the utterance. The utterance depicted in Fig. 4.1 is a typical example of this 
type of variation in loudness: the first word is of considerably higher amplitude than the 
remaining words. Such variations can cause irregularities to occur within algorithms 
that utilize the maximum loudness to normalize the magnitude of certain parameters. 

When aurally checking the digitized phrases, it was apparent that some people were 
quite tense for the first one or two recordings. This made their voice sound harsh, as 
described in §1.4. Although such tension was detectable by the ear, it did not seem to 
mask (aurally) the speaker's identity so no utterances were removed from the database 
on the grounds of 'tense' sounding voices. 

Another variable among the speakers was how they spoke the utterance, particu
larly the 'noise' level between words. Some speakers took noisy breaths between words, 
whereas others managed to speak the complete utterance without making any de
tectable breathing noises whatever. Figs. 4.2( a) and (b) respectively depict the speech 
signal recorded when no breath is recorded and when a breath is taken between words. 

4.2 VOCAL TRACT FEATURES 

This section describes the computation of vocal tract features in §4.2.1 and the training 
of vector quantization codebooks containing vocal tract features in §4.2.2. 

4.2.1 Computation 

The vocal tract features are selected from amongst those reported in Chapter 3 as useful 
for speaker recognition, and are listed in Table 4.2. These are also chosen because they 
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Figure 4.1. An example of the plotting format used to examine the integrity of the digitized recordings, 
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waveform of a entire utterance (JK6)j(b) the rms intensity of the utterance depicted in (a). 
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Figure 4.2. An example of the differences in the recordings of: (8) silence between words (from AS11) 

and (b) a breath between words (from AS14). 
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Coefficients Abbreviation 

Linear prediction LPC 

Partial correlation PARCOR 

Cepstral CEP 

Table 4.2. The abbreviations for the vocal tract parameters used for speaker recognition. 

Coefficients Description of distor- Calculation method 
tion measure 

LPC Likelihood ratio dI(IX(ejB)12,lu/A(ejB)12) = 
(see eqn (2.87)) 1 (EP rf~) n i::-P U'1'ri 

CEP Euclidean d2(x,y) = L~l(Xi Yi)2 
(see eqn (2.78») 

PARCOR Euclidean d2(x,y) = L~l(Xi - yd2 

(see eqn (2.78» 

Table 4.3. The distortion measures for the different vocal tract parameters used for speaker recogni

tion. 

afford tractable methods for designing VQ codebooks (Gray et al., 1980; Juang et 
al., 1982). 

Unless otherwise specified, the speech utterances are pre-emphasized by 1 - Z-l. 

Vocal tract features are computed from adjacent speech frames that are 20 ms (200 
samples) long. A Hamming window is applied to each speech frame before vocal tract 
features are computed. If voiced portions of an utterance are required, the VUV2 
algorithm defined in §2.4.4 is used to extract voiced frames, unless otherwise specified. 

PARCOR and LPC coefficients are computed using Durbin-Levinson's algorithm, as 
described in §2.5.3.1. CEP coefficients are computed from the LPCs using the recursive 
procedure presented in §2.6.3. Twelve coefficients (twelfth order model) are computed 
for each of the PARCOR, LPC and CEP features. 

4.2.2 Vector quantization of vocal tract features 

This section describes the practical implementation and testing ofthe LBG VQ training 
procedure that is described mathematically in §2.7. Sections 4.2.2.1 and 4.2.2.2 describe 
the distance measures and centroid calculation methods that are used to train the VQ 
codebooks. Examples of VQ training and quantization errors are presented in §4.2.2.3. 

4.2.2.1 Distortion and centroid computation 

The distortion measures applied to the different vocal tract features are detailed in 
Table 4.3. Each distortion measure requires a different method for calculating the 
centroid of a set of vectors. Recall (§2. 7 .4.3) that the set of training vectors can be 
described by x[j], where j varies from 1 to M. In addition, rf[j] denotes the ith order 
autocorrelation coefficient of the jth vector of autocorrelation coefficients, rX[j]. a2 [j] 
is the prediction error of the jth LPC filter. 

Table 4.4 summarizes the centroid calculation methods (see §2.7.4.3) used here in 
the LBG vector quantization training algorithm. The equations describe the calculation 
of the centroid of the set of vectors lying within a cen Ci (see §2.7.1.2). 
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Distortion Centroid calculation method 
measure 

d2 cent2(Ci) = Tin Lj:X[j]ECi x[j] 

dLR centLR( Gi) = 
Tin Lj:r.l'[j1ECi rX[j]/ u 2[j] 

Table 4.4. The centroid calculation method associated with each of the distortion measures. 

4.2.2.2 Centroid splitting 

Central to theLBG algorithm is the concept of centroid splitting. The paragraphs 
below outline details of the splitting method used for the Euclidean distance, followe~ 
by the author's splitting method for the log-likelihood distortion measure. 

The centroids of features that use the Euclidean distance are split by adding and 
subtracting a small, constant perturbation-vector e to each of the centroid vectors (as 
described by LBG). The constant is chosen to be small compared to the component 
values of the feature vectors, and here each element of E is equal to 0.05. Adding and 
subtracting e from each centroid doubles the number of centroid vectors. Recall from 
§2.7.4.3 that the direction of the split is not critical, since the aim of splitting is to create 
two new centroids that are near (in a distortion sense) the old centroid. In hindsight it 
would have been Ihore logical to use a small proportion of the centroid vector to specify 
each component of the perturbation vector, since that would guarantee the magnitude 
of the two new vectors were in correct proportion to the magnitude of the original 
vector. However, since LBG used a constant perturbation vector and the algorithm 
converged successfully with the E specified, improvements in the splitting method were 
not investigated. 

Centroid splitting for features that use the log-likelihood distortion measure is com
plicated because the centroid is stored as ra[i], which (as defined in (2.85» is the au
tocorrelation of the linear prediction coefficients, in this case derived from centLR(Gi). 
For the purposes of this explanation it is useful to define 

(4.1) 

where centLR{ Gi) is the average of the gain-normalized autocorrelation coefficients as
sociated with cell Gj (see Table 4.4) and rC[i] denotes the autocorrelation coefficients 
of centroid i. The rC[i] are used to compute the prediction coefficients for the centroid 
and ra[iJ. Experimental evaluation of centroid splitting by applying small random per
turbations to the ra[i] led to the conclusion that it is not possible to split a centroid 
consistently into two centroids that are 'close' in a dLR sense, and so the training 
vectors cannot be partitioned sufficiently evenly. All of the training vectors tend to 
match to one centroid because there is no guarantee once ra[i] has been perturbed in 
some random fashion, that the new ra[i] is physically realizable (produced from stable 
prediction coefficients). 

Another method of splitting the centroid is to convert it into a set of coefficients that 
are insensitive to minor perturbations, and then to perturb the alternative coefficients. 
Juang et al. (1982) converted the centroid to reflection coefficients and perturbed the 
reflection coefficients by multiplying them by 0.99 and 1.01 respectively. The paper 
contains no further details about how Juang's splitting was carried out. However, 
the reflection coefficients must be converted to prediction coefficients before ra[i] is 
calculated. 

The approach taken here is to split the centroid of the LPC prediction coefficients 
by adjusting each coefficient of rC[i] by a uniformly distributed random quantity that is 
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defined to range between -0.0025% and 0.0025% of its original value. These 'perturbed' 
autocorrelation coefficients are then used to compute prediction coefficients. From these 
prediction coefficients the 'split' ra[i] are computed. 

It is interesting to examine how this method differs from Juang's in the number of 
internal conversions between parameter types and the additional storage requirements 
for keeping 'extra' copies of the centroid vector in another form. 

The advantage of perturbing autocorrelation coefficients instead of reflection coeffi
cients is that the conversion between reflection and prediction coefficients, as performed 
by Juang et al. (1982), is avoided. However, this method requires that the autocorrela
tion coefficients of the centroid, rC[i], should be stored along with the autocorrelation of 
the centroid prediction coefficients, ra[i], since it is impossible to compute the rC[i] from 
the ra[i]. Splitting centroids by using reflection coefficients has a similar requirement, 
since it is necessary to store the reflection coefficients for each centroid. 

As part of the splitting process it is possible to have a cell with no training vectors 
in it. Such a cell does not reduce the aggregate quantization error and causes the iter
ative partitioning and centroid updating algorithm to work incorrectly. The approach 
taken here is to notify the user that an empty cell exists, and then to set the centroid 
associated with that cell to be a perturbed version of the centroid whose partition con
tains the most training vectors. Informal trials showed that for dLR clustering of five 
training utterances, empty cells occur occasionally for 32 and 64 vector codebooks. 

4.2.2.3 Verification of the VQ training algorithm 

Much of the speaker identification work reported in §5.4 relies on the use of the LBG 
codebook training algorithm to calculate codevectors for each speaker. It is therefore 
vital that the implementation of the LBG training algorithm performs properly. The 
training algorithm is written in Fortran as an extension to SGPRC (Brieseman et 
al., 1989), a signal processing package that runs on the Departmental VAX. Examples 
that employ the LBG training algorithm to design codebooks for several well-defined 
source distributions are presented in order to verify the operation of the implemented 
algorithm. 

Max (1960) tabulates the mean-square error (MSE) caused by quantizing a mem
oryless Gaussian source with optimal scalar quantizers having different numbers of 
quantization levels. Since a scaler quantizer is a special case of a vector quantizer, 
it is valid to test the codebook training algorithm by examining the total distortion 
between the sequence of training samples and the final codebook. LBG tested their 
algorithm by performing VQ for several different numbers of quantization levels and 
here the author's computer program is tested in the same manner. Table 4.5 contains 
the distortion figures for scalar quantization of 20,000 samples of a memory less Gaus
sian source for 2, 4, 8, 16 and 32 levels by the quantizer determined by the author's 
implementation of the LBG training algorithm. The optimal values determined by 
Max (1960) are also listed, and from the table it is apparent that the implementation 
of the LBG algorithm performs well, as it gives distortion values close to those obtained 
by Max. 

LBG also test their VQ training algorithm by performing block quantization of a 
memoryless Gaussian source for block (or vector) lengths k equal to 1, 2, 3, 4, 5 and 6 
samples and at a rate of 1 bit per sample. For a rate of 1 bit per sample the codebook 
size is 2k. The quantization distortions of the block quantizers are determined for the 
various block lengths and are illustrated in Fig. 4.3. The distortion levels match closely 
with those determined by Linde et al. (1980). An exact difference cannot be measured 
between the distortions reported here and those presented by LBG, since LBG do not 
give the exact distortion figures (LBG results in Fig. 4.3 are estimated from a figure in 
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Number of quan- Max's error Author's error I 
tization levels 

2 0.3634 0.3575 

4 0.1175 0.1174 

8 0.03454 0.03453 

16 0.009497 0.009400 

32 0.002499 0.002525 

Table 4.5. A comparison between the MSE of a.pplying two different quantizers to a. memoryless 

Gaussian source. Max's error is the MSE associated with quantizing the source with the optimal 

quantizer, as computed from the Gaussian distribution and described in Max (1960). The author's 

error is the MSE after training a quantizer using 20,000 samples from a Gaussia.n source and the 

codebook training algorithm described by Linde et al. (1980). 
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Figure 4.3. Distortion for block quantization of a memoryless Gaussian source at a rate of 1 

bit/symboL The author's quantization was performed on a sequence of 50 000 samples taken from 

a memoryiess Gaussian source. 

their paper). Nevertheless, the trends in the results indicate that the implementation 
of the LBG clustering algorithm used here to derive codebooks performs in a similar 
way to LBG's original algorithm. 

Although it is difficult to prove that a complicated computer program performs 
correctly, it appears from the examples of quantizing a Gaussian source in various ways 
that it performs almost identically to that described by LBG. This makes the author 
confident that the implementation of the LBG clustering algorithm is correct. 

4.2.2.4 Examples of applying the VQ training algorithm to speech 

In this section the application of the LBG training algorithm to speech is examined. 
The Gaussian source described in the previous section has a better defined sample 
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Figure 4.4. An example of the changes in total distortion (defined in (2.94)) as the LBG training algo

rithm progresses (f: = 0.05). The features used are 12 reflection coefficients taken from five utterances 

of the digits zero to nine by speaker JK. 

distribution than would be expected from a sequence of PARCOR vectors representing 
frames of speech. For this reason it is important to check the performance of the LBG 
algorithm on actual speech. 

The application of the LBG algorithm to speech is examined by recording the total 
quantization distortion at each iteration of the LBG algorithm. Fig. 4.4 shows the 
decrease in quantization error for PARCOR coefficients as the centroids are adjusted 
and split. A sudden drop in the quantization distortion occurs whenever the number 
of centroids is doubled, since a large number of centroids can represent the training 
vectors with less distortion than a smaller number of vectors. The other reductions 
in distortion occur as the centroids are iteratively moved to more 'stable', lower error 
positions within the vector space. Iterations continue until the difference between the 
current error and the previous error is less than £. 

VQ training is complete when the sequence of training vectors has been divided up 
into the required number of cells and the iterations do not improve the error by more 
than £. As training progresses the distribution of the training vectors amongst the cells 
can be examined to check that there are no obvious abnormalities, such as cells with 
only one or two training vectors in them. The example distributions of Table 4.6 are 
the distribution of vectors among cells as VQ training progresses on five utterances of 
the digits zero to nine. The cell distributions just before the centroids are split (i.e. the 
centroid positions are considered 'optimal') are tabulated. It is apparent from Table 4.6 
that there is considerable variation in the number of vectors in each cell, particularly 
when the codebook size is 16. However, the number of vectors in each cell does not 
highlight any obvious abnormalities in the algorithm, and is probably reasonable. 

The implementation of the VQ training algorithm seems to work correctly for vec
tors extracted from real speech. Furthermore, the results reported in Chapter 5 rein
force the conclusion that codevectors determined by this algorithm are accurate repre
sentations of a person's speech. 

4.3 THE LONG-TERM AVERAGE GLOTTAL RESPONSE 

This section describes details of the LTAGR calculation and representation. In §4.3.1 
the implementation of real-time SAA algorithms for determining the LTAGR is de
scribed, and in §4.3.2 descriptors of the characteristics of the LTAGR are defined. 
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Codebook N umber of training vectors in each cell 

size after iterations are completed. 

2 1396 1462 

4 992 504 728 636 

8 480 311 612 194 

283 507 252 225 

16 243 178 182 91 

371 321 62 121 

161 174 195 159 

182 165 138 129 

Table 4.6. The distribution of training vectors within cells as the LBG training algorithm progresses. 

The number of training vectors in ea.ch cell is recorded a.fter the iterative upda.ting of the centroids has 

converged for the specified number of codevectors. 

Observation of the LTAGRs calculated using the real-time system (§4.3.1.1) led to 
the question whether or not the accent of a speaker has any identifiable effect on the 
LTAGR, and this is examined in §4.3.3. 

4.3.1 Real-time shift-and-add 

Real-time SAA was developed to facilitate the examination of LTAGRs. This led to the 
discovery that people tend to have distinctive LTAGRs, prompting research into the use
fulness of the LTAGR for speaker identification. Another interesting observation arising 
from the development of the real-time SA:A algorithm was that the voiced/unvoiced 
decision could be approximated by examining the amplitude of the largest peak in each 
consecutive speech frame. This is described in more detail in §4.3.1.2. 

4.3.1.1 Hardware 

In order to perform signal processing operations at a rate fast enough to give the ap
pearance of real-time operation, either a powerful computer or specialized hardware 
is required. The approach taken here is to use special purpose hardware in the form 
of a digital signal processor (DSP). The DSP hardware described here was originally 
designed by Turner (1986) and is constructed on a single card that plugs into one of 
the accessary slots of an IBM XT compatible PC. Five of these DSP systems were con
structed for use in speech therapy research, and in order to simplify their construction 
the author redesigned aspects of Turner's hardware. The main simplification was the 
separation of the analog and digital sections on two wire-wrap boards. These DSP 
systems are currently operating successfully in the speech therapy project (Watson et 
al., 1990). 

Fig. 4.5 shows a block diagram of the real-time processing system. For a more 
detailed diagram of the DSP board see Elder et al. (1987). The DSP used is the TMS 
32010 (hereafter referred to simply as 'TMS'), which performs integer operations only. 
Although this device has since been superseded by more powerful DSPs, it remains 
useful for performing simple signal processing tasks where it is important to keep costs 
low. 

In the real-time system depicted in Fig. 4.5, the TMS is used for performing com
putationally intensive digital signal processing operations. The results of these com
putations are passed to the PC for display or other action. The input to the TMS is 



4.3 THE LONG-TERM AVERAGE GLOTTAL RESPONSE 121 

Spee ch Speec h 
---+- A/D TMS 32010 D/A f---+-

I n Out 

Handshaking TMS program memory 

Keyboard ~ IBM-PC 

Display 

Figure 4.5. Real-time signal processing hardware. 

through a microphone and a 12 bit A/D converter. The PC accepts user input from 
the keyboard and controls the program run by the TMS. 

Software for the real-time system is written in a combination of languages. On the 
PC a high-level language such as PASCAL or MODULA-2 is used. Callable library 
routines for both these languages have been written to allow programs to be loaded 
into the TMS and data transferred between the PC and TMS. Software on the TMS is 
written entirely in assembler code. 

4.3.1.2 Real-time shift-and-add implementations 

This subsection discusses two real-time SAA algorithms that differ both in the way the 
peaks are detected and in the dynamic range of the accumulator used to store the long
term average glottal response. Much of the terminology used in this section is ,based 
on the description of the SAA algorithm in §2.8. For the purposes of this description 
the two implementations of SAA are called SAAI and SAA2. Although it is apparent 
in the following description that SAA2 is superior to SAAl, SAAI is described because 
it was the original algorithm used to investigate the differences in speakers' long-term 
average glottal responses (as calculated by SAA). 

The SAAI algorithm has a 16 bit accumulator and the SAA2 a 32 bit accumulator 
to store the current long-term average glottal response. If the amplitude of the incoming 
speech is at its maximum for the 12 bit A/D, the 16 bit accumulator would only be 
able to store 16 'pulses' before it overflowed. For this reason SAAI divides each sample 
by 16 before it is added to the accumulator. Even with this division only 256 pulses 
of maximum amplitude can be added to the accumulator before it overflows. The 32 
bit accumulator of SAA2 removes any likelihood of overflow. Without any scaling the 
accumulator has sufficient dynamic range to accommodate over one million samples of 
the maximum A/D output. Scaling, however, may be performed for other reasons, as 
described later in this section. 

Both of the implementations of the SAA algorithm have the same interface to the 
PC and add speech frames to a SAA accumulator in a similar way, the only difference 
being the dynamic range of the accumulator, as outlined in the previous paragraph. 
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The TMS software that interfaces to the PC follows the sequence of steps specified 
below: 

Get parameters: Get parameters from the PC that control the operation of the SAA 
algorithm. The parameters passed are: 

41) A threshold value that the maximum peak in a search frame must exceed 
before the frame is considered to be valid. 

• The size of each SAA frame - specified in samples. 

• The number of glottal pulse frames to collect and average. 

• The frame step. Sets how far the next search frame is moved from the last 
identified glottal pulse. 

Wait for peak: Loop until a peak is located by the interrupt routine (on the TMS) 
handling incoming samples. 

Add: Add a SAA frame with the located peak in the centre to the accumulator for 
storing the long-term average glottal response. 

Check pc: If the PC is ready, send the latest values in the accumulator (i.e. latest 
\ estimate of the long-term average glottal response) to the PC for display. 

Loop: Loop back to the Wait for peak. 

Note that the important parameters governing the operation of the SAA algorithm 
are set by the PC. The real-time SAA algorithm is therefore extremely flexible, since 
operating parameters can be set by the PC before the SAA algorithm starts to run. 

The real-time SAA algorithms are organized to process speech samples while a 
person speaks. As each new sample is obtained from the A/D, it is placed in a circular 
buffer and examined to see whether it represents a peak in the input signal. The 
methods used for detecting peaks in the input speech differ between the two SAA 
implementations, as described in the next paragraph. 

SAAI uses a combination of a peak threshold and peak-finding algorithms to locate 
the position of the dominant peak within each frame of the speech signal. The peak 
threshold is used to ensure that the frame contains voiced speech. The peak threshold 
used by SAAI is not constant. When a peak is located, the threshold is set to the 
peak value and as each successive sample is received the peak threshold is multiplied 
by 0.999, having the effect of reducing the threshold to 0.89 of the previous peak value 
after 100 samples. In order to exclude noise and unvoiced sounds from being included 
in the SAA calculation a lower bound threshold is specified by the PC. This use of 
a threshold that reduces at a fixed rate assumes that the amplitude of the maximum 
peak within the speech signal does not reduce more rapidly than the rate of reduction 
of the peak threshold. Since the SAAI algorithm computes a long-term average and is 
reasonably insensitive, therefore, to the omission of a number of 'pulses', the occasional 
instance of the speech reducing too rapidly will not have a significant effect on the final 
long-term average glottal response. 

The SAAI algorithm works satisfactorily and demonstrates the usefulness of using 
a peak threshold to perform an approximate voiced/unvoiced decision. However, the 
algorithm is limited in that only positive peaks are detected by the peak searching 
algorithm, and the first peak after the threshold has been exceeded is selected for SAA 
frame alignment. Accordingly, the SAAI algorithm is not the best possible implemen
tation of SAA, and the deficiencies in the SAAI led to the development of the SAA2 
algorithm. 
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The SAA2 algorithm uses a peak-detection algorithm that determines the peak with 
the highest absolute amplitude in the SAA speech frame (the size of this frame is set by 
the PC and is typically 128 samples). The sign of the largest peak is recorded so that 
the speech frame can be added to the SAA accumulator and the central peak positively 
reinforced. 

Input levels that exceed the dynamic range of the A/D are detected by monitoring 
the maximum and minimum sample values received from the A/D. The maximum and 
minimum sample values are not used in the SAA algorithm, but when passed to the 
PC for display, allow a user to monitor whether they are speaking too loudly. 

The output of both the SAA1 and SAA2 algorithms is plotted on the PC screen. The 
display is updated as a person speaks. At first the shape of the averaged glottal response 
varies wildly as different sounds are spoken. Soon it stabilizes, as each successive speech 
frame has a relatively smaller effect on the values in the SAA accumulator. As frames 
of speech are added to the SAA accumulator, the range of amplitudes contained in 
the accumulator increases, so a new scale factor is determined for each set of SAA 
accumulator values before the LTAGR is plotted on the PC screen. The accumulator 
in the SAA2 algorithm consists of 32 bits, and all 32 bits are passed to the PC. The 
32 bit number is converted to a REAL number before being scaled and plotted on the 
PC screen. 

4.3.1.3 Comments 

The real-time SAA was used for informal speaker identification to evaluate the useful
ness of the LTAGR. The software on the PC had the capability of matching a LTAGR 
(using Euclidean distance) with stored speaker templates that contained the LTAGRs 
of the test population. Identification trials on a small number of speakers gave approx
imately 80% accuracy, prompting further research into the usefulness of the LTAGR 
for speaker identification. 

The real-time SAA algorithms worked well, but were not especially well suited to 
doing repeatable research, since the speech signal was not recorded simultaneously with 
a LTAGR(SAA) calculation. For this reason the real-time calculation of the LTAGR 
became a lower priority than the collection of the speech database described in §4.1, 
and real-time SAA analysis became a demonstration tool only. The digitized database 
of twenty speakers served as a constant speech source for the many different features 
and matching methods described in this thesis. 

Plots of the resulting LTAGRs, as determined by the two real-time algorithms, are 
not included, since there is no reference LTAGR to make comparisons with. Since SAA2 
contains the more sophisticated algorithm, one would expect identical results to those 
obtained from SGPRC, provided the signals, after digitizing, are exactly the same. 
However, this test is impracticable owing to the different phase responses of the anti
aliasing filters on the SXlO and TMS32010 cards, coupled with the phase sensitivity of 
the SAA algorithm (see §5.5.2.3). 

The two algorithms discussed here demonstrate that it is feasible to implement 
SAA in real time using a simple and cheap DSP. Furthermore, the algorithm SAA2 
demonstrates that it is possible to use the peak searching and framing algorithm, as 
specified in Algorithm 2.3 and utilized in SGPRC. 

4.3.2 Descriptors of the long-term average glottal response 

This section describes descriptors that are abstracted from a SAA estimate of the long
term average glottal response(LTAGR). These descriptors are defined so as to encode 
features of the LTAGR that are useful for characterizing its shape. They are used for 
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Figure 4.6. A comparison between the application of different smoothing filters to the LTAGR derived 

(rom the phrase PK1 and low-pass filtered a.t: (a) 10 Hz, (b) 100 Hz, (c) 1000 Hz a.nd (d) 2000 Hz. 

examining variation in the LTAGR with changes in accent and gender (§4.3.3) and also 
for identifying speakers (§5.4.2.1). 

Some descriptors characterize information derived from 'peaks' in the LTAGR, ne
cessitating an accurate definition of what constitutes a peak. In practice it is possible 
for a peak to be produced by a single sample having a significantly different value from 
the surrounding samples. However, here a peak is considered to be a visually obvious 
trend in the LTAGR, and therefore comprised of a number of samples. Small, rapid 
fluctuations are filtered out of the LTAGR by low-pass filtering the signal at a frequency 
of 1000Hz. The cut-off frequency of 1000 Hz was chosen after evaluating several differ
ent frequencies, as depicted in Fig. 4.6. A 1000 Hz cut-off is a compromise between low 
cut-off frequencies, which significantly distort the LTAGR shape, and high frequency 
cut-offs, which do not filter out all the high frequency fluctuations. 

For the purposes of defining the descriptors presented here, the SAA estimate of 
the long-term average glottal response is defined by the sampled signal 8 aaa [nJ where 
n ranges from 1 to 128. The main peak of the SAA signal is positioned at n = 64. All 
speech is sampled at 10 kHz so the duration of the SAA signal is 12.8 ms. Throughout 
this discussion of descriptors the terminology 'left side' and 'right side' is used to 
describe the 'sides' of the LTAGR taken about the central peak. The superscript lor r 
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are used to indicate that the descriptor applies to the left or right side of the LTAGR. 
The following paragraphs define each of the LTAGR descriptors in turn: 

• Asymmetry (As)- Measures the difference between the left and right side of a 
LTAGR. The LTAGR is folded down its center line so that one side of the LTAGR 
lies over the other side. The area between the overlap of the two sides is evaluated 
as indicated by the crosshatching in Fig. 4.7. 

• Absolute amplitude(right) (Ar) - Measures the average absolute amplitude 
of the right side of the LTAGR. This indicates whether the LTAGR falls from its 
main peak to zero or has samples of significant amplitude on the right side . 

.. Absolute amplitude(left) (AI) - Corresponds to the absolute amplitude (right) 
above, but for the left side of the LTAGR. 

• Slope (Sl)- The average of the absolute value of the first derivative of the LT
AGR. A LTAGR with more than one significant peak, such as that illustrated in 
Fig. 4.8(a), has a higher average slope than a LTAGR with only a single dominant 
peak. Here the slope of a LTAGR is approximated by the first order difference, 
resulting in the signal depicted in Fig. 4.8(b). 

• Slope of slope (82 )- .The average of the absolute value ofthe second derivative of 
the LTAGR, calculated from first order differences. Fig. 4.8(c) shows an example 
of the second derivative of a LTAGR. 

• Number of peaks (Np ) - The number of peaks in the filtered LTAGR. 

• Left side peaks (N;) - The number of peaks in the left side of the filtered 
LTAGR. 

• Right side peaks (N;)- The number of peaks in the right side of the filtered 
LTAGR. 

• Left side cubic coefficients (C!:o, C~l' C~2' Ck) - The coefficients of a cubic 
polynomial fitted to the left side of the SAA signal. The cubic coefficients are 
calculated so that the error between the LTAGR and the cubic polynomial is 
minimized, in a least squares sense. Fig. 4.9 depicts both a LTAGR and its cubic 
approximation. 

• Right side cubic coefficients (CciJ, C~l' C~2' C~) - The coefficients of a cubic 
polynomial fitted to the right side of the LTAGR. 

• Second highest peak (P2) - The amplitude of the second highest peak in the 
LTAGR. 

• Left side highest peak (pi) - The amplitude of the highest peak in the left 
side of the filtered LTAGR . 

.. Right side highest peak (pr) - The amplitude of the highest peak in the right 
side of the filtered LTAGR. 

• Rise time of central peak (TR) - The time (measured in samples) taken for the 
LTAGRsignal to rise from half the amplitude of the central peak to the maximum 
amplitude (see Fig. 4.10). 
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Figure 4.7. The shaded area between a reflected half of the long-term average glottal response and 

a non-reflected half is defined to represent the asymmetry measure for a particular LTAGR. In this 

example the LTAGR is derived from utterance AEl. 
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Figure 4.10. An illustration of the rise time, TR, and the fill time Tp for the LTAGR . 

• Fall time of central peak (TF) - The time (measured in samples) taken for the 
SAA signal to fall from its maximum amplitude to half the maximum amplitude 
(see Fig. 4.10). 

These descriptors are useful for reducing the number of dimensions of the LTAGR 
so that statistical analysis can be performed more easily. Statistical analysis examining 
the effects of accent and gender on the LTAGR descriptors is reported in §4.3.3. The 
usefulness of the various descriptors for speaker identification is assessed in §5.4.2.1. 

4.3.3 Variation of the long-term average glottal response with changes 
in accent and gender 

In this section the variation in the LTAGR with changes in accent is examined using a 
database of speech collected from several different regions in the United States. Amer
ican speech was selected because of the availability of a large digitized database on 
CD-ROM. 

The particular database utilized is the prototype, December 1988, DARPA TIMIT 
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acoustic phonetic continuous speech database produced by Texas Instruments (TI), 
Stanford Research Institute (SRI) and Massachusetts Institute of Technology (MIT). 
The database contains a training set of utterances consisting of 4200 sentences spoken 
by 420 talkers. The SRI portion of the database consists of two sentences that contain 
several words considered useful for distinguishing between groups with different dialects, 
and are therefore called 'dialect-shibboleth' sentences (,shibboleth' means a test word 
that reveals nationality). The 'dialect-shibboleth' sentence, "She had your dark suit in 
greasy wash water all year" is spoken by 352 speakers and is used to evaluate the effect 
of accent and gender on the LTAGR. 

All of the utterances recorded in the TIMIT database are digitized using 16 bit 
samples at a rate of 16 kHz (DARPA, 1988). Resampling to 10 kHz is performed, so a 
LTAGR of 128 samples corresponds to 12.8 ms of the speech signal. Four zero-valued 
samples are inserted between each sample and the signal low-pass filtered to 4.5 kHz 
using a 256 tap FIR filter. Decimation to a 10 kHz sampling rate is then performed by 
selecting every eighth sample. 

In principle, comparison of LTAGRs of New Zealand speakers with those of Amer
ican speakers is valid if the speech is sampled at the same rate. However, differences 
between the anti-aliasing filters of the TIMIT database and that used for the N.Z. 
database make it difficult to ascertain whether the differences in the LTAGR are due 
to the different recording conditions or different accents. Section 5.5.2.3 shows that 
the LTAGR is sensitive to phase distortion, so without detailed specifications of the 
phase response of the two recording systems it is not possible to remove the effects of 
the recording system from the LTAG R. Therefore, the evaluation of the effect of accent 

. and sex on the LTAGR is performed entirely on speech extracted from the TIMIT 
database. 

Table 4. 7 lists the different regions recorded in the TIMIT database, and the number 
of utterances (ranging between 8 and 37) recorded for each region. The small number 
of utterances belonging to the Mobile Region is insufficient to perform classification 
experiments. However, this region is not as important as the others because these 
utterances are recorded from people that have moved round, and cannot be classified 
into one of the other accent regions. 

4.3.3.1 Factor analysis 

Factor analysis, as described in §3.4.3, is applied to the LTAGR descriptors to exam
ine which of the descriptors are strongly related, and to determine how many factors 
are required to represent the information contained in the LTAGR descriptors. Fac
tors obtained from analysing the LTAGR descriptors using the statistical package SAS 
(SAS, 1985b) are listed in Table 4.8. The strength with which a particular descriptor 
is present in a factor is referred to as the factor loading. In order to identify common 
variables more clearly the factors have been rotated using the varimax rotation (Com
rey, 1973, §7.4) (see §3.4.4), which rotates the factor axes to make the factor loadings 
either as large (1.0) or as small (0.0) as possible. The factor loadings for LTAGR 
descriptors abstracted from 352 American speakers are tabulated in Table 4.8. 

Along with the factor loadings, Table 4.8 indicates the proportion of the total 
variance explained by each factor (as derived from the eigenvalues of the associated 
eigenvector). Factors 1, 2 and 3 explain 83.8% of the total variance; since the next 
largest factor (not shown in Table 4.8) contributes only 4%, only the first three factors 
are retained. 

The first factor describes 67.7% of the total variance and is composed primarily of 
variables that describe the shape ofthe LTAGR. In particular, the cubic coefficients are 
highly correlated with factor 1. Furthermore, factor loadings for cubic coefficients that 
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Region Sex Number 

New England Male 21 

New England Female 16 

Northern Male 34 

Northern Female 18 

North Midland Male 37 

North Midland Female 15 

South Midland Male 33 

South Midland Female 19 

Southern Male 25 

Southern Female 26 

New York City Male 21 

New York City Female 11 

Western Male 34 

Western Female 18 

Mobile Male 16 

I Mobile Female 8 

Table 4.7. The regions used for classifying utterances in the TIMIT database and the number of 

utterances recorded from each region. 

are positive for one side of the LTAGR are negative for the other side. For example, the 
loading of ck is large and positive whereas the loading for c~ is large and negative. 
This is caused by the cubics fitted to the left and right sides of the LTAGR being almost 
mirror images of each other, reflected about the central peak. Other descriptors with 
large factor loadings represent different aspects of the shape of the LTAGR. Factor 1 
therefore represents the general shape of the LTAGR. Factor 2 has large factor loadings 
for variables that describe the steepness of the central peak and the number of peaks 
on the right side of the central peak. The 3rd factor has most significant loadings for 
the N; and Np variables and is thus highly correlated with the number of peaks in the 
LTAGR. 

The proportion of a descriptor's variation that is extracted by the factors is called 
the communality (Cooley and Lohnes, 1971, p109). A descriptor whose variation is well 
represented by the set of factors will have a communality close to 1.0. The communality 
of all the descriptors increases (up to a maximum of 1.0) as more factors are extracted 
from the dataset, since the variation of each descriptor is represented more accurately 
by having more factors (Gorsuch, 1983, p103). Table 4.9 contains the communality 
values for the three factors specified in Table 4.8. The descriptors with communalities 
less than 0.60 are shown in bold type. Since thirteen of the twenty-one descriptors have 
communalities greater than 0.9, clearly the variation of most of the descriptors is well 
represented by three factors. This is also implied by the fact that the first three factors 
account for 83.8% of the total variance in the LTAGR descriptors. 

Scatter plots are used to examine the positions of observations along the factor 
axes. Scatter plots between paired combinations of factors 1, 2 and 3 (Fig. 4.11) indi
cate that variation of the descriptive values cannot be attributed to clusters occurring 
within the rotated factor space. Each LTAGR is represented by a single marker in the 
scatter diagram, with the marker's position along a particular factor axis specified by 
summing the contribution from each LTAGR descriptor multiplied by the correspond-
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Descriptor Factor 1 Factor 2 Factor 3 

C!:a 0.969 0.057 0.118 

C~ 0.956 0.057 0.125 

C~2 0.948 0.039 0.136 

C!l 0.941 0.042 0.186 
Ar 0.926 0.262 0.030 
Al 0.924 0.259 0.063 
pr 0.894 0.319 0.088 
pi 0.894 0.319 0.088 

Sl 0.872 0.427 0.090 

As 0.842 0.182 -0.053 

P2 0.816 0.349 -0.014 

S2 0.757 0.459 0.030 

c!o -0.830 -0.019 -0.275 

C~ -0.942 -0.030 -0.141 

C~l -0.952 -0.048 -0.130 

C!2 -0.965 -0.049 -0.141 
Nr p ·0.109 0.690 0.309 

TF -0.063 -0.648 -0.175 

TR -0.138 -0.701 -0.038 

N1 p 0.156 0.242 0.884 

Np 0.171 0.542 • 0.801 

Variance 

Explained 67.7% 11.5% 4.6% 

Cumulative 

Variance 67.7% 79.2% 83.8% 

Table 4.8. The factor loadings obtained from performing principal component factor analysis on 

LTAGR descriptors of 352 speakers from the TIMIT database. The factor loadings for only the first 

three factors are shown here and have been rotated using the varimax rotation (see text). 

ingfactor loading for that factor. Each observation in the scatter diagram is labelled 
with a marker that depends on the individual's gender. This allows the variation in the 
descriptors with speaker gender to be observed. It is apparent from the scatter plots in 
Fig. 4.11 that both male and female LTAGR descriptors vary by a similar amount and 
that no distinct clusters have formed. Most of the observations are grouped in a single 
cluster comprising a mix of male and female speakers. Factor 3 should differentiate 
males from females, since it depends chlefly on the number of peaks on the right and 
left sides of the LTAGR and females tend to have additional peaks in their LTAGR 
compared with males (see §2.8.3). Therefore one would expect the larger values to be 
female and the smaller values to be male; however this is not the situation depicted in 
Fig. 4.11(b) and (c). Although small values (between -1 and -3) of factor 3 'tend' to be 
male, four females lie in the centre of the twenty-five or so males. At the other extreme 
of factor 3 large values might be expected to represent females, though thls does not 
hold consistently. Again considering Fig. 4.11(c), one can observe that when factor 3 
is large and factor 2 is approximately equal to -1 males predominate, whereas when 
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Descriptor Communality Descriptor Communality 

As 0.744 ck 0.956 
AT 0.927 c& 0.933 
Al 0.925 C~l 0.926 

51 0.950 C~2 0.918 

52 0.784 Cr 
c3 0.909 

Np 0.965 P2 0.788 

N 1 
p 0.865 pi 0.909 

NT 
p 0.584 pr 0.909 

Cl 
cO 0.765 TR 0.512 

C~1 0.923 TF 0.455 

C~2 0.954 

Table 4.9. Communality estimates for the LTAGR descriptors using the factors defined in Table 4.8. 

Communalities less than 0.60 are in bold type. 

factor 2 is large as well as factor 3 females predominate. This can be expressed more 
concisely by stating that when factor 2 + factor 3 > 3 the LTAGR tends to belong to 
a female. Apart from these regions in the scatter diagrams which have a predominance 
of a particular sex, most of the variance in the LTAGR from the trial of 221 males and 
131 females seems to be unrelated to the sex of the speakers. 

Correlations between a person's accent and the extracted factors are examined by 
selecting a marker according to the person's region and replotting the scatter plots 
using the key specified in Fig. 4.12(d). The scatter diagrams in Fig. 4.12(a),(b) and (c) 
do not show any significant correlation between the three most significant factors and 
the region that a speaker comes from. 

The foregoing results show that the most significant factors contained in the LTA
GR..s are not directly related to either the sex or accent ofthe speaker. Possibly accent 
variations among speakers in the United States are insufficient to affect the variations 
in the LTAGR from other speaker differences. This bodes well for speaker identification 
because it implies that people with the same accent have LTAGR..s that vary signifi
cantly and should therefore be differentiated enough to perform speaker identification. 

4.3.3.2 Discriminant analysis 

Recall from §3.4.2 that the aim of discriminant analysis is to identify a discriminant 
function that classifies observations into appropriate groups (Cooley and Lohnes, 1971, 
§9). In contrast with factor analysis, which examines the relationships of descriptors 
across the whole set of observations, discriminant analysis determines the best method 
for classifying observations into a set of predefined groups. This is achieved by choosing 
a linear transformation of the descriptor coordinate system that minimizes the distance 
between observations belonging to the same group while maximizing distances between 
groups. The distance D(Z, Yi) in this discriminant space between an observation vector 
Z and the mean Yi of group i can be expressed as 

(4.2) 

where W is the pooled covariance matrix as defined in §3.4.2 (SAS, 1985b). Using the 
distance defined in (4.2) to classify each of the observations to the nearest group, a 
classification summary of all the observations can be obtained. 
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Figure 4.11. Scatter plots of factors 1, 2 and 3 labelled by sex. 

Two separate accent classification experiments are reported here. The first ex
periment classifies speakers according to their accent region only, whereas the second 
experiment takes into account the sex of the speakers within each accent region. 

1:1\0 

Before performing discriminant analysis, stepwise discriminant analysis (see §3.4.2.1) 
is performed to find the subset of descriptors most useful for distinguishing between 
the accents. Only the descriptor N; is selected, the other descriptors not contributing 
significantly to the discrimination. Table 4.10 contains the classification results from 
using this single descriptor. Clearly classification by accent alone is not feasible. 

The next accent classification experiment separates the male and female speech 
from each region in the TIMIT database. This can be justified because the higher 
pitch of female voices tends to distinguish their LTAGRs markedly from male voices 

I 
5 
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Figure 4.12. Scatter plots of factors 1, 2 and 3 labelled by region. 

Error rate summary by region 

Region R1 R2 R3 R4 R5 R6 

Error 

Rate 1.00 1.00 1.00 0.44 1.00 0.28 

factor 1 
(b) 

II Region 8 

o Region 7 

¢ Region 6 
¢ Region 5 
.. Region 4 

+ Region 3 

" Region 2 
o Region 1 

R7 R8 

1.00 1.00 

133 

~ 

+ 

I 
4 

Table 4.10. The error rates resulting from classifying LTAGRs by region using discriminant analysis. 

In the notat.ion scheme used here RI indicates Region 1, and so on for the other regions. 

I 
5 
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LTAGR descriptors selected 

Table 4.11. Descriptors selected by using stepwise discriminant analysis to select descriptors that best 

distinguish between the accents (or regions) of the 352 American speakers from the TIMIT database. 

From CIa .•• ilit .. lion Region 
Region RlM RIF R2M R2F RaM R3F RiM RtF R5M R5F R6M RsF R7M .... 11' I noM RSF 

RIM IS 0 3 I 0 0 1 0 1 1 3 I 3 0 2 0 
RIF 0 2 0 t 1 2 0 0 0 :2 0 0 0 0 1 4 

R2M 2 0 a 1 3 1 1 0 8 0 2 1 2 0 4 0 
'R2F 0 2 0 B 0 2 0 1 1 3 0 1 0 0 0 0 

RaM 2 1 2 0 '1 0 1 0 1 0 '1 0 6 0 10 0 

RaF 0 1 0 2 0 4 0 1 0 3 0 2 0 2 0 0 

R4M 3 0 1 0 :2 0 '1 0 3 0 5 1 3 0 8 0 

R4F 0 :2 0 1 0 0 0 'I' 0 2 0 3 0 1 0 3 

ruM 0 0 6 0 1 0 2 0 8 0 2 1 1 0 4 0 
ruF 0 0 0 4 0 3 0 3 0 11 0 1 0 3 0 1 

ReM 1 0 0 0 3 0 0 0 1 0 13 0 2 0 1 0 
MF 0 0 0 0 0 3 0 0 0 2 0 4 0 1 0 1 

R1M 4 0 2 0 :2 0 6 0 1 0 2 0 13 0 4 0 : 
R1F 0 1 1 1 0 1 1 0 0 2 0 0 

I 

0 9 0 2 
R8M 2 0 1 0 0 

I 
0 0 0 1 1 0 0 2 

I 

0 a 0 

RsF 1 1 0 i 0 0 0 0 0 0 1 0 0 0 0 0 Ii 

Error r .. te <urnma,y by .region ( .. ero .. 'ow< of the .. bove lable) 
Region I ltlM I RlF 'R2M R2F RaM I R3F I R4M R4F I R5M I RSF R6M I R6F R7M I RTF RaM RSF 
Error 
R .. te .76 .88 .74 .56 .81 .73 .79 .63 .6S .58 .38 .63 .62 .50 .t3 .38 

Table 4.12. A table of the confusion matrix resulting from classifying LTAGRs by region using 

discriminant analysis. In the notation scheme used here, RtF indicates Region I, Female speech, and 

so on for the other regions. 

(see §2.8.3). Stepwise discriminant analysis (§3.4.2.1) is again performed to determine 
the best LTAGR descriptors. Table 4.11 contains the twelve descriptors selected by 
applying stepwise discriminant analysis to all twenty-one LTAGR descriptors abstracted 
from the 352 American speakers. The nine descriptors not selected by the stepwise 
discriminant analysis do not contribute to the discriminatory power for identifying a 
person's accent region. In Table 4.12 is given the classification summary (or confusion 
matrix) for 352 utterances from the regions defined in Table 4.7, using the descriptors 
listed in Table 4.11. It is important to remember that, since the same set of descriptor 
observations are used for testing and training, the confusion matrix specifies how well 
the training data is separated and cannot be generalized to make statements about 
how accurate these descriptors might be for performing recognition. LTAGRs from 
many of the regions were classified with a lower error rate than the chance error rate 
of 15/16=0.9375. However, none of the regions were classified without error, and 
in particular R1F and R3M have error rates greater than 0.80, approaching 'chance' 
classification error rate. Clearly the features abstracted from the LTAGR fail to classify 
American individuals into dialect groupings. It is not possible to determine from this 
analysis whether the inability to discriminate is because the descriptors do not represent 
the information in the LTAGR accurately enough or is because the LTAGR does not 
represent information about a person's accent accurately. 

The speakers' accents are from a continuous accent range, so they would not all 
be expected to fall strictly into one of the specified regions. For example, a speaker 
from an area near the border of two regions could have an accent that falls somewhere 
between the average accent of the two regions. 

The probability of an observation occurring from a region varies when the regions 
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LTAGR descriptors selected 

CeO I Cl AI 
cl 

Table 4.13. Descriptors selected by using stepwise discriminant analysis to select descriptors that 

best distinguish the sex of the 352 American speakers from the TIMIT database. 

Sex Female Male 

Female 124 7 

Male 7 214 

Table 4.14. A table of the confusion matrix resulting from classifying LTAGRs by sex using discrim

inant analysis. 

have significantly different populations. These probabilities of different regions (or 
groups in the general case) are called prior probabilities. The distance measure used to 
classify observations can be weighted by the prior probability to account for variations in 
the probability of observation (Klecka, 1980; SAS, 1985b), but here the prior probability 
is set to the constant value 1/16=0.0625, which specifies each of the groups to be equally 
likely. This means that observations from regions with small numbers of subjects tend 
to get more matches than might be expected if prior probabilities are used (Lindeman 
et al., 1980, §6.3.5), whereas regions with large numbers of subjects tend to get fewer 
matches. It is impracticable to assign prior probabilities to this analysis since the 
population distribution is unknown. 

Examination of Table 4.12 shows that males tend to be confused with males from 
other regions and a similar trend is observed for females. Descriptors of the LTAGR 
were therefore analysed to ascertain whether they are likely to be useful for determin
ing the sex of a speaker. Stepwise discriminant analysis was performed to select the 
descriptors that are most useful for distinguishing the sex of a speaker. Table 4.13 
contains the thirteen descriptors selected as useful for classifying speakers by their sex. 
Table 4.14 shows the classification summary of LTAGRs from 131 females and 221 
males using these descriptors. The small error rate of 0.040 indicates that the LTAGR 
is suitable for distinguishing between the sex of speakers from the United States. 

The aforementioned gender classification error rate of 0.040 compares favourably 
with results reported by other researchers. Using cepstral features, Fussell (1991) per
formed gender classification on vowels, liquids, nasals, fricatives, stops. The lowest 
classification error rate for 420 speakers (290 male and 130 female) from the TIMIT 
database, using each of the above phonemes, was 0.060 for vowels. Childers et al. (1988) 
found that reflection coefficients, computed from six speech frames extracted from sus
tained vowels, gave an error rate of 0.000 for gender classification of 52 speakers (27 
male and 25 female). They also found that classification using descriptors of the spec
tral characteristics of an LPC filter gave an error rate of 0.018 from only a single pitch 
period of speech. This is a low error rate, considering the duration of speech used, but 
the small number of speakers used in the experimental evaluation lowers the significance 
of the result. Although the duration of speech used for LTAGR computation must be 
longer than that required by the above methods, the computation of the LTAGR is 
straightforward and manual classification of phonemes (as required by both Fussell and 
Childers) is avoided. 
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The results of discriminant analysis by sex and by region indicate that the LTAGR 
is inadequate for distinguishing accents from different regions in the United States, but 
is useful for classifying people by sex. 

4.4 LONG-TERM AVERAGE SPECTRUM 

4.4.1 Introduction 

The long-term average spectrum (LTAS) has been used by several researchers (§4.4.3) in 
applications in which an estimate of a person's average voice is required. The motivation 
for examining the use of the LTAS for speaker identification is that it is a similar feature 
to the LTAGR, since both the LTAS and LTAGR represent a long-time average of speech 
characteristics. The main difference between performing SAA and calculating the LTAS 
is that SAA averages in the time domain, whereas the LTAS averages in the frequency 
domain. Additionally, it would be useful for several applications if the spectrum of 
the LTAGR could be shown to correspond closely to the LTAS, since the LTAGR 
is considerably simpler to calculate than the LTAS (see §4.5.1.2). The remainder of 
this section describes experiments to assess the differences between several methods of 
LTAS computation (§4.4.2) and finally discusses certain other applications of the LTAS 
in §4.4.3 that could possibly benefit from using the LTAGR instead. 

4.4.2 Comparison of various LTAS calculation methods 

This section introduces a number of options available for calculating the LTAS. It 
is impractical to discuss all the variations simultaneously, so they will be discussed 
under the following headings: the effect of removing unvoiced speech, pitch synchronous 
spectral estimation and the effect of pre-emphasis. Note that, to highlight particular 
points, certain calculation methods may be mentioned more than once in the course of 
these comparisons. 

4.4.2.1 LTAS methods 

The LTAS of an utterance is computed here in the following manner: frames of 128 
speech samples are windowed with a Hamming window, their power spectra calculated 
and the spectra averaged over all frames. A number of different preprocessing tech
niques are applied in the examples presented. The aim of examining so many different 
computation methods is to determine the advantages and disadvantages ofthe different 
methods and to ascertain which ofthe standard LTAS calculation methods most closely 
match the spectrum of the LTAGR (see §4.5.1.1). 

As was described in §2.5.2, the effect of the lip radiation and glottal source charac
teristics can be reduced by pre-emphasis of the signal before calculation of the spectra. 
For the purposes of pre-emphasizing the LTAS, the speech is passed through a ffi
ter having a transfer function of (1 - O.95z-1). This has the effect of increasing the 
magnitUde of the second, third and higher order formants. 

If the LTAS is to be used to deduce information about the glottis, as it might be in 
therapy, it is usual to utilize only the voiced portions of the speech signal. Both voiced 
and entire utterances are examined to highlight the effect that removal of unvoiced and 
silent portions has on the LTAS. 

The final variation in calculating the LTAS, is to align the frames in a pitch syn
chronous manner with the duration of each frame set to a single pitch period. This 
is effectively the process used in aligning the glottal pulse in SAA. Averaging across 
frames is then similar to the averaging that occurs in SAA (§2.8.2), except that the 
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Extension Preprocessing technique 

blank no preprocessing and entire utterance 

-V voiced speech only 

-E pre-emphasis 

-VE voiced pre-emphasized speech 

-P pitch synchronous frame alignment 

-PE pitch synchronous frame alignment of pre-emphasized speech 

Table 4.15. Extensions to the lettem LTAS and their meaning. 

contripution of the glottal 'pulse', as recorded in the speech, signal, is averaged in the 
frequency domain instead of the time domain. One should expect that the LTAS cal
culated using this method to correspond most closely to that obtained by calculating 
the spectrum of the LTAGR signal. 

To distinguish between the various methods of calculating the LTAS, the extensions 
defined in Table 4.15 are appended to the letters 'LTAS'. 

4.4.2.2 Effects of removing unvoiced speech and silent periods from the 
speech 

In general, for the LTAS examples presented here, distances between any two spectra 
are not uniform across the whole spectra. The parts of the spectrum where different 
methods give different results are identified by examining plots of spectra overlaid on 
the same graph. This type of comparison indicates whether one method of LTAS cal
culation contains information not represented by another method, prompting further 
examination of the information recorded using the different methods of LTAS compu
tation. 

Fig. 4.13 shows the LTAS calculated for voiced speech and the entire utterance for 
four different people saying the rainbow passage, "When sunlight strikes raindrops in 
the air, they act like a prism and form a rainbow". The first point to note is that the 
effect of removing unvoiced and silent portions of speech is to reduce the high frequency 
energy (above 2 kHz) in the LTAS. This is to be expected since unvoiced sounds tend to 
have more energy above 2 kHz than below. Voiced sounds on the other hand are excited 
by a source whose spectral energy falls off at approximately 1/ j2, and so contribute 
less spectral energy above about 3 kHz. 

Examination of the LTAS of unemphasized speech depicted in Fig. 4.13 reveals that 
the maximum difference between the voiced and entire utterance in the band of 0-2 kHz 
is 2.11dB for speaker AE (see Fig. 4.13(a)). If interest in the LTAS is in the region of 
0-2 kHz, it would seem unnecessary to implement a voicing decision. 

The LTAS and LTAS-V spectra belonging to speaker KG (see Fig. 4.13(c)) differ 
by only 0.23 dB in the 0-2 kHz range, indicating that the difference between process
ing entire utterances and voiced speech is dependent on the speaker. The differences 
between speakers is further highlighted by examining the differences in the voiced and 
entire utterance LTAS above 2 kHz. Speakers AE, BM, KG and TC have maximum 
differences between LTAS of their voiced and entire utterances of 36, 26, 8 and 18 
dB. Speaker KG stands out in having a very small difference between the two spectra. 
Both of the females have smaller differences than the males, which indicates that the 
relationship between female voiced sounds and unvoiced sounds tends to be different 
from that of males. 

The effect of removing the unvoiced and silent portions of the speech and then 
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Figure 4.13. Depictions ofthe LTAS, LTAS-VE, LTAS-E and LTAS-V of the rainbow passage uttered 

by speakers;(a) AE (male), (b) BM (male), (c) KG (female),(d) TC (female). 

performing pre-emphasis is also illustrated in Fig. 4.13. All the comments made above 
pertaining to unemphasized speech also hold for pre-emphasized speech. This is to 
be expected since pre-emphasis can be thought of as a smoothly varying gain that 
is applied across the whole spectrum and therefore does not significantly alter the 
differences between spectra. 

4.4.2.3 Pitch synchronous spectral estimation 

It might be expected that the LTAS calculated in a pitch synchronous manner would 
more accurately represent information about the spectrum of a person's average glottal 
flow, since the peaks occurring in a person's speech are aligned to be in the centre of 
the speech frame. This section examines the effect of selecting speech frames in a pitch 
synchronous manner before determining the LTAS. 

Before examining results taken from actual speech it is pertinent to discuss the 
differences that one might expect between pitch synchronous and asynchronous spectra. 
The difference between the two methods is in the alignment of each frame. This affects 
the spectral content of each frame, since windowing reduces the amplitude to zero at 
the frame edges. For example, in the non-aligned case, if a significant peak is at the 
edge of the frame, the windowing operation will cause its amplitude to be attenuated 
thus altering the spectral content of that frame. One might therefore expect the non-
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Figure 4.14. The LTAS-VE, LTAS-P, LTAS-PE and LTAS-V for the raindrops passage uttered by 

speakers: (a) AE, (b) BM, (c) KG and (d) TC. 

aligned LTAS to contain a less accurate representation of the spectrum of the average 
glottal flow. However, this adverse effect of windowing is minimized by overlapping 
speech frames so that the total spectral energy in the voiced speech is recorded. For 
the Hamming window this corresponds to an overlap of a third of the size of the speech 
frame. The non-aligned LTAS therefore records the average of all the spectral energy 
in the speech, whereas pitch synchronous LTAS records most of the spectral energy in 
the speech, since most of the energy is centred round the major peaks in the speech 
signal. 

The LTAS of voiced speech and the pitch synchronous LTAS of voiced speech are 
depicted in Fig. 4.14. The differences between these two spectra is less than 10 dB 
for all frequencies except for dc (0 Hz) of speaker KG. The pattern of peaks and 
valleys described by the LTAS-V and LTAS-P is identical for speaker KG, whereas 
the other speakers have a small number (from one to three) of peaks or valleys that 
do not correspond to those of the LTAS-V. The additional excursions tend to be of 
small amplitude and do not significantly alter the general shape of the spectrum. An 
example of two small additional valleys in LTAS-P compared with LTAS-V is depicted 
in Fig. 4.14(a) at 4.2 and 4.7 kHz. At these frequencies the pitch synchronous spectrum 
has two extra valleys. 

Differences between the LTAS-V and LTAS-P occur consistently for male speech 
in the low frequency region of the spectra. The portions of the spectra that describe 
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the pitch frequency and the first formant of the male voices AE and BM (depicted 
in Fig. 4.14( a) and (b)) have different patterns of peaks. The LTAS of the voiced 
speech shows two distinct peaks, one at about 80-130 Hz that is produced by the pitch, 
and another at about 400-500 Hz that corresponds to the first formant frequency. 
The LTAS-P has only a single peak at approximately the pitch period, which falls off 
smoothly to the first formant. It is apparent from the spectra depicted in Fig. 4.14 
that, apart from the differences round the first formant, the pitch synchronous spectra 
do not contain significantly different information from the LTAS of voiced speech. 
The additional computational effort involved in determining the pitch and aligning 
the speech frames with the maximum peak in the speech waveform cannot therefore be 
justified. 

Fig. 4.14 shows LTAS-VE calculated with and without pitch synchronism. The 
effect of pre-emphasis on LTAS-V and the pitch synchronous LTAS-P is to increase 
the amplitude of the higher frequencies. The differences between the LTAS-VE and 
LTAS-PE are similar to those outlined in the previous paragraphs, with the spectral 
differences being altered somewhat owing to pre-emphasis. 

4.4.2.4 The effect of pre-emphasis 

Figs. 4.13 and 4.14 contain both pre-emphasized and unemphasized LTAS on the same 
graph. At first glance pre-emphasized and unemphasized speech appear to have the 
same general shape, differing by a gain factor. However the non-linear gain of the (1 -
0.95z-1 ) pre-emphasis filter across the spectrum causes the pitch frequency component 
to be attenuated compared with the first formant, whereas higher frequency components 
are amplified. 

For the purposes of recording spectral information in a person's voice pre-emphasis 
before calculating the LTAS is of little importance. Provided the system used to cal
culate the LTAS has enough dynamic range to represent the low energies in the high 
frequency portion of the spectrum, the spectral weighting due to pre-emphasis can be 
applied after the LTAS has been calculated without loss of information. This outcome 
is based on the distributive property of the Fourier transform. In practice it can be 
performed by adding the log spectrum of the pre-emphasis filter to the log of the LTAS. 

4.4.3 Other applications of the LTAS 

LOfqvist (1986) provided an overview of the application of LTAS to measurement of 
voice quality and put forward the opinion that "while long-term spectra are potentially 
useful in the clinic, their possibilities and limitations are not well understood". To gain 
a better understanding of the usefulness of the LTAS in clinical applications, several 
researchers have conducted experiments in which the LTAS is evaluated either as a tool 
in diagnosis or as an objective method of monitoring the progress of therapy. 

Lofqvist (1986) compared the parametrized LTAS calculated from 37 normal and 36 
clinical voices to determine whether the LTAS had potential for distinguishing between 
the two types of voice. The clinical voices contained cases of vocal fatigue, chronic 
laryngitis and vocal nodules. The aim was to examine whether the dominant differ
ences among speakers could be attributed to an abnormality in their voices, or whether 
they were related to variations in people's voices that were independent of their clin
ical state. Lofqvist (1986) omitted to state whether or not all the clinical voices were 
female, so it is difficult to know whether the sex of the speaker had any influence on 
the reported results. Parameters based on the ratio of energies in the 0-1 kHz and 1-5 
kHz speech bands indicated that there was considerable overlap between normal and 
clinical LTAS parameters, implying that the LTAS is probably unsuitable for patient 
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diagnosis. Kitzing (1986) supported this claim and added that interspeaker variations 
were large, which made comparisons between individuals difficult. Although large in
terspeaker variation is good for speaker identification, it is undesirable for defining an 
average 'characteristic' that corresponds to a particular clinical condition. However, 
Kitzing (1986) and Lofqvist (1986) both considered the LTAS to be useful for monitor
ing changes in a client's voice. 

Researchers such as Wendler et ai. (1986) and those cited in their paper, utilized 
the LTAS of speech to perform objective analysis of the voice and so improve voice 
diagnosis. The LTAS was used to classify voices according to the degree of hoarseness, 
roughness and breathiness. The LTAS was considered to be useful in helping a clinician 
make diagnostic decisions, but it was too inconsistent to be used as the only measure 
in performing a diagnosis. 

The LTAS is also useful for providing an estimate of the glottal flow and lip radiation 
characteristics. Furui (1974) argued that by averaging the speech spectrum over a 
long time, the vocal tract response was averaged, leaving contributions from the glottal 
characteristic and lip radiation characteristic. This argument is almost identical to that 
presented in §2.8.2 to explain the averaging process that occurs within SAA. It is this 
similarity ofthe two techniques that prompts the comparison between them in §4.5.1.1. 
Furthermore, if the LTAGR and LTAS are shown to contain similar information, the 
LTAGR as calculated by SAA may be clinically useful in the same applications as the 
LTAS. 

4.5 THE SPECTRUM OF THE LONG-TERM AVERAGE 
GLOTTAL RESPONSE 

This section describes methods used for calculating the spectrum of the long-term 
average glottal response (LTAGR) and compares such spectra against LTAS-VE. The 
aim of this comparison is to determine whether the information recorded in the LTAS
VE can be extracted from the LTAGR, as determined by SAA. If the LTAS of speech can 
be shown to be approximated by the spectrum of the LTAGR, estimation of long-term 
speech characteristics by the LTAGR may be of practical use in clinical applications. 

4.5.1 Calculation of the spectrum of the long-term average glottal 
response 

The spectrum of the LTAGR is determined by zero packing the LTAGR (computed by 
the SAA algorithm) to 256 samples and then computing the power spectrum of the 
zero packed signal. 

Fig. 4.15 shows that the power spectrum obtained by this method has a significant 
harmonic ripple on it, which tends to obscure the underlying formant structure. This 
ripple is caused by pitch harmonics within frames of the speech signal that are aver
aged together in the SAA algorithm. When comparing two spectra it is preferable, 
however, to examine the general trends and the ripple components of the log-spectrum 
are therefore attenuated by passing the log-spectrum through a 32 tap smoothing filter. 
The smoothing filter consists of a sinc function, which averages adjacent frequencies of 
the log spectrum when it is convolved with the log spectrum. The degree of smoothing 
is proportional to the width of the main lobe of the sinc function which is defined as 
the distance in hertz between the zero-crossings of the main lobe of the sinc function. 
Before being used as a filter, the sinc function is windowed by a four-term Blackman
Harris window to reduce artefacts. The smoothed log-spectra for several different sinc
based smoothing filters are depicted in Fig. 4.15 where it is apparent that the choice 
of smoothing filter significantly alters the SAA spectrum. A smoothing filter with a 
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Figure 4.15. Examples of iiltering the spectrum of the LTAGR as determined by SAA for the phrase 
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width of 396.25 Hz was selected as most suitable for smoothing the spectrum, since it 
attenuates the ripple in the LTAGR spectrum without smearing its overall shape too 
much. 

4.5.1.1 Comparison of the spectrum of the LTAGR and the LTAS 

The aim of comparing the spectrum of the LTAGR and the various LTAS is to ascertain 
whether they contain similar spectral features. The LTAS and LTAGR are compared 
by visually inspecting pairs of spectra. This gives a subjective indication of any spectral 
features that may be strongly present in one spectrum but absent in the other. 

The LTAGR spectra are compared against the LTAS of voiced speech and pre
emphasized voiced speech for four different speakers. LTAS-VE and LTAS-V were 
chosen for comparison because, firstly, both are straightforward to compute, and sec
ondly, LTAS-VE closely matches the LTAGR of pre-emphasized speech and LTAS-V 
the LTAGR of voiced speech. 

Fig. 4.16 shows that the spectra of LTAS-V and LTAGR both fall rapidly to ap
proximately -50 dB and after that fall off more slowly. The difference between the two 
spectra varies significantly amongst the four speakers. In general, between 1-3 kHz 
LTAS-V contains more energy than the LTAGR. On the whole the formant positions 
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for LTAS-V and LTAGR are the same, though the amplitudes vary. 

In all the examples shown in Fig. 4.16 the initial fall off of the LTAGR (at about 1 
kHz) is at least 10 dB greater than that of the LTAS-V. This fall-off in high frequency 
energy in the LTAGR can be attributed to the averaging that takes place in the time 
domain, which tends to smooth the LTAGR signal. Thorpe (1990, §4.3.1.2) points out 
that many of the high frequency components of the speech signal are not synchronized 
with the low frequency components, causing them to be smoothed out (Fujimura, 1968). 
In other words, since the SAA algorithm averages frames of the time waveform and 
records the phase of each component in that frame, the process of averaging many 
frames together to form a LTAGR causes certain components to be cancelled out. 
Components due to noise and vocal tract variation tend to be averaged out of the 
LTAGR.Complete cancellation does not occur, as evidenced by the spectrum computed 
after performing SAA on pre-emphasized speech having much higher energy in the 
2-5 kHz frequency range than SAA on unemphasized speech. If the cancellation of 
high frequency components were complete, there would be no observable 'formant-like' 
structure at higher frequencies. 

In the calculation of LTAS-V the power is summed up for each speech frame, so no 
cancellation whatever occurs. Smoothing of the spectrum occurs when a large number 
of spectra are averaged together, since varying contributions are averaged across all the 
frames. 

It is important to point out that SAA performed on pre-emphasized speech is not 
based on the same frames as unemphasized speech, since the peaks in pre-emphasized 
speech occur at the steepest slopes of the unemphasized speech waveform. This shift 
in frame alignment means that LTAGR and LTAGR-E are not related by the transfer 
function of the pre-emphasis filter in the same way that LTAS-V and LTAS-VE are. 

From the spectra ofthe pre-emphasized long-term average glottal response (LTAGR-
E) plotted in Fig. 4.16, it is apparent that though the LTAGR-E and LTAS-VE spectra 
contain 'formants' at many of the same frequencies, the amplitudes of the formants are 
different. In addition, the LTAGR spectra sometimes contain peaks and valleys that 
are absent in the LTAS-VE. For example, the two peaks that occur at 4.25 and 4.7 
kHz in the LTAGR-E spectra of Fig. 4.16(a) are completely absent in the LTAS-VE. 
In general, the approximation of LTAS-VE by the spectrum of the LTAGR-E is less 
accurate in the 4-5 kHz region. All of the speakers have additional harmonics in the 
4-5 kHz region of the spectrum of the LTAGR-E that are absent in the LTAS-VE. 

Further comparison of the LTAS-VE and LTAGR-E is by way of the differences 
between the two spectra. Fig. 4.17 shows the difference in dB between the LTAS-VE 
and the LTAGR-E. The range of the difference values varies significantly amongst the 
speakers. The relationship between the spectrum of the LTAGR-E and the LTAS-VE 
depends on the frequencies present in a person's voice and how the LTAGR represents 
them for that particular person. The 'peaks' and 'dips' within Fig. 4.17 represent peaks 
or dips in the LTAS-VE that are recorded in the LTAGR-E, or vice versa. For example, 
at 4 kHz and 4.6 kHz in Fig. 4.17(c) two dips can be readily identified as departures 
from the LTAS-VE in Fig. 4.17(c). In general, the differences between LTAS-VE and 
LTAGR-E are less than 10 dB across most of the spectrum, and for speaker KG are 
significantly less. 

Apart from these differences, the similarity of the LTAGR-E to the LTAS-VE indi
cates that the LTAGR-E and LTAS-VE represent similar aspects of the speech signal. 
Since the LTAGR-E is significantly easier to compute than the LTAS (see §4.5.1.2) 
and describes similar aspects of the speech signal, it may be suitable for the clinical 
assessment of speech disorders (see §4.4.3). 
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Figure 4.16. The LTAS-V, LTAS-VE and the filtered spectra of the LTAGR and LTAGR-E for the 
rainbow passage uttered by speakers (a) AE, (b) BM, (c) KG and (d) TC. 

4.5.1.2 Computational requirements 

There is a significant difference in the computational resources required to determine 
an estimate of the LTAS with the LTAGR and the computation required to perform 
the many FFTs used in the standard LTAS approach. In order to estimate the number 
of operations required by these two methods various assumptions must be made about 
the number of frames that are processed per second and the voicing (or otherwise) of 
the sampled speech signal. 

It is assumed that the speech being processed is voiced and the aim is to arrive at 
an approximate figure for the number of operations per second on voiced speech. It is 
also assumed that pre-emphasis has been performed on the voiced speech. 

To calculate the number of operations used to determine the LTAGR, it is necessary 
to specify how many 'glottal' pulses occur in a second since this affects the frame 
rate. Here the pitch is assumed to be 100 Hz, implying a total of 100 frames per 
second. The number of additions recorded in Table 4.16 is therefore comprised of 12 800 
additions per second for accumulating the glottal responses and 12 800 subtractions 
per second for locating the SAA frame. Once the LTAGR has been determined, one
off calculations are required to find the spectrum of the LTAGR and then smooth 
the spectrum. Calculation of the spectrum is by a 128 point FFT, which requires 
2 X 128log2 128 (=1 792) real multiplications and 3 x 128log2 128 (=2688) real additions 
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Figure 4.17. The difference between LTAS-VE and the filtered spectra of LTAGR-E (as depicted in 

Fig. 4.16) for the speakers (a) AE,(b) BM,(c) KG and (d) TC. 

(Papoulis, 1980, p375). 

The number of operations required to calculate the LTAS is more complicated to 
evaluate. In order to record the spectral content of the voice fully, each windowed 
speech frame is overlapped by 60 %. This means that each new frame moves along the 
speech record by 128/3=43 samples implying that, for speech sampled at 10kHz, one 
second of speech corresponds to 234 frames. 

From Table 4.16 it is apparent that estimation of the spectral content of a per
son's voice via the LTAGR is computationally efficient compared with the more usual 
LTAS approach. The computational advantage is most pronounced for the number 
of multiplications/s required to determine the spectrum by the two different methods. 
The SAA algorithm does not require any multiplications at all on a per-second basis 
and only 6 016 for the final spectrum calculation. The LTAS approach on the other 
hand requires 85 560 multiplications/so The difference in the number of additions and 
subtractions/s is not as large, but at 25 600 compared with 121 088, is significant 
nonetheless. 

It is feasible to produce an aggregate measure of computational requirements by as
signing a 'cost' to a multiplicative operation compared with an addition or subtraction, 
but this has been avoided since it depends on which computer the algorithms are run. 
Nevertheless, it is apparent from Table 4.16 that one would expect a 5-10 times reduc
tion in computational requirements by using SAA to estimate the long-term spectrum 
of speech. 
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Method Units Operation Additions and Multiplications 
subtractions 

SAA O/s peak location 12800 0 

summation 12800 0 

total O/s 25600 0 

0 windowing 0 128 

FFT 2688 1 792 

filter 4096 4096 

total one-off 0 6784 6016 

LTAS o /frame ~wing 0 128 
'FFT 2688 1 792 

summation 128 0 

total O/frame 2816 1920 

total Ols 121088 85560 

Table 4.16. Comparison of the number of operations required to determine an estimate of the long

time average speech spectrum. Note that the letter '0' in the above table stands for 'operations'. 

4.6 SUMMARY 

The purpose of this chapter is to introduce speech features that might be useful for 
speaker identification, to examine some of their properties and to set the scene for the 
experimental work reported in Chapter 5. Section 4.1 describes the database used for 
the speaker identification experiments described in Chapter 5. The features introduced 
in this chapter are listed below, and results of the analysis performed in this chapter 
are summarized. 

• Tests on the vector quantization software that the author uses to construct 
speaker codebooks are reported in §4.2.2, and the operation of the software veri
fied. 

• Descriptors that characterize the LTAGR are defined in §4.3.2. 

• Factor analysis (§4.3.3.1) of LTAGR descriptors of 352 male and female American 
speakers from eight different accent regions reveals that the first factor, which 
accounts for 67.7% of the variance, is strongly correlated with descriptors (such 
as cubic coefficients) that describe the general shape of the LTAGR. The next 
two factors account for 11.5% and 4% of the total variance and are most highly 
correlated with the number of peaks in the LTAGR. Scatter diagrams of the first 
three factors for all 352 speakers does not reveal any significant clustering, either 
by sex or by accent. 

• Discriminant analysis (§4.3.3.2) ofLTAGR descriptors ofthe 352 American speak
ers gives an average classification error rate for classification by region of 63.1 % 
whereas the classification error rate for classification by sex is 4.0%. 

• Examination of various LTAS calculation methods in §4.4.2 reveals that the effect 
of removing unvoiced and silent portions from the speech becomes significant 
above 3 kHz. Pitch synchronous LTAS produces similar spectra to asynchronous 
techniques and is therefore abandoned. LTAS-VE is selected as the LTAS feature 
for use in identification experiments in Chapter 5. 
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• The spectrum of the LTAGR-E is found to be similar to the LTAS-VE in §4.5.1.1. 
The 5-10 times computational advantage of the LTAGR-E over the LTAS-VE 
(§4.5.1.2) may justify a preference for its use in applications that utilize the LTAS
VE. 
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CHAPTER 5 

SPEAKER IDENTIFICATION EXPERIMENTS 

This chapter reports the results of speaker identification experiments using the speech 
and recognition features described in Chapter 4. Various features for speaker recogni- . 
tion are subjected to a battery of tests to evaluate their performance under a variety of 
conditions. This is similar to the method adopted by Atal (1974), except that featur6 
other than LPCs are tested and the effect of noise and distortion is examined. 

Section 5.1 introduces terminology for describing utterances and features. In §5.2 
aspects of speaker template computation are defined. The section also describes anal
ysis of the speaker templates to find the average intraspeaker and interspeaker dis
tances. Section 5.3 describes statistical methods for interpreting results from the vari
ous speaker identification experiments. Speaker identification experiments using CEP. 
PARCORjLPC, LTAGR and LTAS-VE features are reported in §5.4, along with the 
accuracy of certain combinations of the above features. The effect of noise and distor
tion on these features is examined in §5.5. Computational considerations are discussed 
in §5.6, and the main findings of the identification experiments are summarized in §5.1. 

5.1 TERMINOLOGY 

Throughout this chapter, the following conventions are used for describing utterances. 
Utterances that are processed in their entirety, including silences and unvoiced portions,. 
are called entire utterances. In many of the experiments reported here, only the voiced 
portions of utterances are used, and this is indicated by appending V to the feature 
abbreviation. 

Where the speaker's template comprises a quantized feature, the number of vectors 
stored in the codebook is appended to the end of the feature abbreviation. For example.. 
CEP4 implies cepstral coefficients and a codebook consisting of 4 codevectors. 

Identification results are computed for VQ codebook sizes (L) ranging from 2 to 
128, with each increment in codebook size being a doubling of the number of vectors 
in the codebook. In order to make this range linear the codebook rate (see (2.75)), 
defined as R = log2 L, is used. 

Since there are many different features, it is necessary to define notation to specify 
the feature utilized to measure a particular distance. The feature specifier is recorded 
in the subscript, for example, dC EP16 indicates that the distance is a measure between 
cepstral coefficients and a codebook of cepstral coefficient vectors containing 16 code
vectors. 

5.2 TRAINING OF SPEAKER TEMPLATES 

Speaker templates are formed from each individual's training utterances. The method 
used to calculate each template depends upon the format of the feature that is to 

be represented in the template. For example, the PARCOR and CEP templates aTe 
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formed using the LBG VQ training algorithm described in §2.7.4.3, while the LTAS-VE 
and LTAGR templates are the normalized averages of the LTAS-VE and LTAGR taken 
over five training utterances. 

5.2.1 Normalization of the LTAGR and LTAS-VE 

To ensure that contributions to the templates from each of the training utterances are 
of equal weight, the LTAGR and LTAS-VE are normalized before template averaging 
occurs. For the LTAGR, this is achieved by scaling the LTAGR so that the maximum 
amplitude is unity. This is an acceptable normalization procedure, since the speech 
being processed has no underlying dc component. The LTAS-VE is normalized by 
scaling the power spectrum so that the total energy in the spectrum is unity. 

5.2.2 Analysis of speaker templates 

One method of investigating the utility of a feature is to examine how well it separates 
a person from all the oth.er people in the database. Here'the training utterances are 
utilized to compare the average distance of a person's features from their own template 
(the intraspeaker distance) and the average distance from other people's templates 
(the interspeaker distance). In addition, following the analysis techniques of Soong and 
Rosenberg (1988), the correlation between intraspeaker distances derived from different 
features is examined. 

The expected accuracy of a particular feature depends on the interspeaker distance, 
the intraspeaker distance and the standard deviations of both of these distances. A 
feature that works well for speaker identification should have an average interspeaker 
distance that is significantly larger than the intraspeaker distance across all the par
ticipating individuals. Fig. 5.1 shows the interspeaker and intraspeaker distances for 
PARCOR and CEP codebooks constructed from the entire speech utterance, while 
examples of interspeaker and intraspeaker distances taken from only voiced speech 
are shown in Fig. 5.2. Although the larger codebooks exhibit averaged interspeaker 
distances that are well separated from the intraspeaker distances, the interspeaker and 
intraspeaker distances are highly correlated. This is unexpected since an utterance that 
is not 'close' to the correct speaker's template should be 'dose' to another speaker's 
template. However, the high correlation implies that an utterance that is 'close' to 
the correct template is also 'close' to all the other speaker's templates and vice versa. 
Table 5.1 tabulates correlations between the interspeaker and intraspeaker distances 
for individual speakers as calculated using Pearson's correlation formula (Eton, 1974). 
Templates and test utterances containing the entire speech utterance have a high cor
relation between the intraspeaker and interspeaker distances, whereas templates and 
test utterances calculated from only the voiced portions of the speech utterance are 
much less correlated, particularly for CEP coefficients. 

Increasing the number of vectors in the codebook does not significantly increase 
the average difference between the interspeaker and intraspeaker distances, nor the 
standard deviation of the interspeaker distance, but it does reduce the standard devi
ation of the intraspeaker distance. This can be deduced by observing the trend in the 
intraspeaker distance in Fig. 5.2 and Table 5.1 as the codebook size is increased. A 
comparison of the difference between the interspeaker andintraspeaker distances of the 
utterances with and without silence, indicates that the interspeaker distances and in
traspeaker distances are separated more for voiced speech than for the entire utterance. 
This implies that the voiced speech should be more accurate for speaker identification. 
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Figure 5.1. The interspeaker and intraspeaker distances calculated between the training utterances 

and the speaker templates using the entire utterance. The thick lines represent the average distance 

and the thinner lines the standard deviation of the distance. The following features are examined: (a) 

CEP64, (b) PARCOR64, (c) CEP16, (d) PARCOR16, (e) CEP4, (f) PARCOR4. 

Feature r Feature r Feature r Feature r 

PARCOR4 0.92 PARCOR4V 0.59 CEP4 0.90 CEP4V 0.42 
PARCOR8 0.89 PARCOR8V 0.51 CEP8 0.87 CEP8V 0.16 

PARCOR16 0.84 PARCOR16V 0.44 CEP16 0.80 CEP16V 0.15 
PARCOR32 0.78 PARCOR32V 0.38 CEP32 0.76 CEP32V 0.07 

PARCOR64 0.72 PARCOR64V 0.31 CEP64 0.66 CEP64V 0.04 

Table 5.1. Pearson's correlation coefficients evaluated between interspeaker and intraspeaker distances 

for various features. Recall that 'V' appended on the end of CEP and PARCOR indicates that features 

are calculated from only voiced frames of speech. 
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Figure 5.2. The interspeaker and intraspeaker distances calculated between the training utterances 

and the speaker reference templates. The thick lines represent the average distance and the thinner 

lines the standard deviation of the distance. The following features are extracted from voiced speech: 

(a) CEP64V, (b) PARCOR64V, (c) CEP16V, (d) PARCOR16V, (e) CEP4V, (f) PARCOR4V. 

The distributions of interspeaker and intraspeaker distances for the LTAGR and 
LTAS-VE are depicted in Fig. 5.3. Both the long-time average features have small aver
age intraspeaker distances compared with the inter speaker distances, but the relatively 
large standard deviation of the interspeaker distance implies that the large separation 
between the average interspeaker distance and the average intraspeaker distance will 
not necessarily result in more accurate recognition. 

Often, after a number of features have been selected, the goal is to combine them 
in some manner that improves the overall recognition performance. In this situation 
it is important to quantify which of the features are independent. Soong and Rosen
berg (1988) utilized the correlation between intraspeaker distances for the different 
features as a measure of whether a feature was redundant for speaker identification 
purposes. They asserted that, provided features contain speaker related information 
and are not highly correlated, combining them should increase speaker identification 
accuracy. Fig. 5.4 shows a scatter diagram of the intraspeaker distances dCEP16 and 
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Figure 5.3. The interspeaker and intraspeaker distances for each individual, calculated between the 

training utterances and each speaker reference template: (a) the LTAGR, (b) the LTAS-VE. 
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Figure 5.4. Scatter diagram showing the correlation between intraspeaker distances calculated using 

a long-term average glottal response and CEP16 (calculated correlation coefficient = 0.). 

dLT AGR. The correlation coefficient for the scatter diagram is zero, indicating that the 
dLT AGR and dCEP should be complementary features for speaker recognition. 

The correlations between a number of different features are summarized in Table 5.2. 
The intraspeaker distances dLT AGR and dLT AS-V E are more highly correlated with 
distances derived from voiced portions of the utterances than with unvoiced. This 

Feature LTAGR LTAS-VE CEP16 PARCOR16 CEP16V PARCOR16V 

PARCOR16V 0.16 0.10 0.29 0.48 0.58 1.00 

CEP16V 0.28 0.34 0.41 0.27 1.00 

PARCOR16 0.01 -0.08 0.85 1.00 

CEP16 0.00 0.01 1.00 

LTAS-VE 0.30 1.00 

LTAGR 1.00 

Table 5.2. Correlations between the intraspeaker distances of a number of different features. 
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is expected, because LTAGR and LTAS-VE are both calculated from voiced portions 
of the speech. The low correlation between the intraspeaker distances dCEP16 and 
dCEP16V is caused by the silent portions within the utterance, and this is discussed in 
more detail in the next section. The same trend is apparent between the dp ARCOR and 
dpARCORV distances. 

5.2.3 Correlation between intraspeaker and interspeaker distances for 
entire speech 

Fig. 5.1 and Table 5.1 indicate that the interspeaker and intraspeaker distances for 
the entire utterance are highly correlated. One would not expect the intraspeaker and 
interspeaker distances to be correlated at all, since there is no obvious reason why a 
training utterance that is a large distance away frqm its template should also be a large 
distance from templates belonging to other speakers. The correlations in Table 5.1 
would seem to indicate that the unvoiced and silent portions of an utterance contribute 
most to the correlation between the intraspeaker and interspeaker distances. 

The effect of the unvoiced and silent frames of an utterance on the total distance 
between a set of training vectors and a template is examined by calculating the in
traspeaker and interspeaker distances for individual frames within an utterance. An 
example of this is depicted in Fig. 5.5 for the phrase AEl. On average, the intraspeaker 
distance should be smaller than the inter speaker distance if the template is to be a useful 
representation of a person's voice characteristics for performing speaker identification. 
This corresponds to most of the points plotted in Fig. 5.5 falling below the 45 degree 
dashed line. Comparison between Fig. 5.5(a), (b) and (c) shows that the unvoiced and 
silent portions of an utterance contribute a large number of small amplitude distances 
to the total distance. The many correlated small amplitude distances in Fig. 5.5( c) 
tend to dominate the fewer large distances in Fig. 5.5(b) causing the total distance to 
be correlated. Fig. 5.5( d) shows the effect of removing unvoiced and silent portions of 
speech from both the template training utterances and the test utterances. 

The speaker identification accuracy is best when the utterance AEI is well separated 
from all the other speaker templates and all the points in the scatter diagram fall well 
below the 45 degree line. From Fig. 5.5 one would expect the speaker identification 
performance using a codebook of size 16 and voiced speech to be better than that 
obtained using the entire utterance. 

5.3 STATISTICAL SIGNIFICANCE OF IDENTIFICATION 
RESULTS 

This section addresses two problems concerning the interpretation of results from 
speaker identification experiments. The first problem is to estimate the confidence 
intervals to attach to results of identification experiments (§5.3.1 and §5.3.2), and the 
second problem (§5.3.3) is to select a suitable method for comparing experimental re
sults from two identification systems. 

5.3.1 A distribution for modelling the identification error rate 

One of the difficulties in evaluating the performance of speaker identification systems is 
to know what significance to attach to the error rate observed for a particular experi
ment. In other words, is the number of errors recorded from a particular experiment an 
accurate representation of the performance of the system, and how wide is the spread 
of observed error rates from one experiment to the next for the same nominal average 
error rate. To address this problem it is necessary to assume a distribution for the error 
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Figure 5.5. Plots of the intraspeaker distance versus the interspeaker distance for a single utterance 

of zero to nine by speaker AE (utterance AEl). Each '+' corresponds to a single set of CEP coefficients 

calculated from a single frame within AEI. (a) Distances calculated between all the frames of AEI 

and codebooks derived from entire utterances, (b) distances calculated between the voiced frames of 

AEI and codebooks derived from entire utterances, (e) distances calculated between the unvoiced and 

silent frames of AEI and codebooks derived from entire utterances, (d) distances calculated between 

the voiced frames of AEI and code books derived from voiced frames. 

rate so that it is possible to calculate the probability of observing a range of different 
results. 

Each identification experiment is made up of a number of identification trials which 
consist of matching a test utterance against the speaker templates, performing identi
fication, and recording whether or not the identification was correct. Since the identi
fication outcomes are either in error, or not in error, they can be considered to be the 
outcomes of a binomial process which has associated with it a probability, p, of produc
ing a recognition error (Johnson and Kotz, 1969). In the limit, an infinite number of 
identification trials would be required to obtain an exact estimate of p, the probability 
of error. Of course, the experimental results presented in this thesis are from experi
ments consisting of a finite number of trials so the number of errors observed only gives 
an estimate of p. 

Several assumptions about the nature of the trials are implied by asserting that 
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the distribution of recognition errors can be usefully modelled by the binomial distri
bution. Experiments must consist of a number of identical trials, denoted N, with 
the probability of a particular outcome being the same for each of the trials. In the 
speaker identification trials reported here, successive trials on the same speaker would 
be expected to have the same probability of error, since the same text is used for each 
test. But there is no guarantee that trials on different speakers would have the same 
probability of error, so the conditions for binomially distributed outcomes are therefore 
not strictly satisfied. However, the aim is to determine an overall error rate across 
many speakers and it seems reasonable to assume that the average error rate, across 
many speakers, is approximately binomially distributed. 

5.3.2 Binomial confidence limits 

This section examines two different approaches for estimating confidence intervals for 
the underlying probability of error, p. 

The most straightforward method of estimating a confidence interval is to assume 
Gaussian properties, and use values of the standard deviation, s. The standard devia
tion of a binomially distributed popUlation is defined as 

s = jNp(l- p), (5.1) 

where N is the number of trials. The standard deviation values are utilized to plot error 
bars that extend ±2s from the error rates of the speaker identification experiments. The 
probability that an experimental outcome will fall outside the ±2s range is 0: < 0.05 
(from the normal distribution). The quantity (1- 0:) is called the confidence level, since 
it measures the probability that the experimental outcome falls within the specified 
range. 0: is the probability the experimental outcome lies outside the specified range. 

Blyth (1986) discusses an alternative approach, where values from the cumulative 
binomial distribution are computed to yield an exact solution for the confidence interval. 
Before discussing the method for computing exact confidence intervals, it is necessary 
to introduce some notation for describing binomial probabilities. 

The probability of a particular experimental outcome is expressed in terms of the 
binomial distribution. If X represents the number of errors recorded in a speaker 
identification experiment, it follows that for the binomial distribution, 

(5.2) 

where (~) is the total number of combinations that x items can be abstracted from 

N items without repetition (Kreyszig, 1979, p860). 
In order to calculate a confidence interval for the underlying probability p, it is 

necessary to evaluate the probability that X ::; x. This is given by the cumulative 
binomial probability, which is written 

:r: 

Pr(X::; x) = L (1) pi(1 - p)N-i. 
i=O 

(5.3) 

Equation (5.3) can be used to compute confidence intervals by specifying a confidence 
level (1-0:) and choosing a value p so that Pr(X ::; x) 0:. This can be expressed 
concisely as 

Pr(X ::; xlp = Po) = 0:, (5.4) 

where Po is the value of p that causes the probability to equal 0:. Pr(X ::; x) can 
be evaluated using the incomplete beta function (Blyth, 1986; Abramowitz and Ste
gun, 1965). Computation of the inverse of this function is required to determine Po 



5.3 STATISTICAL SIGNIFICANCE OF IDENTIFICATION RESULTS 157 

:z; P Po nch thai Po .uch Ib,,1 
Pr(X S "Ip = pU) ~ Q Pr(X S "'Ip '" pU) ~ Q 

0 0.000 0.015 0.H2 
0.005 0.023 0.148 

2 0.010 0.031 0.153 

3 0.015 0.038 0.159 
4 0.020 0.045 0.165 

5 0.025 0.052 0.110 

6 0.030 0.058 0.116 

7 0.035 0.065 21 0.135 0.181 
8 0.040 0.011 28 0.140 0.187 

9 0.045 0.011 29 0.145 0.192 
10 O.OSO 0.083 30 0.150 0.198 

11 0.055 0.089 31 0.155 0.203 
12 0.060 0.095 32 0.160 0.209 

13 0.065 0.101 33 0.165 0.214 

14 0.070 0.101 34 0.110 0.220 
15 0.075 0.113 35 0.115 0.225 
16 0.080 0.119 36 0.180 0.231 
17 0.085 0.125 31 0.185 0.236 

18 0.090 • 0.131 38 0.190 0.241 
19 0.095 0.136 39 0.195 0.247 

Table 5.3. The upper confidence limit p8 of the underlying probability of error of a recognition system, 

given that x identification errors were observed. The confidence level Ci = 0.05 and the number of trialE 

is assumed to be N 200. 

and this is performed using the SAS function BETAINV (SAS, 1985a). Evaluation of 
Pr(X :::; xlp::::: Po) :::; 0: requires that N be defined, so here N = 200, which corresponds 
to the number of identification trials performed in a single identification experiment. 
The confidence limits discussed in the remainder of this section are therefore applicable 
to the results of identification experiments reported elsewhere in this chapter. The val
ues of p~ in Table 5.3 constitute the upper limit of the range of underlying probabilities 
of recognition error that could produce the observed value of x recognition errors. The 
best estimate of the underlying probability of error is 

pi = x/N, (5.5) 

and Po represents the upper confidence limit of this value. 
It is important when comparing experimental outcomes to know the lower con

fidence level as well as the upper confidence leveL The transforms P ---l< 1 - p and 
x ---l< N - x are invoked to calculate the lower limits and these are tabulated in Ta
ble 5.4. The relationship between Ph and Po and the observed number of identification 
errors x is plotted in Fig. 5.6. It is apparent from Fig. 5.6 that when lD identification 
errors are observed in an experiment, and the best estimate of the probability of error 
is pi = 0.050, the confidence interval for the underlying probability of error ranges 
between Ph = 0.027 and Po ::::: 0.083. 

The values of Po and Ph differ most from those derived from the standard deviation 
8 (as defined in (5.1» when x is small and also when x is around 100 (p = 0.5). 
Fig. 5.7 shows the upper confidence intervals (0: ::::: 0.05) Po - pi and 28. When the 
number of errors recorded is less than 18, the confidence interval is larger, and therefore 
more conservative, for the exact solution. However, above 18 recognition errors, the 
28 confidence interval is more conservative than the exact solution. Since many of 
the recognition experiments have small numbers of errors, the confidence intervals for 
the 0-20 range are of primary interest. Fig. 5.7 shows that, ignoring x ::::: 0, using 
28 for estimating the confidence interval causes a maximum difference from the exact 
confidence interval of 0.005 (0.5%), for x 1 (pi = 0.005). Although the difference 
of 0.005 in a confidence bound of O.OlD is significant, the 28 confidence intervals are 
used for figures containing identification error rates because they are easier to compute. 
The 28 confidence intervals will tend to be less conservative than the exact confidence 
interval. 
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:r P Po ouch thai :r pI Po such th .. t 

PIiX ~ zIp = p~) :s Q Pr(X <! "'Ip = p~) :s Q 

0 undefined undefined 20 0.100 0.061 

1 0.005 0.000 21 0.105 0.071 

2 0.010 0.002 22 0.110 0.076 

3 0.015 O.OO( 23 0.115 0.080 

-I 0.020 0.007 2-1 0.120 0.08( 

5 0.025 0.010 25 0.125 0.088 

6 0.030 0.013 26 0.130 0.093 

7 0.035 0.017 27 0.135 0.097 
II 0.040 0.020 28 O.HO 0.101 

\I 0.045 0.024 29 0.14,5 0.106 

10 0.050 0.021 30 0.150 0.110 

11 0.055 0.031 31 0.155 O.lH 
12 0.060 0.035 32 0.160 0.119 

13 0.065 0.039 33 0.165 0.123 

14 0.010 0.0(3 at 0.110 0.128 

15 0.015 0.041 35 0.115 0.132 

16 0.080 0.051 36 0.180 0.131 

!; I 

0.085 0.055 31 0.185 O.ltl 
0.090 0.059 38 0.190 O.HS 

19 0.095 0.063 39 0.195 0.150 

Table 5.4. The lower confidence limit p~ of the underlying probability of error of a recognition system, 

given that x identification errors were observed. The confidence level 0: 0.05 and the number of trials 

is assumed to be N = 200. 
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Figure 5.6. A graph of the 95% confidence interval when x errors are observed. The upper and lower 

bounds are from the e = Npo column of Table 5.3 and Table 5.4 respectively. 

5.3.3 Comparisons between two systems 

Confidence intervals can be used to compute bounds of the underlying probability error 
of an identification system. However, such intervals are only applicable to independent 
trials of a single recognition system. In the work reported here the aim is to compare 
between two or more identification systems to determine which of them is the most 
accurate. Typically, the only difference between such systems is the features that each 
employs. Trials that use these different sets of features are not independent because the 
training utterances are the same for all sets of features and the same test utterances 
are used to create speaker templates. When two systems are compared under these 
conditions, the tests can be considered to be paired, because for each utterance there is 
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Figure 5.7. Deviation from x of the upper confidence (Q' = 0.05) limit for different numbers of observed 

identification errors: (a) 0 to 20 errors, (b) 80 to 100 errors. 

a pair of results, one from each system. This section describes a method of calculating 
the significance of the differences in recognition performance between two systems (with 
paired results). 

Suppose that test utterances are applied to two identification systems that are la
belled here for convenience as system 0 (So) and system 1 (Sl)' The probability of 
error for the two systems So and SI is Po and PI respectively. The aim here is to decide 
whether experimental evidence indicates that Po = PI, Po 2: PI or Po ::; Pl. Note that 
McNemar (1947) calls this a comparison of proportions, since Po and PI can be consid
ered to represent the proportions observed from So and SI. The joint performance of 
system 0 and system 1 can be summarized in a 2 X 2 table as follows: 

So 
Incorrect Correct 

where Nij is the number of utterances that fit into the specified category. NOl is the 
number of utterances that So recognized correctly and Sl recognized incorrectly, and 
so on for the other Nij. The numbers of interest in this table are NOl and NlO since 
they record the differences in recognition performance between the two systems. 

The null hypothesis is that both of the systems have the same performance, i.e., 

Ho :po =Pl' (5.6) 

Following the notation of Gillick and Cox (1989), the total number of utterances that 
only one algorithm identified correctly is k = NOI + NlO . It is useful to introduce the 
notation E(NOl) to describe the expected value of NOl . Under H o, the expected value 
of NlO equals the expected value of NOl and therefore E(Nol - NlO ) = O. In other 
words (NOl - N lO ) has zero mean. The recorded difference between NOl and NlO must 
be normalized by the standard deviation of (NOl - NlO ) in order to be used as a test 
statistic. McNemar (1947) shows that 

2 
apI-PO a;1 + a;o - 2COV(Pb Po) 

1 
N(NOl + NlO) 

(5.7) 

(5.8) 
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and so defines a chi square distributed test statistic 

(5.9) 

Edwards (1948) points out that the chi square distribution is continuous, whereas the 
recorded error counts are discrete, so it is more correct to apply a continuity correction 
to INlO - NlOl. This is achieved by subtracting 0.5 from the larger of NOl and NlO and 
by adding 0.5 to the smaller of N01 and N lO • In practice this can be written as 

2 (IN01 - NlOl- 1)2 
X :::: 

N01 + NlO 
(5.10) 

k is typically small in the recognition experiments performed here, and so the test 
proposed by McNemar (1947) provides an exact test of Ho : Po :::: PI for all sample 
sizes. Equation (5.10) is therefore used for assessing the differences in performance of 
various features for speaker identification. The X2 statistic in Equation (5.10) has 1 
degree of freedom (McNemar, 1947), and once X2 has been computed for a particular 
pair of experiments, the chi-square distribution can be used to determine whether the 
statistic is significant. When attempting to disprove Ho using the X2 distribution, the 
value of 0: is the probability that lIQ is actually true. The smaller the value of 0:, the 
more significant the differences are between So and S1. 

Gillick and Cox (1989) state that when k > 50 and neither NOI nor NlO is close to 
0, a normal approximation to the exact Binomial probability can be used and (5.10) 
can be rewritten as 

w _ INol - NlOl - 1 
- JNOI +NlO ' 

(5.11) 

where the test statistic, lV, has 0 mean and unity variance under Ho. However, when 
k is small it is not advisable to use W as a test statistic Lloyd (1990). 

It is possible to extend the tests for differences in proportions so that a confidence 
interval for the estimation of INol - NlOl is developed. This is not pursued any further 
here and the reader is referred to Lloyd (1990) for more detail. 

5.4 EVALUATION OF DIFFERENT SPEAKER 
IDENTIFICATION SYSTEMS 

This section reports speaker identification accuracies for CEP, LPC, PARCOR, LTAGR 
and LTAS-VE features. Identification results are presented for each of the features 
individually, and then for certain combinations of features. 

Features based on long-term averaging of the speech signal require utterances of rea
sonable duration so that sensitivity to short time variations in the utterance is removed. 
For this reason both the long-term features and the CEP and PARCOR features are 
evaluated throughout the entire utterance of the digits zero to nine. This is in contrast 
with work reported by other researchers (Soong et al., 1987), who evaluated the vari
ation in identification accuracy of CEP and LPC coefficients for different numbers of 
spoken digits. Recall that five utterances are used for training, ten for testing and that 
the population consists of twenty speakers. 

5.4.1 Identification using the entire utterance 

This section describes the recognition accuracies of PARCOR, LPC and CEP features 
for speaker identification when the entire utterance, including unvoiced and silence 
portions, is utilized for both training the VQ codebooks and for identification. The 
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Codebook PARCOR vs CEP PARCOR vs LPC LPC vs CEP 

order 

2 CEP (0: < 0.001) LPC (0: < 0.001) LPC (0: < 0.28) 

4 CEP (0: < 0.10) LPC (0: < 0.18) same 

8 CEP (0: < 0.16) LPC (0: < 0.05) same 

16 same same same 

32 CEP (0: < 0.25) same same 

64 CEP (0: < 0.13) 

128 same 

Table 5.5. The best vocal tract features for performing speaker identification using the entire ut

terance. The confidence level Q'is derived from the X2 value computed by applying McNemar's test 

(§5.3.3) to the speaker identification results of Fig. 5.8. 

advantage of performing analysis on an entire utterance, including silence and unvoiced 
portions is that no preprocessing is required before features are abstracted from the 
speech signal. 

The variation in the identification error rate for PARCOR coefficients as the number 
of codevectors is increased is illustrated in Fig. 5.8( a) and (b). As would be expected, 
the number of identification errors decreases as the number of vectors in the code book 
is increased. The error rate falls at more than 3% per codebook size doubling, as the 
codebook size increases from 2 to 16, but as the size increases from 16 to 128 the 
error rate only reduces from 3 % to 1.5%. As the number of codevectors is increased 
past a certain threshold (in this instance 32), there is not necessarily a corresponding 
improvement in the identification accuracy. 

The identification error rate for the CEP coefficients, shown in Fig. 5.8( c) and 
(d), follows a similar trend to the PARCOR coefficients, but with fewer errors. The 
identification error rate falls to 0.5% for codebooks of size 32, 64 and 128. The smaller 
identification error of CEP coefficients, compared with PARCOR coefficients, indicates 
that CEP coefficients are preferred for speaker identification. 

In order to make the set of features examined more complete, error rates for LPCs 
with the likelihood-ratio distance measure (dLR) are computed. The error rate of 
the LPCs, depicted in Fig. 5.8(e), follows the same pattern as that of the other fea
tures. These results agree closely with those obtained by Soong et al. (1985) for vector 
quantized LPC vectors and using the likelihood ratio distance measure (Gray and 
Markel, 1976). The similar accuracies between the LPCs and the other features implies 
that it is acceptable to perform further experiments using just the PARCOR and CEP 
features and that although speaker identification using LPC 1 and dLR is prominent in 
the literature, LPCs do not appear to offer any significant advantage over PARCOR or 
CEP features. 

Table 5.5 tabulates the results of applying McNemars test to the identification 
results for entire utterances shown in Fig. 5.8. Features that give a value of X2 

0, or require 0: > 0.30 to be considered different, are recorded as having the 'same' 
identification performance. 

To select the best feature, it is necessary to examine the performance of the features 
for different codebook sizes. From the PARCOR vs CEP column and the PARCOR vs 

INote that the codebooks in the case of LPC are limited to 32 vectors because larger numbers of 
vectors cause convergence difficulties for the VQ training algorithm. It was not considered necessary to 
investigate this any further since the identification error rate does not reduce significantly for code books 
larger than 32 vectors. 
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Figure 5.S. A comparison of percentage identification errors for different vocal tract features a.nd 

utterances. (a), (e), (e) entire uttera.nce; (b), (d), (f) voiced utterance. 
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LPC column it is apparent that overall the PARCOR features do not perform as well 
as either the CEP or LPC features. The LPC vs CEP column indicates that the LPC 
features are slightly better than the CEP features, although only at the low level of 
significance 0: < 0.28. 

Table 5.5 also shows that as the order of the codebook is increased, the differences 
in speaker identification performance of the various features is reduced. To reduce 
the computation required to search codebooks, and incidently, to reduce the storage 
requirements of the speaker templates, it is desireable to choose the smallest possible 
codebook that gives reasonable speaker identification performance. Since the reduction 
in the error rate is not significant for co de books containing more than 16 codevectors, 
this would seem to be a reasonable size to select for performing speaker identification 
using entire utterances. 

h addition, Table 5.5 shows that for a codebook of size 16 there is no significant 
difference in the performance of the LPC and CEP features. However, the simplicity 
of the CEP distance calculation compared with LPC dLR distance computation (and 
VQ training), makes CEP16 the best feature. 

5.4.2 Comparison of identification using voiced and entire utterances 

This section describes speaker identification accuracies obtained when features of both 
the test and reference utterances are abstracted from only voiced portions of speech. 
The results obtained from voiced speech are compared with those obtained from the 
entire utterance. 

The PARCORV and CEPV identification errors for voiced speech are depicted in 
Fig. 5.8(b) and (d). Comparing these two results with those obtained from PARCOR 
and CEP features it is apparent that the identification error rate for voiced frames 
falls more rapidly than that for the entire utterance. This is to be expected, since 
the PARCOR coefficients of voiced frames vary less than those of unvoiced frames, 
and the silences between words do not add to the speaker information that is recorded 
in the codebooks. This finding contrasts with that reported by Soong et al. (1985), 
who found that identification errors increased when only voiced frames were used for 
identification. However, their experimental procedure was different to that reported 
here in one important respect. Their codebooks were trained on the entire utterance, 
so codebooks that were designed to represent the voiced, unvoiced and silent portions 
of a person's utterances were matched against voiced frames from the test utterances. 
The results in Fig. 5.8 are for separate codebooks constructed for voiced and entire 
utterances. 

The reduction in error rate that the voiced speech exhibits over unvoiced speech for 
CEP and PARCOR features is most significant for codebooks containing a small number 
of codevectors. As the number of codevectors is increased past 32 the difference in error 
rates is reduced. Smaller codebooks give such different error rates because codevectors 
in a small codebook describe the 'average' of a large number of training vectors. For 
voiced speech the training vectors contain less variation (due to fewer different sounds), 
so a codebook having few codevectors can represent the speech with higher accuracy 
than a similarly sized codebook can represent the entire utterance. As the number of 
codevedors in each codebook is increased the difference in the distribution of training 
vectors becomes less important so the voiced and entire codebooks tend to give the 
same error rates. 

The LPC features (as depicted in Fig. 5.8(e) and (f»), in contrast to CEP and PAR
COR features, do not appear to show any significant identification error rate variation 
between LPC and LPCV. It seems that LPC features, matched using the dLR distance 
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Figure 5.D. A comparison of the percentage identilication error rates for vocal tract features extracted 

from voiced utterances matched against codebooks derived from: (i) the entire utterance and (li) voiced 

speech. (a) PARCOR features, (b) CEP features. 

Code book PARCOR vs PARCORV LPC vs LPCV CEP vs CEPV 

order 

2 PARCORV (n < 0.001) same CEPV (n < 0.25) 

4 PARCORV (n < 0.21) same same 

8 same same CEPV (n < 0.05) 

16 PARCORV (n < 0.13) same same 

32 same same same 

64 PARCORV (n < 0.13) same 

128 same same 

Table 5.6. Comparison between voiced only speech and the entire utterance for performing speaker 

identification. The confidence level is derived from the X2 value computed by applying McNemar's test 

(§5.3.3) to the speaker identification results of Fig. 5.8. 

measure, are less affected by silence and unvoiced speech than the CEP and PARCOR 
features. 

Table 5.6 contains the results of applying McNemar's test to speaker identifica
tion experiments performed using either the entire utterance, or voiced portions of 
the utterance. In all the paired experiments the voiced speech has a lower, or same, 
identification error rate as the entire utterance. In most of the paired tests the dif
ference between identification error rates is not highly significant statistically. Notice 
that the LPC features give the same identification accuracy for both voiced and en
tire utterances, whereas the overall trend for CEP and PARCOR coefficients is that 
performing speaker identification using voiced portions of an utterance is much better 
than performing speaker identification using the entire utterance. 

As mentioned previously, Soong et al. (1987) show that speaker identification using 
templates constructed from entire utterances is more accurate when entire utterances, 
rather than voiced only utterances, are used for testing. They deduce, therefore, that 
it is better to use the entire utterance for performing speaker identification and in an 
earlier paper Soong et al. (1985) explain, "we not only eliminate the need to separate 
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Figure 5.10. Variation in identifica.tion error rates for: (a) LTAGR and (b) LTAS-VE fea.tures as the 

dimension of the feature utilized for matching is varied from 16 (10g2 16 = 4) to 128 (log2128 = 7). 

voiced frames from the input data, but also we improve the speaker recognition perfor
mance by using all the speech data". This statement is evaluated here by performing 
speaker identification experiments using voiced test utterances and matching against 
two different sets of templates. One set of templates is formed from the entire utterance 
and the other set of templates is formed from the voiced only portion of the utterances. 
Fig. 5.9 shows that the identification error rate for matching voiced test utterances 
against entire templates is higher than that obtained from matching voiced test ut· 
terances against voiced templates. Soong et al. (1987) were therefore not completely 
correct to say that "it is not wise to discard an unvoiced speech segment", since it is 
only unwise if the speaker templates are constructed from the entire utterance. 

5.4.2.1 Performance of the LTAGR and LTAS-VE 

Fig. 5.10(a) shows the variation in the LTAGR identification error as the number of 
samples in the LTAGR feature is altered. The insignificant reduction in the percentage 
error as the vector dimension is increased above 32, indicates that adjacent sample 
points within the LTAGR are highly correlated, and that redundant speaker information 
is recorded. 

The identification error rate for the LTAS-VE is shown in Fig. 5.1O(b), and for a 
feature vector size of 128 the error rate is only 0.5% different from that obtained by 
performing identification using the LTAGR. That two features calculated by two dis
tinctly different methods should give such similar error rates is surprising. It might be 
expected, therefore, that the identification errors derived from these two features would 
be highly correlated. However, examination of the distribution of the identification er
rors amongst the trial population, as illustrated in Fig. 5.11, shows that the number 
of errors associated with each individual varies between the LTAGR and LTAS-VE 
features, which implies that the features are uncorrelated. 

From inspection of Fig. 5.10(b), it is apparent that the LTAS-VE is more sensitive 
to a reduction in feature dimension than the LTAGR. This indicates that increasing 
the bandwidth of the filters utilized to determine the long-term average spectrum, and 
thereby reducing the feature dimension, would significantly increase the identification 
error rate. 

A similar effect to increasing the bandwidth of the LTAS-VE filters can be observed 
by altering the shape of the window used to calculate the LTAS-VE. The difference 
between using the Hamming and four-term Blackman windows (described in more detail 
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Figure 5.12. A comparison of the percentage identification error rates for LTAS-VE features calculated 

using different windows. 

in Harris (1978)) when computing the LTAS-VE is evaluated. The main difference 
between these two windows is their spectral resolution, which is related to the width 
of the main lobe of the Fourier transform of the window. The Fourier transform of the 
Hamming window has a narrow main lobe and therefore allows good spectral frequency 
resolution, but has high sidelobe levels. The high sidelobes cause a considerable amount 
ofleakage (§2.6.1). The Fourier transform of the four-term Blackman window has low 
sidelobe levels, but the wide main lobe causes considerable smoothing of the LTAS-VE. 
The identification error rates depicted in Fig. 5.12, show that the LTAS-VE with the 
highest frequency resolution, using the Hamming window, has the best identification 
error rate. The difference in speaker identification error-rate for the two windows is 
somewhat surprising. Clearly the spectral detail in the LTAS-VE contains information 
about a speaker's voice that is useful for distinguishing that person from other people, 
but it is difficult to draw any further conclusions. Section 6.2.1 discusses implications 
this observation has for clinical applications of the LTAS-VE. 
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e Entered Wilk's Lambda 

P2 0.08562822 

2 C~ 0.01723747 

3 TR 0.00361524 

4 As 0.00088953 

5 Tp 0.00031008 

6 PI 0.00012556 

7 Ar 0.00003162 

8 C~ 0.00001021 

9 CciJ 0.00000461 

10 C;2 0.00009228 

11 C;l 0.00000084 

12 N p 0.00000044 

13 Ar 0.00000023 

14 Sl 0.00000015 

15 S2 0.00000009 

16 CI 
c3 0.00000006 

17 C~2 0.00000003 

18 C~l 0.00000002 

Table 5.7. Output of stepwise discriminant analysis performed on the training descriptors. 

5.4.2.2 Various LTAGR based methods 

It is of interest to ascertain whether speaker identification accuracy is maintained when 
the dimension of the LTAGR features is reduced by using the LTAGR descriptors 
defined in §4.3.2. A total of 21 descriptors are defined in §4.3.2, but it would be better 
if a smaller number of descriptors could be selected, and weighted, so that speaker 
identification is performed accurately. 

The selection of the best subset of descriptors to describe the LTAGR is not a trivial 
task. The method adopted here is based on the stepwise inclusion of descriptors, as de
scribed in §3.4.2.1, and is performed using the STEPDISC procedure in SAS. Table 5.7 
lists the order in which descriptors are included in the descriptor set. The effect of grad
ually including more variables in the LTAGR description is examined by increasing the 
subset of the variables used to perform speaker identification. Distances are weighted 
by the inverse of the pooled covariance matrix, as defined in (3.13). Fig. 5.13 shows 
that generally the identification error rate decreases as more descriptors are added to 
the subset of descriptors. However, the identification error rate portrayed in Fig. 5.13 
does not always decrease as additional descriptors are added. This is because the train
ing descriptors are different to the test descriptors, so the optimal set of descriptors 
and the pooled covariance matrix of the training descriptors (which provides descriptor 
weightings) will not necessarily provide the best performance for the test descriptors. 
The trade-off between having large training sets, and not describing the categories of 
recognition accurately enough is well-known. In the particular example reported here, 
increasing the number of samples in the training data would go some way towards 
providing more reliable estimates of the best descriptor weightings. 

The best performance using LTAGR descriptors gave an error rate of 23.5% com
pared with 21% using all the samples in the LTAGR signal. Since the recognition 



168 CHAPTER 5 SPEAKER IDENTIFICATION EXPERIMENTS 

80 -~ 60 "--' 
Q.) .... 
~ 40 ~ 

"'" 0 
20 "'" "'" J:£l 

0 I 0 , i •• f • i ' ••• I • • t 

1 5 10 15 18 
Number of descriptors 

Figure 5.13. Variation in the speaker identification error rate. as the number of descriptors used to 

represent the speaker's LTAGR is increased. See Table 5.7 for a listing of the descriptors. 
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Figure 5.14. Two methods of performing speaker identification based on the LTAGR: (a) LTAGRs 

computed from pre-emphasized speech, (b) using a distance measure that weights contributions from 

samples in the LTAGR by the inverse of the pooled intra-speaker covariance matrix. 

accuracy is lowered by using descriptors instead of the complete LTAGR, the com
plete LTAGR is used for performing the identification experiments presented in the 
remainder of this chapter. 

In §4.5.1.1 it was demonstrated that the spectrum of the LTAGR matched closely 
to the long-term average spectrum of pre-emphasized voiced speech. The long-term 
average spectrum is computed from pre-emphasized speech, so the effect of pre-emphasis 
on the LTAGR is examined. Fig. 5.14(a) shows that the LTAGR of pre-emphasized 
speech has a higher identification error rate than the LTAGR of unemphasized speech. 
From this result it is concluded that the information characterizing speakers is reduced 
when high frequencies are emphasized with respect to the low frequencies. 

The Euclidean distance, which is used to measure the difference between LTAGRs, 
weights the contribution from each sample in the LTAGR identically. A more sophis
ticated and commonly used approach is to weight each sample in the LTAGR by a 
weight that is related to its expected accuracy. Fig. 5.14(b) shows the effect of weight
ing the distance between LTAGR samples by the diagonal of the inverse of the pooled 
intraspeaker covariance matrix (W, as defined by (3.10)). The rational is that those 
parts of the LTAGR that vary least within a speaker should perform best for dis tin-
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Codebook CEPV PARCORV 

size (1 - 0.95z-1 ) (1- z-l) (1 - 0.95z-1) (1 - z-l) 

2 14.5 % 13 % 13.5 % 13 % 

4 4% 3.5 % 6% 6.5 % 

8 0.5% 0.5 % 3.5 % 4% 

16 1.0 % 1.0 % 1.0 % 1.0 % 

32 1.0 % 1.0 % 1.0 % 1.0 % 

64 1.0 % 1.0 % 0.5 % 0.5 % 

128 1.0 % 1.0 % 1.0 % 0.5 % 

Table 5.8. The identification error rates for two different pre-emphasis filters. Voiced speech is used 

for the constructing the templates and for performing speaker identification. 

guishing between speakers and should be weighted more strongly. However, the results 
in Fig. 5.14(b) show that this is not the case for the LTAGR. The increase in error rate 
is due to the normalization performed on the LTAGR before the pooled intraspeaker 
covariance is calculated. This causes samples around the LTAGR peak to have similar 
amplitudes, and to be weighted more in the distance calculation. However, these sam
ples do not necessarily contain information relating to a person's identity. Therefore, 
weights derived from W are not useful for computing distances between LTAGRs. 

5.4.3 The effect of varying pre-emphasis on vocal tract features 

In the speaker identification experiments reported in the above sections the pre-emphasis 
filter is (1 - z-l), which differs from the pre-emphasis filter of (1 - 0.95z-1 ) used 
by Soong et at. (1987) and Furui (1981). So as to ascertain whether the choice of 
pre-emphasis filter critically affects the identification error rate, experiments were per
formed using pre-emphasis filters of (1 - z-l) and (1 0.95z-1). 

Table 5.8 contains the speaker identification error rate for voiced speech that has 
been pre-emphasized by the two different pre-emphasis filters. Clearly the two different 
filters perform almost identically for CEPV and PARCORV coefficients, so the choice 
of pre-emphasis filter is immaterial. 

Both Soong et al. (1987) and Furui (1981) use speech that has been sampled at 
6.67kHz. The effect of raising the sampling rate to 10 kHz, while maintaining the 
same pre-emphasis filter, is to reduce the amount of emphasis applied at the higher 
frequencies. It follows that the pre-emphasis effect should be increased by choosing a 
filter constant nearer to unity. However, the experimental results reported in Table 5.8 
do not support any definitive statement about which of these two pre-emphasis filters 
is best. 

5.4.4 Combining features 

Combinations of independent features are expected to be more accurate for speaker 
identification than individual features. Since different features produce error measures 
of differing magnitude and accuracy, the error measures must be scaled appropriately 
before being combined to produce an overall distance measure. A combined distance 
measure Dc(x, Yi) is used to specify different normalizing and weighting methods, 

(5.12) 



170 CHAPTER 5 SPEAKER IDENTIFICATION EXPERIMENTS 

R1 R2 M1 M2 M3 M4 M5a M5b 

CEP • • • • • • • • 
PARCOR • • • 
LTAGR • • • • • • 
Voice only • 
k 1 J. kl kz 

normalization \I • • • 
presorting • 

~ presorting PI 
threshold 

~ 
R1 R2 M1 I M2 M3 M4 M5a M5b 

3.5 % 0.5 % 4.0 % 8.0 % 4.0 % 3.0 % 3.0 % 2.0 % 
16 2.5 % 1.0 % 2.5 % 5.0 % 2.0 % 1.5 % 2.5 % 2.0 % 
32 0.5 % 1.0 % 2.5 % 4.5 % 1.0 % 0.5 % 2.0 % 1.0 % 
64 0.5 % 1.0 % 1.5 % 4.5 % 0.5 % 0.5 % 2.0 % 1.0 % 

Table 5.9. Thetop half of the table contains a summary of different methods for incorporating more 

than one feature into the speaker recognition scheme. Capital 'R' is an abbreviation for reference and 

'M' is an abbreviation for method. Definitions for feature weightings and the presorting threshold 

f II k f . t k 1 kl inteHpeahr! ,ntraopeaker! . t k 1 + f d are as 0 ows: 1 = In raspea er , 2 = J J ' PI = In raspea er O'intra an 
(! .. dter+C"n,rd-

P2 = intraspeakerl + 20'{ntra' The bottom half of the table gives the identification error rates for 

several different identification schemes which make use of more than one feature for identification. 

where F is the total number of features, D~ normalizes the distance Df (x, Yi) for fea
tUre i, and kf weights the distance according to its expected accuracy. For convenience 
the normalized distance for feature f is expressed as 

D f ( ) _ Df (XSi) 
N X,Y - f 

DN 
(5.13) 

The various combinations of features and weightings examined here are specified in 
the upper half of Table 5.9. Different methods of combining features are denoted 'M' 
and the two reference methods are denoted 'R'. The reference methods both use single 
features (CEP) that give good recognition performance. Note that methods M5a and 
M5b do not utilize (5.12), but are instead based on using a single feature (LTAGR) to 
presort the population before using another feature (CEP). The following sub-sections 
discuss the accuracies of various methods of combining features and compare the results 
with those obtained from the two reference methods. The LTAS-VE is not investigated 
here. It was rejected as a useful feature on the grounds that it is too computationally 
intensive to calculate compared with the other features (see §5.6). 

5.4.4.1 Method 1 (distance normalization, all feat ures) 

The first method for combining features normalizes the distances associated with each 
feature so that they can be added to those calculated from other features. Normalization 
is performed using the normalization factor, 

N 

D~ = L D(x, Yi), (5.14) 
i=l 
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where N is the total number of speakers. D/.v is the sum of the distances between the 
test vector x and each of the reference templates. The identification error when (5.12), 
(5.14) and kJ = 1 are applied to the PARCOR and CEP codebooks and the LTAGR, 
for entire utterances is given in column M1 of Table 5.9. For a codebook of size 16 the 
recognition accuracy shows a slight improvement over that obtained from PARCOR16 
coefficients (see Fig. 5.8), but no improvement over CEP coefficients by themselves. 
The error rate of the combined features does not decrease as rapidly with increase in 
codebook size as that of the CEP coefficients alone. 

5.4.4.2 Method 2 (distance normalization, CEP and LTAGR) 

Recalling the high correlation between CEP and PARCOR coefficients reported in 
Table 5.2, it is expected that the PARCOR and CEP coefficients make similar contri
butions to the error calculated between test features vectors and reference templates. 
For this reason the PARCOR features are omitted from the feature set, leaving only 
the CEP and LTAGR features. Comparing M1 and M2 in Table 5.9, it is apparent 
that M2 has many more identification errors. This can be attributed to the removal 
of the PARCOR coefficients allowing distances from the LTAGR features to contribute 
more to the overall error measure, thereby increasing the number of identification errors 
towards the number of errors obtained using the LTAGR alone. It is therefore advanta
geous to combine contributions from different features in a way that incorporates prior 
knowledge about their expected accuracy. 

5.4.4.3 Method 3 (feature weighting with intraspeaker distance) 

This is the first of two methods which normalize the error from a particular feature and 
then weight it in some way. The normalization step is that defined by (5.14) and the 
normalized distance D/.v(x, Yi) is weighted by multiplying it by the average intraspeaker 

distance within the training set for that particular feature, i.e. k{ = intraspeakerJ . 

For larger codebooks this method is slightly better than method 1, although it does 
not show any improvement over method 1 for a codebook of size 8. 

5.4.4.4 Method 4 (modified feature weighting) 

The expected accuracy of a particular feature is governed by more than just the average 
intraspeaker distance. Fig. 5.15 shows an example of the distribution of intraspeaker 
and interspeaker distances. It is desirable that the overlap between the two distributions 
be as small as possible, implying that the difference between the interspeaker and 
intraspeaker distances should be as large as possible and the standard deviation of 
both of these distances should be small. Using these concepts, a scale factor, kL can 
be defined as 

. k J. k J kJ _ mterspea er - mtraspea er 
2 - J J ' 

O'inter + O'intra 

(5.15) 

where O'inter is the standard deviation of the interspeaker distance and O'intra is the 
standard deviation of the intraspeaker distance. As Table 5.9 shows, the identification 
error rate using this weighting factor is smaller than that obtained using other weighting 
factors. 

5.4.4.5 Method 5 (presort using LTAGR) 

This method utilizes the long-term average glottal response as a presorting selector 
to choose a sub-population for further identification by CEP features. To choose the 
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Figure 5.15. A representative probability density function of intraspeaker and intraspeaker distances. 

people out of the total population who are 'likely' candidates, LTAGR distances are 
compared with a predetermined threshold and those whose distances are less than the 
threshold are passed on to a recognition scheme that uses CEP features. Choosing a 
threshold level that is too small will result in fewer 'likely' candidates, which makes 
the final selection faster, but increases the probability of the correct person being ex
cluded from the 'likely' candidates. A larger threshold has the opposite effect. Here 
the LTAGR threshold for selecting people is determined from the training data so as to 
ensure that the correct person has a low probability of being excluded from the selected 
sub-population. Information about the distances between the correct person and their 
templates is recorded in the distribution of intraspeaker distances. Two different selec
tion thresholds are compared: one equal to the overall average intraspeaker distance 
plus one standard deviation and the other equal to the overall average intraspeaker 
distance plus two standard deviations. The results using the largest (average + 20') 
threshold compare favourably with the methods that use combined features. Using this 
method, codebooks of size 8 and 16 are at least as accurate as the other methods, and 
for codebooks of size 32 and 64 the error rate is increased by no more than 0.5% and 
in most cases is reduced. Notice that the error rate for M5a with a codebook of size 
8 is smaller than that for R1 with a codebook size of 8. This occurs when the presort 
excludes a person who was identified incorrectly using R1. 

The size of the selected sub-population relative to the original population is 0.52 
and 0.59 for the thresholds specified by methods 5a and 5b respectively. A small 
threshold has the advantage of reducing the number of speakers in the sub-population, 
but in some instances the correct speaker will be excluded. Fig. 5.3 shows that when 
a test utterances is spoken by speaker 18 the threshold has to be set considerably 
higher than is required by the other speakers to ensure that speaker 18 remains in the 
sub-population. The large variation in one person's long-term average glottal response 
forces the threshold to be increased, causing a greater number of speakers to be included 
in the sub-population than would otherwise be required. 
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Method Advantages Disadvantages 

R2 Single feature. Requires V IVV. 

Accurate for small codebook. 

0.5% best IER. 

M4 Accurate for a large Not accurate for a small 
codebook. codebook 

0.5% best IER. Requires the use of three sep-
arate features. 

M5b Presorting lowers computa- Not so accurate for a small 
tional requirements. codebook. 
1.0% best IER. 

Table 5.10. Advantages and disadvantages of the three best methods described in Table 5.9. IER is 

an abbreviation for identification error rate. 

5.4.4.6 Discussion of feature combination results 

Table 5.9 shows that, with the exception of M2, the various combinations offeatures all 
give comparable identification performances, and do not offer significant improvements 
over the method R1. M4, the new method of combining contributions from several 
features, uses a weighting factor derived from both the intraspeaker and interspeaker 
distances in the training data to give lower error rates than the other less sophisticated 
methods of combining features. 

Presorting the speakers by LTAGR distance before performing speaker identifica
tion using the CEP features allows the search population to be approximately halved. 
Further experiments on databases containing more speakers would be required to ascer
tain whether larger reductions are possible or whether the ratio of a half is independent 
of population size. 

It is not possible to make a definitive statement about which of the identification 
methodologies is best. The advantages and disadvantages of methods R2, M4 and M5b 
are tabulated in Table 5.10. To understand some of the comments listed in Table 5.10, it 
is important to realize that a large codebook containing many codevectors takes'longer 
to search and identification is much slower than for a small codebook. The actual 
system selected depends upon the relative importance assigned the points presented in 
Table 5.10. 

5.5 FACTORS THAT REDUCE THE ACCURACY OF SPEAKER 
IDENTIFICATION 

One of difficulties in performing speaker identification is that it is often not possible 
to guarantee that test utterances are recorded in the same conditions as the training 
utterance. This is especially true if recordings are taken over the public telephone sys
tem. Such recordings are dependent on the response of the telephone handset, any noise 
on the channel and the transmission characteristics of the telephone circuit. For the 
purposes of this discussion the system comprised of the microphone and transmission 
circuitry is called the recording channel. 

A speaker identification system should be constructed to be as robust as possible 
to likely variations in the recording channel. This motivates evaluation of the effect of 
noise and several types of distortion on the identification accuracy of various features. 
Section 5.5.1 discusses the effect of noise and §5.5.2 examines the effects of distortion on 
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the speaker identification performance of CEPV, PARCORV, LTAS-VE and LTAGR 
features. 

5.5.1 The effect of noise 

In many situations the signal used for speaker identification may have a significant 
level of noise that 'disguises' any speaker specific information. Here the effect of noise 
is examined by adding noise to the original 'clean' digitized speech before performing 
speaker identification. Both random additive noise and speech correlated noise are 
examined. 

5.5.1.1 Gaussian noise 

Various levels of Gaussian distributed random noise are added to the digitized test 
utterances to produce SNRs (as defined in §2.9.1) of 30, 20 and 10 dB. For CEPV, 
PARCORV and LTAS-VE features, voiced speech within these 'noisy' test utterances 
is extracted using the method outlined in §2.4.4 and the speech is pre-emphasized by 
1-0.95z-1 before speaker identification is performed by matching the utterances against 
codebooks (or templates ) derived from 'clean' speech. The identification error rates for 
the CEPV, PARCORV, LTAS-VE and LTAGR features are portrayed in Fig. 5.16. The 
CEPV and PARCORV features are particularly strongly affected by Gaussian noise. 
The identification error rate rises .from approximately 1% for high quality speech to 
more than 60 % for speech that has a 30 dB signal-to-noise ratio. Lower SNRs cause 
further degradation in the identification error rate. 

The experiments performed here use features calculated directly from noisy speech 
without attempting to compensate for the noise at all. A logical extension of this study 
would be to incorporate methods to combat the effects of the noise by estimating its 
magnitude and adjusting the way the features are computed (Mansour and Juang, 1988; 
Junqua and Wakita, 1989). Un and Choi (1981) subtracted the estimated autocorrela
tion of the noise from the autocorrelation of the noisy speech before performing LPC 
analysis. An alternative method of countering the noise was reported by Noda (1988) 
who devised a spectral weighting scheme where high energy portions of the spectrum 
(formants) that were less affected by noise, were weighted more heavily than other 
lower energy portions of the spectrum. 

Due to the removal of random, zero mean, variations in the speech signal by the 
averaging process that occurs within the SAA algorithm, the LTAGR is relatively in
sensitive to Gaussian noise compared with the PARCORV, CEPV and LTAS-VE. Note 
that although the LTAS-VE incorporates averaging, the effect of the noise is not re
duced because. power spectra are averaged instead of time sequences. 

5.5.1.2 Speech correlated noise 

Speech correlated noise is introduced here because it is a type of noise that corresponds 
to the noise levels in speech as perceived by listeners. Noise of low energy is generated 
when the speech signal contains little energy and noise of high energy is generated when 
the speech signal contains high energy. Equation (2.116) in §2.9.1 that defined speech 
correlated noise is restated here for convenience, i.e. 

r(t) = s(t) + ks(t)no(t). (5.16) 

The signal-to-speech-correlated-noise ratios (or Q, which stands for quality) of 30, 20 
and 10 dB are evaluated. Note that the noise source is uniformly distributed random 
noise. 
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Figure 5.16. The identification error rates for different levels of contamination by Gaussian distributed 

random noise. Signal-to-noise ratios of 30,20 and 10 dB are depicted for: (a) LTAGR, (b) LTAS-VE, 

(c) CEPV and (d) PARCORV features. 

Fig. 5.17 shows that the CEPV, PARCORV and LTAS-VE features all exhibit 
severe degradation, even at the smallest distortion level of 30 dB. The LTAGR performs 
significantly better than the other features, with an error rate of less than 30% for Q 
values of 20 dB and 30 dB and vector dimensions of 64 or 128. The advantage of 
LTAGR over the other features is best explained by substituting (2.106), which is the 
mth pitch period of a speech signal ret), into (5.16) which describes a speech signal that 
is degraded by speech correlated noise. The mth contaminated speech record is then 
written 

(5.17) 

Recall that vm(t) is the mth vocal tract response, 9m(t) is the mth glottal excitation 
and cm(t) is a contamination term. Since kno(t) is random, its effect will tend to be 
smoothed out of the LTAGR as the rm records are averaged by SAA (as described in 
§2.8.2). 



176 CHAPTER 5 SPEAKER IDENTIFICATION EXPERIMENTS 

LTAGR LTAS-VE 
100 
80 

~ 60 
"-' 

40 

20 

10 

100 

CI) 20 
~ 10 
~ 5 
I-; 
I-; 

r.:l 

1 
0.5 

- original 
- - 30 dB 
.... 20 dB 
_.- 10 dB 

I 

, 
' . . , 

\. . . ... 
\'. . ... . . ... 
\~ .. ," ~""""""" 

\\ 
\". 

.............. ~ . .:: ....... . 
.~ 

1 2 3 '4 5 6 7 
log2 feature dimension 

(a) 

CEPV 
-.-~-~-.-~-»-~-.-.-.-~-~-.------_._---------

- original 
--30dB 
.... 20dB 
_.- 10 dB 

I I 
1234567 

Codebook Rate 
(c) 

100 
80 

~ 60 

10 

100 

CI) 20 
~ 10 

I-; 5 

~ 
1 

0.5 

-.--- .. _ ... ---------

- original 
-- 30 dB 
• ... 20 dB 
-.- 10 dB 

I 
1234567 

log2 feature dimension 
(b) 

PARCORV 
-.---.-.-.---.-.---~-.-.-.-M---____ M_~ ___ W_ 

- original 
-- 30 dB 
.... 20 dB 
_.- 10 dB 

I I 
1234567 

Codebook Rate 
(d) 

Figure 5.17. The identification error rates for different levels of contamination by speech correlated 

random noise as defined by (5.16). Q ratios of 30, 20 and 10 dB are depicted for: (a) LTAGR, (b) 

LTAS-VE, (c) CEPV and (d) PARCORV features. 

5.5.2 The effect of non-ideal frequency response 

Examination of the effect of a non-ideal frequency response is divided into two separate 
parts. The effects of a non-flat magnitude response and a non-linear phase response 
are treated separately since features that represent the power spectrum of the speech 
are expected to be less sensitive to a non-linear phase response and more sensitive to a 
non-flat magnitude response. 

5.5.2.1 The telephone channel 

This section examines the speaker identification performance of CEPV, PARCORV, 
LTAGR and LTAS-VE features extracted from speech that has been bandlimited to 
contain only those frequencies that are typically present in speech transmitted over 
telephone lines. Fig. 5.18 shows the response for the linear phase filter that is applied 
to the speech before features are extracted. 

The speaker identification error rates for the CEP, PARCOR, LTAGR and LTAS
VE features are depicted in Fig. 5.19. It is apparent that the reduction in information 
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Figure 5.18. The frequency response of the filter used to model the a.ttenua.tion of a telephone channel. 

caused by bandpass filtering the speech signal increases the identification error by one 
or two percent for CEPV and PARCORV features. The LTAS-VE identification error 
rate is increased so significantly that it can not be considered to be useful for performing 
speaker identification using bandlimited speech (unless of course new templates were 
constructed). The LTAGR performs poorly when the feature size is reduced to less 
than 128 (27), but for a feature size of 128 the identification error rate is increased only 
1.5% above that obtained for high quality speech. 

The identification error rates depicted in Fig. 5.19 indicate that it is feasible to 
accurately identify speakers from speech that has been bandlimited. However, channels 
exhibit a wide range of different characteristics, prompting further investigations into 
the effects of the types of distortion that might reasonably be expected to occur over a 
telephone channel. 

5.5.2.2 Magnitude 

Bogner (1981) identified 2000 and 2700 Hz as frequencies where the most significant 
differences between the magnitude responses of various telephone headsets occur. Based 
on Bogner's figures, the effect of the different headsets was simulated by passing the 
test utterances through either bandpass or bandstop linear phase filters with centre 
frequencies at either 2000 and 2700 Hz. The digital filters utilized were designed in 
MATLAB (The Math Works, 1990) using the specifications in Table 5.11. Note that 
the filters specified in Table 5.11 have only a few terms and so do not have harsh cutoffs. 
The frequency responses of these filters are plotted in Fig. 5.20 and the bandstop filters 
clearly provide the least distortion, since their magnitude response is essentially flat 
across the band, and the maximum attenuation is only 10 dB in the centre of the stop 
band. 

For the PARCORV and CEPV features the effect of the magnitude distortion on the 
speaker identification error-rate is examined for voiced speech that is pre-emphasized 
with a (1 - 0.95z-1) filter. The training utterances consist of five undistorted ut
terances and the ten test utterances are filtered by the distortion filters before being 
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Figure 5.19. The identification error rates for speech passed through the telephone filter depicted in 

Fig. 5.18. The identification error rates plotted for: (a) LTAGR, (b) LTAS-VE, (c) CEPV and (d) 

PARCORV features. 

filter type frequency bandwidth terms 

mag1 bandpass 2700 200 6 

mag2 bandstop 2700 200 16 

mag3 bandpass 2000 200 6 

mag4 bandstop 2000 200 16 

Table 5.11. Filter specifications for modelling non-flat magnitude response in the transmission chan

nel. 

pre-emphasized and having features extracted. The effect of the various types of fre
quency response distortion on the speaker identification error-rate is shown in Fig. 5.21. 

To begin with, the effect of attenuation in the 2000 Hz and 2700 Hz region is 
discussed. From the identification error rate results in Fig. 5.21, it would appear 
that attenuation of approximately 10 dB at 2000 Hz (Fig. 5.20( d)) and at 2700 Hz 
(Fig. 5.20(b)) has little affect on the error rate for LTAS-VE, CEPV and PARCORV 
features. For large vector sizes the LTAGR is insensitive to these types of distortion, 
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Figure 5.20. The magnitude of the filter frequency responses for the distortion filters with a non-flat 

frequency response. The filters are labelled: (a) magI, (b) mag2, (c) mag3,(d) mag4. 

but for smaller vector sizes the accuracy is significantly reduced. It is apparent that 
the identification error rate is essentially unaffected by the type of narrow attenuation 
depicted in Fig. 5.20(b) and (d). 

Distortion filters with low frequency attenuation have a significant effect on the 
identification error rate. None of the features evaluated performed well with speech 
distorted by the filter depicted in Fig. 5.20(a). It is not surprising that features that 
describe the speech spectrum do not perform well for this distortion, since the frequen
cies that contain most of the speech energy (0-3kHz) are attenuated, and the spectral 
content of the speech is significantly altered. 

The identification error rate obtained from using the LTAGR on speech distorted 
by the mag3 filter (Fig. 5.20( c)) is unusual because all the other features perform badly 
for this particular distortion. Comparison between magI and mag3 filter responses (see 
Fig. 5.20), shows mag3 to have more attenuation at both low and high frequencies, so 
the low identification error rate from speech distorted by the mag3 filter is unexpected. 
Furthermore, recall from §5.4.2.2 that the LTAGR performs poorly on speech that has 
the low frequencies attenuated and the high frequencies emphasized. However, Fig. 5.22 
shows that the LTAGR of speech that has been distorted by magI has a very narrow 
central peak compared with the LTAGR of speech filtered by mag3. Although the 
magI distortion appears to be less severe than the mag3 distortion, its affect on the 
LTAGR is more pronounced. This can be attributed to the high frequencies tending 
to dominate the speech signal, causing 'spikiness' in the LTAGR. The 'spikiness' alters 
the shape of the main peak of the LTAGR and makes identification between 'spikey' 
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Figure 5.21. The identification error rates for speech passed through the different magnitude distortion 

filters depicted in Fig, 5.20. The original speech (oOg. in above figure) is filtered by magI, mag2, mag3 

and mag4 and the identification error rates plotted for: (a) LTAGR, (b) LTAS-VE, (c) CEPV and 

(d) PARCORV features. 

LTAGRs and undistorted LTAGRs unreliable. 

5.5.2.3 Phase 

The effect of phase distortion on the identification error rate is examined by passing 
test utterances through a filter whose frequency response is specified by 

H(!) = ei1{!(J) , (5.18) 

where f/;(!) is the phase response of the filter. 
The non-linear phase responses used here are based on the phase responses of tenth 

order Butterworth filters and a phase shifting filter. The filter specifications are sum
marized in Table 5.12. Filters with 300 Hz and 3500 Hz cutoffs were selected because 
these types of filter are commonly used to filter speech before transmission over the 
telephone network. The phases of the various phase distortion filters are plotted in 
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Figure 5.22. The LTAGRs obtained for the utterance AEI after the speech has been filtered by filters 

having the magnitude responses depicted in Fig. 5.20. The LTAGR after filtering by: (a) magI, (b) 

mag2, (c) mag3 and (d) mag4. 

filter 1jJ(f) 
phI 11" /2sgn(f) 

ph2 phase of 10th order lowpass Butterworth with 3500 Hz cutoff 

ph3 phase of lOth order highpass Butterworth with 300 Hz cutoff 

ph4 ph2 + ph3 

Table 5.12. Definition of the phase responses of the different phase distortion filters. 

Fig. 5.23. The phase responses are linear over much of the frequency range, with the 
non-linearities appearing most prominently in the region of the cut-off frequency. In 
order to examine the sensitivity of the features to extreme phase distortion, a Hilbert 
transform is used as one of the non-linearities. The impulse responses of the phase 
distortion filters are computed using the inverse FFT of a unity magnitude filter that 
has a phase corresponding to one of the phases depicted in Fig. 5.23. This impulse 
response is then convolved with the original speech to produce phase distorted speech. 

Speaker templates for CEPV, PARCORV and LTAS-VE features are constructed 
from undistorted training utterances that have been pre-emphasized by a (1- 0.95z-1 ) 

filter. Templates for the LTAGR are also formed from undistorted training utterances, 
but without any pre-emphasis. The test utterances are filtered by phase distorting 
filters before features are extracted. 

The identification results for the various types of phase distortion are depicted in 
Fig. 5.24. It is apparent that phase distortion filter phI has essentially no effect on 
the identification error rate of CEPV, PARCORV and LTAS-VE features. This is 
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Figure 5.23. Phase responses applied to a fiat magnitude response in the design of phase distortion 

filters. The filters are labelled: (a) phl, (b) ph2, (c) ph3, (d) pM, 

to be expected since the CEPV, PARCORV and LTAS-VE features model the power 
spectrum of the speech. 

The CEPV, PARCORV and LTAS-VE features are insensitive to the ph2 high 
frequency non-linear phase distortion depicted in Fig. 5.23(b). Fig. 5.24( a) shows that 
the LTAGR is sensitive to this type of distortion, particularly when the LTAGR feature 
vector is of dimension 16 or 32. However, the identification error rate for vectors of 128 
samples is not significantly different from that obtained for un distorted utterances. The 
difference of 44.5% between LTAGR identification error rates for vectors of dimension 
16 and 128 indicates that the ph2 distortion causes the LTAGR to be sensitive to 
reductions in dimension. 

The CEPV, PARCORV and LTAS-VE features all exhibit increased error rates of 
the order of 5% for ph3 and ph4 distortions. The LTAGR has error rates of greater 
than 80% for ph3 and ph4 distortions. 

5.5.3 Summary of the effects of noise and frequency response distor-
tion on speaker identification 

The examination of the speaker identification error rates for LTAGR, LTAS-VE, PAR
CORY and CEPV features reveals that they are each affected differently by different 
types of distortion. 

The LTAGR gives much lower error rates than the other features for both Gaussian 
noise and speech correlated noise. This is due to the averaging that occurs in the SAA 
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Fjgure 5.24. The identification error rates for original speech (orig. in the above figure) filtered with 

different phase nonlinearities, as specified by Fig. 5.23. The speech is passed through filters phI, ph2, 

ph3 and pM and the identification error rates plotted for: (8) LTAGR, (b) LTAS-VE, (c) CEPVand 

(d) PARCORV features. 

algorithm. 
The effect of a non-flat frequency response in a channel varies, depending on the 

characteristics of the non-flat response. Small bands of attenuation (200 Hz wide) have 
a small effect on the identification error rate, whereas significant attenuation (10 dB or 
more) in the 0-500 Hz region causes a considerable increase in the speaker identification 
error rate for all the features except the LTAGR. The LTAGR gives approximately 20% 
identification error rate for speech that has both the high and low frequencies attenuated 
(mag3 in Fig. 5.20). 

One limitation of the tests reported in §5.5.2.2 is that no attempt is made to correct 
features for the channel distortion. A reasonably straightforward method of doing this 
for CEP features is to take the average of the CEP coefficients across all the speech 
frames and then to subtract this average from all the frames (Birnbaum et al., 1986). 
This is called channel normalization and is equivalent to deriving CEP coefficients for 
a speech frame that has been passed through a filter having a frequency response that 
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I Feature Additions/s Multiplications / s 

Subtractions/s , 

LTAGR 25600 0 

PARCOR 140000 140000 

CEP 150000 150000 

LTAS-VE 160 000 560000 

Table 5.13. Computational requirements for calculating various features utilized in speaker identifi

cation experiments. 

corresponds to the inverse of the long-term spectral characteristics of the channel. The 
long-term average CEP also contains information about the long-term average of the 
voice, and this is also removed from the CEP features. Experiments by Birnbaum 
et al. (1986) indicate that the accuracy of speaker verification is improved in most 
instances by channel normalization. 

The experiment that examines the effect of different phase distortions highlights 
the sensitivity of the LTAGR to phase changes. Whereas features such as CEPV, 
PARCORV and LTAS-VE perform slightly worse (overall), the identification error rate 
of the LTAGR increases to 80-90% for all but the mildest of phase distortions. This 
means that the LTAGR can only be used in systems where the phase response of the 
speech 'channel' is reasonably constant. 

5.6 COMPUTATIONAL REQUIREMENTS 

A significant criterion for selecting between features, particularly when their perfor
mance is equivalent, is the computational effort required to use them in a speaker 
identification system. 

Computational requirements for matching between vectors are described in terms 
of the dimensions of each of the vectors, so it is useful to specify PJeature to represent 
the number of elements in a feature vector. For example, if the CEP16V feature vector 
consists of 12 cepstral coefficients, it is denoted PCEP16V = 12. 

The computational effort can be divided into two separate parts: (1) calculation of 
the feature and (2) distance computation between features and reference templates. 

5.6.1 Feature calculation 

The estimated number of operations per second for each feature, as shown in Table 5.13, 
assumes a sampling rate of 10 000 samples per second. Figures for the number of 
operations apply to one second of speech, so 'per second' is assumed. The following 
paragraphs outline the assumptions and approximations in arriving at these figures. 

In order to estimate the number of operations required to calculate the LTAGR, the 
pitch was assumed to be 100 Hz, implying a total of 100 glottal response frames per 
second. The comparisons required to determine the position of the glottal excitation 
(frame alignment) can be considered to be subtractions, which are similar computa
tionally to additions. The total number of additions recorded in Table 5.13 is therefore 
composed of 12 800 additions for accumulating the 128 samples in the long-term aver
age glottal response and 12 800 subtractions for locating the peak in the SAA frame. 
The final normalizing division has not been accounted for in the computation estimate, 
since it is considered insignificant compared with the total number of additions. 
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Feature Subtractions and Multiplicationsjs Typical number of 
additionsjs operationsjs 

LTAGR 2 x PLTAGR PLTAGR 128 

LTAS-VE 2 x PLTAS PLTAS 128 

PARCOR 2 x S x PPARcoRxframesjs S x PPARcoRxframesjsec 9600 

CEP 2 x S X PCEP xframesjs S x PCEPxframesjsec 9600 

Table 5.14. Computational requirements for calculating the distance between features. Note that P 

is the feature order and S is the codebook size. The typical number of operations for PARCOR and 

CEP coefficients assumes S = 16, P = 12 and 50 frames per second of speech. The size of the LTAGR 

and LTAS-VE feature vectors is assumed to be 128. 

The tabulated value for the computation required to determine PARCOR coeffi
cients is based on 12 coefficients and frames that are 200 samples long, making a total 
of 50 frames per second. Most of the computation is in pre-emphasizing, windowing 
and calculating the autocorrelation since the Durbin-Levinson algorithm requires only 
order PfoARCOR operations to calculate PARCOR coefficients from autocorrelation coef
ficients. As well as the multiplication operations, the autocorrelation and pre-emphasis 
operations require a significant number of additions, estimated at 125 000 additions 
per second. 

The CEP coefficients are determined iteratively from the LPC prediction coefficients 
and therefore only require an additional P6EP operations per frame above the number 
specified for calculation of PARCOR coefficients. 

The number of operations required to calculate the LTAS-VE is dependent upon 
the number of operations required to evaluate the discrete Fourier transform. Provided 
the length of the transform (N) is a power of 2, as is the case in this situation, the 
FFT can be invoked. Each FFT requires 2N log2 N real multiplications and 3N log2 N 
real additions (Papoulis, 1980). The number of operations reported in Table 5.13 is 
a result of applying the aforementioned formulas to 128 point frames, accounting for 
windowing, and scaling by the number of frames per second. 

5.6.2 Distance measures 

The amount of computation required to evaluate the distance between a set of features 
and a template depends on the number of feature vectors that require matching and 
the dimension of each of the feature vectors. 

Distances for the LTAGR, LTAS-VE, PARCOR and CEP features are computed 
using the Euclidean distance measure, which can be evaluated using a well defined 
number of operations consisting of N subtractions, N multiplications and N additions, 
where N is the number of elements in the feature vector. 

In the situation where the reference template consists of a VQ codebook, multiple 
distance evaluations are required to determine the best match within the codebook. 
Furthermore, there are will typically be a large number of vectors to match against 
the codebook. Table 5.14 tabulates the computations required to match frames of 
PARCOR or CEP coefficients against codebooks of size S, measured in computations 
per second of speech. 

The computational advantage of a single characteristic vector, such as the LTAGR, 
is that the distance calculation only requires a single distance evaluation, whereas 
the distance calculation between a feature such as a CEP vector requires comparison 



186 CHAPTER 5 SPEAKER IDENTIFICATION EXPERIMENTS 

between many individual test vectors and a reference codebook which also contains 
many vectors. 

5.7 SUMMARY 

This section summarizes the main findings of this chapter. Some of the results cannot 
be considered original, since they confirm results obtained by other researchers, but in 
the context of the comparative experimental evaluation presented in this chapter it is 
important to confirm, or disagree, with the observations of other researchers. 

• Analysis of training data can be performed to evaluate whether features are likely 
to be independent. . 

• Intraspeaker and interspeaker distances calculated from the training data are less 
correlated for voiced speech than for the entire utterance. 

• The binomial distribution is used to give the confidence interval for the speaker 
identification error rate and McNemar's test is invoked to compare whether results 
from two experiments are significantly different. 

• The identification error rate of all vocal tract features decreases as the codebook 
size is increased. 

• The best vocal tract features for speaker identification using the entire utterance 
are LPC and CEP with identification error rates of 0.5%. CEP is preferred 
because the construction of template codebooks and the distance computations 
are more straightforward. 

• Voiced speech gives smaller speaker identification error rates than entire speech 
utterances. 

• The LTAGR has a speaker identification error rate of 21%. The use of LTAGR 
descriptors and discriminant analysis does not improve the identification error 
rate over using the entire LTAGR. Weighting the LTAGR by the inverse of the 
pooled intraspeaker covariance matrix increases the identification error rate sig
nificantly. LTAGRs determined from pre-emphasized speech also have increased 
identification error rates. 

• Of a.ll the methods of combining CEP, PARCOR and LTAGR features to improve 
the identification error rate, it is found that the method (M4) that uses weightings 
related to the interspeaker and intraspeaker distances in the training data gives 
the best results. However, in a statistical sense, M4 (modified weighting) was not 
significantly better than either CEPV or M5b (presort using LTAGR). 

• The speaker identification performance of the LTAGR remains relatively unaf
fected by noise compared with LTAS-VE, CEPV and PARCORV features. 

• The speaker identification error rate of LTAGR features is sensitive to variations 
in the phase response of the speech transmission channel. The increase in identifi
cation error rate is greater than that of LTAS-V, CEPV and PARCORV features. 

• Computation of the LTAGR is an order of magnitUde more efficient that either 
CEP, LTAS-VE or PARCOR features. 
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This thesis presents a thorough investigation of the usefulness of a new glottal based 
feature for performing speaker identification. Section 6.1 describes conclusions reached 
from the experimental investigations and §6.2 suggests possible directions of future 
research. 

6.1 CONCLUSIONS 

The main aim of this thesis is to investigate the usefulness of the long-term average 
glottal response (LTAGR) for speaker identification and to compare it against vocal 
tract features. Several other aspects of the LTAGR are also investigated, and for 
this reason the concluding remarks are divided into two sections. Section 6.1.1 draws 
conclusions about the LTAGR as a feature and §6.1.2 is concerned with the significance 
of the speaker identification results reported in Chapter 5. 

6.1.1 The long-term average glottal response 

The long-term average glottal response, computed using the shift-and-add (SAA) algo
rithm, represents the average of a person's glottal excitation convolved with the average 
vocal tract response throughout the utterance (§2.8.2). 

Section 2.8.2 states that a requirement of using the SAA algorithm to calculate 
the long-term average glottal response is that only voiced sections of speech are used. 
In §2.8.5 a modification to the standard SAA algorithm (as defined by Brieseman et 
at. (1987» for speech signals is proposed that simplifies the voiced/unvoiced decision. It 
is shown in §2.8.5 that the voiced/unvoiced decision can be approximated by applying 
a threshold to the peak of each frame to test whether it is of large enough amplitude to 
be added the SAA accumulator. This has considerable computational advantages over 
more complicated voiced/unvoiced decision methods and, as shown in Fig. 2.25, does 
not significantly affect the shape of the LTAGR. Furthermore, as explained in §4.3.1~ a 
peak threshold based voiced/unvoiced decision makes the SAA algorithm amenable to 
real-time computation. 

An evaluation ofthe similarities and differences between the spectrum of the LTAGR 
and long-term average spectrum is reported in §4.5.1.1. Comparisons of these features 
using four different speakers (2 males and 2 females) shows that the spectrum of the 
LTAGR of pre-emphasized speech is similar (see Fig. 4.16) to the LTAS of voiced, 
pre-emphasized speech. Visual comparison of the LTAGR spectrum and the long-term 
average spectrum of unemphasized voiced speech (depicted in Fig. 4.16) shows that the 
differences are greater than those of the pre-emphasized speech, but the patterns of 
'peaks' and 'valleys' in the spectra are the same. 
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6.1.1.1 Analysis of the long-term average glottal responses belonging to a 
large database 

In §4.3.3 the variation of the LTAGR with accent and gender of the speaker is exam
ined. LTAGRs are computed from the utterances of 352 American English speakers 
from 8 different accent regions. A total of 21 descriptors are defined to represent the 
characteristics of each LTAGR (§4.3.2). 

Factor analysis and discriminant analysis are performed on the LTAGR descriptors 
to examine the correlations amongst descriptors to see if any 'grouping' or clustering 
occurs, and to evaluate the usefulness of the LTAGR for accent and sex discrimination. 

Factor analysis of the LTAGR descriptors reveals that the first factor, which ac
counts for 67.7% of the total variance, is strongly correlated with descriptors that 
represent overall shape of the LTAGR. The next. two factors are correlated with de
scriptors that measure the number of peaks in the LTAGR. Scatter plots of the LTAGR 
observations, plotted with axes comprising combinations of the three largest factors, 
show that the descriptors for speakers with different accents and genders are all grouped 
in a central 'clump', independent of either accent or gender. This means that the factor 
axes are independent of speaker gender and accent, so variations other than gender and 
accent dominate variations in the LTAGR descriptors. 

Discriminant analysis is performed on the data to examine whether the LTAGR 
is useful for determining a speaker's accent or gender. Section 4.3.3.2 shows that the 
LTAGR descriptors are not at all accurate at determining which regional accent a 
person has, but are 95.7% accurate for determining a person's sex. The factor analysis 
and discriminant analysis results differ because the discriminant analysis specifically 
weights those descriptors that assist the specified discrimination. One limitation of this 
work is that the same speech data is used to obtain the distance weighting matrix (for 
the descriptors) as is used to evaluate the discrimination performance. Although this 
lowers the significance of the results, the small number of gender misclassifications (14 
out of 352) indicates that the LTAGR is potentially useful for determining a speaker's 
gender. The LTAGR gives an error rate comparable to those reported in the literature 
for cepstral coefficients (see §4.3.3.2), but requires less computation. 

6.1.2 Speaker identification performance 

This section of the conclusion is concerned with the speaker identification experiments 
reported in Chapter 5. Five different features are compared for speaker identification. 
Three of the features, the cepstral coefficients (CEP), the linear prediction coefficients 
(LPC) and the partial correlation coefficients (PARCOR) record vocal tract charac
teristics. The other two features, the long-term average spectrum (LTAS) and the 
long-term average glottal response (LTAGR) record characteristics that are related to 
the glottal pulse. 

The speaker templates and matching methods differ for the vocal tract features 
and the long-term features. The CEP, LPC and PARCOR speaker templates consist 
of vector quantization codebooks that are formed using the Linde, Buzo and Gray 
(1980) training method described in §2.7.4.3. Distances between a test utterance and 
a speaker's template are determined by computing the total error that occurs when 
the test utterance is quantized using the speaker's codebook. The LTAS and the LT
AGR templates are formed from the average of the LTAS and LTAGR features taken 
across five training utterances. For the LTAS and LTAGR the distances between a test 
utterance and speaker's template are determined using a Euclidean distance measure 
between feature vectors. 

Section 4.1 describes the speech database that was recorded to provide utterances 
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suitable for performing speaker identification experiments. Fifteen utterances of the 
digits zero to nine were recorded from twenty speakers (sixteen males and four females). 
The first five utterances are used for training and the last ten utterances are used for 
evaluating identification performances. 

6.1.2.1 Analysis of templates formed from the training data 

The training data is analyzed to examine the expected usefulness of the CEP, PARCOR, 
LTAGR and LTAS features. The usefulness of each feature is assessed by examining 
the interspeaker and intraspeaker distributions for each individual feature. The trend, 
for both PARCOR and CEP coefficients, as the codebook size increases is for the 
variation in the intraspeaker distance to decrease. This implies that the variation of the 
distance measured between a person and their own template is less for larger codebooks. 
However, the interspeaker distance, which measures the separation between speakers, 
is also important. The intraspeaker distance and interspeaker distance are most widely 
separated when only voiced frames from the speech signal are used for recognition, 
and this leads to the improved identification accuracies reported in §5.4. In addition, 
the correlation between the intraspeaker and interspeaker distance is reduced when 
only voiced frames are used in training the codebooks, which means that a person's 
utterances can be close to their own template without being close to templates belonging 
to other speakers. 

The correlations of the intraspeaker distances belonging to different features is used 
to assess whether features record the same information about speakers. The correlation 
(Pearson's coefficient) between the intraspeaker distances of the LTAGR and CEP 
(with codebooks containing 16 codevectors) is 0.00, which indicates that these two 
features represent different aspects of a person's speech. The LTAGR is uncorrelated 
with the vocal tract characteristics, as recorded by the CEP codebooks, and there are 
two possible reasons for this. First, the LTAGR contains phase information about 
the speech and, second, the LTAGR is dominated by information about a person's 
glottal characteristics. The long-term average spectrum, which can also be considered 
to record glottal characteristics (§3.5.5), has a low correlation of 0.01 with respect to 
CEP. The features related to the glottal characteristics of the speech therefore represent 
information that is independent of that described by the vocal tract features. 

6.1.2.2 Evaluation of different speaker identification features 

A series of speaker identification experiments that evaluate the advantages and dis
advantages of the different features for speaker identification are reported. The types 
of experiment fall into three broad categories. They are, experiments on individual 
features, experiments on combinations of features, and experiments on noisy or dis
torted speech. The following paragraphs present the conclusions reached from these 
experiments. 

Comparison between LTAGR, LTAS, PARCOR, LPC and CEP coefficients for 
speaker identification reveals that the PARCOR, LPC and CEP features perform better 
than the LTAGR and LTAS features. The LTAGR and LTAS give approximately 20% 
identification error rate, while the identification error rate for PARCOR, LPC and CEP 
coefficients is approximately 0.5% for codebooks containing 32, 64 or 128 codevectors. 

The difference in identification error rate between using the entire utterance and 
voiced only speech is examined in §5.4.2. There is a significant advantage in using 
voiced speech (see Table 5.6) when codebooks contain between 2 and 8 codevectors. 
However, the difference in identification error rates is insignificant when the size of 
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the codebooks is 16 or larger. This is because codebooks with more codevectors have 
enough resolution to adequately describe the wider range of unvoiced sounds. 

The correlations of the intraspeaker distances in §5.2.2 suggest that the LTAGR 
measures a voice characteristic that is not represented by the other features. Com
binations of CEP, PARCOR and LTAGR features were therefore evaluated to see if 
identification performance could be improved. Five different methods of combining 
features were evaluated. Method 1 used the CEP, PARCOR and LTAGR features, 
with distance normalization being performed before the distance values from the three 
features were combined. Method 2 was the same except only the CEP and LTAGR 
features were used. Method 3 used CEP, PARCOR and LTAGR features, distance 
normalization and a weighting that corresponded to the intraspeaker distance. Method 
4 used the same features as method 3, and a new method of weighting based on the 
interspeaker and intraspeaker distances in the training data. Method 5 used the LT
AGR to presort the total population into a sub-population before identification was 
performed on the sub-population using the CEP. All of the above methods used the 
entire utterance for performing identification. 

Method 4 gives a 1% improvement (to an identification error rate of 1.5%) over 
using CEPs by themselves for a codebook size of 16. This method also performs the 
best out of all the combined feature methods. Information recorded in the intraspeaker 
and interspeaker distributions within the training data is therefore useful for obtaining 
the appropriate weightings for combining distances calculated from separate features 
into a single distance measure. Computationally, method 4 has the drawback that 
it requires matching between both CEP and PARCOR codebooks. Method 4 is only 
better than CEP or PARCOR features alone when the codebook size is limited (see 
§5.4.4). In addition, if only voiced portions of the utterance are used, method 4 does 
not improve the error rate. 

Method 5 uses the LTAGR to reduce the size of the speaker population before 
matching by the more accurate, but computationally intensive, CEP coefficients and 
codebooks. There is a slight decrease in accuracy, in the order of 1%, compared with 
CEP matching against the whole population and, on average, sorting with the LTAGR 
reduces the population to 0.56 of its original size. 

In §5.6 the computation requirements of the features used for speaker identification 
are discussed under the headings of feature computation and identification require
ments. The computational effort required to calculate the LTAGR is shown in §5.6 to 
be significantly less than that required for CEP, PARCOR or LTAS features. Match
ing between CEP and PARCOR test features and speaker templates is on a frame 
by frame basis which is more computationally intensive than either the LTAGR and 
LTAS (§5.6.2). However, this extra computation can be justified by the better speaker 
identification performance of the PARCOR and CEP features. 

In summary, the various speaker identification results presented in §5.4 indicate that 
the LTAGR is not as accurate as CEP, LPC and PARCOR coefficients for performing 
speaker identification. Combining the LTAGR with CEP and PARCOR features does 
not produce a significant reduction in the speaker identification error rate. 

6.1.2.3 Sensitivity of features to noise and distortion 

The effects of various types of noise and distortion on the speaker identification perfor
mance of the various features is reported in §5.5. The following conclusions are drawn 
from the identification experiments. 

The LTAGR is insensitive to the effects of Gaussian noise and speech correlated 
noise compared with the CEP, PARCOR and LTAS features. This is because averaging 
occurs in the SAA algorithm that removes the effects of noise. 
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The effects of variations in the frequency responses of telephone headsets was eval
uated by applying gain or attenuation in the 2.0 to 2.7 kHz region. The LTAGR, CEP 
and PARCOR features are insensitive to attenuation of approximately 10 dB in the 
frequency response of the speech transmission channel in the 2 to 2.7 kHz region (see 
§5.5.2.2). However, the speaker identification error rate of all the features increases 
to more than 50% when there is attenuation in the low frequency (0-2 kHz) region. 
This implies that any variations in the low frequency response of a channel will have a 
significant effect on the accuracy of speaker identification. 

The LTAGR is shown to be sensitive to variations in the phase response of the 
speech transmission channel. The identification error rate increases to 80% or more for 
three of the four phase distortions tested. In contrast, the error rate of the CEPV and 
PARCORV features increases by approximately 5% for the various phase distortions 
applied and the error rate for the LTAS-V increases by less than 20%. This insensitivity 
of the CEPV, PARCORV and LTAS-V to phase distortion is expected since they do 
not record any phase information about the speech. 

In summary, from the experimental findings reported in §5, it is apparent that 
the LTAGR cannot be justified as a useful feature for speaker identification unless the 
unusual situation of a noisy channel with reasonably consistent phase response occurs. 
In all other situations vocal tract features yield more accurate speaker identification. 

6.2 SUGGESTIONS FOR FURTHER RESEARCH 

The research reported here points to several areas of further investigation. These are 
grouped into those that use the LTAGR to assess a person's voice quality, as described in 
§6.2.1, and those relating to speaker identification, as discussed in §6.2.2. An alternative 
VQ structure for performing speaker identification is suggested in §6.2.2.5 

6.2.1 The long-term average glottal response 

In §4.4 it is suggested that the LTAGR can be used to extract similar information from 
the speech as might be expected from the LTAS. Furthermore, §4.4.3 explains that 
the LTAS is considered to be useful in clinical applications for monitoring changes in 
a client's voice. It would be interesting to compare the capabilities of the LTAS and 
the LTAGR in a clinical situation. Since the LTAGR is much simpler to compute than 
the LTAS (see §5.6), it could have considerable practical advantages provided that the 
same clinical information could be extracted. 

It is also noted in §5.4.2.1 that the speaker information in the LTAS is affected by 
the shape of the window applied to the speech. This implies that some of the informa
tion characterizing the speaker is contained in the fine detail of the LTAS. Therefore, 
to characterize a person's voice for clinical assessment, or speaker identification, it 
is important to represent the fine structure of the LTAS. Much of the reported re
search into the clinical use of the LTAS makes use of coarse descriptors (Kitzing, 1986; 
Lofqvist, 1986) that discard the fine structure information. Further investigation into 
the information recorded in the fine structure of the LTAS is required to ascertain 
whether or not these coarse descriptors are actually best. 

Section 5.4.4 introduced a speaker identification method that uses the LTAGR as 
a presort to lower the search population before a more accurate, computationally in
tensive, feature is used. In this role the LTAGR is being used to determine the general 
characteristics of a person's voice and to associate the voice with a group of people 
(voices) that have similar characteristics. This type of association could be useful in 
word recognition applications as well as speaker recognition applications. The idea 
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would be to have the speaker say a phonetically balanced phrase from which the LT
AGR is extracted. The LTAGR could then be used to associate the speaker's voice 
with a group containing the same 'voice type', and word recognition could proceed 
using templates from the selected group. This type of system would be useful if people 
were to use a word recognition system for an extended period. An example of such 
a system would be a computerized drawing package, where a session of many hours 
duration could be started by users uttering a phonetically balanced phrase that 'tunes' 
the recognition system to their voice. 

6.2.2 Speaker identification 

There are many possible extensions to the speaker identification experiments reported 
in Chapter 5. The most obvious ones, such as the incorporation of time registration in 
the matching, and testing the effects of shorter phrases have been examined elsewhere 
in the literature (Soong and Rosenberg, 1988). However, a number of other research 
avenues remam. 

6.2.2.1 Methods of improving the accuracy of results 

A drawback of the results reported in §5,4 is that it is not always possible to draw 
statistically significant conclusions between experiments that use vocal tract features. If 
further experime:p.ts were undertaken, the significance of the identification results could 
be improved in several ways. First, the number of speakers used in each identification 
experiment could be increased, thereby improving the accuracy of each experimental 
result. Second, the identification systems could be 'stressed' in some way, so as to 
increase differences in identification error rates. One method of stressing the systems 
is to reduce the length of the speech sample that is used for testing the identification 
system. In the work reported in this thesis it was not considered sensible to shorten 
the speech samples, because the aim was primarily to compare between the LTAGR 
and vocal tract features, and the LTAGR requires a long utterance to form a stable 
estimate. However, if further experiments were performed between vocal tract features 
alone, it would be quite feasible to use only portions of complete utterances. 

6.2.2.2 Weighting individual samples in the LTAGR 

Another area requiring further research is the method of distance calculation between 
LTAGRs. Section 5.4.2.2 mentions that the application of intraspeaker weights to the 
LTAGR distance measure does not improve the accuracy of speaker identification. It 
would be useful to examine whether the weights applied to each sample for the purposes 
of distance calculation could be improved. The method of weighting using the inverse 
of the intraspeaker distance is not optimal for the reasons outlined in §5.4.2.2. A 
potentially better weighting would be one that takes into account the interspeaker as 
well as the intraspeaker distance. A possible form of such a weighting, specified for 
each sample i of the LTAGR, is 

ki = interspea~eri - in:traspeakeri , 

O"inter + O"£ntra 
(6.1) 

where O"inter is the standard deviation of the interspeaker distance and O"intra is the stan
dard deviation of the intraspeaker distance as computed from all the training LTAGRs. 
Note that (6.1) has the same form as the weighting used for method 4 for combining 
contributions from various features into a single measure. Method 4 gave better identi
fication results than the other methods of combining features, which implies that (6.1) 
might also give improved speaker identification results. 
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intraspeaker 

distance 

Figure 6.1. Intraspeaker and interspeaker probability distributions for speaker 1. 

6.2.2.3 Further evaluation of the LTAGR for presorting the speaker pop
ulation 

In §5.4.4 it was suggested that the LTAGR could be used to presort speakers so as to 
reduce the size of the population. However, the experiments reported in §5.6 require 
extension before conclusions can be drawn about whether presorting using the LTAGR 
is advantageous. In particular, it is important to ascertain whether the LTAGR can be 
used to select a sub-population that is significantly smaller (say a quarter) than the total 
population for large numbers of speakers. Such a reduction in the population would 
allow considerable computational savings when performing speaker identification. 

6.2.2.4 A method of assessing identification accuracy 

Section 5.2.2 introduces the concept that the expected accuracy of a particular descrip
tor could be predicted from the intraspeaker and interspeaker distances of the training 
utterances. Noda (1989) describes a method for obtaining the probability that a speaker 
verification result is correct, given the distance d. In speaker identification, particularly 
for use in a court of law, it would be useful to determine a measure of confidence that 
a correct identification has been made. The confidence measure would be based on the 
distance that the test utterance is from the speaker's template and the spread of the 
speaker's training utterances. The confidence in a particular speaker identification re
sult is related to how well the intraspeaker and interspeaker distributions are separated 
for that particular individual. The distribution of the intraspeaker and interspeaker 
distances can be modelled as a Gaussian distribution using the means and variances 
computed from the intraspeaker and interspeaker distances. If the intraspeaker and 
interspeaker distributions for speaker 1 are as depicted in Fig. 6.1, the distance, d, 
recorded between the test utterance and template 1 has a probability of occurence PI 
while the probability that this distance can occur when the utterance belongs to an
other speaker is given by P2. From these two probabilities it should be possible to form 
an estimate of the confidence of the identification. One possible confidence measure 
would be Pt!P2' Experiments could then be performed to examine how the confidence 
figure corresponds with the accuracy of actual speaker identification experiments. 

Of course, it may also occasionally be important to determine the probability that 
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a particular test utterance does not belong to a specific individual. A modified version 
of the above scheme could be applied in that situation. 

6.2.2.5 An alternative VQ structure 

The identification results reported in §5.4 and the computation requirements presented 
in §5.6 indicate that VQ features are accurate for performing identification, but are 
comp~tationally expensive. This section presents an alternative to the usual single VQ 
codebook per speaker that could considerably speed up speaker identification. 

The essence of the new method is that information that is usually recorded in 
individual codebooks is instead recorded in a single large tree structured codebook. 
As explained in §2.7.4.4, a tree~structured codebook is efficient to search since every 
two distance computations.halve the search space. For each centroid in the codebook 
it is necessary to record how well the centroid characterizes the speech of each of the 
speakers. This is explained further in the following paragraphs which are concerned 
with computing the codebook and the way in which such a codebook is used to perform 
speaker identification. The suggested algorithm for computing the codebook follows the 
LEG algorithm presented in §2.7.4.3. 

It is useful for the purposes of this discussion to introduce a measure of how similar 
two frames of speech are to each other. This is called the similarity and an example of 
such a measure, expressed using terminology introduced in §2.7.3, is 

(6.2) 

where aRxaT is always greater than or equal to aXRxaxT (see Gray and Markel (1976)) 
and approaches aXRxaxT when the spectrum IO'/A(e j {/)1 2 is close to the spectrum 
IX(e j9W. The reasons for using a similarity measure instead of a distance measure 
are explained in more detail later. 

The iterative procedure for computing the codebook uses training vectors x[Pk) to 
model IX( ej {/)1 2 , where p is the speaker number and k is the number of the speech 
frame. Similarly, 10'/ A( ej {/)1 2 is represented by the centroid vector y[j), where j is the 
centroid number. The similarity measure between a vector x and a centroid y can 
therefore be expressed concisely as S(x,y). The first seven steps of the following VQ 
training algorithm are the same as Algorithm 2.2, except that the training sequence 
is comprised of utterances from all the speakers. The notation used is introduced in 
§2.7.4. 

Algorithm 6.1 

Step 1: Initialisation: Fix the largest number of codevectors desired to be 2R , where 
R is an integer. Set M to the number of people and Kk to the vectors in the 
training sequence belong to speaker k and L, the number of codevectors, to 1. 
Define Co = {x[Pk)jp = 0"", M 1; k = 0,,,,, Kk - I} and Y(l) = centCo, 
the centroid of the entire training sequence. 

Step 2: Splitting: Given Y(L) {y[j];j = 0"", L}, split each codebook vector into 
Yj + E and Yj - E. Set Y m(2L) {Yj + E,Yj - E,j = 1"", L} and replace L 
by 2L. 

Step 3: Reset variables: Set m = 0 and D-l = 00. 

Step 4: Partitioning: Find the optimum partition for the codebook Ym(L),P(Ym(L)) 
using (2.93). Compute the resulting distortion 

(6.3) 
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Step 5: Termination Test: If (D(m-l) - Dm)/ Dm :$ f. = 0.005, go to step 7. Otherwise 
continue. 

Step 6: Update Codebook: find the next codebook Y m+1(L) = centP(Ym(L)), the 
centroids of the partitions for the codebook Y m(L). Replace m by m + 1 and 
go to step 4. 

Step 7: Final Rate Test: Set Y(L) = Y m(L). If L < 2R go to step 2 otherwise continue. 

Step 8: Compute Similarities: Find the average similarity between each centroid and 
the speaker's vectors that fall in the cell. First, let j be the centroid number, 
p the speaker number and set S[pj] = 0 for all p and j. The average similarity 
between speaker p and centroid j is given by 

I: S(x[PkJ, y[j]) 
k:x[pk]EGj 

S [pj] = -;;--;:~--=-':------=: T,(::--~ for all p and j = 0,," ,.1] k-l 
(6.4) 

where Ilx[Pk] E Gj; k = 0,···, ](k 11 is the number of vectors belonging to 
speaker p in cell G j. 

Halt with the final quantizer Y m( L), where codebook tree branches are speci
fied by L = 2, .. " 2R and the similarity matrix S[pj]. 

A particular cell, Gj, may not contain any vectors from a particular speaker, p, so 
:Lk:X[pk]EGj S(x[Pk], y[j]) will be zero and the similarity, S[pj], is O. This situation is 
the main reason for suggesting that a similarity score be used rather than a distance 
measure for measuring how far vectors are from the centroid. It would be difficult to 
determine a sensible distance to record when there are no vectors from a particular 
speaker in a celL Obviously the distance should be large, but it is not clear how to 
select such a number. The similarity measure resolves this by allowing a similarity of 
o to be recorded. 

An example of the vectors in a particular cell is depicted in Fig. 6.2, and for the 
purposes of this discussion the similarity between vectors can be considered to be 
inversely related to the distance between them. The cell depicted in Fig. 6.2 does 
not aid the discrimination between speakers 1 and 2 because the similarities between 
the speaker centroids and Yl are approximately equal. However, speaker 4, who does 
not have any vectors within the cell, would have a similarity measure of 0 and such a 
variation in similarities would assist the discrimination of speaker 4 from the other three 
speakers. For a large single codebook to be useful, there must be enough resolution 
to ensure that for each speaker in the population there are several centroids contained 
within the codebook (vectors Y m(L)) that are more similar to that particular speaker's 
speech than any other speaker's speech. There must therefore be at least as many 
codevectors as speakers, and probably round eight codevectors per speaker would be a 
good number to start experimenting with. 

Identification uses a similarity score matrix to accumulate the similarity scores as 
test vectors are matched against the codebook. Given a test sequence of vectors w[ i] 
(0 < i :$ J( -1) and a similarity score matrix SS[p], initialize SS[P] by setting SS[P] = 0 
for all p. Compute SS[P] using 

m = argm~n d(w[i]' y[j]) } 
. J for 1 < i < J( - 1 

SS[P] = SS[P] + S[pm] 1 < p :$ lit[ -
(6.5) 

The person, p, with the highest similarity score is the identified speaker. 
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Figure 6.2. A stylized representation of a centroid, Yl, and the vectors from four speakers that fall in 

the cell associated with the centroid. The circles labelled 1 represent the positions of vectors obtained 

from speaker 1, and so on. Note that there are no circles labelled 4, because no vectors from speaker 

4 occur in the example cell. 

The result of evaluating argminj d(w[i], y[j]) is a centroid number. However, the 
similarity used fOf identification has been computed as part of the training procedure 
and the position of the test vector w[k] within the cell is lost. For the example depicted 
in Fig. 6.2, a test vector that is 'close' to the vectors belonging to speaker 3 is assigned 
to be more similar to speaker's 1 and 2 than speaker 3. This would contribute to an 
incorrect identification. This situation can be avoided if enough centroids are used to 
ensure that the every speaker has several cells that are representative of their commonly 
occurring sounds, and in which they are most similar to the centroid. 

Experimental verification is required to see whether the gain in computational effi
ciency using this method would be offset by a significant decrease in the identification 
accuracy. It would also be important to determine the optimum number of codevectors 
to use. One drawback of the above method is that the VQ codebook would most likely 
require recomputation every time a speaker was added to the population. 

6.2.2.6 Future trends 

Ideally speaker identification would be performed in conjunction with word recognition. 
If this were possible, systems could automatically reconfigure themselves for each user 
by performing speaker recognition while responding to voice commands. To date there 
has been little experimentation with this sort of combined system, but in theory there 
is no reason why it could not be implemented. 

Until computers are able to listen and respond to speech in much the same way 
as humans, spoken interaction with computers is going to remain somewhat of a nov
elty. Such interaction will only be achieved after much research, investigation and 
experimentation, and there remains a considerable way to go. 



197 

REFERENCES 

ABRAMOWITZ, M. and STEGUN, I. (1965), Handbook of mathematical functions, 
Dover Publications, Inc., New York. 

ANANTHAPADMANABHA, T.V. and FANT, G. (1982), 'Calculation ofthe true glot
tal flow and its components" Speech Communication, Vol. 1, December, pp. 167-
184. 

ANANTHAPADMANABHA, T.V. and YEGNANARAYANA, B. (1979), 'Epoch ex
traction from linear prediction residual for identification of closed glottis interval', 
IEEE Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-27, 
No.4, August, pp. 309-319. 

ANTEX ELECTRONICS CORPORATION (1990), Series 2/Model SXI0 Digital Au
dio Processor Datasheet, Antex Electronics Corporation, 16100 South Figueroa 
St, Gardena, Calif. 90248. 

ATAL, B.S. (1972), 'Automatic speaker recognition based on pitch contours', Journal 
of the Acoustical Society of America, Vol. 52, No.6 (Part 2), pp. 1687-1697. 

ATAL, B.S. (1974), 'Effectiveness of linear prediction characteristics of the speech wave 
for automatic speaker identification and verification', Journal of the Acoustical 
Society of America, Vol. 55, No.6, June, pp. 1304-1312. 

ATAL, B.S. (1985), 'Linear predictive coding of speech', In FALLSIDE, F. and 
WOODS, W.A. (Eds.), Computer Speech Processing, Prentice Hall, New Jersey, 
Chap. 4. 

ATAL, B.S. and HANAUER, S.L. (1971), 'Speech analysis and synthesis by linear 
prediction" Journal of the Acoustical Society of America, Vol. 50, No.2 ( Part 
2), pp. 637-655. 

ATAL, B.S. and RABINER, L.R. (1976), 'A pattern recognition approach to voiced
unvoiced-silence classification with applications to speech recognition', .IEEE 
Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-24, No.3, 
June, pp. 201-212. 

ATAL, B.S. and RABINER, L.R. (1986), 'Speech research directions', AT (3 T Tech
nical Journal, Vol. 65, No.5, September, pp. 75-88. 

ATTILI, J.B., SAVIC, M. and CAMPBELL, JR., J.P. (1988), 'A TMS32020-based real 
time, text-independeI,lt, automatic speaker verification system" In International 
Conference on Acoustics, Speech, and Signal Processing, IEEE, pp. 599-602. 

BARNWELL, T.P. (1980), 'Windowless techniques for LPC analysis', IEEE Transac
tions in Acoustics, Speech and Signal Processing, Vol. ASSP-28, No.4, August, 
pp. 421-427. 



198 REFERENCES 

BATES, R.H.T. (1982), 'Astronomical speckle imaging', Physics Reports, Vol. 90, No.4, 
October, pp. 203-297. 

BATES, R.H.T. and CADY, F.M. (1980), 'Towards true imaging by wideband speckle 
interferometry', Optics Communications, Vol. 32, No.5, March, pp. 365-369. 

BATES, R.H.T. and McDONNELL, M.J. (1986), Image Restoration and Reconstruc
tion, The Oxford Engineering Science series, Oxford University Press, Oxford. 

BENDIKSEN, A. and STEIGLITZ, K. (1990), 'Neural networks for voiced/unvoiced 
speech classification', In International Conference on Acoustics, Speech, and Sig
nal Processing, IEEE, pp. 521-524. 

BERGER, T. (1971), Rate Distortion Theory, Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey. 

BERGLAND, G.D. (1969), 'A guided tour of the fast Fourier transform', IEEE Spec
trum, July, pp. 41-52. 

BIRNBAUM, M., COHEN, L.A. and WELSH, F.X. (1986), 'A voice password system 
for access security', AT {3 T Technical Journal, Vol. 65, No.5, September, pp. 68-
74. 

BLYTH, C.B. (1986), 'Approximate Binomial confidence limits" Journal of the Amer
ican Statistical Association, Vol. 81, No. 395, September, pp. 843-855. 

BOGNER, R.E. (1981), 'On talker verification via orthogonal parameters', IEEE Trans
actions in Acoustics, Speech and Signal Processing, Vol. ASSP-29, No.1, Febru
ary, pp. 1-12. 

BOLT, R.H., COOPER, F.S., DAVID, JR., E.E., DENES, P.B., PICKETT, J.M. and 
STEVENS, K.N. (1970), 'Identification of a speaker by speech spectrograms', 
Journal of the Acoustical Society of America, Vol. 47, No.2 (Part 2), pp. 597-
612. 

BONDER, L.J. (1983), 'The n-tube formula and some of its consequnces', ACOUS
TICA, Vol. 52, pp. 216-226. 

BOVES, L. (1984), The phonetic basis of perceptual ratings of running speech, Foris 
publication, Dordrecht, Holland. 

BRACEWELL, R.N. (1986), The Fourier Transform and its Applications, Circuits and 
systems, McGraw-Hill Book Company, New York, 2nd ed. 

BRICKER, P.D. and PRUZANSKY, S. (1966), 'Effects of stimulus and duration on 
talker identification', Journal of the Acoustical Society of America, Vol. 40, No.6, 
pp. 1441-1449. 

BRICKER, P.D., GNANADESIKAN, R., MATHEWS, M.V., PRUZANSKY, S., 
TUKEY, P.A., WACHTER, K.W. and WARNER, J.L. (1971), 'Statistical tech
niques for talker identification', Bell Systems Technical Journal, Vol. 50, No.4, 
April, pp. 1427-1454. 

BRIESEMAN, N.P. (1984), A New Algorithm For Musical Pitch Estimation, Master's 
thesis, Electrical and Electronic Engineering Department, University of Canter
bury, New Zealand. 



REFERENCES 199 

BRIESEMAN, N.P., THORPE, C.W. and BATES, R.H.T. (1987), 'Nontactile estima
tion of glottal excitation characteristics of voiced speech" lEE Proceedings A, 
Vol. 134, No. 10, December, pp. 807-813. 

BRlESEMAN, N.P., THORPE, C.W., ELDER, A.G. and ROLLS, A. (1989), Sigproc 
Users Guide and Reference Manual, Dept. of Elect. Eng., University of Canter
bury, Christchurch, N .Z. 

BRIGHAM, E.O. (1974), The fast Fourier transform, Prentice-Hall Inc, Englewood 
Cliffs, New Jersey. 

BURTON, D.K. (1987), 'Text-dependent verification using vector quantization 
source coding" IEEE Transactions in Acoustics, Speech and Signal Processing, 
VoL ASSP-35, No.2, February, pp. 133-143. 

BURTON, D.K., SHORE, J. and BUCK, J. (1985), 'Isolated word speech recognition 
using multisection vector quantization codebooks', IEEE Transactions in Acous
tics, Speech and Signal Processing, Vol. ASSP-33, No.4, August, pp. 837-849. 

BUZO, A., GRAY, A.H., GRAY, R.M. and MARKEL, J. (1980), 'Speech coding based 
upon vector quantization', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. ASSP-28, No.5, October, pp. 562-574. 

CATFORD, J.C. (1977), Fundamental problems in phonetics, Edinburgh University 
Press, Edinburgh. 

CHANDRA, S. and LIN, W.C. (1974), 'Experimental comparison betwee stationary 
and nonstationary formulations of linear prediction applied to voiced speech anal
ysis', IEEE Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-
22, No.6, December, pp. 403-415. 

CHENG, Y.M. and O'SHAUGHNESSY, D. (1989), 'Automatic and reliable estimation 
of glottal closure instant and period', IEEE Transactions in Acoustics, Speech 
and Signal Processing, Vol. ASSP-37, No. 12, December, pp. 1805-1815. 

CHILDERS, D.G., WU, K., BAE, KS. and HICKS,D.M. (1988), 'Automatic recogni
tion of gender by voice', In International Conference on Acoustics, Speech, and 
Signal Processing, IEEE, pp. 603-606. 

CLARK, T.M., KENNEDY, W.K. and BATES, R.H.T. (1990), 'Towards a real time 
computer word recognition system using the TMS32030', In Proc. NELCON, 
(New Zealand National Electronics Conference), pp. 295-303. 

COLEMAN, R.O. (1973), 'Speaker identification in the absence of inter-subject dif
ferences in glottal source characteristics', Journal of the Acoustical Society of 
America, Vol. 53, No.6, pp. 1741-1743. 

COMREY, A.L. (1973), A first course in Factor Analysis, Academic Press Inc., New 
York. 

COOLEY, W.W. and LOHNES, P.R. (1971), Multivariate data analysis, John Wiley 
& Sons Inc., New York. 

CRUTTENDEN, A. (1986), Intonation, Cambridge Textbooks in Linguistics, Cam
bridge University Press, Cambridge. 



200 REFERENCES 

DARPA (1988), 'Getting started with the DARPA TIMIT CD-ROM', Distributed with 
the DARPA TIMIT Acoustic Phonetic Continous Speech Database. This docu
mentation is a compilation of papers. 

DAVEY, B.L.K. (1989), Advances in bilnd deconvolution, PhD thesis, Electrical and 
Electronic Engineering Department, University of Canterbury, Christchurch, New 
Zealand, May. 

DAVEY, B.L.K. and THORPE, C.W. (1987), 'Image and signal reconstruction by shlft
and-add', In IPENZ conference proceedings., Institution of Professional Engineers 
of New Zealand, Christchurch, May, pp. 147-157. 

DE SOUZA, P. (1983), 'A statistical approach to the design of an adaptive self
normalizing silence detector', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. 31, No.3, June, pp. 678-684. 

DODDINGTON, G.R. (1985), 'Speaker recognition - identifying people by their voices', 
Proceedings of the IEEE, Vol. 73, No. 11, November, pp. 1651-1665. 

DUDLEY, H. (1939), 'Remaking speech', Journal of the Acoustical Society of America, 
VoL 11, No.2, October, pp. 169-177. 

DUNCAN, G. and JACK, M.A. (1988), 'Formant estimation algorithm based on pole 
frequency focussing offering improved noise tolerance and feature resolution', lEE 
Proceedings F, Vol. 135, No.1, February, pp. 18-32. 

DUNTEMAN, G.H. (1984), Introduction to multivariate analysis, SAGE Publications, 
London. 

EDWARDS, A.L. (1948), (Note on the "correction for continuity" in testing the signif
icance of the difference between correlated proportions', Psychometrika, Vol. 13, 
No.3, September, pp. 185-187. 

EDWARDS, M.L. and SHRIBERG, L.D. (1983), Phonology: Applications in Commu
nicative Disorders, College-Hill Press, San Diego. 

ELDER, A.G., BATES, R.H.T., BRIESEMAN, N.P., CLARK, T.M., FRIGHT, W.R., 
GARDEN, KL., KENNEDY, W.K., SQUIRES, P.L., TURNER, S.G. and 
THORPE, C.W. (1987), 'Real time speech therapy aid', Proc. NELCON, (New 
Zealand National Electronics Conference), VoL 24, pp. 115-118. 

ENDRES, W., BAMBACH, W. and FLOSSER, G. (1971), 'Voice spectrograms as a 
function of age, voice disguise, and voice imitation" Journal of the Acoustical 
Society of America, VoL 49, No.6 (Part 2), pp. 1842-1848. 

ETON (1974), Eton four-figure mathematical and statistical tables, Eton Press Ltd., 
Box 8203, Christchurch, New Zealand. 

FALLSIDE, F. (1985), 'Frequency-domain analysis of speech', In FALLSIDE, F. and 
WOODS, W.A. (Eds.), Computer Speech Processing, Prentice Hall, New Jersey, 
Chap. 3. 

FALLSIDE, F. and WOODS, W.A. (Eds.) (1985), Computer Speech Processing, Pren
tice Hall, New Jersey. 

FANT, G. (1973), Speech Sounds and Features, Current Studies in Linguistics, MIT 
Press, Massachusetts. 



REFERENCES 201 

FLANAGAN, J.L. (1972), Speech analysis, synthesis and perception, Springer-Verlag, 
Berlin, 2nd ed. 

FLANAGAN, J.1. and CHERRY, 1. (1969), 'Excitation of vocal-tract synthesizers', 
Journal of the Acoustical Society of America, Vol. 45, No.3, March, pp. 764-769. 

FRY, D.B. (1979), The physics of speech, Cambridge textbooks in Linguistics, Cam
bridge University Press, Cambridge. 

FUJIMURA, O. (1968), 'An approximation to voice aperiodicity', IEEE Tmnsactions 
on Audio and Electroacoustics, Vol. 16, No.1, March, pp. 68-72. 

FURUI, S. (1974), 'An analysis of long-term variation of feature parameters of speech 
and its application to talker recognition', Electronics and Communications in 
Japan, Vol. 57-A, No. 12, pp. 34-42. 

FURUI, S. (1981), 'Comparison of speaker recognition methods using statistical fea
tures and dynamic features', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. ASSP-29, No.3, June, pp. 342-350. 

FURUI, S. and ITAKURA, F. (1973), 'Talker recognition by statistical features of 
speech sounds', Electronics and Communications in Japan, Vol. 56-A, No. 11, 
pp.62-71. 

FUSSELL,J.W. (1991), 'Automatic sex identification from short segments of speech', 
In International Conference on Acoustics, Speech, and Signal Processing, IEEE, 
pp. 409-412. 

GALLAGER, R.G. (1968), Information theory and reliable communication, Jonh Wiley 
and Sons, Inc, New York. 

GILLICK, L. and COX, S.J. (1989), 'Some statistical issues in the comparison of speech 
recognition algorithms', In International Conference on Acoustics, Speech, and 
Signal Processing, IEEE, pp. 532-535. 

GLENN, J.W. and KLEINER, N. (1968), 'Speaker identification based on nasal phona
tion', Journal of the Acoustical Society of America, Vol. 43, No.2, pp. 368-372. 

GNANADESIKAN, R. (1977), Methods for statistical data analysis of multivariate 
observations, John Wiley & Sons, New York. 

GOLD, B. and RABINER, L.R. (1969), 'Parallel processing techniques for estimating 
pitch periods of speech in the time domain', Journal of the Acoustical Society of 
America, Vol. 46, No.2 (Part 2), pp. 442-448. 

GORSUCH, R.L. (1983), Factor Analysis, Lawrence Erlbaum Associates, Hillsdale, 
New Jersey. 

GRAY, R.M. (1984), 'Vector quantisation', IEEE Acoustics, Speech and Signal Pro
cessing Society Magazine, April, pp. 4-29. 

GRAY, R.M., BUZO, A., GRAY, JR., A.H. and MATSUYAMA, Y. (1980), 'Distortion 
measures for speech processing', IEEE Transactions in Acoustics, Speech and 
Signal Processing, Vol. ASSP-28, No.4, August, pp. 367-376. 

GRAY, JR., A.H. and MARKEL, J.D. (1976), 'Distance measures for speech process
ing', IEEE Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-
20, No.5, October, pp. 380-391. 



202 REFERENCES 

HARDCASTLE, W.J. (1976), Physiology of speech production, Academic Press, Lon
don. 

HARRIS, F.J. (1978), 'On the use of windows for harmonic analysis with the discrete 
Fourier transform', Proceedings of the IEEE, VoL 66, No.1, pp. 51-83. 

HOLLIEN, H. and MAJEWSKI, W. (1977), 'Speaker identification by long-term spec
tra under normal and distorted speech conditions', Journal of the Acoustical So
ciety of America, Vol. 62, No.4, October, pp. 975-980. 

HOLLIEN, H., MAJEWSKI, W. and DOHERTY, E.T. (1982), 'Perceptual identifica
tion of voices under normal, stress and disguise speaking conditions', Journal of 
Phonetics, Vol. 10, pp. 139-148. 

HUFFMAN, D.A. (1973), 'A method for the construction of minimum-redundancy 
codes', In SLEPIAN, D. (Ed.), Key papers in the development of information 
theory, IEEE Press, New York, pp. 47-50. Also in, Proc. IRE, vol. 40, pp. 1098-
1101, Sept. 1952. 

IEEE (1969), 'Recommended practice for speech quality measurements', IEEE Trans
actions on Audio and Electroacoustics, Vol. 17, No.3, September, pp. 225-246. 

ISHIZAKA, K. and FLANAGAN, J.1. (1972), 'Synthesis of voiced sounds from a two
mass modelof the vocal cords.', Bell Systems Technical Journal, Vol. 51, No.6, 
J uly-A ugust, pp. 1233-1268. 

ITAKURA, F. (1975), 'Minimum preduction residual principle applied to speech recog
nition', IEEE Transactions in Acoustics, Speech and Signal Processing, Vol. 23, 
No.1, February, pp. 67-72. 

ITAKURA, F. and SAITO, S. (1968), 'Analysis synthesis telephony based in the max
imum likelihood method', In The 6th International Conference on Acoustics, 
Tokyo, Japan, August 21-28, pp. C17-C20. 

ITAKURA, F. and SAITO, S. (1973), 'On the optimum quantization of feature param
eters in the PARCOR speech synthesiser', In FLANAGAN, J.1. and RABINER, 
L.R. (Eds.), Speech Synthesis, Dowden, Hutchinson & Ross, Inc., Stroudsburg, 
Pennsylvania, pp. 301-304. From Conf. Speech Commun. Process., 1972, p434-
437. 

JAYANT, N.S. and NOLL, P. (1984), Digital coding of waveforms, principles and ap
plications to speech and video, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 

JOHNSON, N.L. and KOTZ, S. (1969), Discrete distributions, Distributions in Statis
tics, Houghton Mifflen Co., Boston. 

JUANG, B.H. (1984), 'On the hidden markov model and dynamic time warping for 
speech recognition - a unified view', AT & T Technical Journal, Vol. 63, No.7, 
September, pp. 1213-1243. 

JUANG, B.H., WONG, n.Y. and GRAY, JR., A.H. (1982), 'Distortion performance 
of vector quantization for LPC voice coding', IEEE Transactions in Acoustics, 
Speech and Signal Processing, Vol. ASSP-30, No.2, April, pp. 294-303. 

JUNQUA, J.C. and WAKITA, H. (1989), 'A comparative study of cepstrallifters and 
distance measures for all pole models of speech in noise', In International Con
ference on Acoustics, Speech, and Signal Processing, pp. 476-479. 



REFERENCES 203 

KASHYAP, R.L. (1976), 'Speaker recognition from an unknown utterance and speaker
speech interaction', IEEE Transactions in Acoustics, Speech and Signal Process
ing, Vol. ASSP-24, No.6, December, pp. 481-488. 

KAY, S.M. and MARPLE, JR., S.L. (1981), 'Spectrum analysis-A modern perspec
tive', Proceedings of the IEEE, VoL 69, No. 11, November, pp. 1380-1419. 

KERSTA, L.G. (1962), 'Voiceprint identification', Nature, December, p. 1253. 

KINSLER, L.E., FREY, A.R., COPPENS, A.B. and SANDERS, J.V. (1982), Funda
mentals of Acoustics, John Wiley & Sons, New York, 3rd ed. 

KIOZUMI, T., TANIGUCHI, S. and HIROMITSU, S. (1985), 'Glottal source-vocal 
tract interaction', Journal of the Acoustical Society of America, Vol. 78, No.5, 
November, pp. 1541-1547. 

KIRKLAND, J.R. and GARDEN, K.L. (1991), 'Neural magic and speech recogni
tion', In Proc. NELCON, (New Zealand National Electronics Conference), Au
gust, pp. 42-47. 

KITAWAKI, N. and NAGABUCHI, H. (1988), 'Quality assessment of speech coding and 
speech synthesis systems', IEEE Communications Society Magazine, October, 
pp. 36-44. 

KITZING, P. (1986), 'LTAS criteria pertinent to the measurement of voice quality', 
Journal of Phonetics, No. 14, pp. 477-482. 

KLECKA, W.R. (1980), Discriminant Analysis, Quantitative Applications in the Social 
Sciences, SAGE Publications, Beverly Hills. 

KNORR, S.G. (1979), 'Reliable voiced/unvoiced decision', IEEE Transactions m 
Acoustics, Speech and Signal Processing, Vol. 27, No.3, June, pp. 263-267. 

KOHONEN, T. (1990), 'The self-organizing map', Proceedings of the IEEE, Vol. 78, 
No.9, September, pp. 1464-1479. 

KRASNER, M., WOLF, J., KARNOFSKY, K., SCHWARTZ, R., ROUCOS, S. and 
GISH, H. (1984), 'Investigation of text-independent speaker identification tech
niques under conditions of variable data', In International Conference on Acous
tics, Speech, and Signal Pmcessing, IEEE, pp. 18B.5.1-18B.5.4. 

KRATZENSTEIN, C.R. (1782), 'Sur la naissance de la formation des voyelles', Journal 
of Physiology, Vol. 21, pp. 358-381. 

KREYSZIG, E. (1979), Advanced Engineering -Mathematics, John Wiley & Sons, New 
York, 4th ed. 

KROON, P., DEPRETTERE, E.F. and SLUYTER, R.J. (1986), 'Regular-pulse 
excitation-A novel approach to effective and efficient multipulse coding of speech', 
IEEE Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-34, 
No.5, October, pp. 1054-1063. 

KWON, S.Y. and GOLDBERG, A.J. (1984), 'An enhanced LPC vocoder with no 
voiced/unvoiced switch', IEEE Transactions in Acoustics, Speech and Signal Pro
cessing, Vol. ASSP-32, No.4, August, pp. 851-858. 



204 REFERENCES 

LARAR, J.N., SCHROETER, J. and SONDHI, M.M. (1988), 'Vector quantisation 
of the articulatory space', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. ASSP-36, No. 12, December, pp. 1812-1818. 

LAVER, J. (1980), The phonetic description of voice quality, Cambridge studies in 
linguistics, Cambridge University Press, Cambridge. 

LEHISTE, I. (1970), Suprasegmentals, MIT Press, Massachusetts. 

LIEBERMAN, P. and BLUMSTEIN, S.E. (1988), Speech physiology, speech perception, 
and acoustic phonetics, Cambridge Studies in Speech Science and Communica
tion, Cambridge Unlversity Press, Cambridge. 

LIM, C.A., ELDER, A.G., CLARK, T.M. and BATES, R.H.T. (1990), 'Software im
plementation of Hidden Markov model for recognition of isolated digits uttered 
by New Zealand speaker', In Proc. NELCON, (New Zealand National Electronics 
Conference), pp. 287-294. 

LINDE, Y., BUZO, A. and GRAY, R.M. (1980), 'An algorithm for vector quantiser 
design', IEEE Transactions in Communications, Vol. COM-28, No.1, January, 
pp.84-95. 

LINDEMAN, R.H., MERENDA, P.F. and GOLD, R.Z. (1980), Introduction to bivariate 
and multivariate analysis, Scott, Foresman and Company, Glanview, Illinois. 

LINGGARD, R. (1985), Electronic synthesis of speech, Cambridge University Press, 
Cambridge. 

LLOYD, C.J. (1990), 'Confidence intervals from the difference between two correlated 
proportions', Journal of the American Statistical Association, Vol. 85, No. 412, 
December, pp. 1154-1158. 

LOFQVIST, A. (1986), 'The long-time average spectrum as a tool in voice research', 
Journal of Phonetics, No. 14, pp. 471-475. 

LOOKABAUGH, T.D. and GRAY, R.M. (1989), 'High-resolution quantization the
ory and the vector quantization advantage', IEEE Transactions on Information 
Theory, Vol. 35, No.5, September, pp.l020-1033. 

LUBKER, J.F. and MOLL, K.L. (1965), 'Simultaneous oral-nasal air flow measure
ments and cinefluorographic observations during speech production', Cleft Palate 
Journal, Vol. 2, pp. 257-272. 

LUMMIS, R.C. (1971), 'Real-time techniques for speaker verification by computer.', 
Journal of the Acoustical Society of America, Vol. 50, p. 106(A). 

MACLAGAN, M.A. (1982), 'An acoustic study of New Zealand vowels', The New 
Zealand speech therapist's journal, Vol. 37, pp. 20-26. 

MAKHOUL, J. (1975), 'Linear prediction: A tutorial review', Proceedings of the IEEE, 
Vol. 63, No.4, April, pp. 561-580. 

MAKHOUL, J. (1977), 'Stable and efficient lattice methods for linear prediciton', IEEE 
Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP.25, No.5, 
October, pp. 423-428. 

MAKHOUL, J., ROUCOS, S. and GISH, H. (1985), 'Vector quantisation in speech 
coding', Proceedings of the IEEE, Vol. 73, No. 11, November, pp. 1551-1558. 



REFERENCES 205 

MANSOUR, D. and JUANG, RH. (1988), 'A family of distortion measures based upon 
projection operation for robust speech recognition', In International Conference 
on Acoustics, Speech, and Signal Processing, IEEE, pp. 36-39. 

MARKEL, J.D. and DAVIS, S.B. (1979), 'Text-independent speaker recognition from a 
large linguistically unconstrained time-spaced data base', IEEE Transactions in 
Acoustics, Speech and Signal Processing, Vol. ASSP-27, No.1, February, pp. 74-
82. 

MARKEL, J.D. and GRAY, JR., A.H. (1976), Linear prediction of speech, Springer
Verlag, Berlin. 

MARKEL, J.D., OSHIKA, RT. and GRAY, JR., A.H. (1977), 'Long-term feature 
averaging for speaker recognition', IEEE Transactions in Acoustics, Speech and 
Signal Processing, Vol. ASSP-25, No.4, August, pp. 330-337. 

MATSUMOTO, H. (1989), 'Text-independent speaker identification from short utter
ances based on piecewise discriminant analysis', Computer Speech and Language, 
No.3, pp. 133-150. 

MAX, J. (1960), 'Quantizing for minimum distortion', IRE Transactions on Informa
tion Theory, Vol. IT-6, March, pp. 7-12. 

McGONEGAL, C.A., RABINER, L.R. and ROSENBERG, A.E. (1977), 'A subjective 
evaluation of pitch methods using LPC synthesised speech', IEEE Transactions in 
Acoustics, Speech and Signal Processing, Vol. ASSP.25, No.3, June, pp. 221-229. 

McGONEGAL, C.A., ROSENBERG, A.E. and RABINER, L.R. (1979), 'The effects of 
several transmission systems on an automatic speaker verification system', Bell 
Systems Technical Journal, Vol. 58, No.9, November, pp. 2071-2087. 

McNEMAR, Q. (1947), 'Note on the sampling error of the difference between correlated 
proportions or percentages', Psychometrika, Vol. 12, No.2, June, pp. 153-157. 

MOHN, JR., W.S. (1971), 'Two stastical feature evaluation techniques applied to 
speaker identification', IEEE Transactions in Computers, Vol. C-20, No.9, 
September, pp. 979-987. 

MOORER, J.A. (1974), 'The optimum comb method of pitch period analysis of con
tinuous digitized speech', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. ASSP-22, No.5, October, pp. 330-338. 

MOULINES, E. and DI FRANCESCO, R. (1990), 'Detection of the glottal closure by 
jumps in the statistical properties of the speech signal', Speech Communication, 
Vol. 9, pp. 401-418. 

MURRY, T. and SINGH, S. (1980), 'Multidimensional analysis of male and female 
voices', Journal of the Acoustical Society of America, Vol. 68, No.5, November, 
pp. 1294-1300. 

NAIK, J.M. (1990), 'Speaker verification: A tutorial', IEEE Communications Society 
Magazine, Vol. 28, No.1, January, pp. 42-48. 

NAIK, J.M., NETSCH, L.P. and DODDINGTON, G.R. (1989), 'Speaker verification 
over long distance telephone lines', In International Conference on Acoustics, 
Speech, and Signal Processing, IEEE, pp. 524-527. 



206 REFERENCES 

NODA, H. (1988), 'Frequency-warped spectral distance measures for speaker verifi
cation in noise', In International Conference on Acoustics, Speech, and Signal 
Processing, IEEE, pp. 576-579. 

NODA, H. (1989), 'On the use of the information on individual's position in the pa
rameter space for speaker recognition', In International Conference on AcousticsJ 

Speech, and Signal Processing, IEEE, pp. 516-519. 

O'CONNOR, J.D. (1973), Phonetics, Penguin, Harmondsworth. 

OPPENHEIM, A.V. and SCHAFER, R.W. (1968), 'Homomorphic analysis of speech" 
IEEE Transactions on Audio and Electroacoustics, Vol. AU-16, No.2, June, 
pp. 221-226. . 

OPPENHEIM, A.V. and SCHAFER, R.W. (1975), Digital signal processing, Prentice-
Hall Inc., New Jersey. 

OPPENHEIM, A.V. and WILLSKY, A.S. (1983), Signals and Systems, Prentice-Hall 
signal processing series, Prentice-Hall, Inc., New Jersey. 

O'SHAUGHNESSY, D. (1986), 'Speaker recognition', IEEE Acoustics, Speech and Sig
nal Processing Society Magazine, October, pp. 4-17. 

PAPOULIS, A. (1980), Circuits and Systems, Modern Approach, HRW Series in Elec
trical and Computer Engineering, Holt, Rinehart and Winston, Inc., New York. 

POLLACK, 1., PICKETT, J.M. and SUMBY, W.H. (1954), 'On the identification of 
speakers by voice', Journal of the Acoustical Society of America, Vol. 26, No.3, 
May, pp. 403-406. 

PRUZANSKY, S. and MATHEWS, M.V. (1964), 'Talker-recognition procedure based 
on analysis of variance" Journal of the Acoustical Society of America, Vol. 36, 
No. 11, November, pp. 2041-2047. 

RABINER, L.R. (1989), 'A tutorial on Hidden lvlarkov Models and selected applications 
in speech recognition', Proceedings of the IEEE, Vol. 77, No.2, February, pp. 257-
286. 

RABINER, L.R. and JUANG, B.H. (1986), 'An introduction to hidden Markov models', 
IEEE Acoustics, Speech and Signal Processing Society Magazine, January, pp. 4-
16. 

RABINER, L.R. and LEVINSON, S.E. (1981), 'Isolated and connected word recognit
ion - theory and selected applications', IEEE Transactions in Communications, 
Vol. COM-29, No.5, May, pp. 621-659. 

RABINER, L.R. and SAMBUR, M.R. (1975), 'An algorithm for determing the end
points of isolated utterances', Bell Systems Technical Journal, Vol. 45, No.2, 
February, pp. 297-315. 

RABINER, L.R. and SCHAFER, R.W. (1978), Digital Processing of Speech Signals, 
Prentice-Hall Signal Processing Series, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey. 

RABINER, L.R., CHENG, M.J., ROSENBERG, A.E. and McGONEGAL, L.A. (1976), 
'A comparative performance study of several pitch detection algorithms', IEEE 
Transactions in Acoustics, Speech and Signal Processing, Vol. ASSP-24, No.5, 
October, pp. 399-418. 



REFERENCES 207 

RABINER, L.R., ATAL, B.S. and SAMBUR, M.R. (1977), 'LPC prediction error
analysis of its variation with the position of the analysis frame', IEEE Transac
tions in Acoustics, Speech and Signal Processing, Vol. ASSP-25, No.5, October, 
pp. 434-442. 

RABINER, L.R., ROSENBERG, A.E. and LEVINSON, S.E. (1978), 'Considerations in 
dynamic time warping algorithms for discrete word recognition', IEEETransac
tions in Acoustics, Speech and Signal Processing, Vol. ASSP-26, No.6, December, 
pp. 575-582. 

RABINER, L.R., LEVINSON, S.E. and SONDHI, M.M. (1983), 'On the application of 
vector quantization and hidden Markov models to speaker-independent, isolated 
word recognition', Bell Systems Technical Journal, Vol. 62, No.4, April, pp. 1075-
1105. 

RABINER, L.R., JUANG, B., LEVINSON, S.E. and SONDHI, M.M. (1985), 'Recog
nition of isolated digits using Hidden Markov Models with continuous mixture 
densities', AT & T Technical Journal, Vol. 64, No.6, July-August, pp. 1211-
1233. 

REICH, A.R. (l981), 'Detecting the presence of vocal disguise in the male voice', 
Journal of the AcousticalSociety of America, Vol. 69, No.5, May, pp. 1458-1461. 

REICH, A.R. and DUKE, J .E. (1979), 'Effects of selected vocal disguises upon speaker 
identification by listening', Journal of the Acoustical Society of America, Vol. 66, 
No.4, October, pp. 1023-1028. 

REICH, A.R., MOLL, K.L. and CURTIS, J.F. (1976), 'Effects of selected vocal disguises 
upon spectrographic speaker identification" Journal of the Acoustical Society of 
America, Vol. 60, No.4, October, pp. 919-925. 

ROBINSON, E.A. (1980), Physical applications of stationary time-series, Charles Grif
fin & Company Ltd., London. 

ROSENBERG, A.E. (1973), 'Listener performance in speaker verification tasks', IEEE 
Transactions on Audio and Electroacoustics, Vol. AU-21, No.3, June, pp. 221-
225. 

ROSENBERG, A.E. (1976), 'Evaluation of an automatic speaker-verification system 
over telephone lines', Bell Systems Technical Journal, VoL 55, No.6, July / August, 
pp. 723-744. 

ROSENBERG, A.E. and SAMBUR, M.R. (1975), 'New techniques for automatic 
speaker verification', IEEE Transactions in Acoustics, Speech and Signal Pro
cessing, Vol. ASSP-23, No.2, April, pp. 169-177. 

ROSS, M.J., SHAFFER, ILL., COHEN, A., FREUDBERG, R. and MANLEY, H.J. 
(1974), 'Average magnitude difference function pitch extractor', IEEE Transac
tions in Acoustics, Speech and Signal Processing, VoL ASSP-22, No.5, October, 
pp. 353-362. 

ROTHENBURG, M. (l983), 'An interactive model for the voice source', In BLESS, 
D.M. and ABBS, J.H. (Eds.), Vocal Fold Physiology: Contemporary research and 
clinical issues, College-Hill Press, San Diego, Chap. 12. 



208 REFERENCES 

SAMOUELIAN, A. and HOLMES, W.H. (1985), 'Real time pitch estimation', In 
20th International Electronics Convention, IREE, Melbourne, 30 Sept - 4 Oct, 
pp. 1019-1021. 

SAS (1985a), SAS Users's guide: Basics, SAS Institute Inc., Cary, NC, USA, 5th ed. 

SAS (1985b), SAS Users's guide: Statistics, SAS Institute Inc., Cary, NC, USA, 5th 
ed. 

SCHARF, B. (1970), 'Critical bands', In TOBAIS, J.V. (Ed.), Foundations of modern 
auditory theory, Academic Press, New York. 

SCHMIDT-NIELSEN, A. and STERN, K.R. (1985), 'Identification of known voices 
as a function of familiarity and narrow-band coding', Journal of the Acoustical 
Society of America, Vol. 77, No.2, February, pp. 658-663. 

SCHROEDER, M.R. (1966), 'Vocoders: Analysis and synthesis of speech', Proceedings 
of the IEEE, VoL 54, No.5, May, pp. 720-734. 

SCHROEDER, M.R. (1968), 'Reference signal for signal quality studies', Journal of 
the Acoustical Society of America, VoL 44, No.6, pp. 1735-1736. 

SCHROEDER, M.R. (1975), 'Model& of hearing', Proceedings of the IEEE, VoL 63, 
No.9, September, pp. 1332-1350. 

SCHROEDER, M.R. (1984), 'Linear prediction, entropy and signal analysis', IEEE 
Acoustics, Speech and Signal Processing Society Magazine, VoL 1, No.3, July, 
pp.3-11. 

SCHROEDER, M.R. (1985), 'Linear predictive coding of speech: Review and current 
directions', IEEE Communications Society Magazine, Vol. 23, No.8, August, 
pp.54-61. 

SHANNON, C.E. (1948), 'A mathematical theory of communication', Bell Systems 
Technical Journal, VoL 27, No.3, July, pp. 379-423. 

SHANNON, C.E. (1949), 'Communication in the presence of noise', Proc. of the IRE, 
VoL 37, No.1, January, pp. 10-21. 

SHIRAI, K., MANO, K. and ISHIGE, S. (1988), 'Speaker identification based on 
frequency distribution of vector-quantized spectra', Systems and Computers in 
Japan, VoL 18, No.6, pp. 63-72. 

SIEGEL, L.J. (1979), 'A procedure for using pattern classification techniques to obtain 
a voiced/unvoiced classifier', IEEE Transactions in Acoustics, Speech and Signal 
Processing, Vol. ASSP-27, No.1, February, pp. 83-89. 

SINTON, A.M. (1986), Contributions to astronomical and medical information process
ing, PhD thesis, Electrical and Electronic Engineering Deptartment, University 
of Canterbury, Christchurch, New Zealand. 

SKINNER, P.H. and SHELTON, R.L. (Eds.) (1978), Speech, language and hearing: 
Normal processes and disorders, Addison-Wesley Publishing Co., Reading, Mas
sachusetts, USA. 

SLEPIAN, D. (1976), 'On bandwidth', Proceedings of the IEEE, Vol. 64, No.3, March, 
pp. 292-300. 



REFERENCES 209 

SONDHI, M.M. (1968), 'New methods of pitch extraction', IEEE Transactions on 
Audio and Electroacoustics, Vol. AU-16, No.2, June, pp. 262-266. 

SONDHI, M.M. (1979), 'Estimation of vocal-tract areas: The need for acoustical 
measurements', IEEE Transactions in Acoustics, Speech and Signal Processing, 
Vol. ASSP-27, No.3, June, pp. 268-273. 

SONDHI, M.M. and GOPINATH, B. (1971), 'Determination of vocal-tract shape from 
impulse response at the lips', Journal of the Acoustical Society of America, Vol. 49, 
No.6 (Part 2), pp. 1867-1873. 

SONDI, M.M. and SCHROETER, J. (1987), 'A hybrid time-frequency domain artic
ulatory speech synthesizer', IEEE Transactions in Acoustics, Speech and Signal 
Processing, VoL ASSP-35, No.7, July, pp. 955-967. 

SONG, K.H. and UN, C.R. (1983), 'Pole-zero modelling of speech based on high-order 
pole model fitting and decomposition methods" IEEE Transactions in Acoustics, 
Speech and Signal Processing, Vol. ASSP-31, No.6, December, pp. 1556-1565. 

SOONG, F.R. and ROSENBERG, A.E. (1988), 'On the use of instantaneous and transi
tional spectral information in speaker recognition" IEEE Transactions in Acous
tics, Speech and Signal Processing, Vol. 36, No.6, June, pp. 871-879. 

SOONG, F.K. and SONDHI, M.M. (1988), 'A frequency-weighted Itakura spectral dis
tortion measure and its application to speech recognition in noise', IEEE Trans
actions in Acoustics, Speech and Signal Processing, Vol. ASSP-36, No.1, January, 
pp.41-48. 

SOONG, F.K., ROSENBERG, A.E., RABINER, L.R. and JUANG, RH. (1985), 'A 
vector quantization approach to speaker recognition', In International Conference 
on Acoustics, Speech, and Signal Processing, IEEE, pp. 11.4.1-11.4.4. 

SOONG, F.K., ROSENBERG, A.E., JUANG, B.H. and RABINER, L.R. (1987), 'A 
vector quantization approach to speaker recognition" AT & T Technical Journal, 
VoL 66, No.2, MarchI April, pp. 14-26. 

STEVENS, K.N., WILLIAMS, C.E., CARBONALL, J.R. and WOODS, B. (1968), 
'Speaker authentication and identification:A comparison of spectrographic and 
auditory presentations of speech material', Journal of the Acoustical Society of 
America, Vol. 44, No.6, pp. 1596-1607. 

STREMLER, F.G. (1982), Introduction to communication systems, Addison-Wesley 
Publishing Company, Reading, Massachusetts, 2nd ed. 

SUTHERLAND, A.M., JACK, M.A. and LAVER, J. (1988), 'Improved pitch detection 
algorithm employing temporal structure investigation of the speech waveform', 
lEE Proceedings F, Vol. 135, No.2, April, pp. 169-174. 

TAKAGI, T. and KUWABARA, H. (1986), 'Contributions of pitch, formant frequency 
and bandwidth to the perception of voice personality', In International Confer
ence on Acoustics, Speech, and Signal Processing, IEEE, pp. 889-892. 

THE MATH WORKS (1990), PRO-MATLAB User's Guide, The Math Works, Inc, 21 
Eliot St, South Natick, MA 01760, USA. 



210 REFERENCES 

THORPE, C.W. (1990), Processing of speech and other sounds., PhD thesis, Electrical 
and Electronic Engineering Department, University of Canterbury, Christchurch, 
New Zealand. 

THORPE, C.W. and BATES, R.H.T. (19XX), 'Speech analysis/companding/resyn
thesis by shift-and-add and Clean', lEE Proceedings I, Vol. , No. , p .. Submitted 
for publication. 

\ 

TUCKER, W.R. and BATES, R.H.T. (1978), 'A pitch estimation alogrithm for speech 
and music" IEEE Transactions in Acoustics, Speech and Signal Processing, 
VoL 26, No.6, pp. 597-604. 

TURNER, S.G. (1986), Real-time speech analysis for use with impaired speech aids, 
Master's thesis, Electrical and Electronic Engineering Department, University of 
Canterbury, Christchurch, New Zealand. 

UN, C.K. and CHOI, K.Y. (1981), 'Improving LPC analysis of noisy speech by autocor
relation subtraction method', In International Conference on Acoustics, Speech, 
and Signal Processing, IEEE, pp. 1082-1085. 

VAN LANCKER, D., KREIMAN, J. and EMMOREY, K. (1985), 'Familiar voice recog
nition: patterns and parameters. Part 1: Recognition of backward voices', Journal 
of Phonetics, VoL 13, pp. 19.,..38~ 

VELUS, G. (1988), 'Variants of cepstrum based speaker identity verification', In Inter
national Conference on Acoustics, Speech, and Signal Processing, IEEE, pp. 583-
586. 

VOIERS, W.D. (1964), 'Perceptual bases of speaker identity', Journal of the Acoustical 
Society of America, Vol. 36, No.6, June, pp. 1065-1073. 

WAKITA, H. (1973), 'Direct estimation of the vocal tract shape by inverse filtering of 
acoustic speech waveforms', IEEE Transactions on Audio and Electroacoustics, 
Vol. AU-21, No.5, October, pp. 417-427. 

WARD-SMITH, A.J. (1980), Internal Fluid Flow, Clarendon Press, Oxford. 

WATSON, C.l., KENNEDY, W.K. and BATES, R.H.T. (1990), 'Towards a computer 
based speech therapy aid', In Proc. SST, (Australian International Conference on 
Speech Science and Technology), November, pp. 234-239. 

WATSON, C.l., KENNEDY, W.K. and BATES, R.H.T. (1991), 'A computer based 
speech training aid for the speech impaired: Development and evaluation', 
In Proc. NELCON, (New Zealand National Electronics Conference), August, 
pp. 105-110. 

WENDLER, J., RAUHUT, A. and KRUGER, H. (1986), 'Classification of voice qual
ities', Journal of Phonetics, No. 14, pp. 483-488. 

WILLIAMS, C.E. and STEVENS, K.N. (1972), 'Emotions and speech: Some acoustical 
correlates', Journal of the Acoustical Society of America, Vol. 52, No.4 (Part 2), 
pp. 1238-1250. 

WISE, J.D., CAPRIO, J.R. and PARKS, T.W. (1976), 'Maximum likelihood pitch 
estimation', IEEE Transactions in Acoustics, Speech and Signal Processing, 
Vol. ASSP-24, No.5, October, pp. 418-423. 



REFERENCES 211 

WITTEN, I.H. (1982), Principles of computer speech, Academic Press, London. 

WONG, D.Y., JUANG, B. and GRAY, JR., A.H. (1982), 'An 800 bit/s vector quan
tisation LPC vocoder', IEEE Transactions in Acoustics, Speech and Signal Pro
cessing, Vol. ASSP-30, No.5, October, pp. 770-780. 

WOODWARD, P.M. (1953), Probability and information theory, with applications to 
radar, Electronics and waves, Pergamon Press Ltd, London. 

WU,1. and FALLSIDE, F. (1991), 'On the design of connectionist vector quantizers', 
Computer Speech and Language, Vol. 5, pp. 207-229. 

YAMADA, Y., TAZAKI, S. and GRAY, R.M. (1980), 'Asymptotic performance of 
block quantizers with difference distortion measures', IEEE Transactions on In
formation Theory, Vol. IT-26, No.1, January, pp. 6-14. 

YOUNG, M.A. and CAMPBELL, R.A. (1967), 'Effects of context on talker identifica
tion', Journal of the Acoustical Society of America, Vol. 42, No.6, pp. 1250-1254. 

ZHENG, Y.C. and YUANG, B.Z. (1988), 'Text-dependent speaker identification us
ing circular hidden Markov models', In International Conference on Acoustics, 
Speech, and Signal Processing, IEEE, pp. 580-582. 


	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	PREFACE
	GLOSSARY OF ABBREVIATIONS
	CHAPTER 1
	1.1 PHYSIOLOGY OF SPEECH PRODUCTION
	1.2 TYPES OF SPEECH SOUNDS
	1.3 SPEECH CHARACTERISTICS
	1.4 VOICE QUALITY

	CHAPTER 2
	2.1 SIGNAL ANALYSIS
	2.2 THE SOURCE FILTER MODEL
	2.3 ACOUSTIC MODEL OF THE VOCAL TRACT
	2.4 PROSODIC CHARACTERISTICS
	2.5 LINEAR PREDICTIVE CODING OF SPEECH
	2.6 SPECTRAL ESTIMATION
	2.7 VECTOR QUANTIZATION
	2.8 SHIFT-AND-ADD
	2.9 MEASURES OF SPEECH NOISE
	2.10 SUMMARY

	CHAPTER 3
	3.1 INTRODUCTION
	3.2 FACTORS THAT AFFECT RECOGNITION PERFORMANCE BY HUMAN LISTENERS
	3.3 CLASSES OF TECHNIQUES USEFUL FOR SPEAKER RECOGNITION
	3.4 STATISTICAL METHODS FOR ASSESSING DISCRIMINATION ABILITY OF FEATURES
	3.5 COMPARATIVE PERFORMANCE OF SPECIFIC TECHNIQUES AND FEATURES FOR SPEAKER RECOGNITION
	3.6 EFFECT OF VOICE DISTORTION ON SPEAKER RECOGNITION ACCURACY
	3.7 REAL-TIME SPEAKER VERIFICATION
	3.8 SUMMARY

	CHAPTER 4
	4.1 THE SPEECH DATABASE
	4.2 VOCAL TRACT FEATURES
	4.3 THE LONG-TERM AVERAGE GLOTTAL RESPONSE
	4.4 LONG-TERM AVERAGE SPECTRUM
	4.5 THE SPECTRUM OF THE LONG-TERM AVERAGE GLOTTAL RESPONSE
	4.6 SUMMARY

	CHAPTER 5
	5.1 TERMINOLOGY
	5.2 TRAINING OF SPEAKER TEMPLATES
	5.3 STATISTICAL SIGNIFICANCE OF IDENTIFICATION RESULTS
	5.4 EVALUATION OF DIFFERENT SPEAKER IDENTIFICATION SYSTEMS
	5.5 FACTORS THAT REDUCE THE ACCURACY OF SPEAKER IDENTIFICATION
	5.6 COMPUTATIONAL REQUIREMENTS
	5.7 SUMMARY

	CHAPTER 6
	6.1 CONCLUSIONS
	6.2 SUGGESTIONS FOR FURTHER RESEARCH

	REFERENCES



