2,383 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    On the needs and requirements arising from connected and automated driving

    Get PDF
    Future 5G systems have set a goal to support mission-critical Vehicle-to-Everything (V2X) communications and they contribute to an important step towards connected and automated driving. To achieve this goal, the communication technologies should be designed based on a solid understanding of the new V2X applications and the related requirements and challenges. In this regard, we provide a description of the main V2X application categories and their representative use cases selected based on an analysis of the future needs of cooperative and automated driving. We also present a methodology on how to derive the network related requirements from the automotive specific requirements. The methodology can be used to analyze the key requirements of both existing and future V2X use cases

    Strategies and challenges for interconnecting wireless mesh and wireless sensor networks

    Get PDF
    Wireless sensor networks and wireless mesh networks are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. However, current single-gateway solutions are suboptimal, as they do not allow advanced interactions between sensor networks (WSNs) and mesh networks (WMNs). Therefore, in this article, challenges and opportunities for optimizing the WSN-WMN interconnection are determined. In addition, several alternative existing and new interconnection approaches are presented and compared. Furthermore, the interconnection of WSNs and WMNs is used to study challenges and solutions for future heterogeneous network environments. Finally, it is argued that the use of convergence layers and the development of adaptive network protocols is a promising approach to enable low end devices to participate in heterogeneous network architectures

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Future directions in networked sensing.

    Get PDF

    Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability

    Get PDF

    Definition of Application Scenarios

    Get PDF
    The objective of D1 is to identify and analyse a set of application scenarios that, on the one hand, exemplify those application areas that might benefit from the technology being developed within the CORTEX project and, on the other hand, might serve as a source of requirements on this technology. Furthermore, at least a subset of the application scenarios considered here is expected to serve as source of demonstrator applications later in the projec
    • …
    corecore